ENCLOSURE 1 TO NL-13-147

IP-CALC-13-00062, R1

EVALUATION OF LEAK AT LINE 1093 IN UNIT 3 MOAT

Sheet 1 of 2

(3) Design Basis Calc. \square YES \triangle NO	(4) \triangle CALCULATION	\square EC Markup
${ }^{\text {(5) }}$ Calculation No: IP-CALC-13-00062	Revision: $\mathbf{1}$	
(7) Title: Evaluation of Leak at Line $\mathbf{1 0 9 3}$ in Unit 3 Moat	(8)	\square YES \boxtimes NO


```
CALCULATION
REFERENCE SHEET
    CALCULATION NO: IP-CALC-13-00062
REVISION: 1
I. EC Markups Incorporated (N/A to NP calculations)
1.
2.
3.
4.
5.
\begin{tabular}{|l|c|c|c|c|c|l|}
\hline II. Relationships: & Sht & Rev & \begin{tabular}{c} 
Input \\
Doc
\end{tabular} & \begin{tabular}{c} 
Output \\
Doc
\end{tabular} & \begin{tabular}{c} 
Impact \\
Y/N
\end{tabular} & \begin{tabular}{l} 
Tracking \\
No.
\end{tabular} \\
\hline 1. & & & \(\square\) & \(\square\) & & \\
\hline 2. & & & \(\square\) & \(\square\) & & \\
\hline 3. & & & \(\square\) & \(\square\) & & \\
\hline 4. & & & \(\square\) & \(\square\) & & \\
\hline 5. & & & \(\square\) & \(\square\) & & \\
\hline
\end{tabular}
III. CROSS REFERENCES:
1. ENN-DC-185, "Through-Wall Leaks in ASME Section XI Class 3 Moderate Energy Piping Systems"
2. EN-CS-S-008-MULTI Rev. 0, "Pipe Wail Thinning Structural Evaluation"
3. ASME Code Case N513-3
4. USAS B31.1, Power Piping Code, 1967 \& 1973
5. ASME B \& PV Code, Section XI, 2001 edition
6. CR-IP3-2013-04174
7. CR-IP3-2013-04416
8. UT report IP3-UT-13-058
9. VT report IP3-VT-13-021
```

IV. SOFTWARE USED:
\qquad Version/Release: \qquad Disk/CD No. \qquad
V. DISKJCDS INCLUDED:

Title: \qquad Version/Release \qquad Disk/CD No. \qquad
VI. OTHER CHANGES:

Revision.	Record of Revision \quad Initial issue.	
0		Revised cover page 1, through 5 based on VT report IP3-VT-13-021. Revised Attachment A, page 4 and 5.
1		

LIST OF EFFECTIVE PAGES

Page 4 of 7

Calculation Number: IP-CALC-13-00062
Revision Number: 1

PAGE REV. PAGE REV. PAGE REV.			
All	0		
1 to 5	1		
6,7	1		
Att. Ap.1 to 3	0		
Att. Ap.4,5	1		
Att Bp. 1 to 7	0		
Att Bp. 8,9	1		

TABLE OF CONTENTS
TopicPage No.
1 Calculation Cover Page 1
2 Calculation Reference Sheet 2
3 Record of Revisions 3
4 List of Effective Pages 4
5 Table of Contents 5
6 Calculation Section 6
6.1 Background 6
6.2 Purpose 6
6.3 Method of Analysis 6
6.4 Assumptions 6
6.5 Design Input 6
6.6 References 6
6.7 Calculation 6
6.8 Results/Conclusions 7
Attachment A: Calculation (5 pages)
Attachment B: Miscellaneous (9 pages)
Total number of pages: 23 pages

6.0 Calculation Section

6.1 Background

On October 3, a through wall weeping leak was identified and later determined not to be an active leak on the 10"1093 pipe in the Unit 3 moat in the transformer yard. An area was identified of missing metal of the pipe wall thickness approximately equals to $3 / 4^{\prime \prime} \times 3^{\prime \prime}$. The degraded pipe location is in the ISI code boundary.(See CR-IP3-2013-04174). There are two other areas approximately 20 feet away that show evidence of external corrosion. Structural operability evaluation is needed.
On October 29, after the removal of the support and coating on the pipe to facilitate the installation of a temporary repair clamp (EC-47124), the portion of the defect that is close to the bottom of pipe became more accessible. The length of the defect along the circumferential direction was found to be 8.25" (IP3-VT-13-021) instead of 4.75" (IP3-UT-13-058).

