ИЕМО ТО	Stan Nowicki	January 5, 1981
	Operating Reactors Branch No. 5	
	U. S. Nuclear Regulatory Commission	
		·
Enc	losed is the following information which	you requested from
Mr. Jack	Rainsberry of my organization:	
1.	Calculation of estimated time required to	o borate to cold
	shutdown conditions using only RWST wate:	r and the charging
	pumps.	
2.	Section 22 of the San Onofre Unit 1 Equip	pment Data Manual,
	"Compressed Air Syştem Equipment."	
3.	Section 26 of the San Onofre Unit 1 Syste	em Description Manual,
	"Compressed Air System."	
If	you require any additional information ple	ease let me know.
	1	
N i01.		
RIBU		
DIST		
	N N N N N N N N N N N N N N N N N N N	
<u>د</u>) البل الا		Nor .
	· · ·	
cc: J.	L. Rainsberry (w/enclosures)	
EDN	1 Files "	
6 4 0		$\langle \gamma \rangle$

т. 11. т. т.

i i

ESTIMATE OF TIME REQUIRED TO BORATE TO COLD SHUTDOWN CONDITIONS USING RWST WATER AND CHARGING PUMPS

Let.

Assumptions:

1. RCS Volume = $6752 \text{ ft}^3 \text{ at } 575^{\circ}\text{F}$ 2. Initial EOL Boron Concentration (B_c) = 0 ppm 3. Charging Pump Flowrate = 90 gpm 4. Cold Shutdown B_c = 480 ppm 5. RWST B_c = 3750 ppm at 80^{\circ}\text{F}

Estimated Time

$$\frac{VdC}{dt} = W_{in} C_1 - W_{out}C$$

where

V = volume of RCS = 6752 ft³ C = boron concentration = 480 ppm at cold shutdown Win = W_{out} = W = charging and letdown rate = 90 gpm = .20052 ft³/sec. C₁ = RWST B_c = 3750 ppm

therefore

$$\frac{dC}{dt} = \frac{W}{V} (C_1 - C)$$

$$C = C_1 (1 - e^{-Wt})$$

solving for t

$$e^{-Wt} = 1 - \frac{C}{C_1}$$
$$t = \frac{V}{W} \ln \left(\frac{1}{1 - \frac{C}{C_1}}\right)$$

using values above

t = 4612 sec 🕿 77 min

Conservatisms in Estimate

- 1. RCS volume includes pressurizer liquid volume and uncertainties
- 2. EOL Boron concentration is assumed
- 3. Charging pump flowrate is a nominal rate and not the maximum rate
- 4. Cold Shutdown B_c includes 100 ppm allowance for margin and uncertainties
- 5. RWST B_c is tech spec minimum concentration

SAN ONOFRE NUCLEAR GENERATING STATION UNIT 1 EQUIPMENT DATA 22. <u>COMPRESSED AIR SYSTEM EQUIPMENT</u>

TABLE OF CONTENTS

Page

AIR RECEIVERS, C-4A, B, AND C	22-1
AIR COMPRESSORS, K-1A, B, AND C	22-2
AIR COMPRESSOR MOTORS	22-3
INSTRUMENT AIR DRYER, X-47	22-4
INSTRUMENT AIR FILTERS X-49A, B, AND C	22-5
AUXILIARY AIR COMPRESSOR, K-12	22-6
AUXILIARY AIR COMPRESSOR MOTOR	22-7

SAN ONOFRE NUCLEAR GENERATING STATION UNIT 1 EQUIPMENT DATA 22. COMPRESSED AIR SYSTEM EQUIPMENT

AIR RECEIVERS, C-4A, B, AND C

REFERENCES

Manufacturer, Advance Tank Specification, BSO-403 Purchase Order, BSO-403 Quantity, Three

