Southern California Edison Company

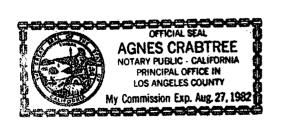
P. O. BOX 800 2244 WALNUT GROVE AVENUE ROSEMEAD. CALIFORNIA 91770

K. P. BASKIN MANAGER, NUCLEAR ENGINEERING AND LICENSING

June 18, 1980

Director, Office of Nuclear Reactor Regulation Attention: D. M. Crutchfield, Chief Operating Projects Branch No. 5 U. S. Nuclear Regulatory Commission Washington, D.C. 20555

Gentlemen:


Subject: Docket No. 50-206 Environmental Qualification of Electrical Equipment San Onofre Nuclear Generating Station Unit 1

---Subscribed on this 18th day of June 1980.

Mr. D. L. Ziemann's letters of March 6 and March 28, 1980 requested information regarding the environmental qualification of safety related electrical equipment at San Onofre Unit 1. This information is provided as an enclosure to this letter. In addition, emergency operation instructions and information regarding the containment pressure and temperature analysis for San Onofre Unit 1 were provided by our letters dated March 14 and May 1, 1980.

It should be noted that SCE's review of this matter is continuing. As information is identified which was not available for inclusion in this submittal, appropriate revisions to the enclosed information will be provided to the NRC Staff.

If you have any questions on this information, please let me know.

80062001 HGH

Kp Bushan

Manager, Nuclear Engineering and Licensing

Subscribed and sworn to before me on this

day of (e 1980.

Notary Aublic in and for the County of

Notary Public in and for the County of Los Angeles, State of California

TELEPHONE (213) 572-1401

Enclosure

Enclosure

ENVIRONMENTAL QUALIFICATION OF ELECTRICAL EQUIPMENT SAN ONOFRE UNIT 1

In connection with the NRC's continuing review of the environmental qualification of electrical equipment at San Onofre Unit 1, additional information was requested by Mr. D. L. Ziemann's letters of February 15, 1980, March 6, 1980 and March 28, 1980. In particular, the February 15, 1980 letter included additional guidance in Enclosure 1, "Guidelines for Evaluating Environmental Qualification of Class IE Electrical Equipment in Operating Reactors," and Enclosure 2, "Guidelines for Identification of That Safety Equipment of SEP Operating Reactors for Which Environmental Qualification is to be Addressed." The qualification of electrical equipment at San Onofre Unit 1 with respect to these guidelines is discussed in the following paragraphs. The format for this information is consistent with guidance provided by the NRC Staff at a meeting on February 21, 1980. This information augments the information on this subject which has previously been submitted by letters dated February 24, 1978 and February 13, 1979.

Safety Related Electrical Equipment

In accordance with Enclosure 2 to Mr. D. L. Ziemann's February 15, 1980 letter, the Final Safety Analysis Report, the Emergency Operating Procedure for a Loss of Coolant (S-3-5.5, Rev. 18) and other relevant correspondence were reviewed to identify the safety related electrical equipment which is utilized to mitigate the consequences of a loss of primary or secondary coolant (LOCA, MSLB or FWLB) at San Onofre Unit 1. A comprehensive list of equipment from these sources is provided by system in Table 1.

The list of equipment in Table 1 has been further reviewed to determine whether each specific component is required to mitigate the consequences of a loss of primary or secondary coolant. The systems or components which have been determined to be not required to mitigate the consequences of a loss of primary or secondary coolant are listed in Table 2. In each case, the basis for excluding the particular system or component is provided. Qualification of equipment listed in Table 2 is not further addressed.

Environment Following Loss of Coolant

For the purposes of defining the environment following a postulated loss of primary or secondary coolant, the plant has been divided into various areas as identified in Figure 1. The limiting environment associated with each of these areas following a loss of coolant is identified in Table 3. The basis for the indicated environment is also identified.

Environmental Qualification of Safety Related Electrical Equipment

Areas of the plant where there is no difference between the environment during normal operation and the environment following a loss of primary or secondary coolant are defined as nonhostile environments. Equipment which is located in a nonhostile environment, as defined in Table 3, is concluded to be qualified by experience based on the fact that this equipment is functional during normal operation of the plant. The equipment which is located in a nonhostile environment is listed by system in Table 4. Qualification of equipment in Table 4 is not further addressed.

Equipment which is required to function to mitigate the consequences of a loss of primary or secondary coolant and which is located in a hostile environment is listed by system in Table 5. In addition, the hostile environment, the qualification of each component and the basis for that qualification is listed in Table 5. It shall be noted that although the NRC Guidelines contemplate that equipment inside containment will be qualified by type testing, where such testing is not available for original plant equipment, qualification has been based on analysis and/or similarity.

Equipment for which qualification is not available to fully satisfy the hostile environment conditions identified in Table 5 is listed in Table 6. For each component listed in Table 6, additional information and/or proposed remedies are provided. For example, the existence of redundant systems, or the time period in which the equipment is required to operate can provide sufficient basis for not requiring additional qualification of a particular component. Evaluation of the environmental qualification of all components listed in Table 6 is continuing.

The NRC guidelines suggest that equipment required to mitigate the consequences of a loss of primary or secondary coolant should be reviewed with respect to the potential for degradation due to thermal and radiation aging. Although such a review is not included in the environmental qualification evaluations in this submittal, the following actions will be initiated to ensure that equipment is not susceptible to significant degradation due to thermal and radiation aging: (1) Maintenance procedure(s) will be prepared to ensure that aging characteristics of component materials are considered in selection of replacement parts, and (2) a program will be initiated to periodically review maintenance and surveillance records to identify the need for replacement or modification of equipment or components which are exhibiting age related

Based on the information presented in the preceding paragraphs and the attached tables, there is sufficient basis to conclude that San Onofre Unit 1 can be brought to a safe shutdown condition following a postulated loss of primary of secondary coolant without undue risk to the health and safety of the public.

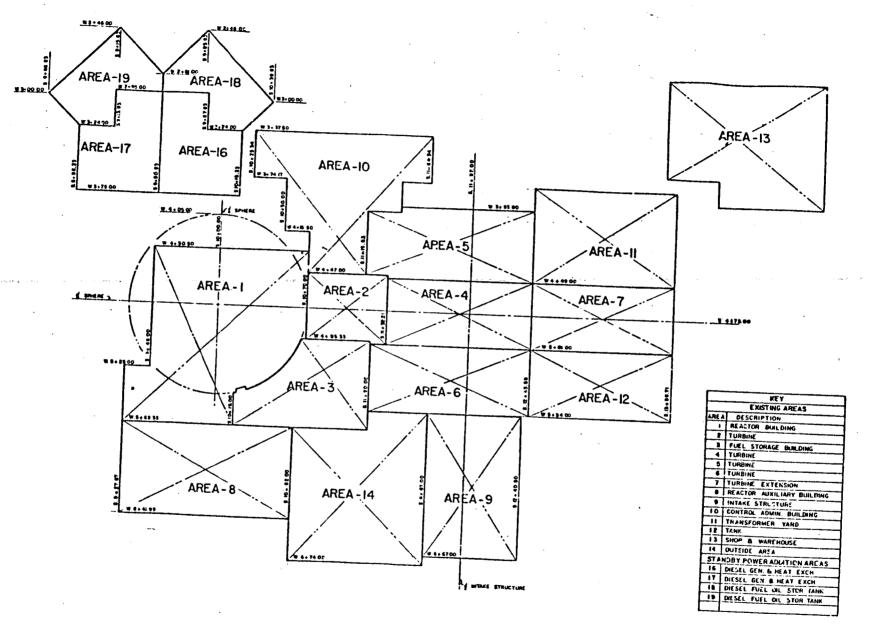


FIGURE 1 SONGS 1 AREA INDEX PLAN

W. 7+ 87 03 MA WALL

TABLE 1: Systems and components associated with Operating Instruction S-3-5.5, Rev. 18, Loss of Coolant:

1. Reactor Protection System (RPS)

2.

3.

Reactor Trip Circuit Breakers Instrumentation and equipment required to trip the reactor on: a. Steam flow/feedwater flow mismatch FT-460, FT-461 and FT-462 FT-456, FT-457 and FT-458 FM-456B-X, FM-457B-X and FM-458B-X b. Pressurizer high/low pressure PT-430, PT-431 and PT-432 YE-430B, YE-431B, YE-432B PC-430A/F, PC-431A/D, PC-432A/B PI-430, PI-431, PI-432 с. Safety Injection Sequencer d. Pressurizer high level LT-430, LT-431 and LT-432 YE-430A, YE-431A, YE-432A LC-430A, LC-431A, LC-432A LI-430, LI-431, LI-432 Reactor overpower e. K-1501 to K-1508 Safety Injection System (SIS) Safety Injection Pumps G-50A and G-50B PT-910A (east) and PT-910B (west) Feedwater Pumps G-3A and G-3B HV-853A and HV-853BHV-854A and HV-854B HV-852A and HV-852B HV-851A and HV-851B CV-875A and CV-875B CV-36 and CV-37FT-912/FI-912, FT-913/FI-913, FT-914/FI-914 MOV-850A, MOV-850B and MOV-850C Refueling water tank level LT-950, LI-950 LS-69 Containment Isolation System (CIS) CV-102 and 103 (Sphere Sump Discharge) CV-104 and 105 (RCS Drain Tank Discharge)