6.2 Purpose

The purpose of this calculation is twofold:

1. To determine the allowable through wall flaw length per ASME CC N-513-3. If the actual flaw including the leak is less than the allowable flaw length, then the pipe will be structurally adequate and operable.
2. To determine the minimum required pipe wall thickness per EN-CS-S-008-MULTI for the two areas that show external corrosion.
6.3 Method of analysis
3. The pipe is typically buried but is temporary supported every 8 feet. The pipe's bending stress is based on the 8 feet pipe span. The equivalent static method using the peak seismic acceleration from the ground response spectra is used in the determination of the pipe stress.
4. The pipe wall thickness around the $2^{\prime \prime}$ by $8.5^{\prime \prime}$ defect is based on $0.319^{\prime \prime}, 87.5 \%$ of the nominal pipe wall thickness basing on the UT and VT report. The lowest of the five UT readings is $0.378^{\prime \prime}$ and visually the pipe surface around the defective area is in good, un-corroded condition.
5. For the through wall indication location, the allowable flaw length in the circumferential and axial direction are determined per CC-N513-3.
6. The minimum pipe wall thickness is determined based on EN-CS-S-008-MULTI. The lowest UT thickness from the two externally corroded locations is compared to the minimum required pipe wall thickness and the remaining service life is determined.

6.4 Assumption

1. For the through wall indication location (area\#3), the adjusted wall thickness is the average value of the five UT readings around the defective area ($2.5^{\prime \prime}$ by $4.75^{\prime \prime}$), namely $0.382^{\prime \prime}$. The calculation conservatively uses $0.319^{\prime \prime}$. This value is judged to be conservative for the good, non-corroded metal surface around the newly found, lengthened defect area identified in the IP3-VT-13-00021.
2. For the average circumferential pipe wall thickness at the leak location area \#3, 80% of the pipe's nominal wall thickness is used. This is conservative because the wall thinning is externally induced by failed coating and is usually localized around the damaged coating location.

6.5 Design Input

1. Pipe Specification TS-MS-027
2. USAS B31.1, Power Piping Code, 1967 \& 1973
3. Drawing 9321-F-22363
4. UT report IP3-UT-13-058
5. VT report IP3-VT-13-021

6.6 Reference

1. EN-CS-S-008-MULTI Rev. 0, "Pipe Wall Thinning Structural Evaluation"
2. ASME Code Case N513-3
3. USAS B31.1, Power Piping Code, 1967 \& 1973
4. ASME B \& PV Code, Section XI, 2001 edition
5. CR-IP3-2013-04174
6. CR-IP3-2013-04416
7. UT report IP3-UT-13-058
8. VT report IP3-VT-13-021
9. EC 47127
6.7 Calculation

See Attachment A.

6.8 Conclusion

1. Based on CC-N513-3, with an adjusted pipe wall thickness of 0.319 ", the allowable thorough wall flaw length in the circumferential direction is $9^{\prime \prime}$, greater than the measured $8.25^{\prime \prime}$; the allowable thorough wall flaw length in the axial direction is $4.7^{\prime \prime}$, greater than the measured $2.5^{\prime \prime}$. The pipe is structurally adequate and operable. For 1.5 year of service until the outage, with an estimated average corrosion rate of 12 mils per year, the estimate flaw will be 2.54 " axially and $8.29^{\prime \prime}$ circumferentially.
2. The minimum pipe wall thickness per EN-CS-S-008-MULTI is $0.073^{\prime \prime}$, less than the UT measured lowest reading of $0.109^{\prime \prime}$ at area \#2 \& 3 . The remaining service life is 4.6 years unless if damaged coating is not repaired.
3. The original CR has identified occasional intermittent weepage at location area 1 at node point 4 on the weld. This has been identified as a pin hole leak with the entire area above the minimum wall thickness. This area is enveloped by the previous CCN5 13-3 evaluation for area 3.

Attachment A

\qquad of

$$
\begin{aligned}
& P=\text { design pressure }=150 \text {, } \mathrm{psi} \\
& \mathrm{D}=\text { outside diameter }=10.75 \text { in } \\
& t=\text { nominal wall thickness }=0.365 \text { in } \\
& S=\text { section modulus }=129.9, \text { in3 } \\
& \mathrm{L}=\text { pipe span }=\frac{1}{2} 8, \mathrm{ft}=\quad 96 \quad \text { in } \\
& w=\text { uniformn weight of pipe, water } \& \text { cement lining }=884.2, \mathrm{plf}= \\
& 7.017 \text { \#/inch }
\end{aligned}
$$

