
ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT FOR 1986

SAN ONOFRE NUCLEAR GENERATING STATION UNITS 1, 2, & 3

Southern California Edison Company San Diego Gas and Electric Company

Docket Nos. 50-206, 50-361, 50-362 License Nos. DPR-13, NPF-10, NPF-15

8705040264 86123 PDR ADUCK 05000

00204

April 30, 1987

TABLE OF CONTENTS

<u>Page</u>
i .
. iii
. iv
. 1
3
5
6
9
11
12
14
16
17
17
21
25
26
28
• • • •

TABLE OF CONTENTS (Cont.)

			Page
۷.	APP	ENDICES	,
	Α.	Sample Type and Sampling Location	A-1
	Β.	Summary of 1986 Radiological Environmental Data	B-1
	C.	Summary of Interlaboratory Comparisons	C-1
	D.	Measurements Exceeding Investigation Levels	D-1
	Ε.	Historical Trending	E-1
	F.	Comparison of Operational with Preoperational Data	F-1 .
	G.	Deviations from Technical Specification Sampling Requirements	G-1
	Η.	Land Use Census	H-1
	I.	Radiological Environmental (Raw) Data Tables for 1986	I-1
	J.	Figures	J-1

11

LIST OF TABLES

Table <u>Number</u>		<u>Page</u>
II-1	1986 Weekly Radioiodine in Air, SONGS Units 1, 2, and 3	7
II-2	Concentrations of Radionuclides Detected in Shoreline Sediment (Sand) in 1986	15
II-3	Concentrations of Radionuclides Detected in Ocean Bottom Sediments in 1986	27
A-1	Radiological Environmental Monitoring Sample Locations	A-1
A-2	Pic-Radiological Environmental Monitoring Locations – SONGS 2/3	A-7
A-3	Sector and Direction Designation for Radiological Environmental Monitoring Sample Location Map	A-8
l thru	15 Summary of 1986 Radiological Environmental Data	B-1 to B-65
E1	Concentrations of Radionuclides Detected in Soil, 1981 - 1986	E-2
E-2	Concentrations of Radionuclides Detected in Sand, 1981 - 1986	E-4
E-3	Gross Beta Activity Detected in Air, 1981 - 1986	E6
E-4	Concentrations of Radionuclides Detected in Local Crops, 1981 – 1986	E-9
E-5	Concentrations of Radionuclides Detected in Kelp, 1981 - 1986	E-13
E-6	Concentrations of Radionuclides Detected in Ocean Bottom Sediments, 1981 - 1986	E-15
F-1	Marine Species (Flesh) Preoperational and Operational Data, SONGS Units 2 and 3	F-11
F-2	Shoreline Sediment (Sand) Preoperational and Operational Data, SONGS Units 2 and 3	F-17
F-3	Kelp Preoperational and Operational Data, SONGS Units 2 and 3	F–18
H -1	Camp Pendleton Residential Land Uses	H-8
1 thru	15 Radiological Environmental (Raw) Data Tables for 1986	I-1 to
	in the second	I-48

LIST OF FIGURES

	<u>Numb</u>		<u>Page</u>
	A-1	Radiological Environmental Monitoring Sample Location	A-9
	A-2	Radiological Environmental Monitoring Sample Location	A-10
	A-3	Radiological Environmental Monitoring Sample Location	A-11
	H-1	SONGS Land Use Census Study Area	H-2
	1.	Monthly Average Airborne Particulates Gross Beta Activity SONGS Units 1, 2, and 3 for 1986 (Control, San Clemente)	J-1
	2.	Monthly Average Airborne Particulates Gross Beta Activity SONGS Units 1, 2, and 3 for 1986 (Control, Camp San Onofre)	J-2
	3.	Monthly Average Airborne Particulates Gross Beta Activity SONGS Units 1, 2, and 3 for 1986 (Control, MESA E.O.F.)	J-3
	4.	Monthly Average Iodine-131 in Air for 1986 SONGS Units 1, 2, and 3 (Control, San Clemente)	J-4
	5.	Monthly Average Iodine-131 in Air for 1986 SONGS Units 1, 2, and 3 (Control, Camp San Onofre)	J-5
	6.	Monthly Average Iodine-131 in Air for 1986 SONGS Units 1, 2, and 3 (Control, MESA E.O.F.)	J-6
	7.	Cobalt-58 in Flesh of Sheephead, Unit 1 vs. Control	J-7
	8.	Cobalt-60 in Flesh of Sheephead, Unit 1 vs. Control	J-8
	9.	Cesium-137 in Flesh of Sheephead, Unit 1 vs. Control	J-9
<i>.</i>	10.	Cobalt-58 in Flesh of Crustacea, Unit 1 vs. Control	J-10
	11.	Cobalt-60 in Flesh of Crustacea, Unit 1 vs. Control	J-11
	12.	Cesium-137 in Flesh of Crustacea, Unit 1 vs. Control	J-12
	13.	Cobalt-58 in Flesh of Mollusks, Unit 1 vs. Control	J-13
	14.	Cobalt-60 in Flesh of Mollusks, Unit 1 vs. Control	J-14
	15.	Cesium-137 in Flesh of Mollusks, Unit 1 vs. Control	J-15
	16.	Cobalt-58 in Ocean Bottom Sediments, SONGS Unit 1 vs. Control	J-16

LIST OF FIGURES (Continued)

Figu <u>Numb</u>		<u>Page</u>
17.	Cobalt-60 in Ocean Bottom Sediments, SONGS Unit 1 vs. Control	J-17
18.	Silver-110m in Ocean Bottom Sediments, SONGS Unit 1 vs. Control	J-18
19.	Cesium-137 in Ocean Bottom Sediments, SONGS Unit 1 vs. Control	J-19
20.	Direct Radiation Monitoring, Preoperational and Operational Data (San Clemente, Route 101-ESE)	J-20
21.	Direct Radiation Monitoring, Preoperational and Operational Data (Visitors Center, Switchyard)	J-21
22.	Direct Radiation Monitoring, Preoperational and Operational Data (Basilone Rd., Bluff)	J-22
23.	Airborne Particulates Gross Beta Activity, Preoperational and Operational Data for SONGS Units 1, 2, and 3 (San Clemente, Control)	J-23
24.	Airborne Particulates Gross Beta Activity, Preoperational and Operational Data for SONGS Units 1, 2, and 3 (Camp San Onofre, Control)	J-24

INTRODUCTION I.

San Onofre Nuclear Generating Station (SONGS) consists of three pressurized water nuclear reactors housed in separate containment buildings. Unit 1 attained initial criticality June 1967, and operated until February 1982 when it was shut down for seismic modifications. The unit was brought back into service during December 1984. Unit 2 and Unit 3 attained initial criticality in July 1982 and August 1983, respectively, and have been in operation since then.

To monitor the operations of SONGS Units 1, 2 and 3, and to fulfill the requirements of the SONGS Technical Specifications, an operational Radiological Environmental Monitoring Program (REMP) was conducted at SONGS during 1986. This program was designed to quantify ambient radiation levels in the environs of SONGS, and to identify and quantify concentrations of radioactivity in various environmental media in the vicinity of SONGS which have a potential exposure pathway to man. Thermoluminescent dosimeters (TLD's) were used to measure direct radiation levels. Sampled environmental media included the following: soil, shoreline sediment (beach sand), air, local crops, non-migratory marine species, kelp, drinking water, ocean water, and ocean bottom sediments. Each of the samples were analyzed for both naturally occurring and SONGS-related radionuclides.

The Program

In its operational phase, the REMP was conducted in accordance with Sections 3.18 and 4.18 of the SONGS Unit 1 Technical Specifications, and Section 3/4.12 of the SONGS Units 2 and 3 Technical Specifications.

Objectives

The objectives of the operational REMP are:

- 1. To fulfill the obligation for radiological surveillance required by Technical Specifications.
- To determine whether there is any significant increase in the 2. concentration of radionuclides in critical pathways.
- 3. To detect any significant change in ambient gamma radiation levels.
- 4. To verify that the operation of SONGS Units 1, 2 and 3 have no assessable detrimental effects on the health and safety of the public or the environment.

Sample Collection

Samples of various environmental media were obtained in order to meet the stated objectives. The selection of sample types was based on established critical pathways for the transfer of radionuclides through the environment to man, experience gained during the preoperational phase, and the evaluation of data during the operational phase. Sampling locations were determined with consideration given to site meteorology, local demographs, and land uses. 2

Sampling locations were divided into two classes -- indicator and control. Indicator locations were those expected to manifest effects of SONGS operations. Control stations were at locations considered to be unaffected by SONGS operations.

<u>Sample Analysis</u>

Environmental samples were collected at different locations (listed in Appendix A) in the vicinity of SONGS, and then submitted to a contracted radiological laboratory. Each sample was analyzed using standard chemical procedures. The results of the analyses are summarized in Appendix B, and presented in Appendix I by sample type and analysis. The tabulated means, ranges and standard deviations presented in Appendix B were calculated using standard statistical methods according to the format specified in USNRC Regulatory Guide 4.8 (1975).

To assure quality of sample analyses, a portion of the REMP was devoted to quality control. The main aspects of this part of the program included process quality control, instrument quality control, comprehensive data reviews, and EPA inter-laboratory cross-check analyses. The results of the EPA cross-check analyses are presented in Appendix C.

The impact of SONGS on the surrounding environment was assessed through a series of analyses. These analyses included: (1) comparison of data between indicator and control locations for each sample type, (2) identification of radionuclide concentrations exceeding investigation levels, (3) historical trending of radionuclide concentrations in sampled environmental media over a period of several years, and (4) comparison of operational to preoperational environmental data. Summaries and comparison of indicator to control locations are presented in Section II (page 3) of the report. Other data comparisons are presented in the Appendices.

II. RESULTS AND DISCUSSIONS OF 1986 ENVIRONMENTAL DATA of Administration

A. Direct Radiation

The purpose of this program element was to measure the amount of environmental gamma and beta radiation in the vicinity of SONGS. To accomplish this task, calcium sulfate ($CaSO_4$:Dy) and lithium fluoride (LiF) thermoluminescent dosimeters (TLDs) were placed at each of 67 indicator and control locations, collected, and analyzed at prescribed intervals. The control location was situated in Huntington Beach. The calcium sulfate TLDs were collected quarterly and were replaced with re-zeroed dosimeters, while the lithium fluoride dosimeters were collected after an exposure time of one year (i.e., at the end of 1986). 3

A total of 268 calcium sulfate TLDs and 66 lithium fluoride TLDs were collected and analyzed throughout the year. Due to an instrument malfunction during the reading of the third quarter TLDs, the results for location numbers 1 through 31 were invalid, and are not included in the summary description of the results (below) for the year. (See Appendix A for the corresponding locations.) In an effort to prevent this situation from occurring again, the contract laboratory implemented a new TLD analysis procedure.

Specifically, a technician at the contract laboratory noticed a declining signal from the TLD reader and stopped the reading of the TLDs before reading the TLD for location 32. Standards were run again and the results verified that the instrument was failing. A new reader was then calibrated and was used for the remainder of the TLD readings, starting with TLDs from location 32. In an effort to prevent this from recurring, the contract laboratory has implemented a new procedure wherein only half of the TLDs are read initially, leaving half of the TLDs for backup.

The measured doses were corrected for pre- and postfield exposure times. During the course of the year, the quarterly doses measured at the indicator locations ranged from 9.2 to 35.4 mrem, averaging 19.0 mrem. San Onofre State Beach (location No. 55) had the highest TLD readings for the four quarters. The doses at this location ranged from 23.0 to 26.7 mrem, averaging 24.8 mrem. The quarterly doses measured at the control location, on the other hand, ranged from 21.2 to 22.7 mrem, averaging 21.9 mrem.

The annual direct radiation doses ranged from 41.1 to 123.3 mrem, averaging 86.5 mrem. The dose measured at the control location was 97.3 mrem.

Quarterly doses measured at indicator locations were investigated if they were greater than doses measured at the control location by 25 percent. Because of invalid data for the third quarter for location Nos. 1 through 31, the dose for the control location for the third quarter was set equal to the yearly average dose for the control location (derived from the first, second, and fourth quarter data) -- or 21.9 mrem. Using this criterion, it was determined that there were two quarterly doses that exceeded preliminary investigation levels. A 35.4 mrem dose was measured at the Site Boundary (location No. 13) during the fourth quarter. Also during the fourth quarter, a dose of 30.4 mrem dose was measured at the East Site Boundary (location No. 16).

Only one annual dose, namely that measured at Unit 1 (location 55) exceeded 1.25 times the control. The dose measured at this location was 123.3 mrem.

Because virtually all the measured doses at locations near SONGS were considered comparable to the direct radiation dose measured at Huntington Beach, it was concluded that SONGS operations had a detectable, but negligible impact on this environmental medium.

Airborne Particulate Analysis

Air particulate samples were collected on a weekly basis from eight indicator locations and a control station in Huntington Beach. After collection, the samples were analyzed for gross beta activity with a lower limit of detection of 0.003 pCi/m3 of air. Samples were also composited quarterly and analyzed for 11 naturally-occurring and Station-related radionuclides by gamma spectral analysis, radiostrontium by beta counting, and gross alpha radioactivity by alpha counting. 5

Gross beta activity was detected in each weekly airborne particulate sample collected in 1986. The concentrations of gross beta activity in the samples collected from the indicator locations ranged from .003 to .89 pCi/m3, with an average concentration of .047 pCi/m3 of air. The concentration of gross beta activity in the samples from Huntington Beach ranged from 0.010 to 0.72 pCi/m3, averaging .046 pCi/m3 of air. See Figures 1, 2, and 3 for 1986 monthly average airborne particulates gross beta activity for selected locations.

Beryllium-7 was the only gamma-emitting radionuclide detected in each quarterly composite airborne particulate sample from <u>both</u> indicator and control locations. The concentration of beryllium-7 in the samples from the indicator locations ranged from 0.061 to 0.130 pCi/m3, with an average concentration of 0.088 pCi/m3 of air. The concentrations of beryllium-7 in the samples collected from the control location ranged from 0.069 to 0.106 pCi/m3, averaging 0.088 pCi/m3 of sample.

Other than beryllium-7, cesium-134 and cesium-137 were the only other gamma-emitters detected in any of the quarterly composite samples. These radionuclides were seen in composite samples collected from Huntington Beach during the last two quarters of 1986. The concentrations of cesium-134 in the composite samples for the third and fourth quarters were determined to be 0.008 and 0.002 pCi/m3, respectively. The concentrations of cesium-137 in the composite samples for the third and fourth quarters were 0.021 and 0.005 pCi/m3, respectively.

When the quarterly composite samples were analyzed for strontium-90 and gross alpha radioactivity, no strontium-90 was detected in any of the composite samples. Gross alpha radioactivity, however, was detected in each composite sample from the first and third quarter, 6 composite samples from the second quarter (i.e., 5 from indicator locations, and one from Huntington Beach), and one composite sample from the fourth quarter (i.e., from the Northeast Site Boundary). The concentrations of gross alpha radioactivity in the samples from the indicator locations ranged from non-detectable to 0.005 pCi/m3, averaging of 0.002 pCi/m3 of air. The concentrations of gross alpha radioactivity in the samples from the control location were comparable, ranging from non-detectable to 0.002 pCi/m3, averaging 0.002 pCi/m3 of air.

Β.

Since the radioactivity seen in samples collected from the indicator locations was commensurate to the radioactivity found in samples collected from the control location, the impact of SONGS operations on this environmental medium is considered to be negligible. In addition, significant increase in gross beta activity in May and into June 1986 can be attributed to the Chernobyl nuclear power plant accident that occurred in April 1986 in Russia.

Radioiodine in Air

In 1986, weekly air radioiodine (i.e., iodine-131) samples were collected by adsorption on charcoal cartridges from eight locations in the vicinity of SONGS (which served as indicator locations), and from Huntington Beach (which served as a control location). By the end of 1986, a total of 461 air cartridges had been analyzed for their iodine-131 content.

Iodine-131 was above detection limits in 36 of the 461 samples analyzed during 1986. See Table II-1 for a listing of radioiodine detected in the weekly air samples. The lower limit of detection of I-131 in these samples was 0.04 pCi/m3. More specifically, iodine-131 was seen in one air sample collected during March 18 through March 25 from the State Beach Park. The concentration of iodine-131 in this sample was 0.07 pCi/m3. Iodine was also found in 35 air samples collected from May 6 through June 3, 1986. During this time span, the concentrations of iodine-131 in the samples collected from the indicator locations ranged from 0.06 to 1.49 pCi/m3, averaging 0.328 pCi/m3. The concentrations of iodine-131 in the samples collected from the control location ranged from 0.12 to 0.74 pCi/m3, averaging 0.438 pCi/m3. See Figures 4, 5, and 6 for plots of radioiodine in air in 1986 for the City of San Clemente, Camp San Onofre, and the Mesa E.O.F.

The concentration of iodine-131 seen in the sample collected from the State Beach Park was greater than that seen at the control location, but did not exceed preliminary investigation levels (i.e., of twice the lower limit of detection of iodine-131 at the control location), and was less than ten percent of Technical Specification limits. The levels of radioiodine found in samples from both indicator and control locations during May and early June 1986 came close to exceeding, or actually did exceed the Nuclear Regulatory Commission reporting level of 0.9 pCi/m³.

Most of the levels measured in samples collected from the indicator locations did not exceed preliminary investigation levels (i.e., twice the level measured at the control location) established by Edison. Due to the observed concurrent rise at the control locations, it appears that the radiation levels seen at the indicator and control locations were attributable to a source other than San Onofre. The most likely source of this activity is fallout from the Chernobyl nuclear power plant accident that occurred on April 26, 1986. This conclusion is also reasonable considering that radioiodine levels were, with one exception, below detection limits throughout 1986 in air samples collected near SONGS. Because the activity was not attributed to SONGS operations, a special report was not submitted to the Nuclear Regulatory Commission.

С.

TABLE II-1

7

	· · · ·	Location**					· · ·			
<u>Date</u>	1	2	3	4	5	6	9_	10	11	12
1/7	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>< L<u>i</u>LD</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>< L<u>i</u>LD</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>< L<u>i</u>LD</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>< L<u>i</u>LD</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>< L<u>i</u>LD</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	< L <u>i</u> LD	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
1/14	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
1/21	<lld< td=""><td><lld< td=""><td>< LLD</td><td><pre><lld< pre=""></lld<></pre></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>< LLD</td><td><pre><lld< pre=""></lld<></pre></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	< LLD	<pre><lld< pre=""></lld<></pre>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
1/28	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
2/4	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
2/11	<lld< td=""><td><lld< td=""><td><lld< td=""><td>< LLD</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>< LLD</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>< LLD</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	< LLD	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
2/18	<lld< td=""><td><lld -<="" td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld></td></lld<>	<lld -<="" td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
2/25	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3/4	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>< LLD</td><td><pre>LLD</pre></td><td><pre>LLD</pre></td><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>< LLD</td><td><pre>LLD</pre></td><td><pre>LLD</pre></td><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>< LLD</td><td><pre>LLD</pre></td><td><pre>LLD</pre></td><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>< LLD</td><td><pre>LLD</pre></td><td><pre>LLD</pre></td><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>< LLD</td><td><pre>LLD</pre></td><td><pre>LLD</pre></td><td><lld< td=""><td></td></lld<></td></lld<>	< LLD	<pre>LLD</pre>	<pre>LLD</pre>	<lld< td=""><td></td></lld<>	
3/11	<pre>LLD</pre>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
3/18	<lld< td=""><td><lld< td=""><td>< LLD</td><td>KLLD</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>< LLD</td><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>< LLD</td><td>KLLD</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>< LLD</td><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	< LLD	KLLD	<lld< td=""><td><lld< td=""><td><lld< td=""><td>< LLD</td><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>< LLD</td><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>< LLD</td><td><lld< td=""><td></td></lld<></td></lld<>	< LLD	<lld< td=""><td></td></lld<>	
3/25	<lld< td=""><td><lld< td=""><td>< LLD</td><td><lld< td=""><td><lld< td=""><td>< LLD</td><td>0.07</td><td><lld< td=""><td>< LLD</td><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>< LLD</td><td><lld< td=""><td><lld< td=""><td>< LLD</td><td>0.07</td><td><lld< td=""><td>< LLD</td><td></td></lld<></td></lld<></td></lld<></td></lld<>	< LLD	<lld< td=""><td><lld< td=""><td>< LLD</td><td>0.07</td><td><lld< td=""><td>< LLD</td><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>< LLD</td><td>0.07</td><td><lld< td=""><td>< LLD</td><td></td></lld<></td></lld<>	< LLD	0.07	<lld< td=""><td>< LLD</td><td></td></lld<>	< LLD	
4/1	<lld< td=""><td><lld< td=""><td>< LLD</td><td></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>< LLD</td><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>< LLD</td><td></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>< LLD</td><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	< LLD		<lld< td=""><td><lld< td=""><td><lld< td=""><td>< LLD</td><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>< LLD</td><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>< LLD</td><td><lld< td=""><td></td></lld<></td></lld<>	< LLD	<lld< td=""><td></td></lld<>	
4/8	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>		<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
4/15	<lld< td=""><td><pre>KLLD</pre></td><td><lld< td=""><td>· .</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<pre>KLLD</pre>	<lld< td=""><td>· .</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	· .	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
4/22	<lld< td=""><td><lld td="" ·<=""><td><lld< td=""><td>- · ·</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld .<="" td=""><td><lld< td=""><td><pre>LLD</pre></td></lld<></td></lld></td></lld<></td></lld<></td></lld<></td></lld<></td></lld></td></lld<>	<lld td="" ·<=""><td><lld< td=""><td>- · ·</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld .<="" td=""><td><lld< td=""><td><pre>LLD</pre></td></lld<></td></lld></td></lld<></td></lld<></td></lld<></td></lld<></td></lld>	<lld< td=""><td>- · ·</td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld .<="" td=""><td><lld< td=""><td><pre>LLD</pre></td></lld<></td></lld></td></lld<></td></lld<></td></lld<></td></lld<>	- · ·	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld .<="" td=""><td><lld< td=""><td><pre>LLD</pre></td></lld<></td></lld></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld .<="" td=""><td><lld< td=""><td><pre>LLD</pre></td></lld<></td></lld></td></lld<></td></lld<>	<lld< td=""><td><lld .<="" td=""><td><lld< td=""><td><pre>LLD</pre></td></lld<></td></lld></td></lld<>	<lld .<="" td=""><td><lld< td=""><td><pre>LLD</pre></td></lld<></td></lld>	<lld< td=""><td><pre>LLD</pre></td></lld<>	<pre>LLD</pre>
4/29	<lld< td=""><td><pre>kLLD -</pre></td><td>< LLD</td><td></td><td><lld<sup>-</lld<sup></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<pre>kLLD -</pre>	< LLD		<lld<sup>-</lld<sup>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
5/6 ,	<lld< td=""><td><lld .<="" td=""><td><lld< td=""><td></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld></td></lld<>	<lld .<="" td=""><td><lld< td=""><td></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld>	<lld< td=""><td></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>		<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
5/13	0.91	0.15	0.74		0.34	0.51	0.19	0.07	0.07	0.20
5/20	0.41	1.03	0.62	1	1.49	0.61	0.34	0.35	0.47	0.55
5/27	0.11	0.39	0.27		0.13	0.30	0.12	0.44	0.09	0.27
6/3	0.08	0.09	0.12		0.06	<lld< td=""><td>0.10</td><td>0.12</td><td>0.09</td><td>0.09</td></lld<>	0.10	0.12	0.09	0.09
6/10	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td><lld< td=""><td><lld -<="" td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td><td><lld< td=""><td><lld -<="" td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld></td></lld<></td></lld<></td></lld<>	<lld< td=""><td></td><td><lld< td=""><td><lld -<="" td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld></td></lld<></td></lld<>		<lld< td=""><td><lld -<="" td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld></td></lld<>	<lld -<="" td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
6/17	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>		<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
6/24	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>		<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>

1986 WEEKLY RADIOIODINE IN AIR* SONGS UNITS 1, 2, AND 3

Note:

* Concentrations listed are in units of pCi/m^3 <LLD - less than the lower limit of detection (0.04 pCi/m^3) ** Location 1 - City of San Clemente; location 2 - Camp San Onofre;

location 3 - Huntington Beach; location 5 - Units 2/3 Switchyard; location 6 - SONGS Meteorological Tower; location 9 - State Beach Park;

location 10 - Bluff; location 11 - Mesa E.O.F.; location 12 - SONGS Evaporation Pond

TABLE II-1 (Continued)

· · · · · · · · · · · · · · · · · · ·	· .					1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			· ·	
		•			Locatio	n**				,
<u>Date</u>		2	3	4	5	6	9	10	11	12
7/1 7/8 7/15 7/22 7/29 8/5 8/12 8/19 8/26 9/2 9/9 9/16 9/23 9/30 10/7 10/14 10/21 10/28 11/4 11/11 10/28 11/4 11/11 11/18 11/25 12/2 12/9 12/16 12/23	<lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td></td><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld 	<lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td></td><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld 	<lld <lld <lld <lld <lld <lld <lld <lld< td=""><td></td><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld 		<lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld 	<lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld 	<lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld 	<lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld 	<lld <lld <lld <lld <lld <lld <lld <lld< td=""><td><lld <lld <lld <lld <lld <lld <lld <lld< td=""></lld<></lld </lld </lld </lld </lld </lld </lld </td></lld<></lld </lld </lld </lld </lld </lld </lld 	<lld <lld <lld <lld <lld <lld <lld <lld< td=""></lld<></lld </lld </lld </lld </lld </lld </lld
12/30	<lld< td=""><td><lld< td=""><td><lld< td=""><td></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td></td><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>		<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Total # Samples Average	1.510 51 0.030	1.660 52 0.032	1.750 52 0.034	0.000 12 0.000	2.020 52 0.039	1.420 52 0.027	0.820 52 0.016	0.980 50 0.020	0.720 51 0.014	1.110 37 0.030

1986 WEEKLY RADIOIODINE IN AIR* SONGS UNITS 1, 2, AND 3

Note:

 Concentrations listed are in units of pCi/m³
 <LLD - less than the lower limit of detection (0.04 pCi/m³)
 Location 1 - City of San Clemente; location 2 - Camp San Onofre; location 3 - Huntington Beach; location 5 - Units 2/3 Switchyard; location 6 - SONGS Meteorological Tower; location 9 - State Beach Park; location 10 - Bluff; location 11 - Mesa E.O.F.; location 12 - SONGS Evaporation Pond 8

Drinking Water

In 1986, drinking water samples were collected on a monthly basis from two indicator locations and from a control location situated in Huntington Beach. Upon collection, the samples were analyzed for tritium as well as for 12 naturally-occurring and SONGS-related radionuclides. Afterwards, the samples were filtered so that the suspended solids and filtrate could be analyzed separately for gross alpha and gross beta activity. Samples from each location were also composited quarterly, and filtered in the same manner. In each instance, the suspended solids were analyzed for gross beta concentrations, and the filtrates were analyzed for gross beta activity and for tritium. g

Part A. Monthly Drinking Water Results

Unfiltered Samples

No gamma-emitting radionuclides or tritium were detected in any of the samples.

Drinking Water Solids

Gross alpha activity was not detected in the suspended solids from the Tri-Cities Municipal Water District Reservoir samples, but was found in the solid residue of 10 samples collected from the San Clemente Golf Course. Gross alpha activity in the samples ranged from 0.5 to 3.3 pCi/l, averaging 1.4 pCi/l. Gross alpha activity was also detected in one sample collected from the control location. The concentration of gross alpha activity in this sample was 0.2 pCi/l.

Gross beta activity was found in suspended solids from each sampling location. Gross beta activity was seen in solids of 22 out of 24 samples collected from the Tri-Cities Municipal Water District Reservoir and the San Clemente Golf Course. Gross beta activity in these samples ranged from 0.3 to 28 pCi/l of water, averaging 3.3 pCi/l of water. Gross beta activity was also seen in the solids of six samples collected from Huntington Beach. Gross beta activity in these samples ranged from 0.2 to 0.4 pCi/l of water, averaging .28 pCi/l of water.

Drinking Water Filtrate

Gross alpha activity was not found in any of the samples collected from Tri-Cities Municipal Water District Reservoir or from Huntington Beach. Gross alpha activity was detected, however, in two samples collected from the San Clemente Golf Course Well during the months of June and July. Gross alpha activity in these samples was determined to be 6 and 10 pCi/l, respectively.

Gross beta activity, however, was found in each sample. Gross beta activity in the filtrate from Tri-Cities Municipal Water District Reservoir and the San Clemente Golf Course Well ranged from 6 to 24 pCi/1, averaging 13.8 pCi/1. Gross beta activity in the samples collected from Huntington Beach ranged from 6 to 13 pCi/1, averaging 8 pCi/1.

D.

Part B. Quarterly Drinking Water Composite Results

<u>Drinking Water Solids</u>

Gross alpha activity was not detected in the composite samples from the Tri-Cities Municipal Water District Reservoir, but was found in all four quarterly composites from the San Clemente Golf Course Well. Gross alpha activity in these samples ranged from 0.7 to 1.2 pCi/l, averaging 1.1 pCi/l. Gross alpha activity was not detected in composite samples from Huntington Beach.

10

Gross beta activity was found in samples from each sampling location. Gross beta activity was seen in all four quarterly composite samples collected from the Tri-Cities Municipal Water District Reservoir and the San Clemente Golf Course Well. Gross beta activity in these samples ranged from 0.4 to 10.1 pCi/l of water, averaging 3.3 pCi/l. Gross beta activity was also found in the third quarter composite sample from Huntington Beach. The measured gross beta activity in this sample was 0.3 pCi/l.

Drinking Water Filtrate

Gross alpha activity was not found in the quarterly composite samples collected from Tri-Cities Municipal Water District Reservoir or from Huntington Beach. Gross alpha activity was detected, however, in the second quarter composite sample collected from the San Clemente Golf Course Well. Gross alpha activity in this sample was determined to be 7 pCi/l.

Gross beta activity was seen in each quarterly composite sample. Gross beta activity in the composite samples from Tri-Cities Municipal Water District Reservoir and the San Clemente Golf Course Well ranged from 9 to 20 pCi/l, averaging 14 pCi/l. Gross beta activity in the samples collected from Huntington Beach ranged from 7 to 12 pCi/l, averaging 9 pCi/l.

Tritium was not detected in any of the quarterly composite samples.

<u>Conclusions</u>

No gamma-emitting radionuclides or tritium were found in the monthly drinking water samples or in the quarterly composite samples. Gross alpha and gross beta activity were, however, seen in a number of samples collected throughout 1986. In examining the data, there is no indication that gross alpha or gross beta activity is accumulating in either drinking walter filtrate or the drinking water solids. In addition, no reporting limits have been established by the Nuclear Regulatory Commission because of the negligible impact of environmental levels of gross alpha and gross beta activity in drinking water on members of the public. The impact of SONGS operations, then, on the environment and on the public has been negligible.

E. Local Crops

Representative fleshy crops were collected semiannually in 1986 from farms in the San Clemente and San Mateo Canyons (which served as the indicator locations), and from a garden situated SSE Oceanside (which served as the control location). Leafy vegetables were not collected due to their unavailability. After collection, the edible portion of the samples was analyzed quantitatively for 12 gamma-emitting radionuclides, as well as for tritium and radiostrontium by beta counting. The results of the analyses are summarized (below) based on "as received" wet sample weights. 11

Cucumbers, corn, tomatoes, and cauliflower were collected from the San Clemente and San Mateo Canyons. Upon analysis, potassium-40 was the only radionuclide detected in samples. The concentration of potassium-40 in the samples ranged from 1.08 to 15.4 pCi/g, averaging 5.15 pCi/g.

Two sets of tomatoes and kale were collected from the control location. Upon analysis, three radionuclides were detected in the samples, namely: potassium-40, cesium-137, and strontium-90. Potassium-40 was detected in each sample. The concentration of potassium-40 in the samples ranged from 1.17 to 2.8 pCi/g, averaging 2.04 pCi/g. Cesium-137 was detected in tomatoes and kale collected in June. The concentration of cesium-137 in these samples was 0.010 and 0.0037 pCi/g, respectively. These concentrations were verified by radiochemical analysis. Finally, strontium-90 was detected in the kale samples. The concentrations of strontium-90 were 0.010, and 0.011 pCi/g in the samples collected in June and November, respectively.

No Station-related radionuclides were detected in the samples collected from the San Clemente and San Mateo Canyons, indicating that SONGS operations had a negligible impact on this environmental medium. The presence of strontium-90 and cesium-137 in crops collected from the control location may be attributable to nuclear atmospheric weapons tests that occurred prior to and during 1980, the eruption of Mount St. Helens in 1980, and the Chernobyl nuclear power plant accident in 1986.

.

Soil

F.

To determine if there is evidence of a build-up of radionuclides in the land near SONGS, soil samples were collected from the Visitor's Center (East Site Boundary), Old Route 101, Basilone Road, Camp San Onofre (which served as indicator locations in the vicinity of SONGS), and from Huntington Beach which served as a control location. Surface soil was collected from all indicator and control locations. Soil samples taken at depths of 3, 6, 9, and 12 inches were also collected from Old Route 101 and Huntington Beach in accordance with HASL-300 procedures. 12

After collection, each soil sample was analyzed for 12 naturally-occurring and SONGS-related radionuclides via gamma spectral analysis, and for radiostrontium by beta counting. The analyses indicated that potassium-40, cesium-137, and strontium-90 were present in detectable quantities in one or more of the samples. The findings are summarized below in terms of dry sample weights.

Surface Soil Sample Results

Several radionuclides were detected in surface soil collected from the indicator and control locations. Potassium-40 was detected in each sample. The concentrations of potassium-40 in the samples from the indicator locations ranged from 5.8 to 17.4 pCi/g, averaging 13.2 pCi/g of sample. The concentration of potassium-40 in the sample from the control location was 18.0 pCi/g of sample.

Cesium-137 was found in samples collected from Old Route 101 and from Camp San Onofre. The concentrations of cesium-137 in these samples were 0.03 and 0.11 pCi/g, respectively. Cesium-137, however, was not found in the sample collected from the control location.

Finally, strontium-90 was detected in the samples collected from the Visitor's Center, Old Route 101, Camp San Onofre, and in the sample collected from Huntington Beach. The concentrations of cesium-137 in the samples from the indicator locations were 0.04, 0.02, and 0.03 pCi/g, in that order. The concentration of strontium-90 in the sample from Huntington Beach was 0.02 pCi/g of sample.

Soil Profile Analysis

Potassium-40, cesium-137, and strontium-90 were found in varying amounts in the soil samples taken at depths of 3, 6, 9, and 12 inches at Old Route 101 and in Huntington Beach.

Potassium-40 was detected in all of the samples. The concentration of potassium-40 in the samples collected from Old Route 101 at the surface, and at depths of 3, 6, 9, and 12 inches were 5.8, 5.3, 6.2, 5.8, and 5.8 pCi/g of sample, respectively. The concentrations of potassium-40 in the samples collected from Huntington Beach at the surface, and at depths of 3, 6, 9, and 12 inches were 18, 18, 17.1, 16.9, and 16.9 pCi/g, in that order.

Cesium-137 was detected in two samples collected from Old Route 101 at the surface of the soil, and at a depth of 3 inches. The concentrations of cesium-137 in these samples were 0.03 and 0.18 pCi/g, respectively. Cesium-137 was not detected in the samples collected from Old Route 101 at depths of 6, 9, and 12 inches. Cesium-137 was also detected in the soil samples taken at depths of 3, 6 and 9 inches from Huntington Beach. The concentrations of cesium-137 in these samples were 0.07, 0.06, and 0.06 pCi/g, respectively. Cesium-137, however, was not found in the surface soil sample, or the sample collected at a depth of 12 inches from Huntington Beach. The lower limit of detection of cesium-137 in soil is 0.05 pCi/g. 13

Finally, strontium-90 was detected in several samples collected from Old Route 101 and from Huntington Beach. Strontium-90 was found in samples collected from surface soil, and at depths of 3 and 6 inches from Old Route 101 at concentrations of 0.02, 0.05, and 0.02 pCi/g, in that order. Strontium-90, however, was not detected in samples collected at depths of 9 and 12 inches. Strontium-90 was detected in samples collected from Huntington Beach from the surface soil, and at depths of 3, 6, and 9 inches all at concentrations of 0.02 pCi/g. Strontium-90, however, was not detected in the sample collected from Huntington Beach at a depth of 12 inches.

<u>Conclusions</u>

Several radionuclides were found in surface soil samples collected near SONGS, and from Huntington Beach. They include potassium-40, cesium-137, and strontium-90. The potassium-40 levels vary between sampling locations. This is a naturally-occurring phenomenon that is not related to SONGS operations. To assess the importance of detecting strontium-90 in the surface soil samples, data collected from the indicator locations over a period of six years were compared to similar data collected from Huntington Beach. (See Table E-1.) These data indicate that the concentrations of each of these radionuclides seen at both indicator and control locations are similar. Because of this, the activity can be attributed to atmospheric nuclear weapons tests and not SONGS operations.

Potassium-40, cesium-137, and strontium-90 were also found in soil profile analyses conducted in 1986. Because only one profile analysis has been conducted to date on samples from the indicator and control locations, it is not possible to draw any conclusions concerning potential radionuclide accumulation or migration in the soil samples.

G. -Shoreline Sediment (Sand)

Beach sand was collected semiannually in 1986 from three indicator locations, and from a control location situated in Newport Beach. After collection, the samples were analyzed for 19 different Station-related and naturally-occurring radionuclides. The results of the analyses are summarized in Table II-2 in terms of "as received" wet sample weights.

14

In 1986, three radionuclides were detected in shoreline sediment samples. They include potassium-40, radium-226, and thorium-228. All three are naturally-occurring (i.e., non-SONGS related) radionuclides. The variation of the concentrations of these radionuclides in the shoreline sediment samples is considered to be characteristic of this environmental medium.

Because SONGS-related radionuclides were not seen in the shoreline sediment samples, the impact of SONGS operations on shoreline sediment and the public is considered to be negligible.

TABLE II-2

15

CONCENTRATIONS OF RADIONUCLIDES* DETECTED IN SHORELINE SEDIMENT (SAND) IN 1986

Sample Location	Collection Date	<u>K-40</u>	<u>Ra-226</u>	<u>Th-228</u>
0.5 miles S. of Unit 1	4/11/86	12.9	0.17	0.14
	9/17/86	14.3	0.19	0.20
San Onofre Surfing Beach	4/11/86 9/17/86	13.2 16.6	0.37	0.39 0.14
S. San Onofre State Beach	4/11/86	15.4	0.14	0.12
	9/17/86	12.9	0.15	0.14
Newport Beach	4/11/86	17.8	0.37	0.99
	9/17/86	17.5	0.24	0.45

* Concentrations listed are in units of pCi/g, wet weight

H. Ocean Water

In 1986, ocean water samples were collected on a monthly basis in the vicinity of each of the Station discharge outfalls (which served as the indicator locations), and from Newport Beach (which served as the control location). Upon collection, each sample was analyzed for 19 naturally-occurring and Station-related, gamma-emitting radionuclides. Every other month, samples were also analyzed for gross beta activity. Finally, samples composited quarterly were analyzed for tritium.

16

Throughout 1986, potassium-40 was the only gamma-emitting radionuclide detected in the monthly gamma spectral analyses of samples from both the indicator and the control locations. Potassium-40 was detected in each sample. The concentrations of potassium-40 in the samples from the indicator locations ranged from 290 to 350 pCi/l, averaging 316 pCi/l. The concentrations of potassium-40 in the samples from the control location ranged from 290 to 370 pCi/l, averaging 323 pCi/l.

Gross beta activity was detected in each bimonthly ocean water sample. The concentrations of gross beta activity in the ocean water collected from the indicator locations ranged from 500 to 1200 pCi/l, averaging 822 pCi/l. The concentrations of gross beta activity in the ocean water collected from the control location ranged from 700 to 1000 pCi/l, averaging 850 pCi/l. After subtracting the contribution of potassium-40 to the gross beta activity, the concentrations of gross beta activity in the ocean water collected from the indicator locations ranged from below detectability to 14 pCi/l, averaging 6 pCi/l. The concentrations of gross beta activity in the ocean water collected from the indicator locations ranged from below detectability to 14 pCi/l, averaging 6 pCi/l. The concentrations of gross beta activity in the ocean water collected from the ocean water collected from the control location ranged from below detectability to 9 pCi/l, averaging 5 pCi/l. Using these data, it was determined that potassium-40 accounted for at least 99 percent of the gross beta activity detected in each of the samples.

Tritium was detected in the third quarter composite sample obtained from the SONGS Unit 1 outfall. The concentration of tritium in this sample was 2200 pCi/l.

Virtually all of the observed radioactivity in each of the samples can be attributed to naturally-occurring potassium-40. The variation of potassium-40 in ocean water is considered characteristic of this environmental medium. The concentration of tritium measured in the third quarter composite ocean water sample was 11 percent of the reporting limit to the Nuclear Regulatory Commission. These data indicate that SONGS operations had a negligible impact on this environmental medium.

Non-Migratory Marine Species

Ι.

Part I. Analysis of the Flesh Portion of the Marine Animals

During 1986, non-migratory marine species were collected near SONGS to determine the amount of radioactivity that could be consumed by man or in the food chain to man. To determine potential doses to the public, two species of adult fish, crustacea and mollusks, were collected on a quarterly basis at the SONGS Unit 1 outfall, at the SONGS Unit 2/3 outfall and from Newport Beach. Species collected at each of the locations in 1986 are listed in parentheses at the beginning of each summary description (below). Upon collection, the flesh portion of each sample type was analyzed for three naturally-occurring radionuclides, for 16 gamma-emitting Station-related radionuclides, and for aqueous and bound tritium. The results were subsequently reported to Edison in terms of both wet and dry sample weights. Because results based on a wet sample weight are most useful for calculating doses, the results of sample analyses are summarized below in terms of "as received" wet sample weights. 17

Results from the Indicator Locations

<u>SONGS Unit 1. Fish (Sheephead)</u>:

Potassium-40 was the only naturally-occurring radionuclide detected in the flesh portion of the samples. The concentrations of potassium-40 ranged from 2.1 to 3.2 pCi/g of sample, averaging 2.6 pCi/g of sample.

Plant-related radionuclides detected in flesh portion of the sheephead included cobalt-58, cobalt-60, and cesium-137. Cobalt-58 was observed in samples from the first and second quarters both at concentrations of 0.015 pCi/g. Cobalt-60 was also detected in samples from the first and second quarters at concentrations of 0.027 and 0.046 pCi/g, in that order. Finally, cesium-137 was detected in samples collected throughout the year. The concentrations of cesium-137 ranged from 0.005 to 0.035 pCi/g, averaging 0.017 pCi/g.

Aqueous and bound tritium were not detected in the flesh portion of the samples.

SONGS Unit 1. Fish (Black Perch):

Upon analysis, potassium-40 was the only naturally-occurring radionuclide detected in the flesh of black perch. Potassium-40 was seen in samples collected throughout 1986. The concentrations of potassium-40 ranged from 2.3 to 2.7 pCi/g, averaging 2.5 pCi/g.

Plant-related radionuclides detected in the flesh of black perch included cobalt-58, cobalt-60, and cesium-137. Cobalt-58 was detected in a sample collected during the second quarter. The concentration of cobalt-58 in the sample was 0.009 pCi/g. Cobalt-60 was detected in each of the

samples. The concentrations of cobalt-60 in the sample ranged from 0.002 to 0.0120 pCi/g, averaging 0.0066 pCi/g. Likewise, cesium-137 was detected in each of the samples. The concentrations of cesium-137 ranged from 0.0051 to 0.009 pCi/g, averaging 0.0071 pCi/g.

Aqueous and bound tritium were not detected in the flesh of the black perch.

SONGS Unit 1, Crustacea (Spiny Lobster):

Potassium-40 was detected in the flesh portion of each sample. The concentrations of potassium-40 ranged from 1.9 to 3.0 pCi/g, averaging 2.6 pCi/g.

Plant-related radionuclides detected in the flesh of spiny lobster included cobalt-60, silver-llom, and cesium-137. Cobalt-60 was detected in samples collected during the first and second quarters. The measured concentrations of cobalt-60 were 0.014, and 0.008 pCi/g, respectively. Likewise, silver-llom was detected in samples collected during the first and second quarters. The measured concentrations of silver-llom were 0.008, and 0.0084 pCi/g, in that order. Cesium-137, on the other hand, was detected in each sample. The concentrations of cesium-137 ranged from 0.0040 to 0.0051 pCi/g, averaging 0.0045 pCi/g.

Aqueous and bound tritium were not detected in the flesh of the spiny lobster samples.

SONGS Unit 1, Mollusks (Bay Mussel and Sea Hare):

Three naturally-occurring radionuclides were detected in the flesh portion of the mollusks, namely: potassium-40, radium-226, and thorium-228. Potassium-40 was seen in each sample set. The concentrations of potassium-40 ranged from 0.67 to 0.99 pCi/g, averaging 0.86 pCi/g. Radium-226 was detected in samples collected during the third and fourth quarters. The measured concentrations of radium-226 were 0.005 and 0.040 pCi/g, Finally, thorium-228 was detected in samples collected during the third and fourth quarters at concentrations of 0.038 and 0.050 pCi/g, respectively.

Plant-related radionuclides detected in the flesh of the mollusks included cobalt-58, cobalt-60, and cesium-137. Cobalt-58 was detected in each sample. The concentrations of cobalt-58 ranged from 0.009 to 0.046 pCi/g, averaging 0.025 pCi/g. Likewise, cobalt-60 was detected in each set of samples. The concentrations of cobalt-60 ranged from 0.011 to 0.136 pCi/g, averaging 0.068 pCi/g. Cesium-137 was only detected in the sample collected during the first quarter. The concentration of cesium-137 in the sample was 0.0016 pCi/g.

Aqueous and bound tritium were not detected in the flesh portion of the mollusks.

SONGS Units 2/3. Fish (Sheephead): Potassium-40 was the only naturally-occurring radionuclide

Potassium-40 was the only naturally-occurring radionuclide detected in the flesh portion of the sheephead. The concentrations of potassium-40 in the samples ranged from 2.7 to 3.2 pCi/g, averaging 2.9 pCi/g.

19

Plant-related radionuclides detected in the flesh of sheephead included silver-llOm and cesium-137. Silver-llOm was observed in a fourth quarter sample at a concentration of 0.014 pCi/g. Cesium-137, on the other hand, was detected in each set of samples. The concentrations of cesium-137 ranged from 0.005 to 0.0104 pCi/g, averaging 0.0078 pCi/g.

Aqueous and bound tritium were not detected in the flesh of the sheephead.

SONGS Units 2/3, Fish (Black Perch):

Potassium-40 was seen in each sample set. The concentrations of potassium-40 in the flesh of the black perch ranged from 1.8 to 2.8 pCi/g, averaging 2.4 pCi/g.

Cesium-137 was the only plant-related radionuclide detected in the flesh of black perch. Cesium-137 was detected in samples collected during the second, third, and fourth quarters at concentrations of 0.0056, 0.0057, and 0.0056 pCi/g, in that order.

Aqueous and bound tritium were not detected in the flesh of black perch.

<u>SONGS Units 2/3. Crustacea (Spiny Lobster)</u>: Potassium-40 was detected in each sample set. The concentrations of potassium-40 in the flesh of spiny lobster ranged from 1.9 to 3.3 pCi/g, averaging 2.7 pCi/g.

Plant-related radionuclides detected in flesh of spiny lobster included cobalt-60, silver-110m, and cesium-137. These radionuclides were detected in each set of samples. The concentrations of cobalt-60 ranged from 0.002 to 0.010 pCi/g, averaging 0.007 pCi/g. The concentrations of silver-110m ranged from 0.013 to 0.018 pCi/g, averaging 0.015 pCi/g. Finally, the concentrations of cesium-137 ranged from 0.0037 to 0.012 pCi/g, averaging 0.0062 pCi/g.

Aqueous and bound tritium were not detected in the flesh portion of the spiny lobster.

SONGS Units 2/3, Mollusks (Bay Mussel):

Potassium-40 was seen in each set of quarterly samples. The concentrations of potassium-40 in the flesh of the bay mussel ranged from 0.70 to 1.2 pCi/g, averaging 0.85 pCi/g.

Plant-related radionuclides detected in flesh of the mollusks included cobalt-58 and cobalt-60. Cobalt-58 was detected in a sample collected during the second quarter. The concentration of cobalt-58 in this sample was 0.010 pCi/g. Cobalt-60, however, was detected in each sample. The concentrations of cobalt-60 ranged from 0.007 to 0.019 pCi/g, averaging 0.013 pCi/g.

Aqueous and bound tritium were not detected in the flesh of the mollusk samples.

Results from the Control Location

Newport Beach, Fish (Sheephead):

Potassium-40 was detected in each sample set. The concentrations of potassium-40 in the flesh of the sheephead ranged from 2.3 to 3.0 pCi/g, averaging 2.6 pCi/g.

Cesium-137 was the only plant-related radionuclide detected in the flesh of sheephead, and was detected in each set of samples. The concentrations of cesium-137 ranged from 0.0041 to 0.0053 pCi/g, averaging 0.0047 pCi/g.

Aqueous and bound tritium were not detected in the flesh of sheephead.

Newport Beach, Fish (Black Perch):

Potassium-40 seen in each set of samples. The concentrations of potassium-40 in the flesh of the black perch ranged from 2.0 to 2.5 pCi/g, averaging 2.3 pCi/g.

Cesium-137, the only plant-related radionuclide detected in flesh of the black perch, was detected in each set of samples. The concentrations of cesium-137 ranged from 0.0029 to 0.0073 pCi/g, averaging 0.0048 pCi/g.

Aqueous and bound tritium were not detected in the flesh portion of the black perch samples.

<u>Newport Beach. Crustacea (Spiny Lobster)</u>: Potassium-40 was detected in the flesh of each spiny lobster sample analyzed. The concentrations of potassium-40 ranged from 2.5 to 3.2 pCi/g, averaging 2.9 pCi/g.

Cesium-137, the only plant-related radionuclide detected in flesh portion of spiny lobster, was detected in each set of samples. The concentrations of cesium-137 ranged from 0.0027 to 0.0040 pCi/g, averaging 0.0034 pCi/g.

Aqueous and bound tritium were not detected in the flesh of the spiny lobster samples.

<u>Newport Beach. Mollusks (Keyhole Limpet)</u>: Potassium-40 was seen in each set of samples. The concentrations of potassium-40 in the flesh portion of the keyhole limpet ranged from 0.68 to 1.02 pCi/g, averaging 0.89 pCi/g. 21

Plant-related radionuclides detected in flesh of the mollusks included cobalt-60 and silver-llOm. Cobalt-60 was detected in samples collected during the first and third quarters. The concentrations of cobalt-60 in these samples were 0.0021 and 0.0020 pCi/g, respectively. Silver-llOm was detected in samples collected during the first and fourth quarters. The concentrations of silver-llOm in the samples were 0.0071 and 0.0070 pCi/g, in that order.

Aqueous and bound tritium were not detected in the flesh of the mollusks.

Part II. Analysis of the Bone Portion of the Marine Animals

To determine if there is evidence of a build-up of radionuclides in the non-migratory marine species, the bone portion of each sample of marine species collected during 1986 was analyzed for three naturally-occurring radionuclides, for 16 gamma-emitting Station-related radionuclides, for aqueous and bound tritium, and for strontium-90. The results were subsequently reported to Edison in terms of both wet and dry sample weights. For consistency with Part I of this section, the results of sample analyses are summarized below in terms of "as received" wet sample weights.

Results from the Indicator Locations

SONGS Unit 1, Fish (Sheephead):

Potassium-40 was the only naturally-occurring radionuclide detected in the bone of the sheephead. The concentrations of potassium-40 ranged from 0.40 to 0.80 pCi/g, averaging 0.55 pCi/g.

One plant-related radionuclide, cobalt-60, was detected in one sample collected during the second quarter of 1986. The concentration of cobalt-60 in the bone portion of the sheephead was 0.020 pCi/g.

Strontium-90, aqueous tritium, and bound tritium were <u>not</u> detected in the bone of the sheephead samples.

SONGS Unit 1, Fish (Black Perch):

Potassium-40, a naturally-occurring radionuclide, was detected in flesh of black perch collected from the first, second, and third quarters at concentrations of 1.0, 0.8, and 0.7 pCi/g, in that order.

Plant-related gamma-emitting radionuclides, strontium-90, aqueous tritium, and bound tritium were <u>not</u> detected in the samples.

<u>SONGS Unit 1. Crustacea (Spiny Lobster)</u>: Potassium-40 was detected in the bone portion of each sample. The concentrations of potassium-40 ranged from 0.85 to 0.92 pCi/g, averaging 0.89 pCi/g.

Plant-related radionuclides detected in the bone of spiny lobster included cobalt-60 and silver-110m. Cobalt-60 was detected in samples collected during the first, second, and fourth quarters at concentrations of 0.017, 0.007, and 0.004 pCi/g, respectively. Silver-110m was detected in one sample collected during the second quarter. The concentration of silver-110m in this sample was 0.005 pCi/g.

Strontium-90, aqueous tritium, and bound tritium were <u>not</u> detected in the flesh portion of the spiny lobster.

SONGS Unit 1, Mollusks (Bay Mussel):

The results listed below correspond to bay mussel collected during the first, second, third and fourth quarters. Sea hare have no bones or shell.

Potassium-40 was observed in the shell of bay mussel collected during the first quarter of 1986. The concentration of potassium-40 in the sample was 0.15 pCi/g.

Plant-related gamma-emitting radionuclides, strontium-90, aqueous tritium, and bound tritium were <u>not</u> detected in the shell portion of the bay mussel.

SONGS Units 2/3, Fish (Sheephead):

Potassium-40 was the only naturally-occurring radionuclide detected in the bone of sheephead. The concentrations of potassium-40 ranged from 0.40 to 0.80 pCi/g, averaging 0.55 pCi/g.

Plant-related radionuclides, strontium-90, aqueous tritium, and bound tritium were <u>not</u> detected in the bone of the sheephead samples.

SONGS Units 2/3. Fish (Black Perch):

Potassium-40, a naturally-occurring radionuclide, was detected in bone of black perch collected from the first, second, and third quarters at concentrations of 1.0, 0.4, and 0.6 pCi/g, in that order.

Plant-related gamma-emitting radionuclides, strontium-90, aqueous tritium, and bound tritium were <u>not</u> detected in the bone portion of the black perch.

SONGS Units 2/3, Crustacea (Spiny Lobster):

Potassium-40 was detected in the bone of each sample of spiny lobster. The concentrations of potassium-40 ranged from 0.85 to 0.92 pCi/g, averaging 0.89 pCi/g.

22

Plant-related radionuclides detected in the bone of spiny lobster included cobalt-60 and silver-llOm. Cobalt-60 was detected in samples collected during the first, second, and fourth quarters at concentrations of 0.017, 0.007, and 0.004 pCi/g, respectively. Silver-llOm was detected in one sample collected during the second quarter. The concentration of silver-llOm in this sample was 0.005 pCi/g.

Strontium-90, aqueous tritium, and bound tritium were <u>not</u> detected in the flesh portion of the spiny lobster.

SONGS Units 2/3, Mollusks (Bay Mussel):

The results listed below correspond to bay mussel collected during the first, second, third and fourth quarters. Sea hare have no bones or shell.

Potassium-40 was observed in the shell of bay mussel collected during the first quarter of 1986. The concentration of potassium-40 in the sample was 0.15 pCi/g.

Silver-110m, the only plant-related gamma-emitting radionuclide detected in the shell of the bay mussel, was observed in a sample collected during the fourth quarter of 1986.

Strontium-90, aqueous tritium, and bound tritium were <u>not</u> detected in the shell portion of the bay mussel.

Results from the Control Location

Newport Beach, Fish (Sheephead):

Potassium-40, the only naturally-occurring radionuclide detected in the bone of sheephead, was observed in samples from the second, third, and fourth quarters. The concentrations of potassium-40 in the bone of sheephead were 0.30, 0.40, and 0.60 pCi/g, respectively.

Plant-related radionuclides, strontium-90, aqueous tritium, and bound tritium were <u>not</u> detected in the bone of the sheephead samples.

<u>Newport Beach. Fish (Black Perch):</u>

Potassium-40, a naturally-occurring radionuclide, was detected in bone of black perch collected during the first quarter. The concentration of potassium-40 in the sample was 0.17 pCi/g.

Plant-related gamma-emitting radionuclides, strontium-90, aqueous tritium, and bound tritium were <u>not</u> detected in the bone portion of the black perch.

Newport Beach, Crustacea (Spiny Lobster):

Potassium-40 was detected in the bone portion of each sample of spiny lobster. The concentrations of potassium-40 ranged from 0.62 to 1.18 pCi/g, averaging 0.85 pCi/g.

Plant-related, gamma-emitting radionuclides, strontium-90, aqueous tritium, and bound tritium were <u>not</u> detected in the flesh portion of the spiny lobster.

Newport Beach, Mollusks (Keyhole Limpet):

Potassium-40 was observed in the shell of keyhole limpet collected during the first and fourth quarters of 1986. The concentrations of potassium-40 in the samples were 0.10 and 0.18 pCi/g, respectively.

Plant-related, gamma-emitting radionuclides, strontium-90, aqueous tritium, and bound tritium were <u>not</u> detected in the bone portion of the keyhole limpet.

Part III. Conclusions

Plant-related radionuclides often seen in minute quantities in the flesh portion of marine species collected near SONGS included cobalt-58, cobalt-60, and cesium-137. To determine whether or not these radionuclides are accumulating in the marine animals, concentrations of each of these radionuclides seen in sheephead (a fish), crustacea, and mollusks were plotted versus time from 1979 through 1986. See Figure 7-15. Although these concentrations were determined in marine species collected near the SONGS Unit 1 outfall, the concentrations should be representative of the entire area near SONGS. Trending of these data indicates that the concentrations of each of these radionuclides is greater than or equal to concentrations measured at the control location, but are not accumulating in the marine animals. The highest concentrations of cobalt-58, cobalt-60 and cesium-137 seen in the marine animals in 1986 were only 0.06, 0.84, and 1.8 percent of the reporting levels to the Nuclear Regulatory Commission.

No aqueous or bound tritium was found in the flesh of any of the marine species collected in 1986.

No strontium-90, aqueous tritium or bound tritium was found in the bone or shell portions of the marine species. Two radionuclides that were detected in a few crustacea and mollusk samples include cobalt-60 and silver-110m. There is no evidence that these radionuclides are accumulating in the bone (or shell) of these marine species. Because bone and/or shell is not ingested, no reporting limits have been established for SONGS by the Nuclear Regulatory Commission.

Based on these data, it was concluded that SONGS operations has had a detectable, but minimal impact on this environmental medium.

24

J. Kelp Sampling

Kelp was collected during May, June, and November 1986 from the San Onofre and San Mateo Kelp Beds, as well as from a kelp bed in Laguna Beach. No samples were collected from the Barn Kelp Bed due to its unharvestable condition. Upon collection, the samples were analyzed by gamma-spectral analysis for 19 different naturally-occurring and Station-related radionuclides. The samples were also analyzed for both aqueous and bound tritium. At the end of the year, no aqueous or bound tritium had been detected in the samples. Gamma-emitting radionuclides detected in the samples included potassium-40, iodine-131, and cesium-137. The results of these analyses are summarized below in terms of wet sample weights.

Naturally-occurring potassium-40 was detected in each sample. The concentrations of potassium-40 in the samples from the indicator locations ranged from 5.2 to 8.3 pCi/g, averaging 6.83 pCi/g. The concentrations of potassium-40 in the samples from the control location ranged from 5.3 to 7.3 pCi/g, averaging 6.5 pCi/g.

Iodine-131 was also detected in all but one kelp sample. The concentrations of iodine-131 in the samples from the indicator locations ranged from below detectability to 0.25 pCi/g. The average concentration of iodine-131 was 0.124 pCi/g. The concentrations of iodine-131 in samples collected from the control location ranged from 0.049 to 0.129 pCi/g, averaging 0.076 pCi/g.

Cesium-137 was detected in every sample collected from the indicator locations, and in three samples collected from the control location. The concentrations of cesium-137 in the samples from the indicator locations ranged from 0.0026 to 0.0057, averaging 0.0044 pCi/g. Cesium-137 was detected in samples during the first and third sample collections from the control location. The concentrations of cesium-137 in these samples were 0.0044 and 0.0034 pCi/g, in that order.

To determine if these radionuclides are accumulating in kelp with time, data were examined from 1981 through 1986. See Appendix E, Table E-5. The data indicate that the concentrations of potassium-40 at both indicator have remained commensurate, as anticipated. The frequency of detection and concentrations of iodine-131 and cesium-137 in kelp have increased, however, in the past few years. The amounts of the radionuclides, though, are still considered to be minute. Doses via the ingestion pathway to members of the public were not calculated because kelp near SONGS was not harvested commercially in 1986.

Ocean Bottom Sediments and a get

To determine the amount of radioactivity in ocean bottom sediments in the vicinity of the Station in 1986, representative samples were collected semiannually near each of the Station discharge outfalls (which served as indicator locations), and from Newport Beach (which served as a control location). After collection, the samples were analyzed by gamma-spectral analysis for 19 naturally-occurring, and Station-related radionuclides. The results of these analyses are summarized in Table II-3 in terms of "as received" wet sample weights.

In 1986, four radionuclides were detected in ocean bottom sediment samples. They include potassium-40, radium-226, thorium-228 and cobalt-60. Potassium-40, radium-226, and thorium-228 are all naturally-occurring (i.e., non-Station related) radionuclides. The variation of the concentrations of these radionuclides in the ocean bottom sediment samples is considered to be characteristic of this environmental medium. Cobalt-60 was found in one sample collected East of the Unit 1 outfall in May 1986. The concentration of cobalt-60 in this sample was 0.06 pCi/g, wet weight.

Because only one SONGS-related radionuclide was seen in one sample, the impact of SONGS operations on ocean bottom sediments, and on the public is considered to be minimal.

Κ.

TABLE II-3

CONCENTRATIONS OF RADIONUCLIDES* DETECTED IN OCEAN BOTTOM SEDIMENTS IN 1986

Sample Location	Collection Date	<u>K-40</u>	<u>Ra-226</u>	<u>Th-228</u>	<u>Co-60</u>
SONGS Unit 1 (E)	5/12/86	10.6	0.56	0.64	0.06
	11/7/86	11.1	0.54	0.70	<lld< td=""></lld<>
SONGS Unit 1 (W)	5/12/86 11/7/86	13.8	0.24 0.25	0.28 0.25	<lld <lld< td=""></lld<></lld
SONGS Unit 2	5/12/86	15.2	0.16	0.12	<lld< td=""></lld<>
	11/5/86	12.4	0.29	0.40	<lld< td=""></lld<>
SONGS Unit 3	5/21/86	15.2	0.21	0.24	<lld< td=""></lld<>
	11/5/86	10.6	0.50	0.57	<lld< td=""></lld<>
Newport Beach	5/15/86 11/6/86	13.2 14.6	0.22	0.42 0.49	<lld <lld< td=""></lld<></lld

* Concentrations listed are in units of pCi/g, wet weight. Radionuclides not listed in the Table were at concentrations below detection limits (i.e., <LLD). 27.

III. CONCLUSIONS

Levels of radioactivity in environmental media depend on many components, including the following: site release rates; meteorology; number, location, size and date of nuclear weapons testing; seasonal variability of fallout; soil conditions; local terrain and variability in the natural environment.