CV-104 and 105 (RCS Drain Tank Discharge) CV-106 and 107 (RCS Drain Tank Vent) CV-146 and 147 (Sphere Air Sample) SV-1212-8 and 1212-9 (Sphere Air Sample) CV-117, 118 and 119 (Steam Generator Steam Sample) CV-120, 121 and 122 (Steam Generator Blowdown Sample) CV-123 (Service Air) CV-949, 957 and 962 (RCS Sampling) CV-537 and 115 (Service Water) CV-533 and 534 (Pressurizer Relief Tank) CV-536 and 535 (RCS Drain Tank) CV-525 and 526 (RCS Letdown) CV-527 and 528 (RCP Sealwater) CV-287 (RCS Letdown) CV-202, 203 and 204 (RCS Letdown) CV-532 (Pressurizer Relief Tank) CV-515 and 516 (Air Units Cooling Water) PT-1120 A, B, C and PT-1121 A, B, and C CS-1, 2 and 3 Limit Switches SV-702 B, D (Cold Leg Vent) SV-702 A, C (Cold Leg Vent) POV-9, 10 (Sphere Purge) CV-40, 116 (Sphere Vent) CV-10, (Sphere Vent)

4. Residual Heat Removal System (RHR)

5. Chemical and Volume Control System (CVCS)

Note: Portions of the system are also listed as components of the Recirculation System

FCV-1115A, FCV-1115B, FCV-1115C CV-410 and CV-411 LT-1100/LI-1100A (Volume Control Tank) LT-1108/LR-1108

6. Containment Spray System (CSS)

Note: Portions of this system are also listed as components of the Safety Injection System

Refueling water pumps G-27A and G-27B CV-517 and CV-518 PT-18, PI-165 (refueling water pump discharge pressure) FT-504, FQ-504, FY-504, FIS-522 (spray flow) PT-501, PT-502 and PT-503 PIS-511, 512 and 513 CV-82 and CV-114 MOV-880 MOV-883 Chemical addition pumps, G-200A and G-200B SV-600 and SV-601 FT-506 and FT-507 (hydrazine flow) FIS-500 and FIS-501 LT-500A and LT-500B (hydrazine tank level) LIS-500A and LIS-500B 7. Atmospheric Steam Dump Valves (ADV)

CV-76, CV-77, CV-78 and CV-79

8. Component Cooling Water System (CCWS)

CCW pumps G-15A, G-15B and G-15C MOV-720A, B TE/TC/TR-606 FT/FI-606 CV-737A and CV-737B (Recirculation heat exchanger)

9. Salt Water Cooling System (SWCS)

Salt Water Cooling pumps G-13A and G-13B POV-5 and POV-6, SV-24 and SV-25 MOV-9 SV-81, SV-82

10. Monitoring Instrumentation

TA-401B-X, TA-411B-X and TA-421B-X (RCS low T ave.) CBX-1-1, CBX-1-2, CBX-2-1, CBX-2-2, SDX-1-1 and SDX-2-1 K1521, K1522, K1523 and K1524 Steam pressure PT-2/R8-2 Core exit thermocouples PT-4/R8-1 RCS subcooling recorder Pressure Transmitter for RCS subcooling recorder Reactor Coolant Temperature Detectors YR-456, YR-457, YR-458 (steam generator low level) Humidistat

11. Auxiliary Feedwater System (AFWS)

Auxiliary Feedwater Pump G-10 FT/FC/FI-2002A, B, C (auxiliary feedwater flow) LT/LI-450X, 451X, 452X Condensate Storage Tank Level

12. Electrical Distribution System (EDS)

4 kV buses 1C and 2C 480 V buses 1, 2 and 3 Motor Control Centers 1, 1A, 1B, 2, 2A, 2B, 3 Vital Buses 1, 2, 3, 4 and Utility Bus DC Buses 1, 2 Battery Chargers A, B, C, D Undervoltage Relays CV6, CV7 MOV-850C UPS Diesel Generators and supporting systems Penetrations Cable Cable Splices

13. Control Room Air Conditioning System (CRACS)

Fan A-33 Motors for A-31 normal filter and emergency filter dampers

14. Radiation Monitoring System (RMS)

R-1215 (air ejector)
R-1214 (stack)
R-1216 (steam generator blowdown)
R-1232 (containment area radiation monitor)
R-1234 (auxiliary building area radiation monitor)
RLR-1200, 1201

15. Instrument Air System

Instrument and Service Air Compressors K-1A, K-1B and K-1C Emergency Air Compressor PCV-40 SV-105, SV-106 and SV-107 CV-41 PS-56, PS-57 and PS-58 SV-147 PS-119 PT-11, PT-12, PI-163 and PI-164 (Instrument and service air pressure)

16. Reactor Coolant System

CV-530 and CV-531 CV-545 and CV-546 Valve Position Indication Pressurizer Heaters

17. Main Condenser System

18. Recirculation System

Note: Portions of this system are also listed as components of the Containment Spray System

Recirculation pumps G-45A and G-45B MOV-866A and MOV-866B FT-500, FQ-500, FY-500, FIS-520 FT-501, FQ-501, FY-501, FIS-521 LC-951, LI-951 LS-73

-4-

FCV-1115D, FCV-1115E and FCV-1115F MOV-356, MOV-357 and MOV-358 MOV-1100B, MOV-1100D and MOV-1100C Charging pumps G-8A and G-8B Charging pump discharge pressure indicator PT-1119A and B MOV-18 and MOV-19 FT-1114A/FI-1114A, FT-1114B/FI-1114B and FT-1114C/FI-1114C

4

19. Hot Leg Recirculation

FCV-1112 FIT-1112, FI-1112, FC-1112 CV-304 CV-305 PCV-430C and PCV-430H TABLE 2: Equipment Not Essential to Mitigate a Loss of Primary or Secondary Coolant

Safety Injection System

PT-910A (east) and PT-910B (west) These pressure transmitters monitor the safety injection pump discharge pressure and can be used by the operator to determine if the pumps are running. However, there are no trips or automatic actions associated with these transmitters. Operation of the safety injection pumps can be determined from other monitored parameters, such as safety injection line flowrate (FI-912, FI-913 and FI-914) and RWST level (LI-950).

Recirculation System

PT-1119A (north) and PT-1119B (south)

These pressure transmitters monitor the charging pump discharge pressure and can be used by the operator to determine if the pumps are running. There are no trips or automatic actions associated with these transmitters. Operation of the charging pumps can be determined from other monitored parameters, such as charging pump safety injection flowrate (FI-1114 A, FI-1114 B and FI-1114 C).

Residual Heat Removal System

The Residual Heat Removal (RHR) System is used to attain a cold shutdown condition. However, in the event that all or part of this system is unavailable following a steam or feedwater line break inside containment alternate shutdown methods are available. One such method involves removal of heat through the steam generators and is described in the Loss of Coolant Operating Instruction. Another method involves use of the recirculation pumps to provide cooling and is described in Item 5 of the enclosure to SCE's letter to the NRC dated November 27, 1974. In the event of a steam or feedwater line break outside containment, the RHR system would not be affected by a hostile environment and would be available to permit operations to attain cold shutdown.

Chemical and Volume Control System

LT-1100/LI-1100A

This indicator provides volume control tank level indication as one of the listed accident symptoms. However, other instrumentation is available to identify the accident as listed in Section 1.0 of the Operating Instruction. Therefore, this indication is not required. (Following a loss of coolant accident charging pump suction is from the RWST and not the volume control tank.)

LT-1108/LR-1108

This instrumentation monitors the level in the boric acid tank, which can be used following a steam or feedwater line break for boration of the RCS to cold shutdown conditions. However, boration can be accomplished for these accidents utilizing RWST water. Therefore, level instrumentation associated with the boric acid tank is not required.

FCV-1115A, B, C

These values are the reactor coolant pump seal injection flow control values. Following an accident these values are kept open to maintain seal injection in accordance with the Operating Instruction. However, in the event of a LOCA, these values are closed and the parallel recirculation flow control values (FCV-1115 D, E and F) are opened to establish recirculation flow to the core. The operator is instructed to establish 110 gpm to each cold leg. In the event that one or all of FCV-1115A, B and C were to fail in the open position, this would not affect the ability to establish a flow of 110 gpm since these values are small compared to the recirculation flow control values.

Containment Spray System

PT-18, PI-165

This pressure transmitter and indicator provide indication of refueling water pump discharge pressure and can be used by the operator to determine if the pumps are running. There are no trips or automatic actions associated with these instruments. Operation of these pumps can be determined from other monitored parameters such as containment spray flowrate (FIS-522).

FT-506, FT-507, LT-500A, LT-500B

FIS-500, FIS-501, LIS-500A, LIS-500B

These instruments provide indication of hydrazine flow and hydrazine tank level. However, this is a completely automatic and redundant system and failure of both trains is not considered credible. These instruments are not required for proper operation of the system. Therefore, these instruments are not required.

Main Condenser System

If the main condenser is available following an accident, it can be used for dumping steam. However, this system would be unavailable in the event of a loss of offsite power. The atmospheric dump valves or steam generator safety valves can be used to dump steam as required.

Monitoring Instrumentation

CBX-1-1, CBX-1-2, CBX-2-1, CBX-2-2, SDX-1-1, SDX-2-1, K1521, K1522, K1523, K1524

This instrumentation is used to verify reactor trip. However, redundant means exist for automatically initiating a reactor trip and failure of such redundant means, including manual trip, is not considered credible. Therefore, these instruments are not required.

PT-4/R8-1

This instrumentation records feedwater pump discharge pressure and can be used to determine a feedwater line break. However, other instrumentation is available to adequately diagnose a feedwater line break including steam generator level and feedwater flow.

Core Exit Thermocouples

These instruments are used to verify adequate core cooling. However, other instrumentation is available to determine this, including hot leg temperature.

Humidistat

1

This instrument is used to monitor containment humidity and provides an alarm on high humidity which is one of the listed symptoms for a loss of coolant. However, other instrumentation is available to identify the accident as listed in Section 1.0 of the Operating Instruction. Therefore, this indication is not required.