Conservatively consider the pipe as simple support
$\mathrm{Ma}=$ moment due to $\mathrm{DW}=\mathrm{wL}^{2} / 8=8083$ in- lb
$\mathrm{Ma} / \mathrm{S}=270 \mathrm{psi}$
For $P+D W$:
the leak section is at a straight pipe

$$
0.75 i=, \quad 10,4
$$

$\mathrm{PD} / 4 \mathrm{t}=1104 \mathrm{psi}$

$$
\mathrm{PD} /(4 \mathrm{t})+0.75 \mathrm{i}(\mathrm{Ma} / \mathrm{S})=1375 \quad \mathrm{psi}<\mathrm{Sh}=15000, \mathrm{psi}
$$

Using the peak G from DBE ground response spectra for 0.5% damping
MRM = multi modal response multiplier $=1+5,5$
$\mathrm{Gh}=$ horizontal seismic acceleration $=0.64, \mathrm{~K}^{0}$
$\mathrm{Gv}=$ vertical seismic acceleration $=0.4277^{2}$

$$
\mathrm{Gr}=\left[G h^{2}+G v^{2}\right]^{0.5}=0.769
$$

$\mathrm{MRM}(\mathrm{Gr})=1.154$
$\mathrm{Mb}=$ seismic moment $=\operatorname{MRM}(\mathrm{Gr})(\mathrm{Ma})=9326$ in- lb
$\mathrm{Ma}+\mathrm{Mb}=17409 \quad \mathrm{in}-\mathrm{lb}$
$\mathrm{PD} /(4 \mathrm{t})+0.75 \mathrm{i}(\mathrm{Ma}+\mathrm{Mb}) / \mathrm{S}=1687 \quad \mathrm{psi}<1.8 \mathrm{Sh}=\quad \quad .700 \mathrm{O} \mathrm{p} \mathrm{psi}$
For OBE
$\begin{aligned} \mathrm{MRM} & =\text { multi modal response multiplier }=7,15, \% \text {, } \\ \mathrm{Gh} & =\text { horizontal seismic acceleration }=0.427,4 \\ \mathrm{GV} & =\text { vertical seismic acceleration }=0.284,\end{aligned}$
$\mathrm{Gr}=\left[\mathrm{Gh}^{2}+G v^{2}\right]^{0.5}=0.513$
$\mathrm{MRM}(\mathrm{Gr})=0.769$
$\mathrm{Mb}=$ seismic moment $=\operatorname{MRM}(\mathrm{Gr})(\mathrm{Ma})=6217$ in- Hb
$\mathrm{Ma}+\mathrm{Mb}=14301 \quad \mathrm{in}-\mathrm{lb}$
$\mathrm{PD} /(4 \mathrm{t})+0.75 \mathrm{i}(\mathrm{Ma}+\mathrm{Mb}) / \mathrm{S}=1583 \mathrm{psi}<1.2 \mathrm{Sh}=\mathrm{p} \quad \mathrm{p} 000 \mathrm{psi}$

IP-CALC-13-00062 Rev. 0

1. Design Parameters

D_{0} : Outside Diameter, (in)
$t_{\text {nom }}$: Nominal Thickness, (in)
Material
P : Design Pressure, (psi)
T : Design Temperature. (${ }^{\circ} \mathrm{F}$)
S_{n} : Allowable Stress at Design Temperature, (psi) (See App. A of B31.1)
S_{A} : Thermal Expansion Allowable Stress, (psi)
A : An additional thickness per Section 104.1 of B31.1, (in)

2. Prediction of Min. Thickness at Next Inspection, $\boldsymbol{t}_{\mathbf{p}}$

$\mathrm{t}_{\text {meas }}$: Measured thickness of latest inspection, (in)
W_{r} : Wear Rate (in/yr)
Y : Service years between the latest and next inspections, (yr)
SF: Safety factor
Projected thermal cycles between the latest and next inspections
$t_{p}=t_{\text {meas }}-S F^{*} W_{r}^{*} Y$, (in)
$R_{d} / t_{\rho} \leq 50$, "OK"; or >50, "Buckling Evaluation Required"
$\mathrm{b}=$ estimate width of thinned section $=$
Based on clamp support at 4 edges, allowable buckling stress $=8.46 \mathrm{E}\left(\mathrm{t}_{\mathrm{p}} / \mathrm{b}\right)^{2}=$
Actual compressive stress $=\left[\mathrm{S}_{\text {nor }}-\mathrm{PD} /\left(4 \mathrm{t}_{\text {nom }}\right)\left(\mathrm{t}_{\text {nom }} / f_{\mathrm{p}}\right)(1 \mathrm{l} / \mathrm{i})\right.$
Actual compressive stress $=\left[\mathrm{S}_{\text {ups }}-\mathrm{PD} /\left(4 \mathrm{t}_{\text {nom }}\right)\left(\mathrm{t}_{\text {nom }} / \mathrm{t}_{\mathrm{p}}\right)\left(\mathrm{l}^{\prime} \mathrm{fi}\right)\right.$
Actual compressive stress $=\left[S_{\text {emg }}-P D /\left(4 t_{\text {nom }}\right)\right]\left(\mathrm{t}_{\text {nom }} / T_{p}\right)\left(I^{\prime} / i\right)$