DATA

Shell, Material/Thickness Heads, Material/Thickness Overall Height

Diameter O.D. Capacity Operating Pressure

Operating Temperature Design Pressure Design Temperature

Corrosion Allowance: Bottom Remaining

Flange Rating/Facing (ASA Std.) Fittings Rating Earthquake Force

Applicable Codes and Spec Manhole Size A455A / 5/16 in A455A / 3/8 in 12 ft

4 ft 120 cu ft 110 psig

Ambient to 100 F 125 psig 200 F

1/8 in 1/16 in

150 lb R.F. 3000 lbs 0.2 g

ASME Code & Stamped 11 in x 15 in

•	•			
T			······································	
	I I	DELIVERY: SPECIFIED/BID	(SCFM)	300
\vdash		ALTITUDE ABOVE PEA LEVEL	(PS10)	100
		AMBIENT TEMPERATURE (DESIGN)	(PELI)	
11		AMOTENT TEMPERATURE (DESIGN)_		40-100
1 4	0			
		RATED HORSFROWER AT DRIVER SH	A E T	
		MAX. ALLOWABLE DISCHARGE PRES	SURF	
		AIR TEMP. LEAVING COMPRESSOR		430
\vdash	┼┼⋖			
	12			
		VERTICAL OR HORIZONTAL.	· · · · · · · · · · · · · · · · · · ·	Borizonial
┝╋╸	┽╌┼╸	NO. OF STAGES		0r.e
		NO. OF CYLINDERS: 1ST STAGE/2	ND STAGE	
	l is	BORE AND STROKE OF CYL; 1ST S	TG/ZND STG.	10 11
		PISTON DISPLACEMENT: 1ST STA	GE/2ND STAGE	<u> </u>
		VOLUMETRIC EFF: 1ST STAGE/2N	D STAGE	75.5
	Ī	SPEED: CRANKSHAFT (RPM)/PIST	ON(FT/HIN)	327 / 600
\square		LUBRICATION: CYLINDER/CRANKC	ASE	None/Oil
11		MATERIAL: CYLINDER/CYLINDER (LINER	Cast Iron
	E E	PISTON/PISTON RING	8	C.I. / Teflon
	++	STUFFING BOX PACKING: CYLIND	ER/CRANKCASE	Teflen
l i	0	LENGTH DISTANCE PIECE (IF ANY)	
	EN I	CONNECTIONSI SIZE INLET/DISC	HARGE	6/6
\square	TT	RATING INLET/DI	SCHARGE	150/130
	{]	FACING INLET/DI	SCHARGE	FF/FF
		INTAKE FILTER-SILENCER: MFR/'	TYPE	Dollinger/Dry Type
		\$12E	MODEL NO	G-5
		DRIVER: TYPE/RATED HORSEPOWE	R	Westinghouse / 75 HP
1		DRAWING REFERENCE		Open Drivproof 1750 rpm
11		DIRECT CONNECTED/V-BELT DR	IVE	V-Belt
		SHEAVE PITCH DIAMETER; DRIVE	R/COMPRESSOR	ح. 10. €
		BELTS: NO. WAKE AND TYPE/SERV	ICE FACTOR	C-240
		FLYWHEEL DIAMETER, IF ANY		60"
		TOTAL WRZ IN COMPRESSOR		
		CYL. JACKET COOL. WTR: TEMP:	INLET/OUTLET F	Water, 95 normal / 135 F
		FLOW/I	RESS DROP	35 / 3 psig
		MAX. ALLOW CYL. COOL WTR. PRES	SURE PSIG max.	<u>60 in</u>
		INTERCOOLER/AFTERCOOLER DWG. I	REFERENCE <u>Material</u>	s Tubes-Admirality-Tube Sheets Muntz Ma
		ATH TEMP. LEAVING AFTERCOOLER		110 F
		Aftercooler-Water Temp. F. In	n/Out/CPM	93/125 / 5.0
		TYPE OF CONTROL (CONTROL SI SOT		Calif. Std.
		PRESS COUPD	POWER	Dual Control
		TYPE STARTING UNIGADED ON START	S/UNLOADED OR STOP	* 8
	z			Automatik
	<u> </u>		······································	· · · · · · · · · · · · · · · · · · ·
	4	COMPRESSOR MANUFACTURER		
	C B	SIJE & TYPE		Unicage Pneumatic
	ES	WEIGHT COUPPERSON ONLY/UE		<u>12 x 11 - TBO-B2</u>
┡╧┿╌╸		PIPING LAYOUT PA LA NA	AVIEST PIECE	5500 shipping
	>	(REO'N NO) (SPEC NO / COST ACAD		
	0 8			BS0-401
F		BECHTEL AID COMPDE	SCOR DATA OUR	
	1	CORPORATION	JOUR DATA SHE	EI
.		AIR COMPRESSO	DRS, K-1A, B, AND	C REV
				San Onofre Nuclear
1.2				Generating Station.
2.9		POWER DIVISION		Unit 1
3.0		LINGINEEKING		SHEET OF 22-2

Î

1111

1

ŀ È, I,

i.

n name and not the second second second second second second second

A.C. INDUCTION MOTOR DATA SHEET

Customer: Southern California Edison Company Project: San Onofre Nuclear Generating Station, Unit No. 1