Radiological environmental data collected throughout 1986 have been evaluated to determine the impact, if any, of San Onofre operations on the surrounding environment. To accomplish this, several methods of evaluation were employed, namely:

- Compilation and verification of all data, as well as a determination of those data considered to be significantly greater than background levels, (i.e., 1.25 times background levels for TLD direct radiation doses, and twice background levels for radionuclide concentrations).
- (2) Comparison of data (exceeding background levels) against reportability levels contained in the plant Technical Specifications.
- (3) Examination of time-dependent variations of pertinent radioiostopes in selected environmental media throughout the year at both indicator and control locations.
- (4) Comparison of radioactivity in various media in 1986 against the levels observed in pre-operational years.
- (5) Historical trending of radionuclides in various media over the past six years.

In comparing these findings to the conservatively-defined limits of the facility operating licenses, it is concluded that the radiological environmental impact of San Onofre Units 1, 2 and 3 operations through 1986 has been minimal, and the resulting dose to man is negligible.

IV. REFERENCES

- 1. Land Use Census for SONGS Units 1, 2 and 3 Radiological Environmental Monitoring Program, 1986
- 2. ODCM, "Offsite Dose Calculation Manual for SONGS Units 2 and 3," 1986

29

- 3. ODCM, "Offsite Dose Calculation Manual for SONGS Unit 1," 1986
- 4. USNRC Draft Regulatory Guide 4.8, "Standard Format and Principal Content of Environmental Technical Specifications," December 1975
- USNRC Regulatory Guide 4.13, "Performance, Testing and Procedural Specifications for Thermoluminescent Dosimetry - Environmental Applications," 1977
- 6. USNRC Regulatory Guide 4.15, "Quality Assurance for Radiological Monitoring Programs," Rev. 1, February 1979
- 7. SONGS Unit 1 Provisional Operating License, DPR-13, Sections 3.18 and 4.18, effective prior to January 1, 1985
- 8. SONGS Unit 2 Operating License NPF-10, Section 3/4.12.1
- 9. SONGS Unit 3 Operating License NPF-15, Section 3/4.12.1

APPENDIX A

SAMPLE TYPE AND SAMPLING LOCATION

TABLE A-1

RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE LOCATIONS

	TYPE	OF SAMPLE AND SAMPLING LOCATION	DISTANCE* (miles)	DIRECTION*
	Dire	ct Radiation		
	1	City of San Clemente (SDG&E Offices)	5.6	NW
	2	Camp San Mateo	3.5	N
	3	Camp San Onofre	2.6	NE
	4	Camp Horno	4.5	E
	5	Camp Las Pulgas	8.5	ESE
	6	Old Route 101 - East-Southeast	3.0	ESE
	7	Old Route 101 - East-Southeast	0.5	ESE
	8	Noncommissioned Officers Beach Club	1.2	NW
	9	Basilone Road/I-5 Freeway Offramp	2.0	NW
	10	Bluff	0.8	NW
	11	El Camino Training Annex (formerly Visitors Center)	0.2	NNE
	12	South Edge of Switchyard	0.2	NE
	13	Site Boundary	0.13	SE
	14	Huntington Beach Generating Station	37	NW
	15	East-Southeast Site Boundary	0.2	ESE
	16	East Site Boundary	0.5	E
•	17	Transit Dose	_ ·	· _
	18	Transit Dose	-	-
	19	San Clemente Highlands	5.0	NNW
•	20	San Clemente Pier	5.0	NW
	21	Concordia Elementary School – San Clemente	3.5	NW
	22	Coast Guard Station - San Mateo Point	2.7	WNW
	23	San Clemente General Hospital	8.2	NW
	24	San Clemente High School	6.0	NW

Distance (miles) and Direction (sector) are measured relative to Units 2 and 3 midpoint. Direction is determined from degrees true north.

A-1

RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE LOCATIONS

A-2

<u>TYPI</u>	OF SAMPLE AND SAMPLING LOCATION	DISTANCE* (miles)	DIRECTION*
Dir	ect Radiation (Continued)	,	
25	Convalescent Home - San Clemente	8.0	NW
26	Dana Hills High School	11.0	NW
27	U.S. Post Office – Dana Point	10.5	NW
28	Doheny Fire Station - Capistrano Beach	9.5	NW
29	San Juan Capistrano Fire Station	10.8	NW
30	Laguna Beach Fire Station	17.5	NW
31	Aurora Park Mission Viejo	18.6	NNW
32	Santa Ana Police Department	32.0	NW
33	Camp Talega	5.7	N
34	San Onofre School	1.7	NW
35	Range 312 (Marine Corps Base, Camp Pendleton)	4.7	NNE
36	Range 208C (Marine Corps Base, Camp Pendleton)	4.0	NE
37	Laguna Niguel Fire Station	13.5	NW
38	San Onofre State Beach Park	3.6	SE
39	Basilone Road Trailer Park	1.4	NNW
40	SCE Training Center - Mesa	0.8	NW
41	Old Route 101 - East	0.3	Ε
42	Horno Canyon	4.6	е на Е на на на
43	Edson Range (Marine Corps Base, Camp Pendleton)	10.6	SE
44	Fallbrook Fire Station	18.0	E
45	Interstate 5 Weigh Station	2.0	ESE
46	San Onofre State Beach Park	1.4	SE
47	Camp Las Flores	8.6	SE
48	Mainside (Marine Corps Base, Camp Pendleton)	15.0	ESE

* Distance (miles) and Direction (sector) are measured relative to Units 2 and 3 midpoint. Direction is determined from degrees true north.

RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE LOCATIONS

A-3

TYPE OF SAMPLE AND SAMPLING LOCATION	DISTANCE* (miles)	DIRECTION*
Direct Radiation (Continued)		
49 Camp Chappo	12.8	ESE
50 Oceanside Fire Station	15.5	SE
51 Carlsbad Fire Station	18.6	SE
52 Vista Fire Station	21	ESE
53 San Diego County Operations Center	45	SE
54 Escondido Fire Station	32	ESE
55 San Onofre State Beach (Unit 1)	0.2	М
56 San Onofre State Beach (Unit 1)	0.1	W
57 San Onofre State Beach (Unit 2)	0.1	SSW
58 San Onofre State Beach (Unit 3)	0.1	S
59 SONGS Meteorological Tower	0.3	NW
60 Transit Control Storage Area	-	-
61 Adjacent to Pressurized Ion Chamber No. 54**	0.6	NNE
62 Adjacent to Pressurized Ion Chamber No. 55**	0.7	NE
63 Adjacent to Pressurized Ion Chamber No. 56**	0.7	ENE
64 Adjacent to Pressurized Ion Chamber No. 57**	0.7	E
65 Adjacent to Pressurized Ion Chamber No. 58**	0.9	ESE
66 Adjacent to Pressurized Ion Chamber No. 59**	0.8	ESE
67 Adjacent to Pressurized Ion Chamber No. 52**	0.4	NW
	· .	

 Distance (miles) and Direction (sector) are measured relative to Units 2 and 3 midpoint. Direction is determined from degrees true north.
 * See Table A-2.

RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE LOCATIONS

TYPE OF SAMPLE AND SAMPLING LOCATION	DISTANCE* (miles)	DIRECTION*
Airborne	• •	
1 City of San Clemente (City Hall)	5.5	NW
2 Camp San Onofre (Camp Pendleton)**	1.8	NE
3 Huntington Beach Generating Station	37.0	NW
5 Units 2 and 3 Switchyard**	0.13	ESE
6 SONGS Meteorological Tower**	0.3	NW
9 State Beach Park**	0.4	ESE
10 Bluff	0.5	WNW
11 Mesa EOF	0.5	NNW
12 SONGS Evaporation Pond	0.4	NW
Soil Samples		· ·
1 Camp San Onofre	2.5	NE
2 Old Route 101 - Southeast	3.0	SE
3 Basilone Road/I-5 Freeway Offramp	2.0	NW
4 Huntington Beach Generating Station	37.0	NW
5 East Site Boundary (visitor's center)	0.2	NNW
Ocean Water		
A Station Discharge Outfall - Unit 1	0.5	SW
B Outfall - Unit 2	0.7	SW
C Outfall - Unit 3	0.7	SW
D Newport Beach	30.0	NW

 Distance (miles) and Direction (sector) are measured relative to Units 2 and 3 midpoint. Direction is determined from degrees true north.
 * Not required by Technical Specifications.

A-4

TABLE A-1 (Continued) addressed

Α-

RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE LOCATIONS

TYP	E OF SAMPLE AND SAMPLING LOCATION	DISTANCE* (miles)	DIRECTION*
<u>, , , ,</u>		(111163)	DIRECTION
Dri	nking Water		
1 .	Tri-Cities Municipal Water District Reservoir	8.7	NW
2	San Clemente Golf Course Well	3.5	NNW
3	Huntington Beach	37.0	NW
Sho	reline Sediment (Beach Sand)		
1	San Onofre State Beach	0.6	SE
2	San Onofre Surfing Beach	0.9	NW
3	San Onofre State Beach	3.5	SE
4	Newport Beach (North End)	30.0	NW
	м) 		•
Loc	al Crops	·	
1	San Mateo Canyon, San Clemente Canyon	2.6	NW
2	Southeast of Oceanside	22.0	SE

Distance (miles) and Direction (sector) are measured relative to Units 2 and 3 midpoint. Direction is determined from degrees true north.

RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE LOCATIONS

<u>TYP</u>	E OF SAMPLE AND SAMPLING I	LOCATION		DISTANCE* (miles)	DIRECTION*
Non	-Migratory Marine Animals			,	
Α	Unit 1 Outfall	· .		0.6	WSW
B	Units 2 and 3 Outfall			0.7	SSW
С	Newport Beach			30.0	NW
Ke l	p				
A	San Onofre Kelp Bed			1.5	S
В	San Mateo Kelp Bed			3.5	WNW
С	Barn Kelp Bed		•	6.6	SSE
D	Newport Beach			30.0	NW
0ce	an Bottom Sediments	· · · · · · · · · · · · · · · · · · ·			
A	Unit 1 Outfall			0.5	W
В	Unit 1 Outfall			0.6	W
C	Unit 2 Outfall			0.8	SSW
D	Unit 3 Outfall			0.9	S
Ε	Newport Beach			30.0	NW

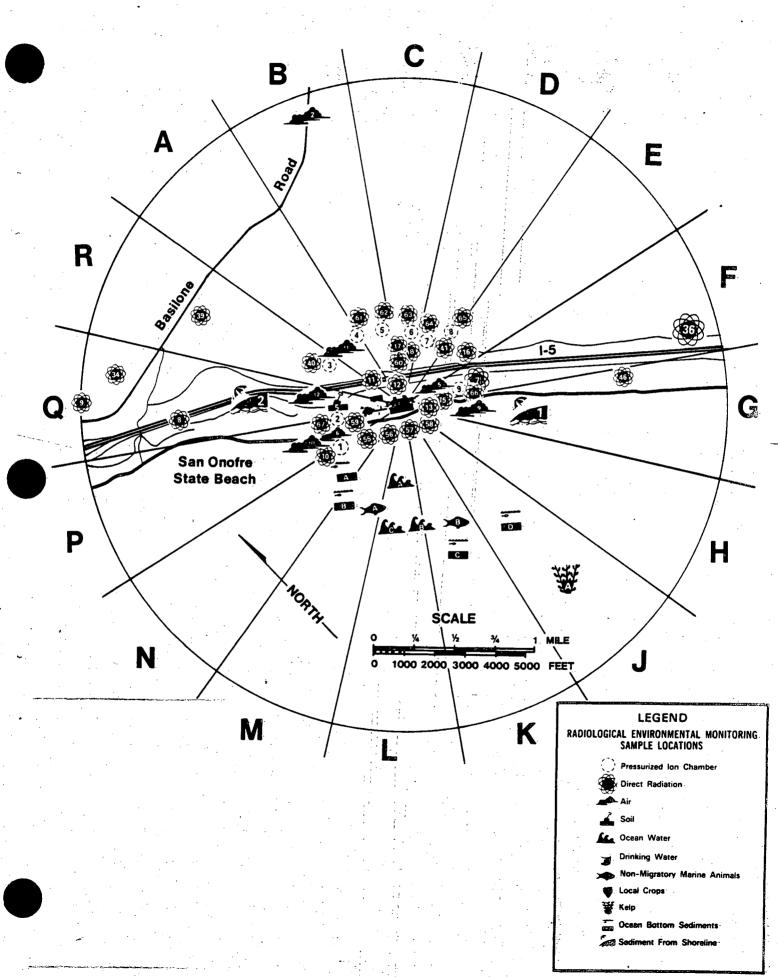
Distance (miles) and Direction (sector) are measured relative to Units 2 and 3 midpoint. Direction is determined from degrees true north.

TABLE A-2

PIC-RADIOLOGICAL ENVIRONMENTAL MONITORING LOCATIONS - SONGS 2/3

PRES	SSURIZED_ION CHAMBERS	THETA (DEGREES)		TANCE* S/MILES	DIRECTION	/SECTOR*
S1	San Onofre Beach					
		298°	1070	0.665	WNW	Р
S2	SONGS Evaporation Pond	313°	890	0.553	NW	Q
S3	Japanese Mesa	340°	1150	0.715	NNW	R
S4	MCB - Camp Pendleton	3°	1120	0.696	N	А
\$5	MCB - Camp Pendleton	19°	1050	0.653	NNE	В
S6	MCB - Camp Pendleton	46°	940	0.584	NE	С
S7	MCB - Camp Pendleton	70°	870	0.541	ENE	D
S8	MCB - Camp Pendleton	98°	1120	0.696	Е	Е
S9 `	San Onofre State Beach	121°	940	0.584	ESE	F

Distance (meters/miles) and Direction (sector) are measured relative to Units 2 and 3 midpoint. Theta direction is determined from degrees true north.


TABLE A-3

SECTOR AND DIRECTION DESIGNATION FOR RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE LOCATION MAP

DEGREES	TRUE NORTH			
FROM SONGS		D-POINT		LATURE
Sector <u>Limit</u> 348.75	Center <u>Line</u> 0 & 360	Sector <u>Limit</u> 11.25	22.5° <u>Sector*</u> A	<u>Direction</u> N
11.25	22.5	33.75	В	NNE
33.75	45.0	56.25	С	NE
56.25	67.5	78.75	D	ENE
78.75	90.0	101.25	E j	E .
101.25	112.0	123.75	F t	ESE
123.75	135.0	146.25	G	SE
146.25	157.0	168.75	Н	SSE
168.75	180.0	191.25	J	S
191.25	202.5	213.75	K	SSW
213.75	225.0	236.25	L	SW
236.25	247.5	258.75	М -	WSW
258.75	270.0	281.15	N	W
281.25	292.5	303.75	P	WNW
303.75	315.0	326.25	Q	NW
326.25	337.5	348.75	R	NNW

 Distance (miles) and Direction (sector) are measured relative to Units 2 and 3 midpoint. Direction is determined from degrees true north.

A-11 Figure A-3 Revision 2 March 19, 1986

APPENDIX B

SUMMARY OF 1986 RADIOLOGICAL ENVIRONMENTAL DATA

0

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed		All Indicator Locations Mean(f) Range	Location J Highest Annu Name, Distance and Direction		ntrol Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table la Diract Radiation Quarterly Composite (millingm)	2						
Gamma	a Exposure	236 5.0000	19.15(202/232) (9.200-35.400)	San Onofre State Beach (Unit 1) 0.2 mi. H	24.8(4/ 4) (23.000-26.700)	21.867(3/ 4) 0

. .

;

1

.

φ

l

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San onofre Nuclear Generating Station

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Of Datection (LLD)	All Indicator Locations Mean(f) Range	Location J Highest Annu Name, Distance and Direction	uith ual Mean Mean(f) Range	Control Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 1b Direct Radiation Annual Composite (millirem)	· ·					i sandi	
Gam	ma Exposure	59 5.0000	86.863(57/ 58) (41.100- 123.3)	San Onofre State Beach (Unit 1) 0.2 mi. W	123.3(1/ (123.3- 123	1) 97.3(1/ 1) 3.3) (97.300-97.300)	0
		. •					
	• • • • • • • • • •	•				•	
				•			
		· .					
					• •		•.
ongan dikara Shungan Kalinan Shungan	· · · · · · · · · · · · · · · · · · ·				•		
n Chatana Ang ang ang ang ang ang ang ang ang ang a		· · · ·			. · · ·		·** .

•

20APR 87

.

3-2

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Heasurement)	Type and	LOHer Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location Highest Ann Name, Distance and Direction	uith ual Mean Mean(f) Range	Control Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 2 Airborne Weekly Composite (pCi/cu. m)					energia da construira da c Esta construira da construir		
	Gross Beta 52	20 0.0010	0.0466(409/468) (0.003- 0.890)	SONGS Evaporation Pond 0.4 ml. NW	0.0596(37/ (0.014- 0.0		

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Table 3 Alfborne Headly Composite (p0f/su, m) 0.0400 0.3200(32/468) Units 2/3 0.5050(4/52) 0.4375(4/52) 0 I-131 520 0.0400 0.3200(32/468) Switchyard (0.060-1.490) 0.13 ml. ESE 0.0000-1.490 0.120-0.740)	Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location With Highest Annual Mean Control Locations Name, Distance Mean(f) Mean(f) and Direction Range Range	Number of Nonroutine Reported Measurements
T-131 520 0.0400 0.3200[32/468] Suftchyand 0.13 ml. ESE 0.5050[4/ 52] (0.060-1,490] 0.4375[4/ 52] 0.120-0.740] 0	Airborne Heakly Composite					
	аланан алан алан алан алан алан алан ал	-131 520	0.0400	0.3200(32/468) (0.060- 1.490)	Units 2/3 Switchyard (0.060-1.490) (0.120-0.740) 0.13 mi. ESE	0
	 <!--</td--><td></td><td></td><td></td><td></td><td></td>					
	t 1-1-1 A 1-1 A 1-					

ł

B-4

0

00

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

2

2

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Type and Medium or Pathway Total Number Sampled (Unit of Analyses of Measurement) Performed		LOWER Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location ; Highest Ann Name, Distance and Direction		Control Locations Mean(f) Range	Number of Nonroutine Reported Measurements	
Table 4a Airborne Quarterly Composi (pCi/cu. m)	te							
	Ag-110m	36 0.0020	<lld (="" 0="" 32)<="" td=""><td>ALL (LLD</td><td>****</td><td>«LLD (0/ 4)</td><td>0</td></lld>	ALL (LLD	****	«LLD (0/ 4)	0	
	Be7	36 0.0060	0.1122(32/ 32) (0.080- 0.167)	SONGS Evaporation Pond 0.4 ml. NH	0.1340(3/ 3 (0.115- 0.16	3) 0.0992(4/ 4) 7) (0.080- 0.138)	0	
	Ce-141	36 0.0040	<lld (="" 0="" 32)<="" td=""><td>ALL <lld< td=""><td>ain Cir 44 45 45</td><td>«LLD (0/ 4)</td><td>· · · · · ·</td></lld<></td></lld>	ALL <lld< td=""><td>ain Cir 44 45 45</td><td>«LLD (0/ 4)</td><td>· · · · · ·</td></lld<>	ain Cir 44 45 45	«LLD (0/ 4)	· · · · · ·	
	Ce-144	36 0.0050	<lld (="" 0="" 32)<="" td=""><td>ALL <lld< td=""><td>an ip in is an</td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>an ip in is an</td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>	an ip in is an	<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0	
	Co-58	36 0.0020	<lld (="" 0="" 32)<="" td=""><td>ALL <lld< td=""><td>() () () () () () () () () () () () () (</td><td><lld (="" 0="" 4)<="" td=""><td>• 0 .</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>() () () () () () () () () () () () () (</td><td><lld (="" 0="" 4)<="" td=""><td>• 0 .</td></lld></td></lld<>	() () () () () () () () () () () () () (<lld (="" 0="" 4)<="" td=""><td>• 0 .</td></lld>	• 0 .	
	Co-60	36 0.0020	<lld (="" 0="" 32)<="" td=""><td>ALL <lld< td=""><td>یں ش ها ها ها</td><td><lld (="" 0="" 4)<="" td=""><td>. 0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>یں ش ها ها ها</td><td><lld (="" 0="" 4)<="" td=""><td>. 0</td></lld></td></lld<>	یں ش ها ها ها	<lld (="" 0="" 4)<="" td=""><td>. 0</td></lld>	. 0	
	Cs-134	36 0.0010	0.0095(8/ 32) (0.007- 0.013)	SONGS Evaporation Pond 0.4 m1. NH	0.0130(1/ (0.013- 0.01	3) 0.0090(1/ 4) 3) (0.009- 0.009)		
	Cs-137	36 0.0010	0.0197(8/ 32) (0.015- 0.026)	SONGS Evaporation Pond 0.4 ml. NH	0.0260(1/ (0.026- 0.02			
	K-40	36 0.0200	<lld (="" 0="" 32)<="" td=""><td>ALL <lld< td=""><td></td><td>«LLD (0/ 4)</td><td>0</td></lld<></td></lld>	ALL <lld< td=""><td></td><td>«LLD (0/ 4)</td><td>0</td></lld<>		«LLD (0/ 4)	0	

ł

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San onofre Nuclear Generating Station

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathuay Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location H Highest Annu Name, Distance and Direction	ith al Mean Co Mean(f) Range	ontrol Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 4a Airborne Quarterly Composit (pCi/cu. m)	te.			. • .			
5	Ru-103 3	6 0.0040	0.0156(8/ 32) (0.010- 0.019)	Mesa E.O.F. 0.5 mi. NNH	0.0190(1/ 4) (0.019- 0.019)) 0.0140(1/ 4)) (0.014- 0.014)	0
	Er (Nb)-95 3	6 0.0040	<lld (="" 0="" 32)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
			:				
		· .					
an a		· · · ·	• •				
N (8) 	• • • •		· · · · · · · · · · · · · · · · · · ·				
		•				· •	

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Hedium or Pathway Sampled (Unit of Heasurement)	Type and Total Number of Analyses Performed	LCWer Limit Of Detection (LLD)	All Indicator Locations Mean(f) Range	Location Highest Ann Name, Distance and Direction		ontrol Loc ations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 4c Airborne Quarterly Composi (pCi/cu. m)	te	· · · · · · · · · · · · · · · · · · ·					
	Gross Alpha	40 0.0003	0.0022(8/ 36) (0.002- 0.003)	SONGS Evaporation Pond 0.4 mi. NW	0.0025(2/ 4) { 0.002- 0.003}		
4	sr-90	40 0.0010	< lld (0/ 36)	ALL <lld< td=""><td></td><td><lld (="" 0="" 4<="" td=""><td>} 0</td></lld></td></lld<>		<lld (="" 0="" 4<="" td=""><td>} 0</td></lld>	} 0

.

B-8

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	LOWER Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location with Highest Annual Mean Name, Distance Mean(f) and Direction Range	Control Locations Mean(f) Range	Number of Nonroutine Reported Measurements	
Table 5 Ocean Hater Monthly Composite (pCi/l)							
	Ag-110m	48 10	<lld (="" 07="" 36)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0	
	Ce-141	48 15	<lld (="" 0="" 36)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0	
	Ce-144	48 20	<lld (="" 07="" 36)<="" td=""><td>ALL <lld< td=""><td>· • • • • • • • • • • • • • • • • • • •</td><td></td></lld<></td></lld>	ALL <lld< td=""><td>· • • • • • • • • • • • • • • • • • • •</td><td></td></lld<>	· • • • • • • • • • • • • • • • • • • •		
	Co-57	48 6.0000	<lld (="" 0="" 36)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0	
	Co-58	48 6.0000	<lld (="" 0="" 36)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0	
	Co-60	48 6,0000	<lld (="" 0="" 36)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0	
	Cs-134	68 6.0000	<lld (="" 0="" 36)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0	
	Cs-137	48 6.0000	<lld (="" 0="" 36)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0	
	Fe-59	48 20	<lld (="" 0="" 36)<="" td=""><td>ALL <lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<></td></lld>	ALL <lld< td=""><td><lld< td=""><td>0</td></lld<></td></lld<>	<lld< td=""><td>0</td></lld<>	0	

20APR \$7

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location Highest Ann Name, Distance and Direction	with Wal Mean Mean(f) Range	Control Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 5 Ocean Hater Monthly Composite (PCI/1)							
	K-40	68 20	315.83(36/ 36) (290- 350)	Outfall - Unit 3 0.7 mi. SH	324.17(12/ 1 (300- 35		
	Mn-54	48 6.0000	<lld (="" 0="" 36)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0
	Mo(Tc)-99m	48 2000	<lld (="" 0="" 36)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0
	Ra-226	48 15	<lld 0="" 36)<="" td="" {=""><td>ALL <lld< td=""><td>220 .</td><td>«LLD (0/ 12)</td><td>0 · · ·</td></lld<></td></lld>	ALL <lld< td=""><td>220 .</td><td>«LLD (0/ 12)</td><td>0 · · ·</td></lld<>	220 .	«LLD (0/ 12)	0 · · ·
	Ru-103	48 15	<lld (="" 0="" 36)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0
	Ru-106	48 30	<lld (="" 0="" 36)<="" td=""><td>ALL <lld< td=""><td>95 CM (M 40 49</td><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>95 CM (M 40 49</td><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>	95 CM (M 40 49	<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0
	Th-228	48 20	20(1/ 36) (20.000-20.000)	Outfall - Unit 3 0.7 mi. SW	20(1/ 1 (20.000-20.00	2) <lld (="" 0="" 12)<br="">0)</lld>	0
	Zn-65	48 20	<lld (="" 0="" 36)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0
	Zr (Nb)-95	48 15	<lld (="" 0="" 36)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 12)<="" td=""><td>° O</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 12)<="" td=""><td>° O</td></lld></td></lld<>		<lld (="" 0="" 12)<="" td=""><td>° O</td></lld>	° O

φ

B-10

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

MS	edium or Pathuay ampled (Unit f Measurement)	Type and Total Number of Analyses Performed	Lонег Limit Of Detection (LLD)	All Indicator Locations Mean(f) Range	Location with Highest Annual Name, Distance and Direction	Mean Mean(f) Range	Control Locations Mean(f)	Number of Nonroutine Reported Measurements
0	able 6 cean Water 1-Monthly Compost pC1/l)	ta						
	G	ross Beta	24 100	822.22(18/ 18) (500- 1200)	88 Outfall - Unit 3 (0.7 mi. SH	3.33(6/ 700- 120	6) 850(6/6) 0)(700-1000)	0
· .						• •		
								an an an Arian An Arian An Arian
.	krevintik normalise normalise normalise normalise normalise normalise normalise normalise	1 4 4 1						1
6	⊈ - € - €							

20APR 87

20apr 87

6

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and y Total Number of Analyses Performed	LOWER Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location Wi Highest Annual Name, Distance and Direction	th 1 Mean Mean(f) Range	Control Lo Mean(Rang	(f)	Number of Nonroutine Reported Measurements
Table 7 Ocean Hater Quarterly Composi (pCi/l)	te							
ан Алтана. Алтана	Tritium 80	16 100	2200(1/ 12) (2200- 2200)	Station Discharge Outfall - Unit l (0.5 ml. SN	2200(1/ (2200- 22	4) <lld 200)</lld 	(01. 4)) 0
		· .						
						•		7
	· ·						··· / · · ·	· ,
					•			•
					• •			
							· .	

Β

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location with Highest Annual Mean Name, Distance Mean(f) and Direction Range	Control Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 9a Drinking Water Monthly Composite (pCi/l)		and a second			and the second	
	\g-110m	36 10	<lld (="" 0="" 24)<="" th=""><th>ALL <lld< th=""><th><lld (="" 0="" 12)<="" th=""><th>) 0</th></lld></th></lld<></th></lld>	ALL <lld< th=""><th><lld (="" 0="" 12)<="" th=""><th>) 0</th></lld></th></lld<>	<lld (="" 0="" 12)<="" th=""><th>) 0</th></lld>) 0
3	3e-7	36 50	<lld (="" 0="" 24)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>) 0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>) 0</td></lld></td></lld<>	<lld (="" 0="" 12)<="" td=""><td>) 0</td></lld>) 0
C	ce-141	36 15	<lld (="" 07="" 24)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>) 0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>) 0</td></lld></td></lld<>	<lld (="" 0="" 12)<="" td=""><td>) 0</td></lld>) 0
C)e-144	36 20	<lld (="" 0="" 24)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0
C	0-58	36 6.0000	<lld (="" 0="" 24)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0
C	0-60	36 6.0000	<lld (="" 0="" 24)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0
анай Санарана Санара Санара Профиясы Санарана Профиясы)s-134	36 6.0000	<lld (="" 0="" 24)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0
۲	Cs-137	36 6.0000	<lld (="" 0="" 24)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0
1997 - 19	i -3	36 100	<lld (="" 0="" 24)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 12)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 12)<="" td=""><td>0</td></lld>	0

20APR87

00

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Heasurement)	Type and Total Number of Analyses Performed	LOWER Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location Wit Highest Annual Name, Distance and Direction		Control Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 9a Drinking Hater Monthly composite (pCi/l)	· · · · · · · · · · · · · · · · · · ·						
	Ru-103	36 15	<lld (="" 0="" 24)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 12)<="" td=""><td></td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 12)<="" td=""><td></td></lld></td></lld<>		<lld (="" 0="" 12)<="" td=""><td></td></lld>	
,	Zr (Nb)-95	36 15	<lld (="" 0="" 24)<="" td=""><td>ALL <lld< td=""><td>42 60 6e in 10</td><td><lld (="" 0="" 12<="" td=""><td>B 0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>42 60 6e in 10</td><td><lld (="" 0="" 12<="" td=""><td>B 0</td></lld></td></lld<>	42 60 6e in 10	<lld (="" 0="" 12<="" td=""><td>B 0</td></lld>	B 0

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	LOHER Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location Highest Ann Name, Distance and Direction		ntrol Loc ations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 9b Drinking Water Monthly Composite (pCi/l)							
	Gross Alpha	36 0.2000	1.3500(10/ 24) (0.500- 3.300)	San Clemente Golf Course Well 3.5 ml. NNW	1.3500(10/ 12) (0.500- 3.300)	0.2000(1/ 12) (0.200- 0.200)	
	Gross Beta	36 0.1000	3.2955(22/ 24) (0.300-28.000)	San Clemente Golf Course Hell 3.5 ml. NNH	6.0545(11/ 12) (0.400-28.000)	0.2833(6/ 12) (0.200- 0.400)	

۱. J

B-14

a

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San onofre Nuclear Generating Station

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Det	er Limit of tection (LLD)	All Indicator Locations Mean(f) Range	Location I Highest Annu Name, Distance and Direction	alth Jal Mean Co Mean(f) Range	ontrol Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 9c Drinking Hater Monthly composite (pci/1)							· · · · · · · · · · · · · · · · · · ·	
· · · ·	Gross Alpha	36 3	3.0000	8.0000(2/ 24) (6.000-10.000)	San Clemente Golf Course Hell 3.5 m1. NNH	8.0000(2/ 12 (6.000-10.000))
	Gross Beta	36 0	.5000	13.833(24/ 24) (6.000-24.000)	San Clemente Golf Course Hell 3.5 mi. NNH	16.333(12/ 12) (13.000-24.000)		

20 2

5 · · ·

B

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	LOHER Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location Highest Ann Name, Distance and Direction		Control Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 9d Drinking Water Quarterly Composi (pCi/l)	te						
	Gross Alpha	12 0.2000	1.0500(4/ 8) (0.700- 1.200)	San Clemente Golf Course Well 3,5 m1. NNW	1.0500(4/ (0.700- 1.20)) 0
	Gross Beta	12 0.1000	3.2875(8/ 8) (0.400-10.100)	San Clemente Golf Course Well 3,5 mi. NNW	6.0250(4/ (2.700-10.10	4) 0.3000[1/ 4 0) (0.300- 0.300	

· · ·

.

. .

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Hedium or Pathway Sampled (Unit Of Heasurement)	Type and Total Number of Analyses Performed		Lower Limit of Detection (LLD)		ocat	tion n(f)	5		Location Highest Ann ame, Distance nd Direction	uith Iual Mean Co Mean(f) Range	ntrol L Mear Rar	1(1)		\$	Nonr Repo	er of outine rted urements
Table 9e Drinking Hater Quarterly Composi (pCi/l)	te												an a	•.		
	Ag-110m	12	15	<lld< th=""><th>(</th><th>0/</th><th>8)</th><th>ALI</th><th>L «LLD</th><th></th><th>«LLD</th><th>(</th><th>0/</th><th>4)</th><th>• .</th><th>0</th></lld<>	(0/	8)	ALI	L «LLD		«LLD	(0/	4)	• .	0
	Be- 7	12	100	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALI</td><td>L «LLD</td><td></td><td>«LLD</td><td>C</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	(0/	8)	ALI	L «LLD		«LLD	C	0/	4)		0
	Ce-141	12	60	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALI</td><td>. «LLD</td><td></td><td>«LLD</td><td>(</td><td>0/</td><td>4)</td><td>·</td><td>0</td></lld<>	(0/	8)	ALI	. «LLD		«LLD	(0/	4)	·	0
	Ce~144	12	20	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALI</td><td>. «LLD</td><td></td><td><lld< td=""><td></td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>	(0/	8)	ALI	. «LLD		<lld< td=""><td></td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>		0/	4)		0
	Co-58	12	10	<lld< td=""><td>(</td><td>0/</td><td>8}</td><td>ALI</td><td>. «LLD</td><td>01 00 00 00 00</td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>.0</td></lld<></td></lld<>	(0/	8}	ALI	. «LLD	01 00 00 00 00	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>.0</td></lld<>	(0/	4)		.0
	Co-60	12	6.0000	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALI</td><td>- «LLD</td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>	(0/	8)	ALI	- «LLD		<lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	(0/	4)		0
	Cs-134	12	6.0000	<lld< td=""><td>٥</td><td>0/</td><td>8)</td><td>ALI</td><td>_ <lld< td=""><td>ن تلک چو شو هد ا</td><td><lld< td=""><td>(</td><td>07</td><td>4)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	٥	0/	8)	ALI	_ <lld< td=""><td>ن تلک چو شو هد ا</td><td><lld< td=""><td>(</td><td>07</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>	ن تلک چو شو هد ا	<lld< td=""><td>(</td><td>07</td><td>4)</td><td></td><td>0</td></lld<>	(07	4)		0
	Cs-137	12	6.0000	<lld< td=""><td>۵</td><td>0/</td><td>8)</td><td>ALI</td><td>. «LLD</td><td>~~~~</td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>	۵	0/	8)	ALI	. «LLD	~~~~	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	(0/	4)		0
	Gross Alpha	12	3.0000	7.000 (7.0	00(00-	1/ • 7.0	8) (000	Gol	a Clemente 17 Course Well 5 ml. NNW	7.0000{ 1/ 4} { 7.000- 7.000}	<lld< td=""><td>(</td><td>01</td><td>6)</td><td></td><td>0</td></lld<>	(01	6)		0

ъ Р

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Madium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	LOHER Limit Of Detection (LLD)	All Indicator Locations Mean(f) Range	Location With Highest Annual Mean Name, Distance Mean(f) and Direction Range	Number o Control Locations Nonrouti Mean(f) Reported Range Measurem	ne I
Table 9e Drinking Water Quarterly Composi (pCi/l)	te					
	Gross Beta	12 0.5000	13.875(8/ 8) (8.000-20.000)	San Clemente 17.75(4/ Golf Course Well (16.000-20.00) 3.5 ml. NNW	<pre>4) 9.2500(4/ 4) 0)) (7.000-12.000 }</pre>	
	H-3	12 100	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td><lld 0="" 0<="" 4}="" td="" {=""><td>•</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld 0="" 0<="" 4}="" td="" {=""><td>•</td></lld></td></lld<>	<lld 0="" 0<="" 4}="" td="" {=""><td>•</td></lld>	•
	Ru-103	12 25	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td><pre><lld (="" 0="" 0<="" 4)="" pre=""></lld></pre></td><td></td></lld<></td></lld>	ALL <lld< td=""><td><pre><lld (="" 0="" 0<="" 4)="" pre=""></lld></pre></td><td></td></lld<>	<pre><lld (="" 0="" 0<="" 4)="" pre=""></lld></pre>	
	Zr (Nb)-95	12 30	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 0<="" 4)="" td=""><td></td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 0<="" 4)="" td=""><td></td></lld></td></lld<>	<lld (="" 0="" 0<="" 4)="" td=""><td></td></lld>	

20APR87

. 1

20apr 87

٥

٥

T

. ...

•

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and y Total Number of Analyses Performed		OWER Limit of Detection (LLD)	AII	oca Mea	dica tion n(f) nge	S	N	nd i	Location Highest Ann Distance Direction	ual	h Mean Mean(f) Range	Conti	ol L Mear Rar	1(f)	tion	8	Non	ber of routine orted surements
Table 10 Shoreline Sedimer Semi-Annual Compo (pCi/g)	it osite		Annan (2013) , 1944, 2027, 2011	·. ·						an an an Anna an Anna Anna Anna Anna An		· · · · · · · · · · · · · · · · · · ·		•			- <u>-</u> -	· · · ·	
	Ag-110m	8	0.0700	<lld< th=""><th>. (</th><th>0/</th><th>6)</th><th>AL</th><th>L <1</th><th>LD</th><th></th><th>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</th><th>•</th><th>LLD</th><th>(</th><th>0/</th><th>-2)</th><th>•</th><th>0</th></lld<>	. (0/	6)	AL	L <1	LD		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	•	LLD	(0/	-2)	•	0
	Ce-141	8	0.1000	<lld< td=""><td>(</td><td>0/</td><td>6)</td><td>ALI</td><td>L <1</td><td>LD</td><td></td><td></td><td></td><td>LLD</td><td>(</td><td>0/</td><td>2)</td><td>•</td><td>0</td></lld<>	(0/	6)	ALI	L <1	LD				LLD	(0/	2)	•	0
	C e-1 44	8,	0.2000	<lld< td=""><td>(</td><td>0/</td><td>6)</td><td>ALI</td><td>L (1</td><td>LD</td><td></td><td>20 09 09 49 49 49</td><td></td><td>LLD</td><td>(</td><td>0/</td><td>2)</td><td></td><td>0</td></lld<>	(0/	6)	ALI	L (1	LD		20 09 09 49 49 49		LLD	(0/	2)		0
	Co-57	8	0.0500	<lld< td=""><td>٩</td><td>0/</td><td>6)</td><td>ALI</td><td>L (1</td><td>LD</td><td></td><td>400 AND 400 GAN 600 L</td><td></td><td>LLD</td><td>ſ</td><td>0/</td><td>2)</td><td></td><td>0</td></lld<>	٩	0/	6)	ALI	L (1	LD		400 AND 400 GAN 600 L		LLD	ſ	0/	2)		0
	Co-58	8	0.0500	<lld< td=""><td>(</td><td>0/</td><td>6)</td><td>ALI</td><td>L <1</td><td>LD</td><td></td><td></td><td>•</td><td>LLD</td><td>(</td><td>0/</td><td>2)</td><td>•</td><td>0</td></lld<>	(0/	6)	ALI	L <1	LD			•	LLD	(0/	2)	•	0
	Co-60	8	0.0500	<lld< td=""><td>(</td><td>0/</td><td>6)</td><td>ALI</td><td>L <1</td><td>LD</td><td></td><td>فية في حق الله</td><td></td><td></td><td>(</td><td>0/</td><td>2)</td><td></td><td>0</td></lld<>	(0/	6)	ALI	L <1	LD		فية في حق الله			(0/	2)		0
	CS-134 .	8	0.0500	<lld< td=""><td>(</td><td>0/</td><td>6)</td><td>ALI</td><td>. <1</td><td>LD .</td><td></td><td>ويت هي الله وي</td><td></td><td>LLD</td><td>(</td><td>0/</td><td>2)</td><td></td><td>0</td></lld<>	(0/	6)	ALI	. <1	LD .		ويت هي الله وي		LLD	(0/	2)		0
	Cs-137	8	0.0500	<lld< td=""><td>C</td><td>01</td><td>6)</td><td>ALI</td><td>L <1</td><td>LD</td><td></td><td>a) a) () () ()</td><td></td><td>LLD</td><td>(</td><td>01</td><td>2)</td><td></td><td>. 0</td></lld<>	C	01	6)	ALI	L <1	LD		a) a) () () ()		LLD	(01	2)		. 0
	Fe-59	8	0.2000	<lld< td=""><td>(</td><td>0/</td><td>6)</td><td>AL</td><td>L <1</td><td>LD</td><td></td><td>an an an an an</td><td><</td><td>LLD</td><td>(</td><td>0/</td><td>2)</td><td></td><td>0</td></lld<>	(0/	6)	AL	L <1	LD		an an an an an	<	LLD	(0/	2)		0

1

B-20

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Nedium or Pathuay Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	LOWER Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location Wi Highest Annua Name, Distance and Direction		Control Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 10 Shoreline Sedimen Semi-Annual Compo (pCi/g)		· · · · · · · · · · · · · · · · · · ·					
	1-131	80,5000	<lld (="" 0="" 6)<="" td=""><td>ALL (LLD</td><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld>	ALL (LLD		<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0
	K-40	8 2.0000	14.217(6/ 6) (12.900-16.600)	Newport Beach (North End) 30 ml. NW	17.65(2/ (17.500-17.80	2) 17.65(2/ 2) 0) (17.500-17.800)	0
	Nn-54	8 0.0500	<lld (="" 07="" 6)<="" td=""><td>ALL <lld< td=""><td>*****</td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>*****</td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<>	*****	<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0
	Mo (T c) - 99m	8 300	<lld (="" 0="" 6)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>) 0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>) 0</td></lld></td></lld<>		<lld (="" 0="" 2)<="" td=""><td>) 0</td></lld>) 0
	Ra-226	8 0.1000	0.1900(6/ 6} (0.120- 0.370)	Newport Beach (North End) 30 ml. NH	0.3050(2/ (0.240- 0.37	2) 0.3050(2/ 2) 0) (0.240- 0.370)	0
	Ru-103	8 0.1000	<lld (="" 07="" 6)<="" td=""><td>ALL «LLD</td><td></td><td><pre><lld (="" 0="" 2)="" <="" pre=""></lld></pre></td><td></td></lld>	ALL «LLD		<pre><lld (="" 0="" 2)="" <="" pre=""></lld></pre>	
	Ru-106	8 0.3000	<lld (="" 0="" 6)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>) 0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>) 0</td></lld></td></lld<>		<lld (="" 0="" 2)<="" td=""><td>) 0</td></lld>) 0
n i t	Th-228	8 0.1000	0.1883(6/ 6) (0.120- 0.390)	Newport Beach (North End) 30 ml, NH	0.7200(2/ (0.450- 0.99	2) 0.7200(2/ 2) 0) (0.450- 0.990)	0
, , , , , , , , , , , , , , , , , , ,	Zn-65	8 0.2000	<lld (="" 0="" 6)<="" td=""><td>ALL <lld< td=""><td>وب ه تل الله عل_ا</td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>وب ه تل الله عل_ا</td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<>	وب ه تل الله عل _ا	<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0

20APR 87

۵

C

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Hedium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit Of Detection (LLD)	All Indicator Locations Mean(f) Range	Location with Highest Annual Name, Distance and Direction	n Mean Mean(f) Range	Control Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 10 Shoralina Sadiment Sami-Annual Compos (PCi/g)							
2	(Nb)-95	80.1000	<lld (="" 0="" 6)<="" td=""><td>ALL <lld< td=""><td>(3) the day on an</td><td><lld (="" 0="" 2<="" td=""><td>B 0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>(3) the day on an</td><td><lld (="" 0="" 2<="" td=""><td>B 0</td></lld></td></lld<>	(3) the day on an	<lld (="" 0="" 2<="" td=""><td>B 0</td></lld>	B 0

· · · ·

÷.,

.

۳

B-22

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	LOWER Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location W Highest Annu Name, Distance and Direction	lith la l Me an Mean(f) Range	Control Loc ations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 11 Ocean Bottom Sedi Semi-Annual Compo (pCi/g)			· · · · · ·	·•.			
	Ag-110m	10 0.0500	<lld (="" 0="" 8)<="" th=""><th>ALĻ <lld< th=""><th>****</th><th><lld (="" 07="" 2)<="" th=""><th>0</th></lld></th></lld<></th></lld>	ALĻ <lld< th=""><th>****</th><th><lld (="" 07="" 2)<="" th=""><th>0</th></lld></th></lld<>	****	<lld (="" 07="" 2)<="" th=""><th>0</th></lld>	0
	Ce-141	10 0.0800	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td>200 400 400 400 400</td><td>«LLD (0/ 2)</td><td>0</td></lld<></td></lld>	ALL <lld< td=""><td>200 400 400 400 400</td><td>«LLD (0/ 2)</td><td>0</td></lld<>	200 400 400 400 400	«LLD (0/ 2)	0
	Ce-144	10 0.1500	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0
	Co-57	10 0.0400	<lld 0="" 8}<="" td="" {=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0
	Co-58	10 0.0400	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>Q</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>Q</td></lld></td></lld<>		<lld (="" 0="" 2)<="" td=""><td>Q</td></lld>	Q
	Co-60	10 0,0400	0.0600(1/ 8) (0.060- 0.060)	Unit 1 Outfall 0.5 mi. H	0.0600(1/ (0.060- 0.06	2) <lld (="" 0="" 2)<br="">0)</lld>	0
	Cs-134	10 0.0400	<lld (="" 0="" 8)<="" td=""><td>ALL «LLD</td><td>200 230 Am 400 mg</td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld>	ALL «LLD	200 230 Am 400 mg	<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0
ана на селото на село При селото на селото н При селото на селото н	Cs-137	10 0.0400	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0
	Fe-59	10 0.1500	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td></td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td></td></lld></td></lld<>		<lld (="" 0="" 2)<="" td=""><td></td></lld>	

20APR 87

.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San Onofre Nuclear Generating Station

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location Highest Anr Name, Distance and Direction		ontrol Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 11 Ocean Bottom Sedi Semi-Annual Compo (pci/g)	Bents Site				· · · · · · · · · · · · · · · · · · ·	an an Araba An Araba An Araba An Araba	· · · · · · · · · · · · · · · · · · ·
	1-131	10 0.4000	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0
. • 1	K-40	10 1.5000	12.675(8/ 8) (10.600-15.200)	Newport Beach 30 mi. NW	13.9(2/ 2 (13.200-14.600	13.9(2/ 2) (13.200-14.600)	0
· · · · · ·	Mn-54	10 0.0400	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0
	no (tc)-99 m	10 230	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td>«LLD (0/ 2)</td><td>0</td></lld<></td></lld>	ALL <lld< td=""><td></td><td>«LLD (0/ 2)</td><td>0</td></lld<>		«LLD (0/ 2)	0
	Ra-226	10 0.0800	0.3437(8/ 8) (0.160- 0.560)	Unit l Outfall 0.5 mi. H	0.5500(2/ 2) (0.540- 0.560)	0.2350(2/ 2) { 0.220- 0.250 }	0
8	Ru-103	10 0.0800	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0
6	tu-106	10 0,2000		ALL <lld< td=""><td></td><td>«LLD (0/ 2)</td><td>0</td></lld<>		«LLD (0/ 2)	0
	Th-228	10 0.0800	0.4000(8/ 8) (0.120- 0.700)	Unit 1 Outfall 0.5 mi. W	0.6700(2/ 2) (0.640- 0.700)	0.4550(2/ 2) (0.420- 0.490)	0
	ľn-65	10 1.5000	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td>(12 co) op da en</td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>(12 co) op da en</td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<>	(12 co) op da en	<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0

φ

B-24

Reporting period: January 01, 1986 to December 31, 1986

Type and Lower Limit All Indicator Lo Medium or Pathway Total Number of Locations High	ocation with		Number of
Medium or Pathway Total Number of Locations High Sampled (Unit of Analyses Detection Mean(f) Name, Dis of Measurement) Performed (LLD) Range and Direc	nest Annual Mean stance Mean(f) ction Range	Control Locations Mean(f) Range	Nonroutine Reported Measurements
Table 11 Ocean Bottom Sediments Semi-Annual Composite (pCi/g)			
Zr(Nb)-95 10 0.0800 <lld (="" 0="" 8)="" <lld<="" all="" td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld>		<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0
		• *	

20APR 87

0

0 8 5

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Y Total Number of Analyses Performed	Lower Lim of Detection (LLD)	Loca	ndicator ations an(f) ange	Location Highest Ann Name, Distance and Direction			Locati n(f) nge	ons	Number of Nonroutine Reported Measurements
Table 12a Non-Migratory Mar Quarterly Composi (pCi/g) (flesh t)	lte				<u> </u>	• • • • • • • • • • • • • • • • • • •	······································	· · ·		
bay musse l	Ag-110m	6 0,0700	<lld (<="" th=""><th>0/ 4)</th><th>ALL <lld< th=""><th></th><th><lld< th=""><th>(0</th><th>/ 01</th><th>0</th></lld<></th></lld<></th></lld>	0/ 4)	ALL <lld< th=""><th></th><th><lld< th=""><th>(0</th><th>/ 01</th><th>0</th></lld<></th></lld<>		<lld< th=""><th>(0</th><th>/ 01</th><th>0</th></lld<>	(0	/ 01	0
bay mussel	Ce-141	4 0.0700	<lld< td=""><td>0/ 4)</td><td>ALL <lld< td=""><td>ap 20 au 19 40</td><td><lld< td=""><td>(0</td><td>/ 0]</td><td>0</td></lld<></td></lld<></td></lld<>	0/ 4)	ALL <lld< td=""><td>ap 20 au 19 40</td><td><lld< td=""><td>(0</td><td>/ 0]</td><td>0</td></lld<></td></lld<>	ap 20 au 19 40	<lld< td=""><td>(0</td><td>/ 0]</td><td>0</td></lld<>	(0	/ 0]	0
bay mussel	Ce-144	4 0.0700	<lld (<="" td=""><td>0/ 4]</td><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(0</td><td>/ 01</td><td>0</td></lld<></td></lld<></td></lld>	0/ 4]	ALL <lld< td=""><td></td><td><lld< td=""><td>(0</td><td>/ 01</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(0</td><td>/ 01</td><td>0</td></lld<>	(0	/ 01	0
bay mussel	Co-57	4 0.0100	<lld (<="" td=""><td>0/ 4)</td><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(0</td><td>/ 01</td><td>0</td></lld<></td></lld<></td></lld>	0/ 4)	ALL <lld< td=""><td></td><td><lld< td=""><td>(0</td><td>/ 01</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(0</td><td>/ 01</td><td>0</td></lld<>	(0	/ 01	0
bay mussel	Co-58	6 0.0100	0.0100((0.010	1/ 4) - 0.010)	Units 2/3 Outfall 0.7 mi. SSW	0.0100(1/ 3 (0.010- 0.010) <lld)</lld 	(0	/ 0)	0
bay mussel	Co-60	6 0.0070	0.0117((0.007	4/ 4) - 0.019)	Units 2/3 Outfall 0.7 mi. SSW	0.0120(3/ 3 (0.007- 0.019	5) «LLD))	· (0.	/ 01	0
bay mussel	C9-134	4 0.0100	<lld (<="" td=""><td>0/ 4)</td><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(0,</td><td>0]</td><td>0</td></lld<></td></lld<></td></lld>	0/ 4)	ALL <lld< td=""><td></td><td><lld< td=""><td>(0,</td><td>0]</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(0,</td><td>0]</td><td>0</td></lld<>	(0,	0]	0
bay mussel	Cs-13 7	4 0.0030	<lld (<="" td=""><td>0/ 4)</td><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(0</td><td>• 0)</td><td>0</td></lld<></td></lld<></td></lld>	0/ 4)	ALL <lld< td=""><td></td><td><lld< td=""><td>(0</td><td>• 0)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(0</td><td>• 0)</td><td>0</td></lld<>	(0	• 0)	0
bay mussel	Fe-59	4 0.0700	<lld (<="" td=""><td>0/ 4)</td><td>ALL <lld< td=""><td>80 80 45 80 45</td><td><lld< td=""><td>(04</td><td>/ 0)</td><td>. 0</td></lld<></td></lld<></td></lld>	0/ 4)	ALL <lld< td=""><td>80 80 45 80 45</td><td><lld< td=""><td>(04</td><td>/ 0)</td><td>. 0</td></lld<></td></lld<>	80 80 45 8 0 45	<lld< td=""><td>(04</td><td>/ 0)</td><td>. 0</td></lld<>	(04	/ 0)	. 0

į

φ

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San Onofre Nuclear Generating Station

B-26

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	LOHER Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location (Highest Anno Name, Distance and Direction		Control Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 12a Non-Migratory Mar Quarterly Composi (pCi/g) (flesh ty)	te				:	1045 (1046) 1045 (1046) 1050	
bay mussel	H-3 Aqueous	4 0.0500	<lld (="" 0="" 4)<="" th=""><th>ALL <lld< th=""><th></th><th><lld (="" 0="" 0)<="" th=""><th>0</th></lld></th></lld<></th></lld>	ALL <lld< th=""><th></th><th><lld (="" 0="" 0)<="" th=""><th>0</th></lld></th></lld<>		<lld (="" 0="" 0)<="" th=""><th>0</th></lld>	0
bay mussel	H-3 Bound	4 3.0000	<lld (="" 0="" 4)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
bay mussel	1-131	4 0.2000	<lld (="" 0="" 4)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
bay muşsel	K-40	4 0.2000	0.7175(4/ 4) (0.670- 0.750)	Units 2/3 Outfall 0.7 mi. SSW	0.7333(3/ 3 (0.700- 0.750	3) <lld (="" 0="" 0)<br="">))</lld>	0
bay mussel	Mn-54	4 0.0100	<lld (="" 07="" 4)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
	Mo (Tc)-99m	4 10	<lld (="" 0="" 4)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
bay mussel	Ra-226	4 0.0300	<lld (="" 0="" 4)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
bay mussel	Ru-103	4 0.0300	<lld (="" 0="" 4)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
bay mussel	Ru-106	4 0.0700	<lld (="" 0="" 4)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0

11.1

٥

8

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

> Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Type and Redium or Pathuay Total Number Sampled (Unit of Analyses of Measurement) Performed		Lower Limit of Detection (LLD)	Loca Mea	dicator tions n(f) nge	Location Highest An Name, Distance and Direction	Hth Inual Mean Mean(f) Range	Control Lo Mean(Rang	f)	Number of Nonroutine Reported Measurements
Table 12a Non-Migratory Mar Quarterly Compos (pC8/g) (flesh t	ite						······································	· · · ·	· · · · · · · · · · · · · · · · · · ·
bay mussel	Th-228	4 0.0300	<lld (<="" th=""><th>0/ 4)</th><th>ALL <lld< th=""><th>79646</th><th><lld< th=""><th>(0/ 0</th><th>) ⁽¹</th></lld<></th></lld<></th></lld>	0/ 4)	ALL <lld< th=""><th>79646</th><th><lld< th=""><th>(0/ 0</th><th>) ⁽¹</th></lld<></th></lld<>	79646	<lld< th=""><th>(0/ 0</th><th>) ⁽¹</th></lld<>	(0/ 0) ⁽¹
bay mussel	Zn-65	% 0.0700	<lld td="" {<=""><td>0/ 4)</td><td>ALL (LLD</td><td></td><td><lld< td=""><td>(0/ 0)</td><td>) ()</td></lld<></td></lld>	0/ 4)	ALL (LLD		<lld< td=""><td>(0/ 0)</td><td>) ()</td></lld<>	(0/ 0)) ()
bay Bussel	Zr (Nb)–95	6 0.0300	<lld (<="" td=""><td>0/ 4)</td><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 0)</td><td>) 0</td></lld<></td></lld<></td></lld>	0/ 4)	ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 0)</td><td>) 0</td></lld<></td></lld<>		<lld< td=""><td>(0/ 0)</td><td>) 0</td></lld<>	(0/ 0)) 0
black perch	Ag-110m	12 0.0700	<lld (<="" td=""><td>0/ 8)</td><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 4)</td><td>) 0 .</td></lld<></td></lld<></td></lld>	0/ 8)	ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 4)</td><td>) 0 .</td></lld<></td></lld<>		<lld< td=""><td>(0/ 4)</td><td>) 0 .</td></lld<>	(0/ 4)) 0 .
black perch	Ce-1 41	12 0.0700	<lld (<="" td=""><td>0/ 8)</td><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 4)</td><td>) 0</td></lld<></td></lld<></td></lld>	0/ 8)	ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 4)</td><td>) 0</td></lld<></td></lld<>		<lld< td=""><td>(0/ 4)</td><td>) 0</td></lld<>	(0/ 4)) 0
black perch	Ce-144	12 0.0700	<lld (<="" td=""><td>0/ 8)</td><td>ALL <lld< td=""><td>00000</td><td><lld< td=""><td>(0/ 4)</td><td>) 0</td></lld<></td></lld<></td></lld>	0/ 8)	ALL <lld< td=""><td>00000</td><td><lld< td=""><td>(0/ 4)</td><td>) 0</td></lld<></td></lld<>	00000	<lld< td=""><td>(0/ 4)</td><td>) 0</td></lld<>	(0/ 4)) 0
	Co-57	12 0.0100	<lld (<="" td=""><td>0/ 8)</td><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 4)</td><td>0</td></lld<></td></lld<></td></lld>	0/ 8)	ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 4)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(0/ 4)</td><td>0</td></lld<>	(0/ 4)	0
black perch	Co-58	12 0.0100	<lld (<="" td=""><td>0/ 8)</td><td>ALL <lld< td=""><td></td><td><lld< td=""><td>{ 0/ 4}</td><td>0</td></lld<></td></lld<></td></lld>	0/ 8)	ALL <lld< td=""><td></td><td><lld< td=""><td>{ 0/ 4}</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>{ 0/ 4}</td><td>0</td></lld<>	{ 0/ 4}	0
black perch	Co-60	12 0.0070	0.0100(2/ 8) • 0.012)	Unit 1 Outfall Ø. 6 mi. HSH	0.0100(2/ 4 { 0.008- 0.012) <lld< td=""><td>(0/ 4)</td><td>0</td></lld<>	(0/ 4)	0

-

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	LoHer Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location Highest An Name, Distance and Direction		ntrol Locations Mean(f) Range	Number of Nonroutine Reported Measurement
Table 12a Non-Migratory Mar Quarterly Composi (pCI/g) (flesh ty	te			· .			
black perch	Cs-134	12 0.0100	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td>«LLD (0/ 4)</td><td>0</td></lld<></td></lld>	ALL <lld< td=""><td></td><td>«LLD (0/ 4)</td><td>0</td></lld<>		«LLD (0/ 4)	0
black perch	Cs-137	12 0.0030	0.0064(7/ 8) (0.005- 0.009)	Unit 1 Outfall 0.6 mi. WSH	0.0070(4/ 4) (0.005- 0.009)	0.0055(3/ 4) (0.004- 0.007)	
black perch	Fe-59	12 0.0700	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
black parch	H-3 Aqueous	12 0.0500	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
black parch	H-3 Bound	12 3.0000	<lld (="" 0∕="" 8)<="" td=""><td>ALL «LLD</td><td></td><td><lld (="" 0="" 4]<="" td=""><td>0</td></lld></td></lld>	ALL «LLD		<lld (="" 0="" 4]<="" td=""><td>0</td></lld>	0
black perch	1-131	12 0.2000	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td><u>0</u>, 0, 0, 0, 0</td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><u>0</u>, 0, 0, 0, 0</td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>	<u>0</u> , 0, 0, 0, 0	<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
black perch	K-40	12 0.2000	2.4125(8/ 8) (1.800- 2.800)	Unit l Outfall 0.6 mi. HSH	2.4750(4/ 4) (2.300- 2.700)	2.3000(4/ 4) (2.000- 2.500)	
black perch	Mn-54	12 0.0100	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
black perch	Mo (T c) - 99m	12 10	<lld (="" 07="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0

B-28

۰.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San onofre Nuclear Generating Station

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Redium or Pathway Sampled (Unit of Measurement)	sampled (Unit of Analyses		n or Pathway Total Number Ed (Unit of Analyses		Pathway Total Number of (Unit of Analyses Detect)		LOWER Limit of Detection (LLD)	All Indicator Locations Mean(f) Range			tor	Location Highest Ann Name, Distance and Direction	with ual Mean Mean(f) Range	Control L Mean Ran	(1)		5	Number of Nonroutine Reported Measurements
Table 12a Non-Migratory Mar Quarterly Compos (pC1/g) (flesh t)	ite										· . · .							
black perch	Ra-226	12	0.0300	<lld< th=""><th>ļ</th><th>0/</th><th>8)</th><th>ALL <lld< th=""><th>00 (m) an es</th><th><lld< th=""><th>ſ</th><th>0/</th><th>4)</th><th>0</th></lld<></th></lld<></th></lld<>	ļ	0/	8)	ALL <lld< th=""><th>00 (m) an es</th><th><lld< th=""><th>ſ</th><th>0/</th><th>4)</th><th>0</th></lld<></th></lld<>	00 (m) an es	<lld< th=""><th>ſ</th><th>0/</th><th>4)</th><th>0</th></lld<>	ſ	0/	4)	0				
black perch	Ru-103	12	0.0300	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALL «LLD</td><td>0 4 5 5 ¥</td><td><lļd< td=""><td>ſ</td><td>0/</td><td>4)</td><td>0</td></lļd<></td></lld<>	(0/	8)	ALL «LLD	0 4 5 5 ¥	<lļd< td=""><td>ſ</td><td>0/</td><td>4)</td><td>0</td></lļd<>	ſ	0/	4)	0				
black perch	Ru-106	12	0.0700	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALL «LLD</td><td>80 Gr 43 46 46</td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<>	(0/	8)	ALL «LLD	80 Gr 43 46 46	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<>	(0/	4)	0				
black perch	Th-228	12	0.0300	<lld< td=""><td>Ø</td><td>0/</td><td>8)</td><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<></td></lld<>	Ø	0/	8)	ALL <lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<>	(0/	4)	0				
black parch	Zn-65	12	0.0700	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>6)</td><td>0</td></lld<></td></lld<></td></lld<>	(0/	8)	ALL <lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>6)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/</td><td>6)</td><td>0</td></lld<>	(0/	6)	0				
black perch	Zr (Hb)-95	12	0.0300	<lld< td=""><td>٥</td><td>0/</td><td>8)</td><td>ALL <lld< td=""><td>5 2 3 4 4</td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<></td></lld<>	٥	0/	8)	ALL <lld< td=""><td>5 2 3 4 4</td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<>	5 2 3 4 4	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<>	(0/	4)	0				
keyhole limpet	Ag-110m	4	0.0700	<lld< td=""><td>6</td><td>0/</td><td>0)</td><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<></td></lld<>	6	0/	0)	ALL <lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<>	(0/	4)	0				
keyhole limpet	Ce-1 41	4	0.0700	<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>ALL <lld< td=""><td>at) an an an</td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<></td></lld<>	(0/	0)	ALL <lld< td=""><td>at) an an an</td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<>	at) an an an	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<>	(0/	4)	0				
keyhole limpet	Ce- 144	4	0.0700	<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>ALL <lld< td=""><td>ల్ ల ల ల ల</td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<></td></lld<>	(0/	0)	ALL <lld< td=""><td>ల్ ల ల ల ల</td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<>	ల్ ల ల ల ల	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<>	(0/	4)	0				