YR-456, YR-457, YR-458

These instruments provide an alarm on low steam generator level which is one of the listed symptoms for a steam line break. However, other instrumentation is available to identify the accident as listed in Section 1.0 of the Operating Instruction. Therefore, this indication is not required. In addition, indication of steam generator level is provided by LI-450X, 451X and 452X.

TA-401B-X, 411B-X, 421B-X

These instruments provide an indication of RCS average temperature which is identified as one of the symptoms of a loss of coolant. This information is not required during the course of the accident since the RCTD's provide information regarding the status of the RCS. In addition, other instrumentation is available to identify the accident as listed in Section 1.0 of the Operating Instruction.

Radiation Monitoring System

R-1214

This instrument monitors radiation in the stack and is one of the listed symptoms for a steam generator tube rupture. However, other instrumentation is available to identify the accident as listed in Section 1.0 of the Operating Instruction.

R-1234

This instrument monitors the radiation levels in the reactor auxiliary building. The Operating Instruction instructs the operator to monitor this for detection of recirculation loop leakage. However, the instruction also indicates that recirculation flow must be maintained and so this information cannot be used to change the status of the recirculation system. Therefore, this monitor is not required.

Electrical Distribution System

L&F Machine Penetrations

These penetrations are used for the power circuitry associated with the reactor coolant pumps. Following a LOCA or MSLB inside containment, the reactor coolant pumps are not required.

Containment Isolation System

Limit Switches

The limit switches on the containment isolation valves are only associated with providing valve position indication in the control room. These switches are not associated with valve movement and as such their failure will not affect closure of the isolation valves.

Reactor Protection System

K-1501 to K-1508

These instruments provide a reactor trip on overpower which is one of the listed symptoms for a main steam line break. Sufficiently redundant means exist for automatically initiating a trip such that this trip is not essential. In addition, other instrumentation is available to identify the accident as listed in Section 1.0 of the Operating Instruction. Therefore, these instruments are not required.

Reactor Coolant System

Pressurizer Heaters

The pressurizer heaters would normally be used to provide primary system pressure control during long term cooling following a small break LOCA, MSLB or MFLB. However, in the event that the pressurizer heaters are not available, alternate methods of system pressure control are available as discussed in NUREG-0611. These methods include: (1) controlling the system temperature by controlling the rate of energy removal from the primary system by the steam generator, (2) controlling the liquid level in the pressurizer to account for the cooling off of the liquid, steam, and metal, (3) water-solid operation of the pressurizer, or (4) operation of the safety injection system. Therefore, the pressurizer heaters are not required. Table 3: Post-Accident Environmental Conditions

Area 1, Containment

The environment specified in containment is based on the guidelines in Enclosure 1 to Mr. Ziemann's February 15, 1980 letter. Specifically, the environment is based on a LOCA. Temperature and pressure are based on the Containment Post Accident Pressure Reanalysis submitted to the NRC by letter dated January 19, 1977. Chemical sprays are used as identified in Amendment 52 to the Final Safety Analysis Report forwarded by letter dated December 3, 1975. Radiation is based on the value specified in Enclosure 1 to Mr. Ziemann's February 15 letter. The post-accident flooding level is based on an elevation of 3' 11" as indicated in Appendix B of NUS-1854, Separation and LOCA Environment Assessment of San Onofre Unit 1 Emergency Core Cooling Systems, dated December, 1977.

Based on the above references the following environment is specified for the containment:

Temperature:	291°F
Pressure:	64.1 psia
Relative Humidity:	100%
Chemical Sprays:	Yes
Radiation:	2 X 107 rads
Submergence:	Yes to elevation 3' 11"

It is noted that the radiation level of 2 X 10⁷ rads identified above is based on the NRC guidelines for gamma radiation. Beta radiation has not been evaluated in this submittal since it is considered less significant than gamma radiation due to its low penetrating power. In addition, recent analyses done in connection with TMI followup activities have calculated a value for San Onofre Unit 1 of 2 X 10⁸ rads integrated over one year. It is our understanding that the basis for these numbers is the same, i.e., TID 14844. Pending further discussions with the NRC staff to resolve differences in these numbers, the NRC guideline number will continue to be utilized for environmental qualification.

The NRC guidelines also specify that for PWR's with automatic containment spray, the LOCA environment can be used for qualification of equipment to an MSLB environment. San Onofre Unit 1 has automatic containment spray. However, the environment associated with an MSLB at San Onofre Unit 1 is currently being reevaluated in accordance with automation of the auxiliary feedwater system. Preliminary results of these analyses have been communicated to the NRC in recent meetings and correspondence. Following completion of these analyses, the appropriate environment for qualification of equipment inside containment required to mitigate the consequences of an MSLB will be reevaluated.

Area 1, Piping Penetration Building

The Piping Penetration Building is located west of the containment. The temperature in this building is expected to increase slightly under the post-accident conditions and, as such, a value of 110° F was specified in NUS-1854 dated December, 1977. Pressure will remain at atmospheric. Radiation in this area will be due to operating the recirculation system since some components of this system are located in this area. The radiation level is based on the guidelines in Enclosure 1 to Mr. Ziemann's February 15 letter.

Based on the above, the following environment is specified for the Piping Penetration Building:

Temperature:	110 ⁰ F
Pressure:	14.7 psia
Relative Humidity:	100%
Chemical Sprays:	No
Radiation:	4 X 10 ⁶ rads
Submergence:	No

Area 1, Outside

In the areas outside, the environmental conditions will remain at ambient with the exception of radiation which results from operating the recirculation system. The radiation level is based on the NRC guidelines. The following environment is specified:

Temperature:	97°F
Pressure:	14.7 psia
Relative Humidity:	100%
Chemical Sprays:	No
Radiation:	4×10^{6} rads
Submergence:	No

Area 2, Mezzanine Under Turbine Deck

Area 2 is located directly south of the containment and contains the feedwater and steam piping. The limiting temperature in this area is based on a high energy line break which results in a saturated steam environment at atmospheric pressure. This is based on the Report on Effects of a Piping System Break Outside the Containment dated December, 1973. The radiation level in this area is based on the TMI calculations of the integrated dose for 1 year due to a LOCA (see the discussion for Area 1, Containment). The specified environment is:

Temperature:	212 ⁰ F
Pressure:	14.7 psia
Relative Humidity:	100%
Chemical Sprays:	No
Radiation:	3×10^7 rads
Submergence:	No

Area 3, Fuel Storage Building

This building will remain at ambient conditions following an accident. With respect to radiation, calculations performed for TMI followup, have estimated a value of 5 X 10^2 rads integrated over one year at the outside wall of the Sphere Enclosure Building. Therefore, the dose in Area 3 will be significantly less than this and is considered insignificant. The specified environment is:

Temperature:97°FPressure:14.7 psiaRelative Humidity:100%Chemical Sprays:NoRadiation:NoSubmergence:No

Areas 4, 5 and 6, Under Turbine Deck

The limiting temperature in this area is based on a high energy line break (see the discussion for Area 2). The radiation level which may result from a LOCA, is considered insignificant (see the discussion for Area 3). The specified environment is:

Temperature:	212 ⁰ F
Pressure:	14.7 psia
Relative Humidity:	100%
Chemical Sprays:	No
Radiation:	No
Submergence:	No

Area 7, Turbine Deck Extension

This area is at the south end of the turbine building and will remain at ambient conditions following any postulated accident. The specified environment is:

Temperature:	97°F
Pressure:	14.7 psia
Relative Humidity:	100%
Chemical Sprays:	No
Radiation:	No
Submergence:	No

Area 8, Auxiliary Building

The auxiliary building and auxiliary building roof, located west of containment, contain various items of recirculation equipment. The post-accident environment is ambient with the exception of radiation which results from operating the recirculation system. The radiation level is based on the NRC guidelines. The specified environment is:

Temperature:	97°F
Pressure:	14.7 psia
Relative Humidity:	100%
Chemical Sprays:	No
Radiation:	4 X 106 rads
Submergence:	No

Area 9, Intake Structure

This area is outside and removed from radiation areas. Environmental conditions will remain at ambient. The specified environment is:

Temperature:97°FPressure:14.7 psiaRelative Humidity:100%Chemical Sprays:NoRadiation:NoSubmergence:No

Area 10, Control Administration Building

This area contains the control room and various electrical distribution equipment. The control room environment will remain at ambient conditions following an accident provided the control room fan is operable. Other areas do not require air conditioning to be operable. The specified environment is:

Temperature:	97°F	
Pressure:	14.7	psia
Relative Humidity:	100%	I
Chemical Sprays:	No	
Radiation:	No	
Submergence:	No	,

Area 12, Condensate Storage Tank

This area is outside and will remain at ambient conditions. The specified environment is:

Temperature:	97°F
Pressure:	14.7 psia
Relative Humidity:	100%
Chemical Sprays:	No
Radiation:	No
Submergence:	No

Area 14, Refueling Water Storage Tank

This area is outside and will remain at ambient conditions with the exception of radiation which results from operating the recirculation system. The radiation level is based on the NRC guidelines. The specified environment is:

Temperature:	97 ⁰ F
Pressure:	14.7 psia
Relative Humidity:	100%
Chemical Sprays:	No
Radiation:	4×10^{6} rads
Submergence:	No

Areas 16 and 17, Diesel Generator Building

The diesel generator building is located at the northeast corner of the plant and is equipped with redundant air conditioning systems. This building will remain at ambient conditions. The specified environment is:

Temperature:	97°F
Pressure:	14.7 psia
Relative Humidity:	100%
Chemical Sprays:	No
Radiation:	No
Submergence:	No