Page \qquad of 5 (Boxed values are input)

10.75
0.365
A 53 Gr B
150
160
15000
22500
0

(1) lowest UT $\frac{0.109}{\frac{0.00711}{1.5}}$| $\frac{1.1}{80}$ |
| :---: |
| $R_{0} / t_{p}=$ |
| 0.0973 |
| Buckling Eval Req |
| 12.30 |

14760	psi $<S_{h}$
1014	psi, o.K.
1795	psi, o.k. $<1.2 \mathrm{~S}_{\mathrm{h}}=$
2185 psi, o.k. $<1.8 \mathrm{~S}_{\mathrm{h}}=$	18000
27000	

3. Screening Rules for Pipe Wall Thinning

Rule 1: Acceptance Standard $=0.875^{*} \mathrm{t}_{\text {nom }}$
Rule 2: Minimum Required Thickness
$0.3^{* *}{ }_{\text {nom }}$ for Class 1
(2). (3)
0.110
$0.2^{*} t_{\text {nom }}$ for Class 2 or 3 0.073

Rule 3: Between the above two limits, wall thinning can be accepted by a structural evaluation

Action required based on the above screening rules for the inspected thinned pipe

Class 1 piping

Replace or repair
Structural Evaluation Req'd

4. Structural Evaluation

a. Minimum Thickness for Hoon Stress :
$t_{\text {min }}=P^{*} D_{d}\left[2\left(S_{n}+.4^{*} P\right)\right]+A .(i n)$
0.054
b. Minimum Thickness for Axial Stress :
(4)

Is the thermal expansion stress required to be evaluated?	
(No for $t_{p} \geq 0.75^{*} t_{\text {nom }}$ and cycles ≤ 150; Yes for otherwise)	Yes
$K_{\text {Nor }}$: Allowable stress increase factor for Normal Condition	1.0
$K_{\text {lips }}$: Allowable stress increase factor for Upset Condition	1.2
$K_{\text {Emg }}$: Allowable stress increase factor for Emergency Condition	1.8
$Y:$ Allowable stress increase factor for $\mathrm{CC}-\mathrm{N}-597$	1.143

\qquad of 5

Original Piping Stresses

$\mathrm{S}_{\text {Nor }}$: Normal Condition Stress, (psi)
$\mathrm{S}_{\text {Ups }}$: Upset Condition Stress, (psi)
$\mathrm{S}_{\text {Emg }}$: Emergency Condition Stress, (psi)
$\mathrm{S}_{\text {The }}$: Thermal Expansion Stress, (psi)

1375
1583
1687
0

$$
\begin{aligned}
& \text { Let } t^{a} \min = \\
& i= \\
& i^{\prime}= \\
& i^{\prime} / i= \\
& \left.Z \prime Z^{\prime}=\left[D_{0}^{4}-\left(D_{0}-2 t_{\text {nom }}\right)^{4}\right] / D_{0}^{4}-\left(D_{0}-2 t^{a}{ }_{\text {min }}\right)^{4}\right]
\end{aligned}
$$

$$
0.029
$$

(5)
(6)

0.029
1.0
1.0
1.000
11.45

Allowable Stress - Axial Stress ≥ 0

Normal conditions:	$\gamma^{*} K_{\text {Nor }}{ }^{*} S_{n}-\left[P^{*} 0_{0} / 41^{\text {a }}{ }_{\text {min }}+\left(i^{\prime} / 1\right)^{*}\left(S_{\text {Nor }}-P^{*} \mathrm{D}_{0} / 4 \mathrm{t}_{\text {nom }}\right)^{*}\left(Z / Z^{\prime}\right)\right] \geq 0$	148
Upset conditions:		1195
Emergency conditions:	$\gamma * K_{\text {Emg }} * S_{n}-\left[P^{*} D_{0} / 4 t^{\text {a }}{ }_{\text {min }}+\left(i^{\prime} /\right)^{*}\left(S_{\text {Emg }}-P^{*} D_{d} / 4 \mathrm{t}_{\text {nom }}\right)^{*}(Z / Z)\right] \geq 0$	10291
Normal and Ther. Expa	sion conditions: $\gamma *\left(S^{n}+S_{A}\right)-\left[P^{*} D_{d} / 4 t_{\text {min }}^{\text {a }}+(i / 1 /)^{*}\left(S_{\text {Nor }}-P^{*} D_{0} / 44_{\text {nom }}+S_{\text {Tne }}\right)^{*}(Z / Z ')\right] \geq 0$	25865