20APR87

0

B- 30

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Type and Medium or Pathway Total Number Sampled (Unit of Analyses of Measurement) Performed			Wer Limit of etection (LLD)	M	cat	ions (f)		Loc Highe Name, Dist and Direct		th Mean Mean(f) Range	Control L Mean Ran	(f)	ions	Non Rep	ber of routine orted surements
Table 12a Non-Higratory Mar Quarterly Composi (pCi/g) (flesh ty	ine te pe)														
keyhole limpet	Co-57	6	0.0100	<lld< th=""><th>(</th><th>0/</th><th>0)</th><th>ALL <lld< th=""><th></th><th>*****</th><th><lld< th=""><th>Ç</th><th>0/</th><th>4)</th><th>0</th></lld<></th></lld<></th></lld<>	(0/	0)	ALL <lld< th=""><th></th><th>*****</th><th><lld< th=""><th>Ç</th><th>0/</th><th>4)</th><th>0</th></lld<></th></lld<>		*****	<lld< th=""><th>Ç</th><th>0/</th><th>4)</th><th>0</th></lld<>	Ç	0/	4)	0
keyhole limpet	Co-58	4	0.0100	<lld< td=""><td>(</td><td>07</td><td>01</td><td>ALL <lld< td=""><td>. *</td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>٥</td></lld<></td></lld<></td></lld<>	(07	01	ALL <lld< td=""><td>. *</td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>٥</td></lld<></td></lld<>	. *		<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>٥</td></lld<>	(0/	4)	٥
adings timber	<u> </u>	Ā	0.0100		-		v .,	ALLINLLD			(LLD		U /	7)	U
keyhola limpet	Co-60	4	0.0070	(LLD	(0/	0)	ALL «LLD	•		<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<>	(0/	4)	0
keyhole limpet	Cs-134	4	0.0100	<lld< td=""><td>C</td><td>0/</td><td>0)</td><td>ALL <lld< td=""><td></td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<></td></lld<>	C	0/	0)	ALL <lld< td=""><td></td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<>			<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<>	(0/	4)	0
keyhole limpet	Cs-137	4	0.0030	«LLD	(0/	Ô)	ALL <lld< td=""><td></td><td></td><td>· «LLD</td><td>(</td><td>0/</td><td>4)[*]</td><td>0</td></lld<>			· «LLD	(0/	4) [*]	0
keyhole limpet	Fe-59	4	0.0700	<lld< td=""><td></td><td>0/</td><td>0)</td><td>ALL <lld< td=""><td></td><td></td><td>«LLD</td><td>۲</td><td>:: 0∕</td><td>4)</td><td>0</td></lld<></td></lld<>		0/	0)	ALL <lld< td=""><td></td><td></td><td>«LLD</td><td>۲</td><td>:: 0∕</td><td>4)</td><td>0</td></lld<>			«LLD	۲	:: 0∕	4)	0
	· · ·						;		· •		21 ¹	·.			_
keyhole limpet	H-3 Aqueous	4	0,0500	<lld< td=""><td>(</td><td>0/</td><td>Ó)</td><td>ALL <lld< td=""><td></td><td></td><td><lld< td=""><td>, (,</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<></td></lld<>	(0/	Ó)	ALL <lld< td=""><td></td><td></td><td><lld< td=""><td>, (,</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<>			<lld< td=""><td>, (,</td><td>0/</td><td>4)</td><td>0</td></lld<>	, (,	0/	4)	0
keyhola limpet	H-3 Bound	4	3.0000	<lld< td=""><td>(</td><td>07</td><td>0)</td><td>ALL «LLD</td><td></td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<>	(07	0)	ALL «LLD			<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<>	(0/	4)	0
keyhole limpet	1-131	4	0.2000	<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>ALL <lld< td=""><td></td><td></td><td><lld< td=""><td></td><td>/ ./ 0∕</td><td>4)</td><td>0</td></lld<></td></lld<></td></lld<>	(0/	0)	ALL <lld< td=""><td></td><td></td><td><lld< td=""><td></td><td>/ ./ 0∕</td><td>4)</td><td>0</td></lld<></td></lld<>			<lld< td=""><td></td><td>/ ./ 0∕</td><td>4)</td><td>0</td></lld<>		/ ./ 0∕	4)	0
		•			•	¥-	- /	v rad tip 🔌 in in in				•	-		-

· .

a

0

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San onofre Nuclear Generating Station

Docket No. 50-361 San Djego County, Californja

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	LOHER Limit of Detection (LLD)		Loc Me	ndi ati an(ang	ons f]		Location Highest Anr Name, Distance and Direction		ontrol Lo Mean(Rang	f) –	n s	Number Nonrout Reporte Measure	i lne Id
Table 12a Hon-Higratory Mari Quarterly Composit (pGi/g) (flesh ty)	ine te pe)						~				×			· <u>······</u> ·····························
keyhole limpet (K-40	6 0,2000	<lli< th=""><th>D</th><th>(</th><th>0/</th><th>0)</th><th>Newport Beach 30 ml. NW</th><th>0.8875{ 4/ 4 { 0.680- 1.020</th><th></th><th></th><th>(4 () () () () () () () () () () () () ()</th><th></th><th></th></lli<>	D	(0/	0)	Newport Beach 30 ml. NW	0.8875{ 4/ 4 { 0.680- 1.020			(4 () () () () () () () () () () () () ()		
keyhole limpet	4n-54	% 0.0100	<lli< td=""><td>D</td><td>(</td><td>0/</td><td>0)</td><td>ALL <lld< td=""><td>.09 al 40 49 cm</td><td><lld< td=""><td>(0/</td><td>4)</td><td>0</td><td>· .</td></lld<></td></lld<></td></lli<>	D	(0/	0)	ALL <lld< td=""><td>.09 al 40 49 cm</td><td><lld< td=""><td>(0/</td><td>4)</td><td>0</td><td>· .</td></lld<></td></lld<>	.09 al 40 49 cm	<lld< td=""><td>(0/</td><td>4)</td><td>0</td><td>· .</td></lld<>	(0/	4)	0	· .
keyhole limpet	10 (TC)-992	4 10	<lli< td=""><td>D</td><td>(</td><td>0/</td><td>0)</td><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(0/</td><td>.4)</td><td>. 0</td><td></td></lld<></td></lld<></td></lli<>	D	(0/	0)	ALL <lld< td=""><td></td><td><lld< td=""><td>(0/</td><td>.4)</td><td>. 0</td><td></td></lld<></td></lld<>		<lld< td=""><td>(0/</td><td>.4)</td><td>. 0</td><td></td></lld<>	(0/	.4)	. 0	
keyhole limpet A	Ra-226	4 0.0300	<lli< td=""><td>)</td><td>(</td><td>0/</td><td>0)</td><td>ALL «LLD</td><td></td><td><lld< td=""><td>(0/</td><td>4)</td><td>0</td><td>•</td></lld<></td></lli<>)	(0/	0)	ALL «LLD		<lld< td=""><td>(0/</td><td>4)</td><td>0</td><td>•</td></lld<>	(0/	4)	0	•
kayhole limpet A	lu-103	4 0.0300	<ll1< td=""><td></td><td>(</td><td>0/</td><td>0)</td><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(0/</td><td>4)</td><td>0</td><td></td></lld<></td></lld<></td></ll1<>		(0/	0)	ALL <lld< td=""><td></td><td><lld< td=""><td>(0/</td><td>4)</td><td>0</td><td></td></lld<></td></lld<>		<lld< td=""><td>(0/</td><td>4)</td><td>0</td><td></td></lld<>	(0/	4)	0	
keyhole limpet A	tu-106	4 0.0700	<lli< td=""><td></td><td>((</td><td>0/</td><td>0)</td><td>ALL <lld< td=""><td>07 65 20 kB ca</td><td><lld< td=""><td>. 07</td><td>4)</td><td>0</td><td></td></lld<></td></lld<></td></lli<>		((0/	0)	ALL <lld< td=""><td>07 65 20 kB ca</td><td><lld< td=""><td>. 07</td><td>4)</td><td>0</td><td></td></lld<></td></lld<>	07 65 20 kB ca	<lld< td=""><td>. 07</td><td>4)</td><td>0</td><td></td></lld<>	. 07	4)	0	
keyhole limpet T	[h-228	\$ 0.0300	<lli< td=""><td></td><td>((</td><td>0/</td><td>0)</td><td>ALL <lld< td=""><td>755ca</td><td><lld< td=""><td>(0/</td><td>4)</td><td>0</td><td></td></lld<></td></lld<></td></lli<>		((0/	0)	ALL <lld< td=""><td>755ca</td><td><lld< td=""><td>(0/</td><td>4)</td><td>0</td><td></td></lld<></td></lld<>	755ca	<lld< td=""><td>(0/</td><td>4)</td><td>0</td><td></td></lld<>	(0/	4)	0	
keyhole limpet z	In-65	4 0.0700	<llI</ll		((0/	0)	ALL <lld< td=""><td></td><td><lld< td=""><td>0/</td><td>4)</td><td>0</td><td></td></lld<></td></lld<>		<lld< td=""><td>0/</td><td>4)</td><td>0</td><td></td></lld<>	0/	4)	0	
keyhole limpet z	(Nb)-95	6 0.0300	<lli< td=""><td></td><td>((</td><td>)/</td><td>0)</td><td>ALL <lld< td=""><td></td><td><lld< td=""><td>0/</td><td>4)</td><td>0</td><td></td></lld<></td></lld<></td></lli<>		(()/	0)	ALL <lld< td=""><td></td><td><lld< td=""><td>0/</td><td>4)</td><td>0</td><td></td></lld<></td></lld<>		<lld< td=""><td>0/</td><td>4)</td><td>0</td><td></td></lld<>	0/	4)	0	

В

B-32

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Type and Tedium or Pathuay Total Number Sampled (Unit of Analyses of Measurement) Performed		LoHer Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location и Highest Annu Name, Distance and Direction		Control Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 12a Non-Migratory Mari Quarterly Composit (pC1/g) (flesh typ							
sea hare /	Ag-110m	4 0.0700	<lld (="" 0="" 4)<="" th=""><th>ALL <lld< th=""><th>****</th><th><lld (="" 0="" 0)<="" th=""><th>0</th></lld></th></lld<></th></lld>	ALL <lld< th=""><th>****</th><th><lld (="" 0="" 0)<="" th=""><th>0</th></lld></th></lld<>	****	<lld (="" 0="" 0)<="" th=""><th>0</th></lld>	0
sea hare (Ce-141	4 0.0700	<lld (="" 07="" 4)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
sea hare (C e-14 4	4 0.0700	<lld (="" 0="" 4)<="" td=""><td>ALL <lld< td=""><td></td><td><pre></pre></td><td>0</td></lld<></td></lld>	ALL <lld< td=""><td></td><td><pre></pre></td><td>0</td></lld<>		<pre></pre>	0
sea hare (Co-57	4 0.0100	<lld (="" 0="" 4)<="" td=""><td>ALL <lld< td=""><td></td><td><lld 0="" 0}<="" td="" {=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld 0="" 0}<="" td="" {=""><td>0</td></lld></td></lld<>		<lld 0="" 0}<="" td="" {=""><td>0</td></lld>	0
sea hare (Co-58	4 0.0100	0.0220(2/ 4) (0.018- 0.026)	Unit 1 Outfall 0.6 mi. HSW	0.0220(2/ 3 (0.018- 0.020	3) <lld (="" 0="" 0)<br="">5)</lld>	0
sea hare (Co-60	4 0.0070	0.0687(4/ 4) (0.014- 0.136)	Unit 1 Outfall 0.6 mi. WSH	0.0870(3/ 3 (0.041- 0.130	8) (LLD (0/ 0) 5) Alt (0
sea hare (CS-134	4 0.0100	<lld (="" 0="" 4)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
sea hare	Cs-137	4 0.0030	<lld (="" 0="" 4)<="" td=""><td>ALL «LLD</td><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld>	ALL «LLD		<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
sea hare	Fe-59	4 0.0700	<lld (="" 0="" 4)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0

0

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San onofre nuclear generating station

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Y Total Number of Analyses Performed	LOWER Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location i Highest Annu Name, Distance and Direction		Control Loca Mean(f) Range		Number of Nonroutine Reported Measurements
Table 12a Non-Aigratory Mar Quarterly Composi (pCi/g) (flesh ty	118	· · · · ·	· .					
sea hare	H-3 Aqueous	4 0.0500	<lld (="" 0="" 4)<="" th=""><th>ALL <lld< th=""><th></th><th><lld (<="" th=""><th>0/ 0}</th><th>) 0</th></lld></th></lld<></th></lld>	ALL <lld< th=""><th></th><th><lld (<="" th=""><th>0/ 0}</th><th>) 0</th></lld></th></lld<>		<lld (<="" th=""><th>0/ 0}</th><th>) 0</th></lld>	0/ 0}) 0
ses hare	H-3 Bound	4 3.0000	<lld (="" 0="" 4)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (<="" td=""><td>0/ 0)</td><td>) 0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (<="" td=""><td>0/ 0)</td><td>) 0</td></lld></td></lld<>		<lld (<="" td=""><td>0/ 0)</td><td>) 0</td></lld>	0/ 0)) 0
see hare	1-131	6 0.2000	<lld (="" 0="" 4)<="" td=""><td>ALL <lld< td=""><td>***</td><td>«LLD (</td><td>0/ 0)</td><td>0</td></lld<></td></lld>	ALL <lld< td=""><td>***</td><td>«LLD (</td><td>0/ 0)</td><td>0</td></lld<>	***	«LLD (0/ 0)	0
sea hare	K-40	€ 0.2000	0.9925(4/ 4) (0.840- 1.200)	Units 2/3 Outfall 0.7 mi. SSW	1.2000(1/ 1 (1.200- 1.200	L) <lld (<br="">))</lld>	0/ 0)	0
sea hare	Mn-54	% 0.0100	<lld (="" 0="" 4)<="" td=""><td>ALL <lld< td=""><td>900 das cas cas cas</td><td><lld (<="" td=""><td>0/ 0)</td><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>900 das cas cas cas</td><td><lld (<="" td=""><td>0/ 0)</td><td>0</td></lld></td></lld<>	900 das cas cas cas	<lld (<="" td=""><td>0/ 0)</td><td>0</td></lld>	0/ 0)	0
869 hare	No (T c) - 992	6 10	<lld (="" 0="" 4)<="" td=""><td>ALL <lld< td=""><td></td><td>«LLD (</td><td>0/ 0)</td><td>0</td></lld<></td></lld>	ALL <lld< td=""><td></td><td>«LLD (</td><td>0/ 0)</td><td>0</td></lld<>		«LLD (0/ 0)	0
sea hare	Ra-226	4 0,0300	0.0400(1/ 4) (0.040- 0.040)	Unit l Outfall 0.6 ml. HSH	0.0400(1/ 3 (0.040- 0.040	8) «LLD ())	0/ 0}	0
see hare	Ru-103	4 0.0300	<lld (="" 0="" 4)<="" td=""><td>ALL <lld< td=""><td>40 6 6 6 4</td><td><lld (<="" td=""><td>0/ 0)</td><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>40 6 6 6 4</td><td><lld (<="" td=""><td>0/ 0)</td><td>0</td></lld></td></lld<>	40 6 6 6 4	<lld (<="" td=""><td>0/ 0)</td><td>0</td></lld>	0/ 0)	0
see here	Ru-106	4 0.0700	<lld (="" 0="" 4)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (<="" td=""><td>0/ 0)</td><td>O</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (<="" td=""><td>0/ 0)</td><td>O</td></lld></td></lld<>		<lld (<="" td=""><td>0/ 0)</td><td>O</td></lld>	0/ 0)	O

E

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San onofre nuclear generating station

B-34

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

ampled (Unit of Analyses of Measurement) Performed		Pathway Total Number d (Unit of Analyses Dete		Loca Mea	ndicator ntions n(f) nnge	Location Highest An Name, Distance and Direction	With nual Mean Co Mean(f) Range	ntrol L Mear Rar	(f)	ons	Number of Nonroutine Reported Measurement
Table 12a Non-Migratory Mar Quarterly Composit (pCi/g) (flesh ty)	te										
sea hare	rh-228	4	0.0300	0.0440 (0.038	(2/4) 3-0.050)	Unit 1 Outfall 0.6 mi. HSH	0.0440(2/ 3) (0.038- 0.050)	<lld< th=""><th>[(</th><th>)/ 0.</th><th>) 0</th></lld<>	[()/ 0.) 0
sea hare	Zn-65	4	0.0700	<lld (<="" td=""><td>(0/ 4)</td><td>ALL <lld< td=""><td></td><td><lld< td=""><td>((</td><td>)/ 0</td><td></td></lld<></td></lld<></td></lld>	(0/ 4)	ALL <lld< td=""><td></td><td><lld< td=""><td>((</td><td>)/ 0</td><td></td></lld<></td></lld<>		<lld< td=""><td>((</td><td>)/ 0</td><td></td></lld<>	(()/ 0	
sea hare	Zr (Nb)-95	4	0.0300	<lld (<="" td=""><td>(0/ 4)</td><td>ALL <lld< td=""><td></td><td><lld< td=""><td>((</td><td>)/ 0</td><td>) - ² 0</td></lld<></td></lld<></td></lld>	(0/ 4)	ALL <lld< td=""><td></td><td><lld< td=""><td>((</td><td>)/ 0</td><td>) - ² 0</td></lld<></td></lld<>		<lld< td=""><td>((</td><td>)/ 0</td><td>) - ² 0</td></lld<>	(()/ 0) - ² 0
sheephead	Ag-110m	12	0.0700	(LLD (0/ 8)	ALL <lld< td=""><td></td><td><lld< td=""><td></td><td>)/ 4</td><td></td></lld<></td></lld<>		<lld< td=""><td></td><td>)/ 4</td><td></td></lld<>)/ 4	
sheephead	Ce-141	12	0.0700	<lld< td=""><td>[0/ 8]</td><td>ALL <lld< td=""><td></td><td>«LLD</td><td>• (- (</td><td>) 4</td><td>0</td></lld<></td></lld<>	[0/ 8]	ALL <lld< td=""><td></td><td>«LLD</td><td>• (- (</td><td>) 4</td><td>0</td></lld<>		«LLD	• (- () 4	0
sheephead	Ce-144	12	0.0700	«LLD	(0/ 8)	ALL <lld< td=""><td></td><td><lld< td=""><td></td><td>)/ 4</td><td>)</td></lld<></td></lld<>		<lld< td=""><td></td><td>)/ 4</td><td>)</td></lld<>)/ 4)
sheephead	Co-57	12	0.0100	<lld< td=""><td>(0/ 8)</td><td>ALL «LLD</td><td></td><td><lld< td=""><td>•</td><td>)∕ 4 Nga 20</td><td>) 0</td></lld<></td></lld<>	(0/ 8)	ALL «LLD		<lld< td=""><td>•</td><td>)∕ 4 Nga 20</td><td>) 0</td></lld<>	•)∕ 4 Nga 20) 0
a si fi	Co-58	12	0.0100	0.0150 (0.01	(2/ 8) 5- 0.015)	Unit 1 Outfall 0.6 mi. HSH	0.0150(2/ 4) (0.015- 0.015)	<lld< td=""><td>((</td><td></td><td>0</td></lld<>	((0
sheephead	Co-60	12	0.0070	0.0365	(2/ 8) 7- 0.046)	Unit 1 Outfall 0.6 mi. HSH	0.0365(2/ 4) { 0.027- 0.046)	<lld< td=""><td></td><td>4</td><td>0</td></lld<>		4	0

· 1

20APR 87

6

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and 7 Total Number of Analyses Performed	-	LOHER Limit Of Detection (LLD)		. L	oci Mei	ati	cat ons f) je			Location Highest Annu Name, Distance and-Direction	ilt) Jal	Mean Co Mean(f) Range		Loc an(f ange)	one	3	Numb Nonr Repo Meas	outi	ne
Table 12a Non-Migratory Mar Quarterly Composi (pCi/g) [flesh ty	te					-							······································	· · ·	· · · ·		. :-	• •			
sheephead	Cs-134	12	0.0100	<	LLD) ((0/	8)		ALL «LLD			<ll)< th=""><th>D (</th><th>0</th><th>/</th><th>4)</th><th></th><th>G</th><th>-</th></ll)<>	D (0	/	4)		G	-
sheephead	Cs-137	12	0.0030		.01 0.				8) 35)		Unit l Outfall 0.6 mi. HSH	0. (0167(4/ 4) 0.005- 0.035)	0.0					• •	0	
sheephead	Fe-59	12	0.0700	<	LLD) ([0/	8)		ALL «LLD			<ll!< td=""><td>D (</td><td>0</td><td>/</td><td>4)</td><td>•</td><td>0</td><td></td></ll!<>	D (0	/	4)	•	0	
Cheepheed	H-3 Aqueous	12	0.0500	(LLD) (Ţ	0,/	8)		ALL «LLD		~ [*]	<lli< td=""><td>D (</td><td>0.</td><td>/</td><td>4)</td><td></td><td>0</td><td></td></lli<>	D (0.	/	4)		0	
sheephead	H-3 Bound	12	3.0000	<	LLD	• ([0/	8)	·	ALL <lld< td=""><td></td><td>(12 Cal 22 Ca 45</td><td><lli< td=""><td>D (</td><td>0.</td><td></td><td>4)</td><td></td><td>0</td><td></td></lli<></td></lld<>		(12 Cal 22 Ca 45	<lli< td=""><td>D (</td><td>0.</td><td></td><td>4)</td><td></td><td>0</td><td></td></lli<>	D (0.		4)		0	
sheephead	E-131	12	0,2000	<	LLD		[0/	8)	ł	ALL <lld< td=""><td></td><td>63 6 6 5</td><td>«LLI</td><td>D (</td><td>0</td><td></td><td>6)</td><td></td><td>0</td><td></td></lld<>		63 6 6 5	«LLI	D (0		6)		0	
shaephead	K-40	12	0,2000	2 (.76 2.	25 (100)		8) (00)		Units 2/3 Outfall 0.7 mi. SSH	2. (9000(4/ 4) 2.700- 3.200)	2.6	000(.300	- 3	, .00	4) 0)		Ŏ	
sheephead	Mn-54	12	0.0100	<	LLD	(I	0/	8)		ALL <lld< td=""><td></td><td></td><td><lli< td=""><td>D (</td><td>0</td><td>/</td><td>4)</td><td></td><td>0</td><td></td></lli<></td></lld<>			<lli< td=""><td>D (</td><td>0</td><td>/</td><td>4)</td><td></td><td>0</td><td></td></lli<>	D (0	/	4)		0	
sheaphead	Mo(Tc)-99m	12	10	<	LLD	6	[0/	8)	ł	ALL «LLD			<lli< td=""><td>) (</td><td>0.</td><td></td><td>4]</td><td></td><td>0</td><td></td></lli<>) (0.		4]		0	

í

β

B- 36

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Туре and Medium or Pathнay Total Number Bampled (Unit of Analyses of Measurement) Performed		LOHER Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location wit Highest Annual Name, Distance and Direction	h Mean Mean(f) Range	Control Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 12a Non-Migratory Mari Quarterly Composit (pCi/g) (flesh ty)	te i i i i i i i i i i i i i i i i i i i				· · ·	and and a second se Second second second Second second	
sheephead I	ta-226	12 0.0300	<lld (="" 0="" 8)<="" th=""><th>ALL <lld< th=""><th></th><th><lld (="" 0="" 4)<="" th=""><th>0</th></lld></th></lld<></th></lld>	ALL <lld< th=""><th></th><th><lld (="" 0="" 4)<="" th=""><th>0</th></lld></th></lld<>		<lld (="" 0="" 4)<="" th=""><th>0</th></lld>	0
sheephead i	Ru-103	12 0.0300	<lld (="" 0="" 8)<="" td=""><td>ALL KLLD</td><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld>	ALL KLLD		<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
sheephead	Ru-106	12 0.0700	<lld (="" 0="" 8)<="" td=""><td>ALL «LLD</td><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld>	ALL «LLD		<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
sheephead	rh-228	12 0.0300	<lld &)<="" (="" 0="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
sheephead	zn-65	12 0.0700	<lld 0="" 8}<="" td="" {=""><td>ALL «LLD</td><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld>	ALL «LLD		<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
sheephead	Zr (Nb)-95	12 0.0300	<lld (="" 0="" 8)<="" td=""><td>ALL «LLD</td><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld>	ALL «LLD		<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
spiny lobster	Ag-110m	12 0.0700	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td> ·</td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td> ·</td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>	·	<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
spiny lobster	Ce-141	12 0.0700	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td>~~~~</td><td><lld (="" 0="" 4)<="" td=""><td>C</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>~~~~</td><td><lld (="" 0="" 4)<="" td=""><td>C</td></lld></td></lld<>	~~~~	<lld (="" 0="" 4)<="" td=""><td>C</td></lld>	C
spiny lobster	Ce-144	12 0.0700	<lld (="" 0="" 8)<="" td=""><td>ALL «LLD</td><td>****</td><td><lld (="" 07="" 4)<="" td=""><td>0</td></lld></td></lld>	ALL «LLD	****	<lld (="" 07="" 4)<="" td=""><td>0</td></lld>	0

· . .

0 8

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San onofre nuclear generating station

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Type and Medium or Pathжay Total Number Bampled (Unit of Analyses of Measurement) Performed		Lower Lim of Detection (LLD)	Locations	Location Highest Anr Name, Distance and Direction	Hith Nual Nean Mean(f) Range	Control Locati Mean(f) Range	Number of ons Nonroutine Reported Measurements
Table 12a Non-Migratory Mar Quarterly Compost (pC1/g) (flesh ty	108		<u> </u>			· · · · ·	
spiny lobster	Co-57	12 0.0100	<lld (="" 0="" 8<="" th=""><th>) ALL <lld< th=""><th></th><th><lld (="" th="" ·o<=""><th>/ 4} 0</th></lld></th></lld<></th></lld>) ALL <lld< th=""><th></th><th><lld (="" th="" ·o<=""><th>/ 4} 0</th></lld></th></lld<>		<lld (="" th="" ·o<=""><th>/ 4} 0</th></lld>	/ 4} 0
spiny lobster	Co-58	12 0.0100	<lld (="" 0="" 8<="" td=""><td>) ALL <lld< td=""><td>80 40 40 40 m</td><td>«LLD (0</td><td>/ 4) 0</td></lld<></td></lld>) ALL <lld< td=""><td>80 40 40 40 m</td><td>«LLD (0</td><td>/ 4) 0</td></lld<>	80 40 40 40 m	«LLD (0	/ 4) 0
spiny lobster	Co-60	12 0.0070	0.0116(5/ 8 (0.008- 0.017)) Unit 1 Outfall 0.6 ml. HSH	0.0130(3/ (0,008- 0.01	4) <lld (="" 0<br="">7)</lld>	 4) 0 5%
spiny lobster	Cs-134	12 0.0100	<lld (="" 0="" 8<="" td=""><td>) ALL <lld< td=""><td>د به نه به د</td><td>«LLD (0</td><td>/ 4) 0</td></lld<></td></lld>) ALL <lld< td=""><td>د به نه به د</td><td>«LLD (0</td><td>/ 4) 0</td></lld<>	د به نه به د	«LLD (0	/ 4) 0
spiny lobster	Cs-137	12 0.0030	0.0053(8/ 8 (0.004- 0.012)) Units 2/3 Outfall 0.7 mi. S6H	0.0061(4/ ((0.004- 0.01)	4) 0.0036(3 2) { 0.003- 0	/ 4) O .004)
spiny lobster	Fe-59	12 0.0700	<lld (="" 8<="" q="" td=""><td>) ALL <lld< td=""><td>****</td><td>«LLD (0.</td><td>/ 4) 0</td></lld<></td></lld>) ALL <lld< td=""><td>****</td><td>«LLD (0.</td><td>/ 4) 0</td></lld<>	****	«LLD (0.	/ 4) 0
spiny lobster	H-3 Aqueous	12 0.0500	<lld (="" 0="" 8<="" td=""><td>) ALL <lld< td=""><td>20 20 20 20 20</td><td><lld (="" 0.<="" td=""><td>/ 4) 0</td></lld></td></lld<></td></lld>) ALL <lld< td=""><td>20 20 20 20 20</td><td><lld (="" 0.<="" td=""><td>/ 4) 0</td></lld></td></lld<>	20 20 20 20 20	<lld (="" 0.<="" td=""><td>/ 4) 0</td></lld>	/ 4) 0
spiny lobster	H-3 Bound	12 3.0000	<lld (="" 0="" 8<="" td=""><td>) ALL «LLD</td><td>***</td><td><lld (="" 0.<="" td=""><td>/ 4) 0</td></lld></td></lld>) ALL «LLD	***	<lld (="" 0.<="" td=""><td>/ 4) 0</td></lld>	/ 4) 0
spiny lobster	I-131	12 0.2000	<lld (="" 0="" 8<="" td=""><td>) ALL <lld< td=""><td></td><td><lld (="" 04<="" td=""><td>/ 4] 0</td></lld></td></lld<></td></lld>) ALL <lld< td=""><td></td><td><lld (="" 04<="" td=""><td>/ 4] 0</td></lld></td></lld<>		<lld (="" 04<="" td=""><td>/ 4] 0</td></lld>	/ 4] 0

i

.

.

မှ

de la

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

B- 38

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Туре and Medium or Pathнay Total Number Sampled (Unit of Analyses of Measurement) Performed		Hay Total Number of t of Analyses Detection			All Indicator Locations Mean(f) Range			Location Highest Ann Name, Distance and Direction	ntrol Locat Mean(f) Range	tions	Number of Nonroutine Reported Measurements	
Table 12a Non-Migratory Mar Quarterly Composi (pCi/g) (flesh ty	lte	-						•				
spiny lobster	K-40	12	0.2000	2.600 (1,9	0(8) (00)	Newport Beach 30 ml. NW	2.8750(4/ 4) (2.500- 3.200)	2.8750((2.500-	4/ 4) 3,200)	0
spiny lobster	Hn-54	12	0.0100	<lld< td=""><td>C</td><td>Q/</td><td>8)</td><td>ALL <lld< td=""><td></td><td></td><td>0/ 4)</td><td>. 0</td></lld<></td></lld<>	C	Q/	8)	ALL <lld< td=""><td></td><td></td><td>0/ 4)</td><td>. 0</td></lld<>			0/ 4)	. 0
spiny lobster	Mo(Tc)-99m	12	10	<lld< td=""><td>ſ</td><td>Ņ٧</td><td>8)</td><td>ALL <lld< td=""><td>*****</td><td>«LLD (</td><td>0/ 4)</td><td>0</td></lld<></td></lld<>	ſ	Ņ٧	8)	ALL <lld< td=""><td>*****</td><td>«LLD (</td><td>0/ 4)</td><td>0</td></lld<>	*****	«LLD (0/ 4)	0
spiny lobster	Ra-226	12	0.0300	<lld< td=""><td>l</td><td>0/</td><td>8)</td><td>ALL <lld< td=""><td></td><td>«LLD (</td><td>0/ 4]</td><td>0</td></lld<></td></lld<>	l	0/	8)	ALL <lld< td=""><td></td><td>«LLD (</td><td>0/ 4]</td><td>0</td></lld<>		«LLD (0/ 4]	0
spiny lobster	Ru-103	12	0.0300	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALL <lld< td=""><td>#0 = 0 =</td><td><lld (<="" td=""><td>0/ 4)</td><td>0</td></lld></td></lld<></td></lld<>	(0/	8)	ALL <lld< td=""><td>#0 = 0 =</td><td><lld (<="" td=""><td>0/ 4)</td><td>0</td></lld></td></lld<>	#0 = 0 =	<lld (<="" td=""><td>0/ 4)</td><td>0</td></lld>	0/ 4)	0
spiny lobster	Ru-106	12	0.0700	<lld< td=""><td>(</td><td>Q/</td><td>8)</td><td>ALL <lld< td=""><td></td><td><lld (<="" td=""><td>0/ 4)</td><td>0</td></lld></td></lld<></td></lld<>	(Q/	8)	ALL <lld< td=""><td></td><td><lld (<="" td=""><td>0/ 4)</td><td>0</td></lld></td></lld<>		<lld (<="" td=""><td>0/ 4)</td><td>0</td></lld>	0/ 4)	0
spiny lobster	Th-228	12	0.0300	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALL <lld< td=""><td></td><td>«LLD (</td><td>0/ 4)</td><td>0</td></lld<></td></lld<>	(0/	8)	ALL <lld< td=""><td></td><td>«LLD (</td><td>0/ 4)</td><td>0</td></lld<>		«LLD (0/ 4)	0
spiny lobster	Zn-65	12	0.0700	<lld< td=""><td>Ĺ</td><td>0/</td><td>8)</td><td>ALL <lld< td=""><td></td><td><lld (<="" td=""><td>0/ 4]</td><td>0</td></lld></td></lld<></td></lld<>	Ĺ	0/	8)	ALL <lld< td=""><td></td><td><lld (<="" td=""><td>0/ 4]</td><td>0</td></lld></td></lld<>		<lld (<="" td=""><td>0/ 4]</td><td>0</td></lld>	0/ 4]	0
spiny lobster	Zr (Nb)-95	12	0.0300	<lld< td=""><td>(</td><td>٥٧</td><td>8)</td><td>ALL «LLD</td><td></td><td>«LLD (</td><td>0/ 4)</td><td>0</td></lld<>	(٥٧	8)	ALL «LLD		«LLD (0/ 4)	0

3

 $(p_{i}) \in \{1, \dots, n\}$

.

20APR 87

۵

0

- 1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

2

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limi Of Detection (LLD)	E Aļ	Loi	cat	icat ions (f) ge	or		Location Highest Annu me, Distance d Direction	lith ual Mean Mean(f) Range	Control L Mean Ran	(†)	tion	6	Number of Nonroutine Reported Measurements
Table 12b Non-Migratory Mar Quarterly Composi (pCi/g) (bone typ	te									**************************************	· .·		· · · · ·	· · ·	
bay mussa l	Ag-110m	6 0.0100	<ll< th=""><th>.D</th><th></th><th>0/</th><th>4)</th><th>ALL</th><th><lld< th=""><th>(20 mà liệt kết đặc</th><th>«LLD</th><th>(</th><th>0/</th><th>0)</th><th>0</th></lld<></th></ll<>	.D		0/	4)	ALL	<lld< th=""><th>(20 mà liệt kết đặc</th><th>«LLD</th><th>(</th><th>0/</th><th>0)</th><th>0</th></lld<>	(20 mà liệt kết đặc	«LLD	(0/	0)	0
bay mussel	Ca-141	% 0.1000	<ll< td=""><td>D</td><td>(</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td>an an an an</td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>. O</td></lld<></td></lld<></td></ll<>	D	(0/	4)	ALL	<lld< td=""><td>an an an an</td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>. O</td></lld<></td></lld<>	an an an an	<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>. O</td></lld<>	(0/	0)	. O
bay mussel	Ce-144	4 0.1000	<ll< td=""><td>D</td><td>(</td><td>01</td><td>4)</td><td>ALL</td><td><lld< td=""><td>که هه به که رو</td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<></td></ll<>	D	(01	4)	ALL	<lld< td=""><td>که هه به که رو</td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<>	که هه به که رو	<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<>	(0/	0)	0
bay mussel	Co-57	4 0.0300	<ll< td=""><td>D</td><td>۱</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>C</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<></td></ll<>	D	۱	0/	4)	ALL	<lld< td=""><td></td><td><lld< td=""><td>C</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>C</td><td>0/</td><td>0)</td><td>0</td></lld<>	C	0/	0)	0
bay mussel	Co-58	4 0.0200	<ll< td=""><td>D</td><td>(</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td>103 60 60 60 40</td><td><lld< td=""><td>Ç</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<></td></ll<>	D	(0/	4)	ALL	<lld< td=""><td>103 60 60 60 40</td><td><lld< td=""><td>Ç</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<>	103 60 60 60 40	<lld< td=""><td>Ç</td><td>0/</td><td>0)</td><td>0</td></lld<>	Ç	0 /	0)	0
bay mussel	Co-60	4 0.0100	<ll< td=""><td>D</td><td>(</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<></td></ll<>	D	(0/	4)	ALL	<lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<>	(0/	0)	0
bay mussel	Cs-134	6 0.0300	<ll< td=""><td>D</td><td>(</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<></td></ll<>	D	(0/	4)	ALL	<lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<>	(0/	0)	0
bay sussel	Cs-137	6 0.0300	<ll< td=""><td>D</td><td>(</td><td>0/</td><td>4)</td><td></td><td><lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<></td></ll<>	D	(0/	4)		<lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<>	(0/	0)	0
bay Bussel	Fe-59	4 0.1000	<ll< td=""><td>D</td><td>(</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<></td></ll<>	D	(0/	4)	ALL	<lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<>	(0/	0)	0

ŧ

β

B-40

Docket No. 50-361 San Diego County, California

.

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed		Lower Limit of Detection (LLD)	LC	ica 1eal	dica tion n(f) nge	S		Locat Highest me, Distan d Directio		Control L Mean Ran	(f)		15	Nonro	er of outine rted urements
Table 12b Non-Migratory Mar Quarterly Composi (pCi/g) (bone typ	te										<u></u>					
bay mussel	1-131	4	0.3000	<lld< th=""><th>(</th><th>٩,</th><th>4)</th><th>ALL</th><th><lld< th=""><th></th><th><lld< th=""><th>ſ</th><th>0/</th><th>Ō)</th><th></th><th>0</th></lld<></th></lld<></th></lld<>	(٩,	4)	ALL	<lld< th=""><th></th><th><lld< th=""><th>ſ</th><th>0/</th><th>Ō)</th><th></th><th>0</th></lld<></th></lld<>		<lld< th=""><th>ſ</th><th>0/</th><th>Ō)</th><th></th><th>0</th></lld<>	ſ	0/	Ō)		0
bay mussel	K-40	4	0,2000	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>(*</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	(0/	4)	ALL	<lld< td=""><td></td><td><lld< td=""><td>(*</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(*</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<>	(*	0/	0)		0
bay mussel	Mn-54	4	0.0300	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td></td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	(0/	4)	ALL	<lld< td=""><td></td><td><lld< td=""><td></td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<>		<lld< td=""><td></td><td>0/</td><td>0)</td><td></td><td>0</td></lld<>		0/	0)		0
bay aussel	Mo(TC)-99m		60	<lld< td=""><td>· (</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>, (</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	· (0/	4)	ALL	<lld< td=""><td></td><td><lld< td=""><td>, (</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<>		<lld< td=""><td>, (</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<>	, (0/	0)		0
bay mussel	Ra-226	4	0.0500	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td>50 et in in in</td><td><lld< td=""><td></td><td>0/</td><td>0)</td><td>· ·</td><td>0</td></lld<></td></lld<></td></lld<>	(0/	4)	ALL	<lld< td=""><td>50 et in in in</td><td><lld< td=""><td></td><td>0/</td><td>0)</td><td>· ·</td><td>0</td></lld<></td></lld<>	50 et in in in	<lld< td=""><td></td><td>0/</td><td>0)</td><td>· ·</td><td>0</td></lld<>		0/	0)	· ·	0
bay mussel	Ru-103	4	0.0500	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>•</td><td>0</td></lld<></td></lld<></td></lld<>	(0/	4)	ALL	<lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>•</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>•</td><td>0</td></lld<>	(0/	0)	•	0
bay mussel	Ru-106	4	0.1000	<lld< td=""><td>C</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>· .</td><td>0</td></lld<></td></lld<></td></lld<>	C	0/	4)	ALL	<lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>· .</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>· .</td><td>0</td></lld<>	(0/	0)	· .	0
bay mussel	Th-228	4	0.0500	<lld< td=""><td>C</td><td>07</td><td>4)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	C	07	4)	ALL	<lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<>	(0/	0)		0
bay mussel	zn-65	4	0.1000	<lld< td=""><td>ſ</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td>بور دو دو دو</td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>• .</td><td>0</td></lld<></td></lld<></td></lld<>	ſ	0/	4)	ALL	<lld< td=""><td>بور دو دو دو</td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>• .</td><td>0</td></lld<></td></lld<>	بور دو دو دو	<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>• .</td><td>0</td></lld<>	(0/	0)	• .	0

4

ò

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and y Total Number of Analyses Performed		Lower Limit of Detection (LLD)	Н	icat lear	dica tion n(f) nge	S		Location W Highest Annu Ime, Distance Ind Direction	ith al Mean Mean(f) Range	Control L Mean Ran	(1)	tion	8	Repor	utine
Table 12b Non-Migratory Mar Quartarly Composi (PCi/g) (bone typ	1te						<u></u>					• • •				••••••••••••••••••••••••••••••••••••••
bay mussel	Zr (Hb)-95	4	0.0600	<lld< th=""><th>(</th><th>0/</th><th>4)</th><th>ALL</th><th>. «LLD</th><th></th><th><lld< th=""><th>(</th><th>0/</th><th>0)</th><th>· .</th><th>0</th></lld<></th></lld<>	(0/	4)	ALL	. «LLD		<lld< th=""><th>(</th><th>0/</th><th>0)</th><th>· .</th><th>0</th></lld<>	(0/	0)	· .	0
black parch	Ag-110m	12	0,0100	<lld< td=""><td>ſ</td><td>0/</td><td>8)</td><td>ALL</td><td><lld< td=""><td>0 6 6 6 4</td><td><lld< td=""><td>(</td><td>0/</td><td>()</td><td>·</td><td>0</td></lld<></td></lld<></td></lld<>	ſ	0/	8)	ALL	<lld< td=""><td>0 6 6 6 4</td><td><lld< td=""><td>(</td><td>0/</td><td>()</td><td>·</td><td>0</td></lld<></td></lld<>	0 6 6 6 4	<lld< td=""><td>(</td><td>0/</td><td>()</td><td>·</td><td>0</td></lld<>	(0/	()	·	0
black perch	Ce-141	12	0.1000	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	(0/	8)	ALL	<lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	(0/	4)		0
black perch	Ce-144	12	0.1000	<lld< td=""><td>ſ</td><td>0/</td><td>8)</td><td>ALL</td><td><lld< td=""><td>6660<u>4</u></td><td><lld< td=""><td>l</td><td>0/</td><td>4)</td><td>,</td><td>0</td></lld<></td></lld<></td></lld<>	ſ	0/	8)	ALL	<lld< td=""><td>6660<u>4</u></td><td><lld< td=""><td>l</td><td>0/</td><td>4)</td><td>,</td><td>0</td></lld<></td></lld<>	6660 <u>4</u>	<lld< td=""><td>l</td><td>0/</td><td>4)</td><td>,</td><td>0</td></lld<>	l	0/	4)	,	0
black perch	Co-57	12	0.0300	<lld< td=""><td>٢</td><td>0/</td><td>8)</td><td>ALL</td><td><lld< td=""><td><u>و ند و ند و</u></td><td><lld< td=""><td></td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	٢	0/	8)	ALL	<lld< td=""><td><u>و ند و ند و</u></td><td><lld< td=""><td></td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>	<u>و ند و ند و</u>	<lld< td=""><td></td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>		0/	4)		0
black perch	Co-58	12	0.0200	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALL</td><td>. «LLD</td><td>**</td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>	(0/	8)	ALL	. «LLD	**	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	(0/	4)		0
black perch	Co-60	12	0.0100	<lld< td=""><td>۵</td><td>0/</td><td>8)</td><td>ALL</td><td><lld< td=""><td>****</td><td><lld< td=""><td>ť</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	۵	0/	8)	ALL	<lld< td=""><td>****</td><td><lld< td=""><td>ť</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>	****	<lld< td=""><td>ť</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	ť	0/	4)		0
black perch	Cs-134	12	0.0300	<lld< td=""><td>Ĺ</td><td>01</td><td>8)</td><td>ALL</td><td><lld< td=""><td></td><td>.«LLD</td><td>(</td><td>0/</td><td>4)</td><td>e</td><td>0</td></lld<></td></lld<>	Ĺ	01	8)	ALL	<lld< td=""><td></td><td>.«LLD</td><td>(</td><td>0/</td><td>4)</td><td>e</td><td>0</td></lld<>		.«LLD	(0/	4)	e	0
black perch	Cs-137	12	0.0300	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>ſ</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	(0/	8)	ALL	<lld< td=""><td></td><td><lld< td=""><td>ſ</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>		<lld< td=""><td>ſ</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	ſ	0/	4)		0

B-42

Docket No. 50-361 San Djego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lонег of Detec (LL	tion	Lo M)r	Name,	Location Highest An Distance irection	nnu al Me an 🛛 🛛 🗘	control L Mean Ran	(1)		,	Number of Nonroutine Reported Measurements
Table 12b Non-Migratory Mar Quarterly Composi (pC1/g) (bone typ	te			· · · · · · · · · · · · · · · · · · ·		-	-	• •		:		· · · · · · · · · · · · · · · · · · ·	2	а у к 1 1	
black perch	Fe-59	12 0.1	000	<lld< th=""><th>(</th><th>0/</th><th>8)</th><th>ALL «L</th><th>LD</th><th></th><th><lld< th=""><th>(</th><th>0/</th><th>4)</th><th>0</th></lld<></th></lld<>	(0/	8)	ALL «L	LD		<lld< th=""><th>(</th><th>0/</th><th>4)</th><th>0</th></lld<>	(0/	4)	0
black perch	1-131	12 0.3	5000	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALL <l< td=""><td>LD</td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<></td></l<></td></lld<>	(0/	8)	ALL <l< td=""><td>LD</td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<></td></l<>	LD		<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<>	(0/	4)	0
black perch	K-40	12 0.2	2000	0.750 (0.4	0(6/ 1.00	8) 00)	Unit 1 0,6 mi	Outfall. . WSW	0.8333(3/ 6 (0.700- 1.000	4) <lld))</lld 	(0/	4)	0
black perch	Mn-54	12 0.0	300	«LLD	C	0/	8)	ALL <l< td=""><td>LD</td><td></td><td><lld< td=""><td>(*</td><td>0/</td><td>4)</td><td>0</td></lld<></td></l<>	LD		<lld< td=""><td>(*</td><td>0/</td><td>4)</td><td>0</td></lld<>	(*	0/	4)	0
black perch	Mo(Tc)-99m	12	60	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALL «L</td><td>LD</td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<>	(0 /	8)	ALL «L	LD		<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<>	(0/	4)	0
black perch	Ra-226	12 0.0	500	<lld< td=""><td>ſ</td><td>0/</td><td>8)</td><td>ALL «L</td><td>LD</td><td>. en en en en</td><td><lld< td=""><td>ſ</td><td>0/</td><td>4)</td><td>• 0</td></lld<></td></lld<>	ſ	0/	8)	ALL «L	LD	. en en en en	<lld< td=""><td>ſ</td><td>0/</td><td>4)</td><td>• 0</td></lld<>	ſ	0/	4)	• 0
black perch	Ru-103	12 0.0	0500	<lld< td=""><td>ļ</td><td>0/</td><td>8)</td><td><u>ALL</u> (L</td><td>LD</td><td></td><td><lld< td=""><td></td><td>0/</td><td>4) a</td><td>0</td></lld<></td></lld<>	ļ	0/	8)	<u>ALL</u> (L	LD		<lld< td=""><td></td><td>0/</td><td>4) a</td><td>0</td></lld<>		0/	4) a	0
black perch	Ru-106	12 0.1	1000	«LLD	ſ	0/	8)	ALL «L	LD		<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>0</td></lld<>	(0/	4)	0
black perch	Th-228	12 0.0	0500	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALL «L</td><td>LD</td><td></td><td><lld< td=""><td>. (</td><td>0/</td><td>4)</td><td>0</td></lld<></td></lld<>	(0/	8)	ALL «L	LD		<lld< td=""><td>. (</td><td>0/</td><td>4)</td><td>0</td></lld<>	. (0/	4)	0

20APR 87

8

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San Onofre Nuclear Generating Station

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and y Total Number of Analyses Performed		LOWER Limit of Detection (LLD)	LC P)ca† [ea]	dicat tion (f) nge	5		Locat Highest me, Distar d Directio		Contròl I Meai Rai			15	Nonro	er of outine rted urements
Table 12b Non-Migratory Mar Quarterly Composi (pC1/g) (bone typ	te													· · · · · · · · · · · · · · · · · · ·	<u>, , , , , , , , , , , , , , , , , , , </u>	
black perch	Zn-65	12	0.1000	<lld< th=""><th>(</th><th>0/</th><th>8)</th><th>ALL</th><th><lld< th=""><th></th><th><lld< th=""><th>с. С. с.</th><th>0/</th><th>4)</th><th>el n e</th><th>0</th></lld<></th></lld<></th></lld<>	(0/	8)	ALL	<lld< th=""><th></th><th><lld< th=""><th>с. С. с.</th><th>0/</th><th>4)</th><th>el n e</th><th>0</th></lld<></th></lld<>		<lld< th=""><th>с. С. с.</th><th>0/</th><th>4)</th><th>el n e</th><th>0</th></lld<>	с. С. с.	0/	4)	el n e	0
black perch	Zr(Nb)-95	12	9.0600	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALL</td><td><lld< td=""><td></td><td>«LLD</td><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>	(0/	8)	ALL	<lld< td=""><td></td><td>«LLD</td><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>		«LLD	(0/	4)		0
keyhole limpet	Ag-110m	4	0.0100	<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>ALL</td><td><lld< td=""><td>-</td><td><lld.< td=""><td>. C.</td><td>0/</td><td>4)</td><td></td><td>0</td></lld.<></td></lld<></td></lld<>	(0/	0)	ALL	<lld< td=""><td>-</td><td><lld.< td=""><td>. C.</td><td>0/</td><td>4)</td><td></td><td>0</td></lld.<></td></lld<>	-	<lld.< td=""><td>. C.</td><td>0/</td><td>4)</td><td></td><td>0</td></lld.<>	. C.	0/	4)		0
keyhole limpet	Ce-141	4	0.1000	<lld< td=""><td>(</td><td>0/</td><td>0 }</td><td>ALL</td><td><lld< td=""><td></td><td>«LLD</td><td>(</td><td>0/</td><td>4)</td><td>. •</td><td>0</td></lld<></td></lld<>	(0/	0 }	ALL	<lld< td=""><td></td><td>«LLD</td><td>(</td><td>0/</td><td>4)</td><td>. •</td><td>0</td></lld<>		«LLD	(0/	4)	. •	0
keyhole limpet	Ce-144	4	0.1000	<lld< td=""><td>٩</td><td>0/</td><td>0)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>(</td><td>: 0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	٩	0/	0)	ALL	<lld< td=""><td></td><td><lld< td=""><td>(</td><td>: 0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>: 0/</td><td>4)</td><td></td><td>0</td></lld<>	(: 0/	4)		0
keyhole limpet	Co-57	4	0.0300	<lld< td=""><td>٥</td><td>0/</td><td>0)</td><td>ALL</td><td><lld .<="" td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld></td></lld<>	٥	0/	0)	ALL	<lld .<="" td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld>		<lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	(0/	4)		0
keyhole limpet	Co-58	4	0.0200	<lld< td=""><td>E</td><td>0/</td><td>0)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>•</td><td>0</td></lld<></td></lld<></td></lld<>	E	0/	0)	ALL	<lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td>•</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>•</td><td>0</td></lld<>	(0/	4)	•	0
keyhole limpet	Co-60	4	0.0100	<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>ſ</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	(0/	0)	ALL	<lld< td=""><td></td><td><lld< td=""><td>ſ</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>		<lld< td=""><td>ſ</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	ſ	0/	4)		0
keyhole limpet	Cs-134	4	0.0300	«LLD	(0/	0)	ALL	<lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	(0/	4)		0

i.

B-44

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD)	Al	Loc Me	cat	icat ions (f) 94	or		Local Highest me, Distar d Directio	n (†) nge		Loc In(f)		Repor	outine
Table 12b Non-Migratory Mari Quarterly Composit (pC1/g) (bone type	te								•		- -	- - - ·				
keyhole limpet (Cs-137	4 0.0300	<ll)< th=""><th>D</th><th>ſ</th><th>0/</th><th>0)</th><th>ALL</th><th><lld< th=""><th></th><th><lli< th=""><th>) (</th><th>0/</th><th>4)</th><th></th><th>0</th></lli<></th></lld<></th></ll)<>	D	ſ	0/	0)	ALL	<lld< th=""><th></th><th><lli< th=""><th>) (</th><th>0/</th><th>4)</th><th></th><th>0</th></lli<></th></lld<>		<lli< th=""><th>) (</th><th>0/</th><th>4)</th><th></th><th>0</th></lli<>) (0/	4)		0
keyhole limpet f	Fe-59	4 0.1000	<ll< td=""><td>Ď</td><td>ſ</td><td>0/</td><td>0)</td><td>ALL</td><td><lld< td=""><td> </td><td><lli< td=""><td>)) (</td><td>0/</td><td>.4)</td><td></td><td>0</td></lli<></td></lld<></td></ll<>	Ď	ſ	0/	0)	ALL	<lld< td=""><td> </td><td><lli< td=""><td>)) (</td><td>0/</td><td>.4)</td><td></td><td>0</td></lli<></td></lld<>	 	<lli< td=""><td>)) (</td><td>0/</td><td>.4)</td><td></td><td>0</td></lli<>)) (0/	.4)		0
keyhole limpet)	1-131	4 0,3000	<ll< td=""><td>D</td><td>(</td><td>0/</td><td>Õ)</td><td>ALL</td><td><lld< td=""><td> </td><td><ll< td=""><td>) (</td><td></td><td>4)</td><td></td><td>0</td></ll<></td></lld<></td></ll<>	D	(0/	Õ)	ALL	<lld< td=""><td> </td><td><ll< td=""><td>) (</td><td></td><td>4)</td><td></td><td>0</td></ll<></td></lld<>	 	<ll< td=""><td>) (</td><td></td><td>4)</td><td></td><td>0</td></ll<>) (4)		0
keyhole limpet	K-40	6 0.2000	<ll< td=""><td>D</td><td>(</td><td>07</td><td>0)</td><td>ALL</td><td><lld< td=""><td> • ••• •••</td><td><1.L1</td><td>) (</td><td>0/</td><td>4) 4</td><td></td><td>0</td></lld<></td></ll<>	D	(07	0)	ALL	<lld< td=""><td> • ••• •••</td><td><1.L1</td><td>) (</td><td>0/</td><td>4) 4</td><td></td><td>0</td></lld<>	 • ••• •••	<1.L1) (0/	4) 4		0
keyhole limpet	Mn-54	4 0.0300	<ll< td=""><td>D</td><td>C</td><td>0/</td><td>0)</td><td>ALL</td><td>. «LLD</td><td> </td><td><ll1< td=""><td>) (</td><td>0/</td><td>4)</td><td></td><td>0</td></ll1<></td></ll<>	D	C	0/	0)	ALL	. «LLD	 	<ll1< td=""><td>) (</td><td>0/</td><td>4)</td><td></td><td>0</td></ll1<>) (0/	4)		0
kayhola limpat P	Mo(TC)-99m	4 60	(LL	D	(0/	0)	ALL	«LLD	 	<lli< td=""><td>) (</td><td>0/</td><td>4)</td><td></td><td>0</td></lli<>) (0/	4)		0
	Ra-226	4 0.0500	(LL)	D	C	0/	0)	ALL	<lld< td=""><td> • • • • • • • •</td><td><lli< td=""><td>) (</td><td>0/</td><td>4) 2)</td><td></td><td>0</td></lli<></td></lld<>	 • • • • • • • •	<lli< td=""><td>) (</td><td>0/</td><td>4) 2)</td><td></td><td>0</td></lli<>) (0/	4) 2)		0
	Ru-103	4 0.0500	<ll< td=""><td>D</td><td>(</td><td>0/</td><td>0)</td><td>ALL</td><td><lld< td=""><td> </td><td><lli< td=""><td>) (</td><td>0/</td><td>4)</td><td></td><td>0</td></lli<></td></lld<></td></ll<>	D	(0 /	0)	ALL	<lld< td=""><td> </td><td><lli< td=""><td>) (</td><td>0/</td><td>4)</td><td></td><td>0</td></lli<></td></lld<>	 	<lli< td=""><td>) (</td><td>0/</td><td>4)</td><td></td><td>0</td></lli<>) (0/	4)		0
keyhole limpet	Ru-106	4 0.1000	<ll< td=""><td>D</td><td>(</td><td>0/</td><td>0)</td><td>ALL</td><td><lld< td=""><td> </td><td><lli< td=""><td></td><td>0/</td><td></td><td></td><td>0</td></lli<></td></lld<></td></ll<>	D	(0/	0)	ALL	<lld< td=""><td> </td><td><lli< td=""><td></td><td>0/</td><td></td><td></td><td>0</td></lli<></td></lld<>	 	<lli< td=""><td></td><td>0/</td><td></td><td></td><td>0</td></lli<>		0/			0

20APR 87

à

.

0

20APR87

0

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San onofre Nuclear Generating Station

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and 7 Total Number of Analyses Performed	Lонег Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location with Highest Annual Name, Distance and Direction	n Mean Mean(f) Range	Control Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 12b Non-Higratory Mar Quarterly Composi (pCl/g) (bone typ	ta		·				
kayhole limpet	Th-228	6 0.0500	<lld (="" 0="" 0)<="" th=""><th>ALL <lld< th=""><th></th><th><lld (="" 0="" 4)<="" th=""><th>0</th></lld></th></lld<></th></lld>	ALL <lld< th=""><th></th><th><lld (="" 0="" 4)<="" th=""><th>0</th></lld></th></lld<>		<lld (="" 0="" 4)<="" th=""><th>0</th></lld>	0
keyhole limpet	Zn-65	6 0.1000	<lld (="" 0="" 0)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>.0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>.0</td></lld></td></lld<>		<lld (="" 0="" 4)<="" td=""><td>.0</td></lld>	.0
keyhole limpet	Zr (Nb)-95	6 0.0600	<lld (="" 0="" 0)<="" td=""><td>ALL «LLD</td><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld>	ALL «LLD		<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
sheephaad	Ag-110m	12 0.0100	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td>133 90 49 49 49 49</td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>133 90 49 49 49 49</td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>	133 90 49 49 49 49	<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
sheephead	Ce-141	12 0.1000	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td>at - -</td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>at - -</td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>	at - -	<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
sheephead	Ce-144	12 0.1000	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td>ه به ه ب</td><td><lld (="" 0="" <del="">6)</lld></td><td>0</td></lld<></td></lld>	ALL <lld< td=""><td>ه به ه ب</td><td><lld (="" 0="" <del="">6)</lld></td><td>0</td></lld<>	ه به ه ب	<lld (="" 0="" <del="">6)</lld>	0
sheephead	Co-57	12 0.0300	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
sheaphead	Co-58	12 0.0200	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
sheephead	Co-60	12 0.0100	0.0200(1/ \$) (0.020- 0.020)		0200(1/ 0.020- 0.02	4) <lld (="" 0="" 4)<br="">20)</lld>	0

m

B-46

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and y Total Number of Analyses Performed	LOHER LI of Detecti (LLD)	ion	Me		lons (f)		Nam and	High	nest Annua stance stion	(th al Mean Mean(f) Range	Control L Mear Rar	1 (†)	tions	b	Number Nonrout Reporte Measure	tine ed
Table 12b Non-Migratory Mar Quarterly Compost (pCi/g) (bone typ	ite					<u>, , , , , , , , , , , , , , , , , , , </u>						· · ·	2**. 2	1 8 (Alber 1	•		e ³
sheephead	Cs-134	12 0.030)0 <1	LLD	C	0/	8)	ALL	<lld< th=""><th></th><th>.</th><th><lld< th=""><th>ſ</th><th>0/</th><th>4)</th><th></th><th>0</th></lld<></th></lld<>		.	<lld< th=""><th>ſ</th><th>0/</th><th>4)</th><th></th><th>0</th></lld<>	ſ	0/	4)		0
sheephead	Cs-137	12 0.030)0 < (LLD	. (0/	8)	ALL	<lld< td=""><td></td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4).</td><td>(</td><td>0</td></lld<></td></lld<>			<lld< td=""><td>(</td><td>0/</td><td>4).</td><td>(</td><td>0</td></lld<>	(0/	4) .	(0
șheephead	Fe-59	12 0,100)0 ((LLD	ſ	0/	8)	ALL	<lld< td=""><td></td><td></td><td><lld< td=""><td>· (</td><td>0/</td><td>4)</td><td>ť</td><td>0</td></lld<></td></lld<>			<lld< td=""><td>· (</td><td>0/</td><td>4)</td><td>ť</td><td>0</td></lld<>	· (0/	4)	ť	0
sheephead	I-131	12 0.300	D0 <	LLD	ſ	0/	8)	ALL	<lld< td=""><td></td><td></td><td><lld< td=""><td>•</td><td>0/</td><td>4)°</td><td>· · · · · · · · · · · · · · · · · · ·</td><td>0</td></lld<></td></lld<>			<lld< td=""><td>•</td><td>0/</td><td>4)°</td><td>· · · · · · · · · · · · · · · · · · ·</td><td>0</td></lld<>	•	0/	4)°	· · · · · · · · · · · · · · · · · · ·	0
sheephead	K-40	12 0.200	00 0 ().816 [0.4	7(6/ 2.0	8) (00)	Unit 0.7	s 2/3 m1.	Outfall SSW	1.3500(2/ (0.700- 2.00	4) 0.43 00) (0.	33(300-	3/ 0.60	4) 00)	1	0
sheephead	Mn-54	12 0.03	00 <	LLD	(0/	8)	ALL	«LLD			<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>- (</td><td>0</td></lld<>	(0/	4)	- (0
, sheephead	Mo(Tc)-99m	12	60 <	LLD	ſ	0/	8)	ALL	<lld< td=""><td></td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>			<lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	(0/	4)		0
sheephead	Ra-226	12 0.05	00 <	(LLD	(0/	8)	ALL	<lld< td=""><td></td><td></td><td><lld< td=""><td>. (</td><td>0/</td><td>4)</td><td>. · ·</td><td>0</td></lld<></td></lld<>			<lld< td=""><td>. (</td><td>0/</td><td>4)</td><td>. · ·</td><td>0</td></lld<>	. (0/	4)	. · ·	0
sheephead	Ru-103	12 0.05	00 4	(LLD	(0/	8)	ALL	<lld< td=""><td></td><td>*****</td><td><lld< td=""><td>• (</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>		*****	<lld< td=""><td>• (</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	• (0/	4)		0
¢						-										······	

3 . . .

1

8

r.