TABLE 4: EQUIPMENT LOCATED IN NON-HOSTILE ENVIRONMENTS

<u>Equipment</u>

Location Area

Safety Injection System

Safety Injection Pumps	G-50A and G-50B	14
FI-912, 913, 914,		10
LT-950		14
LI-950		10
LS-69		
		14
Recirculation System		
FQ-500, 501	f	
FY-500, 501		10
	· · · ·	10
FIS-520, 521		10
LI-951		10
FI-1114A, B and C	{	10
a	ь.	
Containment Spray System		
	P	
FQ-504		10
FY-504		10
FIS-522	, 9	
PIS-511, 512, 153		10
Chemical Addition Pumps	G-2004 and C 2000	10
SV-600 and 601	G-200A and G-200B	8
	1	8
Containment Isolation System		
System	· · · · · · · · · · · · · · · · · · ·	
CV-949, 957, 992	· · ·	
0, 992 0 1 0 0		10
CS 1, 2, 3		10
		-

Hot Leg Recirculation

FI-1112 10 FC-1112 10

Component Cooling Water System

TC-606		
TR-606	·	10
FI-606		10
r1-000		10

Saltwater Cooling System Saltwater Cooling Pumps G-13A and G-13B 9 POV-5 and 6, SV-24 and 25 9 MOV-9 9 SV-81 and 82 9 Auxiliary Feedwater System FI-2002A, B and C 10 FC-2002A, B and C 10 LI-450X, 451X, 452X 10 Condensate Storage Tank Level 12, 10 Control Room Air Conditioning A-33 10 Motors for A-31 normal filter and emergency 10 filter dampers Electrical Distribution System 4 kV Buses 1C and 2C 10 480 V Buses 1, 2 and 3 10, 3 Motor Control Centers 1, 1A, 1B, 2, 2B, 3 10, 3, 7 Vital Buses 1, 2, 3, 4 and Utility Bus 10 DC Buses 1, 2 10, 17 Battery Chargers A, B, C and D 10, 17 Diesel Generators and Supporting Systems 16, 17 Undervoltage Relays CV6, CV7 10 MOV-850C Uninterruptible Power Supply 7 Monitoring Instrumentation RCS Subcooling Recorder 10 R8-2 10 Reactor Protection System FM-456B-X, 4578-X, 458B-X 10 YE-430A, 431A, 432A 10 LC-430A, 431A, 432A 10 LI-430, 431A, 432A 10 YE-430B, 431B, 432B 10 PC-430A/F, 431A/D, 432A/B 10 PI-430, 431, 432 10 Safety Injection Sequencer 10

-2-

Instrument Air

PI-163, 164

Radiation Monitoring Instrumentation

-3-

RLR-1200, RLR-1201 R-1215 R-1216

10 3 10

ŗ

1

a manadad stabe

REACTOR PROTECTION SYSTEM

EQUIPMENT	MANUFACTURER	LOCATION	ENV.(6)	QUAL.	METHOD	REFERENCE
`				qo/i2+		NET CRENCE
FT460, 461 and 462	Foxboro E13DM	Area 1	T – 291 ⁰ F	300 ⁰ F	Test	10
Steam Flow		Containment	P - 64.1	75	Test	10
			H - 100%	100%	Test	10 . 10
			C - Yes	Yes	Test	10
			R – 2E7	2.2E8	Test	
			S – No			11, 26
	· ·				-	-
T456, 457 and 458	Foxboro 613DM	Area 2	T - 212 ⁰ F	294 ⁰ F	Similar (2)	3
eedwater Flow		the distance of the second	P - 14.7	75	Similar (2)	3
			H - 100%	100%	Similar (2)	3 ····································
			C – No	-	-	· · ·
			R – 3E7	· -	_	-
,			S – No	_	_	
T430, 431 and 432	Foxboro E11GM	Area 1	T. 00407	0		
ressurizer Pressure			T [.] – 291 ⁰ F	300 ⁰ F	Test	10
		Containment	P - 64.1	75	Test	10
			H - 100%	100%	Test	10
			C - Yes	Yes	Test	10
			R – 2E7	2.2E8	Test	11, 26
		1	S – No	-	-	-
[430, 431 and 432	Foxboro E13DH	Area 1	T – 291 ⁰ F	300 ⁰ F	Tb	
essurizer Level		Containment	P - 64.1	75	Test	10
		concariment	H = 100%		Test	10
			C - Yes	100%	Test	10
				Yes	Test	10
					lest	11, 26
			R – 2E7 S – No	2.2E8	Test	10 11, 26

Page 1 of 1

Page 1 of 2

SAFETY INJECTION SYSTEM

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE
G-3A and B						
Feedwater Pumps	Byron Jackson 10 x 10 x 27	Area 5	T – 212 ⁰ F	212 ⁰ F	Analysis	1
Codudeer Tumps	2 stage DVMX	Area 6	P - 14.7	NVS*	Analysis	1
			H - 100%	NVS	Analysis	1
x		`	C – No	-	-	-
			R. – No	-	-	-
			S – No	-	-	· _
HV853A and B	Teledyne Republic Manufacturing	A 5	* • • • 0 •			
HV851A and B		Area 5	T – 212 ⁰ F	140 ⁰ F	Spec	5
HV854A and B	02112-002-5210	Area 6	P - 14.7	NVS	Spec	5
HV852A and B	02112-003-5210		H - 100%	100%	Spec	5
			C – No	-		-
	· · ·		R – No	· _	-	-
			S – No	- `	* _	·
V875A and B			-		`	
eedwater Pump		Area 5	T - 212 ⁰ F	650 ⁰ F (1)	Sim; Anal (2)	2, 3, 1
ecirculation	Solenoid ASCO WPHT 8314	Area 6	P - 14.7	65	Sim; Anal	2, 3, 1
decirculation			H - 100%	100%	Sim; Anal	2, 3, 1
			C – No	-	-	_
			R – No	-	-	-
			S – No	-	-	-
V36 and 37		Area 5	t 0400r		,	
SV17 and 18)	Solenoid ASCO WPLB 8300 B59		T – 212 ⁰ F	650 ⁰ F (1)	Analysis	2, 3, 1
eedwater to		Area 6	P – 14.7	65	Analysis	2, 3, 1
ondenser			H - 100%	100%	Analysis	2, 3, 1
			C – No	-	-	
		•	R – No	-	-	-
	· · · · · · · · · · · · · · · · · · ·		S – No	-	-	-
1912, 913 and 914	Foxboro 630-2AS	Area 2	T – 212 ⁰ F	NIVC	A	7
I Flow		neou e	P = 14.7	NVS	Analysis	3
			H = 100%	NVS	Analysis	3
	γ.		H - 100% C - No	NVS	Analysis	3
				-	-	
			R – 3E7	9.9E5	Analysis	3
			S – No	-	-	-

* NVS = No Value Specified

SAFETY INJECTION SYSTEM

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE
DV 850A, B and C Valves	Crane Valves Limitorque SMA-1-40	Area 1 Containment	T - 291 ⁰ F P - 64.1 H - 100% C - Yes R - 2E7 S - No	329 ⁰ F 105 Steam Yes 2E8	Analysis Analysis Analysis Analysis Analysis Analysis	2, 1 2, 1 2, 1 2, 1 2, 1 2, 1 2, 1
			: • •			
· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • •	n an	• • • • • • • • •	terrer en	
	· · · · ·					
· · ·			•			
	- · · · · · · · · · · · · · · · · · · ·					

RECIRCULATION SYSTEM

EQUIPMENT	MANUFACTURER						
		LOCATION	ENV.	QUAL.	METHOD	REFERENCE	
G-45A and B	Chempump GPS-60L-46H-3T	Area 1	T – 291 ⁰ F	300 ⁰ F (3)			
Recirculation Pumps	·	Containment	P = 64.1	165 (3)	Analysis	2	
		e a nou z mierre	H = 100%	165 (3)	Analysis	2	
			C - Yes	Yes	Analysis	2	
			R – 2E7		Analysis	· 2	
			S - Yes	5.35E7	Analysis	2	
			5 - 188	Yes	Analysis	2	
MOV 866A and B	Darling Valves	Area 1	T – 291 ⁰ F	329 ⁰ F	.		
	Limitorque SMB000-5	Containment	P = 64.1		Analysis	2, 3, 1	
		Concalimient	H = 100%	105 Chara	Analysis	2, 3, 1	
n in the second s	الم المراجع المراجع الم		. C – Yes	Steam	Analysis	2, 3, 1	
		•	R - 2E7	Yes	Analysis	2, 3, 1	
			S - No	2 E8	Analysis	2, 3, 1	-
			J - 110	-	-	-	
FT500 and 501	Foxbaro E13DM	Area 1	T – 291 ⁰ F	7000-	. .		
Recirculation Flow		Containment	P - 64.1	300 ⁰ F	Test	10	
		Soncariment	H - 100%	75 -	Test	10	
			C - Yes	100%	Test	10	
			R - 2E7	Yes	Test	10	
			S - No	2.2E8	Test	11, 26	
			5 - 140	-	-	-	
LC951	Gems Corp	Area 1	T – 291 ⁰ F				
Sump Level	LS 800	Containment	P - 64.4				
			H - 100%				
			C - Yes				
			R - 2E7				-
			5 - Yes				
			5 - 165				
MOV/LCV 1100B and D	Darling Valves	Area 8	T – 110 ⁰ F	329 ⁰ F			
MOV/LCV 1100C	Limitorque SMB-00-10		P - 14.7	105	Analysis	2, 3, 1	
Charging Pump Suction			H - 100%	Steam	Analysis	2, 3, 1	
			C - No		Analysis	2, 3, 1	
			R - 4E6	- 2E8	- -	-	
			S - No	2E8 -	Analysis	2, 3, 1	
			- NU	-	-	-	

.