c. Minimum Required Thickness

Class 1:	$\mathbf{r}_{\text {min }}=$ Max. [$t_{\text {min }} \mathrm{t}^{\mathbf{a}}$ min,$\left.~ 0.3{ }^{+} \mathrm{t}_{\text {nom }}\right]$. (in);	Acceptable if $t_{p} \geq \mathrm{t}_{\text {min }}$	0.110	No
Class 2 \& 3:	$\mathrm{t}_{\text {min }}^{\prime}=$ Max. [$\left.\mathrm{t}_{\text {min }} \mathrm{t}^{\mathrm{a}}{ }_{\text {min }} 0.2 \mathrm{t}_{\text {nom }}\right]$ (in)	Acceptable if $t_{P} \geq t^{\text {min }}$	0.073	Yes

5. Remaining Service Life (RSL)

$$
\begin{array}{lll}
\text { Class 1: } & \text { RSL }=\left[t_{\text {meas }}-t_{\text {min }}\right] /\left(\mathrm{SF}^{*} W_{r}\right),(\mathrm{yr}) & -0.1 \\
\text { Class } 2 \& 3: & R S L=\left[t_{\text {meas }}-t_{\text {min }}\right] /\left(S F^{*} W_{r}\right),(y r) & 4.6
\end{array}
$$

(1) The wear rate will be obtained from Responsible FAC Engineer or based on the Attachment 7.7.
(2) The acceptance standard ($0.875 t_{\text {nom }}$) can not be applied to:

1. Class 1 short radius elbows,
2. Reinforcement area of a tee or branch connection, and
3. For regions of piping designed to specific wall thickness requirements, such as counterbores or weld attachments.
(3) For the small end of reducers, the standard shall be based on the $t_{\text {nom }}$ of the pipe size at the small end. For the large end, the large end transition and the conical portion, it shall be based on the $t_{\text {nom }}$ of the pipe size at the larger end.
(4) The formula is applicable for straight pipes, bends, and elbows.

For reducers, $t_{\text {min }}$ at each end shall be equal to $t_{\text {min }}$ of straight pipe of the same nominal size as the reducer end.
For the conical portion and transition at larger end of reducers, $t_{\min }$ shall be that of the large diameter pipe end. For branch connections and tees, the reinforcement area of the opening shall be based on the B31.1 code.
(5) $\mathbf{t}_{\text {min }}$ can be obtained by the "Trial and Error" method until the "Allowable Stress - Axial Stress" due to Normal, Upset, Emergency, and combined Normal and Thermal Expansion conditions are all positive and one of them shall be close to zero.
(6) (i) can be calculated from Appendix D of ANSI 831.1. (i') needs to be adjusted for the pipe wall thinning. It is suggested that the average thickness or 2 times of the original value be used for the it calculation.

Page \qquad of \qquad
A. Pipe Parameters
$D_{o}=$ Pipe OD (in)

lowest of 4 readings is $0.378^{\prime \prime}$, used $0.875 \mathrm{t}_{\text {nom }}=$ cons. use $0.8 t_{\text {nom }}$	10.75
	0.319
	0.290
	0.365
	150
	90
	70
	27800
	0.3
7161.6	45
1104	15
	1.00
A B C	D

$\mathrm{t}_{\text {adi }}=$ Pipe wall thickness at flaw location (in)
$\mathrm{t}_{\mathrm{avo}}=$ average wall thickness of pipe circumference based on UT repor (in)
$\mathrm{t}_{\text {nom }}=$ nominal pipe wall thickness (in)
$\mathrm{p}_{\mathrm{d}}=$ Design Pressure (psi)
$p_{0}=$ Operational Pressure ($p s i$)
(< 275 psig)
$T=$ Metal Temperature at evaluation $\left({ }^{\circ} \mathrm{F}\right.$)
(<200 ${ }^{\circ}$ F)
$E=$ elastic modulus at T (ksi)
$\mathrm{v}=$ poison ratio
$J_{1 c}=$ material toughness (lb/in)
1104
$\mathrm{S}=$ allowable stress for pipe (ksi)