7

٠

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

د

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and y Total Number of Analyses Performed		Lower Limit of Detection (LLD))ca: 1ea:	dica tio n(f nge	15		Location H Highest Annu Name, Distance and Direction	ith al Mean Mean(f) Range	Control L Mear Rar	(f)		.	Number Nonrot Report Measur	utine
Table 12b Non-Migratory Mar Quarterly Composi (pCi/g) (bone typ	• 1 ne 1 te 2 c }		· · ·	<u>, , , , , , , , , , , , , , , , , , , </u>				······			<u></u>	•	• . •	· .	 .'	
sheephead	Ru-106	12	9.1000	<lld< th=""><th>Ĺ</th><th>04</th><th>- 8</th><th></th><th>ALL <lld< th=""><th>20 20 40 40 50</th><th>«LLD</th><th>(</th><th>0/</th><th>4)</th><th></th><th>0</th></lld<></th></lld<>	Ĺ	04	- 8		ALL <lld< th=""><th>20 20 40 40 50</th><th>«LLD</th><th>(</th><th>0/</th><th>4)</th><th></th><th>0</th></lld<>	20 20 40 40 50	«LLD	(0/	4)		0
sheephead	Th-228	12	0.0500	<lld< td=""><td>(</td><td>0,</td><td>/ 8</td><td></td><td>ALL <lld< td=""><td>ه چ چ چ</td><td>«LLD.</td><td>(.</td><td>0/</td><td>- 4)</td><td></td><td>0</td></lld<></td></lld<>	(0,	/ 8		ALL <lld< td=""><td>ه چ چ چ</td><td>«LLD.</td><td>(.</td><td>0/</td><td>- 4)</td><td></td><td>0</td></lld<>	ه چ چ چ	«LLD.	(.	0/	- 4)		0
shasphead	Zn-65	12	0.1000	<lld< td=""><td>(</td><td>0,</td><td>• 8</td><td>)</td><td>ALL <lld< td=""><td>(11 65 46 64) at</td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0.</td></lld<></td></lld<></td></lld<>	(0,	• 8)	ALL <lld< td=""><td>(11 65 46 64) at</td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0.</td></lld<></td></lld<>	(11 65 46 64) at	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0.</td></lld<>	(0/	4)		0.
sheephee d	Zr (Nb)-95	12	0.0600	<lld< td=""><td>(</td><td>0,</td><td>× 8</td><td>)</td><td>ALL «LLD</td><td></td><td><lld< td=""><td>ſ</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>	(0,	× 8)	ALL «LLD		<lld< td=""><td>ſ</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	ſ	0/	4)		0
spiny lobster	Ag-110m	12	0.0100	«LLD	(0,	/ 8)	ALL <lld< td=""><td></td><td><lld< td=""><td>l</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>		<lld< td=""><td>l</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	l	0/	4)		0
spiny lobster	Ce-141	12	0,1000	«LLD	(0,	* 8)	ALL «LLD	40 AN 80 40 40	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	(0/	4)		0
spiny lobster	Ce-144	12	0.1000	<lld< td=""><td>l</td><td>0,</td><td>- 8</td><td>)</td><td>ALL <lld< td=""><td>یند که این می می</td><td>«LLD</td><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>	l	0,	- 8)	ALL <lld< td=""><td>یند که این می می</td><td>«LLD</td><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	یند که این می می	«LLD	(0/	4)		0
spiny lobster	Co-57	12	0.0300	<lld< td=""><td>(</td><td>0,</td><td>. 8</td><td>)</td><td>ALL «LLD</td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>	(0,	. 8)	ALL «LLD		<lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	(0/	4)		0
spiny lobster	Co-58	12	0.0200	<lld< td=""><td>٢</td><td>0/</td><td>7 8</td><td>) /</td><td>ALL KLLD</td><td>Cité vice con con con</td><td><lld< td=""><td>l</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>	٢	0/	7 8) /	ALL KLLD	Cité vice con con con	<lld< td=""><td>l</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	l	0/	4)		0

φ

B-48

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Sampled (Unit	Type and Total Number of Analyses Performed	LOHER Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location W Highest Annu Name, Distance and Direction	al Mean C Mean(f) Range	ontrol Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 12b Non-Migratory Marin Quarterly Composite (pCi/g) (bone type)	1						
spiny lobster Co	-60	12 0.0100	0.0175(2/ 8) (0.017- 0.018)	Units 2/3 Outfall 0.7 mi. SSH	0.0180(1/ 4 (0.018- 0.018	} <lld (="" 07="" 4}<="" th=""><th>0</th></lld>	0
spiny lobster Ca	-134	12 0.0300	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td>ann 400 607 600 600</td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>ann 400 607 600 600</td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>	ann 400 607 600 600	<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
spiny lobster Ca	5-137	12 0.0300	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td> 、</td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td> 、</td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>	、	<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
spiny lobster Fe	1-59	12 0.1000	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
spiny lobster I-	-131	12 0.3000	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td>20445</td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>20445</td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>	20 44 5	<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
spiny lobster K-	-40	12 0.2000	0.9150(8/ 8) (0.800- 1.110)	Units 2/3 Outfall 0.7 mi. SSW	0.9425(4/ 4 (0.800- 1.110) 0.8450(4/ 4))) (0.620- 1.180)	0
	1-54	12 0.0300	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
spiny lobster Mo	D(TC)-99m	12 60	<lld (="" 0="" 8)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0
. E	a-226	12 0.0500	<lld (="" 0="" 8)<="" td=""><td>ALL «LLD</td><td>. <u>w</u> in m</td><td><lld (="" 0="" 4)<="" td=""><td>0</td></lld></td></lld>	ALL «LLD	. <u>w</u> in m	<lld (="" 0="" 4)<="" td=""><td>0</td></lld>	0

0

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONDFRE NUCLEAR GENERATING STATION

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Nedium or Pathway Sampled (Unit of Measurement)	Type and y Total Number of Analyses Performed	•	OHER Limit of Detection (LLD)	Lo	ocat	dicat tions n(f) nge			Loc Highe me, Dist d Direct	n Mean Mean(f) Range		Loca n(f) nge			Nonr	er of outine orted urements
Tabla 12b Non-Migratory Mar Quarterly Composi (PCi/g) (bone typ	ita									 ······		- - 		5. <u>1</u> .	•	· · · · · · · · · · · · · · · · · · ·
spiny lobster	Ru-103	12 , :	0.0500	<lld< td=""><td>ſ</td><td>07</td><td>8)</td><td>ALL</td><td><lld< td=""><td>ay in a a in a</td><td><lld< td=""><td>] (</td><td>0/</td><td>4)</td><td>· ·</td><td>0</td></lld<></td></lld<></td></lld<>	ſ	07	8)	ALL	<lld< td=""><td>ay in a a in a</td><td><lld< td=""><td>] (</td><td>0/</td><td>4)</td><td>· ·</td><td>0</td></lld<></td></lld<>	ay in a a in a	<lld< td=""><td>] (</td><td>0/</td><td>4)</td><td>· ·</td><td>0</td></lld<>] (0/	4)	· ·	0
spiny lobster	-Ru-106	12	0,1000	<lld< td=""><td>l</td><td>0/</td><td>8)</td><td>ALL</td><td><lld< td=""><td>CC (1) al a a a a</td><td><lld< td=""><td>ſ</td><td>0/</td><td>4)}</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	l	0/	8)	ALL	<lld< td=""><td>CC (1) al a a a a</td><td><lld< td=""><td>ſ</td><td>0/</td><td>4)}</td><td></td><td>0</td></lld<></td></lld<>	CC (1) al a a a a	<lld< td=""><td>ſ</td><td>0/</td><td>4)}</td><td></td><td>0</td></lld<>	ſ	0/	4)}		0
spiny lobster	Th-228	12	0.0500	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td></td><td></td><td>0</td></lld<></td></lld<></td></lld<>	(0/	8)	ALL	<lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td></td><td></td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/</td><td></td><td></td><td>0</td></lld<>	(0/			0
spiny lobster	Zn-65	12	0.1000	<lld< td=""><td>- (</td><td>0/</td><td>8)</td><td>ALL</td><td><lld< td=""><td>به ها ها ش م</td><td>«LLD</td><td>ſ</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>	- (0/	8)	ALL	<lld< td=""><td>به ها ها ش م</td><td>«LLD</td><td>ſ</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	به ها ها ش م	«LLD	ſ	0/	4)		0
spiny lobster	Zr (Nb)-95	12	0.0600	<lld< td=""><td>(</td><td>0/</td><td>8)</td><td>ALL</td><td><lld< td=""><td>راية بين حية عليه عن</td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	(0/	8)	ALL	<lld< td=""><td>راية بين حية عليه عن</td><td><lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<></td></lld<>	راية بين حية عليه عن	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td></td><td>0</td></lld<>	(0/	4)		0

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San onofre nuclear generating station

B-50

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	LOWER Limit of Detection (LLD)	L	oca Mea	dica tion n(f) nge	5	Nai an	Location Highest An me, Distance d Direction	with Inual Mean Mean(f) Range	Control L Mean Ran	(f)	ions	Non Rep	ber of routine orted surements
Table 13a Local Crops Semi-Annual Compo (pCi/g)	oșite								**************************************			· · · · · · · ·		
caul Iflower	Ag-110m	1 0.0100	<lli< th=""><th>) (</th><th>0/</th><th>1)</th><th>ALL</th><th><lld< th=""><th></th><th><lld< th=""><th>(</th><th>0/ 0</th><th>)</th><th>0</th></lld<></th></lld<></th></lli<>) (0/	1)	ALL	<lld< th=""><th></th><th><lld< th=""><th>(</th><th>0/ 0</th><th>)</th><th>0</th></lld<></th></lld<>		<lld< th=""><th>(</th><th>0/ 0</th><th>)</th><th>0</th></lld<>	(0/ 0)	0
cauliflower	Be-7	1 0.0400	<lli< td=""><td></td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>()</td><td></td><td>) .</td><td>0</td></lld<></td></lld<></td></lli<>		0/	1)	ALL	<lld< td=""><td></td><td><lld< td=""><td>()</td><td></td><td>) .</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>()</td><td></td><td>) .</td><td>0</td></lld<>	()) .	0
Cauliflower	Ce-141	1 0.0100	<lli< td=""><td>) (</td><td>0/</td><td>(1)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/ 0</td><td>7</td><td>0</td></lld<></td></lld<></td></lli<>) (0/	(1)	ALL	<lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/ 0</td><td>7</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/ 0</td><td>7</td><td>0</td></lld<>	(0/ 0	7	0
Gaul 1floner	Ce-144	1 0.0200	<lli< td=""><td>) (</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td>«LLD</td><td></td><td>0/ 0</td><td>-</td><td>0</td></lld<></td></lli<>) (0/	1)	ALL	<lld< td=""><td></td><td>«LLD</td><td></td><td>0/ 0</td><td>-</td><td>0</td></lld<>		«LLD		0/ 0	-	0
cauliflower	Co-58	1 0.0070	(LLI	D ((· Q/	' 1)	ALL	<lld< td=""><td></td><td><lld< td=""><td></td><td>0/ 0</td><td>)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td></td><td>0/ 0</td><td>)</td><td>0</td></lld<>		0/ 0)	0
caul 17 lower	60-60	1 0.0070	<lli< td=""><td>D</td><td>0,</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>•</td><td>0/ 0</td><td>•</td><td>0</td></lld<></td></lld<></td></lli<>	D	0,	1)	ALL	<lld< td=""><td></td><td><lld< td=""><td>•</td><td>0/ 0</td><td>•</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>•</td><td>0/ 0</td><td>•</td><td>0</td></lld<>	•	0/ 0	•	0
caul [flower	Cs-134	1 0.0050	<lli< td=""><td>0</td><td>(0/</td><td>, 1)</td><td>ALL</td><td><lld< td=""><td>÷</td><td><lld< td=""><td>(</td><td>0/ 0</td><td>)</td><td>0</td></lld<></td></lld<></td></lli<>	0	(0/	, 1)	ALL	<lld< td=""><td>÷</td><td><lld< td=""><td>(</td><td>0/ 0</td><td>)</td><td>0</td></lld<></td></lld<>	÷	<lld< td=""><td>(</td><td>0/ 0</td><td>)</td><td>0</td></lld<>	(0/ 0)	0
cauliflower	Cs-137	1 0.0050	<ll< td=""><td>D</td><td>[0/</td><td>· 1)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/ 0</td><td>)</td><td>0</td></lld<></td></lld<></td></ll<>	D	[0/	· 1)	ALL	<lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/ 0</td><td>)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/ 0</td><td>)</td><td>0</td></lld<>	(0/ 0)	0
cauliflower	1-131	1 0.0030	<ll:< td=""><td>D</td><td>[04</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/ 0</td><td>-</td><td>0</td></lld<></td></lld<></td></ll:<>	D	[04	1)	ALL	<lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/ 0</td><td>-</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/ 0</td><td>-</td><td>0</td></lld<>	(0/ 0	-	0

. . . .

- ----

÷.,

0

0

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San onofre nuclear generating station

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and y Total Number of Analyses Performed		of of otection (LLD)	· · Lo	ica f	licat tions h(f) hge		an	Hig me, D d Dire	ocation hest Ann stance ction		ontrol i Mear Rar	(f)	tior) 8	Number of Nonroutine Reported Measuremen
Table 13a Local Crops Semi-Annual Compo (pCi/g)	Deite										······································					
cauliflower	K-40	1	0.0700	2.200 (2.2	0(1/ 2.2	1) 200)	San 2.6	Matec ml.	Canyon NH	2.2000(1/ 1) (2.200- 2.200)		(0/	0)	0
caul (floher	Ru-103	3	6.0100	<lld< td=""><td>8</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td></td><td><lld< td=""><td>(</td><td>01</td><td>0)</td><td>0</td></lld<></td></lld<></td></lld<>	8	0/	1)	ALL	<lld< td=""><td></td><td></td><td><lld< td=""><td>(</td><td>01</td><td>0)</td><td>0</td></lld<></td></lld<>			<lld< td=""><td>(</td><td>01</td><td>0)</td><td>0</td></lld<>	(01	0)	0
caul (flower	Zr(Nb)-95	1	0.0100	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<></td></lld<>	(0/	1)	ALL	<lld< td=""><td></td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<>			<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<>	(0/	0)	0
corn	Ag-110m	1	0.0100	<lld< td=""><td>ſ</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td>87 63 68 68 68</td><td><lld< td=""><td>l</td><td>0/</td><td>0)</td><td>• 0</td></lld<></td></lld<></td></lld<>	ſ	0/	1)	ALL	<lld< td=""><td></td><td>87 63 68 68 68</td><td><lld< td=""><td>l</td><td>0/</td><td>0)</td><td>• 0</td></lld<></td></lld<>		87 63 68 68 68	<lld< td=""><td>l</td><td>0/</td><td>0)</td><td>• 0</td></lld<>	l	0/	0)	• 0
sorn	8e-7	1	0.0400	<lld< td=""><td>6</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td></td><td><lld< td=""><td>ſ</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<></td></lld<>	6	0/	1)	ALL	<lld< td=""><td></td><td></td><td><lld< td=""><td>ſ</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<>			<lld< td=""><td>ſ</td><td>0/</td><td>0)</td><td>0</td></lld<>	ſ	0/	0)	0
corn	Ce-141	1	0.0100	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td>5 6 2 </td><td><lld< td=""><td>C</td><td>.07</td><td>0)</td><td>0</td></lld<></td></lld<></td></lld<>	(0/	1)	ALL	<lld< td=""><td></td><td>5 6 2 </td><td><lld< td=""><td>C</td><td>.07</td><td>0)</td><td>0</td></lld<></td></lld<>		5 6 2 	<lld< td=""><td>C</td><td>.07</td><td>0)</td><td>0</td></lld<>	C	.07	0)	0
sorn	Ce-1 44	1	0.0200	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td>•</td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<></td></lld<>	(0/	1)	ALL	<lld< td=""><td>•</td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<>	•		<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<>	(0/	0)	0
corn	Co-58	1	0.0070	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td></td><td><lld< td=""><td>ł</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<></td></lld<>	(0/	1)	ALL	<lld< td=""><td></td><td></td><td><lld< td=""><td>ł</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<>			<lld< td=""><td>ł</td><td>0/</td><td>0)</td><td>0</td></lld<>	ł	0/	0)	0
60 7 0 3		1	0.0070	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td>«LLD</td><td></td><td>(1) 60 65 66 76</td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<></td></lld<>	(0/	1)	ALL	«LLD		(1) 60 65 66 76	<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>0</td></lld<>	(0/	0)	0

.

မှာ

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San Onofre Nuclear Generating Station

B-52

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location H Highest Annu Name, Distance and Direction	ith al Mean C Mean(f) Range	control Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 13a Local Crops Semt-Annual Compos (pCt/g)	site						
corn	Cs-134	1 0.0050	<lld (="" 0="" 1)<="" th=""><th>ALL <lld< th=""><th></th><th><lld (="" 0="" 0)<="" th=""><th>0</th></lld></th></lld<></th></lld>	ALL <lld< th=""><th></th><th><lld (="" 0="" 0)<="" th=""><th>0</th></lld></th></lld<>		<lld (="" 0="" 0)<="" th=""><th>0</th></lld>	0
corn	C s-137	1 0.0050	<lld (="" 0="" 1)<="" td=""><td>ALL- «LLD</td><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld>	ALL- «LLD		<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
corn	I-131	1 0.0030	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
corn	K-40	1 0.0700	15.4(1/ 1. (15.400-15.400)	San Mateo Canyon 2.6 ml. NW	15.4(1/ 1 (15.400-15.400	L] <lld (="" 0="" 0)<br="">))</lld>	0
corn	Ru-103	1 0.0100	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
cora	Zr (Nb)-95	1 0.0100	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td></td><td><lld 0="" 0}<="" td="" {=""><td>0 N 1</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld 0="" 0}<="" td="" {=""><td>0 N 1</td></lld></td></lld<>		<lld 0="" 0}<="" td="" {=""><td>0 N 1</td></lld>	0 N 1
cucumber	Ag-110m	1 0.0100	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0.</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0.</td></lld></td></lld<>		<lld (="" 0="" 0)<="" td=""><td>0.</td></lld>	0.
cucumber	Be-7	1 0.0400	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
cucumber	Ce-141	1 0.0100	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td>ويت وي بن وي بن</td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>ويت وي بن وي بن</td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>	ويت وي بن وي بن	<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0

ł.

.

0

0

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and y Total Number of Analyses Performed	LOHER Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location with Highest Annual Mean C Name, Distance Mean(f) and Direction Range	ontrol Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 13a Local Crops Sest-Annual Compo (pCt/g)	>site				a ta siya ya	
cucumber	Ce-144	1 0.0200	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
cucumber	Co-58	1 0.0070	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
cucumber	Co-60	1 0.0070	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
eucumber	Cs-13 4	1 0.0050	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
cucumber	Cs-137	1 0.0050	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td>«LLD (0/ 0)</td><td>0</td></lld<></td></lld>	ALL <lld< td=""><td>«LLD (0/ 0)</td><td>0</td></lld<>	«LLD (0/ 0)	0
cucumber	1-131	1 0.0030	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld<>	<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
cucumber	K-40	1 0.0700	1.0800(1/ 1) (1.080- 1.080)	1.0800{ 1/ 1 San Mateo Canyon { 1.080- 1.080 2.6 ml. NH) <lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0
cucumber	Ru-103	1 0.0100	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td>«LLD (0/ 9)</td><td>0</td></lld<></td></lld>	ALL <lld< td=""><td>«LLD (0/ 9)</td><td>0</td></lld<>	«LLD (0/ 9)	0
cucuaber	Zr(Nb)-95	1 0.0100	<lld (="" 0="" 1)<="" td=""><td>ALL (LLD</td><td><lld (="" 0="" 0)<="" td=""><td>0</td></lld></td></lld>	ALL (LLD	<lld (="" 0="" 0)<="" td=""><td>0</td></lld>	0

1

Β

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD)	All Indicator Locations Mean(f) Range		Con n(f) nge	trol Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 13a Local Crops Sem!-Annual Compo (pC!/g)	site			•			
kala	Ag-110m	2 0.0100	<lld (="" 0="" 0)<="" th=""><th>ALL <lld< th=""><th></th><th><lld (="" 0="" 2)<="" th=""><th>0</th></lld></th></lld<></th></lld>	ALL <lld< th=""><th></th><th><lld (="" 0="" 2)<="" th=""><th>0</th></lld></th></lld<>		<lld (="" 0="" 2)<="" th=""><th>0</th></lld>	0
kala	Be-7	2 0,0400	<lld (="" 0="" 0)<="" td=""><td>ALL <lld< td=""><td>.</td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>.</td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<>	.	<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0
kale	Ce-141	2 0.0106	<lld (="" 0)<="" 07="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0
kale	C e-1 44	2 0.0200	<lld (="" 0="" 0)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0
kale)	Co-58	2 0.0070	<lld (="" 0="" 0)<="" td=""><td>ALL <lld< td=""><td>8 m m</td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>8 m m</td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<>	8 m m	<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0
ka la	Co-60	2 0.0070	<lld (="" 0="" 0)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0
kale	Cs-134	2 0.0050	<lld (="" 0="" 0)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0
ka 1 @	Cs-137	2 0.0050	<lld (="" 0="" 0)<="" td=""><td>ALL <lld< td=""><td>79 49 49</td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>79 49 49</td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<>	79 49 4 9	<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0
kala	1-131	2 0.0030	<lld (="" 0="" 0)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 2)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 2)<="" td=""><td>0</td></lld>	0

20APR 87

B-54

٥

10

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Y Total Number of Analyses Performed		OWER Limit of Detection (LLD)	M	ica i lear	licat tions h(f) hge	or		Location Highest Ann e, Distance Direction	with ual Mean Cou Mean(f) Range	ntrol i Meai Rai	1(f)		18 .	Number of Nonroutine Reported Measurements
Table 13a Local Crops Semi-Annual Compo (PCi/g)	osite						<u></u>		• · ·						
kale	K-40	2	0.0700	<lld< th=""><th>(</th><th>0/</th><th>0)</th><th>SE 0 22 m</th><th>f Oceanside 1. SE</th><th>2.7000(2/ 2) { 2.600- 2.800}</th><th>2.700 (2.0</th><th></th><th>2/ 2.8</th><th>2) (00)</th><th>0</th></lld<>	(0/	0)	SE 0 22 m	f Oceanside 1. SE	2.7000(2/ 2) { 2.600- 2.800}	2.700 (2.0		2/ 2.8	2) (00)	0
kala	Ru-103	2	0.0100	<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>. (</td><td>0/</td><td>2)</td><td>0</td></lld<></td></lld<></td></lld<>	(0/	0)	ALL	<lld< td=""><td></td><td><lld< td=""><td>. (</td><td>0/</td><td>2)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>. (</td><td>0/</td><td>2)</td><td>0</td></lld<>	. (0/	2)	0
kale	Zr (Nb)-95	S	0.0100	<lld< td=""><td>(</td><td>0/</td><td>0)</td><td>ALL</td><td><lld< td=""><td>ت چ ع د ع</td><td><lld< td=""><td></td><td>0/</td><td>2)</td><td>0</td></lld<></td></lld<></td></lld<>	(0/	0)	ALL	<lld< td=""><td>ت چ ع د ع</td><td><lld< td=""><td></td><td>0/</td><td>2)</td><td>0</td></lld<></td></lld<>	ت چ ع د ع	<lld< td=""><td></td><td>0/</td><td>2)</td><td>0</td></lld<>		0/	2)	0
tomato	Ag-110m	3	0.0100	<lld< td=""><td>ł</td><td>0/</td><td>1)</td><td>ALL</td><td>«LLD</td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>2)</td><td>0</td></lld<></td></lld<>	ł	0/	1)	ALL	«LLD		<lld< td=""><td>(</td><td>0/</td><td>2)</td><td>0</td></lld<>	(0/	2)	0
tomato	Be-7	3	0.0400	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>· (</td><td>0/</td><td>2)</td><td>0</td></lld<></td></lld<></td></lld<>	(0/	1)	ALL	<lld< td=""><td></td><td><lld< td=""><td>· (</td><td>0/</td><td>2)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>· (</td><td>0/</td><td>2)</td><td>0</td></lld<>	· (0/	2)	0
tomato	Ce-141	3	0.0100	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>C</td><td>0/</td><td>2)</td><td>0</td></lld<></td></lld<></td></lld<>	(0/	1)	ALL	<lld< td=""><td></td><td><lld< td=""><td>C</td><td>0/</td><td>2)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>C</td><td>0/</td><td>2)</td><td>0</td></lld<>	C	0/	2)	0
tomato	Ce-144	3	0.0200	«LLD	(0/	1)	ALL	<lld< td=""><td>a e a a a</td><td><lld< td=""><td>(</td><td>0/</td><td>2)</td><td>0</td></lld<></td></lld<>	a e a a a	<lld< td=""><td>(</td><td>0/</td><td>2)</td><td>0</td></lld<>	(0/	2)	0
tomato	Co-58	3	0.0070	<lld< td=""><td>۵</td><td>0/</td><td>1)</td><td>ALL</td><td>«LLÐ</td><td></td><td><lld< td=""><td>ſ</td><td>0/</td><td>2)</td><td>0</td></lld<></td></lld<>	۵	0/	1)	ALL	«LLÐ		<lld< td=""><td>ſ</td><td>0/</td><td>2)</td><td>0</td></lld<>	ſ	0/	2)	0
tomato	Co-60	3	0.0070	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><ĽLD</td><td><u>م</u> م م م</td><td><lld< td=""><td>ſ</td><td>0/</td><td>2)</td><td>0</td></lld<></td></lld<>	(0/	1)	ALL	<ĽLD	<u>م</u> م م م	<lld< td=""><td>ſ</td><td>0/</td><td>2)</td><td>0</td></lld<>	ſ	0/	2)	0

-

ę

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San onofre nuclear generating station

B-56

Docket No. 50-361 San Diego County, California

1

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	LOWER Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location & Highest Annu Name, Distance and Direction		ontrol Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 13a Local Crops Semi-Annual Compo (pCi/g)	site						
tomato	Cs-134	3 0.0050	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 2<="" td=""><td>) 0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 2<="" td=""><td>) 0</td></lld></td></lld<>		<lld (="" 0="" 2<="" td=""><td>) 0</td></lld>) 0
tomato	CS-137	3 0.0050	<lld (="" 0="" 1)<="" td=""><td>SE of Oceanside 22 mi. SE</td><td>0.0100(1/ 2 (0.010- 0.010</td><td>) 0.0100(1/ 2) (0.010- 0.010</td><td></td></lld>	SE of Oceanside 22 mi. SE	0.0100(1/ 2 (0.010- 0.010) 0.0100(1/ 2) (0.010- 0.010	
tomato	1-131	3 0.0030	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td>ند د د د ا</td><td><lld (="" 0="" 2<="" td=""><td>) 0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>ند د د د ا</td><td><lld (="" 0="" 2<="" td=""><td>) 0</td></lld></td></lld<>	ند د د د ا	<lld (="" 0="" 2<="" td=""><td>) 0</td></lld>) 0
tomato	K-40	3 0.0700	1.9000(1/ 1) (1.900- 1.900)	San Mateo Canyon 2.6 mi. NH	1.9000(1/ 1 (1.900- 1.900		
tomato	Ru-103	3 0.0100	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 2<="" td=""><td>-</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 2<="" td=""><td>-</td></lld></td></lld<>		<lld (="" 0="" 2<="" td=""><td>-</td></lld>	-
coma to	Zr(Nb)-95	3 0.0100	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td>*</td><td><lld (="" 0="" 2<="" td=""><td></td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>*</td><td><lld (="" 0="" 2<="" td=""><td></td></lld></td></lld<>	*	<lld (="" 0="" 2<="" td=""><td></td></lld>	

i

8

ø

٤

•

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San onofre nuclear generating station

2

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathwa Sampled (Unit of Measurement)	Type and y Total Number of Analyses Performed	l	OHER Limit Of Detection (LLD)	LC	ica 1ea	dica tion n(f) nge			Li Higi me, Dia d Direa		th 1 Mean Mean(f) Range		Loca n(f nge		8	Nonr	er of outine orted surements
Table 13b Local Crops Semi-Annual Comp (pCi/g)	osite	•											······································				· · · ·
caul if lower	H-3 Aqueous	1	0.0500	<lld< th=""><th>٥</th><th>0/</th><th>. 1)</th><th>ALL</th><th><lld< th=""><th></th><th>وي چن شنا خان (10</th><th><lld< th=""><th>(</th><th>0/</th><th>0)</th><th>:</th><th>0</th></lld<></th></lld<></th></lld<>	٥	0/	. 1)	ALL	<lld< th=""><th></th><th>وي چن شنا خان (10</th><th><lld< th=""><th>(</th><th>0/</th><th>0)</th><th>:</th><th>0</th></lld<></th></lld<>		وي چن شنا خان (10	<lld< th=""><th>(</th><th>0/</th><th>0)</th><th>:</th><th>0</th></lld<>	(0/	0)	:	0
cauliflower	H-3 Bound	1	0.5000	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	(0/	1)	ALL	<lld< td=""><td></td><td></td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<>			<lld< td=""><td>(</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<>	(0/	0)		0
caul if lower	8r-90	1	0.0040	<lld< td=""><td>(-</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td>•</td><td>24 CR 48 52 52</td><td><lld< td=""><td>ť</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	(-	0/	1)	ALL	<lld< td=""><td>•</td><td>24 CR 48 52 52</td><td><lld< td=""><td>ť</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<>	•	24 CR 48 52 52	<lld< td=""><td>ť</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<>	ť	0/	0)		0
çora	H-3 Aqueous	1	0.0500	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td>40 m in 97 4</td><td><lld< td=""><td>(</td><td>0/</td><td>Ó)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	(0/	1)	ALL	<lld< td=""><td></td><td>40 m in 97 4</td><td><lld< td=""><td>(</td><td>0/</td><td>Ó)</td><td></td><td>0</td></lld<></td></lld<>		40 m in 9 7 4	<lld< td=""><td>(</td><td>0/</td><td>Ó)</td><td></td><td>0</td></lld<>	(0/	Ó)		0
corn	H-3 Bound	1	0.5000	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td>62 97 91 th an</td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	(0/	1)	ALL	<lld< td=""><td></td><td>62 97 91 th an</td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<>		62 97 91 th an	<lld< td=""><td>(</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<>	(0/	0)		0
corn	sr-90	1	0.0040	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td>00 an in in an an</td><td><lld< td=""><td>Ć</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	(0/	1)	ALL	<lld< td=""><td></td><td>00 an in in an an</td><td><lld< td=""><td>Ć</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<>		00 an in in an an	<lld< td=""><td>Ć</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<>	Ć	0/	0)		0
cucumber	H-3 Aqueous	1	0.0500	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td>o të se e</td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	(0/	1)	ALL	<lld< td=""><td></td><td>o të se e</td><td><lld< td=""><td>(</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<>		o të se e	<lld< td=""><td>(</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<>	(0/	0)		0
cucumber	H–3 Bound	1	0.5000	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td>127 - 128 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129</td><td>«LLD</td><td>(</td><td>0/</td><td>0)</td><td>o</td><td>Ö</td></lld<></td></lld<>	(0/	1)	ALL	<lld< td=""><td></td><td>127 - 128 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129</td><td>«LLD</td><td>(</td><td>0/</td><td>0)</td><td>o</td><td>Ö</td></lld<>		127 - 128 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129 - 129	«LLD	(0/	0)	o	Ö
cucumber	sr-90	1	0.0040	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td>دن مع در من مع در</td><td>«LLD</td><td>ſ</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<>	(0/	1)	ALL	<lld< td=""><td></td><td>دن مع در من مع در</td><td>«LLD</td><td>ſ</td><td>0/</td><td>0)</td><td></td><td>0</td></lld<>		دن مع در من مع در	«LLD	ſ	0/	0)		0

φ

B-58

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and 7 Total Number of Analyses Performed	LOHER Limit of Detection (LLD)	L	ocat	licat tions n(f) nge		Location Highest Ann Name, Distance and Direction	with ual Mean C Mean(f) Range	ontrol Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 13b Local Crops Semi-Annual Compo (pCi/g)	osite									9-4-5 9-4-5
kale	H-3 Aqueouş	2 0.0500	<lld< th=""><th>(</th><th>07</th><th>0)</th><th>ALL <lld< th=""><th></th><th>«LLD (0/)</th><th>2) 0</th></lld<></th></lld<>	(07	0)	ALL <lld< th=""><th></th><th>«LLD (0/)</th><th>2) 0</th></lld<>		«LLD (0/)	2) 0
kale	H-3 Bound	2 0.5000	«LLD	(07	0)	ALL <lld< td=""><td></td><td><lld (="" 0="" 8<="" td=""><td>2) 0</td></lld></td></lld<>		<lld (="" 0="" 8<="" td=""><td>2) 0</td></lld>	2) 0
kale	\$r-90	2 0.0040	«LLD	(0/	0)	SE of Oceanside 22 mi. SE	0.0105(2/ 2 (0.010- 0.011) 0.0105(2/) (0.010- 0.01	
tomato	H-3 Aqueous	3 0.0500	<lld< td=""><td>ſ</td><td>0/</td><td>1)</td><td>ALL «LLD</td><td></td><td><lld (="" 0="" 8<="" td=""><td>2) 0</td></lld></td></lld<>	ſ	0/	1)	ALL «LLD		<lld (="" 0="" 8<="" td=""><td>2) 0</td></lld>	2) 0
tomato	H-3 Bound	3 0.5000	«LLD	(0/	1)	ALL <lld< td=""><td></td><td><lld (="")<="" 0="" td=""><td>2) 0</td></lld></td></lld<>		<lld (="")<="" 0="" td=""><td>2) 0</td></lld>	2) 0
tomato	sr-90	3 0.0040	<lld< td=""><td>ſ</td><td>0/</td><td>1)</td><td>ALL <lld< td=""><td></td><td><lld (="" 0="" <="" td=""><td>2) 0</td></lld></td></lld<></td></lld<>	ſ	0/	1)	ALL <lld< td=""><td></td><td><lld (="" 0="" <="" td=""><td>2) 0</td></lld></td></lld<>		<lld (="" 0="" <="" td=""><td>2) 0</td></lld>	2) 0

0 0

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San onofre Nuclear Generating Station

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Heasurement)	Type and Total Number of Analyses Performed	1	LOWER Limit of Detection (LLD)	L	oca 1ea	dica tion n(1) nge	tor s		Locat Highest me, Distan d Directio		Control Mea Ra	Loca n(f nge	ation	18	Nonro	er of outine rted urements
Table 16 Scil Samples Annual Composite (pci/g)						<u> </u>			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							=
· · ·	Ag-110m	5	0.1000	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td>00° KB 400 KB 400</td><td><lld< td=""><td>(</td><td>0/</td><td>1)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	(0/	4)	ALL	<lld< td=""><td>00° KB 400 KB 400</td><td><lld< td=""><td>(</td><td>0/</td><td>1)</td><td></td><td>0</td></lld<></td></lld<>	00° KB 400 KB 400	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td></td><td>0</td></lld<>	(0/	1)		0
	Ba-7	5	0.3000	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>ſ</td><td>0/</td><td>1)</td><td>· .</td><td>0</td></lld<></td></lld<></td></lld<>	(0/	4)	ALL	<lld< td=""><td></td><td><lld< td=""><td>ſ</td><td>0/</td><td>1)</td><td>· .</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>ſ</td><td>0/</td><td>1)</td><td>· .</td><td>0</td></lld<>	ſ	0/	1)	· .	0
	c e-1 41	5	0.1000	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td>****</td><td><lld< td=""><td>. (</td><td>0/</td><td>1)</td><td>·</td><td>0</td></lld<></td></lld<></td></lld<>	(0/	4)	ALL	<lld< td=""><td>****</td><td><lld< td=""><td>. (</td><td>0/</td><td>1)</td><td>·</td><td>0</td></lld<></td></lld<>	****	<lld< td=""><td>. (</td><td>0/</td><td>1)</td><td>·</td><td>0</td></lld<>	. (0/	1)	·	0
. :	Ce-144	5	0,1000	«LLD	6	0/	4)	ALL	<lld< td=""><td></td><td><lld< td=""><td></td><td>0/</td><td>2)</td><td>· · .</td><td>0</td></lld<></td></lld<>		<lld< td=""><td></td><td>0/</td><td>2)</td><td>· · .</td><td>0</td></lld<>		0/	2)	· · .	0
	Co-58	5	0.0500	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>٤.</td><td>0/</td><td>1)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	(0/	4)	ALL	<lld< td=""><td></td><td><lld< td=""><td>٤.</td><td>0/</td><td>1)</td><td></td><td>0</td></lld<></td></lld<>		<lld< td=""><td>٤.</td><td>0/</td><td>1)</td><td></td><td>0</td></lld<>	٤.	0/	1)		0
	Co-60	5	0.0500	«LLD	(0/	4)	ALL	<lld< td=""><td></td><td><lld< td=""><td>ļ</td><td>0/</td><td>1)</td><td></td><td>0</td></lld<></td></lld<>		<lld< td=""><td>ļ</td><td>0/</td><td>1)</td><td></td><td>0</td></lld<>	ļ	0/	1)		0
	g-131 .	5	0.5000	<lld< td=""><td>(</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td></td><td>0/</td><td>1)</td><td></td><td>0</td></lld<></td></lld<></td></lld<>	(0/	4)	ALL	<lld< td=""><td></td><td><lld< td=""><td></td><td>0/</td><td>1)</td><td></td><td>0</td></lld<></td></lld<>		<lld< td=""><td></td><td>0/</td><td>1)</td><td></td><td>0</td></lld<>		0/	1)		0
	K-40	5	2.0000	13.17 (5.8			4) 100)	Hun Gen 37 i	tington Bea erating Sta mi. NW	ach 18(1/ ation (18.000-18.(1) 200) (18.)		1/ 18.0			0
	Ru-103	5	0.1000	<lld< td=""><td>ſ</td><td>0/</td><td>4)</td><td>ALL</td><td><lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>1)</td><td>•</td><td>0</td></lld<></td></lld<></td></lld<>	ſ	0/	4)	ALL	<lld< td=""><td></td><td><lld< td=""><td>(</td><td>0/</td><td>1)</td><td>•</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>•</td><td>0</td></lld<>	(0/	1)	•	0

α

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY San onofre Nuclear Generating Station

B-60

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathuay Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	LOWER Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location Highest Annu Name, Distance and Direction	ifth ial Mean Co Mean(f) Range	ntrol Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 14 Sofi Samples Annual Composite (pCi/g)							8 14 an
	sr-90	5 0.0100	0.0300(3/ 4) (0.020- 0.040)	E. Site Boundary 0,2 ml. NNH	0.0400(1/ 1) (0.040- 0.040)	0.0200(1/ 1) (0.020- 0.020)	0
	Zr (Nb)-95	5 0.1000	<lld (="" 07="" 4)<="" td=""><td>ALL <lld< td=""><td></td><td><pre><lld (="" 0="" 1)="" <="" pre=""></lld></pre></td><td>0</td></lld<></td></lld>	ALL <lld< td=""><td></td><td><pre><lld (="" 0="" 1)="" <="" pre=""></lld></pre></td><td>0</td></lld<>		<pre><lld (="" 0="" 1)="" <="" pre=""></lld></pre>	0
						14	:
		· · · · ·					
11 11 14							•
		· · · · · ·	· · ·				
	· · ·						

٩.

20apr 87

÷

.

~

¢

0

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

Docket No. 50-361 San Diego County, California

Reporting period: January Ol, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and y Total Number of Analyses Performed	Lower Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location wit Highest Annual Name, Distance and Direction	h Mean Mean(f) Range	Control Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 15 Kelp Seal-Annual Compo (pGl/g)	site						
macrocystis p.	Ag-110m	8 0.0050	<lld (="" 0="" 5)<="" th=""><th>ALL <lld< th=""><th>C0 40 40 40 40</th><th><lld (="" 0="" 3)<="" th=""><th>0</th></lld></th></lld<></th></lld>	ALL <lld< th=""><th>C0 40 40 40 40</th><th><lld (="" 0="" 3)<="" th=""><th>0</th></lld></th></lld<>	C0 40 40 40 40	<lld (="" 0="" 3)<="" th=""><th>0</th></lld>	0
macrocystis p.	Ce-141	8 0.0200	<lld (="" 0="" 5)<="" td=""><td>ALL <lld< td=""><td>0# 40 BY 50 40</td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>0# 40 BY 50 40</td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld<>	0# 40 BY 50 40	<lld (="" 0="" 3)<="" td=""><td>0</td></lld>	0
macrocystis p.	Ce-144	\$ 0.0200	<lld (="" 0="" 5)<="" td=""><td>ALL <lld< td=""><td>0029H</td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>0029H</td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld<>	0029H	<lld (="" 0="" 3)<="" td=""><td>0</td></lld>	0
macrocystis p.	Co-57	8 0.0050	<lld (="" 0="" 5)<="" td=""><td>ALL <lld< td=""><td>BRUCM</td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>BRUCM</td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld<>	BRUC M	<lld (="" 0="" 3)<="" td=""><td>0</td></lld>	0
macrocystic p.	Co-58	8 0.0040	<lld (="" 0="" 5)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 3)<="" td=""><td>Q</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 3)<="" td=""><td>Q</td></lld></td></lld<>		<lld (="" 0="" 3)<="" td=""><td>Q</td></lld>	Q
macrocystis p. (Co-60	8 0.0040	<lld (="" 0="" 5)<="" td=""><td>ALL <lld< td=""><td>86.2.5</td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>86.2.5</td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld<>	86.2.5	<lld (="" 0="" 3)<="" td=""><td>0</td></lld>	0
macrocystis p. (Cs-134	8 0.0040	<lld (="" 0="" 5)<="" td=""><td>ALL <lld< td=""><td>C27 (57 (58 db) (59)</td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>C27 (57 (58 db) (59)</td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld<>	C27 (57 (58 db) (59)	<lld (="" 0="" 3)<="" td=""><td>0</td></lld>	0
macrocystis p. (Cs-137	8 0.0040	0.0044(4/ 5) { 0.004- 0.005}	San Onofre 0 Kelp Bed (1.5 mi. 8	.0045(3/ 3 0.004- 0.00	3) 0.0044(1/ 3) 5) { 0.004- 0.004}	0
macrocystis p.	Fe-59	8 0.0200	<lld (="" 0="" 5)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 3)<="" td=""><td>0</td></lld>	0

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD)	All Indicator Locations Mean(f) Range ,	Location Highest Annu Name, Distance and Direction		Control Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 15 Kelp Semi-Annual Compo (pCi/g)	site						
macrocystis p.	H-3 Aqueous	8 0.0500	<lld (="" 0="" 5)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 3)<="" td=""><td>0</td></lld>	0
macrocystis p.	H-3 Bound	8 0.5000	<lld (="" 07="" 5)<="" td=""><td>ALL «LLD</td><td></td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld>	ALL «LLD		<lld (="" 0="" 3)<="" td=""><td>0</td></lld>	0
macrocystis p.	1-131	8 0.0100	0.1237(3/ 5) (0.056- 0.250)	San Onofre Kelp Bed 1.5 mi. S	0.1575(2/ (0.065- 0.25	3) 0.0757(3/ 3) 0) (0.049- 0.129)	0
macrocystis p.	K-40	8 0.0400	6.8400(5/ 5) { 5.200- 8.300}	San Onofre Kelp Bed 1.5 mi. S	7.8333(3/ (7.600- 8.30		
macrocystis p.	Mn-54	8 0.0050	<lld (="" 07="" 5)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 3)<="" td=""><td></td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 3)<="" td=""><td></td></lld></td></lld<>		<lld (="" 0="" 3)<="" td=""><td></td></lld>	
macrocystis p.	Mo (T c) - 99m	8 2.0000	<lld (="" 0="" 5)<="" td=""><td>ALL <lld< td=""><td></td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld<>		<lld (="" 0="" 3)<="" td=""><td>0</td></lld>	0
	Ra-226	8 0.0090	<lld (="" 0="" 5)<="" td=""><td>ALL <lld< td=""><td>200 an an an an an</td><td><lld (="" 0="" 3)<br="">(gar b)</lld></td><td>)O</td></lld<></td></lld>	ALL <lld< td=""><td>200 an an an an an</td><td><lld (="" 0="" 3)<br="">(gar b)</lld></td><td>)O</td></lld<>	200 an an an an an	<lld (="" 0="" 3)<br="">(gar b)</lld>)O
	Ru-103	8 0.0090	<lld (="" 0="" 5)<="" td=""><td>ALL <lld< td=""><td></td><td><pre><lld (="" 0="" 3]<="" pre=""></lld></pre></td><td>_</td></lld<></td></lld>	ALL <lld< td=""><td></td><td><pre><lld (="" 0="" 3]<="" pre=""></lld></pre></td><td>_</td></lld<>		<pre><lld (="" 0="" 3]<="" pre=""></lld></pre>	_
macrocystis p.	Ru-106	8 0.0200	<lld (="" 0="" 5)<="" td=""><td>ALL «LLD</td><td></td><td><lld (="" 0="" 3)<="" td=""><td>0</td></lld></td></lld>	ALL «LLD		<lld (="" 0="" 3)<="" td=""><td>0</td></lld>	0

20APR 87

B- 62

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	d (Unit of Analyses surement) Performed		Her Limit of etection (LLD)	LC	All Indicator Locations Mean(f) Range			Location with Highest Annual Mean Name, Distance Mean(f) and Direction Range		Control Locations Mean(f) Range			Number of Nonroutine Reported Measurements			
Table 15 Kalp Semi-Annual Compo (pCi/g)	osite							· · · · ·			<u> </u>	- <i></i>			······································	
macrocystis p.	Th-228	8.	0.0090	<lld< th=""><th>(</th><th>0/</th><th>5)</th><th>ALL</th><th><lld< th=""><th></th><th><ll< th=""><th>D (</th><th>0/</th><th>3)</th><th>•</th><th>0</th></ll<></th></lld<></th></lld<>	(0/	5)	ALL	<lld< th=""><th></th><th><ll< th=""><th>D (</th><th>0/</th><th>3)</th><th>•</th><th>0</th></ll<></th></lld<>		<ll< th=""><th>D (</th><th>0/</th><th>3)</th><th>•</th><th>0</th></ll<>	D (0/	3)	•	0
macrocystis p.	Zn-65	8	0.0200	<lld< td=""><td>(</td><td>0/</td><td>5)</td><td>ALL</td><td><lld< td=""><td></td><td><ll< td=""><td>D (</td><td>0/</td><td>3)</td><td></td><td>0</td></ll<></td></lld<></td></lld<>	(0/	5)	ALL	<lld< td=""><td></td><td><ll< td=""><td>D (</td><td>0/</td><td>3)</td><td></td><td>0</td></ll<></td></lld<>		<ll< td=""><td>D (</td><td>0/</td><td>3)</td><td></td><td>0</td></ll<>	D (0/	3)		0
macrocystis p.	Zr (Nb)-95	8	0.0100	<lld< td=""><td>(</td><td>0/</td><td>5)</td><td>ALL</td><td><lld< td=""><td></td><td>«LL</td><td>D (</td><td>0/</td><td>3)</td><td>м •</td><td>0</td></lld<></td></lld<>	(0/	5)	ALL	<lld< td=""><td></td><td>«LL</td><td>D (</td><td>0/</td><td>3)</td><td>м •</td><td>0</td></lld<>		«LL	D (0/	3)	м •	0
macrocystis P.	Ag-110m	1	0.0050	<lld< td=""><td>٩</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td>60 40 8 ap ap</td><td><ll< td=""><td>D (</td><td>0/</td><td>0)</td><td></td><td>0</td></ll<></td></lld<></td></lld<>	٩	0/	1)	ALL	<lld< td=""><td>60 40 8 ap ap</td><td><ll< td=""><td>D (</td><td>0/</td><td>0)</td><td></td><td>0</td></ll<></td></lld<>	60 40 8 ap ap	<ll< td=""><td>D (</td><td>0/</td><td>0)</td><td></td><td>0</td></ll<>	D (0/	0)		0
macrocystis P.	Ce-141	1	0.0200	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td>(1) (4) (4) (4)</td><td><ll< td=""><td>D (</td><td>0/</td><td>O)</td><td></td><td>0</td></ll<></td></lld<></td></lld<>	(0/	1)	ALL	<lld< td=""><td>(1) (4) (4) (4)</td><td><ll< td=""><td>D (</td><td>0/</td><td>O)</td><td></td><td>0</td></ll<></td></lld<>	(1) (4) (4) (4)	<ll< td=""><td>D (</td><td>0/</td><td>O)</td><td></td><td>0</td></ll<>	D (0/	O)		0
macrocystis P.	Ce-144	1	0.0200	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td>«LL</td><td>D (</td><td>0/</td><td>0)</td><td>·</td><td>0</td></lld<></td></lld<>	(0/	1)	ALL	<lld< td=""><td></td><td>«LL</td><td>D (</td><td>0/</td><td>0)</td><td>·</td><td>0</td></lld<>		«LL	D (0/	0)	·	0
macrocystis P.	Co-57	1	0.0050	<lld< td=""><td></td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td><ll< td=""><td>D (</td><td>0/</td><td>0)</td><td></td><td>0</td></ll<></td></lld<></td></lld<>		0/	1)	ALL	<lld< td=""><td></td><td><ll< td=""><td>D (</td><td>0/</td><td>0)</td><td></td><td>0</td></ll<></td></lld<>		<ll< td=""><td>D (</td><td>0/</td><td>0)</td><td></td><td>0</td></ll<>	D (0/	0)		0
macrocystis P.	Co-58	1	0.0040	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td></td><td><1L</td><td>) (</td><td>Ô/</td><td>0)</td><td></td><td>0</td></lld<></td></lld<>	(0/	1)	ALL	<lld< td=""><td></td><td><1L</td><td>) (</td><td>Ô/</td><td>0)</td><td></td><td>0</td></lld<>		<1L) (Ô/	0)		0
macrocystis P.	Co-60	1	0.0040	<lld< td=""><td>(</td><td>0/</td><td>1)</td><td>ALL</td><td><lld< td=""><td>(73 (78 (2 2 2</td><td><lli< td=""><td>))</td><td>07</td><td>0)</td><td></td><td>0</td></lli<></td></lld<></td></lld<>	(0/	1)	ALL	<lld< td=""><td>(73 (78 (2 2 2</td><td><lli< td=""><td>))</td><td>07</td><td>0)</td><td></td><td>0</td></lli<></td></lld<>	(73 (78 (2 2 2	<lli< td=""><td>))</td><td>07</td><td>0)</td><td></td><td>0</td></lli<>))	07	0)		0

20APR 87

0 6

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY SAN ONOFRE NUCLEAR GENERATING STATION

Docket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	LOHER Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location Highest Anr Name, Distance and Direction	Hith Nual Mean Mean(f) Range	Control Lo Mean(Rang	f)	Number of Nonroutine Reported Measurements
Table 15 Kelp Semt-Annual Compos (pCt/g)	site						•	
macrocystis P. (Cs-134	1 0.0040	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 0)</td><td>0</td></lld<></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 0)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(0/ 0)</td><td>0</td></lld<>	(0/ 0)	0
macrocystis P. (Cs-137	1 0.0040	0.0057(1/ 1) (0.006- 0.006)	San Mateo Kelp Bed 3.5 mi. WNW	0.0057(1/ (0.006- 0.00	1) (LLD 6)	(0/ 0)	0
macrocystis P. I	Fe-59	1 0.0200	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 0)</td><td>0</td></lld<></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 0)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(0/ 0)</td><td>0</td></lld<>	(0/ 0)	0
macrocystis P. I	H-3 Aqueous	1 0.0500	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 0)</td><td>0</td></lld<></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 0)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(0/ 0)</td><td>0</td></lld<>	(0/ 0)	0
macrocystis P. I	H-3 Bound	1 0.5000	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 0)</td><td>0</td></lld<></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 0)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(0/ 0)</td><td>0</td></lld<>	(0/ 0)	0
macrocystis P.	I-131	1 0.0100	0.2400(1/ 1) (0.240- 0.240)	San Mateo Kelp Bed 3.5 mi. HNH	0.2400(1/ (0.240- 0.24	1) <lld 0)</lld 	(0/ 0)	Q
macrocystis P.	K-40	1 0.0400	6.8000(1/ 1) (6.800- 6.800)	San Mateo Kelp Bed 3.5 mi. HNH	6,8000(1/ [6,800- 6,80	1) <lld 0)</lld 	(0/ 0)	0
macrocystis P.	Mn-54	1 0.0050	<lld (="" 0="" 1)<="" td=""><td>ALL «LLD</td><td></td><td><lld< td=""><td>(0/ 0)</td><td>0</td></lld<></td></lld>	ALL «LLD		<lld< td=""><td>(0/ 0)</td><td>0</td></lld<>	(0/ 0)	0
macrocystis P.	Mo(Tc)-99m	1 2.0000	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 0)</td><td>0</td></lld<></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld< td=""><td>(0/ 0)</td><td>0</td></lld<></td></lld<>		<lld< td=""><td>(0/ 0)</td><td>0</td></lld<>	(0/ 0)	0

20APR 87

B-64

e

0

1

1

pocket No. 50-361 San Diego County, California

Reporting period: January 01, 1986 to December 31, 1986

Medium or Pathway Sampled (Unit of Measurement)	Type and y Total Number of Analyses Performed	Lower Limit of Detection (LLD)	All Indicator Locations Mean(f) Range	Location wit Highest Annual Name, Distance and Direction	h Mean Mean(f) Range	Control Locations Mean(f) Range	Number of Nonroutine Reported Measurements
Table 15 Kelp Semi-Annual Compo (pCi/g)	Dsite	**************************************					
macrocystis P.	Ra-226	1 0.0090	<lld (="" 0="" 1)<="" th=""><th>ALL <lld< th=""><th></th><th><lld (="" 0="" 0)<="" th=""><th>0</th></lld></th></lld<></th></lld>	ALL <lld< th=""><th></th><th><lld (="" 0="" 0)<="" th=""><th>0</th></lld></th></lld<>		<lld (="" 0="" 0)<="" th=""><th>0</th></lld>	0
macrocystis P.	Ru-103	l 0.0090	<lld (="" 0="" 1)<="" td=""><td>ALL «LLD</td><td>(대 =</td><td><lld (="" 0="" 0]<="" td=""><td>0</td></lld></td></lld>	ALL «LLD	(대 =	<lld (="" 0="" 0]<="" td=""><td>0</td></lld>	0
macrocystis P.	Ru-106	1 0.0200	<lld (="" 0="" 1)<="" td=""><td>ALL «LLD</td><td></td><td><lld (="" 0="" 0]<="" td=""><td>0</td></lld></td></lld>	ALL «LLD		<lld (="" 0="" 0]<="" td=""><td>0</td></lld>	0
macrocystis P.	Th-228	1 0.0090	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td>100 an aù an ac</td><td><lld (="" 0="" 0]<="" td=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td>100 an aù an ac</td><td><lld (="" 0="" 0]<="" td=""><td>0</td></lld></td></lld<>	100 an aù an ac	<lld (="" 0="" 0]<="" td=""><td>0</td></lld>	0
macrocystis P.	zn-65	1 0.0200	<lld (="" 0="" 1)<="" td=""><td>ALL «LLD</td><td>127 99 40 40 40 40</td><td><lld (="" 0="" 0]<="" td=""><td>0</td></lld></td></lld>	ALL «LLD	127 99 40 40 40 40	<lld (="" 0="" 0]<="" td=""><td>0</td></lld>	0
macrocystis P.	Zr (Nb)-95	l 0.0100	<lld (="" 0="" 1)<="" td=""><td>ALL <lld< td=""><td></td><td><lld 0="" 0]<="" td="" {=""><td>0</td></lld></td></lld<></td></lld>	ALL <lld< td=""><td></td><td><lld 0="" 0]<="" td="" {=""><td>0</td></lld></td></lld<>		<lld 0="" 0]<="" td="" {=""><td>0</td></lld>	0

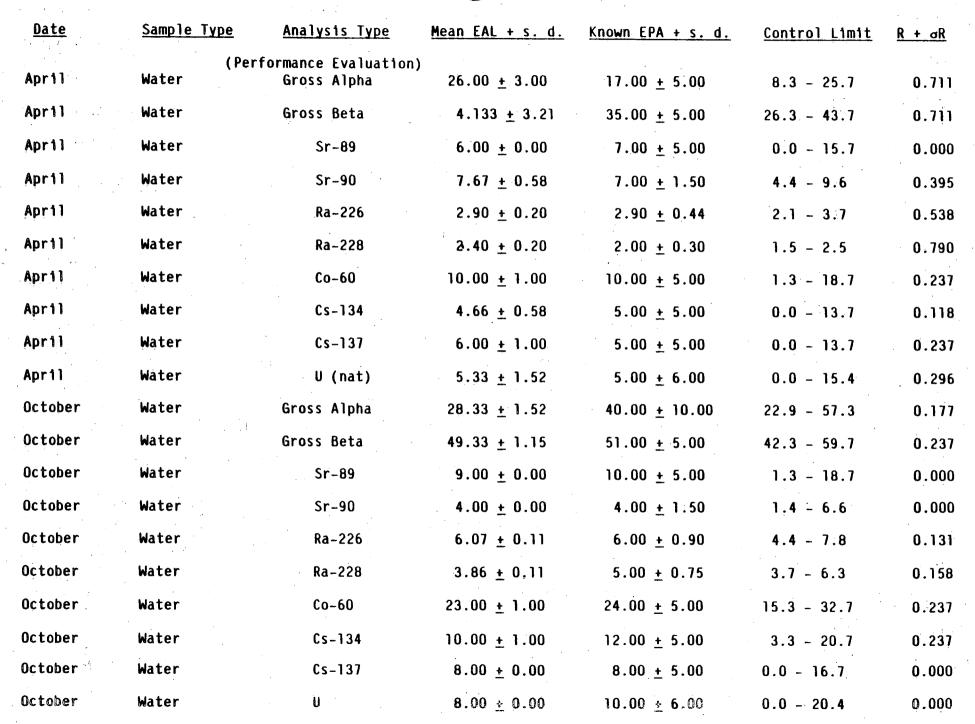
ω

APPENDIX C

SUMMARY OF INTERLABORATORY COMPARISONS

• 1

Results of Interlaboratory Comparisons For 1986


<u>Date</u>	<u>Sample Type</u>	Analysis Type	<u>Mean EAL + s. d.</u>	<u>Known EPA + s. d.</u>	<u>Control Limit</u>	$R + \sigma R$
February	Water (pC1/1)	Gamma Emitters				
February	Water	Cr-51	34.66 <u>+</u> 2.08	38.00 <u>+</u> 5.00	29.3 - 46.7	0.474
February	Water	Co-60	18.66 <u>+</u> 0.58	18.00 <u>+</u> 5.00	9.3 - 26.7	0.118
February	Water	Zn-65	41.66 <u>+</u> 2.08	40.00 <u>+</u> 5.00	31.3 - 48.7	0.474
February	Water	Ru-106	27.66 <u>+</u> 0.58	0.00 <u>+</u> 5.00	0.0 - 8.7	0.118
February	Water	Cs-134	26.33 <u>+</u> 0.58	30.00 <u>+</u> 5.00	21.3 - 38.7	0.118
February	Water	Cs-137	22.00 <u>+</u> 1.00	22.00 <u>+</u> 5.00	13.3 - 30.7	0.237
June	Water	Gamma Emitters				
June	Water	Cr-51	< 30.00	0.00 <u>+</u> 5.00	0.0 - 8.7	
June	Water	Co-60	64.00 <u>+</u> 2.00	66.00 <u>+</u> 5.00	57.3 - 74.7	0.474
June	Water	Zn-65	88.67 <u>+</u> 4.04	86.00 <u>+</u> 5.00	77.3 - 94.7	0.948
June	Water	<u>Ru-106</u>	35.00 <u>+</u> 4.00	50.00 <u>+</u> 5.00	41.3 - 58.7	0.948
June	Water	Cs-134	42.33 <u>+</u> 2.08	49.00 <u>+</u> 5.00	40.3 - 57.7	0.474
June	Water	Cs-137	9.33 <u>+</u> 0.58	10.00 <u>+</u> 5.00	1.3 - 18.7	0.118
October	Water	Gamma Emitters				· : -
October	Water	Cr-51	70.67 <u>+</u> 4.51	59.00 <u>+</u> 5.00	50.3 - 67.7	0.351
October	Water	Co-60	34.00 <u>+</u> 0.00	31.00 <u>+</u> 5.00	22.3 - 39.7	0.000
October	Water	Zn-65	105.66 <u>+</u> 3.78	85.00 <u>+</u> 5.00	76.3 - 93.7	0.829
October	Water	Ru-106	67:33 <u>*</u> 2.51	74.00 ± 5.00	65.3 - 82.7	0.592
October	Water	Cs-134	26.33 + 2.08	28.00 ÷ 5.00	19.3 - 36.7	0.474

C

	· . · ·			· .	U	
<u>Date</u>	Sample Type	Analysis Type	Mean EAL + s. d.	<u>Known EPA + s. d.</u>	<u>Control Limit</u>	<u>R + o</u> R
October	Water	Cs-137	46.33 <u>+</u> 0.58	44.00 <u>+</u> 5.00	35.3 - 52.7	0.11
April	Water	I-131	10.00 <u>+</u> 1.00	9.00 <u>+</u> 6.00	0.0 - 19.4	0.19
August	Water	I-131	43.66 <u>+</u> 0.58	45.00 <u>+</u> 6.00	38.1 - 51.9	0.09
December	Water	I-131				
January	Water	Gross Alpha	5.00 <u>+</u> 1.00	3.00 <u>+</u> 5.00	0.0 - 11.7	0.23
March	Water	Gross Alpha	16.00 <u>+</u> 0.00	15.00 <u>+</u> 5.00	6.3 - 23.7	0.00
May	Water	Gross Alpha	8.00 <u>+</u> 1.00	8.00 <u>+</u> 5.00	0.0 - 16.7	0.23
July	Water	Gross Alpha	6.00 <u>+</u> 1.00	6.00 <u>+</u> 5.00	0.0 - 16.4	0.23
September	Water	Gross Alpha	16.00 <u>+</u> 1.00	15.00 <u>+</u> 5.00	6.3 - 23.7	0.23
November	Water	Gross Alpha	29.33 <u>+</u> 0.58	20.0 <u>+</u> 5.00	11.3 - 28.7	0.11
January	Water	Gross Beta	5.00 <u>+</u> 1.00	7.00 ± 5.00	0.0 - 15.7	0.23
March	Water	Gross Beta	8.33 <u>+</u> 0.58	8.00 <u>+</u> 5.00	0.0 - 16.7	Ő.11
May	Water	Gross Beta	12.00 <u>+</u> 1.00	15.00 <u>+</u> 5.00	6.3 - 23.7	0.23
July	Water	Gross Beta	1.00 <u>+</u> 0.00	18.00 <u>+</u> 5.00	9.3 - 26.7	0.00
September	Water	Gross Beta	8.67 <u>+</u> 0.58	8.00 <u>+</u> 5.00	0.7 - 16.7	0.11
November	Water	Gross Beta	19.00 <u>+</u> 1.00	20.00 <u>+</u> 5.00	11.3 - 28.7	0.23
February	Water	Tritium	4836.66 <u>+</u> 83.88	5227.00 <u>+</u> 523.00	4321.1 - 6132.9	0.170
April	Water	Tritium				
June	Water	Tritium	2663.33 <u>+</u> 46.18	3125.00 <u>+</u> 360.00	3501.5 - 3748.5	0.13
August	Water	Tritium	•	•	· .	· * .