Page 1 of 3

RECIRCULATION SYSTEM

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	DECEDENCE
G-8A and B	Pacific Pumps 2" Type Z 12 Stage	Area 8		·		REFERENCE
Charging Pumps		Area 8	T – 110 ⁰ F	212 ⁰ F	Analysis	1
	к	·	P - 14.7	NVS	Analysis	1
			H - 100%	NVS	Analysis	1
			C - No	-,	-	-
			R - 4E6	10 ⁷	Analysis	2, 1
	· · · · · ·		S – No		-	_
LS-73	Magnetrol A 153F-MPK-TDM					
Sump Hi -Hi		Area 1	T – 291 ⁰ F			
Alarm		Containment	P - 64.1		•	
	-		H - 100%			
			C - Yes			•
			R – 2E7			
		,	S - Yes	. •-		
MOV 18 and 19	Velan Valves			•		· · · · · · · ·
Charging Pump Discharge		Area 1	T – 110 ⁰ F	329 ⁰ F	Similar (2)	2, 3
ina grig i diip bischarge	Limitorque SMB-00		P - 14.7	105	Similar	2, 3
			H - 100%	Steam	Similar	2, 3
	·		C – No	-		
			R - 4E6	2E8	Similar	2, 3
			S - No	_	-	2, 3
FCV 1115 D, E and F.					_	— —
Recirculation Flow Cotrol	Honeywell Positioner	Area 1	T - 110 ⁰ F			
Recirculation Flow Lotrol	IS HE-1		P - 14.7			
			H - 100%			
			C - No '			
			R -			
			S - No			
					4	
FT 1114A B, and C	Foxboro 13HA	Area 1	T – 110 ⁰ F	AMB	Exp	
Recirculation Injection			P - 14.7	ATM	Exp	-
Flow	· ·		H - 100%	AMB		-
			C - No		Exp	-
		_	R - 4E7	-	-	-
			S - No	3E6	Spec	12
		•	5 - 10	-	-	_ `

Page 2 of 3

RECIRCULATION SYSTEM

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL .	METHOD	REFERENCE	
MOV 356, 357 and 358 Recirculation Injection	Edwards Valves Limitorque SMB-00-25	Area 1 Containment	T – 291 ⁰ F P – 64.1 H – 100% C – Yes R – 2E7 S – No	329 ⁰ F 105 Steam Yes 2E8 -	Analysis Analysis Analysis Analysis Analysis	2, 3 2, 3 2, 3 2, 3 2, 3 2, 3	

Page 1 of 2

L

Δ.

CONTAINMENT SPRAY

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE	
G-27A and B	Worthington 4HN-172	Area 14	T - 97 ⁰ F	248 ⁰ F	Analysis	2, 3, 1	
Refueling Water Pumps			P - 14.7	NVS	Analysis	2, 3, 1	
			H - 100%	NVS	Analysis	2, 3, 1	
			C – No	-	-	-, -, -	
			R – 4E6	1E7 (4)	Analysis	2, 3, 1	
			S – No	-		-	
DV 883	Darling Valve	Area 14	T – 97 ⁰ F	329 ⁰ F	Similar (2)	2, 3	
WST Isolation	Limitorque SMB-00	•	P - 14.7	105	Similar (2)	2, 3	
	·		H - 100%	Steam	Similar	2, 3	
· · · · · · · · · · · ·	And a state of the		C – No	-	-	-	
		the the second	R – 4E6	2E8	Similar	- 2, 3 a a a	
· .			S – No	. –	-	-	
)V 880	Darling Valve	Area 1	T – 110 ⁰ F	329 ⁰ F	Similar (2)	0 7	
prey/Recirculation	Limitorque SMB-00		P = 14.7	105	Similar (2)	2, 3 2, 3	
rosstie			H - 100%	Steam	Similar		
			C - No	- ·	-	2, 3	
	· · · ·		R - 4E6	2E8	Similar	- 2, 3	
			S – No	_	-	2 , -	
V517 and 518	EBV Systems D-6-300-7	Area 1	t – 97 ⁰ F [.]	110 ⁰ F	cofc	15	
pray Flow Control			P - 14.7	ATM	cofc	15	
	•		H – 100%	100%	c of c	15	
			C – No		-	-	
-			R – 4E6	2E7	cofc	- 15	
			S – No	-	-	-	
504	Foxboro E13DM	Area 1	T – 97 ⁰ F	300 ⁰ F	Test	10	
bray Flow			P - 14.7	75	Test	10	
			H - 100%	100%	Test	10	
			C – No	-	-	-	
			R – 4E6	2.2E8	Test	11, 26	
			S – No	-	-	-	

CONTAINMENT SPRAY

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE
CV82 and 114		Area 1	T – 291 ⁰ F	650 ⁰ F (1)	Analysis	2, 3
SV128 and 118	Solenoid ASCO WPLB 8300 B59	Containment	P - 64.1	64	Analysis	2, 3
Spray Isolation			H - 100%	100%	Analysis	2, 3
			C – Yes	Yes	Analysis	2, 3
			R – 2E7	ŇVS (5)	Analysis	2, 3
			S – No	-	-	-
PT501, 502 and 503	Foxboro E11GM	Area 1	T – 97 ⁰ F	300 ⁰ F	Test	10
Containment			P - 14.7	75	Test	10 .
Pressure			H - 100%	100%	Test	10
			C - No	-	-	· _
· · · · · · · · · ·			R – 3E7	2.2E8	Test	11, 26
	n an an an ann an ann an ann an Ann ann a	a i i	S - No			

Page 1 of 5

Ĩ.

٠

CONTAINMENT ISOLATION

.

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE
	· .					
CV102, 104 and 106		Area 1	T – 291 ⁰ F	650 ⁰ F(1)	Analysis	2, 3
SV108, 110 and 112	ASCO WPLB 8300 859	Containment	P - 64.1	65	Analysis	2, 3
Sphere Sump Discharge			H - 100%	100%	Analysis	2, 3
RCS Dr Tk Discharge			C - Yes	Yes		
RCS Dr Tk Vent			R – 2E7 S – No	NVS (5)	Analysis	2, 3
CV103, 105 and 107	ASCO 8300 B61	Area 1	T – 110 ⁰ F	650 ⁰ F (1)	Similar (2)	2, 3
SV109, 111 and 113			P - 14.7	65	Similar	2, 3
Sphere Sump Discharge			H - 100%	100%	Similar	2, 3
RCS Dr Tk Discharge			C – No	-	-	-
RCS Dr Tk Vent	· · · · · · · · · · · · · · · · · · ·		R – 4E6	NVS (5)	Similar	2, 3
			S – No	· -	-	
CV146 and 147		Area 1	T – 291 ⁰ F	650 ⁰ F (1)	A	
SV1212-6 and 1212-7	ASCO WPLB 8300 859	Containment	P - 64.1	65	Analysis Analysis	2, 3
Sphere Air Sample		oonearmente	H - 100%		Analysis	2, 3
·			C - Yes	100% Yes	Analysis	2, 3
			R – 2E7	NVS (5)	Analysis Analysis	2, 3
			S - No		Analysis	2, 3
SV1212-8 and 1212-9						
Sphere Air Sample	ASCO HT X 8210 27	Area 1	T – 110 ⁰ F			
Sphere Air Sampie			P - 14.7			
			H - 100%			
			C – No			
			R - 4E6			
			S – No			
CV117, 118 and 119	ASCO WPLB 8300 B61VR	Area 2	T – 212 ⁰ F	650 ⁰ F(1)	Similar (2)	2, 3
SV119, 120 and 121			P - 14.7	65	Similar (2)	2, 3
Steam Gen. Steam Sample			H - 100%	100%	Similar	2, 3
			C – No	-	-	-
			R - 3E7	NVS (5)	Similar	2, 3
			S – No	-		-

CONTAINMENT ISOLATION

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE
CV120, 121 and 122 SV122, 123 and 124	ASCO WP 8300 B61R	Area 2	T – 212 ⁰ F P – 14.7	650 ⁰ F (1) 65	Similar (2) Similar	2, 3
Steam Gen. Blowdown Sample			H - 100%	100%	Similar	2, 3 2, 3
	· · · · · · · · · · · · · · · · · · ·		C – No	-	-	-
			R – 3E7 S – No	NVS (5)	Similar -	
CV123 SV125	ASCO WP 8300 B61R	Area 1	T – 97 ⁰ F	650 ⁰ F (1)	Similar (2)	2, 3
Service Air			P - 14.7	65	Similar	2, 3
			H - 100%	100%	Similar	2, 3
•.			C – No	-	· _	-
			R – 3E7	NV.S (5)	Similar	2, 3
· · · · ·	and the second	· · · ·	S – No	- - ,	·	-
CV537	Contromatic C-9922-DC	A 1	T 0040-	- 0		
Service Water		Area 1	T – 291 ⁰ F	272 ⁰ F	Spec	28
· · ·		Containment	P - 64.1	61.1	Spec	28
			H - 100%	100%	Spec	28
			C - Yes	Yes	Spec	28
			R – 2E7	1E8	Spec	28
• ·			S – No	· –	-	-
CV115 SV126	ASCO WPLB 8300 B61RU	Area 1	T - 97 ⁰ F	650 ⁰ F (1)	Similar (2)	2, 3
Service Water			P - 14.7	65	Similar	2, 3
			H – 100%	100%	Similar	2, 3
		• •	C – No	-	-	· · ·
			, R – 3E7	NVS (5)	Similar	2, 3
		-	S – No	-	-	-
SV702B and D	Morotta Valve Co. 🛛 🛛	trea 1	T – 291 ⁰ F			
Cold Leg Vent	•• • •	Containment	P - 64.1			
		on an ment	P - 64.1 H - 100%			· ·
			n - 100‰ C - Yes			
			R - 2E7			
			S = No			
			J - 110			