AIR COMPRESSOR MOTORS

1.	Service	Comp. Drive	
2.	No. of units:	3	
3.	Type:	Squirrel Cage	
4.	Mounting	Horizontal	
5.	Characteristics	v Ph. Cy. 440-3-60	
6.	Synchronous speed - rpm	1800	
7.	Horsepower	75	
8.	Frameno	444U	
9.	Enclosure	Drip proof-Guarded	
10.	Insulation Class	В	
11.	Insulation treatment	Thermalastic	
12.	Ambient temp C	40 🗞	
13.	Stator temp. rise - C.	60	
14.	Bearing type	Ball	
15.	Rotation	Either	
16.	Shaft (hollow-solid)		
17.	Thrust bearing load coupling - (self-release- non-reversing- solid-adjustable- flexible)		
18.	Full load amp.	89	
19.	Starting current - amp.	540	
20.	Starting torque - % F.L.	150	
21.	Pull-out torque - % F.L.	200	
22.	Eff 100% load % 75% load % 50% load %	90.5 90.0 88.5	
23.	P.F. 100% load 75% load 50% load	89.0 86.0 80.0	
24.	Space heaters - kv	.2kw @ 550 volts	
25.	Rotation*	Either	
26.	Conduit box location	F-1	1

* Rotation of motor when viewed from end of motor opposite shaft extension. 22-3

22. COMPRESSED AIR SYSTEM EQUIPMENT

INSTRUMENT AIR DRYER, X-47

REFERENCES

Manufacturer, C. M. Kemps Mfg. Co. Specification, BSO-402 Purchase Order, BSO-402 Quantity, One

DESCRIPTION

One (1) C. M. Kemp Mfg. Company Dual Tower, Desiccant Air Dryer, Oriad Model No. 100-E with NEMA-4 Electrical Construction

PERFORMANCE DATA

Capacity Dryer Cycle Adsorption Reactivation

Inlet Pressure Inlet Temperature Final Dewpoint

Pressure Loss at Design Flow Reactivation Heat Reactivation Purge

PHYSICAL DATA

ASME Code Design Electrical Construction Control Circuit

Power Circuit Method of Control Desiccant

Overall Dimensions

Weight

254.5 scfm 8 hours 4 hours 4 hours 110 psig 100 F Minus 20 F

1 psig 3.5 KW 4.5 scfm

150 psig NEMA 4 115 Volt, 1 Phase, 60 Cycle

440 Volt, 3 Phase, 60 Cycle Full Automatic 120 lbs Silica Gel/Tower

4 ft - 5 in by 2 ft - 8 in by 6 ft - 4 in 2300 lbs

22. COMPRESSED AIR SYSTEM EQUIPMENT

INSTRUMENT AIR FILTERS X-49A, B, AND C

REFERENCES

Manufacturer, Beach Sta-Dri Filter Co. Specification, BSO-4001 Purchase Order, BSO-4001 Quantity, Three

PERFORMANCE DATA

Flow Rate Design Pressure Allowable Air Pressure Cleaning Capacity 200 scfm 100 psig 150 psig 9 to 10 million cu ft of air (for a well maintained compressor)

PHYSICAL DATA

Model		600 AL
Connection, Inlet		2 inch - NPT
Outlet		2 inch - NPT
Weight		50 lbs (each)
Cylinder length	;	17 in
No. of Elements per Cylinder		2

MATERIALS

Top and Bottom Spacers	Aluminum
Gaskets	Neoprene
Cylinder	Aluminum
Castings, Top and Bottom	Aluminum