A	B	C	1.00
1.10	1.10	1.10	D
1.37	1.58	1.69	1.69
2.7	2.4	1.8	1.3
2.3	2.0	1.6	1.4

$i=S I F=$ stress intensification factor used in the stress analysis
Service Level
$\mathrm{P}_{\mathrm{a}} \mathrm{D}_{\mathrm{d}}\left(4 \mathrm{t}_{\text {nom }}\right)$ or from stress summary: Axial stress due to design pressure (ksi)
$\mathrm{s}=\mathrm{p}_{\mathrm{d}} \mathrm{D}_{\mathrm{d}} /\left(4 \mathrm{t}_{\text {nom }}\right)+(0.75 i) \sigma_{b}$: Piping Axial Stress (ksi, from stress output)
SF_{m} : Level $\mathrm{A}=2.7$; Level $\mathrm{B}=2.4$; Level $\mathrm{c}=1.8$; Level $\mathrm{D}=1.3$
[C-2621\& 2622]
SF_{b} : Level $\mathrm{A}=2.3$; Level $\mathrm{B}=2.0$; Level $\mathrm{C}=1.6$; Level $\mathrm{D}=1.4$
[C-2621]
2.3
$\mathrm{R}_{\mathrm{m}}=$ pipe mean radius $(\mathrm{in})=\left(\mathrm{D}_{\mathrm{o}}-\mathrm{t}\right) / 2$
$E^{\prime}=E\left(1-v^{2}\right)$
5.216
$K_{t c}=$ material critical stress intensity factor $\left.=J_{1 c}{ }^{*} E^{\prime} / 1000\right)^{0.5}\left(\mathrm{ksi}(\mathrm{in})^{0.5}\right)$
B. Evaluate as a planar flaw in axial direction
(Based on LEFM C-7400 \& N513-2, 1-3.0)

Service Level

$c=\ell / 2=$ Half axial flaw length (in)
$p=$ pressure for the service level condition
$\sigma_{\mathrm{n}}=\mathrm{p}^{\prime *} \mathrm{D}_{\mathrm{d}}(2 \mathrm{tt}) / 1000(\mathrm{ksi})$

, try " C " to make $K_{1 C}-K_{1}>=0.0$| | A | B | C |
| :---: | :---: | :---: | :---: |
| 3.21 | 2.35 | 2.96 | 3.82 |
| 90 | 150 | 150 | 150 |
| | 1.52 | 2.53 | 2.53 |

For through wall flaw, $a=c$:
$\lambda=C /\left(t R_{m}\right)^{0.5}$
$F=1+A \lambda+B \lambda^{2}+C \lambda^{3}+D \lambda^{4}+E \lambda^{5}$
Where $\quad A=0.0724 \quad B=0.6486$
$C=-0.2327$
$D=0.0382$
$K_{l c}-K_{l}=K_{l c}-K_{l m}=\left(S F_{m}\right) F \sigma_{h}(\pi c)^{0.5}$ $\left(\mathrm{ksi}(\mathrm{in})^{0.5}\right.$
flaw length "2c"
Allowable Axial Flaw Length $=$ Smaller "2c" of four service levels (in.) =
4.70
C. Evaluate as a planar flaw in circumferential direction

Service Level
(0.75i) >= 1.0
$\sigma_{0}^{\prime}=\left(s-p_{d} D_{d} /\left(4 t_{\text {nom }}\right) /(0.75 i)\right.$
(ksi)
$\sigma_{0}=\sigma_{\mathrm{b}}^{\prime}\left[\mathrm{D}_{0}{ }^{4}-\left(\mathrm{D}_{0}-2 t_{\mathrm{nom}}\right)^{4}\right] /\left[\mathrm{D}_{0}{ }^{4} \cdot\left(\mathrm{D}_{0}-2 \mathrm{t}_{\mathrm{ave}}\right)^{4}\right] \quad$ (ksi)
$p=$ pressure at the service level
$\sigma_{\mathrm{m}}=\mathrm{pD}_{\mathrm{o}} /\left(4 \mathrm{tave}_{\mathrm{ave}}\right)$: Axial stress due to service pressure (ksi)
$K_{\text {lc }}=$
For through wall flaw, based on $a=c$
c : Half circumferential flaw length
, try " $c^{\text {" }}$ to make $K_{i c}-K_{4}>0.0$
$\alpha=c /\left(\pi R_{m}\right)$
$r=R_{m} / t$