Page 2 of 5

1

ر

CONTAINMENT ISOLATION

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE
SV702A and C	Morotta Valve Co.	Area 1	T – 97 ⁰ F			
Cold Leg Vent	Model MV 583H-4A	ALCAI	P = 14.7			
· .			H = 100%			
			C - No			
			R - 3E7	·····		
-			S - No			
POV 9 and 10		Area 1	T – 97 ⁰ F	AMB	Exp	
SV29 and 30	ASCO 8345		P - 14.7	ATM	Ехр	
Sphere Purge			H - 100%	AMB	Exp	-
	· · · · · ·		C – No	-	-	-
			R – 3E7	NVS (5)	Similar (2)	2, 3
and an an an		+ <u>+</u>	S – No	_ •		29 2
CV40 and 116		Area 1	T – 291 ⁰ F	650 ⁰ F (1)	Analysis	2, 3
SV19 and 127	ASCO WPLB 8300 B59	Containment	P - 64.1	65	Analysis	2, 3
Sphere Vent			H - 100%	100%	Analysis	2, 3
			C – Yes	Yes	Analysis	2, 3
			R – 2E7	NVS (5)	Analysis	2, 3
			S – No		_ ·	-
CV10		• ·				
SV28		Area 1	T – 97 ⁰ F	650 ⁰ F(1)	Analysi s	2, 3
Sphere Vent	ASCO WPLB 8300 859		P = 14.7	65	Analysis	2, 3
			H - 100%	100%	Analysis	2, 3
			C – No	-	-	(
			R – 3E7	NVS (5)	Analysis	2, 3
			S - No	-	-	-
CV533 and 536	Contromatic C-9922-DC	Area 1	T – 291 ⁰ F	272 ⁰ F	Spec	28
Press Relief Tank	Solenoid ASCO WPHT 8370 93	Containment	P - 64.1	61.1	Spec	28
RCS Drain Tank	·		H - 100%	100%	Spec	28
			C – Yes	Yes	Spec	28
			R – 2E7	168	Spec	28
			S – No	-	-	-

Page 3 of 5

Page 4 of 5

4

CONTAINMENT ISOLATION

.

	EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE
	CV534 and 535 Press Relief Tank RCS Drain Tank	Contromatic C-9922-DC Solenoid ASCO WPHT 8370 93	Area 1	T – 110 ⁰ F P – 14.7 H – 100%	120 ⁰ F NVS 100%	Spec Spec Spec	28 28 28 28
				C - No R - 4E6 S - No	- 2.5E7 -	- 	- - 28
	CV525 and 527 RCS Letdown RCP Sealwater	EBV D-2-300-6 EBV D-3-150-14	Area 1 Containment	T – 291 ⁰ F P – 64.1 H – 100% C – Yes R – 2E7 S – No	272 ⁰ F 61.1 100% Yes 3E7	c of c c of c c of c c of c c of c c of c	15 15 15 15 15
•	CV526 and 528 RCS Letdown RCP Sealwater	EBV D-2-300-6 EBV D-3-150-14	Area 1	T – 110 ⁰ F P – 14.7 H – 100% C – No R – 4E6 S – No	- 110 ⁰ F ATM 100% - 2E7	c of c c of c c of c _ c of c _ c of c	15 15 15 - 15 - 15 -
	CV287 RCS Letdown	BS&B 70-18-9 DRTX Solenoid ASCO	Area 1 Containment	T – 291 ⁰ F P – 64.1 H – 100% C – Yes R – 2E7 S – Yes			
	CV202, 203 and 204 RCS Letdown	ASCO WPLB 8300 B59	Area 1 Containment	T – 291 ⁰ F P – 64.1 H – 100% C – Yes R – 2E7 S – No	650 ⁰ F (1) 65 100% Yes NVS (5) -	Analysis Analysis Analysis Analysis Analysis	2, 3 2, 3 2, 3 2, 3 2, 3 2, 3

CONTAINMENT ISOLATION

D REFERENCE
20
28
28
-
28
~
15
15
15
-
15
10
10
10
. 10
- 11, 26

Page 1 of 1

1.425.0

HOT LEG RECIRCULATION

4 -++ A ... -= ...

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL .	METHOD	REFERENCE
CV 1112		Area 1	T – 110 ⁰ F	120 ⁰ F	Analysis	1
LR Flow Control	ASCO WPHT 8314 6		P - 14.7	NVS	Analysis	
			H - 100%	NVS	Analysis	. 1 . 1
		•	C - No	_	-	,
			R - 4E6	-	_	-
			S – No	-	-	-
IT 1112	Brooks 5523A	Area 1	T – 110 ⁰ F		•	l l
LR Flow			P - 14.7			
			H - 100%			
			C – No			
	and the state of the		R – 4E6	5. S		
			S – No	2. Y _2	· · · · · · ·	
V304	,	Area 1	T – 291 ⁰ F	NVS	Analysis	1
оор А	ASCO WPHT 8314 6	Containment	P - 64.1	NVS	Analysis	1
harging Line			H - 100%	NVS	Analysis	1
			C – Yes	NVS	Analysis	1
			R – 2E7	-		-
			S – No	-	-	-
V305		Area 1	T – 291 ⁰ F	NVS	Analysis	1
ressurizer Spray Line	ASCO WPHT 8314 6	Containment	P - 64.1	NVS	Analysis	1
			H - 100%	NVS	Analysis	, 1
			C – Yes	NVS	Analysis	- 1
			R – 2E7	(4)	-	· _
			5 - No	-	-	-
CV 430C and H	BS&B 70-18-9 DRTX	Area 1	T – 291 ⁰ F	NVS	Analysis	1
oop A and B	Foxboro 69 TA-1	Containment	P - 64.1	NVS	Analysis	1
			H - 100%	NVS	Analysis	' 1
			C – Yes	NVS	Analysis	1
			R – 2E7	-	-	-
			S – No	_	-	_

CHEMICAL AND VOLUME CONTROL SYSTEM

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE
CV410 and 411 VCT Inlet	ASCO LB 8316 12	Area 8	T – 97 ⁰ F P – 14.7 H – 100% C – No R – 4E6			

S - No

Page 1 of 1

STEAM DUMP

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE	
CV76, 77, 78 and 79 SV85, 86, 87 and 88 ATM Steam Dump	Solenoid Valvair 5682-2	Area 1	T – 97 ⁰ F P – 14.7 H – 100% C – No R – 3E7 S – No				

ne server en en ante a server de la composition de la composition de la composition de la composition de la comp

Page 1 of 1 -

the state

COMPONENT COOLING WATER SYSTEM

havanze ez A

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE	
G15A, B and C	Pacific 6 x 14 Type DS	Area 8	T - 97 ⁰ F	212 ⁰ F	Analysis	1	•
Component Cooling Pumps		-	P - 14.7	NVS	Analysis	1	
			H - 100%	NVS	Analysis	1	
			C – No	-	-	_	
			R – 4E6	· _	_	-	
			S - No	-	-	-	
MOV 720A and B	Crane Valves	Area 8	t – 97 ⁰ f	329 ⁰ F	Similar (2)	2 1	
Component Cooling	Limitorque SMB-00-5		P - 14.7	105	Similar (2)	2, 3 2, 3	
Ht Ex Outlet			H - 100%	Steam	Similar	2, 3	
			C – No	-		2, 7	
			R – 4E6	2E8	Similar	2, 3	
		• _ • •	S – No		-		
			_				
CV737 A and B	EBV Systems D-4-150-18	Area 8	T – 97 ⁰ F	110 ⁰ F	cofc	15	
Recirculation Ht Ex			P - 14.7	ATM	cofc	15	
			H - 100%	100%	cofe	15	
			C – No	-	-	-	
			R – 4E6	2E7	cofc	15	
			S – No	-	-	· _	
TE-606	Foxboro DB-13V-26W	Area 8	T – 97 ⁰ F				
Cooling Water			P - 14.7				
	•		H - 100%				
			C – No				
			R – 4E6				-
			S – No				
FT606 .	Foxboro 13A	Area 8	T – 97 ⁰ F	AMB	Ехр		
			P - 14.7	ATM	Ехр	-	
			H - 100%	AMB	Exp		
			C – No	-	T		,
			R – 4E6	1.9E4	Similar (2)	3	
			S – No	-	-	_	
		A					

Page 1 of 1,

AUXILIARY FEEDWATER SYSTEM

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE
G-10 Auxiliary Feed Pump	Pacific Pump JTC-2"	Area 6	T - 212 ⁰ F P - 14.7			
			H - 100% C - No			
			R - No S - No			
FT2002A, B and C Auxiliary Feed Flow	Controlatron 240N-3CS40	Area 2	T – 212 ⁰ F P – 14.7	-	•	
			H – 100% C – No R – 3E7			
	and the second	-, _~	S - No			· · · · · · · · · · · · · · · · · · ·
LT 450X, 451X and 452X SG Level	Foxboro NE13DM	Area 1 Containment	T – 291 ⁰ F P – 64.1 H – 100% C – Yes R – 2E7	300 ⁰ F 75 100% Yes 2,2E8	Test Test Test Test Test	10 10 10 10 11, 26
	· ·		S – No	- ^	-	-

· .