			2		, , , , , , , , , , , , , , , , , , ,		
D)ate	<u>Sample Type</u>	Analysis Type	<u>Mean EAL + s. d.</u>	<u>Known EPA + s. d.</u>	<u>Control Limit</u>	<u>R + o</u> R
0c	tober	Water	Tritium	5050.00 <u>+</u> 43.63	5973.00 <u>+</u> 597.00	4939.0 - 7067.0	
De	cember	Water	Tritium				1
Ma	rch	Water	Ra-226	4.30 <u>+</u> 0.17	4.10 <u>+</u> 0.62	3.0 - 5.2	0.286
Ju	ne	Water	Ra-226	8.80 <u>+</u> 0.10	8.60 <u>+</u> 1.29	6.4 - 10.1	0.092
Se	ptember	Water	Ra-226		6.10 <u>+</u> 0.92	4.5 - 7.7	•
De	cember	Water	Ra-226	6.60 <u>+</u> 0.30	6.80 <u>+</u> 1.02	5.0 - 8.6	0.348
Ma	rch	Water	Ra-228	11.33 <u>+</u> 0.41	12.40 <u>+</u> 1.85	9.2 - 15.6	0.256
Ju	ne	Water	Ra-228	12.36 <u>+</u> 0.29	16.70 <u>+</u> 2.51	12.4 - 21.0	0.118
Se	ptember	Water	Ra-228		9.10 <u>+</u> 1.37	6.7 - 11.5	
Dee	cember	Water	Ra-228	6.63 <u>+</u> 0.11	11.10 <u>+</u> 1.67	8.2 - 14.0	0.071
Jai	nuary	Water	Pu-239	7.17 <u>+</u> 0.20	7.10 <u>+</u> 0.71	5.9 - 8.3	0.333
Aug	gust	Water	Pu-239	10.93 <u>+</u> 0.30	10.10 <u>+</u> 1.01	8.4 - 11.8	0.352
Jai	nuary	Water	Sr-89	37.66 <u>+</u> 2.08	31.00 <u>+</u> 5.00	22.3 - 39.7	0.474
May	y i i	Water	Sr-89	4.00 <u>+</u> 0.00	5.00 <u>+</u> 5.00	0.0 - 13.7	0.000
Ser	ptember	Water	Sr-89				
Jar	nuary	Water	Sr-90	13.66 <u>+</u> 0.58	15.00 <u>+</u> 1.50	12.4 - 17.6	0.395
May	y	Water	Sr-90	5.00 <u>+</u> 0.00	5.00 <u>+</u> 1.50	2.4 - 7.6	0.000
Ser	ptember	Water	Sr-90				
Fet	bruary	Water	U-238	8.67 <u>+</u> 0.58	9.00 <u>+</u> 6.00	0.0 - 19.4	0.099
Aug	gust	Water	U-238	< 1.00	4.00 ± 6.00	0.0 - 14.4	· · · · · ·

1

:C-4

· · ,			•		· · · · · ·	3	
	<u>Date</u>	<u>Sample Type</u>	Analysis Type	<u>Mean EAL + s. d.</u>	<u>Known EPA + s. d.</u>	<u>Control Limit</u>	<u>R + or</u>
· · · ·	Apr11	Air Filter (pCi/Filter)	Gross Alpha	15.33 <u>+</u> 0.58	15.00 <u>+</u> 5.00	6.3 - 23.7	0.118
	September	Air Filter	Gross Alpha	20.66 <u>+</u> 0.58	22.00 <u>+</u> 5.00	13.3 - 30.7	0.355
	November	Air Filter	Gross Alpha			•	
	April	Air Filter	Gross Beta	47.66 <u>+</u> 2.31	47.00 <u>+</u> 5.00	38.3 - 55.7	0.474
	September	Air Filter	Gross Beta	63.67 <u>+</u> 2.31	66.00 <u>+</u> 5.00	57.3 - 74.7	0.948
	November	Air Filter	Gross Beta				•
	April	Air Filter	Sr-90	16.66 <u>+</u> 0.58	18.00 <u>+</u> 1.50	15.4 - 20.6	0.395
•	September	Air Filter	Sr-90	19.00 <u>+</u> 0.00	22.00 <u>+</u> 1.50	19.4 - 24.6	0.000
	November	Air Filter	Sr-90				
	April	Air Filter	Cs-137	12.00 <u>+</u> 0.00	10.00 <u>+</u> 5.00	1.3 - 18.7	0.000
	September	Air Filter	Cs-137	21.66 <u>+</u> 1.52	22.00 <u>+</u> 5.00	13.3 - 30.7	0.355
* .	November	Air Filter	Cs-137				
алан на на Колтониј Колтонија Колтонија Колтонија Колтонија Колтонија Колтонија Колтонија Колтонија Колтонија Колтонија Колтонија Колтонија Колтонија Колтонија Колтониј Колтониј Колтониј Статони Статони Статони Статони Статони Статони Статони Статони Статони С	March	Milk (pC1/1)	Sr-89				
· · ·	March	Milk	Sr-90				
	March	Milk	I-131	12.33 <u>+</u> 0.58	9.00 <u>+</u> 6.00	0.0 - 19.4	0.099
	March	Milk	Cs-137				
	March	Milk	Ba-140				
	March	Milk	K(mg/1)				м. Алтория (1997) Алтория (1997)
••••	June	Milk	Sr-89				
	June	M1]k	Sr-90	39.56 <u>+</u> 0.58	16.00 ± 1.50	13.4 - 18.6	0.395
an a	• •			l'	· · · · · · · · · · · · · · · · · · ·		C I

Date	Sample Type	Analysis Type	<u>Mean EAL + s. d.</u>	Known EPA + s. d.	<u>Control Limit</u>	<u>R + o</u> R
June	Milk	I-131	35.66 <u>+</u> 1.15	41.00 <u>+</u> 6.00	<u></u> 31.6 - 51.4	0.19
June	Milk	Cs-137	37.66 <u>+</u> 1.15	31.00 <u>+</u> 5.00	22.3 - 39.7	0.23
June	Milk	Ba-140				·
June	Milk	K(mg/1)	1580.00 <u>+</u> 20.00	1600.00 <u>+</u> 80.00	1461.4 - 1738.7	0.29
October	Milk	Sr-89		9.00 <u>+</u> 5.00	0.3 - 17.7	
October	M11k	Sr-90	< 1.00	0.00 <u>+</u> 1.50	0.0 - 8.7	
October	Milk	I-131	52.67 <u>+</u> 1.15	49.00 <u>+</u> 6.00	38.6 - 59.4	0.19
October	Milk	Cs-137	41.66 <u>+</u> 1.52	39.00 <u>+</u> 5.00	30.3 - 47.7	0.35
October	Milk	K K	1515.66 <u>+</u> 1.53	1565.00 + 78.00	1429.9 - 1700.1	0.02
April	Urine	Tritium	4400.00 <u>+</u> 100.00	4423.00 <u>+</u> 442.00	3657.4 - 5188.6	0.26
July	Urine	Tritium				
November	Urine	Tritium		5257.80 <u>+</u> 526.00	4345.9 - 6168.1	
January	Food (pC1/Kg)	Sr-89		25.00 <u>+</u> 5.00	16.3 - 33.7	
January	Food	Sr-90	6.67 <u>+</u> 0.58	10.0 <u>+</u> 1.50	7.4 - 12.6	0.39
January	Food	Cs-137	16.66 <u>+</u> 1.52	15.00 <u>+</u> 5.00	6.3 - 23.7	0.35
January	Food	Ba-140				· ·
January	Food (mg/Kg)	K	1006.66 <u>+</u> 11.54	950.00 <u>+</u> 143.00	702.3 - 1197.7	0.08
January	Food (pC1/Kg)	I-131	24.00 <u>+</u> 1.00	20.00 <u>+</u> 6.00	9.6 - 30.4	0.19
July	Food (pC1/Kg)	Sr-89		3.00 <u>+</u> 5.00	21.3 - 38.7	
July	Food	Sr-90	14.00 <u>+</u> 1.00	19.00 <u>+</u> 1.50	16.4 - 21.6	0.79

Date	Sample Type	Analysis Type	<u>Mean EAL + s. d.</u>	<u>Known EPA + s. d.</u>	<u>Control Limit</u>	<u>R + oR</u>
July	Food	Cs-137	20.66 <u>+</u> 0.58	20.00 <u>+</u> 5.00	11.3 - 28.7	0.118
July	Food	Ba-140		·		
July	Food (mg/Kg)	K	1270.00 <u>+</u> 26.4	6 1150.00 <u>+</u> 58.00	1049.5 - 1250.5	0.511
July	Food (pC1/Kg)	I-131	33.66 ± 2.08	30.00 <u>+</u> 6.00	19.6 - 40.4	0.395

The results of interlaboratory cross-check program showed that 13% of the samples fell outside the control limit range. The errors were randomly distributed among all different samples and different analyses.

ဂု

APPENDIX D

MEASUREMENTS EXCEEDING INVESTIGATION LEVELS

Sample_Type	Analysis	<u>Table No.</u>	Date	<u>2x Cntrl</u> *	Indicator Location	Concent	<u>ration</u>	NRC Reporting Levels
Direct Radiation	Thermoluminescence	. 1A	12/31/86	28.4**	#13	35.4	mrem	none
Direct Radiation	Thermoluminescence	14	12/31/86	28.4**	#16	30.4	mrem	none
Direct Radiation	Thermoluminescence	1B	12/31/86	121.6**	#55	123.3	mrem	none
Air	Gross Beta	2	04/01/86	0.028	#10	0.360	pCi/m3	none
Air	Gross Beta	2	06/17/86	0.064	#6	0.080	pCi/m3	none
Air	Gross Beta	2	10/28/86	0.040	<i>#</i> 11	0.056	pCi/m3	none
Air	Gross Beta	2	10/28/86	0.040	#12	0.048		none
Air	Gross Beta	2	11/25/86	0.022	#11	0.023	pCi/m3	none
Air	Gross Beta	2	11/25/86	0.022	#12	0.026	pCi/m3	none
Air	Iodine-131	3	05/20/86	1.24	#5	1.49	pCi/m3	0.9 pC1/m3***
Air	Comp. Gross	4C	12/31/86	0.0006	#]]	0.002	pCi/m3	÷ •
	Alpha	40	12/31/00	0.0000	# 11	0.002	heisma	none
Ocean Hater	Bimonthly Gross Beta - K-40	6	03/04/86	12	Unit l	14	pCi/l	none
Ocean Mater	Composite H-3	7	09/30/86	200	Unit 1	2200	pCi/l	none
Drinking Water	Gross Beta in Solids	98	01/09/86	0.2	Tri-Cities MWD	0.8	pCi/l	none
Drinking Hater	Gross Beta in Solids	98	02/06/86	0.8	San Clemente Golf Course	9.8	pCi/l	none
Drinking Water	Gross Alpha in Solids	98	02/06/86	0.4	San Clemente Golf Course	2.0	pCi/l	none
								۰.

4 If no positive value is detected, then twice the lower limit of detection is used as the criterion for comparison of indicator and control locations.
** Number indicates 1.25 times control.
****The high radioiodine concentrations were a result of the Chernobyl nuclear power plant accident. See text in Section II.B for details.

Sample Type	Analysis	<u>Table No.</u>	Date	<u>2x Cntrl</u> *	Indicator Location	Concer	ntration_	NRC Reporting Levels
Drinking Water	Gross Alpha in Solids	9B	03/06/86	0.4	San Clemente Golf Course	0.6	pCi/l	none
Drinking Water	Gross Beta in Solids	9B	03/06/86	0.2	San Clemente Golf Course	1.7	pCi/l	none
Drinking Water	Gross Alpha in Solids	9B	05/09/86	0.4	San Clemente Golf Course	2.8	pCi/l	none
Drinking Water	Gross Beta in Solids	9B	05/09/96	0.2	San Clemente Golf Course	12.4	pCi/l	none
Drinking Water	Gross Beta in Solids	9B	05/09/86	0.2	Tri-Cities MWD	0.4	pCi/l	none
Drinking Water	Gross Alpha in Solids	9B	06/04/86	0.4	San Clemente Golf Course	1.0	pCi/l	none
Drinking Water	Gross Beta in Solids	9B	06/04/86	0.2	Tri-Cities MWD	3.1	pCi/i	none
Drinking Water	Gross Alpha in Solids	9B	07/10/86	0.4	San Clemente Golf Course	3.3	pCi/l	none
Drinking Water	Gross Beta in Solids	9 B	07/10/86	0.2	Tri-Cities MWD	28	pCi/l '	none
Drinking Water	Gross Alpha in Solids	9B	08/08/86	0.4	San Clemente Golf Course	1.2	pCi/l	none
Drinking Water	Gross Beta in Solids	9B	08/08/86	0.2	Tri-Cities MWD	1.0	pCi/l	none
Drinking Water	Gross Beta in Solids	9B	08/08/86	0.2	San Clemente Golf Course	1.1	pCi/l	none
Drinking Water	Gross Alpha in Solids	9B	09/10/86	0.4	,San Clemente Golf Course	0.8	pCi/l	none
Drinking Hater	Gross Beta in Solids	9B	09/10/86	0.2	Tri-Cities MWD	0.5	pCi/l	none
Drinking Water	Gross Beta in Solids	9B	09/10/86	0.2	San Clemente Golf Course	4.0	pCi/l	none
•						*		

* If no positive value is detected, then twice the lower limit of detection is used as the criterion for comparison of indicator and control locations.

3.5

Sample Type	Analysis	<u>Table No.</u>	Date	<u>2x Cntrl</u> *	Indicator Location	Concer	tration_	NRC Reporting Levels
Drinking Water	Gross Alpha in Solids	9B	10/09/86	0.4	San Clemente Golf Course	0.5	pCi/l	none
Drinking Water	Gross Beta in Solids	9B	10/09/86	0.2	Tri-Cities MWD	0.6	pCi/l	none
Drinking Water	Gross Beta in Solids	9B	10/09/86	0.2	San Clemente Golf Course	1.9	pCi/l	none
Drinking Water	Gross Alpha in Solids	9B	11/06/86	0.4	San Clemente Golf Course	0.5	pCi/l	none
Drinking Water	Gross Beta in Solids	9B	11/06/86	0.2	San Clemente Golf Course	1.8	pCi/l	none
Drinking Water	Gross Alpha in Solids	98	12/08/86	0.4	San Clemente Golf Course	0.8	pCi/l	none
Drinking Water	Gross Beta in Solids	9B	12/08/86	0.2	Tri-Cities MWD	0.3	pCi/l	none
Drinking Water	Gross Beta in Solids	9B	12/08/86	0.2	San Clemente Golf Course	2.4	pCi/l	none
Drinking Water	Gross Beta in Filtrates	9C	02/06/86	12	San Clemente Golf Course	14	pCi/l	none
Drinking Water	Gross Beta in Filtrates	9C	03/06/86	16	San Clemente Golf Course	20	pCi/l	none
Drinking Water	Gross Beta in Filtrates	9C	05/09/86	14	San Clemente Golf Course	24	pCi/l	none
Drinking Water	Gross Alpha in Filtrates	9C	07/10/86	0.4	San Clemente Golf Course	10	pCi/l	none
Drinking Water	Gross Beta in Filtrates	9C	08/08/86	12	Tri-Cities MWD	16	pCi/l	none
Drinking Water	Gross Beta in Filtrates	90	08/08/86	12	San Clemente Golf Course	14	pCi/l	none
Drinking Water	Gross Beta in Filtrates	9C	09/10/86	14	San Clemente Golf Course	15	pCi/l	none

* If no positive value is detected, then twice the lower limit of detection is used as the criterion for comparison of indicator and control locations.

<u>Sample Type</u>	Analysis	<u>Table No.</u>	Date	<u>2x Cntrl</u> *	Indicator Location	Concen	tration	NRC Reporting
Drinking Water	Gross Beta in Filtrates	9C	10/09/86	14	San Clemente Golf Course	16	pCi/l	none
Drinking Water	Comp. Gross Alpha, Solids	9D	03/31/86	0.4	San Clemente Golf Course	1.2	pCi/l	none
Drinking Water	Comp. Gross Beta, Solids	9D	03/31/86	0.2	Tri-Cities MWD	0.6	pCi/l	none
Drinking Water	Comp. Gross Beta, Solids	9D	03/31/86	0.2	Tri-Cities MWD	6.7	pC1/1	none
Drinking Water	Comp. Gross Alpha, Solids	9D	06/30/86	0.4	San Clemente Golf Course	1.2	pCi/l	none .
Drinking Water	Comp. Gross Beta, Solids	9D	06/30/86	0.2	Tri-Cities MWD	0.4	pCi/l	none
Drinking Water	Comp. Gross Beta, Solids	9D	06/30/86	0.2	San Clemente Golf Course	4.6	pCi/l	none
Drinking Water	Comp. Gross Alpha, Solids	- 9D	09/30/86	0.4	San Clemente Golf Course	1.1	pC1/1	none
Drinking Water	Comp. Gross Beta, Solids	9D	09/30/86	0.6	Tri-Cities MWD	0.7	pC1/1	none
Drinking Water	Comp. Gross Beta, Solids	9D	09/30/86	0.6	San Clemente Golf Course	10.1	pCi/l	none
Drinking Water	Comp. Gross Alpha, Solids	9D	12/31/86	0.4	San Clemente Golf Course	0.7	pC1/1	none
Drinking Water	Comp. Gross Beta, Solids	9D	12/31/86	0.2	Tri-Cities MWD	0.5	pC1/1	none
Drinking Water	Comp. Gross Beta, Solids	9D	12/31/86	0.2	San Clemente Golf Course	2.7	pCi/l	none
Drinking Water	Comp. Gross Beta, Filtrate	9E	03/31/86	14	San Clemente Golf Course	20	pCi/l	none
Drinking Water	Comp. Gross Alpha, Filtrate	9E	06/30/86	0.4	San Clemente Golf Course	7	pCi/l	none

If no positive is value detected, then twice the lower limit of detection is used as the criterion for comparison of indicator and control locations.

Neige - A

15 (<u>1</u>) . .

1

Sample Type	Analysis	<u>Table No.</u>	Date	<u>2x Cntrl</u> *	Indicator Location	<u>Concentration</u>	NRC Reporting
Drinking Water	Comp. Gross Beta, Filtrate	9E	09/30/86	16	San Clemente Golf Course	17 pCi/g	none
Marine Species (Sheephead)	Cobalt-60	12A	03/04/86	0.014	Unit 1	0.027 pCi/g	10
Marine Species (Sheephead)	Cesium-137	12A	03/04/86	0.0106	Unit 1	0.022 pCi/g	2
Marine Species (Bay Mussel)	Cobalt-60	12A	03/05/86	0.0042	Unit l	0.011 pCi/g .	10
Marine Species (Bay Mussel)	Cobalt-60	<u>12A</u>	03/04/86	0.0042	Units 2/3	0.007 pCi/g	10
Marine Species (Sheephead)	Cobalt-60	12A .	05/21/86	0.014	Unit 1	0.046 pCi/g	10
Marine Species (Sheephead)	Cestum-137	12A	05/21/86	0.0086	• Unit 1.	0.035 pCi/g	2
Marine Species (Sheephead)	Cesium-137	12A	05/21/86	0.0086	Units 2/3	0.0104 pCi/g	2
Marine Species (Sea Hare)	Cobalt-60	12 A	05/25/86	0.014	Unit l	0.041 pCi/g	10
Harine Species (Spiny Lobster)	Cobalt-60	12 A	08/06/86	0.014	Unit 1	0.017 pCi/g	10
Marine Species (Sea Hare)	Cobalt-58	12A	08/19/86	0.02	Unit l	0.046 pCi/g	30
Marine Species (Sea Hare)	Cobalt-60	12A	08/19/86	0.004	Unit 1	0.084 pCi/g	10
Marine Species (Bay Mussel)	Cobalt-60	12A	08/06/86	0.004	Units 2/3	0.019 pCi/g	10
Marine Species (Sea Hare)	Cobalt-58	12A	11/04/86	0.02	Unit 1	0.026 pC1/g	30
Marine Species (Sea Hare)	Cobalt-60	12A	11/04/86	0.014	Unit 1	0.136 pCi/g	10

If no positive value is detected, then twice the lower limit of detection is used as the criterion for comparison of indicator and control locations.

P

Sample Type	Analysis	<u>Table No.</u>	Date	<u>2x Cntrl</u> *	Indicator Location	<u>Concentration</u>	NRC Reporting
Ocean Bottom Sediment	Cobalt-60	11	05/12/86	0	Unit 1 East	0.060 pCi/g	none
Ocean Bottom Sediment	Radium-226	n	05/12/86	0.44	Unit 1 East	0.560 pCi/g	none
Soil (Surface)	Cesium-137	14	12/17/86	0.10	Camp San Onofre	0.110 pCi/g	none
Soil (3 inch depth)	Strontium-90	14	12/17/86	0.04	Old Route 101	0.05 pCi/g	none
Soil (3 inch depth)	Cesium-137	14	12/17/86	0.14	Old Route 101	0.18 pCi/g	none

* If no positive value is detected, then twice the lower limit of detection is used as the criterion for comparison of indicator and control locations.

APPENDIX E HISTORICAL TRENDING

11.000000

Soil samples are collected annually from Basilone Road, the East Site Boundary, Camp San Onofre, Old Highway 101 (which served as indicator locations), and from Huntington Beach (which served as the control location). The samples are subsequently analyzed for 13 naturally-occurring and Station-related radionuclides. From 1981 through 1986, five radionuclides were detected in soil, namely: potassium-40, strontium-90, cesium-137, radium-226, and thorium-232. Concentrations of these radionuclides in soil are presented in Table E-1.

Three of the five radionuclides detected in the soil samples are naturally-occurring (i.e., non-Station related). They include potassium-40, radium-226, and thorium-232. The measured concentrations of these radionuclides vary from year to year at a given location, and to a greater extent between locations.

Strontium-90, a naturally-occurring Station-related radionuclide has been detected in 15 out of 24 samples collected from the indicator locations. The concentrations of strontium-90 in these samples collected from the indicator locations have ranged from below detectability to 0.05 pCi/g, dry weight. Strontium-90 has also been detected in two out of four samples collected from the control location. The concentrations of strontium-90 in samples collected from the control location have ranged from below detectability to 0.02 pCi/g, dry weight. Strontium-90 has been detected most frequently in samples collected from Camp San Onofre and from Old Highway 101.

Cesium-137, a naturally-occurring/Station-related radionuclide has been detected in half of the samples collected from the indicator locations. The concentrations of cesium-137 in these samples have ranged from below detectability to 0.15 pCi/g, dry weight. Cesium-137 has also been detected in half of the samples collected from the control location. The concentrations of cesium-137 in these samples have ranged from below detectability to 0.12 pCi/g, dry weight. In 1981, the concentrations of cesium-137 in three samples from the indicator locations exceeded the concentration of cesium-137 at the control location. Since then, the concentrations of cesium-137 detected in samples from the indicator locations have fluctuated above and below the concentrations of cesium-137 measured in samples from the control location. There is also no indication that cesium-137 is accumulating in soil samples from either the indicator or control locations. Cesium-137 has been detected most frequently in samples collected from Camp San Onofre and from Old Highway 101.

Over the past six years, minute amounts of naturally-occurring and Station-related radionuclides have been detected in soil samples collected near San Onofre and in Huntington Beach. There were detectable differences in the amounts of naturally-occurring potassium-40, radium-226, and thorium-232 seen in samples collected from each of the locations. The difference in the levels, however, is considered indicative of this particular environment. Strontium-90 and cesium-137 were also detected in samples from both the indicator and control locations at different frequencies, in a narrow concentration range. Although detectable, there is no indication that either strontium-90 or cesium-137 is accumulating in the soil near San Onofre. E-1

TABLE E-1

		1981 -	1986		· .	
<u>Camp San Onofre</u> Potassium-40 Strontium-90 Cesium-137 Radium-226 Thorium-232	<u>1981</u> * 0.02 0.15 0.58 0.60	<u>1982</u> 23.0 0.04 0.02 0.76 0.77	<u>1983</u> 20.0 0.02 0.05 *	1984 21.0 0.04 0.14	<u>1985</u> 15.0 <lld <lld *</lld </lld 	<u>1986</u> 17.4 0.03 0.11 *
<u>Old Highway 101</u> Potassium-40 Strontium-90 Cesium-137 Radium-226 Thorium-232	* 0.05 0.13 0.30 0.37	7.0 0.05 0.03 0.38 0.47	6.6 0.03 <lld *</lld 	6.2 0.02 0.04 *	6.3 0.03 0.08 *	5.8 0.02 0.03 *
<u>Basilone Road</u> Potassium-40 Strontium-90 Cesium-137 Radium-226 Thorium-232	* <lld <lld 0.93 0.83</lld </lld 	16.2 0.02 <lld 0.46 0.61</lld 	12.0 <lld <lld< td=""><td>17.3 <lld <lld *</lld </lld </td><td>20.0 <lld 0.04</lld </td><td>14.4 <lld <lld *</lld </lld </td></lld<></lld 	17.3 <lld <lld *</lld </lld 	20.0 <lld 0.04</lld 	14.4 <lld <lld *</lld </lld
<u>East Site Boundary</u> Potassium-40 Strontium-90 Cesium-137 Radium-226 Thorium-232	* 0.05 0.68 1.11	11.3 0.02 <lld 0.5 0.66</lld 	16.6 <lld <lld *</lld </lld 	13.8 <lld <lld *</lld </lld 	12.3 0.02 <lld *</lld 	15.1 0.04 <lld *</lld
<u>Huntington Beach</u> Potassium-40 Strontium-90 Cesium-137 Radium-226 Thorium-232	* <lld <.53 0.73</lld 	21.0 0.02 0.12 0.68 1.37	22.0 <lld 0.07</lld 	18.9 <lld 0.12 *</lld 	19.0 <lld <lld< td=""><td>18.0 0.02 <lld< td=""></lld<></td></lld<></lld 	18.0 0.02 <lld< td=""></lld<>

CONCENTRATIONS OF RADIONUCLIDES DETECTED IN SOIL#

E-

Abbreviations: # - concentrations listed are in units of pCi/g, dry weight
* - a radionuclide not determined in the analysis
<LLD - less than the lower limit of detection</pre>

SHORELINE SEDIMENT (SAND)

F٠

Shoreline sediment samples are collected semiannually from San Onofre State Beach (0.5 and 3.5 miles southeast of SONGS) and San Onofre Surfing Beach (which serve as indicator locations) as well as from Newport Beach (which serves as the control location). The samples are subsequently analyzed for 19 naturally-occurring and Station-related radionuclides. From 1981 through 1986, four radionuclides were detected in sand, namely: potassium-40, cesium-137, radium-226, and thorium-232. See Table E-2.

Three of the four radionuclides detected in shoreline sediment are naturally-occurring (i.e., non-Station related). They include potassium-40, radium-226, and thorium-232. All three of these radionuclides were present in each sample in detectable amounts. The measured concentrations of these radionuclides, however, vary from year to year at a given location, and to a greater extent between locations.

Cesium-137, a naturally-occurring/Station-related radionuclide, was detected in one sample out of 36 samples collected from the indicator locations over the past six years. Specifically, cesium-137 was detected in February 1981 in a sand sample collected from San Onofre State Beach (0.5 miles south of Unit 1). The concentration of cesium-137 in this sample was 0.02 pCi/g, dry weight. Cesium-137 has not been detected in any samples collected from the control location during this same time frame.

Over the past six years, both naturally-occurring and Station-related radionuclides have been detected in varying amounts and at different frequencies in sand samples collected from both the indicator and control locations. The difference in levels of potassium-40, radium-226, and thorium-232 is considered a characteristic of this particular environment. There is also no indication that cesium-137 is accumulating in the environment since it has stayed below detection limits for the past five years.

TABLE E-2

CONCENTRATIONS OF RADIONUCLIDES DETECTED IN SAND# 1981 - 1986

	1	· · ·	<u>Feb 81</u>	<u>Sep 81</u>	<u>Apr 82</u>	<u>Oct 82</u>	<u>Apr 83</u>	<u>Sep 83</u>	<u>Apr 84</u>	<u>Sep 84</u>	<u>Apr 85</u>	<u>Sep 85</u>	<u>Apr 86</u>	<u>Sep 86</u>
	0.5 Miles S <u>of Unit 1</u>			•			•,							
	Potassium-4 Cesium-137	0	* 0.02	* <lld< td=""><td>18 <lld< td=""><td>13 <lld< td=""><td>14 <lld< td=""><td>13.2 <lld< td=""><td>11.6 <lld< td=""><td>13.6 <lld< td=""><td>11.9 <lld< td=""><td>10.6 <lld< td=""><td>12.9 <lld< td=""><td>14.5 <lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	18 <lld< td=""><td>13 <lld< td=""><td>14 <lld< td=""><td>13.2 <lld< td=""><td>11.6 <lld< td=""><td>13.6 <lld< td=""><td>11.9 <lld< td=""><td>10.6 <lld< td=""><td>12.9 <lld< td=""><td>14.5 <lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	13 <lld< td=""><td>14 <lld< td=""><td>13.2 <lld< td=""><td>11.6 <lld< td=""><td>13.6 <lld< td=""><td>11.9 <lld< td=""><td>10.6 <lld< td=""><td>12.9 <lld< td=""><td>14.5 <lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	14 <lld< td=""><td>13.2 <lld< td=""><td>11.6 <lld< td=""><td>13.6 <lld< td=""><td>11.9 <lld< td=""><td>10.6 <lld< td=""><td>12.9 <lld< td=""><td>14.5 <lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	13.2 <lld< td=""><td>11.6 <lld< td=""><td>13.6 <lld< td=""><td>11.9 <lld< td=""><td>10.6 <lld< td=""><td>12.9 <lld< td=""><td>14.5 <lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	11.6 <lld< td=""><td>13.6 <lld< td=""><td>11.9 <lld< td=""><td>10.6 <lld< td=""><td>12.9 <lld< td=""><td>14.5 <lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	13.6 <lld< td=""><td>11.9 <lld< td=""><td>10.6 <lld< td=""><td>12.9 <lld< td=""><td>14.5 <lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	11.9 <lld< td=""><td>10.6 <lld< td=""><td>12.9 <lld< td=""><td>14.5 <lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	10.6 <lld< td=""><td>12.9 <lld< td=""><td>14.5 <lld< td=""></lld<></td></lld<></td></lld<>	12.9 <lld< td=""><td>14.5 <lld< td=""></lld<></td></lld<>	14.5 <lld< td=""></lld<>
	Radium-226 Thorium-232	· · ·	0.44 0.42	0.88	0.18 0.18	0.45 0.33	0.19 0.18	0.26 0.24	0.81 1.05	0.21 0.22	0.31	0.37 0.32	0.17 0.14	0.20 0.21
•	San Onofre <u>Surfing Bea</u>	ch					•	•		•	• •		•	
	Potassium-4 Radium-226	0	* 0.17	 • • • • • • • • • 	17.0 0.57	15.0 0.18	13.1 0.24	14.1 0.59	13.5 0.28	12.7 0.17	13.0 0.39	12.0 0.22	13.3 0.37	16.8 0.12
	Thorium-232	х .	0,18	0.27	0.87	0.20	0.25	0.72	0.36	0.18	0.48	0.27	0.40	0.14
	South San O State Beach									• • •	•			
	Potassium-4 Radium-226 Thorium-232	Ų.	* 0.17 0.11	0.17 0.14	15.0 0.14 0.12	16.0 0.16 0.14	13.5 0.13 0.14	13.4 0.31 0.21	11.4 0.64 0.43	15.8 0.12 0.13	13.6 0.73 1.07	13.4 0.15 0.20	15.5 0.14 0.12	13.1 0.15 0.14
	Newport Bea		*	•				•						
	Potassium-4 Radium-226 Thorium-232		0.28 0.71	* 0.55 1.26	20.0 0.54 1.53	15.0 1.27 3.8	17.8 0.26 0.80	17.4 0.46 1.28	17.6 0.63 2.1	20.0 0.24 0.45	17.2 0.52 1.43	15.3 0.52 2.0	17.9 0.37 1.00	17.9 0.25 0.46

m

Abbreviations:

- concentrations listed are in units of pCi/g, wet weight * - a radionuclide not determined in the analysis <LLD - less than the lower limit of detection</p>

AIRBORNE PARTICULATES COMPARED OF

Each week air samples are collected from a number of indicator locations, and from a control location situated in Huntington Beach. The samples are subsequently analyzed for gross beta activity. From 1981 through 1986, 152 air samples were collected from the indicator locations, and 24 samples were collected from Huntington Beach, and were subsequently analyzed for gross beta activity. The results indicate that gross beta activity was detected in each sample. Average quarterly gross beta activity for this time frame is presented in Table E-3.

To determine whether or not there are any trends toward increasing gross beta activities with time, calculated gross average quarterly gross beta activities from each indicator location were compared to equivalent data from Huntington Beach. Over the past six years, the average quarterly gross beta activities measured in San Clemente have been consistently below the levels measured in samples from Huntington Beach. Average quarterly gross beta activities measured at the other indicator locations, however, have fluctuated unpredictably (within a factor of two) above, and below the levels measured in samples from Huntington Beach. Only one sample collected from air sample location 10 (Bluff) during the first quarter of 1986 has exceeded a preliminary investigation level (i.e., twice the level measured at the control location). The gross beta activity measured in the sample of 0.046 pCi/m3. The gross beta activity measured in the sample from the control location was 0.021 pCi/m3.

A review of the data indicates that there are no trends toward increasing levels of gross beta activity in the air near SONGS, and that the operations of SONGS have had a negligible detectable impact on this environmental medium.

TABLE E-3

GROSS BETA ACTIVITY DETECTED IN AIR# 1981 -1986

		•	•	•	Camp								
		<u>.</u>	Huntington	San	San	Visitor	Units 2/3	Met	S.Beach		Mesa	Evaporation	
	Year	<u>Quarter</u>	<u>Beach</u>	<u>Clemente</u>	<u>Onofre</u>	<u>Center</u>	<u>Switchyard</u>	<u>Tower</u>	Park	<u>Bluff</u>	<u>E.O.F.</u>	Pond	. *
7	1981	1	0.150	0.120	0.122	0.217	0.200	*	*	*	*	*	
	1981	2	0.163	0.083	0.075	0.231	0.238	*	*	*	*	*	
	1981	3	0.058	0.040	0.032	0.062	0.067	*	. *	*	*	and the second	
	1981	4	0.039	0.028	0.023	0.044	0.067	* 1	* 1	*	*	*	
	1982	· · 1	0.021	0.018	0.018	0.021	0.023	0.020	*	*	*	*	
	1982	2	0.020	0.018	0.017	0.021	0.023	0.020	*	*	÷.	*	
	1982	3	0.018	0.016	0.017	0.020			*	*	*	*	
	1982	4	0.023	0.019	0.010	0.018	0.019 0.028	0.018	*	· · · · · · · · · · · · · · · · · · ·	*	·	
	•••				0.010	0.021	0.010	0.020				ан. 10 ал ар	
	1983	1	0.015	0.012	0.013	0.014	0.014	0.016	*	*	*	e 🔒 e 🔺 e	
	1983	2	0.014	0.012	0.015	0.015	0.014	0.014	*	*	🔺 📩	. 🖌	
	1983	3	0.017	0.015	0.019	0.018	0.019	0.019	*	*	· 🖌 ·	*	• '
	1983	4	0.025	0.018	0.021	0.020	0.022	0.020	*	*	*	*	
	1984	1	0.029	0.017	0.023	0.027	0.031	0.023	0.025	0.028	0.029	*	
	1984	2	0.016	0.013	0.016	0.018	0.016	0.017	0.019	0.019	0.019	*	
	1984	3	0.016	0.016	0.019	0.019	0.019	0.016	0.016	0.023	0.019	*	
	1984	4	0.019	0.016	0.020	0.021	0.021	0.019	0.019	0.020	0.022	*	
	1985	1	0.022	0.000	0 000	0.004	0.000						
		1	0.023	0.020	0.023	0.024	0.023	0.022	0.019	0.020	0.026		
	1985	2	0.015	0.014	0.015	0.015	0.016	0.015	0.016	0.015	0.020	*	
	1985	3	0.016	0.014	0.018	0.018	0.018	0.016	0.016	0.017	0.019	*	
	1985	4	0.028	0.020	0.025	0.025	0.026	0.021	0.024	0.026	0.028	*	
	1986	1	0.021	0.017	0.022	0.019	0.020	0.019	0.019	0.046	0.029	*	
	1986	2	0.114	0.101	0.103	*	0.144	0.106	0.101	0.110	0.123	0.133	
	1986	3	0.026	0.024	0.030	*	0.031	0.027	0.027	0.027	0.031	0.033	
	1986	4	0.032	0.026	0.035	*	0.032	0.032	0.030	0.027	0.035	0.036	
				· · ·								•	

Abbreviations: # - concentrations listed are in units of pCi/m³ * - gross beta activity not determined

E-6

Over the past six years, 48 samples of representative fresh and leafy vegetables were collected at harvest time from the San Mateo and/or San Clemente canyons (which serve as indicator locations), and a control location situated SSE Oceanside (which served as the control location). Upon collection, the samples were analyzed for 12 naturally-occurring, and Station-related gamma-emitting radionuclides, for strontium-90, and for aqueous and bound tritium. Radionuclides detected during this time include beryllium-7, potassium-40, strontium-90, and organically-bound tritium. A summary of the radioanalytical data is presented in Table E-4.

Beryllium-7, a naturally-occurring, non-Station related radionuclide has been noted in a few samples collected from both the indicator and control locations. Beryllium-7 was detected in cauliflower and cucumber samples collected from the indicator locations at concentrations of 0.06 pCi/g, wet weight. Beryllium-7 was also detected in two kale samples and a sample of squash from the control location at concentrations ranging from 0.06 to 0.08 pCi/g, wet weight.

Potassium-40, another naturally-occurring, non-Station related radionuclide was detected in all of the samples collected from both the indicator and control locations over the past few years. Over the past six years, the potassium-40 levels, with one exception, have fluctuated within a factor of two above, <u>and</u> below the levels measured in samples collected from the control location.

Strontium-90 was detected in samples collected from both the indicator and control locations over the past six years. Strontium-90 was seen in one sample collected from the indicator locations, and in eight samples collected from SSE of Oceanside. The concentration of strontium-90 in the cauliflower sample collected from the San Mateo Canyon was 0.007 pCi/g, wet weight. The concentration of strontium-90 in the kale and parsley samples collected from SSE Oceanside ranged from 0.010 to 0.09 pCi/g, wet weight. Interestingly, strontium-90 is seen most frequently in kale samples.

Organically-bound tritium was also detected in samples collected from the San Mateo Canyon and SSE of Oceanside in June 1984. The concentrations of organically-bound tritium in the tomato and cucumber samples collected from the San Mateo Canyon were 0.52 and 0.4 pCi/g, wet weight, respectively. The concentrations of strontium-90 in tomatoes and green bean samples collected from SSE Oceanside were 0.5 and 2.1 pCi/g, wet weight, in that order.

Finally, cesium-137, a naturally-occurring and SONGS-related radionuclide, was detected in a total of four samples collected from SSE of Oceanside during June 1983, September 1983, and again in June 1986. The concentration of cesium-137 in these samples ranged from 0.0072 to 0.0400 pCi/g, wet weight. Cesium-137 was not detected in any of the samples collected from the indicator locations.

CROPS

E-7

Several radionuclides were present in minute amounts in crops near SONGS over the past few years. The detectable differences in the amounts of beryllium-7 and potassium-40 seen in the samples are considered characteristic of this environment. Because the levels of strontium-90 and cesium-137 and organically-bound tritium in the samples from the control locations are seen more frequently in samples collected from the control location, the presence of the radionuclides is most likely due to fallout from nuclear weapons testing, and not from Station operations. From this, it was concluded that the operations of SONGS has had a negligible detectable effect on this environmental medium.

E-8

TABLE E-4

CONCENTRATIONS OF RADIONUCLIDES DETECTED IN LOCAL CROPS# 1981 - 1986

· • .	Sample					Bound
<u>Date</u>	Type	Location	<u>Beryllium-7</u>	<u>Potassium-40</u>	<u>Strontium-90</u>	Tritium
Jun 81	Tomatoes	San Clemente/	*	*	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Jun 81	Cabbage	San Mateo	*	*	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Sep 81	Corn	Canyons	*	A .	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Sep 81	Cucumber	Ш	*	n na 🖌 🖌 🕹	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Jun 82	Tomatoes	II	<lld< td=""><td>2.2</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	2.2	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Jun 82	Cucumber	48	<lld< td=""><td>1.8</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	1.8	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Dec 82	Tomatoes	81	<lld< td=""><td>2.1</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	2.1	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Dec 82	Cauliflr	II	0.06	2.8	0.007	<lld< td=""></lld<>
Jun 83	Tomatoes	11	<lld< td=""><td>2.3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	2.3	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Jun 83	Cucumber	10	<lld< td=""><td>1.6</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	1.6	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Sep 83	Tomatoes	60	<lld< td=""><td>2.1</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	2.1	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Sep 83	Cucumber	ļi.	<lld< td=""><td>1.7</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	1.7	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Jun 84	Tomatoes		<lld< td=""><td>2.2</td><td><lld< td=""><td>0.52</td></lld<></td></lld<>	2.2	<lld< td=""><td>0.52</td></lld<>	0.52
Jun 84	Cucumber	H *	<lld< td=""><td>1.5</td><td><lld< td=""><td>0.4</td></lld<></td></lld<>	1.5	<lld< td=""><td>0.4</td></lld<>	0.4
Sep 84	Tomatoes	40	<lld< td=""><td>1.8</td><td><lld -<="" td=""><td><lld< td=""></lld<></td></lld></td></lld<>	1.8	<lld -<="" td=""><td><lld< td=""></lld<></td></lld>	<lld< td=""></lld<>
Sep 84	Cucumber	88	0.06	1.7	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Jun 85	Cucumber	II	<lld< td=""><td>1.3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	1.3	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Jun 85	Caulifir	II.	<lld< td=""><td>1.7</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	1.7	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Sep 85	Cucumber	й н	<lld< td=""><td>1.7</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	1.7	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Sep 85	Tomatoes	H V	<lld< td=""><td>1.9</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	1.9	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Jun 86	Cucumber		<pre><lld< pre=""></lld<></pre>	1.08	<lld td="" ····<=""><td><lld< td=""></lld<></td></lld>	<lld< td=""></lld<>
Jun 86	Corn	11	<lld< td=""><td>15.4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	15.4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nov 86	Cauliflr	8	<lld< td=""><td>2.2</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	2.2	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nov 86	Tomatoes	11	< LLD	1.9	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>

Abbreviations:

- concentrations listed are in units of pCi/g, wet weight * - a radionuclide not determined in the analysis <LLD - less than the lower limit of detection</pre>

TABLE E-4 (Continued)

CONCENTRATIONS OF RADIONUCLIDES DETECTED IN LOCAL CROPS# 1981 - 1986

	Sample					Bound	
Date	Туре	<u>Location</u>	<u>Beryllium-7</u>	<u>Potassium-40</u>	<u>Strontium-90</u>	Tritium	<u>Cesium-137</u>
Jun 81		SSE Oceanside	*	*	<lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>
Jun 81	Parsley	. 0	*	★	0.09	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>
Sep 81	Tomatoes	88	*	*	<lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>
Sep 81	Parsley	88 .	*	*	<lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>
Jun 82	Tomatoes	48	<lld< th=""><th>1.8</th><th><lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<></th></lld<>	1.8	<lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>
Jun 82	Kale	un i 🕕 🕂	<lld< th=""><th>2.1</th><th>0.027</th><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<>	2.1	0.027	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>
Dec 82	Tomatoes	41	<lld< th=""><th>1.9</th><th><lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<></th></lld<>	1.9	<lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>
Dec 82	Kale	H	0.06	1.6	0.014	<lld< th=""><th><ĽLD</th></lld<>	<ĽLD
Jun 83	Tomatoes	18	<lld< th=""><th>2.6</th><th><lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<></th></lld<>	2.6	<lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>
Jun 83	Kale	40	0.08	3.1	0.026	<lld< th=""><th>0.0400</th></lld<>	0.0400
Sep 83	Kale	II	<lld< th=""><th>1.8</th><th>0.018</th><th><lld< th=""><th>0.0072</th></lld<></th></lld<>	1.8	0.018	<lld< th=""><th>0.0072</th></lld<>	0.0072
Sep 83	Tomatoes	II	<lld< th=""><th>2.2</th><th><lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<></th></lld<>	2.2	<lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>
Jun 84	Tomatoes	88	<lld< th=""><th>1.5</th><th><lld< th=""><th>0.5</th><th><lld< th=""></lld<></th></lld<></th></lld<>	1.5	<lld< th=""><th>0.5</th><th><lld< th=""></lld<></th></lld<>	0.5	<lld< th=""></lld<>
Jun 84	Grn Beans	14	<lld< th=""><th>2.0</th><th><lld< th=""><th>2.1</th><th><pre><lld< pre=""></lld<></pre></th></lld<></th></lld<>	2.0	<lld< th=""><th>2.1</th><th><pre><lld< pre=""></lld<></pre></th></lld<>	2.1	<pre><lld< pre=""></lld<></pre>
Sep 84	Kale	88	<lld< th=""><th>1.0</th><th>0.015</th><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<>	1.0	0.015	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>
Sep 84	Tomatoes	14	<lld< th=""><th>2.0</th><th><lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<></th></lld<>	2.0	<lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>
Jun 85	String Bean		<lld< th=""><th>1.5</th><th><lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<></th></lld<>	1.5	<lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>
Jun 85	Squash	14 . 	0.08	1.7	<lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>
Sep 85	Tomatoes	· II	<lld< th=""><th>1.8</th><th><lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<></th></lld<>	1.8	<lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>
Sep 85	Kale	44	<lld< th=""><th>1.7</th><th><lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<></th></lld<>	1.7	<lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>
Jun 86	Kale	85	<lld< th=""><th>2.8</th><th>0.010</th><th><lld< th=""><th>0.0037</th></lld<></th></lld<>	2.8	0.010	<lld< th=""><th>0.0037</th></lld<>	0.0037
Jun 86	Tomatoes	ţ,	<lld< th=""><th>1.6</th><th><lld< th=""><th><lld< th=""><th>0.010</th></lld<></th></lld<></th></lld<>	1.6	<lld< th=""><th><lld< th=""><th>0.010</th></lld<></th></lld<>	<lld< th=""><th>0.010</th></lld<>	0.010
Nov 86	Tomatoes	80	<lld< th=""><th>1.17</th><th><lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<></th></lld<>	1.17	<lld< th=""><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<>	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>
Nov 86	Kale	60 · · ·	<lld< th=""><th>2.6</th><th>0.011</th><th><lld< th=""><th><lld< th=""></lld<></th></lld<></th></lld<>	2.6	0.011	<lld< th=""><th><lld< th=""></lld<></th></lld<>	<lld< th=""></lld<>

Abbreviations:

- 1

- # concentrations listed are in units of pCi/g, wet weight * a radionuclide not determined in the analysis <LLD less than the lower limit of detection</pre>

Harvestable kelp is collected semiannually from the San Onofre Kelp Bed, the San Mateo Kelp Bed, and from a kelp bed situated in Newport Beach. Because of its atrophied condition, kelp is not collected from the Barn Kelp Bed near SONGS. Once collected, the kelp is analyzed for 19 naturally-occurring and Station-related gamma-emitting radionuclides, and for aqueous and bound tritium. Radionuclides that have been detected in kelp over the past six years include potassium-40, cobalt-58, cobalt-60, zirconium (niobium)-95, iodine-131, and cesium-137. Concentrations of these radionuclides are presented in Table E-5.

Potassium-40, a naturally-occurring (i.e., non-Station related) radionuclide has been detected in all of the samples analyzed to date. Over the past six years, the potassium-40 levels, with one exception, have fluctuated (within a factor of two above), and below the levels measured in samples collected from the control location.

Since 1981, cobalt-58, a Station-related radionuclide, has been below detection limits in samples collected from both the San Onofre and San Mateo Kelp Beds, with the exception of the samples collected from the San Onofre Kelp Bed in 1984. Cobalt-58 has been below detection limits, however, in all samples collected from the control location.

From 1981 through 1986, cobalt-60, another Station-related radionuclide, was noted in San Onofre Kelp Bed samples collected in June 1981, and in each semiannual sampling during 1984 and 1985. Cobalt-60 was also seen in San Mateo Kelp Bed samples in June 1981, and in May and November 1984, and again in May 1985. Cobalt-60, on the other hand, was only detected in one sample collected from Newport Beach during May 1985.

From 1981 to 1986, iodine-131, another Station-related radionuclide, has been found in the majority of samples collected from the San Onofre and San Mateo Kelp Beds, and in kelp collected from Newport Beach. With the exception of five samples, the concentrations of iodine-131 measured in samples from the indicator locations have been within a factor of two of the iodine-131 concentrations measured in samples from the control location (or where applicable, twice the lower limit of detection of iodine-131). The five samples where the measured concentration of iodine-131 exceeded the preliminary investigation levels (or twice background levels) were collected during the time frame of November 1983 and May 1985.

Cesium-137, a naturally-occurring and Station-related radionuclide, was below detection limits in the samples collected from the San Onofre and San Mateo Kelp Beds, and from Newport Beach from 1981 through 1983. Since then, cesium-137 has been detected in all but one sample collected from the San Onofre and San Mateo Kelp Beds. Cesium-137 has also been detected in three of the samples collected from Newport Beach. With the exception of one sample, the concentrations of cesium-137 measured in samples from the indicator locations have been within a factor of two of the iodine-131 concentrations measured in samples from the control location (or where applicable, twice the lower limit of detection of cesium-137). The one sample where the measured concentration of cesium-137 just exceeded the preliminary investigation levels (or twice background levels) was collected in May 1985. E-12

In examining data collected over the past six years, there is no evidence that any naturally-occurring or Station-related radionuclides are accumulating in kelp near San Onore although a few measured concentrations exceeded preliminary investigation levels. The detectable amounts of cesium-137 and iodine-131 in the kelp obtained from Newport Beach may be due to SONGS operations. This is due to the fact that there is a weak intermittment north current (0.5 knots). Hospitals are another potential source of iodine-131.

TABLE E-5

CONCENTRATIONS OF RADIONUCLIDES DETECTED IN KELP# 1981 - 1986

	<u>Jun 81</u>	<u>Dec 81</u>	<u>Jun 82</u>	<u>Oct 82</u>	<u>May 83</u>	<u>Nov 83</u>	<u>May 84</u>	Nov 84	<u>May 85</u>	<u>Nov 85</u>	<u>May 86</u>	<u>Jun 86</u>	<u>Nov 86</u>
San Onofre <u>Kelp Bed</u>						· .			· .		•	•	
Potassium-40	*	*	5.2	5.5	4.6	6.7	6.5	7.4	9.0	2 E		0.2	7 6
Cobalt-58	<lld< td=""><td><lld< td=""><td><lld< td=""><td><pre>S.S </pre></td><td><lld< td=""><td><lld< td=""><td>0.007</td><td>0.012</td><td>۶.0 <lld< td=""><td>3.5 <lld< td=""><td>7.6 <lld< td=""><td>8.3 <lld< td=""><td>7.6 <lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><pre>S.S </pre></td><td><lld< td=""><td><lld< td=""><td>0.007</td><td>0.012</td><td>۶.0 <lld< td=""><td>3.5 <lld< td=""><td>7.6 <lld< td=""><td>8.3 <lld< td=""><td>7.6 <lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><pre>S.S </pre></td><td><lld< td=""><td><lld< td=""><td>0.007</td><td>0.012</td><td>۶.0 <lld< td=""><td>3.5 <lld< td=""><td>7.6 <lld< td=""><td>8.3 <lld< td=""><td>7.6 <lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<pre>S.S </pre>	<lld< td=""><td><lld< td=""><td>0.007</td><td>0.012</td><td>۶.0 <lld< td=""><td>3.5 <lld< td=""><td>7.6 <lld< td=""><td>8.3 <lld< td=""><td>7.6 <lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0.007</td><td>0.012</td><td>۶.0 <lld< td=""><td>3.5 <lld< td=""><td>7.6 <lld< td=""><td>8.3 <lld< td=""><td>7.6 <lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	0.007	0.012	۶.0 <lld< td=""><td>3.5 <lld< td=""><td>7.6 <lld< td=""><td>8.3 <lld< td=""><td>7.6 <lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	3.5 <lld< td=""><td>7.6 <lld< td=""><td>8.3 <lld< td=""><td>7.6 <lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	7.6 <lld< td=""><td>8.3 <lld< td=""><td>7.6 <lld< td=""></lld<></td></lld<></td></lld<>	8.3 <lld< td=""><td>7.6 <lld< td=""></lld<></td></lld<>	7.6 <lld< td=""></lld<>
Cobalt-60	0.005	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>0.056</td><td>0.012</td><td>0.0037</td><td>0.0042</td><td><lld< td=""><td></td><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>0.056</td><td>0.012</td><td>0.0037</td><td>0.0042</td><td><lld< td=""><td></td><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0.056</td><td>0.012</td><td>0.0037</td><td>0.0042</td><td><lld< td=""><td></td><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0.056</td><td>0.012</td><td>0.0037</td><td>0.0042</td><td><lld< td=""><td></td><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0.056</td><td>0.012</td><td>0.0037</td><td>0.0042</td><td><lld< td=""><td></td><td><lld< td=""></lld<></td></lld<></td></lld<>	0.056	0.012	0.0037	0.0042	<lld< td=""><td></td><td><lld< td=""></lld<></td></lld<>		<lld< td=""></lld<>
Zirconium	0.080	*	<lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
(Niobium)-95							(LLD	(LLU	(LLD			(LLD	LLD
Iodine-131	0.006	<lld< b=""></lld<>	<lld< td=""><td><lld< td=""><td>0.053</td><td>0.033</td><td>0.22</td><td>0.105</td><td>0.054</td><td>0.008</td><td>0.25</td><td>0.065</td><td>0.008</td></lld<></td></lld<>	<lld< td=""><td>0.053</td><td>0.033</td><td>0.22</td><td>0.105</td><td>0.054</td><td>0.008</td><td>0.25</td><td>0.065</td><td>0.008</td></lld<>	0.053	0.033	0.22	0.105	0.054	0.008	0.25	0.065	0.008
Cesium-137	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0037</td><td>0.0037</td><td>0.0053</td><td><lld< td=""><td>0.0033</td><td>0.0046</td><td>0.0047</td><td></td><td></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0037</td><td>0.0037</td><td>0.0053</td><td><lld< td=""><td>0.0033</td><td>0.0046</td><td>0.0047</td><td></td><td></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0.0037</td><td>0.0037</td><td>0.0053</td><td><lld< td=""><td>0.0033</td><td>0.0046</td><td>0.0047</td><td></td><td></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0.0037</td><td>0.0037</td><td>0.0053</td><td><lld< td=""><td>0.0033</td><td>0.0046</td><td>0.0047</td><td></td><td></td></lld<></td></lld<>	0.0037	0.0037	0.0053	<lld< td=""><td>0.0033</td><td>0.0046</td><td>0.0047</td><td></td><td></td></lld<>	0.0033	0.0046	0.0047		
San Mateo													
Kelp Bed													
Potassium-40	* .	*	4.2	4.4	7.2	4.7	4.5	6.0	9.1	6.2	6.8	5.2	5.5
Cobalt-60	0.006	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< b=""></lld<></td><td>0.015</td><td>0.0079</td><td>0.0017</td><td></td><td><lld< td=""><td><lld< b=""></lld<></td><td><lld< b=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< b=""></lld<></td><td>0.015</td><td>0.0079</td><td>0.0017</td><td></td><td><lld< td=""><td><lld< b=""></lld<></td><td><lld< b=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< b=""></lld<></td><td>0.015</td><td>0.0079</td><td>0.0017</td><td></td><td><lld< td=""><td><lld< b=""></lld<></td><td><lld< b=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< b=""></lld<></td><td>0.015</td><td>0.0079</td><td>0.0017</td><td></td><td><lld< td=""><td><lld< b=""></lld<></td><td><lld< b=""></lld<></td></lld<></td></lld<>	<lld< b=""></lld<>	0.015	0.0079	0.0017		<lld< td=""><td><lld< b=""></lld<></td><td><lld< b=""></lld<></td></lld<>	<lld< b=""></lld<>	<lld< b=""></lld<>
Zirconium	0.062	*	<lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
(Niobium)-95					·							10.0	
Iodine-131	0.014	0.017	<lld< b=""></lld<>	<lld< td=""><td>0.049</td><td>0.020</td><td>0.016</td><td>0.060</td><td>0.033</td><td>0.013</td><td>0.24</td><td>0.056</td><td>KLLD</td></lld<>	0.049	0.020	0.016	0.060	0.033	0.013	0.24	0.056	KLLD
Cesium-137	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0041</td><td>0.0035</td><td>0.0033</td><td>0.0059</td><td>0.0032</td><td>0.0038</td><td>0.0057</td><td>0.0043</td><td>0.0026</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0041</td><td>0.0035</td><td>0.0033</td><td>0.0059</td><td>0.0032</td><td>0.0038</td><td>0.0057</td><td>0.0043</td><td>0.0026</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0.0041</td><td>0.0035</td><td>0.0033</td><td>0.0059</td><td>0.0032</td><td>0.0038</td><td>0.0057</td><td>0.0043</td><td>0.0026</td></lld<></td></lld<>	<lld< td=""><td>0.0041</td><td>0.0035</td><td>0.0033</td><td>0.0059</td><td>0.0032</td><td>0.0038</td><td>0.0057</td><td>0.0043</td><td>0.0026</td></lld<>	0.0041	0.0035	0.0033	0.0059	0.0032	0.0038	0.0057	0.0043	0.0026
Newport Beach			•								•		
Kelp Bed		·			•								
Potassium-40	* *	*	2.4	4.7	6.3	4.7	6.9	5.8	5.9	6.6	6.9	5.3	7.3
Cobalt-60	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><pre>LLD</pre></td><td><lld< td=""><td>0.0016</td><td><lld< td=""><td>< LLD</td><td><lld< b=""></lld<></td><td><lld< b=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><pre>LLD</pre></td><td><lld< td=""><td>0.0016</td><td><lld< td=""><td>< LLD</td><td><lld< b=""></lld<></td><td><lld< b=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><pre>LLD</pre></td><td><lld< td=""><td>0.0016</td><td><lld< td=""><td>< LLD</td><td><lld< b=""></lld<></td><td><lld< b=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><pre>LLD</pre></td><td><lld< td=""><td>0.0016</td><td><lld< td=""><td>< LLD</td><td><lld< b=""></lld<></td><td><lld< b=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><pre>LLD</pre></td><td><lld< td=""><td>0.0016</td><td><lld< td=""><td>< LLD</td><td><lld< b=""></lld<></td><td><lld< b=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><pre>LLD</pre></td><td><lld< td=""><td>0.0016</td><td><lld< td=""><td>< LLD</td><td><lld< b=""></lld<></td><td><lld< b=""></lld<></td></lld<></td></lld<></td></lld<>	<pre>LLD</pre>	<lld< td=""><td>0.0016</td><td><lld< td=""><td>< LLD</td><td><lld< b=""></lld<></td><td><lld< b=""></lld<></td></lld<></td></lld<>	0.0016	<lld< td=""><td>< LLD</td><td><lld< b=""></lld<></td><td><lld< b=""></lld<></td></lld<>	< LLD	<lld< b=""></lld<>	<lld< b=""></lld<>
Zirconium	0.053	4	<lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
(Niobium)-95	0.010	0 013										4. N. 1. 	
Iodine-131	0.018	0.011	<lld< td=""><td><lld< td=""><td>0.027</td><td>0.015</td><td><lld< td=""><td><lld< td=""><td>0.019</td><td><lld< td=""><td>0.129</td><td>0.049</td><td>0.049</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0.027</td><td>0.015</td><td><lld< td=""><td><lld< td=""><td>0.019</td><td><lld< td=""><td>0.129</td><td>0.049</td><td>0.049</td></lld<></td></lld<></td></lld<></td></lld<>	0.027	0.015	<lld< td=""><td><lld< td=""><td>0.019</td><td><lld< td=""><td>0.129</td><td>0.049</td><td>0.049</td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0.019</td><td><lld< td=""><td>0.129</td><td>0.049</td><td>0.049</td></lld<></td></lld<>	0.019	<lld< td=""><td>0.129</td><td>0.049</td><td>0.049</td></lld<>	0.129	0.049	0.049
Cesium-137 Cerium-144	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0016</td><td></td><td>0.0044</td><td><lld< td=""><td>0.0034</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0016</td><td></td><td>0.0044</td><td><lld< td=""><td>0.0034</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0016</td><td></td><td>0.0044</td><td><lld< td=""><td>0.0034</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0016</td><td></td><td>0.0044</td><td><lld< td=""><td>0.0034</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0016</td><td></td><td>0.0044</td><td><lld< td=""><td>0.0034</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0016</td><td></td><td>0.0044</td><td><lld< td=""><td>0.0034</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0.0016</td><td></td><td>0.0044</td><td><lld< td=""><td>0.0034</td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0.0016</td><td></td><td>0.0044</td><td><lld< td=""><td>0.0034</td></lld<></td></lld<>	0.0016		0.0044	<lld< td=""><td>0.0034</td></lld<>	0.0034
Cet 1011-144	0.016	~	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0034</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0034</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0034</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0034</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0034</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0034</td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0034</td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0.0034</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0.0034</td></lld<></td></lld<>	<lld< td=""><td>0.0034</td></lld<>	0.0034
Abbreviations:			•	4									A. S. P.
# - concent		lictod	are in	unite e	6						1		

ω

- concentrations listed are in units of pCi/g, wet weight
 * - a radionuclide not determined in the analysis
 <LLD - less than the lower limit of detection

OCEAN BOTTOM SEDIMENTS

E-14

To determine whether or not radioactivity is accumulating in ocean bottom sediments near SONGS, representative samples are collected near each of the SONGS discharge outfalls (which serve as indicator locations), and from Newport Beach (which serves as the control location). After collection, the samples are analyzed for a total of 19 naturally-occurring and SONGS-related radionuclides. Radionuclides detected in ocean bottom sediments over the past six years near SONGS are presented in Table E-6 in terms of "as received" wet sample weights.

Several naturally-occurring radionuclides (i.e., those not associated with SONGS operations) were detected in samples collected from both indicator and control locations. They include potassium-40, radium-226, and thorium-228. Variations in concentrations of the naturally-occurring radionuclides-between both sampling locations, and sampling periods-are considered indicative of this environmental medium.

Radionuclides found in ocean bottom sediments near the SONGS outfalls include manganese-54, cobalt-58, cobalt-60, silver-110m, cesium-137, and cerium-144. The concentrations of manganese-54 in the samples ranged from 0.023 to 0.035, averaging 0.046 pCi/g. Cobalt-58 was also found in three samples. The concentrations of cobalt-58 in the samples ranged from 0.030 to 0.070, averaging 0.049 pCi/g. Cobalt-60 was found in 17 samples. The concentrations of cobalt-60 in the samples ranged from 0.021 to 0.98, averaging 0.27 pCi/g. Silver-110m was found in one sample at a concentration of 0.02 pCi/g. Cesium-137 was found in seven samples. The concentrations of cobalt-60 in the samples ranged from 0.030 to 0.090, averaging 0.049 pCi/g. Cerium-144 was found in one sample at a concentration of 0.02 pCi/g.

The Station-related radionuclides detected in samples collected near the SONGS discharge outfalls were not seen in the ocean bottom sediment samples collected from Newport Beach, with one exception. Cobalt-60 was observed in one sample collected in May 1985 from Newport Beach at a concentration of 0.090 pCi/g.

Station-related radionuclides were detected in samples near SONGS at concentrations above those seen at the control location situated in Newport Beach. However, the concentrations of each of these radionuclides in ocean bottom sediments have been diminishing steadily over the past six years. The reduction in detectable activity is attributable, at least in part, to Edison's commitment to reduce radioactive liquid effluent releases from SONGS.