~							
	· ۲	•					
	- Lu	DEL LVERV.	SPECIELED/BID	(98.0		•
	Ta	DISCHARGE	: BDFCellBF		5A 001	justable to 60 & Set t	to 65
	6	DI JCHARGE	. FRESSORE	(F310)	200, 110		.0 05
		ALITIODE	ABOVE SEA LEVEL	(FEET)	20	· · · · · · · · · · · · · · · · · · ·	
		AMBIENT	EMPERATURE (DESIGN) 60	<u>Design Point</u>	40-100	Range	
l. 1	·		·				
1 1 1	تِ ا		· · · · · ·				
	_ ₹	RATED HOR	SEPONER AT DRIVER SHA	FT	24 @ 75	DSig	
	2	NAX. ALLO	WABLE DISCHARGE PRESS	URE	125		
	6					· ·	
	₹	ATR ISME.	LEATING CORFREDSOR				
]		·			
	Ē	·					
		VERTICAL	OR HORIZONTAL.		Horizon	tal Tank Mounted	
┝╍╃╼┥		NO. OF ST	AGES		2	· · · · · · · · · · · · · · · · · · ·	
	≥	NO. OF CY	LINDERS: 1ST STAGE/ 2NI	D STAGE	2/1		
	5	BORF AND	STRAFF AF CYL. LAT AT		60/0	2// / 2 1/2 / 2 2//	
┝╌┽╌┥	<u>v</u>			6/ ZHD BIG.	<u>0-0 /~2</u>	-3/4 / $3-1/2$ / $2-3/4$	
		PISION DI	SPLACEMENT: IST STAB	E/ 2ND STAGE	23.3		ہ 1911ء - میں
	×	VOLUMETRI	C EFF: IST STAGE/ ZND	STAGE	<u>73% @ o</u> ;	<u> psig 72%@100 ps</u>	ig
	- 13	SPEED: C	RANKSHAFT (RPM)/PISTO	N(FT/MIN)	1470/860	0	
		LUBRICATI	ON: CYLINDER/CRANKCAS	31	0i1/0i1		
		MATERIAL:	CYLINDER/CYLINDER L	INER	Cast Tro	ດ	
	a a		PISTON/PISTON RINGS		Alumin.	$\frac{1}{1}$	
	Ī	STUFFING	BOX PACKING. CYLINDE	CRANKCARE	Alumine	$\lim_{\to \infty} (LF) / U_1 (HP)$	
		I FNATH DI	ATANAR BIRGE (IF INV)				
	U	CERCIN DI	DIANCE FIECE (IF ANT)				
	Ē	CONNECTIO	NSI DIZE INCEI/DIDCH		3"/3"		
			RATING INLET/DISE	CHARGE	NPTI		
			FACING INLET/DIS(CHARGE	1		
		INTAKE FI	LTER-SILENCER: MFR/T	7P E	<u>†</u> *		
			e175/1		+		
		DRIVER.	TVBE/BATEN MAKEEBAWEB				
		DRITER;	TIPE/ HAIED HORDERGEER	Non Overloading	westing	louse	
		DRAWIN	G REFERENCE				
1. 1		DIRECT	CONNECTED/ V-BELT DRIV	V 8	Multi V	-Belt Drive	
		SHEAVE PI	TCH DIAMETER: DRIVER	COMPRESSOR			
		BELTS; NO	. MAKE AND TYPE/SERVIC	CE FACTOR			·····
		FLYWHEEL	DEAMETER, IF ANY		<u> </u>		
	:	TOTAL WR2	IN COMPRESSOR		1		
		CYL. JACK	ET COOL. WTR: TEMP:	INLET/OUTLET	·		
			FLUW/F				
		WAX. ALLO	W CYL. COOL WTR. PRESS	SURE			
		INTERCOOL	ER/AFTERCOOLER DWG. RE	EFERENCE		· · · · · · · · · · · · · · · · · · ·	
		AIR TEMP.	LEAVING AFTERCOOLER_				
					1		
					1		
					f		
		· · · · · ·		··· ··································			
		TYPE OF CO	ANTRAL /CONTROL ELECT		Dugl Car	A 1	
			SATAOL/CONTROL ELECT.	FOWER	Dual Con	trol	
		TYPE OTAD	4PR.: LOADED OR STARTS	VUNLOADED OR STOPS		······································	
		Choole	IING UNLOADERS	·····		······································	
	Ň	Specif	lcation		BSO-4023		
	Ĩ	Purcha	se Order		BS0-4023		
	d I	COMPRESSO	A MANUFACTURER		Worthing	ton	
	E U	SIZE A	TYPE 6-0/6-0/3-1/2 x	2-3/4 25BN-24			
1	S L	MELCHY			2170	·····	
	م		COMPRESSUR ORLY/HEA	VIEST PIECE	21/0		
		FIFING LA	1001/P & I.D. NO		l		
∮	0	(REQ'N NO.)	(SPEC. NO./COST CODE_				
┢┷┷┙	C				1		
		BECHTEL	AIR COMPRES	SOR DATA SHEP	T		
1		COMPORATION			- •	JOB No 3246	1
			AUXILIARY AIR	COMPRESSOR. K-19		San Onofra Nuclear	REV.
1.1				12		Concepting Ctation	
20	i					Generating Station,	
8-12		POWER DIVISION				Unit 1	
20		ENGINEERING					
X.			L			SHEET OF	22-6