ELECTRICAL DISTRIBUTION SYSTEM

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE
		·				······································
Cable	GE Vulkene	Various	T – 291 ⁰ F	392 ⁰ F	Test	3, 4
			P - 64.1	80	Test	3
			H - 100%	100%	Test	. 3
			C - Yes	Yes	Vendor Data	6
			R – 2E7	1E8	Test	3
			S - Yes	Yes	Vendor Data	6
Cable	GE	Various	T – 291 ⁰ F	348 ⁰ F	Test	7
			P - 64.1	135	Test	7
			H - 100	Steam	Test	7
	• •		C – Yes	Yes	Test	7
	and the second sec		R - 2E7	2.2E8	Test	
			S - Yes	Yes	Test	7 24
Cable	Raychem	Various	T – 97 ⁰ F	358 ⁰ F	Test	8
			P - 14.7	149	Test	8
			H - 100%	Steam	Test	8
	•		C - No	_	-	-
			R - 3E7	2E8	Test	- 8
			S – No	-	-	-
Cable	Rockbestos	Various	T – 291 ⁰ F	346 ⁰ F	Test	9
			P - 64.1	128	Test	9
			H - 100%	Steam	Test	9
			C - Yes	Yes	Test	9
			R – 2E7	2E8	Test	9.
			S – No	-	-	-
Penetrations	Viking	Area 1	T – 291 ⁰ F	272 ⁰ F	Spec	17, 18, 19
			P - 64.1	68	Test	20
	•		H - 100%	High	Spec	17, 18, 19
			C - Yes		5p00	Fr, 10, 12
			R - 2E7			
			S – No		7	

ELECTRICAL DISTRIBUTION SYSTEM

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE	
Penetrations			0				
e chectacions	Conax	Area 1	T – 291 ⁰ F	340 ⁰ F	Test	30, 31	
			P - 64.1	125	Test	30, 31	
			H - 100%	100%	Test	30, 31	
			C – Yes	Yes	Test	30, 31	
			R – 2E7	2.2E8	Test	30, 31	
			5 – No	-		-	
Penetrations	Amphenol	Area 1	T – 291 ⁰ F	300 ⁰ F	Test; Anal	21, 27	
			P - 64.1	70	Test	21	
•		*	H - 100%	100%	Test	21	
	-		C - Yes	Yes	Test	21	
			R – 2E7	1E8	Test	22	
			S - No	· · · ·	_	r	
Cable Splices	Raychem	Various	T – 291 ⁰ F	358 ⁰ F	Test	23	
			P - 64.1	134	Test	23	
			H - 100%	100%	Test	23	
• _			C – Yes	Yes	Test	23	
			R – 2E7	2E8	Test	23	
			S - No	-	-	-	
Motor Control Center	Westinghouse Class II-350	Area 8	t – 97 ⁰ f				
2A	-		P - 14.7				
			H = 100%				
			C - No				-
			R – 4E6				
			S - No				

REACTOR COOLANT SYSTEM

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE
CV530 and 531	ASCO 8316	Area 1	T - 291 ⁰ F			
Pressurizer Block		Containment	P - 64.1			
Valves			H - 100%			
			C – Yes			
			R – 2E7			
		-	S – No			
CV545 and 546	ASCO 8316	An	T 004 ⁰ m			
Pressurizer PORV		Area 1 Containment	T - 291 ⁰ F P - 64.1			
	· · ·	concariment	F = 64.1 H = 100%			
			C - Yes			
	and the second	· · · · 2.	R – 2E7	an a	e de la seconda de la second	and the second second second
		`	S – No			
Limit Switches	NAMCO EA180	Area 1	T 2010r	7 (20-		
Pressurizer PORV and		Containment	T – 291 ⁰ F	340 ⁰ F	Test	32
Relief Valves		concarnment	P - 64.1	85	Test	32
			H - 100%	100%	Test	32
			C - Yes	Yes	Test	32
			R – 2E7	2E8	Test	32
•			S – No	-		-

1

MONITORING INSTRUMENTATION

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE
		· .				
RCTD's	Weed Instrument	Area 1	T – 291 ⁰ F	291 ⁰ F	cofc	13
TE400, 401, 402 A, B, C	Model 2004	Containment	P - 64.1	64.1	cofc	13
TE410, 411, 412 A, B, C			H - 100%	100%	cofc	13
TE420, 421, 422 A, B, C			C - Yes	Yes	cofc	13
			R – 2E7	3.5E6	cofc	13
			S – No	-	-	-
PT2	Honeywell 737 NISI	Area 2	T – 212 ⁰ F	Amb	Evention	
Steam Pressure	• –		P - 14.7	Atm	Experience	-
			H - 100%	Amb 、	Experience	-
			C - No		Experience	-
			R = 367	-	- - - (0)	-
			S - No	2E6	Similar (2)	na a a 3 a a a arai <u>a</u> a
			5 - 140	-		-
Subcooling Recorder	Foxboro E11GM	Area 1	T – 291 ⁰ F	300 ⁰ F	Test	10.
Pressure Transmitter		Containment	P - 64.1	75	Test	10
			H - 100%	100%	Test	10
			C - Yes	Yes	Test	10
			R – 2E7	2.2E8	Test	11, 26
			S – No	_	-	_

,

۲

INSTRUMENT AIR

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE
						- MEI ENCHOL
CV41	U.S. Gauge PIC 07M	Area 6	T - 212 ⁰ F			
Service Air Isolation	12CB-315	- ALCO O	P - 14.7			
PCI	·		H = 100%		·	
			C - No			
			R – No			
			S – No			
PS56, 57 and 58	United Electric	Area 6	T - 212 ⁰ F			
Compressed Air Header			P - 14.7			
			H - 100%	,	,	
			C – No			
	 A second sec second second sec	the second region of the	R – No		<i>v</i>	الی این این این این معنی است. این این این این این معنی است این این این است.
			S – No			
SV147		Area 6	T – 212 ⁰ F		. •	
Emergency Compressor			P - 14.7			
Start			H - 100%			- -
			C – No			
			R – No			
			S - No			,
PS119	Square "D" GH62 9013	Area 6	T – 212 ⁰ F			
Emergency Compressor			P - 14.7			1
Start			H - 100%			
			C – No			
			R – No			· · · ·
·			S – No			
K-1A, B and C	Chicago Pneumatic 12 x 11	Area 6	⊺ – 212 ⁰ F			
Compressors	TDO-B2		P - 14.7			
			H - 100%			
•			C – No			
			R – No			
			S – No			

INSTRUMENT AIR

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE
Emergency Compressor	Worthington 25 BN-24	Area 6	T – 212 ⁰ F			
		ALCA U	P - 14.7			
			H - 100%			
	-		C – No			
			R – No			
		. •	S – No			
PCV40	Fisher 1805-3		T 040 ⁰ 5			. •
Instrument Air		Area 6	T - 212 ⁰ F		-	
Isolation			P - 14.7			
			H – 100% C – No			`
		~				
			R – No		a kr	•
			S - No			· · · · · · · · · · · · · · · · · · ·
SV105, 106 and 107		Area 6	T – 212 ⁰ F			
Instrument Air Dryer			P - 14.7			
			H - 100%			
			C – No			
•			R – No			
			S – No			
PT11 and 12	Honeywell Y737NI-SI	Area 6	T – 212 ⁰ F			
nstrument and Service			P - 14.7			
ir			H - 100%			
			C – No			
			R – No			
			S – No			-
:						
		•				

Page 2 of 2

RADIATION MONITORING SYSTEM

EQUIPMENT	MANUFACTURER	LOCATION	ENV.	QUAL.	METHOD	REFERENCE	
R-1232 Containment	Tracer Lab WJ-12	Area 1 Containment	T – 291 ⁰ F P – 64.1 H – 100% C – Yes R – 2E7 S – No				

REFERENCES

- 1. NUS 1854
- 2. Amendment 30 SONGS 1 FSAR
- 3. Amendment 47 SONGS 1 FSAR
- 4. Environmental Qualification of Safety Related Electrical Equipment dated February 24, 1978
- 5. Specification 82-9010, 6/6/75
- 6. General Electric Wire and Cable Product Data, <u>Vulkene Industrial</u> <u>Control Cable</u>, September 15, 1961
- 7. FIRL Test Report F-C3713-2A, May, 1975
- 8. FIRL Test Report F-C4033-1, January, 1975
- 9. The Rockbestos Company, <u>Qualification of Firewall III Class IE Electric</u> <u>Cables</u>, February 1, 1977
- 10. Foxboro Test Report Nos. T3-1013 and T3-1013 (Supplementary)
- 11. Foxboro Test Report No. T3-1068
- 12. SCE Purchase Order H2205004, 8/28/75
- 13. Weed Instrument Co. Inc. Certificate of Compliance
- 14. International Instruments, Certificate of Compliance dated 11/16/77
- 15. EBV Systems Division, Certificate of Compliance
- 16. Foxboro Company, Statement of Conformance dated 11/14/77
- 17. Specification BS0-3042, 7/20/64
- 18. Specification BS0-3043, 5/6/64
- 19. Specification BSO-3280
- 20. SONGS 1 FSAR, Volume IV, Section 4.3.6.4

- 21. Amphenol Technical Report 123-1247
- 22. Amphenol Technical Report 123-1260
- 23. FIRL Test Report F-C4033-3, January, 1975
- 24. Specification SO 23-304-11
- 25. Specification SEP 404, July, 1976
- 26. Foxboro Test Report No. T3-1097
- 27. Amphenol letter from Paul T. Smith to SCE Att: D. Nanda dated August 31, 1977
- 28. Specification SEP-402, December, 1975
- 29. Specification SO1 IS-01, September 27, 1979
- 30. IPS 525.1 Design Qualification Report for Low Voltage Power and Control Electric Penetration Assemblies, Conax Corporation

-2-

- 31. IPS 525.2 Design Qualification Report for Low Voltage Instrumentation Electric Penetration Assemblies, Conax Corporation
- 32. Qualification of NAMCO Controls Limit Switch Model EA 180 dated September 5, 1978

- (1) The temperature qualification parameter specified represents that value at which constituent parts constructed of ferrous material will degrade and does not include that value for the valves brass body and organic constituent parts. It is not expected that the brass body will degrade within the required operation time of the valve, if at all. Failure of organic material will not impair the deenergizing of the solenoid valve, allowing its associated control valve to assume its fail-safe position (see Reference 2 Page 6A-102).
- (2) The use of "Similarity" indicates that the identified equipment is similar to that already qualified by analysis in References 2 and 3.
- (3) The pump qualification temperature and pressure values represent the limiting value specified in Reference 2 which corresponds to the pump casing.
- (4) The qualification value is for the pump motor as described in References 2 and 3. Specification for the pump mechanical seals specifies a recirculation radiation value of 10⁶ rads.
- (5) Failure of constituent parts due to radiation damage is inconsequential to proper operation of the component (See Reference 2 Page 6A-102).
- (6) Environments specified are from Table 3.