TABLE E-6

CONCENTRATIONS OF RADIONUCLIDES DETECTED IN OCEAN BOTTOM SEDIMENTS# 1981 - 1986

San Onofre <u>Unit 1 (E)</u>	<u>Jun 81 Dec</u>	<u>81 Jun 82 Nov 8</u> 2	<u>2 May 83 Nov 83</u>	<u>May 84 Nov 84</u>	Jun 85 Nov 85	<u>May 86 Nov 86</u>
Potassium-40 Manganese-54 Cobalt-58 Cobalt-60 Silver-110m Cesium-137 Radium-226 Thorium-228	* * 0.035 0.02 0.046 <lld 0.83 0.98 <lld <lld<br="">0.040 0.05 0.40 0.46 * *</lld></lld 	<pre></pre>	10.3 11.9 <lld <lld<br=""><lld <lld<br="">0.050 0.090 <lld <lld<br=""><lld <lld<br="">0.60 0.30 0.87 0.31</lld></lld></lld></lld>	9.8 9.2 <lld <lld<br=""><lld <lld<br=""><lld 0.080<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br="">0.68 0.17 0.90 0.21</lld></lld></lld></lld></lld></lld>	10.8 10.1 <lld< td=""> 0.51 0.58 0.58 0.95</lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>	10.6 11.1 <lld <lld<br=""><lld <lld<br="">0.060 <lld <lld <lld<br=""><lld <lld<br="">0.56 0.54 0.64 0.70</lld></lld></lld </lld></lld>
San Onofre Unit 1 (W)	<u>Jun 81 Dec</u>	<u> 81 Jun 82 Nov 82</u>	<u>2 May 83 Nov 83</u>	<u>May 84 Nov 84</u>	<u>May 85 Nov 85</u>	<u>May 86 Nov 86</u>
Potassium-40 Manganese-54 Cobalt-58 Cobalt-60 Silver-110m Cesium-137 Cerium-144 Radium-226 Thorium-228	* * 0.08 * 0.030 <lld 0.93 0.09 0.020 <lld 0.040 0.04 0.060 * 0.38 0.54 * *</lld </lld 	9 <lld 0.11<br=""><lld <lld<="" th=""><th>10.2 11.4 <lld <lld<br=""><lld <lld<br=""><lld 0.63<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br="">0.66 0.62 0.84 0.65</lld></lld></lld></lld></lld></lld></th><th>8.8 11.3 <lld <lld<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br="">0.55 0.45 0.75 0.55</lld></lld></lld></lld></lld></lld></lld></th><th>12.5 6.8 <lld <lld<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br="">0.22 0.52 0.26 0.90</lld></lld></lld></lld></lld></lld></lld></th><th>13.8 12.5 <lld< td=""> 0.24 0.25 0.28 0.25</lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></th></lld></lld>	10.2 11.4 <lld <lld<br=""><lld <lld<br=""><lld 0.63<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br="">0.66 0.62 0.84 0.65</lld></lld></lld></lld></lld></lld>	8.8 11.3 <lld <lld<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br="">0.55 0.45 0.75 0.55</lld></lld></lld></lld></lld></lld></lld>	12.5 6.8 <lld <lld<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br=""><lld <lld<br="">0.22 0.52 0.26 0.90</lld></lld></lld></lld></lld></lld></lld>	13.8 12.5 <lld< td=""> 0.24 0.25 0.28 0.25</lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>

1-

Abbreviations:

- # concentrations listed are in units of pCi/g, wet weight * a radionuclide not determined in the analysis <LLD less than the lower limit of detection</pre>

1 ບົ

TABLE E-6 (Continued)

CONCENTRATIONS OF RADIONUCLIDES DETECTED IN OCEAN BOTTOM SEDIMENTS# 1981 - 1986

San Onofre												
Unit 2	<u>Jun 81</u>	<u>Dec 81</u>	<u>Jun 82</u>	<u>Oct 82</u>	<u>May 83</u>	<u>Nov 83</u>	<u>May 84</u>	<u>Nov 84</u>	May 85	Nov 85	May 86	Nov 86
Potassium-40 Manganese-54	*	*	16 <lld< th=""><th>14 <lld< th=""><th>11.5 <lld< th=""><th>10.2 <lld< th=""><th>9.7</th><th>11.9</th><th>14.1</th><th>10.4</th><th>15.2</th><th>12.4</th></lld<></th></lld<></th></lld<></th></lld<>	14 <lld< th=""><th>11.5 <lld< th=""><th>10.2 <lld< th=""><th>9.7</th><th>11.9</th><th>14.1</th><th>10.4</th><th>15.2</th><th>12.4</th></lld<></th></lld<></th></lld<>	11.5 <lld< th=""><th>10.2 <lld< th=""><th>9.7</th><th>11.9</th><th>14.1</th><th>10.4</th><th>15.2</th><th>12.4</th></lld<></th></lld<>	10.2 <lld< th=""><th>9.7</th><th>11.9</th><th>14.1</th><th>10.4</th><th>15.2</th><th>12.4</th></lld<>	9.7	11.9	14.1	10.4	15.2	12.4
Cobalt-58	<lld< td=""><td><lld< td=""><td><lld< td=""><td>0.07</td><td><lld< td=""><td><lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>0.07</td><td><lld< td=""><td><lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0.07</td><td><lld< td=""><td><lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></td></lld<></td></lld<>	0.07	<lld< td=""><td><lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></td></lld<>	<lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<>	<lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld 	<lld <lld< td=""></lld<></lld
Cobalt-60	0.062	0.038	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Silver-110m Cesium-137	<lld 0.030</lld 	<lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td><lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld </td></lld<></lld 	<lld <lld< td=""><td><lld <lld< td=""></lld<></lld </td></lld<></lld 	<lld <lld< td=""></lld<></lld
Radium-226	0.52	0.35	0.16	0.33	0.36	0.50	0.28	0.33	0.36	0.44	0.16	0.29
Thorium-228	a .	*	0.20	0.34	0.43	0.56	0.30	0.32	0.57	0.49	0.12	0.40
												• • • •
San Onofre <u>Unit 3</u>	<u>Jun 81</u>	<u>Dec 81</u>	<u>Jun 82</u>	<u>Oct 82</u>	<u>May 83</u>	<u>Nov 83</u>	<u>May 84</u>	<u>Nov 84</u>	<u>Jun 85</u>	<u>Nov 85</u>	<u>May 86</u>	Nov 86
	<u>Jun 81</u> *	<u>Dec 81</u>			/			18				
<u>Unit 3</u> Potassium-40 Manganese-54	*	* E	15 <lld< th=""><th>14 <lld< th=""><th><u>May 83</u> 10.6 <lld< th=""><th><u>Nov 83</u> 12.5 <lld< th=""><th><u>May 84</u> 10.1 <lld< th=""><th><u>Nov 84</u> 16.8 <lld< th=""><th><u>Jun 85</u> 11.2 <lld< th=""><th><u>Nov 85</u> 10.9 <lld< th=""><th><u>May 86</u> 15.2 <lld< th=""><th>10.6</th></lld<></th></lld<></th></lld<></th></lld<></th></lld<></th></lld<></th></lld<></th></lld<></th></lld<>	14 <lld< th=""><th><u>May 83</u> 10.6 <lld< th=""><th><u>Nov 83</u> 12.5 <lld< th=""><th><u>May 84</u> 10.1 <lld< th=""><th><u>Nov 84</u> 16.8 <lld< th=""><th><u>Jun 85</u> 11.2 <lld< th=""><th><u>Nov 85</u> 10.9 <lld< th=""><th><u>May 86</u> 15.2 <lld< th=""><th>10.6</th></lld<></th></lld<></th></lld<></th></lld<></th></lld<></th></lld<></th></lld<></th></lld<>	<u>May 83</u> 10.6 <lld< th=""><th><u>Nov 83</u> 12.5 <lld< th=""><th><u>May 84</u> 10.1 <lld< th=""><th><u>Nov 84</u> 16.8 <lld< th=""><th><u>Jun 85</u> 11.2 <lld< th=""><th><u>Nov 85</u> 10.9 <lld< th=""><th><u>May 86</u> 15.2 <lld< th=""><th>10.6</th></lld<></th></lld<></th></lld<></th></lld<></th></lld<></th></lld<></th></lld<>	<u>Nov 83</u> 12.5 <lld< th=""><th><u>May 84</u> 10.1 <lld< th=""><th><u>Nov 84</u> 16.8 <lld< th=""><th><u>Jun 85</u> 11.2 <lld< th=""><th><u>Nov 85</u> 10.9 <lld< th=""><th><u>May 86</u> 15.2 <lld< th=""><th>10.6</th></lld<></th></lld<></th></lld<></th></lld<></th></lld<></th></lld<>	<u>May 84</u> 10.1 <lld< th=""><th><u>Nov 84</u> 16.8 <lld< th=""><th><u>Jun 85</u> 11.2 <lld< th=""><th><u>Nov 85</u> 10.9 <lld< th=""><th><u>May 86</u> 15.2 <lld< th=""><th>10.6</th></lld<></th></lld<></th></lld<></th></lld<></th></lld<>	<u>Nov 84</u> 16.8 <lld< th=""><th><u>Jun 85</u> 11.2 <lld< th=""><th><u>Nov 85</u> 10.9 <lld< th=""><th><u>May 86</u> 15.2 <lld< th=""><th>10.6</th></lld<></th></lld<></th></lld<></th></lld<>	<u>Jun 85</u> 11.2 <lld< th=""><th><u>Nov 85</u> 10.9 <lld< th=""><th><u>May 86</u> 15.2 <lld< th=""><th>10.6</th></lld<></th></lld<></th></lld<>	<u>Nov 85</u> 10.9 <lld< th=""><th><u>May 86</u> 15.2 <lld< th=""><th>10.6</th></lld<></th></lld<>	<u>May 86</u> 15.2 <lld< th=""><th>10.6</th></lld<>	10.6
<u>Unit 3</u> Potassium-40 Manganese-54 Cobalt-58	* * <lld< th=""><th>* * <lld< th=""><th>15 <lld <lld< th=""><th>14 <lld <lld< th=""><th>10.6 <lld <lld< th=""><th>12.5 <lld <lld< th=""><th>10.1 <lld <lld< th=""><th>16.8 <lld <lld< th=""><th>11.2 <lld <lld< th=""><th>10.9 <lld <lld< th=""><th>15.2 <lld <lld< th=""><th>10.6 <lld <lld< th=""></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></th></lld<>	* * <lld< th=""><th>15 <lld <lld< th=""><th>14 <lld <lld< th=""><th>10.6 <lld <lld< th=""><th>12.5 <lld <lld< th=""><th>10.1 <lld <lld< th=""><th>16.8 <lld <lld< th=""><th>11.2 <lld <lld< th=""><th>10.9 <lld <lld< th=""><th>15.2 <lld <lld< th=""><th>10.6 <lld <lld< th=""></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<>	15 <lld <lld< th=""><th>14 <lld <lld< th=""><th>10.6 <lld <lld< th=""><th>12.5 <lld <lld< th=""><th>10.1 <lld <lld< th=""><th>16.8 <lld <lld< th=""><th>11.2 <lld <lld< th=""><th>10.9 <lld <lld< th=""><th>15.2 <lld <lld< th=""><th>10.6 <lld <lld< th=""></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld 	14 <lld <lld< th=""><th>10.6 <lld <lld< th=""><th>12.5 <lld <lld< th=""><th>10.1 <lld <lld< th=""><th>16.8 <lld <lld< th=""><th>11.2 <lld <lld< th=""><th>10.9 <lld <lld< th=""><th>15.2 <lld <lld< th=""><th>10.6 <lld <lld< th=""></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld 	10.6 <lld <lld< th=""><th>12.5 <lld <lld< th=""><th>10.1 <lld <lld< th=""><th>16.8 <lld <lld< th=""><th>11.2 <lld <lld< th=""><th>10.9 <lld <lld< th=""><th>15.2 <lld <lld< th=""><th>10.6 <lld <lld< th=""></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld 	12.5 <lld <lld< th=""><th>10.1 <lld <lld< th=""><th>16.8 <lld <lld< th=""><th>11.2 <lld <lld< th=""><th>10.9 <lld <lld< th=""><th>15.2 <lld <lld< th=""><th>10.6 <lld <lld< th=""></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld 	10.1 <lld <lld< th=""><th>16.8 <lld <lld< th=""><th>11.2 <lld <lld< th=""><th>10.9 <lld <lld< th=""><th>15.2 <lld <lld< th=""><th>10.6 <lld <lld< th=""></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld 	16.8 <lld <lld< th=""><th>11.2 <lld <lld< th=""><th>10.9 <lld <lld< th=""><th>15.2 <lld <lld< th=""><th>10.6 <lld <lld< th=""></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld 	11.2 <lld <lld< th=""><th>10.9 <lld <lld< th=""><th>15.2 <lld <lld< th=""><th>10.6 <lld <lld< th=""></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld 	10.9 <lld <lld< th=""><th>15.2 <lld <lld< th=""><th>10.6 <lld <lld< th=""></lld<></lld </th></lld<></lld </th></lld<></lld 	15.2 <lld <lld< th=""><th>10.6 <lld <lld< th=""></lld<></lld </th></lld<></lld 	10.6 <lld <lld< th=""></lld<></lld
<u>Unit 3</u> Potassium-40 Manganese-54 Cobalt-58 Cobalt-60	* * <lld 0.040</lld 	* * <lld 0.021</lld 	15 <lld <lld <lld< th=""><th>14 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""><th>12.5 <lld <lld <lld< th=""><th>10.1 <lld <lld <lld< th=""><th>16.8 <lld <lld <lld< th=""><th>11.2 <lld <lld <lld< th=""><th>10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld 	14 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""><th>12.5 <lld <lld <lld< th=""><th>10.1 <lld <lld <lld< th=""><th>16.8 <lld <lld <lld< th=""><th>11.2 <lld <lld <lld< th=""><th>10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld 	10.6 <lld <lld <lld< th=""><th>12.5 <lld <lld <lld< th=""><th>10.1 <lld <lld <lld< th=""><th>16.8 <lld <lld <lld< th=""><th>11.2 <lld <lld <lld< th=""><th>10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld 	12.5 <lld <lld <lld< th=""><th>10.1 <lld <lld <lld< th=""><th>16.8 <lld <lld <lld< th=""><th>11.2 <lld <lld <lld< th=""><th>10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld 	10.1 <lld <lld <lld< th=""><th>16.8 <lld <lld <lld< th=""><th>11.2 <lld <lld <lld< th=""><th>10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld 	16.8 <lld <lld <lld< th=""><th>11.2 <lld <lld <lld< th=""><th>10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld 	11.2 <lld <lld <lld< th=""><th>10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld 	10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld 	15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld 	10.6 <lld <lld <lld< th=""></lld<></lld </lld
Unit 3 Potassium-40 Manganese-54 Cobalt-58 Cobalt-60 Silver-110m Cesium-137	* * <lld< th=""><th>* * <lld< th=""><th>15 <lld <lld< th=""><th>14 <lld <lld< th=""><th>10.6 <lld <lld< th=""><th>12.5 <lld <lld< th=""><th>10.1 <lld <lld< th=""><th>16.8 <lld <lld <lld <lld< th=""><th>11.2 <lld <lld <lld <lld< th=""><th>10.9 <lld <lld <lld <lld< th=""><th>15.2 <lld <lld <lld <lld< th=""><th>10.6 <lld <lld <lld <lld< th=""></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></th></lld<>	* * <lld< th=""><th>15 <lld <lld< th=""><th>14 <lld <lld< th=""><th>10.6 <lld <lld< th=""><th>12.5 <lld <lld< th=""><th>10.1 <lld <lld< th=""><th>16.8 <lld <lld <lld <lld< th=""><th>11.2 <lld <lld <lld <lld< th=""><th>10.9 <lld <lld <lld <lld< th=""><th>15.2 <lld <lld <lld <lld< th=""><th>10.6 <lld <lld <lld <lld< th=""></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<>	15 <lld <lld< th=""><th>14 <lld <lld< th=""><th>10.6 <lld <lld< th=""><th>12.5 <lld <lld< th=""><th>10.1 <lld <lld< th=""><th>16.8 <lld <lld <lld <lld< th=""><th>11.2 <lld <lld <lld <lld< th=""><th>10.9 <lld <lld <lld <lld< th=""><th>15.2 <lld <lld <lld <lld< th=""><th>10.6 <lld <lld <lld <lld< th=""></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld 	14 <lld <lld< th=""><th>10.6 <lld <lld< th=""><th>12.5 <lld <lld< th=""><th>10.1 <lld <lld< th=""><th>16.8 <lld <lld <lld <lld< th=""><th>11.2 <lld <lld <lld <lld< th=""><th>10.9 <lld <lld <lld <lld< th=""><th>15.2 <lld <lld <lld <lld< th=""><th>10.6 <lld <lld <lld <lld< th=""></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </th></lld<></lld </th></lld<></lld </th></lld<></lld 	10.6 <lld <lld< th=""><th>12.5 <lld <lld< th=""><th>10.1 <lld <lld< th=""><th>16.8 <lld <lld <lld <lld< th=""><th>11.2 <lld <lld <lld <lld< th=""><th>10.9 <lld <lld <lld <lld< th=""><th>15.2 <lld <lld <lld <lld< th=""><th>10.6 <lld <lld <lld <lld< th=""></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </th></lld<></lld </th></lld<></lld 	12.5 <lld <lld< th=""><th>10.1 <lld <lld< th=""><th>16.8 <lld <lld <lld <lld< th=""><th>11.2 <lld <lld <lld <lld< th=""><th>10.9 <lld <lld <lld <lld< th=""><th>15.2 <lld <lld <lld <lld< th=""><th>10.6 <lld <lld <lld <lld< th=""></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </th></lld<></lld 	10.1 <lld <lld< th=""><th>16.8 <lld <lld <lld <lld< th=""><th>11.2 <lld <lld <lld <lld< th=""><th>10.9 <lld <lld <lld <lld< th=""><th>15.2 <lld <lld <lld <lld< th=""><th>10.6 <lld <lld <lld <lld< th=""></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld 	16.8 <lld <lld <lld <lld< th=""><th>11.2 <lld <lld <lld <lld< th=""><th>10.9 <lld <lld <lld <lld< th=""><th>15.2 <lld <lld <lld <lld< th=""><th>10.6 <lld <lld <lld <lld< th=""></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld 	11.2 <lld <lld <lld <lld< th=""><th>10.9 <lld <lld <lld <lld< th=""><th>15.2 <lld <lld <lld <lld< th=""><th>10.6 <lld <lld <lld <lld< th=""></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld 	10.9 <lld <lld <lld <lld< th=""><th>15.2 <lld <lld <lld <lld< th=""><th>10.6 <lld <lld <lld <lld< th=""></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld 	15.2 <lld <lld <lld <lld< th=""><th>10.6 <lld <lld <lld <lld< th=""></lld<></lld </lld </lld </th></lld<></lld </lld </lld 	10.6 <lld <lld <lld <lld< th=""></lld<></lld </lld </lld
Unit 3 Potassium-40 Manganese-54 Cobalt-58 Cobalt-60 Silver-110m	* * <lld 0.040 <lld< th=""><th>* * <lld 0.021 <lld< th=""><th>15 <lld <lld <lld <lld< th=""><th>14 <lld <lld <lld <lld< th=""><th>10.6 <lld <lld <lld <lld <lld< th=""><th>12.5 <lld <lld <lld <lld< th=""><th>10.1 <lld <lld <lld <lld< th=""><th>16.8 <lld <lld <lld< th=""><th>11.2 <lld <lld <lld< th=""><th>10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </th></lld<></lld 	* * <lld 0.021 <lld< th=""><th>15 <lld <lld <lld <lld< th=""><th>14 <lld <lld <lld <lld< th=""><th>10.6 <lld <lld <lld <lld <lld< th=""><th>12.5 <lld <lld <lld <lld< th=""><th>10.1 <lld <lld <lld <lld< th=""><th>16.8 <lld <lld <lld< th=""><th>11.2 <lld <lld <lld< th=""><th>10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld 	15 <lld <lld <lld <lld< th=""><th>14 <lld <lld <lld <lld< th=""><th>10.6 <lld <lld <lld <lld <lld< th=""><th>12.5 <lld <lld <lld <lld< th=""><th>10.1 <lld <lld <lld <lld< th=""><th>16.8 <lld <lld <lld< th=""><th>11.2 <lld <lld <lld< th=""><th>10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld 	14 <lld <lld <lld <lld< th=""><th>10.6 <lld <lld <lld <lld <lld< th=""><th>12.5 <lld <lld <lld <lld< th=""><th>10.1 <lld <lld <lld <lld< th=""><th>16.8 <lld <lld <lld< th=""><th>11.2 <lld <lld <lld< th=""><th>10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </lld </th></lld<></lld </lld </lld 	10.6 <lld <lld <lld <lld <lld< th=""><th>12.5 <lld <lld <lld <lld< th=""><th>10.1 <lld <lld <lld <lld< th=""><th>16.8 <lld <lld <lld< th=""><th>11.2 <lld <lld <lld< th=""><th>10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld </lld 	12.5 <lld <lld <lld <lld< th=""><th>10.1 <lld <lld <lld <lld< th=""><th>16.8 <lld <lld <lld< th=""><th>11.2 <lld <lld <lld< th=""><th>10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </lld </th></lld<></lld </lld </lld 	10.1 <lld <lld <lld <lld< th=""><th>16.8 <lld <lld <lld< th=""><th>11.2 <lld <lld <lld< th=""><th>10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </lld 	16.8 <lld <lld <lld< th=""><th>11.2 <lld <lld <lld< th=""><th>10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld 	11.2 <lld <lld <lld< th=""><th>10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld 	10.9 <lld <lld <lld< th=""><th>15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld </th></lld<></lld </lld 	15.2 <lld <lld <lld< th=""><th>10.6 <lld <lld <lld< th=""></lld<></lld </lld </th></lld<></lld </lld 	10.6 <lld <lld <lld< th=""></lld<></lld </lld

P

Abbreviations:

- # concentrations listed are in units of pCi/g, wet weight
 a radionuclide not determined in the analysis
 <LLD less than the lower limit of detection

TABLE E-6 (Continued)

CONCENTRATIONS OF RADIONUCLIDES DETECTED IN OCEAN BOTTOM SEDIMENTS# 1981 - 1986

Potassium-40 * * 13 17 7.1 13.1 11.8 14.8 14.1		13.2 14.6
Manganese-54 * </th <th><pre><lld 0.10="" 0<="" <="" <lld="" pre=""></lld></pre></th> <th><lld< td=""> <lld< td=""> 0.22 0.25 0.42 0.49</lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></th>	<pre><lld 0.10="" 0<="" <="" <lld="" pre=""></lld></pre>	<lld< td=""> 0.22 0.25 0.42 0.49</lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<></lld<>

Ē

Abbreviations:

- concentrations listed are in units of pCi/g, wet weight
 * - a radionuclide not determined in the analysis
 <LLD - less than the lower limit of detection

APPENDIX F

COMPARISON OF OPERATIONAL WITH PREOPERATIONAL DATA

COMPARISON OF OPERATIONAL WITH PREOPERATIONAL DATA

San Onofre Nuclear Generating Station consists of three pressurized water nuclear reactors housed in separate containment buildings. Unit 1 attained initial criticality in June 1967, and operated until February 1982 when it was shut down for seismic modifications. Unit 1 was brought back into service in December 1984. Units 2 and 3 attained initial criticality in July 1982 and in August 1983, respectively, and have been in operation since then.

The preoperational period (i.e., a span of time prior to attaining initial criticality) for SONGS Unit 1 Radiological Environmental Monitoring Program (REMP) has been defined as the time from 1964 through 1967. The preoperational data for SONGS Units 2 and 3 REMP, on the other hand, has been defined as the period extending from January 1979 to July 1982. The preoperational data for SONGS Units 2 and 3 are the actual operational data obtained from the REMP for SONGS Unit 1.

One method of determining the impact of SONGS operations on the environment during the past year is to compare preoperational data for each of the three units to operational data obtained during 1986. For SONGS Unit 1, this includes a comparison of preoperational to operational data for airborne particulates and local crops. For SONGS Units 2 and 3, this includes a comparison of preoperational to operational data for more types of environmental media, including: airborne particulates, local crops, direct radiation, ocean water, shoreline sediment, ocean bottom sediments, marine species, and kelp.

A. Direct Radiation

SONGS Unit 1:

No direct radiation data were obtained in the preoperational period of 1964 to 1967. Therefore, no comparison is possible.

SONGS Units 2 and 3:

Direct radiation measurements are made both quarterly and annually at a number of indicator locations, and at a control location situated in Huntington Beach. Calcium sulfate (CaSO4:Dy) thermoluminescent dosimeters are used to measure quarterly radiation doses, and lithium fluoride (LiF) dosimeters are used to measure annual radiation doses. In order to evaluate the variation in external radiation exposure, plots were made of direct radiation exposure (in mrem) for six different locations versus for the preoperational and operational periods (through 1986) for Units 2 and 3. See Figures 20, 21, and 22.

The <u>quarterly</u> direct radiation levels measured during the <u>preoperational</u> period for the indicator locations ranged from 14.2 to 87.9 mrem, averaging 25.2 mrem. Quarterly direct radiation levels measured during the preoperational period for Huntington Beach ranged from 25.1 to 44.1 mrem, averaging 32.1 mrem. <u>Annual direct radiation levels measured during the preoperational period</u> for the indicator locations ranged from 56.0 to 108.0 mrem, averaging 76.3 mrem. Annual direct radiation levels measured during the preoperational period for Huntington Beach ranged from 84.0 to 112.0 mrem, averaging 96.0 mrem.

The <u>quarterly</u> direct radiation levels measured during <u>1986</u> for the indicator locations ranged from 9.2 to 35.4 mrem, averaging 19.0 mrem. Quarterly direct radiation levels measured during 1986 for Huntington Beach ranged from 21.2 to 22.7 mrem, averaging 21.9 mrem.

<u>Annual</u> direct radiation levels measured during <u>1986</u> for the indicator locations ranged from 41.1 to 123.3 mrem, averaging 86.9 mrem. The annual direct radiation level measured during 1986 for Huntington Beach was 97.3 mrem.

The range of quarterly direct radiation doses was larger at both indicator and control locations during the preoperational period than during the 1986 operational period for SONGS Units 2 and 3. The range of annual direct radiation doses measured at the indicator locations in 1986 was larger than during the preoperational period. The direct radiation doses measured at the control location during both periods of time, however, were comparable.

The larger range of quarterly radiation levels seen during the preoperational time span may be attributable to atmospheric nuclear weapons tests that occurred in March 1978 and October 15, 1980, as well as the eruption of the Mount St. Helens volcano in May 1980. The noticeable decline in direct radiation levels since 1979 is likely due to a curtailment of the atmospheric nuclear weapons testing. The larger range of annual direct radiation levels seen in 1986 may be attributable to the Chernobyl nuclear power plant accident that occurred in Spring 1986, in addition to the continued fallout from weapons testing. Other factors, such as meteorology, geographic locations, and statistical and seasonal fluctuations may also describe the variation in the direct radiation levels.

Because of nuclear fallout, it is difficult to accurately assess the impact of SONGS operations during 1986 on this environmental medium.

B. Air Particulates

SONGS Unit 1:

Samples of air particulates are collected frequently from indicator locations, and a control location situated in Oceanside. After collection, the samples were subsequently analyzed for gross beta activity.

During the <u>preoperational</u> period (1964 to 1967), gross beta activities measured at the indicator locations ranged from 0.030 to 3.81 pCi/m3, averaging 0.253 pCi/m3. The gross beta activities measured at the control location, on the other hand, ranged from 0.04 to 2.77 pCi/m3, averaging 0.31 pCi/m3.

During <u>1986</u>, gross beta activities measured at the indicator locations ranged from 0.003 to 0.89 pCi/m3, averaging 0.045 pCi/m3. Gross beta activities measured at the control location, however, ranged from 0.010 to 0.72 pCi/m3, averaging 0.0457 pCi/m3.

The gross beta levels seen during both the preoperational and operational periods are higher than anticipated for this environmental medium. Significant contributions to gross beta levels in air outside of Station operations is substantiated by the fact that gross beta levels were commensurate at both the indicator and control locations during the preoperational period, and again during 1986. The higher preoperational gross beta levels in air can be attributed to fallout from nuclear weapons testing. The higher 1986 gross beta levels in air may be attributed to fallout from the Chernobyl accident, as well as previous nuclear weapons testing.

Because the actual environmental levels were masked from the fallout, valid comparisons of preoperational data to 1986 operational data could not be made.

SONGS Units 2 and 3:

Samples of air particulates are collected frequently from indicator and control locations surrounding SONGS, and are subsequently analyzed for gross beta activity.

From 1979 through July 1982 (which is considered to be the preoperational period for SONGS Units 2 and 3), there is an 18 month period of noticeably higher gross beta activities in air. See Figures 23 and 24. This period extends from the fourth quarter of 1980 through the second quarter of 1981. These higher activities may be attributable to the atmospheric nuclear weapons tests that occurred in March 1978, and October 15, 1980, as well as the eruption of the Mount St. Helens volcano in May 1980. Because these higher levels mask the normal environmental gross beta levels near SONGS, the data collected during this time frame have been excluded from the preoperational baseline data set.

During the <u>preoperational</u> period, gross beta activities measured at the indicator locations ranged from 0.004 to 0.101 pCi/m3, averaging 0.027 pCi/m3. The gross beta activities measured at the control location, on the other hand, ranged from 0.005 to 0.104 pCi/m3, averaging 0.028 pCi/m3.

During the <u>operational</u> period, gross beta activities measured at the indicator locations ranged from 0.003 to 0.89 pCi/m3, averaging 0.045 pCi/m3. Gross beta activities measured at the control location, however, ranged from 0.010 to 0.72 pCi/m3, averaging 0.046 pCi/m3.

In reviewing the data, the gross beta activities measured during the 1986 operational period are higher than those measured during the preoperational period for SONGS Units 2 and 3. The higher activities seen in 1986, though, can be attributed to fallout from the Chernobyl nuclear power plant accident. Crops

С.

SONGS Unit 1:

During the preoperational phase of Unit 1, local crops were collected semiannually from both indicator and control locations, and were subsequently analyzed for both aqueous and organically-bound tritium, and for strontium-90. These analyses were then continued into the operational phase of the radiological environmental monitoring program, and were extended to include gamma spectral analysis of the crops. The results of these analyses are summarized below in terms of "as received" wet sample weights.

In short, <u>from 1964 to 1967</u>, no aqueous or organically-bound tritium were detected in samples collected from the indicator and control locations. Strontium-90, however, was present in detectable amounts in four of the six samples collected from the indicator locations near SONGS. The concentrations of strontium-90 in these samples ranged from 0.008 to 0.030 pCi/g, averaging 0.022 pCi/g. Strontium-90 was not detected in any of the samples collected from the control location.

<u>During 1986</u>, no strontium-90, aqueous tritium, or bound tritium was found in any of the samples collected from the indicator locations. Potassium-40, a naturally-occurring radionuclide, was the only gamma-emitting radionuclide detected in the crops from the indicator locations. Potassium-40 was seen in each of the samples. The concentrations of potassium-40 in these samples ranged from 1.08 to 15.4 pCi/g, averaging 5.2 pCi/g.

<u>In 1986</u>, no aqueous tritium or bound tritium was found in any of the samples collected from the control location. Potassium-40 and cesium-137 were the only gamma-emitting radionuclides detected in the crops from the control location. Potassium-40 was seen in each of the samples. The concentrations of potassium-40 in these samples ranged from 1.17 to 2.8 pCi/g, averaging 0.65 pCi/g. Cesium-137 was seen in two of the samples collected from the control location. The concentrations of cesium-137 in these samples were 0.0037 and 0.010 pCi/g. Strontium-90 was also detected in two of the four samples collected from the control location. The concentrations of strontium-90 in these samples were 0.010 and 0.011 pCi/g.

The levels of aqueous tritium, bound tritium, and strontium-90 seen in crops from 1964 to 1967 are commensurate to the levels seen during 1986. The presence of strontium-90 in the samples may be attributable to atmospheric nuclear weapons tests. Potassium-40 and cesium-137 concentrations were not measured in samples collected during the preoperational years for Unit 1, making a comparison with 1986 operational data impossible. However, it can be said that the potassium-40 concentrations measured in the samples during 1986 are not related to Station operations and are considered indicative of this environmental medium. The presence of cesium-137 in the samples collected in 1986 from the control location may be due to the Chernobyl nuclear power plant accident that occurred in May 1986, in addition to fallout from atmospheric weapons tests.

SONGS Units 2 and 3:

During the preoperational and operational phases for Units 2 and 3, local crops were collected semiannually from both indicator and control locations. The samples were subsequently analyzed for a number of gamma-emitting radionuclides, aqueous tritium, organically-bound tritium, and for strontium-90. These analyses were then continued into the operational phase of the radiological environmental monitoring program. The results of these analyses are summarized below in terms of "as received" wet sample weights.

F-

<u>From January 1979 to July 1982</u>, no aqueous tritium or strontium-90 was found in crops collected from the indicator locations. Potassium-40 was the only gamma-emitting radionuclide detected in samples collected from the indicator locations. Bound tritium was detected in six crop samples collected from the indicator locations. The concentrations of bound tritium in these samples ranged from 16 to 300 pCi/g, averaging 147 pCi/g.

During this same time span, no aqueous tritium was found in crops collected from the control location. Several other radionuclides, though, were seen in some of the crops collected from the control location. Potassium-40 was detected in each sample. In June 1981, zirconium (niobium)-95 and cerium-144 were found in a sample of parsley from the control location. The concentrations of these radionuclides in the parsley were 0.090 and 0.12 pCi/g, respectively. Bound tritium was also detected in four samples. The concentrations of bound tritium in these samples ranged from 17 to 110 pCi/g, averaging 62 pCi/g. Strontium-90 was also present in detectable amounts in three samples. The concentrations of strontium-90 in the samples ranged from 0.027 to 0.090 pCi/g, averaging 0.056 pCi/g.

<u>In 1986</u>, no strontium-90, aqueous tritium or bound tritium was found in any of the samples collected from the indicator locations. Potassium-40, a naturally-occurring radionuclide, was the only gamma-emitting radionuclide detected in the crops from the indicator locations. Potassium-40 was seen in each of the samples. The concentrations of potassium-40 in these samples ranged from 1.08 to 15.4 pCi/g, averaging 5.2 pCi/g.

In 1986, no aqueous tritium or bound tritium was found in any of the samples collected from the control location. Potassium-40 and cesium-137 were the only gamma-emitting radionuclides detected in the crops from the control location. Potassium-40 was seen in each of the samples. The concentrations of potassium-40 in these samples ranged from 1.17 to 2.8 pCi/g, averaging 0.65 pCi/g. Cesium-137 was seen in two of the samples collected from the control location. The concentrations of cesium-137 in these samples were 0.0037 and 0.010 pCi/g. Strontium-90 was also detected in two of the four samples collected from the control location. The concentrations of strontium-90 in these samples were 0.010 and 0.011 pCi/g.

Radionuclide concentrations seen in crops collected in 1986 are, for the most part, commensurate to or less than those levels seen during the preoperational period for Units 2 and 3. The potassium-40 concentrations measured in the samples are not related to Station operations and are considered indicative of this environmental medium. The presence of strontium-90, cerium-144, and zirconium (niobium)-95 in crops collected from the control location may be attributable to atmospheric nuclear weapons tests. The presence of cesium-137 in the samples collected in 1986 from the control location may be due to the Chernobyl nuclear power plant accident that occurred in May 1986, and fallout from previous nuclear atmospheric weapons tests.

D. Ocean Water

SONGS Unit 1:

Ocean water samples were not collected and analyzed during the preoperational period for SONGS Unit 1. Therefore, no comparison with operational data is possible.

SONGS Units 2 and 3:

Ocean water samples are collected on a monthly basis in the vicinity of each of the Station discharge outfalls (which serve as indicator locations), and from Newport Beach (which serves as a control location). Upon collection, each of the samples are analyzed for 19 naturally-occurring and Station-related gamma-emitting radionuclides. Every other month, the samples are also analyzed for gross beta activity. Finally, samples are composited quarterly and are analyzed for tritium.

During the <u>preoperational</u> period, potassium-40 was the only gamma-emitting radionuclide detected in each of the samples collected from both indicator and control locations. Other gamma-emitting radionuclides were seen in only one ocean water sample. In May 1980, cobalt-58, cobalt-60, cesium-134, and cesium-137 were found in an ocean water sample collected from the SONGS Unit 1 outfall. Concentrations of the radionuclides in this sample were 11, 6, 380, and 430 pCi/l, in that order.

Gross beta activities were detectable in each of the bimonthly samples during this time span. Gross beta activities in the samples collected from the indicator locations ranged from 660 to 1350 pCi/l, averaging 917 pCi/l. Gross beta activities measured at the control location, on the other hand, ranged from 640 to 1250 pCi/l, averaging 924 pCi/l.

Tritium was also seen in two of the ocean water samples collected in 1980 from the SONGS Unit 2 outfall and from Newport Beach. The tritium activities measured in ocean water were 1900 and 400 pCi/l, respectively.

<u>Throughout 1986</u>, potassium-40 was the only gamma-emitting radionuclide detected in the monthly gamma spectral analyses of samples collected from the indicator and control locations. Potassium-40 was detected in each sample.

Gross beta activity was detected in each bimonthly ocean water sample in 1986. The gross beta activity in the samples collected from the indicator locations ranged from 500 to 1200 pCi/1, averaging 822 pCi/1. The gross beta activity in the samples collected from the control location ranged from 700 to 1000 pCi/1, averaging 850 pCi/1. F-1

Tritium was detected in the 1986 third quarter composite sample obtained from SONGS Unit 1. The concentration of tritium in this sample was 2200 pCi/1. Radionuclide concentrations seen in ocean water in 1986 are, for the most part, commensurate to or less than the levels seen during the preoperational period for Units 2 and 3.

Ocean Bottom Sediments

SONGS Unit 1:

Ε.

Ocean bottom sediment samples were not collected and analyzed during the preoperational period for SONGS Unit 1. Therefore, no comparison with operational data is possible.

SONGS Units 2 and 3:

To determine the amount of radioactivity in ocean bottom sediments in the vicinity of SONGS, representative samples are collected semiannually near each of the Station discharge outfalls (which served as indicator locations), and from Newport Beach (which served as the control location). After collection, the samples are analyzed for 19 naturally-occurring and Station-related radionuclides.

During the <u>preoperational</u> period, three naturally-occurring radionuclides were found in each sample collected from the indicator locations. They include potassium-40, radium-226, and thorium-232.

Station-related radionuclides were also found in samples collected during this time frame. Manganese-54 was found in two samples. The concentrations of manganese-54 in these samples ranged from 0.080 to 0.49 pCi/g, averaging 0.29 pCi/g. Cobalt-58 was detected in four samples. The concentrations of cobalt-58 in the samples ranged from 0.046 to 1.16 pCi/g, averaging 0.42 pCi/g. Cobalt-60 was seen in ten samples. The concentrations of cobalt-60 in the samples ranged from 0.040 to 8.1 pCi/g, averaging 1.2 pCi/g. Cesium-137 was seen in ten samples. The concentrations of cesium-137 in the samples ranged from 0.040 to 0.090 pCi/g, averaging 0.050 pCi/g. Cerium-144 was found in one sample. The concentration of cerium-144 in the sample was 0.26 pCi/g.

<u>In 1986</u>, potassium-40, radium-226, and thorium-232 were found in each sediment sample. Cobalt-60 was found in one sample collected by the SONGS Unit 1 outfall in May 1986. The concentration of cobalt-60 in this sample was 0.06 pCi/g, wet weight.

The concentrations of Station-related radionuclides seen in ocean bottom sediment samples during 1986 are markedly lower than the levels seen in ocean bottom sediments during the preoperational years for Units 2 and 3. The results indicate that there has not been a build-up of

radionuclides with time in ocean bottom sediments near SONGS. The notable decrease in radionuclide concentrations found in ocean bottom sediments is due, at least in part, to Southern California Edison's commitment to reduce radioactive liquid discharges from San Onofre.

F. Marine Species (Flesh)

SONGS Unit 1:

Marine species were not collected and analyzed during the preoperational period for SONGS Unit 1. Therefore, no comparison with operational data is possible.

SONGS Units 2 and 3:

Non-migratory marine species are collected on a quarterly basis near SONGS to determine the amount of radioactivity that could be consumed by man or in the food chain to man. Marine species caught by the SONGS outfalls and from Newport Beach include two species of adult fish, crustacea and mollusks. Upon collection, the flesh portion is analyzed for three naturally-occurring radionuclides, for 16 gamma-emitting, Station-related radionuclides, and for aqueous and bound tritium. The results are subsequently reported to Edison in terms of both dry and wet sample weights.

Selected results for six different marine species for both the preoperational and 1986 operational periods for Units 2 and 3 are presented in Table F-1. The marine species used for purposes of comparison include: sheephead (a fish), black perch (a fish), bay mussel (a mollusk), spiny lobster (a crustacea), sea hare (a mollusk), and keyhole limpet (a mollusk). Radionuclides not included in Table F-1 were below the lower limits of detection for both the preoperational and operational time spans.

In comparing preoperational and operational data for each marine species and radionuclide, it is evident that potassium-40 (a non-Station-related radionuclide) is appearing more frequently at the same concentrations in marine species in 1986 than during the preoperational period. It is also clear--with few exceptions--that the concentrations of Station-related radionuclides detected in each species during 1986 are commensurate to or less than the concentrations seen in the same marine species during the preoperational period.

From these data, it can be concluded that the operation of SONGS Units 1, 2, and 3 in 1986 had less of an impact on the environment than the operation of SONGS Unit 1 during the preoperational period for SONGS Units 2 and 3. The reduction in the radionuclide concentrations can be attributed, at least in part, to Edison's commitment to decrease radioactive effluent releases.

G. Shoreline Sediment (Sand)

SONGS Unit 1:

Samples of shoreline sediment were not collected and analyzed during the preoperational period for SONGS Unit 1. Therefore, no comparison with operational data is possible.

SONGS Units 2 and 3:

Beach sand is collected semiannually from three indicator locations and from a control location situated in Newport Beach. After collection, the samples are analyzed for 19 naturally-occurring and SONGS-related radionuclides.

To assess the impact of SONGS operations on this environmental medium, preoperational data were compared to 1986 operational data. See Table F-2. No SONGS-related radionuclides were detected in shoreline sediment in either time frame. However, three naturally-occurring (i.e., non-Station-related) radionuclides were detected in shoreline sediment. They include: potassium-40, radium-226, and thorium-228. Although each of the radionuclides appears more frequently in the samples collected in 1986, the concentrations of the radionuclides are considered comparable to the preoperational period.

Because no Station-related radionuclides were detected in shoreline sediment during the preoperational and 1986 operational periods for SONGS Units 2 and 3, the impact of SONGS on this environmental medium is considered to be negligible.

H. <u>Kelp</u>

SONGS Unit 1:

Samples of kelp were not collected and analyzed during the preoperational period for SONGS Unit 1. Therefore, no comparison with operational data is possible.

SONGS Units 2 and 3:

Kelp is collected semiannually from two indicator locations and from a control location situated in Laguna Beach. After collection, the samples are analyzed by gamma-spectral analysis for 19 naturally-occurring and SONGS-related radionuclides. The samples are also analyzed for both aqueous and bound tritium.

To assess the impact of SONGS operations on kelp, preoperational data were compared to 1986 operational data. See Table F-3. Radionuclides detected during the preoperational period for SONGS Units 2 and 3 include potassium-40, bound tritium, manganese-54, cobalt-60, zirconium (niobium)-95, iodine-131, and cesium-137. Of these, only potassium-40, iodine-131, and cesium-137 are present in detectable amounts in kelp samples collected in 1986. Potassium-40 is seen more frequently, at

slightly higher concentrations in kelp samples collected in 1986. The range of iodine-131 concentrations is higher and is more frequent. Cesium-137 concentrations are seen more frequently in the same concentration range.

These data indicate that the impact of SONGS operations on this environmental medium has decreased in 1986 in comparison to the preoperational period. The exception to this is the more frequent and higher (yet still minute) concentrations of iodine-131 seen in kelp in 1986. Although the concentrations of iodine-131 have increased, there is no evidence that iodine-131 is steadily increasing in concentration in kelp near SONGS.

MARINE SPECIES (FLESH) PREOPERATIONAL AND OPERATIONAL DATA # SONGS UNITS 2 AND 3

SHEEPHEAD:

•	· .	Freq. of	Indicato	or#	Freq. of	Control	*
<u>Radionuclide</u>	<u>Period*</u>	Detection	<u>Range</u>	Average	Detection	Range	Average
H-3 Aqueous	Preop	0/28	<lld< td=""><td><lld< td=""><td>1/14</td><td>0.110-0.110</td><td>0.110</td></lld<></td></lld<>	<lld< td=""><td>1/14</td><td>0.110-0.110</td><td>0.110</td></lld<>	1/14	0.110-0.110	0.110
H-3 Aqueous	Ор	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
H-3 Bound	Preop	15/28	3.6-88.0	25.1	8/14	4.0-94.0	20.9
H-3 Bound	Ор	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
K-40	Preop	2/28	3.1-3.4	3.25	- 1/14	2.8-2.8	2.8
K-40	Ор	8/8	2.1-3.2	2.76	4/4	2.3-3.0	2.6
Mn-54	Preop	0/28	<lld< td=""><td><lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Mn-54	Ор	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-57	Preop	0/28	<lld< td=""><td><lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-57	Ор	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld td="" ·<=""><td><lld< td=""></lld<></td></lld></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld td="" ·<=""><td><lld< td=""></lld<></td></lld></td></lld<>	0/4	<lld td="" ·<=""><td><lld< td=""></lld<></td></lld>	<lld< td=""></lld<>
Co-58	Preop	2/28	0.016-0.030	0.023	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-58	Ор	2/8	.015015	.015	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Fe-59	Preop	0/28	<lld< td=""><td><lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Fe-59	Ор	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-60	Preop	3/28	0.007-0.044	.0207	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-60	Ор	2/8	0.027-0.046	.037	0/4	<lld< td=""><td><lld td="" ~<=""></lld></td></lld<>	<lld td="" ~<=""></lld>
Ag-110m	Preop	0/28	<lld< td=""><td><lld< td=""><td>0/14</td><td><lld .<="" td=""><td><lld< td=""></lld<></td></lld></td></lld<></td></lld<>	<lld< td=""><td>0/14</td><td><lld .<="" td=""><td><lld< td=""></lld<></td></lld></td></lld<>	0/14	<lld .<="" td=""><td><lld< td=""></lld<></td></lld>	<lld< td=""></lld<>
Ag-110m	Ор	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld td="" ·<=""><td><lld< td=""></lld<></td></lld></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld td="" ·<=""><td><lld< td=""></lld<></td></lld></td></lld<>	0/4	<lld td="" ·<=""><td><lld< td=""></lld<></td></lld>	<lld< td=""></lld<>
Cs-134	Preop	0/28	<lld< td=""><td><lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-134	Ор	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld td="" ·<=""><td><lld< td=""></lld<></td></lld></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld td="" ·<=""><td><lld< td=""></lld<></td></lld></td></lld<>	0/4	<lld td="" ·<=""><td><lld< td=""></lld<></td></lld>	<lld< td=""></lld<>
Cs-137	Preop	28/28	0.004-0.018	0.0103	13/14	0.005-0.012	0.0075
Cs-137	Ор	8/8	0.005-0.035	0.0123	4/4	0.004-0.005	0.0046

Preoperational data - from January 1979-July 1982 Operational data - from January-December 1986 * Concentrations listed are in units of pCi/g, wet weight

. .

TABLE F-1

MARINE SPECIES (FLESH) PREOPERATIONAL AND OPERATIONAL DATA # SONGS UNITS 2 AND 3 (Continued)

BLACK PERCH:

n. II		Freq. of	Indicato	r*	Freq. of	Control	*
<u>Radionuclide</u>	<u>Period*</u>	<u>Detection</u>	Range	<u>Average</u>	Detection	Range	<u>Average</u>
H-3 Aqueous	Preop	1/28	0.35-0.35	0.35	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
H-3 Aqueous	Ор	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
H-3 Bound	Preop	20/28	3.2-109	27.7	6/14	4.5-150	42.3
H-3 Bound	Ор	0/8	<lld< td=""><td><ĽLD</td><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<ĽLD	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
K-40	Preop	2/28	2.5-2.8	2.65	1/14	2.5-2.5	2.5
K-40	Ор	8/8	1.8-2.8	2.41	4/4	2.0-2.5	2.3
Mn-54	Preop	0/28	<lld< td=""><td><lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Mn-54	Ор	0/8	<lld< b=""></lld<>	<lld< b=""></lld<>	0/4	<lld< td=""><td><i>(LLD)</i></td></lld<>	<i>(LLD)</i>
Co-57	Preop	0/28	<lld< td=""><td><lld< b=""></lld<></td><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< b=""></lld<>	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-57	Op	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-58	Preop	1/28	0.011-0.011	0.011	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-58	Ор	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Fe-59	Preop	0/28	<lld< td=""><td><lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Fe-59	Ор	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-60	Preop	3/28	0.012-0.045	0.030	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-60	Op	2/8	0.008-0.012	0.010	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ag-110m	Preop	0/28	<lld< td=""><td><lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ag-110m	Ор	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td>KLLD</td><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td>KLLD</td><td><lld< td=""></lld<></td></lld<>	0/4	KLLD	<lld< td=""></lld<>
Cs-134	Preop	0/28	<lld< td=""><td><lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-134	Ор	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-137	Preop	26/28	.003015	.0087	13/14	.004014	.0087
Cs-137	Ор	7/8	0.005-0.009	0.0064	3/4	0.004-0.007	0.0055

Preoperational data - from January 1979-July 1982 Operational data - from January-December 1986 Concentrations listed are in units of pCi/g, wet weight

MARINE SPECIES (FLESH) PREOPERATIONAL AND OPERATIONAL DATA # SONGS UNITS 2 AND 3 (Continued)

BAY MUSSEL:

		Freq. of	Indicato	or*	Freq. of	· ·	Control*
<u>Radionuclide</u>	<u>Period*</u>	Detection	Range	Average	<u>Detection</u>	Range	Average
H-3 Aqueous	Preop	0/10	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<>	0/0	N/A	N/A
H–3 Aqueous	Ор	0/4	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<>	0/0	N/A	N/A
H–3 Bound	Preop	1/10	53-53	53	0/0	N/A	N/Å
H–3 Bound	Ор	0/4	<pre><lld< pre=""></lld<></pre>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A^data</td></lld<>	0/0	N/A	N/A ^d ata
K-40	Preop	1/10	1.400-1.400	1.400	0/0	N/A	N/A
K-40	Ор	4/4	0.67-0.75	0.72	0/0	N/A	N/A
Mn-54	Preop	1/10	0.025-0.025	0.025	0/0	N/A	N/A
Mn-54	Ор	0/4	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<>	0/0	N/A	N/A
Co-57	Preop	0/10	<lld constants<="" td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>NŻÁ</td></lld<></td></lld>	<lld< td=""><td>0/0</td><td>N/A</td><td>NŻÁ</td></lld<>	0/0	N/A	NŻÁ
Co-57	Ор	0/4	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<>	0/0	N/A	N/A
Co-58	Preop	5/10	0.011-0.080	0.031	0/0	······ N/A	·····
Co-58	Ор	1/4	0.010-0.010	0.010	0/0 ~~~	• • • • N/A	N/À La
Fe-59	Preop	0/10	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<>	0/0	N/A	N/A
Fe-59	Ор	0/4	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<>	0/0	N/A	N/A
Co-60	Preop	9/10	0.010-0.400	0.085	0/0	N/A	N/A
Co-60	Ор	4/4	0.007-0.019	0.012	0/0	N/A	N/A
Ag-110m	Preop	0/10	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>Ń/Á</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>Ń/Á</td></lld<>	0/0	N/A	Ń/Á
Ag-110m	Ор	0/4	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<>	0/0	N/A	N/A
Cs-134	Preop	0/10	<lld< td=""><td><pre><lld< pre=""></lld<></pre></td><td>0/0</td><td>N/A</td><td>N/Å</td></lld<>	<pre><lld< pre=""></lld<></pre>	0/0	N/A	N/Å
Cs-134	Ор	0/4	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<>	0/0	N/A	N/A
Cs-137	Preop	2/10	0.003-0.006	0.0045	0/0	N/A	N/A
Cs-137	Ор	0/4	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<>	0/0	N/A	N/A
Ru-103	Preop	1/10	0.045-0.045	0.045	0/0	N/A	N/A
Ru-103	Ор	0/4	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A ·</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A ·</td><td>N/A</td></lld<>	0/0	N/A ·	N/A

Preoperational data - from January 1979-July 1982 Operational data - from January-December 1986 * Concentrations listed are in units of pCi/g, wet weight

MARINE SPECIES (FLESH) PREOPERATIONAL AND OPERATIONAL DATA # SONGS UNITS 2 AND 3 (Continued)

SPINY LOBSTER:

		Freq. of	Indicator	*	Freq. of	Control	*
<u>Radionuclide</u>	Period*	Detection	Range	Average	Detection	Range	Average
H-3 Aqueous	Preop	0/24	<lld< td=""><td><lld< td=""><td>0/14</td><td><llď< td=""><td><lld< td=""></lld<></td></llď<></td></lld<></td></lld<>	<lld< td=""><td>0/14</td><td><llď< td=""><td><lld< td=""></lld<></td></llď<></td></lld<>	0/14	<llď< td=""><td><lld< td=""></lld<></td></llď<>	<lld< td=""></lld<>
H-3 Aqueous	Op_	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld< td=""><td><lld< b=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld< td=""><td><lld< b=""></lld<></td></lld<></td></lld<>	0/4	<lld< td=""><td><lld< b=""></lld<></td></lld<>	<lld< b=""></lld<>
H–3 Bound	Preop	11/24	3.0-46.0	21.4	7/14	3.00-51.0	18.7
H–3 Bound	Ор	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
K-40	Preop	2/24	2.600-3.100	2.850	1/14	2.8-2.8	2.8
K-40	Ор	8/8	1.9-3.3	2.6	4/4	2.5-3.2	2.9
Mn-54	Preop	0/24	<lld< td=""><td><lld< td=""><td>1/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>1/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	1/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Mn-54	Ор	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-57	Preop	0/24	<lld< td=""><td><lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-57	Ор	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-58	Preop	8/24	0.013-0.270	0.095	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-58	Op	0/8	<lld .<="" td=""><td><lld< td=""><td>0/4</td><td><lld< td=""><td><lld< b=""></lld<></td></lld<></td></lld<></td></lld>	<lld< td=""><td>0/4</td><td><lld< td=""><td><lld< b=""></lld<></td></lld<></td></lld<>	0/4	<lld< td=""><td><lld< b=""></lld<></td></lld<>	<lld< b=""></lld<>
Fe-59	Preop	0/24	<pre><lld< pre=""></lld<></pre>	<lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Fe-59	Ор	0/8	<lld< td=""><td>< LLD</td><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	< LLD	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-60	Preop	17/24	0.014-0.210	0.061	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-60	Ор	5/8	0.008-0.017	0.012	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ag-110m	Preop	19/24	0.092-0.360	0.192	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ag-110m	Ор	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-134	Preop	0/24	<lld< td=""><td><lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/14</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/14	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-134	Op .	0/8	<lld< td=""><td><lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/4</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-137	Preop	4/24	0.005-0.011	.0075	6/14	0.004-0.015	.0075
Cs-137	Ор	8/8	0.004-0.012	0.0053	3/4	0.003-0.004	0.0036

Π

- # Preoperational data from January 1979-July 1982
 Operational data from January-December 1986
 * Concentrations listed are in units of pCi/g, wet weight

MARINE SPECIES (FLESH) PREOPERATIONAL AND OPERATIONAL DATA # SONGS UNITS 2 AND 3 (Continued)

SEA HARE:

	·	Freq. of	Indicato	or* _	Freq. of	Control	ł
<u>Radionuclide</u>	Period*	<u>Detection</u>	Range	Average	<u>Detection</u>	<u>Range</u>	Average
H-3 Aqueous	Preop	0/14	<lld< td=""><td><lld< td=""><td>0/9</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/9</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/9	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
H–3 Aqueous	Ор	0/4	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>N/A s</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A s</td></lld<>	0/0	N/A	N/A s
H-3 Bound	Preop	3/14	6.2-11.9	9.03	1/9	6.2-6.2	6.2
H–3 Bound	Ор	0/4	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<>	0/0	N/A	N/A
K-40	Preop	1/14	1.2-1.2	1.2	0/9	<lld '<="" td=""><td><lld< td=""></lld<></td></lld>	<lld< td=""></lld<>
K-40	Op	4/4	0.84-1.2	0.99	0/0	N/A	N/A
Mn-54	Preop	0/14	<lld< td=""><td><lld< td=""><td>0/9</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/9</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/9	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Mn-54	Ор	0/4	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<>	0/0	N/A	N/A
Co-57	Preop	1/14	0.017-0.017	0.017	0/9	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-57	Ор	0/4	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<>	0/0	N/A	N/A
Co-58	Preop	12/14	0.031-12.4	1.34	0/9	<pre><lld< pre=""></lld<></pre>	<lld< td=""></lld<>
Co-58	Ор	2/4	0.018-0.026	0.022	0/0	N/A	N/A
Fe-59	Preop	0/14	<lld< td=""><td><lld< b=""></lld<></td><td>0/9</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< b=""></lld<>	0/9	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Fe-59	Op	0/4	<lld td="" ·<=""><td>KLLD</td><td>0/0</td><td>N/A</td><td>N/A</td></lld>	KLLD	0/0	N/A	N/A
Co-60	Preop	14/14	0.016-2.000	0.441	3/9	0.012-0.027	0.018
Co-60	Ор	4/4	0.014-0.136	0.069	0/0	N/A	N/A
Zn-65	Preop	1/14	0.100-0.100	0.100	0/9	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Zn-65	Op .	0/4	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<>	0/0	N/A	N/A
Ag-110m	Preop	8/14	0.100-0.500	0.203	0/9	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ag-110m	Ор	0/4	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<>	0/0	N/A	N/A
Cs-134	Preop	0/14	<lld td="" ·<=""><td><lld< td=""><td>0/9</td><td><pre><lld< pre=""></lld<></pre></td><td><lld< td=""></lld<></td></lld<></td></lld>	<lld< td=""><td>0/9</td><td><pre><lld< pre=""></lld<></pre></td><td><lld< td=""></lld<></td></lld<>	0/9	<pre><lld< pre=""></lld<></pre>	<lld< td=""></lld<>
Cs-134	Ор	0/4	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<>	0/0	N/A	N/A
Cs-137	Preop	1/14	0.004-0.004	0.004	1/9	0.005-0.005	0.005
Cs-137	Ор	0/4	<lld< td=""><td><lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<></td></lld<>	<lld< td=""><td>0/0</td><td>N/A</td><td>N/A</td></lld<>	0/0	N/A	N/A
Ra-226	Preop	0/14	<lld< td=""><td><lld< td=""><td>0/9</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/9</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/9	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ra-226	Ор	1/4	0.040-0.040	0.040	0/0	N/A	N/A
Th-228	Preop	0/14	<lld< td=""><td><lld< b=""></lld<></td><td>0/9</td><td><pre>cLLD</pre></td><td><lld< td=""></lld<></td></lld<>	<lld< b=""></lld<>	0/9	<pre>cLLD</pre>	<lld< td=""></lld<>
Th-228	Op .	2/4	0.038-0.050	0.044	0/0	N/A	N/A

7

Preoperational data - from January 1979-July 1982 Operational data - from January-December 1986 * Concentrations listed are in units of pCi/g, wet weight,

MARINE SPECIES (FLESH) PREOPERATIONAL AND OPERATIONAL DATA # SONGS UNITS 2 AND 3 (Continued)

KEYHOLE LIMPET:

		Freq. of	Indicato	or*	Freq. of	Control	*
<u>Radionuclide</u>	<u>Period*</u>	Detection	Range	<u>Average</u>	Detection	Range	<u>Average</u>
H-3 Aqueous	Preop	0/4	<lld< td=""><td><lld< td=""><td>0/5</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/5</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/5	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
H-3 Aqueous	Ор	0/0	N/A	N/A	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
H–3 Bound	Preop	0/4	<lld< td=""><td><lld< td=""><td>175</td><td>35.0-35.0</td><td>35.0</td></lld<></td></lld<>	<lld< td=""><td>175</td><td>35.0-35.0</td><td>35.0</td></lld<>	175	35.0-35.0	35.0
H–3 Bound	Ор	0/0	N/A	N/A	0/4	<lld< td=""><td>KLLD</td></lld<>	KLLD
K-40	Preop	0/4	<lld< td=""><td><lld< td=""><td>1/5</td><td>1.1-1.1</td><td>1.1</td></lld<></td></lld<>	<lld< td=""><td>1/5</td><td>1.1-1.1</td><td>1.1</td></lld<>	1/5	1.1-1.1	1.1
K-40	Ор	0/0	N/A	N/A	4/4	0.68-1.02	0.89
Mn-54	Preop	0/4	<lld< td=""><td><pre><lld< pre=""></lld<></pre></td><td>0/5</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<pre><lld< pre=""></lld<></pre>	0/5	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Mn-54	Ор	0/0	N/Á	N/A	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-57	Preop	0/4	<lld< td=""><td><lld< td=""><td>0/5</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/5</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/5	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-57	Ор	0/0	N/A	N/A	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-58	Preop	2/4	0.054-0.101	0.078	1/5	0.190-0.190	0.190
Co-58	Ор	0/0	N/A	NZA	0/4	<lld< td=""><td><lld< b=""></lld<></td></lld<>	<lld< b=""></lld<>
Fe-59	Preop	0/4	<lld< td=""><td><lld< td=""><td>0/5</td><td><lld< td=""><td><lld< b=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/5</td><td><lld< td=""><td><lld< b=""></lld<></td></lld<></td></lld<>	0/5	<lld< td=""><td><lld< b=""></lld<></td></lld<>	<lld< b=""></lld<>
Fe-59	Ор	0/0	N/A	N/A	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-60	Preop	3/4	0.021-0.040	.0327	1/5	0.022-0.022	0.022
Co-60	Ор	0/0	N/A	N/A	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ag-110m	Preop	1/4	0.101-0.101	0.101	0/5	<lld< b=""></lld<>	<lld< td=""></lld<>
Ag-110m	Ор	0/0	N/A	N/A	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-134	Preop	0/4	<lld< td=""><td><lld< td=""><td>0/5</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/5</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/5	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-134	Ор	0/0	N/A	N/A	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-137	Preop	0/4	<lld< td=""><td><lld< b=""></lld<></td><td>1/5</td><td>0.005-0.005</td><td>0.005</td></lld<>	<lld< b=""></lld<>	1/5	0.005-0.005	0.005
Cs-137	Ор	0/0	N/A	N/A	0/4	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>

T

Preoperational data - from January 1979-July 1982 Operational data - from January-December 1986 * Concentrations listed are in units of pCi/g, wet weight

SHORELINE SEDIMENT (SAND) PREOPERATIONAL AND OPERATIONAL DATA # SONGS UNITS 2 AND 3

		Freq. of	Indicator*	Freq. of	Control*	
<u>Radionuclide</u>	<u>Period*</u>	Detection	Range Average	Detection	Range Average	e :
K-40	Preop	3/21	15.0–18.0 16.7	1/7	20.0-20.0 20.0	
K-40	Ор	6/6	12.9–16.6 14.2	2/2	17.5–17.8 17.7	
Mn-54	Preop	0/21	<lld <lld<="" th=""><th>0/7</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	0/7	<lld <lld<="" th=""><th></th></lld>	
Mn-54	Ор	0/6	<lld <lld<="" th=""><th>0/2</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	0/2	<lld <lld<="" th=""><th></th></lld>	
Co-57	Preop	0/21	<lld <lld<="" th=""><th>0/7</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	0/7	<lld <lld<="" th=""><th></th></lld>	
Co-57	Ор	0/6	<lld <lld<="" th=""><th>0/2</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	0/2	<lld <lld<="" th=""><th></th></lld>	
Co-58	Preop	0/21	<lld <lld<="" th=""><th>0/7</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	0/7	<lld <lld<="" th=""><th></th></lld>	
Co-58	Ор	0/6	<lld <lld<="" th=""><th>0/2</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	0/2	<lld <lld<="" th=""><th></th></lld>	
Fe-59	Preop	0/21	<lld <lld<="" th=""><th>0/7</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	0/7	<lld <lld<="" th=""><th></th></lld>	
Fe-59	Ор	0/6	<lld <lld<="" th=""><th>0/2</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	0/2	<lld <lld<="" th=""><th></th></lld>	
Co-60	Preop	0/21	<lld <lld<="" th=""><th>0/7</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	0/7	<lld <lld<="" th=""><th></th></lld>	
Co-60	Ор	0/6	<lld <lld<="" th=""><th>0/2</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	0/2	<lld <lld<="" th=""><th></th></lld>	
Ag-110m	Preop	0/21	<lld <lld<="" th=""><th>0/7</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	0/7	<lld <lld<="" th=""><th></th></lld>	
Ag-110m	Op	0/6	<lld <lld<="" th=""><th>0/2</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	0/2	<lld <lld<="" th=""><th></th></lld>	
Cs-134	Preop	0/21	<lld <lld<="" th=""><th>. 0/7</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	. 0/7	<lld <lld<="" th=""><th></th></lld>	
Cs-134	Ор	0/6	<lld <lld<="" th=""><th>0/2</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	0/2	<lld <lld<="" th=""><th></th></lld>	
Cs-137	Preop	0/21	<lld <lld<="" th=""><th>0/7</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	0/7	<lld <lld<="" th=""><th></th></lld>	
Cs-137	Ор	0/6	<lld <lld<="" th=""><th>0/2</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	0/2	<lld <lld<="" th=""><th></th></lld>	
Ce-144	Preop	0/21	<lld <lld<="" th=""><th>0/7</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	0/7	<lld <lld<="" th=""><th></th></lld>	
Ce-144	Ор	0/6	<lld <lld<="" th=""><th>0/2</th><th><lld <lld<="" th=""><th></th></lld></th></lld>	0/2	<lld <lld<="" th=""><th></th></lld>	
Ra-226	Preop	21/21	0.14-0.88 0.35	7/7	0.24-0.55 0.37	
Ra-226	Ор	6/6	0.12-0.37 0.19	2/2	0.24–0.37 0.31	
Th-228	Preop	3/21	0.12-0.87 0.39	1/7	1.53–1.53 1.53	
Th-228	Ор	6/6	0.12-0.39 0.19	2/2	0.45-0.99 0.72	

η

Preoperational data - from January 1979-July 1982
Operational data - from January-December 1986
* Concentrations listed are in units of pCi/g, wet weight

KELP PREOPERATIONAL AND OPERATIONAL DATA # SONGS UNITS 2 AND 3

		Freq. of	Indicato	r*	Freq. of	Control*	
<u>Radionuclide</u>	<u>Period*</u>	Detection	Range	<u>Average</u>	Detection	Range	<u>Average</u>
Bound H-3	Preop	5/21	1.20-2.40	1.66	1/7	1.70-1.70	1.70
Bound H-3	Ор	0/6	<lld td="" ·<=""><td><lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld>	<lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/3	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
K-40	Preop	3/21	2.10-5.20	3.83	1/7	2.40-2.40	2.40
K-40	Ор	6/6	5.2-8.3	6.8	3/3	5.3-7.3	6.5
Mn-54	Preop	1/21	0.005-0.005	0.005	0/7	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Mn-54	Ор	0/6	<lld< td=""><td><lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/3	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-57	Preop	0/21	<lld< td=""><td><lld< td=""><td>0/7</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/7</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/7	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-57	Ор	0/6	<pre><lld< pre=""></lld<></pre>	<lld< b=""></lld<>	0/3	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-58	Preop	0/21	<lld< td=""><td><lld< td=""><td>0/7</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/7</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/7	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-58	Ор	0/6	<lld .<="" td=""><td><lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld>	<lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/3	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Fe-59	Preop	0/21	<pre><lld< pre=""></lld<></pre>	<lld< td=""><td>0/7</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/7	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Fe-59	Ор	0/6	<lld< td=""><td><lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/3	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-60	Preop	2/21	0.006-0.009	0.0075	0/7	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-60	Ор	0/6	<lld< td=""><td><lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/3	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Zr(Nb)-95	Preop	6/21	0.014-0.090	0.47	2/7	0.018-0.053	0.036
Zr(Nb)-95	Ор	0/6	<lld< td=""><td>< LLD</td><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	< LLD	0/3	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ag-110m	Preop	0/21	<lld< td=""><td><lld< td=""><td>0/7</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/7</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/7	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ag-110m	Ор	0/6	<lld< td=""><td><lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/3	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
I-131	Preop	6/21	0.011-0.024	0.017	2/7	0.010-0.030	0.020
I-131	Ор	5/6	0.008-0.25	0.12	3/3	0.049-0.129	0.076
Cs-134	Preop	0/21	<lld< td=""><td><lld< td=""><td>0/7</td><td><pre><lld< pre=""></lld<></pre></td><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/7</td><td><pre><lld< pre=""></lld<></pre></td><td><lld< td=""></lld<></td></lld<>	0/7	<pre><lld< pre=""></lld<></pre>	<lld< td=""></lld<>
Cs-134	Ор	0/6	<lld< td=""><td><lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/3	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-137	Preop	5/21	0.004-0.006	0.0050	0/7	<lld< td=""><td><lld.< td=""></lld.<></td></lld<>	<lld.< td=""></lld.<>
Cs-137	Ор	6/6	0.00260057	0.0044	2/3	0.0034-0.0044	0.0039
Ce-144	Preop	0/21	<lld< td=""><td><lld< td=""><td>0/7</td><td><lld td="" ·<=""><td><lld< td=""></lld<></td></lld></td></lld<></td></lld<>	<lld< td=""><td>0/7</td><td><lld td="" ·<=""><td><lld< td=""></lld<></td></lld></td></lld<>	0/7	<lld td="" ·<=""><td><lld< td=""></lld<></td></lld>	<lld< td=""></lld<>
Ce-144	Ор	0/6	<lld< td=""><td><lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/3	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ra-226	Preop	0/21	< LLD	<lld< td=""><td>0/7</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/7	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ra-226	Ор	0/6	<lld< td=""><td><lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/3	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Th-228	Preop	0/21	<lld< td=""><td><lld< td=""><td>0/7</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/7</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/7	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Th-228	Ор	0/6	<lld< td=""><td><lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td>0/3</td><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	0/3	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>

Preoperational data - from January 1979-July 1982 Operational data - from January-December 1986 * Concentrations listed are in units of nCi/g wet weight.