		0	1	2	3
$A_{m}=A_{m 0}+A_{m 1}{ }^{*} r+A_{m 2}{ }^{*} r^{2}+A_{m 3}{ }^{*} r^{3}$	$A_{\text {mi }}$	-2.0292	1.6776	-0.0799	0.0018
$B_{m}=B_{m 0}+B_{m 1}{ }^{*} r+B_{m 2}{ }^{*} r^{2}+B_{m 3}{ }^{*} r^{3}$	B_{mi}	7.0999	-4.4239	0.2104	-0.0046
$C_{m}=C_{m 0}+C_{m 1}{ }^{*} r+C_{m 2}{ }^{*} r^{2}+C_{m 3}{ }^{*} r^{3}$	$\mathrm{C}_{\text {mi }}$	7.7966	5.1668	-0.2458	0.0054
$A_{b}=A_{b 0}+A_{b 1}{ }^{*} r+A_{b 2}{ }^{*} r^{2}+A_{b 3}{ }^{*} r^{3}$	$A_{b l}$	-3.2654	1.5278	-0.0727	0.0016
$\mathrm{B}_{\mathrm{b}}=\mathrm{B}_{\mathrm{b}}+\mathrm{B}_{61}{ }^{*} r+\mathrm{B}_{\mathrm{b} 2} r^{2}+\mathrm{B}_{\mathrm{b} 3}{ }^{*} r^{3}$	B_{bl}	11.363	-3.9141	0.1862	-0.0041
$\mathrm{C}_{b}=\mathrm{C}_{60}+\mathrm{C}_{b 1}{ }^{*} \mathrm{r}+\mathrm{C}_{b 2}{ }^{*} \mathrm{r}^{2}+\mathrm{C}_{b 3}{ }^{*} \mathrm{r}^{3}$	C_{b}	-3.1861	3.8476	-0.1830	0.0040

$F_{m}=1+A_{m}{ }^{*} \alpha^{1.5}+B_{m}{ }^{*} \alpha^{2.5}+C_{m}{ }^{*} \alpha^{3.5}$
$F_{b}=1+A_{b}{ }^{*} \alpha^{1.5}+B_{b}{ }^{*} \alpha^{2.5}+C_{b}{ }^{*} \alpha^{3.5}$
$K_{l c}-K_{l}=K_{l c} \cdot\left[\left(S F_{m}\right)(\pi c)^{0.5}\left(\sigma_{m} F_{m}\right)+S F_{b}(\pi c)^{0.5}\left(\sigma_{b}{ }^{*} F_{b}\right)\right] \geq 0.0$
Flaw length (2c) =

A	B	C	D
1.00	1.00	1.00	1.00
0.27	0.48	0.58	0.58
0.334	0.590	0.718	0.718
90	150	150	150
0.83	1.39	1.39	1.39
37.1	37.1	37.1	37.1

Allowable Circumferential Crack Length $=$ Smaller " $2 c$ " of 4 service levels (in.) =

6.32	4.81	5.65	6.68
0.386	0.293	0.345	0.407
16.3	16.3	16.3	16.3
11.7	11.7	11.7	11.7
-29	-29	-29	-29
50.2	50.2	50.2	50.2
9.3	9.3	9.3	9.3
-21	-21	-21	-21
28.4	28.4	28.4	28.4
2.90	2.19	2.55	3.12
2.32	1.89	2.11	2.44
0.0	0.0	0.0	0.0
12.65	9.61	11.30	13.35

\qquad of 5
D. Determine the flaw length from the UT report using the adjusted wall thickness, $\mathrm{t}_{\text {adj }}$
$\mathrm{L}_{\text {axial }}=$ length of through wall flaw in the axial direction of the pipe (inch)
$L_{\text {circ }}=$ length of through wall flaw in the circumferential direction of the pipe (inch)
$2.5^{n}+1.5(2)(.012)=2.54$
$8.25^{\prime \prime}+1.5(2)(.012)=8.29$ < allow flaw, O.K
< allow flaw, O.K
E. Minimum remaining ligament thickness requirement [$\mathrm{N}-513-3,3.2(\mathrm{~d})$]
$t_{m / n}=P_{d} D_{0} /\left[2\left(S+.4^{*} P_{d}\right)\right]+A,(i n), A=0$
$d_{a d j}=1.5\left[R_{m} t_{\mathrm{adj}}\right]^{0.5}\left(\mathrm{t}_{\mathrm{adj}}-t_{\text {min }}\right) / t_{\text {min }} \quad$ (in)
Mininum remaining ligament thickness requirement $=0.353 d_{\mathrm{adj}}(P / S)^{0.5}(\mathrm{in})$
9.59 use 0.054

Minimum remaining ligament thickness is less than adjusted thickness used in Section A, O.K.