Table 6: Equipment Located in Hostile Environments For Which Qualification Is Not Available

Reactor Protection System

FT-456, 457, 458

These transmitters provide an input to the reactor trip on steam flow-feedwater flow mismatch. In the event of a steam or feedwater line break this trip will occur almost immediately. Therefore, these transmitters will have performed their function prior to being exposed to any high temperature if the break is in Area 2. Furthermore, additional instrumentation which would not be affected by a break in this location is available to provide a reactor trip such as pressurizer pressure or level. For a break in any other area these transmitters would not be affected. These transmitters are not required following a LOCA and, therefore, the radiation is not applicable.

Safety Injection System

HV-853A, B, 851A, B, 854A, B, 852A, B

These values are used to transfer the feedwater pumps from feedwater service to emergency core cooling service. In the event of a feedwater or steam line break in the vicinity of the values, the environment could be saturated steam at 212°F. The values are covered and would not be expected to be exposed to this temperature. Moreover, since the two trains are at opposite sides of the turbine building, any given break could only affect one train. The safety analyses for the plant are based on one train of emergency core cooling. Therefore, in the unlikely event that these values failed to operate in the break environment, the core would be adequately cooled.

FT-912, 913 and 914

These transmitters provide surveillance of safety injection flow, however, they are not required for proper operation of the safety injection system. In the event of steam or feedwater line break in Area 2, these transmitters could be exposed to 212°F saturated steam. In the event of a LOCA, safety injection is terminated within the first half hour, before these transmitters would be exposed to a high radiation environment. If the transmitters fail, the operator can still establish that safety injection flow has stopped, as would be the case for a steam or feedwater line break, by monitoring RWST level which he is required to do by the procedure.

Recirculation System

LC-951, LS-73

These instruments provide indication of containment sump level. Qualification information is not available on these instruments. However, in accordance with the operating procedure these instruments are not relied on by themselves for a specific operator action. The operator is instructed to also monitor RWST level on LI-950 and LS-69. These latter instruments are not located in hostile environments and, as such, would be operable. Therefore, in the event LC-951 or LS-73 fails, adequate information is available to the operator. In addition, in connection with implementation of TMI related requirements new containment sump level indication will be installed.

FCV-1115D, E, F

These valves provide flow control to the injection lines for long term recirculation. Nineteen hours following initiation of safety injection the Hot Leg Recirculation System is actuated. At that time the flow control valves will be modulated for a reduced flow to the core. It will be necessary to have these valves qualified for 19 hour operation. Qualification of this component has been suspended pending consideration in connection with the Systematic Evaluation Program as discussed in SCE's letter dated August 10, 1978. The NRC Staff's response to this letter was provided by letter dated October 16, 1978.

Containment Isolation System

CV-287

This containment isolation valve may be submerged following a LOCA. However, there are other containment isolation valves downstream of this valve which are also closed following a LOCA and which will ensure containment isolation. Therefore, plant modifications associated with this valve have been suspended pending consideration in connection with the Systematic Evaluation Program as discussed in SCE's letter to the NRC dated August 10, 1978. The NRC Staff's response to this letter was provided by letter dated October 16, 1978.

CV-537, 533, 536, 525, 527

These values provide containment isolation of the pressurizer relief tank, RCS drain tank, service water, RCS letdown and RCP sealwater. The containment pressure and temperature values specified for these values are the original specification values. These values are less than 10% lower than the conservatively calculated values for the containment environment and as such the values would be expected to close. Moreover, the lines containing these isolation values also have isolation values located outside containment which have been qualified for the environment outside containment. Failure of the values inside containment would not prevent isolation of the line by the value outside containment.

SV-1212-8, 1212-9

Evaluation of the environmental qualification of these solenoid valves is continuing.

SV-702A, B, C, D

These values are used to periodically went the safety injection lines during normal operation to reduce the potential for water hammer in these lines. Except when the lines are being wented, these values are closed. Following an accident these values remain closed and are not required to change position. Therefore, these lines will remain isolated.

Hot Leg Recirculation System

FCV-1112, CV-304, CV-305, PCV-430C, PCV-430H, FIT-1112 These components are part of the Hot Leg Recirculation System which is provided to protect against the possibility of boron precipitation in the reactor for the case of a cold leg LOCA. This system is not required for an MSLB, FWLB or LOCA other than in a cold leg. Qualification of components within this system has been suspended pending consideration in connection with the Systematic Evaluation Program as discussed in SCE's letter to the NRC dated August 10, 1978. The NRC Staff's response to this letter was provided by letter dated October 16, 1978. Pending completion of this qualification, an alternate hot leg recirculation path is available as discussed in the LOCA Operating Instruction.

Steam Dump System

CV-76, 77, 78 and 79

These values are the atmospheric steam dump values and are used to dump steam in the event the main condenser is not available. The values are shielded by the Sphere Enclosure Building and by steel enclosures designed to protect them from high energy pipe breaks and, as such, would not be expected to be exposed to the high radiation calculated for this area of the plant. However, in the event they did fail after prolonged exposure, the main steam safety values would be available. The atmospheric dump values would not be affected by a steam or feedwater line break at any location.

Component Cooling Water System

G-15A, B and C

The component cooling water system provides cooling to the recirculation heat exchanger. During the recirculation phase of emergency core cooling, the component cooling water pumps will be exposed to radiation from the recirculation loop. However, shielding from components in the area, such as the surge tank, should reduce the dose considerably from the 4 X 10^6 rads which has been assumed for the recirculation loop. Moreover, three pumps are available, whereas only one pump has to be operable at any given time.

TE-606, FT-606

These instruments are used only to monitor the component cooling water system. They are not required for any automatic action or for the component cooling water system to function.

Auxiliary Feedwater System

G**-** 10

This pump could experience a 212°F saturated steam environment in the event of a steam line break in the vicinity of the pump. Although specific qualification for this environment is not available, it is not expected that this environment would affect operability of the pump. However, in the event this pump did fail, the other steam driven auxiliary feedwater pump would be available.

FT-2002A, B, C

These flow transmitters were recently installed to meet TMI related requirements and were purchased to control grade requirements. These transmitters are scheduled to be replaced with qualified transmitters by January 1, 1981.

Electrical Distribution System

Viking Penetrations

Evaluation of the environmental qualification of these penetrations is continuing.

Motor Control Center 2A

MCC-2A is located within the Reactor Auxiliary Building. The post-accident environment within this building includes a radiation dose of 4×10^6 rads associated with recirculation equipment. The safety related equipment receiving power through this motor control center is actuated upon initiation of safety injection and containment spray signals and do not require further actuation. During the recirculation phase this motor control center is not required for powering any safety related equipment.

Reactor Coolant System

CV-530, 531, 545 and 546 Evaluation of the environmental qualification of these components is continuing.

Monitoring Instrumentation

RCTD's

These instruments are used to monitor the RCS for adequate core cooling following an accident. In the event of an MSLB the NRC Guidelines identify the appropriate radiation dose as 2×10^6 rads. The temperature detectors are qualified for at least 3.5×10^6 rads and therefore are acceptable following an MSLB. Following a LOCA the dose is specified as 2×10^7 rads. This dose is due to a large break LOCA with a TID 14844 source term. However, for a large break LOCA safety injection and recirculation are maintained and there is no real need for the RCTD's. These instruments are more important for a small break LOCA to ensure adequate core cooling and appropriate safety injection operation. For the small break case, the dose will not be as high and the RCTD's would be expected to remain operable.

PT-2

This component provides indication of steam line pressure and is utilized by the operator to identify a loss of secondary coolant and to monitor steam pressure following a small break LOCA. In the event of a secondary line break, this instrument will not be exposed to a hostile environment unless the break is in Area 2. If the break is in Area 2 and the instrument fails due to high temperature, the operator can use other information such as containment radiation to determine if the event is a loss of secondary coolant. This instrument is qualified for a dose of 2×10^6 rads which is less than the most severe radiation environment postulated for Area 2. However, these higher levels are for a large break LOCA, whereas this instrument is required only for a small break where the dose will be lower and the instrument would be expected to remain operable.

Radiation Monitoring System

R-1232

This component is utilized by the operator to determine radiation level inside containment. In the event of a LOCA, this component may not be operable to determine radiation levels. In connection with implementation of TMI related requirements new containment radiation monitors will be installed.

Instrument Air System

The instrument air system equipment is located in the southwest corner of the turbine building, Area 6. A steam or feedwater line break in Area 6 would be more towards the north end of this area and would be separated from the instrument air equipment, both by distance and by the massive steel structure which houses the auxiliary feedwater pumps. Therefore, it is unlikely that the instrument air system would see the temperature of 212°F which has been identified for Area 6. It is, therefore, expected that the instrument air equipment would remain operable in the event of a steam or feedwater line break in this area. However, in the event that the electric driven instrument air equipment is not operable there is a diesel driven air compressor which can be connected to the instrument air header.

Chemical and Volume Control System

CV-410, 411

These values are on the sealwater return line to the volume control tank. In the event of a loss of coolant they are required to close to prevent loss of suction to the charging pumps and therefore, they receive a close signal from the Safety Injection Sequencer. The values are located in the charging pump room of the reactor auxiliary building. Prior to initiation of recirculation this room is at ambient conditions and, therefore, the values are qualified to close based on experience. The values are not required to change position again and fail closed on loss of air, therefore, the prolonged effects of radiation are inconsequential.