t

н Ц

1.11.11.11.11

A.C. INDUCTION MOTOR DATA SHEET

Customer: Southern California Edison Company

Project: San Onofre Nuclear Generating Station, Unit No. 1

Date: February 21, 1967

AUXILIARY AIR COMPRESSOR MOTOR

		1	
1.	Service	Auxiliary Air Compr	essor
2.	No. of units:	One	
3.	Type:	Induction	
4.	Mounting	Horizontal	
5.	Characteristics	3/60/440	
6.	Synchronous speed - rpm	1800	
7.	Horsepower	25	
8.	Frameno	324U	
9.	Enclosure	Drip-Proof	
10.	Insulation Class	В	
11.	Insulation treatment	Lifeguard	
12.	Ambient temp C	40	
13.	Stator temp. rise - C.	60	
14.	Bearing type	Std. (Not less than	100,000 hours life)
15.	Rotation	Clockwise	
16.	Shaft (hollow-solid)	Solid	
17.	Thrust bearing load coupling - (self-release- non-reversing- solid-adjustable- flexible)		
18.	Full load amp.		
19.	Starting current - amp.		
20.	Starting torque - % F.L.		•
21.	Pull-out torque - % F.L.		
22.	Eff 100% load % 75% load % 50% load %		
23.	P.F. 100% load 75% load 50% load		
24.	Space heaters - kv		
25.	Rotation*		
26.	Conduit box	NEMA 4 W/unthreaded larger than standard	1/4" Drain Hole one size
* Rot	ation of motor when viewed fro	om end of motor oppo	site shaft extension.

22-7

SAN ONOFRE NUCLEAR GENERATING STATION UNIT 1 SYSTEM DESCRIPTION 26. COMPRESSED AIR SYSTEM

TABLE OF CONTENTS

	Page
FUNCTION	26-1
DRAWING REFERENCES	26-1
DESIGN CRITERIA	26-1
System Components	26-1 26-1
NORMAL OPERATION	26-2
STARTUP OPERATION	26-4
ABNORMAL OPERATION	26-4

FUNCTION

The compressed air system provides a continuous supply of pressurized air for instruments, controls, and other service requirements.

DRAWING REFERENCES

568780 Compressed Air, P & ID

DESIGN CRITERIA

SYSTEM

The system supplies oil-free, dry, compressed air at 85 to 100 psig, at a flow rate of 100 scfm and a maximum dew point of minus 20 F for pneumatic instrument operation and control. The system also supplies compressed air to service outlets throughout the Station for operation of pneumatic tools or other requirements.

COMPONENTS

Air Compressors K-1A, B, C

Design capacity, each	300	scfm
Design discharge pressure	100	psig
Aftercoolers E-26A,B,C		
Air inlet temperature	450	F
Air outlet temperature	110	F
Cooling water flow	5	gpm
Cooling water inlet temperature	95	F
Cooling water outlet temperature	135	F
Air Receivers C-4A,B,C		

Volume,	each		120	Cu Ft
Design	pressure		125	psig
Design	temperature		120	F

Instrument Air Dryer X-47

Туре	Desiccant
Capacity, minimum	250 scfm
Air outlet dewpoint	minus 20 F
Pressure drop	l psi
Internal reactivation heater cap., each	3.5 kw
Reactivation purge flow	4.5 scfm

26. COMPRESSED AIR SYSTEM

DESIGN CRITERIA (Continued)

Instrument Air Filters X-49A, B, C

Capacity, each at 8 psi pressure drop Design pressure 200 scfm 100 psig

NORMAL OPERATION

During normal operation, one of the three single-stage, non lubricated, air compressors operates continuously to supply the Station instrument and service air requirements. The cylinder unloading mechanism is operated automatically to match the system demand. Whenever the air compressor is operating (assume K-1A), the solenoid valve (SV-62) is energized to load from closing of its respective motor start. Energizing SV-62 discharges system pressure as long as the system pressure remains between 90 and 100 psig (the force exerted by the air pressure is greater than the spring pressure at the unloader and the compressor cylinder inlet valves are kept open). Air drawn into the cylinder is discharged through the inlet valves without being compressed and the compressor idles (unloaded). When system pressure drops below 90 psig, the force exerted by the air pressure is less than the spring pressure at the unloader and the cylinder inlet valves close. The compressor is then loaded.