· ,

APPENDIX G

DEVIATIONS FROM TECHNICAL SPECIFICATION SAMPLING REQUIRMENTS

DEVIATIONS FROM TECHNICAL SPECIFICATION SAMPLING REQUIREMENTS

	Sample Type	Location No.	Date	Requirement	Deviations from Requirements/ Corrective Actions (See Notes)
	Air	3	01/14/86-01/28/86	Meet maximum LLD	Low volume of air collected due to abnormal loading of filter.
	Air ·	11	01/28/86-02/04/86	Continuous collection	16.9 hours of collection time was lost due to a power outage.
	Air	9	02/04/86-02/11/86	Continuous collection	115.9 hours of collection time was lost due to a trenching machine cutting through the air samplers buried power cable.
	Air	<u><u></u> 11</u>	03/04/86-03/11/86	Continuous collection	94.0 hours of collection time was lost due to a loss of power.
	Air	· · · · · · · · · · · · · · · · · · ·	03/11/86-03/18/86	Continuous collection	168 hours of collection time was lost due to a power outage.
	Air	- 11	03/18/86-03/25/86	Continuous collection	80.2 hours of collection time was lost due to a power outage.
	Air	10	03/25/86-04/01/86	Continuous collection	No sample was collected due to a power outage.
-	Air 🐩	10	- 04/01/86-04/08/86	Continuous collection	167.2 hours of collection time was lost due to a power outage.
	Air	10	04/08/86-04/15/86	Continuous collection	No sample was collected due to a power outage.
	Air		04/15/86-04/22/86	Continuous collection	36 hours of collection time was lost due to a loss of power. The
			·		outage was due ultimately to a malfunction of a State D.H.S. air
;	Air	6	04/15/86-04/22/86	Continuous collection	sampler. 5.2 hours of collection time was lost due to a power outage at the Met. compound.
	Air	12	04/15/86-04/22/86	Continuous collection	31.3 hours of collection time was lost due to sampler installation
	.			-Tet three	on 04/15/86 at 3 P.M.
	Air	6	04/22/86-04/29/86	Continuous collection	59.8 hours of collection time was lost due to a planned power
	- •		· · · ·	. · · •	outage for maintenance of other_equipment served by the same power source.
	Air	10	05/06/86-05/13/86	Continuous collection	58.2 hours of collection time was lost due to a power outage?
	Air	10	05/13/86-05/20/86	Continuous collection	Approximately 60 hours of collection time was lost due to a power outage.
	Air	10	05/27/86-06/03/86	Continuous collection	55.8 hours of collection time was lost due to a breaker maintenance scheduled with a Unit 1 outage.

Notes:

 Power outages observed - These were the result of an unprecedented amount of maintenance activity associated with the Unit 1 refueling outage and in reconfiguration of power distribution to the Mesa facilities. Due to the one-time nature of these maintenance activities, it is not anticipated that such outages will recur. However, the importance of maintaining reliable power supply to the air samplers has been emphasized to the Equipment Control Department.

2. Low volume of air - The air samplers are inspected mid-week to lower the probability of loss of sample due to dust loading. Additional corrective action is not considered applicable.

171-11-1

ရာ

DEVIATIONS FROM TECHNICAL SPECIFICATION SAMPLING REQUIREMENTS

Sample Type	Location <u>No.</u>	Date	Requirement	Deviations from Requirements/ Corrective Actions (See Notes)
Air	6	06/03/86-06/10/86	Continuous collection	98.0 hours of collection time was lost due to breaker maintenance scheduled with the Unit 1 outage.
Air	10	06/03/86-06/10/86	Continuous collection	63.8 hours of collection time was lost due to breaker maintenance scheduled with the Unit 1 outage.
Air	6	06/10/86-06/17/86	Continuous collection	160.3 hours of collection time was lost due to breaker maintenance scheduled with the Unit 1 outage.
Air	12	06/17/86-06/24/86	Continuous collection	10.0 hours of collection time was lost due to an interruption in power.
Atr Crops	2 1	07/01/86-07/08/86 06/25/86	Continuous collection Collect leafy vegetables	10.4 hours of collection time was lost due to a power failure. Fleshy vegetables were substituted for the unavailable leafy variety.
Air	n	08/05/86-08/12/86	Continuous collection	7.9 hours of collection time was lost due to a planned power outage at the SONGS Mesa area. The outage occurred due to a shifting of the Mesa 12kV power source from SDG&E to Edison.
Air	9	08/12/86-08/19/86	Continuous collection	8.9 hours of collection time was lost due to a power outage caused by the modification of existing underground power lines.
Air	\geq n	08/12/86-08/19/86	Continuous collection	36.5 hours of collection time was lost due to a switchover of 12kV power from an existing SDG&E system to SCE.
Air	2	08/19/86-08/26/86	Continuous collection	3.7 hours of collection time was lost due to a power outage of undetermined origin.
Direct Radiation	5	07/01/86-09/30/86	Sample acquisition	Sample lost due to Marine Corps activities.
Air	3	10/14/86-10/21/86	Meet Maximum LLD for I-131 (0.07 pCi/m3)	A low volume of air was collected due to abnormal loading of filter.

Notes:

 Power outages observed - These were the result of an unprecedented amount of maintenance activity associated with the Unit 1 refueling outage and in reconfiguration of power distribution to the Mesa facilities. Due to the one-time nature of these maintenance activities, it is not anticipated that such outages will recur. However, the importance of maintaining reliable power supply to the air samplers has been emphasized to the Equipment Control Department.

2. Low volume of air - The air samplers are inspected mid-week to lower the probability of loss of sample due to dust loading. Additional corrective action is not considered applicable.

G-2

DEVIATIONS FROM TECHNICAL SPECIFICATION SAMPLING REQUIREMENTS

Sample Type	Location	Date	Requirement	Deviations from Requirements/ Corrective Actions (See Notes)
Crops	1	11/10/86	Collect leafy vegetables	Fleshy vegetables were substituted for the unavailable leafy variety.
Air	1	12/16/86-12/23/86	Continuous collection	103.8 hours of collection time was lost due to an unknown problem.
Air	1	12/23/86-12/30/86	Continuous collection	168 hours of collection time was lost due to a breaker trip. No sample.
Direct Radiation	5 n .	01/01/86-12/31/86	Sample acquisition	Sample lost due to Marine Corps activities.

Notes:

- Power outages observed These were the result of an unprecedented amount of maintenance activity associated with the Unit 1 refueling outage and in reconfiguration of power distribution to the Mesa facilities. Due to the one-time nature of these maintenance activities, it is not anticipated that such outages will recur. However, the importance of maintaining reliable power supply to the air samplers has been emphasized to the Equipment Control Department.
- 2. Low volume of air The air samplers are inspected mid-week to lower the probability of loss of sample due to dust loading. Additional corrective action is not considered applicable.

1 2-

ander and an angle for the angle of the second and and angle of the second seco

> > G

APPENDIX H

LAND USE CENSUS

PART A. 1986 LAND USE CENSUS

INTRODUCTION

This section explains the purpose of the land use survey, defines the land uses studied, defines the five-mile study area, overviews the methodology and survey procedures, and describes the report format and supporting materials. H-

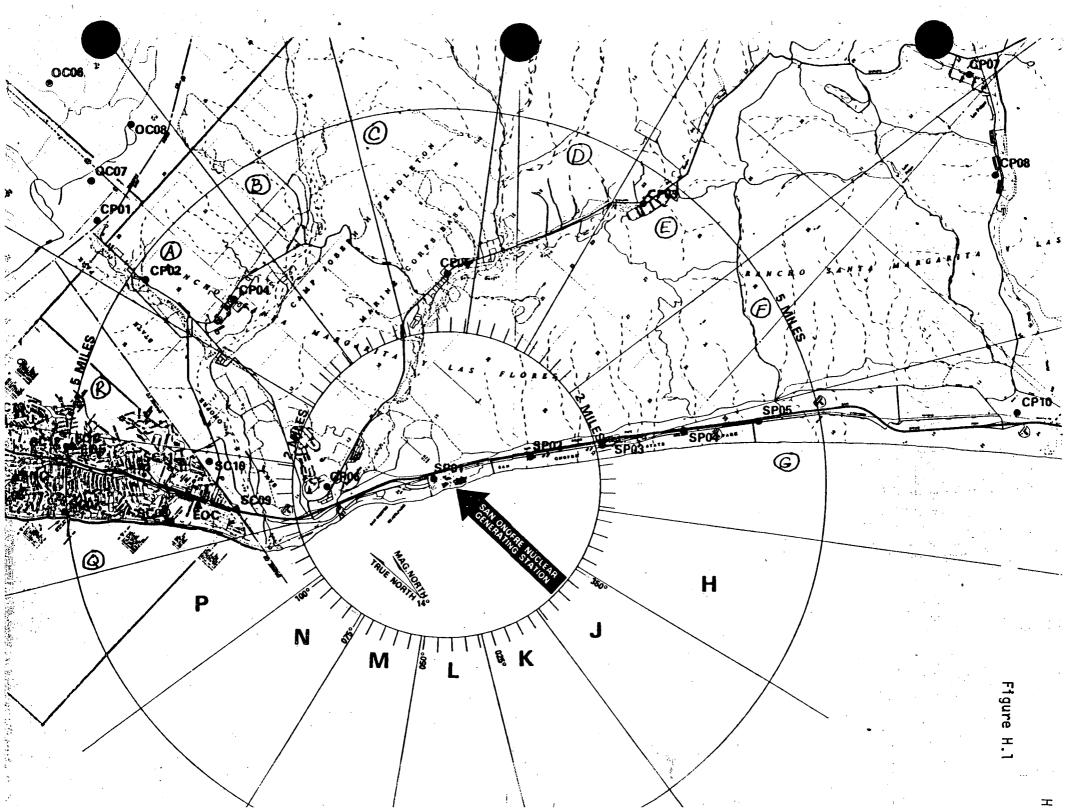
1. Purpose Of The Land Use Census

William C. Lawrence Company (WCLC) was contracted to identify land uses within a five-mile radius of Southern California Edison Company's San Onofre Nuclear Generation Station (SONGS). See Figure H.1 for a map of the study area.

The overall objective of the census is to identify radiological pathways to man. The purpose of this census is to locate and document the <u>nearest</u> residences, milk animals, meat animals, gardens (of at least 500 square feet producing fleshy or leafy vegetables), and other specified uses (campgrounds, employment, etc.), in each of the 16 meteorological sectors within five miles of SONGS. This study is updated annually. All such uses within the study area are identified, <u>not only the nearest.</u> Additionally, information on how long a person or persons will be at closest (and certain other) non-residential uses is collected. This information is required by SONGS Technical Specifications.

2. Definition Of Uses

<u>Residence</u> is defined as any structure (single family house, apartment, mobile home, barracks or similar type unit), which is occupied by an individual(s) or resident(s) for three months (2,000 hours) or longer in a given year.


<u>Other Specified Use</u> is defined as a location occupied by members of the general population as other than their primary residence. The use is divided into two categories: employment and non-employment related.

Employment use is defined as a location occupied by members of the general population engaged in normal work activities regardless of the length of time spent at the location, or regardless of its permanence, including concession stands, restaurants, markets, and guard shacks.

Non-employment related use is defined as a location occupied by members of the general population who are not engaged in normal work activities, including campgrounds, temporary housing, timeshare condominiums, motels, hotels, schools, and beaches.

<u>Milk animals</u> are cows, goats or sheep, whose milk is used in dairy products for human consumption.

<u>Meat animals</u> are cattle, goats or sheep, whose meat is used for human consumption.

H.

<u>Fresh, leafy vegetables</u> include examples such as lettuce, cabbage, and spinach. Other vegetables, known as "fleshy" vegetables, were also included in the census. <u>Fleshy vegetables</u> include, for instance, tomatoes, cucumbers, cauliflower, and sweet corn.

3. Findings by Sector

Sector P (West Northwest)

This sector is mainly the Pacific Ocean but includes a sliver of land containing Enlisted Beach (military), San Onofre State Beach (public), the U. S. Coast Guard Loran Tracking Station at San Mateo Point, and the westernmost tip of the City of San Clemente.

<u>Residences</u>. The closest residential use to SONGS is Cotton Point, owned by Mr. Gavin Herbert. He has subdivided the property into 17 improved home sites ready for construction. Mr. Herbert uses the house on an irregular basis, but a guard lives in a guest house on a permanent basis. Additional housing is found north of the area in the Cypress Shore development.

<u>Gardens, Milk and Meat Animals</u>. No instances of these uses are found in Sector P.

<u>Other Specified</u>. San Onofre Beach (Surf Beach) is the closest use to the SONGS facility. It is a day-use area exclusively; use is confined to parking and beach use. The daily use at peak season (July 4) is about 500 cars at three persons per car, or a total of 1,500 persons. Lifeguard stations and change rooms are located along the beach. Employment uses on the beach include mobile (in jeeps) and stationary (in towers) lifeguards. Total high season staffing for <u>all beaches</u> (Surf Beach, San Onofre State Beach, Trestles Beach and San Clemente State Beach) is 86 lifeguards. Each guard works eight hours per day (40 hours per week) and is rotated among the beaches, so a worst case exposure time is estimated at 10 hours per week at the closest point (500 hours per year). No estimate of lifeguard time on individual beaches is possible as assignments are constantly rotated.

Enlisted Beach is a Marine recreation area and contains 123 camping spaces and 10 mobile homes on foundations. The camping spaces are occupied by mobile homes, RV's, trailers, and tents. Maximum stay at the campground is 30 days in the winter and seven days in the summer. Capacity of the camping area is approximately 470 persons. Only a small portion of this area is contained within Sector P--the majority is found in Sector Q. Sector P does contain a trailer containing the campground check-in. The check-in facility is open seven days per week. Four

8:18 THURSDAY, APRIL 23, 1987

Southern California Edison Company Environmental Monitoring Program Database Listings

Verified by: Mina Considery Ph.D.	Date: <u>4/23/87</u>
-----------------------------------	----------------------