Entergy	CONDITION REPORT	CR-IP3-2013-04416

Attachment B

UT Erosion/Corrosion Examination

Entergy

Calibration Information				
Calibration Thickness (in)		Calibration Times / /ritials		
Acluat	Measured			
0.040"	0.500"	Start:	1418	REA
$0.100^{\prime \prime}$	N/A	Verity:	1425	REA
$0.200^{\prime \prime}$	N/A	Verify:	N/A	
$0.300^{\prime \prime}$	N/A	Verify:	1440	REA
0.400"	N/A	Final:	1455	REA

Instrument:

Manufacturer: $\frac{\text { Panametrics }}{}$| Model: |
| :--- |
| Serial No.: $\frac{37 \text {-DL Plus }}{031110106}$ |
| Gain: |
| Range: |$\frac{50 \mathrm{~dB}}{1.00^{\prime \prime}}$

Partitioning Information		
Component	Begin/Col/Row	Ending/ColRow
M. UPST Ext.	N/A	
Main UPST.	N/A	
Main	N/A	
Main DNST.	N/A	
M. DNST Ext.	N/A	
Branch	N/A	
Branch Ext.	N/A	

Transducer:	
Manufacturer:	Panametrics
Serial No.:	536066
Size. 0.283"	Freq.: 7.5 MHz
Model:	D798
\# of Elements:	Dual

Comments/Obstructions. The coating was removed and the pipe prepped prior to this exam.
Results: Accept $\square \quad$ Reject $\boldsymbol{V} \quad$ Info $\square \quad$ Tmin $=87.5 \%$ Nominal Thickness. Reference CR-IP3-2013-04174

Supplemental Report

Entergy

Report No: IP3-UT-13-058
Page: \qquad of $\quad 7$

Date:
Date: $\angle 3 / 7 \lll<$ Date: \qquad

Comments: Photo left below of Area 1, North end of the pipe in the moat. Photo right below showing the UTT locations.

Sketch or Photo: HCliently \$Vddeal Ver 8Uddeal_ServerVDDEAL_IP3IGraphics-PicturesIService Waterl10 Line 1093 area 1a.jpg

\|IClientIY\$\ddeal Ver 8 IVddeal_ServerVIDDEAL_IP3IGraphics-PicturesIService Waterl10 Line 1093 area 1b.jpg

Entergy

Report No.: IP3-UT-13-058
Page: $\quad 3$ of 7
Summary No.: 10" Line \# 1093

Other: N/A
Level: III EOI
Level: N/A
Level: N/A

Date: \qquad Date: 4 Date: \qquad

Comments Area 1 UTT readings.

Sketch or Photo: HClientIYSUIddeal Ver 8Uddeal_ServerVDDEAL_IP3IGraphics-PicturesIService Water110 in Line 1093 Area 1.TIF

Supplemental Report

Entergy

Comments: Photo left below of Area 2, North end of the pipe in the moat just South of Area 1. Photo right below showing the UTT locations.

Sketch or Photo: IIClientIY\$VIddeal Ver 8ilddeal_ServerVDDEAL_IP3IGraphics-PicturesIService Waterl10 Line 1093 area 2a..jpg

IIClientIY\$Uiddeal Ver 8Vddeal ServerIIDDEAL_IP3|Graphics-PIcturesiservice Waterl10 Line 1093 area 2b.jpg

Supplemental Report

Entergy

Report No.: IP3-UT-13-058
Page: 5 of 7

Comments: Area 2 UTT readings.

Shetch or Photo: VClientY\$\Iddeal Ver 8ilddeal_ServervidDEAL_IP3IGraphics-PicturesiService Waterl10 in Line 1093 Area 2.TIF

Supplemental Report

Entergy

Report No:: IP3-UT-13-058
Page: \qquad of 7

Comments. Photo left below of area 3, mid span of the pipe in the moat South of areas $1 \& 2$. Line 1 and line 2 are the locations where pit gage readings were taken $1 / 4^{\prime \prime}$ apart across the area of thinning. Photo right below showing the pit gage at maximum depth of $3 / 8^{\prime \prime}$

Skeich or Photo \|ClientIYSUddeal Ver 8Vddeal ServerVDDEAL_IP3IGraphics-PicturesIService Waterl10 Line 1093 area 3a.jpg

UClientIYSUIddeal Ver 8ilddeal_ServerIIDDEAL_IP31Graphics-PicturesIService Water110 Line 1093 area 3b.jpg

Entergy

Page: \qquad 7 of 7

Date:
\qquad
\qquad Date Date: \qquad

Comments: Area 3 UTT and pit gage readings.

Sketch or Photo: IIClientIY\$Uddeal Ver 8UIddeal_ServerIIDDEAL_IP3IGraphics-PicturesIService Watert10 in Line 1093 Area 3.TIF