The two remaining air compressors are manually positioned in automatic standby from the control room and will start in sequence upon the decrease of supply air header pressure. Pressure Switch PS-57 starts Compressor K-1B at 75 psig and Pressure Switch PS-58 starts compressor K-1C when system pressure drops to 70 psig. The unloader valve operation for these compressors is identical to compressor K-1A, described above. Operation of the standby air compressors is annunciated in the control room. The standby air compressors must be stopped manually. When the system demand has returned to normal, air is admitted to the suction of a compressor through a filter-silencer. The filter-silencer reduces noise and filters out dirt particles from the air stream prior to entering the cylinder.

Discharged air flows through an aftercooler where the temperature is reduced to 110 F before it enters the air receivers. Cooling water flow (Turbine Cycle Cooling Water System) to the aftercoolers is continuous, having been established at initial startup. Aftercooler air inlet temperature alarms are provided by TS-15, TS-16 and TS-17 which annunciate high temperature in the control room and trip the respective compressor motors.

The air receivers are reservoirs and serve as surge chambers for the compressors to minimize system pressure fluctuations. The air receivers are equipped with relief valves (RV-23, RV-24 and RV-25) and local pressure indicators. Each receiver and its respective air compressor is isolated as a unit for maintenance. A check valve is provided at each air receiver outlet to prevent loss of compressed air through a stopped compressor with broken discharge valves.

26. <u>COMPRESSED</u> AIR SYSTEM

NORMAL OPERATION (Continued)

A common air supply header receives air flow from the three receivers and supplies the instrument air header and the service air header on demand.

The instrument air header supplies instrumentation and pneumatic controllers throughout the Station which require compressed air of high purity and low dew point. Since some controllers require 3-15 psi instrument air pressure for operation, and others 3-27 psi, Station control valve operation requires that instrument air header pressure be maintained above 40 psig.

To maintain acceptable purity and low dew point, an instrument air dryer (X-47) is provided. The air dryer is a dual tower dessicant-type unit with fully automatic controls. Instrument air enters one of the desiccant towers through four-way Solendid Valve SV-105 and is discharged through four-way Solendid Valve SV-106. After a pre-set time (four (4) hours), a timer switch located on the unit automatically positions SV-105 and SV-106 for direct flow to the second tower. The first tower is then automatically regenerated by heating the silica gel dessicant with an internal 3.5-kw electric heater. A reactivation purge flow of 4.5 scfm is automatically supplied during reactivation which requires four (4) hours.

Local pressure gauges, mounted on each tower, provide visual indication of pressure drop through the dryer. Relief Valves RV-44 and RV-45 are provided, one on each tower, to prevent over-pressure by air heat-up as a result of being dried.

Instrument air filters are provided after the instrument air dryer to remove impurities. Normally, all three filters are in parallel service. The air leaving the filters is split into two instrument air headers which form a loop to supply all areas of the Station. Branch lines are taken off the instrument air header loop. Each branch line contains a restricting orifice which limits flow through the line to 150 cfm in the event of a line rupture downstream from the orifice.

Compressed air leak-off from penumatic instruments and valves inside the Sphere is collected in a common header. Normally, the leak-off flows through CV-40 and CV-10 to the vent stack (Air Conditioning System). When the Sphere high radiation alarm is actuated in the control room, three-way valve CV-40 actuated by SV-19, is automatically positioned to divert leakoff flow to the Sphere atmosphere, and CV-10 actuated by SV-28 is closed. The same control valve action is initiated when high pressure exists in the Sphere exhaust duct (PS-23) or is initiated manually from the control room.

Service air is supplied to the various Station service air outlets directly from the air receivers through Control Valve CV-41 and a service air header loop. Control Valve CV-41 is actuated by Pressure Controller PC-1 to cut off service air use if the compressed air system supply pressure drops to 70 psig. This is to assure that instrument air supply which has priority.

26. COMPRESSED AIR SYSTEM

STARTUP OPERATION

The three manual values on the air receiver discharge lines to the air header are opened before starting a compressor. The flow path is established through the instrument air dryer and the three instrument air filters in parallel.

Normally, Compressor K-lA is started manually from the control room by positioning the control switch in START. Pressure Switch PS-56 will start the compressor due to low compressed air header pressure. System pressure will begin to increase through Receiver C-4A and Receivers C-4B and C-4C will be pressurized through orfices in the check valves on the air outlet piping from each receiver. Control Valve CV-41 on the service air header will remain closed until the air receiver (C-4A) pressure exceeds 70 psig. When system pressure is 100 psig, Compressor K-1A will unload as described in Normal Operation.

Cooling water supply is automatically established to the three air compressor cooling water jackets through Solenoid Valves SV-59, SV-60 and SV-61, when the respective compressor motors are energized. Cooling water is supplied from the Turbine Plant Cooling Water System.

ABNORMAL OPERATION

When the compressed air load exceeds 300 cfm, which is the capacity of one compressor (assume K-lA), system pressure will drop. When system pressure drops to 75 psig, a pressure switch (PS-57) closes, starting the second compressor (K-lB) automatically and a pressure switch (PS-53) positions Solenoid Valve SV-63 to the LOADED position. If system pressure continues to drop, Compressor K-lC is started automatically at 70 psig by PS-58. At 70 psig, service air flow is stopped by CV-41, and the three compressors (900 cfm) are utilized for instrument air supply exclusively.

All three compressors will continue to operate after system pressure has been returned to 100 psig. When system demand returns to normal, two compressors (K-1B and K-1C) can be turned off and re-positioned manually to automatic standby.

Any of the three compressors can be selected as the operating compressor from the control room with the remaining compressors on automatic standby. Sequence of operation may be varied by adjusting the pressure switch settings.

Abnormal operating conditions are annunciated in the control room by Flow Switch FS-5 for high instrument air flow to the Sphere, from Pressure Switch PS-15 for low instrument air header pressure, and from Pressure Switch PS-16 for low service air header pressure.

Southern California Edison Company P. O. BOX 800 2244 WALNUT GROVE AVENUE ROSEMEAD, CALIFORNIA 91770 J. G. HAYNES February 2, 1981 TELEPHONE MANAGER OF NUCLEAR OPERATIONS (213) 572-1742 U. S. Nuclear Regulatory Commission Office of Inspection and Enforcement Region V 1990 North California Boulevard Suite 202, Walnut Creek Plaza Walnut Creek, California 94596 Attention: Mr. R. H. Engelken, Director DOCKET NO. 50-206 SAN ONOFRE - UNIT 1

Dear Sir:

This letter constitutes a revision to a reportable occurrence involving loss of power to all station auxiliaries, previously reported to you in LER 80-038 dated December 9, 1980.

It was noted that during this incident, 4Kv breaker 11C02, source breaker to 4Kv bus 1C, did not open on loss of voltage as required. Subsequent investigation revealed that the No. 1 D.C. bus control power switch to the station undervoltage scheme for the 1C bus was open. This switch is required to be in the closed position for complete operation of the station undervoltage scheme during a Loss of Power (LOP) or Safety Injection Signal/Loss of Power (SIS/LOP) event.

The primary function of the aforementioned undervoltage scheme is to strip 4Kv bus 1C of remaining loads during a LOP or SIS/LOP event. This circuit is energized to perform this function. However, with the D.C. control power swtich open, the undervoltage scheme will remain deenergized. In this condition, the potential exists for applying load blocks larger than the diesel generator is designed to accept.

The subject D.C. control power switch is physically located in 4Kv breaker cubicle 11C01. It is identified as the control power to the station undervoltage scheme and is located within six inches from a similar D.C. switch that supplies control power to breaker 11CO1. When "racking out" a 4Kv breaker, it is normal practice to open the D.C. control power switch to that breaker. Breaker 11CO1 is the tie breaker between 4Kv buses 1-C & 1-A and would be racked out for clearances on these buses or for breaker servicing.

U. S. Nuclear Regulatory Commission Page #2

A review of our records indicate that the control power switch to the undervoltage scheme was verified to be closed at the end of our last refueling outage. At that time sequencer testing including SIS/LOP was completed satisfactorily. From that time until this outage, there were no clearances issued which would have required opening of the D.C. control power switch to breaker 11COl or the No. 1 D.C. bus control power switch to the undervoltage scheme. However, during the current refueling outage there were at least two times when the D.C. control power switch to breaker 11COl was opened. It is believed that on one of these occasions the D.C. control power switch to the station undervoltage scheme was inadvertently opened due to its close proximity to the D.C. control power switch to breaker 11COl.

The first of the two occasions noted above occurred on April 16, 1980, one week after reactor shutdown. Prior to the first occasion the SIS/LOP signal had been locked out and the reactor was in the cold shutdown condition. In this mode the normal loading on 4KV bus 1C would not be greater than the maximum load block that the diesel generator is designed to accept. Due to equipment testing however, there may have been brief periods when the loading on 4Kv bus 1C was greater than the design load block.

With the SIS/LOP signal locked out, an LOP event would automatically start the Diesel Generators but loading would be accomplished manually as specified in Emergency Operating Instruction, SO1-3-5.30, Loss of Offsite Power. This procedure lists the automatic equipment trips associated with the station undervoltage scheme and requires verification that breaker 11CO2 is open prior to manual loading. In the unlikely event the diesel generator had not been able to accept the loading which may have been on 4Kv bus 1C and tripped, the operator would have detected the failure of the automatic trip functions and taken immediate remedial action.

Based on the above information, it is our conclusion that the station undervoltage transfer scheme was disabled inadvertently during the current refueling outage but that this disabling would have no adverse effect on plant safety during this time. Testing of the sequencer is required prior to return to service and discovery of the open switch would have been assured at that time. There was no effect on public health and safety as a result of this event.

To preclude recurrence of this incident, the station will develop and implement administrative controls on safety-related D.C. control circuits prior to our return to service from the current refueling outage.

a writer a

U. S. Nuclear Regulatory Commission Page #3

Should you have any questions regarding this incident, please call me.

Sincerely, Worklaymes

Enclosure: LER 80-038 Rev. 1

L. F. Miller (NRC Resident Inspector - San Onofre Unit 1) Director, Office of Management Information & Program Control cc: Director, Nuclear Safety Analysis Center

U. S. NUCLEAR REGULATORY COMMISSION NRC FORM 366 (7.77) LICENSEE EVENT REPORT (PLEASE PRINT OR TYPE ALL REQUIRED INFORMATION) CONTROL BLOCK: REPORT L 6 0 5 0 0 0 2 0 6 7 1 1 2 2 8 0 8 0 2 0 2 8 1 9 SOURCE 60 61 DOCKET NUMBER 68 69 EVENT DATE 74 75 REPORT DATE 80 CON'T 0 1 EVENT DESCRIPTION AND PROBABLE CONSEQUENCES With the RCS drained to mid loop and transferring a 4KV bus power supply from 0 2 aux. transformer C to aux. transformer A&B, AC power to all station auxiliaries 0 3 was lost for 15 seconds due to brkr misalignment. It was also noted that source brkr 04 to 4Kv bus 1C did not open on loss of voltage due to an open D.C. switch supplying 0 5 power to the station undervoltage scheme. There was no effect upon public health and 0 6 safety nor was there any impact on plant safety. Both emergency diesel generators 0 7 started automatically and were available for loading if needed. 0 8 COMP. SUBCODE VALVE SUBCODE SYSTEM COMPONENT CODE SUBCODE CODE CODE A (15) Z (16) A 13 T | B | R | K |(14) | E | B |(11) C ΚI A (12) 0 9 REVISION OCCURRENCE REPORT SEQUENTIAL NO TYPE CODE REPORT NO LER/RO 0 3 801 0 | 3 | 8 (17) REPORT NUMBER COMPONENT NPRD-4 PRIME COMP SHUTDOWN METHOD HOURS (22) EFFECT ON PLANT SUPPLIER MANUFACTUREP Z | 9 | 9 | 9 Z (21) CAUSE DESCRIPTION AND CORRECTIVE ACTIONS (27) A licensed operator intending to open auxiliary transformer C bus supply breakers 1 0 inadvertently opened the 4KV bus tie breakers. The D.C. power supply switch to station 1 1 undervoltage scheme was inadvertently opened by personnel racking out a nearby brkr. 1 2 Administrative controls on safety related D.C. circuits will be implemented to 1 3 preclude recurrence. 1 4 80 9 8 METHOD OF OTHER STATUS FACILITY DISCOVERY DESCRIPTION (32) **Operator Observation** A (31) H (28) 80 ACTIVITY CONTENT LOCATION OF RELEASE (36) AMOUNT OF ACTIVITY 35 RELEASED OF RELEASE <u>]</u> 33 <u>[</u>] 34 6 80 44 EXPOSURES DESCRIPTION 39 (37) Z (38) SCEC 50-206 . SAN ONOFRE #1 MISCELLANEOUS APPLICANT CORRESPONDENCE 80 11 12 PERSONNEL INJURIES DESCRIPTION (41) April 30, 1981 January 01, 1981 thru. N.A. 8 80 12 LOSS OF OR DAMAGE TO FACILITY (43) DESCRIPTION N.A. 9 (42) 80 10 NRC USE ONLY PUBLICITY DESCRIPTION (45) Ń.A. (44) 0 69 16 80 PHONE: (714) 492-7700 J. M. Curran NAME OF PREPARER -