Table 2: Heekly Airborne Particulates Gross Beta Activity

.	0 <u></u>	· · · · · · · · · · · · · · · · · · ·			······	Control L	ocation: #3	• .
Observation Number	Calendar Date	Location #1	Location #1 (2 sigma)	Location #2	Location #2 (2 sigma)	Location #3	Location #3 (2 sigma)	Location #4
1428	04/01/86	0.014	0.001	0.022 0.016 0.018 0.018 0.028 0.026	0.001	0.014	0.001	*
1429	04/08/86	0.011	0.001	0.016	0.001	0.014 0.012	0.001	
1430	04/15/86	0.012	0.001	0.018	Ŏ.ŎŎĪ	0.012	0.001	
1431	04/22/86 04/29/86	0.011 0.012 0.013	0.001	0.018	0.001	0.018	0.001	¥
1632	04/29/86	0.019 0.013	0.001	0.028	0.001 0.001	0.016 0.017	0.001	· · · · · · · · · · · · · · · · · · ·
1433	05/06/86	0.013	0.001	0.016	0.001	0.017	0.001	
1634	05/13/86 05/20/86	0.390	0.020	0.084	0.004	0.290	0.010	<u> </u>
1435	05/20/86	0.460	0.020	0.640	0.004 0.030 0.010	0.720°	0.040	. 🖀
1636	05/27/86	0.220	0.010	0.290	0.010	0 210	0.010	X
1437	06/03/86	0.076	0.004	0.100	0.005	0.210 0.079	0.004	· · · · · · · · · · · · · · · · · · ·
1438	06/10/86	0.031	0.002	0.046	0.002	0.038	0.002	2
1439	06/17/86	0.041	0.002	0.052	0.002	0.032	0.002	
Observation Number	Calendar Date	Location #4 (2 signa)	Location #5	Location #5 (2 sigma)	Location #6	Location #6 (2 sigma)	Location #9	Location #10
1428	04/01/86	×	0 018	0.001	A A10	0.001	0.022	0.360
1429	04/08/86	× ×	0.018	0.001	0.019 0.018	0.001	0.013	U.300
1430	04/15/86	. X	0.017	0.001 0.001 0.001	0.013	0.001	0.013	
1431	04/22/86	*	0.020	0.001	0.013	0.001	0.011	¥ 0.025
1432	04/29/86		0.022	0.001	0.016 0.021	0.001	0,023	0.023
1433	05/06/86	7 X	0.018	0.001	0.021	0.001	0.008	0.021
1434	05/13/86	*	0.380	0.001	0.020 0.170	0.008	0.008	0.016 0.032
1435	05/20/86	*	0.380	0.020 0.040	0.170	0.030	0.240 0.560	0.032
1436	05/27/86	*	0.890 0.260	0.010	0.640 0.230	0.010	0.240	0.550 0.270
1437	06/03/86	. X	0.127	0.006	0.113	0.007	0.068	0.146
1438	06/10/86	R	0.039	0.002	0.026	0.002	0.044	0.068
1439	06/17/86	₩ X	0.055	0.003	0.080	0.002	0.052	0.042
Observation Number	Calendar Date	Location #11	Location #9 (2 sigma)	Location #10 (2 sigma)	Location #11 (2 sigma)	Location #		12
1428	04/01/86	0.031	0.001	0.040	0.002	¥		•
1429	04/08/86	0.016	0.001	×	0.001	÷.	¥ .	•
~ 1430	04/15/86	0.019 0.020 0.027	0.002	<u> </u>	0.001	× ·	· · · · · · · · · · · · · · · · · · ·	
1431	04/22/86	0.020	0.001	0.001	0.001	0.020	0.001	•
1432	04/29/86	0.027	0.001	0.001	0.001	0.020	0.001	
1433	05/06/86	0.015	0.001	0.001	0.001	0.018	0.001	
1434	05/13/86	0.076	0.010	0.002	0.005	0.240	0.010	2 -
1435	05/20/86	0.890	0.030	0.030	0.040	0.670	0.030	
R6 36	05/27/86	0.015 0.076 0.890 0.290	0.010	0.010	0.010	0.260	0.010	
3637	06/03/86	0,101 0,05% 0.045	0.004	0.008	0.002	0.099	0.006	
	06/10/86	0.059	0.002	0.003	0.003	0.046	0.002	
1439	06/17/86	0.045	0.003	0.002	0.002	0.057	0.003	
		-			~~~~		n n n n n n n n n n n n n n n n n n n	
					*			

I-4

8:18 THURSDAY, APRIL 23, 1987

#10 Location Location 0.023 0.022 0 0.020 0 Location #12
(2 sigma) Location #3 (2 sigma) 6.# Control Location: #3 0.025 0.021 0 Location Environmental Monitoring Program Database Listings #12 Location Location #6 (2 sigma) Location #3 Location #11 (2 sigma) Location #2 (2 signa) 9# 0.001 Location Table 2: Meekly Airborne Particulates Gross Beta Activity Cocaters 2000 Location #10 (2 sigma) Location #5 (2 sigma) N # Location Company Location #9 (2 sigma) 5 Varified by Muno Location #1 (2 sigma) Location Southern California Edison #11 Location #4 (2 sigma) Location #1 Location 0°0% 01/07/86 01/07/86 01/14/86 01/28/86 02/11/86 02/11/86 03/11/86 03/11/86 03/11/86 03/25/86 03/25/86 Calendar Date Calendar Date 01/07/86 01/07/86 01/14/86 01/28/86 02/11/86 02/11/86 03/11/86 03/11/86 03/11/86 03/25/86 03/25/86 03/25/86 Calendar Date Observation Number Observation Number Observation Number

I

10:37 MONDAY, APRIL 20, 1987

1

Ň

15.1 Southern California Edison Company Environmental Monitoring Program Database Listings ί., Verified by: Mina Coevers, Ph. D. Date: 4/20/87 1 . 1 1 . Table 15: Annual Gamma Exposure Control Location: #14 CalendarLocation Location Observation Number Date #1 #2 #3 #4 #5 #6 #7 <u>#8</u> #9 #10 #11 #12 12 12/31/86 86.7 104.3 90.4 92.2 ¥ 70.5 85.1 87.8 90.5 93.8 92.3 88.5 CalendarLocation Location Observation Number Date #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 12 12/31/86 109.9 97.3 74.3 104 41.1 45.3 97.6 93.2 86.8 86.3 85.8 92.5 CalendarLocation Location Observation Number Date #25 #26 #27 #28 #29 #30 #31 #32 #33 #34 #35 #36 12 12/31/86 86.7 91.4 81 90.4 93.6 89 92.3 83 89.4 83.1 88.9 99 **Observation** CalendarLocation Location Number Date \$37 #38 #39 **#4**0 841 #42 #43 #44 #45 #46 #47 #48 12 12/31/86 100.7 66.8 87 89.8 84.1 105.5 76.3 72.1 77.2 65.9 75.7 81.8 Observation Calendar Location Number Date 849 #50 #51 #52 \$53 #54 #55 #56 \$57 #58 #59 12 12/31/86 82.6 .76.2 76.1 76.3 79.2 88 123.3 108.1 96.4 97 98.4

N

1

131

1 + 1

il an e Fa

10:37 MONDAY, APRIL 20, 1987

	Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Geedens, Ph.D. Date: <u>4/20/87</u>												
	Tab	le lA: Q	uarterly	Gamma Expo	osure				· ·				
						····			·	Control Lo	cation: #1	4 '	
Observation	CalendarL	ocation	Location	Location	ocation	Location	Location	Location	Location	Location	Location L	ocation Lo	tion #12
Number	Date	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	
45	03/31/86	18.9	22.7	19.3	19.8	18.7	15.7	18.5	18.5	19.0	19.9	19.1	19.5
46	06/30/86	20.0	22.6	19.9	20.0	19.4	16.3	19.0	19.1	20.6	20.5	20.0	19.4
47	09/30/86	¥	*	¥	¥	¥	¥	*	¥	¥	*	¥	*
48	12/31/86	19.9	23.4	20.4	20.7	19.2	16.2	18.6	19.8	20.7	20.9	20.4	19.9
Observation Number		-		-		•					Location L #22		-
45	03/31/86	17.5	21.7	18.3	18.3	10.1	9.8	21.5	21.0	20.6	19.6	19.3	20.3
46	06/30/86	17.9	21.2	16.7	18.2	9.9	9.4	18.0	19.7	17.5	17.7	17.8	19.8
47	09/30/86	×	¥	¥	*	#	*	¥	*	¥	¥	¥	¥
48	12/31/86	35.4	22.7	17.0	30.4	9.2	9.3	21.2	20.6	19.7	19.1	20.1	20.9
Observation	Calendari	ocation	Location	Location	Location	Location	Location	Location	Location	Location	Location L	ocation L	cation
Number	Date	#25	#26	#27	#28	#29	#30	#31	#32	#33	#34	#35	#36
45 46 47 48	03/31/86 06/30/86 09/30/86 12/31/86	19.3 18.8 × 19.3	20.6 19.7 20.3	18.8 18.4 * 18.8	21.0 19.4 * 20.5	21.2 19.7 21.3	20.3 18.3 * 20.6	21.0 18.8 * 20.1	19.3 17.4 18.5 19.0	20.6 19.2 20.5 20.1	19.0 18.3 19.8 19.4	19.3 18.6 19.0 20.0	21.5 20.0 21.9 21.3
Observation	Calendari	Location	Location	Location	Location	Location	Location	n Location	Location	Location	Location L	ocation L	cation
Number	Date	#37	#38	#39	#40	#41	#42	#43	#44	#45	#46	#47	#48
45	03/31/86	22.1	15.2	20.3	21.9	19.2	23.4	18.2	17.7	18.0	15.7	17.6	18.9
46	06/30/86	21.2	14.4	19.4	19.5	18.4	19.6	16.4	15.2	17.1	14.6	15.4	16.7
47	09/30/86	23.1	15.7	19.7	20.8	19.1	24.2	18.1	17.6	18.2	16.0	16.5	17.9
48	12/31/86	22.3	15.0	19.1	20.6	18.4	23.0	17.8	17.0	17.7	14.9	17.0	18.5
Observation	Calendar	Locatio	n Locati	on Locat	ion Loc	ation Lo	cation (Location	Location	Location	Location	Location	Location
Number	Date	#49	#50	#5	1	#52	#53	#54	#55	#56	#57	#58	#59
45 46 47 48	03/31/86 06/30/86 09/30/86 12/31/86	18.7 17.7 17.8 17.7	17.4 16.8 16.9 16.7)	8 <u>1</u> 9 1	6.5 7.1	18.8 17,1 17,7 17,7	19.6 17.0 19.0 18.2	25.7 23.0 26.7 23.8	23.7 21.9 23.5 22.8	23.3 19.1 22.3 21.3	22.8 19.6 20.8 20.4	22.0 20.6 21.8 20.7
1. han 6.					÷		Shering Sub				· · ·		•

l

N=

-

APPENDIX I

RADIOLOGICAL ENVIRONMENTAL (RAW) DATA TABLES FOR 1986

PART C. SIGNIFICANCE OF NEW/CHANGED LAND USES

4

None of the new locations identified in the 1986 Land Use Census identify locations which yield calculated doses greater than those currently calculated in accordance with Technical Specification 3.18.2 (Unit 1) and 3/4.12.2 (Units 2/3).

H-1

<u>Sector G</u>

The distance to the closest "other specified" use (San Onofre State Beach) is 1.0 miles from SONGS Unit 1, rather than the 1.3 miles shown on the 1985 Land Use Census Summary Sheet.

The discrepancy was noted while preparing the draft 1986 Land Use Census Summary Sheet.

<u>Sector R</u>

The distance to the closest meat animals is .9 miles from SONGS Unit 1, rather than the 1.4 miles shown on the 1985 and draft 1986 SONGS Unit 1 Land Use Census Summary Sheet.

The discrepancy was noted while preparing the final 1986 Land Use Census Summary Sheet.

No other changes in closest uses were identified.

INTRODUCTION

Two new closest "other specified" uses have been identified in Sectors A (SONGS Units 2 and 3) and E (SONGS Units 1, 2 and 3). Both are motor pools located next to Marine barrack camps. Also, the distances to the closest "other specified" use to SONGS Unit 1 in Sector G and to the closest meat animals in Sector R were shown incorrectly in 1985.

H-1

Changes for sector are explained below.

<u>Sector A</u>

A motor pool, 3.6 miles from SONGS Units 2 and 3, has been located at the northwestern end of Camp San Mateo. The motor pool houses equipment and vehicles for a Marine Combat Engineer Battalion and the 7th Marines. The facility was previously identified only as a support facility for the camp, and thus not noted separately.

The motor pool constitutes a new land use for SONGS Units 2 and 3. It is not, however, a nearest "other-specified" land use for SONGS Unit 1 because the Camp San Mateo Sewage Treatment Plant is still closer to Unit 1 in this sector.

Approximately 180 persons work at the site, of which 75 percent (135 persons) are stationed at Camp San Mateo. The remaining 25 percent (45 persons) commute from other parts of the base or from off-base. Persons at the site work eight hours per day, five days per week, for an annual exposure time of 2,000 hours (40 hours per week x 50 work weeks per year).

<u>Sector E</u>

Another motor pool has been located at the northwestern end of Camp Horno. The motor pool is located 4.0 miles from SONGS Units 2 and 3, and 4.2 miles from SONGS Unit 1. The motor pool houses some equipment and vehicles for Marine units not located in Camp Horno. The facility was previously identified only as a support facility for the camp, and thus not noted separately.

Approximately 100 persons work at the site, of which 75 percent (75 persons) are stationed at Camp Horno. The remaining 25 percent (25 persons) commute from other parts of the base, or from off-base. Persons at the site work an average of 10 hours per day, five days per week, for an annual exposure time of 2,500 hours (50 hours per week x 50 work weeks per year).

<u>Other Specified</u>. The closest other specified use to SONGS is San Onofre State Park and Beach Campground (see narrative in Sector F). Estimated maximum annual exposure time is 500 hours. H-1

A Highway Patrol Weigh Station is located on the west side of the San Diego Freeway. See Sector F for discussion of staffing and work hours.

Sectors H. J. K. L. M. and N

Sectors H, J, K, L, M, and N do not contain any of the land uses in question. These sectors contain only a small portion of the plant site, a public beach, and beach walkway. The beach walkway provides an access path between beaches north and south of the plant.

South of the guard shack is a new ranger station. The station will be manned by one of seven rangers stationed at the beach for two hours perday, year-round. Because ranger assignments are constantly rotated among the four beaches, and there are seven rangers at this beach, the annual exposure time is 1/4 (4 beaches) x 1/7 (7 rangers) x 500 (hours spent in shack) = 20 hours.

Tony's Market, which was housed in a trailer south of the guard shack, is closed. The market will probably not reopen before Spring of 1987, and possibly not even then. The park also has a campground. Peak season daily use of the campground (which also extends to Sector G) is as follows:

Campers (Bluffs area): 221 campers x 3 persons per camper 663 Day use walk-in visitors: 600 x 3 persons per car 1,800 TOTAL 2,463

These figures are based on a hypothetical July 4 weekend. The maximum length of stay in summer months is 15 days (30 days in the winter), and total annual stay cannot exceed 30 days.

A Highway Patrol Weigh Station and Border Patrol checkpoint are located on the east side of the San Diego Freeway. The Border Patrol checkpoint is manned 24 hours a day, 365 days per year; the maximum length of stay for one person is 50 hours per week and 2,500 hours per year. Total employment at the site is 80 persons, with an average of 12 on the site at any one time. There is also a holding facility for up to 100 aliens who may be detained for seven hours before being transported south. The Weight Station is usually manned for two eight hour shifts, with ten persons per shift. Once every three months, a third shift is added for one week. There are 12 full-time Commercial Vehicle Inspection Specialists, seven uniformed officers, and one janitor stationed at the site. Employees work an average of 40 hours per week or 2,000 hours per year.

<u>Sector G (Southeast)</u>

Residences. No residential uses were identified in Sector G.

<u>Gardens</u>. No gardens greater than 500 square feet were located in Sector G.

Milk Animals. No milk animals were identified in Sector G.

<u>Meat Animals</u>. Sheep are grazed in this sector between January and June or July under a lease agreement between the Marine Corps and Etchegaray Livestock, a private firm. The closest the animals could be to SONGS in Sector G is 2.7 miles. No animals, however, were sighted in Sector G this year. Sector E (East)

<u>Residences</u>. The closest residential use to SONGS is Camp Horno. See Table H.1 for details.

Н-

<u>Gardens</u>. No gardens greater than 500 square feet were located in Sector E.

<u>Milk Animals</u>. No milk animals were identified in Sector E.

<u>Meat Animals</u>. Sheep are grazed in this sector between January and June or July under a lease agreement between the Marine Corps and Etchegaray Livestock, a private firm. The closest the animals could be to SONGS in Sector E is 0.3 miles. No animals, however, were sighted in Sector E this year.

<u>Other Specified</u>. The closest other specified use in Sector E is a motor pool at the northwest end of Camp Horno. The motor pool houses equipment and vehicles for the 1st Marines, and is staffed by approximately 100 persons. About 75 percent (75 persons) are stationed at Camp Horno. The other 25 persons commute from other parts of the base or from off-base. Persons at the site average 10 hours a day, five days a week (50 hours per week or 2,500 hours per year).

A truck company for the 1st Marines is located at the southeast end of Camp Horno, employing about 150 persons. Again, 75 percent (110 persons) are stationed at Camp Horno, with the other 25 percent (40 persons) commuting to the site. Work time at the site averages 50 hours per week, per person (2,500 hours per year).

Sector F (East Southeast)

<u>Residences</u>. No residential uses were identified in Sector F.

<u>Gardens</u>. No gardens greater than 500 square feet were located in Sector F.

Milk Animals. No milk animals were identified in Sector F.

<u>Meat Animals</u>. Sheep are grazed in this sector between January and June or July under a lease agreement between the Marine Corps and Etchegaray Livestock, a private firm. The closest the animals could be to SONGS in Sector F is 0.5 miles. No animals, however, were sighted in Sector F this year.

<u>Other Specified</u>. The closest other specified use to SONGS is the San Onofre State Beach guard shack. The use is designated employment related. The shack is manned by one or two employees for a maximum of 10 hours a day. Employees work a maximum of 40 hours per week but are rotated among duties between all State Park Beaches, so estimated annual exposure time is 500 hours. The Northern Impact Control Tower is staffed for 12 to 14 hours per day by a rotating crew of six marines (32 hours per week per person or 1,600 hours per year). The tower controls are used in the firing ranges in the north Camp Pendleton area. The only permanently staffed firing range in the study area is manned by 12 marines for 30 hours per week (1,500 hours per year).

<u>Sector C (Northeast)</u>

<u>Residences</u>. The closest residential use in this sector is Camp San Onofre. See Table H.1 for details.

<u>Gardens</u>. No gardens greater than 500 square feet were located in Sector C.

Milk Animals. No milk animals were identified in Sector C.

<u>Meat Animals</u>. Sheep are grazed in this sector between January and June or July under a lease agreement between the Marine Corps and Etchegaray Livestock, a private firm. The closest the animals could be to SONGS in Sector C is 0.2 miles. No animals, however, were sighted in Sector C this year.

<u>Other Specified</u>. The closest other specified use in Sector C is the Camp San Onofre Sewage Treatment Plant. The plant is manned by one person for eight hours per day (40 hours per week or 2,000 hours per year).

The Camp San Onofre Fire Station is manned by rotating crews of four civilian firefighters. Firefighters work an average of 13 shifts per month, at 24 hours per shift. This averages to 70 hours per week per firefighter or 2,500 hours per year. Personnel are assigned to a station for about two years.

<u>Sector D (East Northeast)</u>

<u>Residences</u>. The closest residential use in this sector is Camp San Onofre. See Table H.1 for details.

<u>Gardens</u>. No gardens greater than 500 square feet were located in Sector D.

<u>Milk Animals</u>. No milk animals were identified in Sector D.

<u>Meat Animals</u>. Sheep are grazed in this sector between January and June or July under a lease agreement between the Marine Corps and Etchegaray Livestock, a private firm. The closest the animals could be to SONGS in Sector D is 0.2 miles. No animals, however, were sighted in Sector D this year.

<u>Other Specified</u>. The closest other specified use in Sector D is the Camp Horno Sewage Treatment Plan. The plant is staffed by one person for eight hours per day (40 hours per week or 2,000 hours per year). H- 1

<u>Gardens</u>. No instances of gardens greater than 500 square feet were to located in Sector A.

H.

Milk Animals. No instances of milk animals were identified in Sector A.

<u>Meat Animals</u>. Sheep are grazed in this sector between January and June or July under a lease agreement between the Marine Corps and Etchegaray Livestock, a private firm. The closest the animals could be to SONGS in Sector A is 0.2 miles. No animals, however, were sighted in Sector A this year.

<u>Other Specified</u>. The closest other specified use in this section is a motor pool at the northwest end of Camp San Mateo. The motor pool houses equipment and vehicles for a Marine Combat Engineer Battalion and the 7th Marines. Approximately 180 persons work at the site, of which 75 percent (135 persons) are stationed at Camp San Mateo. The remaining 45 persons commute from other parts of the base or from off-base. Persons at the site work eight hours a day, five days a week (2,000 hours per year).

A gas station is located in this sector. The station is staffed by one person for eight hours per day, five days a week (40 hours per week or 2,000 hours per year).

The Cristianitos Fire Station is manned by rotating crews of four civilian firefighters. Firefighters work an average of 13 shifts per month, at 24 hours per shift. This averages to 70 hours per week per firefighter or 2,500 hours per year. Personnel are assigned to a station for about two years. Edison land uses are located in this area.

<u>Sector B (North Northeast)</u>

<u>Residences</u>. No instances of residential uses were identified in Sector B.

<u>Gardens</u>. No gardens greater than 500 square feet were located in Sector B.

Milk Animals. No milk animals were identified in Sector B.

<u>Meat Animals</u>. Sheep are grazed in this sector between January and June or July under a lease agreement between the Marine Corps and Etchegaray Livestock, a private firm. The closest the animals could be to SONGS in Sector B is 0.2 miles. No animals, however, were sighted in Sector B this year.

<u>Other Specified</u>. A sanitary landfill serving Camp Pendleton is the closest other specified use in Sector B. The site is manned by one equipment operator for 37.5 hours per week (1,875 hours per year).

Table H.1

Camp Pendleton Residential Land Uses

Area	<u>Sector</u>	Population	<u>Units</u>	Length of Stay	Resident <u>Characteristics</u>	Type of Building	Other Uses
San Onofre Heights	Q, R	3,003 (total)	940 (total)	Average – 3 yrs. Range – 1 to 5+ yrs.	Enlisted and officers	Single-family units	School
San Onofre Mobile Homes	R	485	149	Average – 3 yrs. Range – 1 to 5+ yrs.	Enlisted and officers	Mobile homes on foundations	Commissary, food store and gas station nearby
Camp San Mateo	A	1,899	N/A	Average – 1.5 to 2 yrs.	Enlisted	Barracks	Support facilities, motor pool
Camp San Onofre	C, D	1,660	N/A	Average - 3 to 6 yrs. 200 instructors stay 3 yrs.	Infantry training school	Barracks	Educational, commercial support facilities, fire station, motor pool
 Camp Honro	. E	1,612	N/A	Average - 1.5 to 2 yrs., max. 3 yrs.	State of readi- ness units	Barracks	Support building, motor pool

ł

Ŧ

the site is 50 to 60 hours per week for the operators. The stands also have several part-time employees. Maximum estimated annual exposure time is 1,040 hours at the closer stand and 865 hours at the T Street stand. Non-employment related uses in the City include several schools and a time-share condominium complex.

H = 7

Sector R (North Northwest)

<u>Residences</u>. The closest residential use to SONGS is the San Onofre Mobile Home Park, a military housing project.

A portion of the San Onofre Heights (see narrative in Sector Q) extends into this sector.

The northern and most recently constructed portion of the San Clemente residential area lies in Sector R; a fairly substantial stock of serviced, but as yet undeveloped, lots exist.

<u>Gardens</u>. The San Clemente Ranch is the closest garden of over 500 square feet in Sector R; this includes a non-contiguous portion of land along San Mateo Road. The crops grown in these areas are the same as Sector Q. An Avocado Grove is located in the City of San Clemente and is estimated to cover one-half acre.

Milk Animals. No milk animals were identified in Sector R.

<u>Meat Animals</u>. Sheep are grazed in this sector between January and June or July under a lease agreement between the Marine Corps and Etchegaray Livestock, a private firm. The closest the animals could be to SONGS in Sector R is 0.9 miles. No animals, however, were sighted in Sector R this year.

<u>Other Specified</u>. The closest other specified use to SONGS is the San Clemente Ranch packing and shipping area. This area is designated commercial. The use includes two guards who live at the site for 11 months per year and up to 70 employees working six months for eight hours per day (40 hours per week). Between 100 and 200 field hands are on the site during harvest times.

Edison land uses are located in this sector. The Camp San Mateo Sewage Treatment Plant is manned by one employee for eight hours per day (40 hours per week or 2,000 hours per year). A guard shack guarding the Cristianitos Road entrance to Camp Pendleton is manned 24 hours per day. The typical duty shift is nine hours, and duty is rotated so a typical serviceperson will stand duty four times per year (36 hours per year).

Sector A (North)

<u>Residences</u>. The closest residential use to SONGS is Camp San Mateo, a military camp. See Table H.1 for details.

A portion of San Onofre Beach is located in this sector, which includes the entrance to the Beach. The entrance is manned by one or two State Park employees for a maximum of 10 hours a day. Employees work a maximum of 40 hours per week but are rotated among duties between all four State Park Beaches. Estimated annual exposure is 500 hours.

The narrative in Sector P outlines the uses of the portion of Enlisted Beach located in Sector Q.

The Enlisted Beach Recreation building is located in this sector. The facility has no permanent staffing. A small portion of Trestles Beach is found in Sector Q (see Sector P for details).

The portion of Sector Q north of the San Diego Freeway contains Edison land uses and the Marine's commercial and guard station uses. The commercial center contains a retail outlet, gas station, Burger King, and day care center which are open seven days a week for eight to ten hours a day. The gas station has 23 full-time and 12 part-time employees. The retail center has 40 full-time and nine part-time employees. The new Burger King has three full-time and 50 part-time employees. The day care center has nine full-time and ten part-time employees. Maximum employee time at the site is 40 hours per week (2,000 hours per year). The guard station at Basilone Road is manned by one marine 24 hours a day. The typical duty shift is nine hours, and duty is rotated so a typical service person will stand duty four times per year (36 hours per year).

San Clemente State Park is located within the City of San Clemente. It contains administrative offices for the Pendleton Coast Area, permanent residences consisting of seven houses and 11 trailers, and a campground area. The administrative offices are staffed by 11 employees for 40 hours per week each (2,000 hours per year). Daily peak use of the park (based on a hypothetical July 4) has been estimated as follows:

Campers:	157 x 3 persons per camper	471
Day Use:	830 autos x 3 persons per auto	2.514
Daily Use:	Auto/walk-in	215
"Bike 'n Hike" Users:		11
TOTAL		3,211

The San Clemente Ranch administrative offices are in this area. The offices are staffed by eight employees for up to 60 hours per week, with a maximum annual exposure of 2,000 hours.

The City of San Clemente has several commercial areas. The primary area is along El Camino Real and extends the length of the study area. Other areas are a gas station and two beach concession stands operated by the City of San Clemente. Operating only from Easter to Labor Day, the beach concession stands are open seven days a week. Maximum amount of time at There is no land explicitly devoted to agricultural use in the City of San Clemente. Most developed residential lots are small, precluding large (500+ square foot) gardens. However, two gardens greater than 500 square feet were located on vacant lots during the windshield survey of the city. There are a significant number of empty vacant lots which could be converted to gardens. Н-

The first garden is located at 238 Avenida Montalvo and is estimated to be 625 square feet. Leafy and fleshy vegetables are being grown there.

The second garden is located at 224 Avenida Allesandro. The site is estimated to be 600 square feet, and is producing leafy and fleshy vegetables. This garden was not present during the 1985 survey.

Additional gardens between 250 and 500 square feet were identified at the following locations:

- 1. Between 215 and 219 Avenida Santa Barbara; approximately 325 square feet; leafy and fleshy vegetables.
- 2. Between 145 and 153 West Avenida Junipero; approximately 275 square feet; leafy and fleshy vegetables.
- 3. At 2405 Calle Madiera; approximately 275 square feet; leafy and fleshy vegetables.
- 4. At 105 Esplanade; approximately 400 square feet; fleshy vegetables.

These locations are not mapped because they are not required by SONGS technical specifications. Additional gardens were identified less than 250 square feet, and it is probable that more are located out of sight in backyards.

<u>Milk Animals</u>. No instances of milk producing animals were identified in Sector Q.

<u>Meat Animals</u>. Sheep are grazed in this sector between January and June or July under a lease agreement between the Marine Corps and Etchegaray Livestock, a private firm. The closest the animals could be to SONGS in Sector Q is 1.6 miles. No animals, however, were sighted in Sector Q this year.

<u>Other Specified</u>. The closest other specified use to SONGS is a State Park trailer located in a maintenance yard. The use is designated employment related and contains a maintenance room which is used infrequently for a maximum of five to eight hours per week by one or two persons, for an annual exposure of 400 hours (eight hours/week x 50 work weeks/year). persons man the trailer for eight hours during the week (Monday through Friday) and one person is on duty on weekends for eight hours per day. Maximum exposure time is 2,000 hours per year. There are seven marine lifeguards on the beach for 32 hours per week from June 1 to October 31. Three permanent maintenance people working 40 hours per week are stationed on the beach, along with five Marine workers (40 hours per week) from May 1 to November 1. Two housekeepers work in the campground from May 1 to October 1.

The portion of the San Onofre State Park north of Enlisted Beach, known as Trestles Beach, is a day-use area. Visitors park east of the San Diego Freeway and walk to the beach. The peak day-use of this area is approximataely 2,200 persons. A lookout tower and communications center is located above Trestles Beach. The lookout tower is manned, during the summer only, by one person (duty rotated among lifeguard staff) from 10 a.m. to 6 p.m. Estimated annual exposure time is 500 hours per year. No one lives or sleeps at the facility, as has been indicated in past years.

The San Mateo Point Loran Coast Guard Station contains a guest house which is used by Coast Guard employees for vacation purposes. The maximum length of stay is seven days, so maximum exposure time is 170 hours/year (seven days x 24 hours/day); the facility is used year around and is occupied 90 percent of the time.

Also, located in this portion of the site are a recreation building, garage/storage building, bath house/change room, and camping area for a maximum of three groups for up to three days. The estimate of the average monthly use of the camping facilities during the summer months is 24 persons per month. The Coast Guard expects the property to be sold by U. S. General Services this year.

<u>Sector O (Northwest)</u>

This sector contains the northeast half of some of the uses identified in Sector P, as well as major garden, residential, and other specified areas.

<u>Residences</u>. The closest residential use in Sector Q is new housing in San Onofre Heights, a military housing project. San Onofre Heights contains 940 units, housing approximately 3,000 persons. This sector also covers a large portion of the City of San Clemente. The city is primarily residential with some institutional, commercial, and recreational uses. Total population is 31,970 persons.

<u>Gardens</u>. The closest agricultural use greater than 500 square feet is San Clemente Ranch. The San Clemente Ranch is a private business under a long-term lease in an area of north Camp Pendleton (Sectors Q and R). The ranch produces fleshy vegetables; that is, tomatoes, cucumbers, sweet corn, and cauliflower. The ranch is 2.2 miles from SONGS in Sector Q, and 2.3 miles from SONGS in Sector R.

4

٠

	801			y Environmental	Monitoring Prog (), Date: 4/	ram Database L1: /23/87	stings	
	Table a	2: Heekly Airbor	ne Particulates	Gross Beta Acti	vity			· · · · · · · · · · · · · · · · · · ·
		······	· · · · · · · · · · · · · · · · · · ·	<u></u>		Control Lo	ation: #3	
Observation Number	Calendar Date	Location #1	Location #1 (2 sigma)	Location #2	Location #2 (2 sigma)	Location #3	Location #3 (2 sigma)	Location #4
1440 1448 1448 1448 1448 1445 1446 1446 1446	06/24/86 07/01/86 07/08/86 07/15/86 07/22/86 07/29/86 08/05/86 08/12/86 08/19/86	0.015 0.016 0.010 0.016 0.014 0.017 0.013 0.013 0.018	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.018 0.019 0.014 0.014 0.027 0.024 0.018 0.023 0.025	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.012 0.020 0.010 0.012 0.015 0.020 0.012 0.020 0.016	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1449 1450 1451	08/26/86 09/02/86 09/09/86	0.018 0.010 0.016	0.001 0.001 0.001	0.021 0.018 0.020	0.001 0.001 0.001	0.018 0.013 0.021	0.001 0.001 0.001	¥ ¥
Observation Number	Calendar Date	Location #4 (2 sigma)	Location #5	Location #5 (2 sigma)	Location #6	Location #6 (2 sigma)	Location #9	Location #10
1440 1444 1444 1444 1444 1445 1446 1446 1448 1450 1450	06/24/86 07/01/86 07/08/86 07/15/86 07/22/86 07/29/86 08/05/86 08/12/86 08/19/86 08/26/86 09/02/86 09/02/86	<table-cell> 첫 첫 첫 첫 첫 첫 첫 첫 첫 첫 첫 첫 첫 첫</table-cell>	$\begin{array}{c} 0.017\\ 0.022\\ 0.010\\ 0.014\\ 0.015\\ 0.019\\ 0.014\\ 0.021\\ 0.019\\ 0.027\\ 0.027\\ 0.017\\ 0.024 \end{array}$	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.014 0.016 0.012 0.014 0.012 0.024 0.017 0.022 0.015 0.020 0.015 0.024	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.016 0.018 0.010 0.014 0.018 0.019 0.020 0.017 0.022 0.022 0.022 0.015 0.021	0.014 0.022 0.010 0.013 0.014 0.023 0.015 0.018 0.021 0.024 0.014 0.018
Observation Number	Calendar Date	Location #11	Location #9 (2 sigma)	Location #10 (2 sigma)	Location #11 (2 sigma)	Location #12	Location (2 sigma	812)
1440 1442 1442 1444 1444 1445 1445 1445 1445	06/24/86 07/01/86 07/08/86 07/15/86 07/29/86 08/05/86 08/12/86 08/12/86 08/19/86 08/26/86 09/02/86 09/02/86	0.015 0.024 0.014 0.011 0.017 0.019 0.023 0.018 0.023 0.023 0.023	$\begin{array}{c} 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \end{array}$	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	$\begin{array}{c} 0.018\\ 0.020\\ 0.018\\ 0.014\\ 0.016\\ 0.024\\ 0.020\\ 0.018\\ 0.024\\ 0.022\\ 0.022\\ 0.022\\ 0.020\\ 0.027\end{array}$	$\begin{array}{c} 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.002\\ \end{array}$	

. .

 \mathbf{v}

l

- 1

 \mathbb{C}

I-6

Southern California Edison Company Environmental Monitoring Program Database Listings • •

Date: 4/23/87 Verified by: Minal Goesters, ph.D.

Table 2: Heekly Airborne Particulates Gross Beta Activity

	J			· · · · · · · · · · · · · · · · · · ·		Control Loc	ation: #3		
Observation Number	Calendar Date	Location #1	Location #1 (2 sigma)	Location #2	Location #2 (2 sigma)	Location #3	Location #3 (2 sigma)	Location	#4
1652	09/16/86	$\begin{array}{c} 0.015\\ 0.015\\ 0.018\\ 0.021\\ 0.023\\ 0.036\\ 0.023\\ 0.025\\ 0.025\\ 0.026\\ 0.023\\ 0.017\\ 0.020\\ \end{array}$	0.001	0.023 0.017 0.019	0.001	0.016	0.001	·	
1452 1453	09/16/86 09/23/86	0.015	0.001	0.017	0.001	0.017 0.018	0.001	¥	
. 1454	09/30/86	0.018	0.001	0.019	A AA3	0.018	0.001	a (1995 💥 199	. :
8737 9456	10/07/86	0.021	0.001	0,026	0.001 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002	0.021 0.035 0.055 0.020 0.041 0.022 0.035	0.001	×	· ·
1455 1456	10/14/84	0.023	0.001	0.052	0.003	0.035	0.002	1 H	
8729 9887	10/14/86 10/21/86	0.025	0.002	0.041	0.002	0.055	0.003		
1457 1458	10/28/86	0.037	0.001	0.041 0.039 0.035	0.002	0 020	0.001		
3920 9460	11/06/00	0.023	0.001	0.035	0.002	0 041	0.002	<u> </u>	
1459	11/04/86	0.023	0.001	0.037	0.002	0.022	0.001	· 🔓	
1460	11/11/86 11/18/86 11/25/86		0.001	0.027	0.002	0.035	0.002	<u> </u>	
1461	11/18/80	0.023	0.001	0.019	0.001	0.011	0.001	<u> </u>	
1462	11/25/80	0.017	0.001	0.017	0.001	0.029	0.002	· · · · · · · · · · · · · · · · · · ·	
1463	12/02/86	0.020	0.001	0.028	0.001	0.029	0.002	*	
Observation Number	Calendar Date	Location #4 (2 sigma)	Location #5	Location #5 (2 sigma)	Location #6	Location #6 (2 sigma)	Location #9	Location	#10
1452	09/16/86	¥	0.018	0.001	0.018	0.001	0.020 0.013 0.024 0.020 0.042 0.030 0.025 0.039 0.043 0.020 0.012 0.022	0.016	
1452 1453	09/23/86	ž	0.018	0.001	0.017	0.001	0.013	0.015	
1454	09/30/86		0.021	0.001	0.017 0.022 0.021 0.039 0.046 0.033 0.037 0.029 0.033	0.001 0.001 0.002 0.002	0.024	0.016	. •
1454 1455	10/07/86		0.027	0.001	0.021	0.001	0.020	0.022	
1456	10/07/86 10/14/86	<u> </u>	0.038	0.002	0.039	0.002	0.042	0.026	
1457	10/27/00		0.050	0.002	0.046	0.002	0.030	0.035	
1458	10/21/86 10/28/86	× ×	0.035	0.002	0.033	0.002	0.025	0.027	
1459	11/06/00	· 74 ·	0.046	0.002	0.037	0.002	0.039	0.027	
844A	11/04/86 11/11/86	7	0.028	0.002	0.029	0.002	0.043	0.003	
1460	11/11/00		0.030	0.002	0.017	0.002	0.020	0.018	
1461	11/18/86 11/25/86	7	0.012	0.001	0.015	0.001	0.012	0.012	
1462	11/63/00		0.016	0.001	0.021	0.001	0.022	0.021	
1463	12/02/86	R	0.024	0.001	0.021				
Observation Number	Calendar Date	Location #11	Location #9 (2 sigma)	Location #10 (2 sigma)	Location #11 (2 sigma)	Location #1	2 Location (2.sigma	#12)	
1452	09/16/86	0.028	0.001	0.001	0.001	0.026	0.001		
_ 1453	09/23/86	0.014	0.001 0.001 0.001 0.002	0.001	0.001	0.018 0.023	0.001	:	
8454	09/30/86	0.020	0.001	0.001	0.001	0.023	0.001	set 1 de la	
1455	10/07/86	0.020 0.022	0.001	0.001	0.001	0.028	0.001		
1456	10/14/86	0.077	0.002	0.001	0.002	0 046	0.002	÷	
3300 1427	10/21/86	0.03/	0.002	0.002	0.003	0.044	0.002		
1457	10/61/00	0.037 0.054 0.056	0.002	0.002 0.001	0.003	0.048	0.002		•
1458	10/28/86	0.030	0.002 0.001 0.002 0.002	0.001	0.002	0.044 0.048 0.039 0.034	0.002		
1659	11/04/86	0.034 0.044	0.002	0.001	0.002	0.036	0.002	1	
1460	11/11/86	U. U. V. V.		0.001	0.002	0.031	0.002		
1461	11/18/86 11/25/86	0.036	0.001		0.001	0.026	0.002		
	11/25/86	U. UZ2	0.001		0.001	0.028	0.0	· · · · · · · · · · ·	
166	12/02/86	0.024	0.001	94 &	W, UVA	6% * 14 (m. 63)	v • v		
	· · · · ·								

8:18 THURSDAY, APRIL 23, 1987 T

۵

· · ·			•			0:10	IMUKSDAT, APK	L 63, 198/
		Verifie	ed by: Mina	Environmental Gross Beta Act	D. Date: <u>5</u>	ram Database Lis 4/22/87	stings	· · · · · · · · · · · · · · · · · · ·
	0	· · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		Control Los	cation: #3	
Observation Number	Calendar Date	Location #1	Location #1 (2 sigma)	Location #2	Location #2 (2 sigma)	Location #3	Location #3 (2 sigma)	Location #4
1464 1465 1466 1467	12/09/86 12/16/86 12/23/86 12/30/86	0.026 0.034 0.041 *	0.001 0.002 0.002	0.033 0.04 8 0.039 0.033	0.002 0.002 0.002 0.002 0.002	0.040 0.049 0.028 0.034	0.002 0.002 0.001 0.002	• • • • • • • •
Observation Number	Calendar Date	Location \$4 (2 sigma)	Location #5	Location #5 (2 sigma)	Location #6	Location #6 (2 sigma)	Location #9	Location #10
1464 1465 1466 1467	12/09/86 12/16/86 12/23/86 12/30/86	90 전 16 16	0.012 0.046 0.034 0.035	0.001 0.002 0.002 0.002	0.029 0.044 0.035 0.037	0.001 0.002 0.002 0.002 0.002	0.045 0.036 0.032 0.029	0.019 0.036 0.030 0.024
Observation Number	Calendar Date	Location #11	Location #9 {2 sigma}	Location #10 (2 sigma)	Location #11 {2 sigma}	Location #1	2 Location ((2 sigma)	
1464 1465 1466 1467	12/09/86 12/16/86 12/23/86 12/30/86	0.044 0.044 0.010 0.032	0.002 0.002 0.002 0.002	0.001 0.002 0.002 0.001	0.002 0.002 0.001 0.002	0.026 0.044 0.040 0.032	0.001 0.002 0.002 0.002	

1

1

52 6.82

1 15 . 1

1.4.5 1147

ត ព

iyi Fi

11

v

. .

1

I-8

534 391 Southern California Edison Company Environmental Monitoring Program Database Listings 5.1 Verified by: Mina Contern Ph.D. 封开了 Date: 4/23/87 361 391 Table 3: Heekly Radiolodine I-131 Activity 1021 31.7 Control Location: #3 5, 0, 0 Location #2 Location #2 Location #3 Location #3 Location #4 Location #1 Location #1 Observation Calendar (2 sigma) (2 sigma) Number (2 sigma) Date 01/07/86 0.00 0.04 0.00 0.04 0.00 0.04 Δ 580 0.00 0.04 0.00 0.04 ۵ 581 01/14/86 0.00 0.04 582 01/21/86 0.00 0.04 0.00 0.04 0.00 0.04 Δ 0.04 ŏ.ŏŏ 0.00 0.08 Ô 01/28/86 0.00 0.04 583 0.00 0.04 0.00 0.04 Ô 584 02/04/86 0.00 0.04 0.00 0.00 0.04 0.04 0.00 0.04 ٥ 585 02/11/86 0.00 0.04 0.04 0.00 586 02/18/86 0.00 0.04 0 Ŏ.ŎŎ 0.04 0.00 0.04 0,00 0.04 ۵ 587 02/25/86 0.00 0.04 0.00 0.04 0.00 0.04 Ô 588 03/04/86 0.04 0.00 0.04 0.00 0.04 0 589 03/11/86 0.00 0.00 0.04 0.00 0.04 Ô 590 03/18/86 0.00 0.04 0.00 0.00 0.04 591 03/25/86 0.00 0.04 0.04 Û Location #6 Location #9 Location #4 Location #5 Location #5 Location #6 Location #10 Observation Calendar (2 sigma) (2 sigma) Number (2 sigma) Date 0.00 0.04 580 01/07/86 0.04 0.00 0.04 0.00 0.00 0.00 0.04 0.00 0.04 0.00 0.00 01/14/86 0.04 581 0.00 0.00 01/21/86 0.04 0.00 0.04 0.04 0.00 582 4.3 0.06 0.00 0.05 0,00 0.00 01/28/86 0.04 0.00 583 0.00 0.04 0.00 0.04 0.00 0.00 584 02/04/86 0.04 0.00 02/11/86 0.04 0.00 0.04 0.00 0.04 0.00 585 02/18/86 0.04 0.00 0.04 0.00 0.04 0.00 0.00 586 0.00 0.00 0.04 0.00 0.04 0.00 02/25/86 0.04 587 0.00 588 03/04/86 0.04 0.04 0.00 0.04 0.00 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.00 589 03/11/86 0.00 0.00 0.04 0.00 03/18/86 0.00 0.04 590 0.04 . . 0.04 0.07 0.00 591 03/25/86 0.04 0.00 0.04 0.00 Location #9 Location #10 Location #11 Location #12 Location #12 Location #11 Observation Calendar (2 sigma) (2 sigma) (2 sigma) (2 sigma) Number Date 01/07/86 0.00 0.04 0.04 0.04 580 0.04 581 01/14/86 0.00 0.04 0.04 0.04 0.04 0.00 0.04 582 01/21/86 583 01/28/86 0.00 0.04 0.04 0.05 02/04/86 0.00 0.04 0.04 0.04 1**2** 3.4 584 0.00 0.04 0.04 0.04 02/11/86 585 0.00 0.04 0.04 586 02/18/86 0.04 0.00 0.04 0.04 0.04 587 02/25/86 0.04 0.05 03/04/86 0.00 0.04 588 .0.04 0.04 0.04 589 03/11/86 0.00 80 06 590 03/18/86 ¥ 0.04 ¥ 0.04 0.00 16-59N 03/25/86 0.04

3381

新した

.s.

و

			d by: Mina	Gaecters, Ph.	Monitoring Prog D. Date: <u>4</u>	123/87		•	
	Table 3	I: Heekly Radiol	odine I-131 Act	ivity					
						Control Loc	ation: #3		
Observation Number	Calendar Date	Location #1	Location #1 (2 sigma)	Location #2	Location #2 (2 sigma)	Location #3	Location #3 (2 sigma)	Location #4	
592 593	04/01/86 04/08/86	0.00	0.04 0.04	0.00	0.04	0.00	0.04	. X	
594	04/15/86	0.00	0.04	0.00	0.04 0.04	0.00 0.00	0.04	R	
595	04/22/86	0.00	0.04	0.00	0.04	0.00	0.04	· · · · · · · · · · · · · · · · · · ·	
596	04/29/86	0.00	0.04	0.00	0.04	0.00	0.04	. Õ	
597	05/06/86	0.00	0.04	0.00	0.04	0.00	0.04	Ă	
598 599	05/13/86 05/20/86	0.91 0.41	0.04	0.15	0.04	0.74	0.04	¥	
800	05/27/86	0.11	0.04	1.03	0.05 0.04	0.62	0.04	₩	
601	06/03/86	0.08	0.04	0.09	0.04	0.27 0.12	0.04	***	
602	06/10/86	ŏ.ŏō	0.04	0.00	0.04	0.00	0.04	× *	
603	06/17/86	0.00	0.04	0.00	0.04	0.00	0.04	ž	
Observation Number	Çalendar Date	Location #4 (2 sigma)	Location #5	Location #5 (2 sigma)	Location #6	Location #6 (2 sigma)	Location #9	Location #10)
592	04/01/86	菱	0.00	0.04	0.00	0.04	0.00	0.00	
593 594	04/08/86	×.	0.00	0.04	0.00	0.04	0.00	×	
595	04/15/86 04/22/86	₩.	0.00	0.04	0.00	0.04	0.00	₩.	
396	04/29/86	0.06	0.00	0.04	0.00	0.04 0.04	0.00	0.00	
597	05/06/86	X	0.00	0.04	0.00	0.04	0.00	0.00	
598	05/13/86	. H	0.34	0.04	0.51	0.04	0.19	0.07	
599	05/20/86	H	1,49	0.07	0.61	0.04	0.34	0.35	
600	05/27/86	×.	0.13	0.04	0.30	0.04	0.12	0.44	
601 602	06/03/86 06/10/86	×.	0.06	0.04	0.00	0.04	0.10	0.12	
603	06/17/86	元 発	0.00	0.04	0.00	0.04 0.30	0.00	0.00	
Observation Number	Calendar Date	Location #11	Location #9 (2 sigma)	Location #10 (2 sigma)	Location #11 (2 sigma)				
592	04/01/86	0.00	0.04	1.00	0.04	¥	· 🖌		
······································	04/08/86	0.00	0.04	×.	0.04	. ¥	, ¥		
594 595	04/15/86 04/22/86	0.00	0.04	×	0.04	×	X		
596	04/29/86	0.00	0.04 0.04	0.04	0.04	0.00	0.04		
1597	05/06/86	0.00	0.04	0.04	0.04	0.00	0.04		
598	05/13/86	0.07	0.04	0.04	0.04	0.20	0.04	•	
599	05/20/86	0.47	0.04	0.04	0.04	0,55	0.04		
600 601	05/27/86	0.09	0.04	0,04	0.04	0.27	0.04	· .	
CC	06/03/86 06/10/86	0.09	0.04	0.06	-0.04	0.09	0.04		
603	06/17/86	0.00	0.04	0.04 0.06	0.04	0.00	0.04		
								•	

13

10

Ŧ

61.3 10 Southern California Edison Company Environmental Monitoring Program Database Listings 1.04. Verified by: Mina Costers, ph.D. Date: 4/23/87 111 2 6-10 See 1 Table 3: Heekly Radiolodine I-131 Activity 1.9 3 1.1.1 Control Location: #3 后来 Observation Location #2 Location #1 Location #1 Location #2 Location #3 Location #3 Location #4 Calendar (2 sigma) Date (2 sigma) (2 sigma) Number 0.04 0 0.04 0 604 ٥ 0.04 06/24/86 Ō 0.04 605 07/01/86 Ō 0.04 Ó 0.04 Õ 0.04 Ō 0.04 07/08/86 0000000 0.04 606 Ŏ Õ. 0.04 0.04 07/15/86 0.04 607 Ō 608 07/22/86 0.04 0.04 0.04 ŏ 0.04 Ō 0.04 0.04 609 07/29/86 0.04 ŏ ŏ 0.04 0.04 610 08/05/86 ŏ 08/12/86 0.04 Ō 0.04 0.04 611 ŏ 0.04 Ō 0.04 ŏ 0.04 612 08/19/86 0.04 Ō 0.04 Ō 0.04 Ô. 613 08/26/86 ŏ 0.04 0 0.04 Ō 0.04 614 09/02/86 Ō 0.04 Ô 0.04 Ō 615 09/09/86 0.04 Location #6 Location #6 Location #9" Location #10 Calendar Location #4 Location #5 Location #5 Observation (2 s19ma) (2 sigma) Number Date (2 sigma) 0 0.04 0 0 0 0.04 604 06/24/86 Õ Ō 0.04 0.04 Ō Ő 605 07/01/86 ¥ 0.04 Ô 1912 07/08/86 * Ō 0.04 ۵ 606 Ō 0.04 Ŏ 0.04 0 Ô 607 07/15/86 ¥ 0.04 Ō Ō 0.04 Ô ۵ 关 608 07/22/86 0.04 Ō 0.04 Ō 07/29/86 ¥ Ó ۵ 609 Ō ŏ 0.04 Ŏ Ô × 0.04 610 08/05/86 ŏ 0.04 Ō Ô Ô 쵔 0.04 611 08/12/86 ¥ Ô 0.04 Ō 0.04 Ô Û 08/19/86 612 0.04 Ō 0.04 Ô 0 08/26/86 黃 Û 613 0.04 Ô 0.04 Û ۵ 09/02/86 0 614 09/09/86 0 0.04 Û 0.04 Ω Ω 615 Location #12 Location #12 Calendar Location #11 Location #9 Location #10 Location #11 Observation (2 s1gma) (2 sigma) (2 sigma) (2 sigma) Number Date 0.04 604 06/24/86 Ô 0.04 0.04 0.04 ۵ 0.04 0.04 0.04 Ō 0.04 Ô 605 07/01/86 Ō 0.04 Ō 0.04 0.04 07/08/86 0.04 606 Ŏ 0.04 Ō 0.04 07/15/86 0.04 0.04 607 0.04 ŏ 0.04 07/22/86 0.04 0.04 608 ŏ 000 0.04 07/29/86 0.04 0.04 0.04 609 , 0.04 08/05/86 0.04 0.04 0.04 610 Õ 0.04 0.04 0.04 0.04 08/12/86 611 0.04 Õ 08/19/86 0.04 0.04 0.04 612 0.04 0.04 0.04 Ô 0.04 613 08/26/86 Õ. 0.04 œ ō 0.04 0.06 0.04 09/02/86 616 c3 Δ. ... ň----0:0 -09/09/86-0.04 06 615

614

618 618 618

1 i

1.14

· 🛏

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Minia Gaeders, Ph.D. Date: 4/23/87

Table 3: Heekly Radiolodine I-131 Activity

00

2

4.

1 -

1	8 <u> </u>					Control L	ocation: #3	
Observation Number	Calendar Date	Location #1	Location #1 (2 sigma)	Location #2	Location #2 (2 sigma)	Location #3	Location #3 (2 sigma)	Location #4
616	09/16/86	0	0.04	0	0.04	0	0.04	×
617	09/23/86	Ō	0,04	Ō	0.04	Ō	0.04	
618	09/30/86	ā	0.04	ŏ	0.04	ŏ	0.04	₩ an
618 619	10/07/86	ŏ	0.04	ň	0.04	ŏ	0.04	¥ .
620	10/14/86	ŏ	0.04	ň	0.04	ň	0.04	ŝ
621	10/21/86	ŏ	0.04	ň	0.04	ň	0.08	<u> </u>
622	10/28/86	ň	0.04	ň	0.04	ň	0.04	
623	11/04/86	ň ·	0.04	Ň ·	0.04	ŏ	0.04	
626	11/11/86	ă ·	0.04	· Ă	0.04	ŏ	0.04	**************************************
625	11/18/86	Ň	0.04	Č.	0.04	Ň	0.04	*
626	11/25/86	ž	0.04	Č,	0.04	0	0.04	
627	12/02/86	ŭ	0.04	u di	0.04	0	0.04	· X
		¥		¥		U .		
Observation Number	Calendar Date	Location #4 (2 sigma)	Location #5	Location #5 (2 sigma)	Location #6	Location #6 (2 sigma)	Location #9	Location #10
616	09/16/86	8	٥	0.04	0	0.04	0	0
617	09/23/86		ŏ	0.04	ŏ	0.04	ŏ	ă ·
618	09/30/86	· 🖁	· ň ·	0.04	ň	0.04	ň	ň
6 19	10/07/86	ä	ň	0.04	ň	0.04	ň	ň
620	10/14/86	a	ŏ	0.04	ň	0.04	ň	ň
621	10/21/86		· č	0.04	Ň	0.04	ň	ň
622	10/28/86	*	ŏ	0.04	ŏ	0.04	ŏ	ŏ
623	11/04/86	*	. ŏ	0.05	ŏ	0.04	0	, ŏ
624	11/11/86	×	ň	0.05	Ň.	0.04	Ň.	Ň ·
625	11/18/86	74 26	ŏ	0.04	0	0.04	0	Ň .
626	11/25/86	· • • • • • • • • • • • • • • • • • • •	č	0.04		0.04	ŏ	
627	12/02/86	, 353 Mat	ň	0.04	U I	0.04		ŏ
			U ,	0.07	v		Ŭ	Y
Obsarvation Number	Calendar Date	Location #11	(2 sigma)	Location \$10 {2 sigma}	Location #11 (2 sigma)	Location #	12 Location # {2 sigma}	
616	09/16/86	0	0.04	0.04	0.04	0	0.04	•
617	09/23/86	0	0.04	0.04	0.04	0	0.04	
618	09/30/86	0	0.04	0.04	0.04	Ō	0.04	
- 618 619	10/07/86	0	0.04	0.04	0.04	Ō	0.04	
620	10/14/86	0	0.04	0.04	0.04	ŏ	Ŏ.Ŏ4	
620 621	10/21/86	0	0.04	0.04	0.04	ŏ	0.04	· · ·
622	10/28/86	0	0.04	0.04	0.04	ŏ	. 0.04	
623	11/04/86	'' Õ	0.04	0.04	0.04	ŏ	0.04	· · · ·
624	11/11/86	ā	0.04	0.04	0.05	· ŏ	0.04	
625	11/18/86	ā	0.04	0.04	- 0.04	ŏ	0.04	
826	11/25/86	ā	0.04	0.04	0.04	ň	0.04	4
627	12/02/86		Ŏ.Ŏ Ŧ	0.04	0.04	ň	0.06	
Gabo	a Gev ¥ Gev 🤤 ¥	, *2 ²	¥0 ¥ T	80 B.A	12" o V T	190		

I-12

		Verifie	d by Mina	Environmental Coenters-Ph		ram Database L +/23/87	.istings	•	
	Table 3:	Heekly Radioi	Ddine I-131 Act	Ivity		Control I	ocation: #3		
Observation Number	Calendar Date	Location \$1	Location #1 (2 sigma)	Location #2	Location #2 (2 sigma)	Location #3	Location #3 (2 sigma)	Location #4	•
628 629 630 631	12/09/86 12/16/86 12/23/86 12/30/86	0 0 *	0.04 0.04 0.04 ¥		0.04 0.04 0.04 0.04 0.04	0 0 0 0	0.04 0.04 0.04 0.06		
Observation Number	Calendar Date	Location #4 (2 sigma)	Location #5	Location #5 (2 sigma)	Location #6	Location #6 (2 sigma)	Location #9	Location #1	10
628 629 630 631	12/09/86 12/16/86 12/23/86 12/30/86		0 0 0 0	0.04 0.04 0.04 0.04	0 0 0	0.04 0.04 0.04 0.04		0 0 0 0	
Observation Number	Calendar Date	Location #11	Location #9 (2 sigma)	Location #10 (2 sigma)	Location #11 (2 sigma)	Location 4	12 Location ((2 sigma	12)	
628 629 630 631	12/09/86 12/16/86 12/23/86 12/30/86		0.04 0.04 0.04 0.04	0.04 0.04 0.04 0.04	0.04 0.04 0.04 0.04	0 0 0 0	0.04 0.04 0.04 0.04		•
N-3 52									
	·····			یت وروی کار دو در دور در میت در کار در در ا	• • • •	······································			

٩ . . . 4

ι.

4.

٠ 6

.!

5

	4.1.1											10:37	MONDAY, AP	RIL 20,	1987
	新育 10月1日 1月10日		Souther								am Database	a Listi	ngs		х.
		,		Ver	ified by:	Mina	Gooder	as Ph.D	. Date	e: <u>4/</u>	20/87				
		Ta	ble 4a: q	uarterl	y Composit	e Airborn	e Particua	ltes Ga	mma Specti	ral An	alysis				
	to a state of the	- <u></u>		4							Control	Locat	1on: #3		
	Observation Number	Calendar Date	Location	Be-7	8e-7 (2 s1gma)	Zr(Nb)-95	(2 stgma)	Cs-13 4	Cs-134 (2 sigma	K-40)	K-40 (2 sigma)	Ru-103	Ru-103 (2 sigma)	C8-137	,
	267 268 2701 2772 2773 2774 2775 2776 2778 2777 2778 2780 2881 2881 2881 2883 2884 2884 2885 286	01/01/86 01/01/86 01/01/86 01/01/86 01/01/86 01/01/86 01/01/86 04/01/86 04/01/86 04/01/86 04/01/86 04/01/86 04/01/86 04/01/86 04/01/86 04/01/86 04/01/86 04/01/86	2 3 6 9 10 11 2 3 5 6 9 10 11	$\begin{array}{c} 0.088\\ 0.097\\ 0.086\\ 0.091\\ 0.092\\ 0.086\\ 0.089\\ 0.102\\ 0.105\\ 0.105\\ 0.105\\ 0.104\\ 0.80\\ 0.108\\ 0.116\\ 0.116\\ 0.150\\ 0.144\\ 0.120\\ 0.083\\ 0.109\end{array}$	0.005 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.009 0.009 0.008 0.007 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.009 0.008 0.009 0.009 0.008 0.009 0.009 0.009 0.009 0.008 0.009 0.009 0.008 0.009 0.009 0.008 0.009 0.008		$\begin{array}{c} 0.004\\ 0.$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.0000 0.000 0.0000 0.000000	0.001		$\begin{array}{c} 0.005\\ 0.010\\ 0.006\\ 0.009\\ 0.009\\ 0.010\\ 0.009\\ 0.010\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.007\\ 0.004\\ 0.020\\ 0.007\\ 0.020\\ 0.008\\ 0.008\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.010\\ 0.015\\ 0.014\\ 0.017\\ 0.014\\ 0.017\\ 0.014\\ 0.017\\ 0.014\\ 0.017\\ 0.015\\ 0.018\\ 0.019\\ 0.015\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.004\\ 0.$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.021\\ 0.015\\ 0.015\\ 0.017\\ 0.021\\ 0.018\\ 0.018\\ 0.020\\ 0.026\\ 0.000\\ 0.000\\ \end{array}$	
(Observation Number	Calendar Date	Cs-137 (2 sigma	Co-58)	Co-58 (2 sigma)	Ag-110m	Ag-110m ((2 sigma)	;e-141 (Ce-141 (2 sigma)	Co-60	Co-60 (2 sigma)	1-131	I-131 (2 sigma)	Ce-144	Ce-144 (2 sigma)
•	268 268 2771 2777 22777 22777 228 228 2881 288 288 288 288 288 288 28	01/01/86 01/01/86 01/01/86 01/01/86 01/01/86 01/01/86 01/01/86 04/01/86 04/01/86 04/01/86 04/01/86 04/01/86 04/01/86 04/01/86 04/01/86 04/01/86 04/01/86 04/01/86 04/01/86 04/01/86	$\begin{array}{c} 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.$		0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002		0.002 0.002		0.004 0	000000000000000000000000000000000000000	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	*****	ž ž ž ž ž ž ž ž ž ž ž ž ž ž ž ž ž ž ž		0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
		·		f •				1						:	Ţ.

I-14

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Conders, No. Date: 4/20/87

Table 4a: Quarterly Composite Airborne Particualtes Gamma Spectral Analysis

	I				· · · · · · · · · · · · · · · · · · ·					Contro	I Locat	:1on: #3	.*	
Observation Number	Calendar Date	Location	Be7	Be-7 (2 sigma)	Zr(Nb)-95	Zr(Nb)-95 (2 sigma)	Cs-134	Cs-134 (2 sigma)		K-40 (2 sigma)	Ru-103	Ru-103 (2 sigma)	Cs-137	7
	07/01/86	.3	0.093	0.006	0	0.004	0	0.001	Q	0.009	Q	0.004	0	на страна 1971 — Полого Стран
288	07/01/86	· 5	0.110	0.006	Õ	0.004	0	0.001	0	0.008	<u> 0</u>	0.004	O	
289	07/01/86 07/01/86	6	0.109	0.006	U O	0.004	Ŭ	0.001 0.001	0 0	0.005 0.010	Ŭ	0.004	.	
290 291	07/01/86	10	0.095	0.006	ŏ	0.004	ň	0.001	ŏ	0.005	Ň	0,004	Ň	
292	07/01/86	11	0.104	0.007	ŏ	0.004	ŏ	0.001	ŏ	0.007	ŏ	0.004	ŏ	
293	07/01/86	ĪŽ	0.115	0.008	ŏ	0.004	Ŏ	0.001	Ŏ	0.006	Ŏ	0.004	٠Ŏ	•
294	10/01/86	1	0.112	0.006	, Q	0.004	0	0.001	0	0.007	0	0.004	Q	
295	10/01/86	2	0.148	0.007	<u>0</u>	0.004	0	0.001	0	0.010	0	0.004	O	4 .
296	10/01/86	3	0.138	0.007	U O	0.004 0.004	0	0.001 0.001	0 0	0.006 0.010	Ŭ	0.004	Ŭ,	
297 29 8	10/01/86	2	0.117	0.001	0	0.004	ň	0.001	ŏ	0.006	Ň	0.004	Ň	
299	10/01/86		0.157	0.008	ŏ	0.004	ŏ	0.001	ŏ	0.007	ŏ	0.004	ŏ	
300	10/01/86	10	0.088	0.006	Ŏ	0.004	Ŏ	0.001	Ō	0.006	Ŏ	0.004	Ŏ	
301	10/01/86	11	0.143	0.007	0	0.004	0	0.001	0	0.010	Q	0.004	0	
302	10/01/86	12	0.167	0.008	0	0.004	0	0.001	0	0.020	0	0.004	0	
Observation		Cs-137		B Co-58			Ce-141		Co-60	Co-60	I-131	I-131	Ce-144	
Number	Date	(2 sigma]	(2 sigma)) "	(2 sigma)		(2 sigma)		(2 sigma)		(2 sigma)		(2 sigma)
287	07/01/86	0.001	0	0.002	Q	0.002	Q	0.004	Q	0.002	¥	X	0	0.005
288	07/01/86	0.001	0	0.002	<u>o</u>	0.002	0	0.004	Q	0.002	×	X	0	0.005
289	07/01/86	0.001	Ő	0.002	Ŭ O	0.002 0.002	<u> 0</u>	0.004 0.004	0	0.002	×	an an a a an	e Q	0.005
290 291	07/01/86	0.001	0	0.002	Ň	0.002	Ň	0.004	Ň	0.002	*		0	0.005
292	07/01/86		ŏ	0.002	ŏ	0.002	ŏ	0.004	ŏ	0.002	¥	a de la companya de l	Ň.	0.005
293	07/01/86	0.001	ŏ	0.002	Ō	0.002	Ŏ	0.004	. Ŏ	0.002	×	X	Ŏ	0.005
294	10/01/86	0.001	Î Î	0.002	0	0.002	0	0.004	0 -	0.002	¥	×.	Ū -	0.005
295	10/01/86	0.001	<u> 0</u>	0.002	0	0.002	0	0.004	0	0.002	¥	×	0	0.005
296	10/01/86	0.001	Ŏ	0.002	0	0.002	Ö	0.004	Ŏ	0.002	¥	₩	Q.	0.005
297	10/01/86	0.001 0.001	U A	0.002	U N	0.002 0.002	Ŭ .	0.004 0.004	Ň	0.002	· · · · · · · · · · · · · · · · · · ·	🗮 1. 11 (V A	0.005
298 299	10/01/86	0.001	0	0.002	Ŭ	0.002	ŏ	0.004	Ö.	0.002	.	X	Ň	0.005
300	10/01/86	0.001	ŏ	0.002	ŏ	0.002	ŏ	0.004	ŏ	0.002	÷	¥ ·	ŏ	0.005
301	10/01/86	0.001	ŏ	0.002	ŏ	0.002	Ŏ	0.004	ŏ	0.002	×	×.	Ŏ	0.005
302	10/01/86	0.001	0	0.002	· 0	0.002	0	0.004	0	0.002	¥	. X	0	0.005

Na

8:18 THURSDAY, APRIL 23, 1987 Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Goeders, Ph.D. Date: 4/23/87 Table 4c; Quarterly Composite Airborne Particulates Gross Alpha and Strontium Activities Control Location: #3 **Observation** Location 2 Location 2 CalendarLocation 1 Location 1 Location 1 Location 1 Location 1 Location 1 Number Date Sr-89 Sr-89(2 sigma) Sr-90 Sr-90(2 sigma) Gross Alpha Gross Alpha Sr-89 8r-89(2 sigma) (2 sigma) 67 01/01/86 0 0.001 0 0.001 ž ž 68 04/01/86 Ŏ 0.001 0.001 Ō ¥ 0.001 × × Ó 69 07/01/86 ¥ Ō 0.001 70 10/01/86 簽 Õ. 0.001 0 0.001 Observation CalendarLocation 2 Location 2 Location 2 Location 2 Location 3 Location 3 Location 3 Location 3 Number Date Sr-90 Sr-90(2 sigma) Gross Alpha Gross Alpha Sr-89 Sr-89(2 sigma) Sr-90 Sr-90(2 sigma) (2 sigma) 67 01/01/86 0.001 0.001 0 0 0.001 0 . **≭**. ¥. × ¥ Ŏ ō. 68 04/01/86 Ō 0.001 0.001 0.001 0.001 **6**9 07/01/86 ō ŏ 0.001 0.001 70 10/01/86 õ 0.001 Ō 0.001 0.001 Location 4 Location 4 Location 4 Location 4 Location 4 Sr-89 Sr-89(2 sigma) Sr-90 Sr-90(2 sigma) Gross Alpha Gross Alpha Observation CalendarLocation 3 Location 3 Number Date Gross Alpha Gross Alpha Sr-89 (2 sigma) (2 sigma) 67 01/01/86 0.000 0.001 0 0.001 Û 0.001 ¥ × Ž 68 04/01/86 0.000 0.001 × × ¥ ¥ ¥ 1 - 1 🙀 (41) - 15 07/01/86 0.002 0.001 1997 - 👪 69 × ¥ 70 10/01/86 0.001 * 80.000 0.000 : 👹 **Observation** CalendarLocation 5 Location 5 Location 5 Location 5 Location 5 Location 5 Location 6 Location 6 Sr-89(2 sigma) Sr-90 Sr-90(2 sigma) Gross Alpha Gross Alpha Number Data Sr-89 Sr-89 Sr-89(2 sigma) (2 sigma) 67 01/01/86 0.001 . × • 0.000 ₩ ₩ ₩ 0 0.001 ×. 04/01/86 × × × × × 68 ¥ Ö 0.001 0.000 0.001 × × 69 07/01/86 黃 Õ 0.002 ō.001 0.001 10/01/86 70 Ж Õ. 0.001 0.001 0.000 1 24 14 8 3 έ÷. 9 . . ÷ i 2.1

11

2.2

I-16

	S Table	ings ies	· · · · · · · · · · · · · · · · · · ·						
	•	· · · ·	<u>.</u>	· · · · · · · · · · · · · · · · · · ·			Control Locat	tion: #3	
Observation Number	CalendarL Date S	ocation 6 Sr-90	Location 6 Sr-90(2 sigma)	Location 6 Gross Alpha	Location 6 Gross Alpha (2 sigma)	Location 9 Sr-89	Location 9 Sr-89(2 sigma)		Location 9 Sr-90(2 sigma)
67 68 69 70	01/01/86 04/01/86 07/01/86 10/01/86	0 0 0 0	0.001 0.001 0.001 0.001	0.000 0.000 0.002 0.000	0.001 0.001 0.001 0.001	¥ ¥ ¥	¥ ¥ ¥		0.001 0.001 0.001 0.001 0.001
Observation Number		Location 9 Gross Alpha			Location 10 Sr-89(2 sigma)	Location 1 Sr-90	LO Location 10 Sr-90(2 sigma)	Location 1() Gross Alph	
67 68 69 70	01/01/86 04/01/86 07/01/86 10/01/86	0.000 0.000 0.002 0.000	0.001 0.001 0.001 0.001	M M M		0 0 0	0.001 0.001 0.001 0.001	0.000 0.000 0.002 0.000	0.001 0.001 0.001 0.001
Observation Number	Calendar Date	Location Sr-89	11 Location 1 Sr-89(2 si				Gross Alpha Gros		cation 12 -89
67 68 69 70	01/01/86 04/01/86 07/01/86 10/01/86		ž ž	0 0 0 0) 0.) 0.	001 001 001 001	0.000 0	0.001 0.001 0.001 0.001	·
Observation Number	Calendar Date	Locatio Sr-89(2	on 12 Loca 2 sigma) Sr-9		<pre>pcation 12 r-90(2 sigma)</pre>	Location 1 Gross Alph			с.
67 68 69 70	01/01/86 04/01/86 07/01/86 10/01/86	× × ž	1 2 2	# 0 0 0	* 0.001 0.001 0.001	* 0.000 0.003 0.002	* 0.001 0.001 0.001		

_Na

10:37 MONDAY, APRIL 20, 1987 Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mine Goeders. Ph.D. Date: 4/20/87 Table 5: Monthly Ocean Hater Gamma Spectral Analysis Control Location: Observation Calendar Location K-40 K-40 Zn-65 Zn-65 (2 sigma) Cs-134 Cs-134 Mn-54 Mn-54 Zr(Nb)-95 Zr(Nb)-95 Cs-137 Cs-137 (2 sigma) (2 sig Number Date (2 sigma) (2 sigma) (2 sigma) (2 sigma) 322 01/07/86 300 30 0 20 0 0 20 323 6 01/07/86 20 20 20 20 20 20 30 昆 300 ۵ ŏ Ő 6 " Ô 20 Ó 6 324 01/07/86 C 340 30 Ô Ō 0 325326327328 ٥ 20 Õ 01/08/86 360 **40** ÕÕ D ۵ ٥ ۵ 20 A 02/05/86 30 - ---320 Ô Ô 20 0 Ô 30 30 02/05/86 B 300 Ó Ô 20 Ō 02/05/86 ē 20 20 20 20 340 0 0 Õ ŽŎ 6 Ô 329 330 331 02/06/86 340 3Ŏ A A Õ Õ 20 0 20 03/03/86 320 D ۵ Ő 'n Ô 20 Õ 03/04/86 A 350 Λ Ô Ô 20 Ô 0 6 332 333 03/04/86 B 320 30 20 0 Ō Ô 20 0 6 03/04/86 Ĉ 300 ŽÓ 20 A ٥ Ω 20 ٥ Observation Calendar Co-57 Co-57 Mo(Tc)-99 Mo(Tc)-99 Ce-141 Ce-141 Co-58 Co-58 Ru-103 Ru-103 Ce-144 Ce-144 Fe-59 Number Date (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 s(gma)) 322 01/07/86 n 6 0 3000 0 0 0 10 0 20 0 323 01/07/86 Õ. 6 Ō 2000 0 0 ٥ 10 20 Ô 0 324 01/07/86 0 6 Ō 4000 ٥ n Ö 10 0 20 20 20 20 20 20 20 20 20 20 20 Ô 01/08/86 Ō 6 ā 4000 Õ Δ Ô 10 Δ Ō 326 02/05/86 ۵ 6 0 2000 ō 0 Ō ĨÕ. Õ Ā 327 328 02/05/86 Ω 6 Ō 2000 ŏ ۵ Ō 10 Ó ٥ 02/05/86 Ó 6 ŏ 2000 Õ Ω Õ 10 Ō ۵ 329 02/06/86 Ō 6 Ō 3000 Ô ۵ Ō 10 Ô ٥ 330 03/03/86 0 6 0 2000 ۵ **n** ŏ 10 Ö **331** 03/04/86 Ô. Ô 2000 ۵ Ô ۵ 10 20 ۵ 332 03/04/86 0 6 Ô 4000 ۵ 20 10 Ô 333 03/04/86 Û 6 0 2000 ۵ Ô 10 20 ñ Observation Calendar Fe-59 Ru-106 Ru-106 Ra-226 Ra-226 Ag-110m Ag-110m (2 sigma) Co-60 Co-60 Th-228 Th-228 I-131 I-131 Date (2 sigma) Number (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) 322 01/07/86 20 20 ۵ 40 0 20 0 Ó 10 20 Û 323 01/07/86 0 30 0 20 ۵ 10 ۵ Δ 20 326 01/07/86 20 Ō 30 30 0 20 20 20 20 20 20 20 Ô Ô 10 20 Ö 325 20 01/08/86 Ó 0 10 10 10 â 20 20 â 6 Ó 326 20 02/05/86 Õ 30 30 30 30 30 30 30 0 0 6 Õ 327 328 0 × 02/05/86 20 Ô Ô Ō 6 Ō Ō 20 X 02/05/86 20 Õ Ō Ô ŏ 20 20 6 10 0 预 329 ŽÕ

Q

A

Ō

1

ā

20

20

20

6

6

6

Ō

۵

Õ

Ô

10

10

ĪŌ

10

10

Ō

Ō

Õ

20 20 20

20

330

331

332

ĪĪĪ

02/06/86

03/03/86

03/04/86

03/04/86

03/04/86

Ō

ŏ

Ō

0

۵

20

20 20 20

Õ

٥

Õ

Ô

۵

30 30

Τ

26

×

羨

ė

23

I-18

	the second	Sol	uthern Call	fornia Edi	son Compai	ny Enviro	nmental P	lonitoring	Program	Database Li	stings	ſ
		· .			Mina				ie: 4/0			
		Table !	5: Monthly	Ocean Hate	er Gamma Sj	pectral A	nalysis	· ·				
	8.					· · · ·	· · ·			Control Lo	cation: D	1
Observation Number	Calend Date	ar _. Locat	tion K-40 K (-40 2 2 sigma)	2n-65 Zn-6 (2 s	5 Cs- Igma)	134 Cs-13 (2 s)	4 Mn-5 9ma)	54 Mn-54 (2 sign	Zr(Nb)-9	5 Zr(Nb)-95 (2 sigma)	Cs-137 Cs-137 (2 sigma)
334	04/03/		300	30	0 20) 0	. 6	0	6	·····	20	
335 336	04/03/	86 C	300 350	30 40	0 20	ō ŏ	6		6	Ō	20	Č Č
	04/09/	86 D	350 300	30 30	0 20 0 20) Ö			6	Ŏ	20 20	0 6
339 340	05/02/ 05/02/	86 B	300 300	30 30	0 20	Ďe í Ŏ	6			Ŭ G	20 20	0 6
341 342	05/02/ 06/03/	86 C	350 300	30 20	0 20	ō i ŏ	6		6	Ŏ	20 20	0 6
343 364	06/03/ 06/04/	86 · A	370 320	50 30	0 20 0 20	Ō : Ŏ	6	i i î î î î î î î î î î î î î î î î î î	6	. Ö	20	0 6
345	06/04/		300	20	Õ Ž		6	• 0	6	Ŏ	20	Õ õ
Observation Number	Calend Date		7 Co-57 (2 sigma)	Mo(Tc)-99	Mo(Tc)-99 (2 sigma	9 Ce-141)	Ce-141 [2 sigma]	Co-58 Co	-58 R Sigma)	u-103 Ru-10 (2 s)		Ce-144 Fe-59 (2 sigma)
334 335	04/03/		6	0	2000 2000	0	20 20	0	6	0 10	0	20 0
336 337	04/03/	86 Ö	6	Ŏ	2000	Ŏ	20	0	6	0 10 0 10 0 10	1 . • 1 0 . • 4	20 0 20 0
338 339	05/01/	86 Ŭ	ě	Ö	2000	Ö	20 20 20	0	6	0 10	ŏ	20 0 20 0
340 341	05/02/	B 6 Ö	é	0	2000	Ö	20	Ö.	6	0 10 0 10	Ŏ	20 0 20 0
342 343	06/03/	86 0	6	0	30000	0	20	0	6	0 10 0 10	k s so o ire	20 0 20 0
344 345	06/04/	86 Ö.	ě,	Ŭ NO	20000	0	20 20 20	0	6 s ³	0 10 0 10 0 10	, Õ	20 0 20 0
Observation	Calend	ar Fe-59	9 Ru-10	6 Ru-106	Ra-226 I	Ra-226	Co-60 Co	-60 A	0 9-110m Ag		228 Th-228	20 0 I-131 I-131
Number	Date	,		(2 sigma	a)	(2 sigma)	(2	sigma)	. (2	sigma)	(2 signa	a) (2 sigma)
334 335	04/03/	8 6 20	Ō Ŏ	30 30	0	20 20	0	6		10 10	0 20 0 20	× × ×
' 336 337	04/03/	86 20	ō ŏ	30 30	0	20 20	0	6	0	10	0 20	
338 339	05/01/ 05/02/	86 20	0 0	30 30	0	20 20	0	6	Ŭ O	10 10	0 20	
340 361	05/02/	86 20	Ó Ó	30 30	0	20 20	0	6	Ŏ	10 10	0 20 0 20	ž ž
362 343	06/03/ 06/03/	86 20	Õ Ö	30 30	0	20 20	0 0	6 6	Ŏ	10 10	0 <u>20</u> 0 20	
366	06/04/ 06/04/		000	30 30	0	20 20	0	6 6	Õ	10 10	0 20 0 20	× ×
		·										

19.3

y i i y i i y i	· ·	ب (۲) (۲)	1	•				÷	4			
							•					
\$	· 1								10:37	MONDAY,	APRIL 20	, 1987
		Souther	n California E Verified b	dison Company E y: Mina Bo	invironmenta	4	•		e Listi	ngs		
また。 第二部第二 第二部第二 第二十十二	1	Table 5: Mo		ter Gamma Spect			Date: <u>4/</u>	<u>×0/97</u>		•		
	!		· · · · · · · · · · · · · · · · · · ·						l Locat			
Number	Date	Location	(2 sigma)	Zn-65 Zn-65 (2 sigma	CS-134 Cs) (2	-134 M sigma)	In-54 Mn-54 (2 st)	.Zr(h gma)	lb)-95 Z (r(Nb)-95 2 sigma)	Cs-137 (C s-137 (2 sigma)
346 347 348	07/01/86 07/01/86 07/01/86	B C	300 30 340 30 300 30	0 20 0 20 0 20	0	6 6 6	0 6 0 6		0	20 20 20	0	6
349 350 351	07/01/86 08/05/86 08/05/86	A B	300 30 310 30 320 30	0 20 0 20 0 20	0	6 6	0 6 0 6		0	20 20 20 20 20	Ö	6
351 352 354 355 355	08/05/86 08/08/86 09/04/86	D	330 30 330 30 290 40	0 20 0 20 0 20	Ŏ	6	0 6	•	0	20	000	6 6
355 356 357	09/04/86 09/04/86 09/09/86	BC	340 30 350 40 300 30	0 20 0 20 0 20 0 20 0 20 0 20 0 20	0	6 6		•	0	20 20 20	0	6
Observatio Number	Calendar Date	- Co-57 Co-		99 Mo(Tc)-99 Ce (2 sigma)	-141 Ce-141 (2 Sig	, Co-58	Co-58	Ru-103 R	u-103	20 Ce-144	0 Ce-144	6 Fe-59
346 347	07/01/86) 0	6 0	2000	0 20	nna) Q	(2 sigma) 6	0	2 sigma 10) 0	(2 signa 20	i) 0
348	07/01/86		6 0 6 0	2000 2000 2000	0 20 0 20 0 20	0 0	6 6	0	10 10 10	0 0	20 20 20	0
	08/05/86 08/05/86 08/05/86	0	6 0 6 0	2000 2000 6000	0 20 0 20 0 20	0 0	6 6	0	10 10 10	0	20 20 20	0
354 355 355	08/08/86 09/04/86 09/04/86	Ö Ö	6 0 6 0 6 0	10000 2000 2000	0 20 0 20 0 20	0	6	0	10 10 10	0	20 20	Ő
357 357	09/04/86 09/09/86	Ō	6 0 6 0	2000 2000	0 20 0 20	0	6	0	10 10 10	0	20 20 20	0
Observation Number	Date	(2 sigma)	Ru-106 Ru-106 (2 sign	Ra-226 Ra-2 ha) (2 s	26 CO-60 Igma)	Co-60 (2 sigma	Ag-110m /	Ag-110m (2 sigma)	Th-228	Th-228 (2 sigma	I-131	I-131 (2 sigma)
346 347 348	07/01/86 07/01/86 07/01/86	20	0 30 0 30 0 30			6	0	10 10	0	20 20		· ¥
349 350 (351	07/01/86 07/01/86 08/05/86	20 20 20 20	0 30 0 30	0 20		6	0	10 10 10	0	20 20 20 20 20 20 20 0	· 美 · 美 · · · · · · · · · · · · · · · ·	× × ×
352 353 354	08/05/86	20 20 20	0 30 0 30 0 30			6 6	0 0 0	10 10 10	0 20 0	20	黃	× ×
349 350 352 352 355 355 355 355 355 355 355 355	09/04/86	: 20	0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0 30		0 0 0 0	6 6 6	0	10 10	Ŭ O O	20 20		×
建建口。 医腹口。	09/09/86	- 20	0 30	0 20	0	6	Ō	10 10	õ	20 20		×.
	•				ŧ.							[-]

20

1.150 Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Goeders, Ph.D. Date: 4/20/87 Table 5: Monthly Ocean Water Gamma Spectral Analysis Control Location: Cs-134 Cs-134 Observation Calendar Location K-40 K-40 Zn-65 Zn-65 Mn-54 Mn-54 Zr(Nb)-95 Zr(Nb)-95 Cs-137 Cs-137 (2 sigma) Number Date (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 stama) 358 10/02/86 30 30 20 20 300 D 0 0 0 20 A 359 10/06/86 300 Õ Ô ۵ 0 20 Ô. 360 10/06/86 30 30 30 30 30 30 20 300 ر ٥ B 0 A Ô Δ 20 361 10/06/86 300 Ô C ۵ 0 Õ 20 362 11/03/86 350 0 Ō 20 Δ Ō 363 11/03/86 320 Õ Ô Ō ŏ 20 364 32Ŏ Õ 11/03/86 ŏ 20 C Ô Õ 30 365 11/03/86 290 Ō Õ ŽŎ n Ō Ô 366 12/02/86 320 30 Ō ۵ Ň 20 Ô 12/03/86 290 30 367 Ō A 0 20 368 12/03/86 310 30 0 Ô 2Ŏ Ô 369 310 30 12/03/86 C Δ n 20 Observation Calendar Co-57 Mo(Tc)-99 Mo(Tc)-99 Ce-141 Ce-141 Co-57 Co-58 Co-58 Ru-103 Ru-103 Ce-144 Ce-144 Fe-59 (2 sigma) Number Date (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) 10/02/86 358 0 60000 0 20 n 0 ٥ 10 20 359 10/06/86 Ó 2000 ŏ 2Ŏ Ō n Ō 10 A 20 Ω ŽŎ 10/06/86 360 Ō 4000 Ō ۵ Ô Ô 10 20 Û Ô 10/06/86 20 20 20 20 20 20 20 20 20 361 0 3000 0 0 Ō 1Ō Ô Ō Õ 362 11/03/86 0 900000 Ō ĪŎ 0 n 363 11/03/86 700000 Õ 20 20 ٥ 0 ĪŎ ٥ 364 11/03/86 600000 õ Ŏ 10 10 0 Ō Ň ŏ ŏ 365 11/03/86 ٥ 700000 Ô 20 366 12/02/86 ň 0 500000 0 10 20 ۵ 367 ŽŎ 12/03/86 500000 Ó Ω 0 10 20 0 2Ŏ 368 12/03/86 Ô 500000 0 O Ô 10 20 500000 369 12/03/86 20 0 A 10 20 Observation Calendar Fe-59 Ru-106 Ru-106 Ra-226 Ra-226 Co-60 Co-60 Ag-110m Ag-110m (2 sigma) Th-228 Th-228 I-131 I-131 Number Date (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) 20 20 20 20 10/02/86 358 0 30 20 ۵ 10 n 0 20 10/06/86 20 20 20 20 359 Õ 30 30 30 30 30 30 30 0 20 Õ 10 Õ ٥ 10/06/86 ŏ 360 0 Ō ĨÕ õ Ô 10/06/86 Ō īŏ 361 Ō Õ ŏ ۵ 20 20 20 362 363 11/03/86 Õ Õ ŏ Ō 10 ō 11/03/86 Õ Õ Ō ĪŎ 2ŏ Ō Ŏ ĩŏ 364 11/03/86 Ō õ Õ 2Õ 0 365 11/03/86 20 Ō 30 Ô Õ Ô 10 20 366 20 ō 30 12/02/86 20 **n** Ō ĪŎ 0 12/03/86 ŽŌ ŏ 367 40 Ō Û n 10 368 12/03/86 20 ŏ 30 õ Δ 10 A 20 30 12/03/86 369 20 20 ۵ 10 20

28

131

.

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Costler, Ph.D. Date: 4/20/87

Table 6: Bi-Monthly Ocean Water Gross Beta Activity

Control Location: #1

70 01/07/86 900 100 600 100 500 100 700 100 71 03/06/86 1000 100 100 900 100	Observation Number	Location #3 Location #3 Location #4	Location #2 Location #3 (2 sigma)	Location #2	Location #1 {2 sigma}	Location #1	Calendar Date	Observation Number
73 07/01/86 800 100 900 100 600 100 800 100 74 09/04/86 800 100 1000 100 800 100 900 100 75 11/03/86 900 100 700 100 900 100 800 100 900 100	71 72 73 74 75	900 100 1200 600 100 800 800 100 900 800 100 900	100 900 100 600 100 800 100 800	1000 900 1000 800	100 100 100 100	1000 700 800 800	03/04/86 05/02/86 07/01/86 09/04/86	71 72 73 74 75

N

-22

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Condern, Ph.D. Date: 4/20/87 Table 7: Quarterly Composite Ocean Water Tritium Activity Control Location: #1 Calendar Location #1 Location #1 Location #2 Location #2 Location #3 Location #3 Location #4 Location #4 Observation Number (2 sigma) (2 sigma) (2 sigma) (2 sigma) Date 31 32 33 34 100 100 100 100 100 03/31/86 0 0 0 0 100 06/30/86 ŏ Õ ĪŌŌ 100 0 ۵ 09/30/86 100 100 Ō 100 100 Ō 2200 0 1. 19. 100 100 100 12/31/86 **n** A Û 100 M2

	Souti	nern Califor Verij	nia Edison	Company Env	ronmental P		rogram Datab <u>4/20/8</u>		B	
	Table 9a			er Analysis		/. Vatel	TINOIT	Z		
· ·	8	· · · · · · · · · · · · · · · · · · ·				•	Cont	rol Location	n: #3	
Observation Number	Calendar Date	Location	Be-7	Be-7 (2 sigma)	Zr(Nb)-95	Zr(Nb)-95 (2 sigma)	5 Cs-134)	Cs-134 (2 sigma)	K-40	K-40 (2 sigma)
133 134 135 136 138 138 139 141 142 143 144	01/09/86 01/09/86 02/06/86 02/06/86 02/06/86 03/06/86 03/06/86 03/06/86 04/10/86 04/10/86	- ~ 7 - ~ 7 - ~ 7	000000000000000000000000000000000000000	30 40 30 50 50 50 50 50 30 20 20		20 20 20 20 20 20 20 20 20 20 20 20 20 2	000000000000000000000000000000000000000	6 6 6 6 6 6 6 6		20 60 30 50 70 40 30 60 30 20
Observation Humber	Calendar Date	Ru-103	Ru-103 (2 sigma)	Cs-137	Cs-137 (2 sigma)		Co-58 (2 sigma)	Ag-110m	Ag-110m (2 sigma)	Ce-141
133 134 135 136 137 138 139 140 142 142 144 144 144	01/09/86 01/09/86 02/06/86 02/06/86 02/06/86 03/06/86 03/06/86 03/06/86 04/10/86 04/10/86		20 20 20 20 20 20 20 20 20 20 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		10 10 10 10 10 10 10 10 10 10 10 10	000000000000000000000000000000000000000
Observation Number	Calendar Date	Ce-141 (2 sigma)	Co-60	Co-60 (2 sigma)	I-131	I-131 (2 sigma)	C e-1 44	Ce-144 (2 sigma)		-3 2 sigma)
133 134 135 136 137 138 139 140 1461 1462 1463	01/09/86 01/09/86 02/06/86 02/06/86 02/06/86 03/06/86 03/06/86 03/06/86 04/10/86 04/10/86	20 20 20 20 20 20 20 20 20 20 20 20 20 2	000000000000000000000000000000000000000	6 6 6 6 6 6 6 6 6		2 2 2 2 2 2 2 2 2 2 2 2 2		20 20 20 20 20 20 20 20 20 20 20 20		100 100 100 100 100 100 100 100 100 100

I-24

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Coecters ph.D. Date: 4/20/87

1

Table 9a: Monthly Drinking Water Analysis

1	B				······································	Control Location: #3					
Observation Number	Calendar Date	Location	Be-7	Be-7 (2 sigma)	Zr(Nb)-95	Zr(Nb)-95 (2 sigma)	Cs-134	Cs-134 (2 sigma)	K-40	K-40 (2 sigma)	
145	05/09/86		0	30	0	20	0	6	0	30	
146	05/09/86	Ž.	Ŏ	50	Õ .	20	0	6	0	80	
147	05/09/86	3	Ô.	30	0	20	0	6	a 0 M 👘	50	
148	06/04/86	1	0	50	0	20	0	6	0	50	
149	06/04/86	2	0	50	0	ŽŎ	0	6	0	60	
150	06/04/86	3	0	50	0	20	0	6	0	50	
151	07/10/86	1	0	30	Q .	20	0	6	0	80	
152	07/10/86	23	0	30	0	20	0 -	6	a Quid	20	
153	07/10/86	3	Q .	20	· • • • •	.20 20	0	6	0	60	
154	08/08/86	1 .	, O	50	Q	20	0	6	0	90	
155	08/08/86	- 2	0	50	0	20	0	6	0	40	
156	08/08/86	3	0	50	0	20	0	60	0	60	
Observation Number	Calendar Date	Ru-103	Ru-103 (2 sigma)	Cs-137	Cs-137 (2 sigma)	Co-58	Co-58 (2 sigma)	Ag-110m	Ag-110m (2 sigma)	Ce-141	
145	05/09/86	0	20	Ŏ	6	0	6	0	10	0	
146	05/09/86	ŏ ·	20	Ō	6	, Ó	6	Ŭ.	10	Ō	
147	05/09/86	ŏ - '	20	Õ	6	Ō	6	Ō	10	Ó	
148	06/04/86	ŏ.	20	Ō.	6	Ó	6	Ó	10	Ö 👘	
149	06/04/86	Ŏ	20	0	6	0	6	0	10	0	
150	06/04/86	Ū.	20	0	6	0	6	0	10	0	
151	07/10/86	0	20	0	6	0	6	0	10	0	
152	07/10/86	· • • • • • • • • • • • • • • • • • • •	20	0	6	0	6	0	10	Q ·	
153	07/10/86	Ŭ,	20	0	6	0	6	0	10	0	
154	08/08/86	0	20	0	6	0.	6	0	10	0	
155	08/08/86	0	20	0	6	0	6	O	10	<u> 0</u>	
156	08/08/86	Q	20	0	• • • •	. 0	6	0.	10	0	
Observation Number	Calendar Date	Ce-141 (2 signa)	Co-60	Co-60 (2 sigma)	I-131	I-131 (2 sigma)	Ce-144	Ce-144 (2 sigma)		-3 2 sigma)	
145	-05/09/86	20	0	6	0	2	0	20	0	100	
146	05/09/86	20	. 0	6	0	2	O .	20	Q	100	
147	05/09/86	20	0 • • •	6	0	2 -	Q ···	20	0	: 100	
148	06/04/86	20	0	6	0	2	Q	20	0	100	
149	06/04/86	20	0	· · · · · · · · · · · · · · · · · · ·	0	7 10 10 2 10 10 10	. 0	20	0 • • •	100	
150	06/04/86	20	Q	6	Q .	2	0	20	0	100	
151	07/10/86	20	Q	6	0	· · · · · · · · · · · · · · · · · · ·		20	0	100	
152	07/10/86	20	0	6	0	2	0 .	20	Q	100	
153	07/10/86	20	Q	6	Q	2	U .	20	V .	100	
154	08/08/86	20	0		0	··· Z	Ŭ	20		100 100	
	08/08/86	20				Z		20		100	
	08/08/86	20	Q	9		2	85	2V	v e se	TOO .	
								· · · ·		ł .	

֥

4

		Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Minio Greaters, Ph.D. Date: <u>4/20/87</u> Table 9a: Monthly Drinking Water Analysis											
	•				·····		Cont	rol Location	· #3				
Observation Number	Calendar Date	Location	Be-7	Be-7 (2 sigma)	Zr(Nb)-95	Zr(Nb)-95 (2 sigma)	5 Cs-134	Cs-134 (2 sigma)	K-40	K-40 (2 sigma)			
157 158 159 160 161 162 163 164 165 166 167 168	09/10/86 09/10/86 10/09/86 10/09/86 10/09/86 11/06/86 11/06/86 11/06/86 12/08/86 12/08/86 12/08/86	- N B - N B - N B - N B		30 30 30 30 20 50 50 50 40 40	00000000000	20 20 20 20 20 20 20 20 20 20 20 20 20 2	000000000000000000000000000000000000000	6 6 6 6 6 6 6 6 6		50 30 70 30 60 30 20 70 40 40 40 70			
Observation Number	Calendar Date	Ru-103	Ru-103 (2 sigma)	Cs-137	Cs-137 (2 s[gma)	Co-58	Co-58 (2 sigma)	Ag-110m	Ag-110m (2 sigm	Ce-141 a)			
157 158 159 160 161 162 163 164 165 166 166 168	09/10/86 09/10/86 10/09/86 10/09/86 10/09/86 10/09/86 11/06/86 11/06/86 11/06/86 12/08/86 12/08/86 12/08/86		20 20 20 20 20 20 20 20 20 20 20		6 6 6 6 6 6 6 6 6 6 6 6 6		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		10 10 10 10 10 10 10 10 10 10 10 10				
Observation Number	Calendar Date	Ce-141 (2 sigma)	Co-60	Co-60 (2 sigma)	1-131	I-131 (2 sigma)	Ce-144	Ce-144 (2 sigma)	H-3	H-3 (2 sigma)			
157 158 159 160 161 162 163 164 165 166 165	09/10/86 09/10/86 10/09/86 10/09/86 10/09/86 11/06/86 11/06/86 11/06/86 12/08/86 12/08/86 12/08/86	20 20 20 20 20 20 20 20 20 20 20 20	000000000000000000000000000000000000000	6 6 6 6 6 6 6 6 6 6 6		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		20 20 20 20 20 20 20 20 20 20 20 20 20 2		100 100 100 100 100 100 100 100 100 100			

.

i, .

l e

4

,

÷ .

.

1

ţ

+ +

Т

ŧ

-

Ξ

-26

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Gosters, Ph.D. Date: 4/20/87 Table 9b: Monthly Drinking Water Solids Gross Alpha and Gross Beta Activities Control Location: #3 **Observation** Location 1 Gross Alpha (2 sigma) Calendar Location 3 Location 3 Location 3 Location 3 Location 1 Gross Alpha (2 sigma) Gross Beta (2 sigma) Number Date Gross Alpha Gross Beta Gross Alpha 01/09/86 02/06/86 03/06/86 04/10/86 05/09/86 0.1 0.1 0.1 0.1 $\begin{array}{c}
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1
\end{array}$ 139 0.2 0.0 0 0.1 140 0.0 0.4 0 · 0.1 141 0.0 0.0 Ō Ŏ.1 142 143 144 Ŏ.Ŏ Ŏ. Ĵ ŏ 0.1 ŏ.ŏ ŏ 0.1 0.0 0.1 0.1 Ŏ.Ŏ 06/04/86 0.1 0.2 0.1 Õ 0.1 145 07/10/86 Ô.Ô 0.1 0.2 ō 0.1 146 08/08/86 ŏ.3 0.0 0.1 0.1 Ô. 0.1 09/10/86 147 0.0 0.1 0.0 0.1 Ô. 0.1 148 10/09/86 0.0 0.1 0.1 149 11/06/86 0.0 0.1 0.3 0.1 0 0.1 150 12/08/86 0.0 0.1 0.0 0.1 0.1 Location 1 Gross Beta Location 2 Gross Alpha **Observation** Calendar Location 1 Location 2 Location 2 Location 2 Gross Alpha (2 sigma) Date Number Gross Beta Gross Beta Gross Beta (2 sigma) (2 sigma) $\begin{array}{c}
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1
 \end{array}$ 139 01/09/86 $0.1 \\ 0.4$ 0.8 0.0 0.0 0.1 02/06/86 03/06/86 04/10/86 2.0 140 0.8 9.8 0.5 141 142 Ŏ.Ō 0.2 0.1 1.7 0.1 0.4 0.2 0.5 0.2 0.1 0.2 **0.4** 0.0 0.4 143 144 145 0.4 2.8 05/09/86 0.1 0.1 12.4 0.8 06/04/86 0.2 1.0 3.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 3.3 1.2 0.8 28.0 1.1 4.0 07/10/86 146 147 08/08/86 0.2 0.3 09/10/86 0.5 148 10/09/86 1.9 0.2 0.2 149 11/06/86 1.8 0.2 150 12/08/86 0.3 0.8

N=

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Concents Date: 4/20/87 Table 9c; Monthly Drinking Water Filtrate Gross Alpha and Gross Beta Activities Control Location: #3 Observation Calendar Location 3 Location 3 Location 3 Location 1 Location 3 Location 1 Number Date Gross Alpha Gross Alpha Gross Beta Gross Beta Gross Alpha Gross Alpha (2 sigma) (2 sigma) (2 sigma) 143 01/09/86 ۵ 13 2 0 144 145 02/06/86 Ó 4 6 Ô 2 03/06/86 Ô 8 Ω 6 146 04/10/86 ٥ 2 8 0 147 148 05/09/86 Ō 2 7 Ô 06/04/86 Ó 10 0 149 07/10/86 Ô 9 Ō 3 150 151 08/08/86 Õ 6 Ō 09/10/86 Ō 7 Ô 152 10/09/86 0 0 153 11/06/86 Ô 7 ٥ 154 12/08/86 ٥ Ω 3 **Observation** Calendar Location 1 Location 1 Location 2 Location 2 Location 2 Location 2 Number Date Gross Beta Gross Beta Gross Alpha **Gross** Alpha Gross Beta Gross Beta (2 sigma) (2 sigma) (2 sigma) 143 01/09/86 14 0 15 144 02/06/86 9 Ŏ 5 14 145 03/06/86 14 20 16 146 04/10/86 12 12 13 10 16 0 6 10 0 0 147 05/09/86 24 17 18 148 149 06/04/86 07/10/86 150 08/08/86 14 151 09/10/86 ĪĪ 15 152 10/09/86 8 ŏ 16 153 154 11/06/86 6 Ō 13 12/08/86 11 Ō. Ĩ4

N=

1 /

12

I-28

	V	erified by: <u>/</u>	1 ina Goode	2s. Ph.D.	Date: <u>#/20/8</u>	itabase Listing <u>37</u> Beta Activitie	
I	······································	· · ·				control Locatio	n: #3
Observation Number	Calendar Date	Location 3 Gross Alpha	Location 3 Gross Alpha (2 sigma)	Location 3 Gross Beta	Location 3 Gross Beta (2 sigma)	Location 1 Gross Alpha	Location 1 Gross Alpha (2 sigma)
101 102 103 104	01/01/86 04/01/86 07/01/86 10/01/86	0 0 0 0	0.1 0.1 0.1 0.1	0.0 0.0 0.3 0.0	0.1 0.1 0.1 0.1	0 0 0 0	0.1 0.1 0.1 0.1
Observation Number	Calendar Date	Location 1 Gross Beta	Location 1 Gross Beta (2 sigma)	Location 2 Gross Alpha	Location 2 Gross Alpha (2 sigma)	Location 2 Gross Beta	Location 2 Gross Beta (2 sigma)
101 102 103 104	01/01/86 04/01/86 07/01/86 10/01/86	0.6 0.4 0.7 0.5	0.1 0.1 0.1 0.1	1.2 1.2 1.1 0.7	0.2 0.2 0.3 0.1	6.7 4.6 10.1 2.7	0.4 0.3 0.7 0.3

1

NS

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Conclers Ph.D. Date: 4/20/87 Table 9e: Quarterly Composite Drinking Water Filtrate Analysis Control Location: #3 **Observation** Calendar Location Be-7 Be-7 Zr(Nb)-95 Zr(Nb)-95 Cs-134 Cs-134 K-40 K-40 Ru-103 Ru-103 Number Date (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 signa) 214 03/31/86 1 黃 ¥ 86 215 03/31/86 2 ¥ ¥ 被 ¥ ¥ × 216 03/31/86 3 븘 ¥ 36 ¥ ¥ × ¥ 217 06/30/86 1 ¥ 8.... ¥ ¥ ¥ 218 06/30/86 × 2 ¥ 至 ¥ ¥ 219 ī 06/30/86 关 虆 ¥ ¥ ¥ 220 09/30/86 黃 ¥ ¥ 鮝 ¥ ¥ ¥ 221 09/30/86 à. × ¥ ¥ 簽 222 09/30/86 * 籔 ¥ ¥ ¥ 223 12/31/86 * × 簽 ¥ ¥ 224 12/31/86 2 ¥ ¥ 黃 ¥ 兼 225 12/31/86 3 × * × ¥ **Observation** Calendar Cs-137 Cs-137 Co-58 Co-58 Ag-110m Ag-110m Ce-141 Ce-141 Co-60 Co-60 I-131 Number Date (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) 214 03/31/86 ¥ × 츛 ¥ × 215 03/31/86 被 ¥ ¥ 薉 ¥ ¥ ¥ ¥ 216 03/31/86 簽 簽 ¥ æ ¥ ¥ ¥. ¥ 217 06/30/86 萎 ¥ 26 薉 ¥ ¥ ¥ 218 06/30/86 鮝 ¥ ¥ ¥ ¥ ¥ 219 06/30/86 ¥ ¥ ¥ ¥ ¥ ¥ 220 09/30/86 ¥ ¥ 養 ¥ ¥ ¥ 221 09/30/86 쵔 ¥ 黃 ¥ ¥ ¥ ¥ 222 09/30/86 并 ¥ ¥ ¥ ¥ ¥ 223 12/31/86 黃 簽 ¥ × ¥ 224 12/31/86 ¥ 225 12/31/86 첒 26 × ¥ Χ. ¥ **Observation** Calendar 1-131 Ce-144 Ce-144 Gross Alpha **Gross** Alpha **Gross** Beta **Gross Beta** #-3 H-3 Number Date (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) 216 03/31/86 簽 2 羡 ß 10 0 100 215 03/31/86 ¥ ۵ 5 20 100 0 216 217 03/31/86 薟 Õ 7 100 Δ 06/30/86 嫠 Ô 9 0 100 218 06/30/86 簽 7 18 :0 100 219 06/30/86 12 13 ŏ Ó ۵ 100 220 09/30/86 ¥ Ō Õ 100 221 09/30/86 X õ 17 100 0 222 09/30/86 ¥ Ō 8 100 0 223 12/31/86 蒹 Ō 8 100 ۵ 224 12/31/86 쵔 Ō 16 100 0 225 12/31/86 X 10 100

NE

12

N

I-30

				by: M_	ina tis	aters +	s. C. K	Date: <u>#/</u>	am Database L 20/87	istings		
	j_	19822 2V.		iorerine 3		amma she	CCI OI Alla	19919	Control L	ocation: #4	l :	
Observation Number	Calenda Date		K-40 K-40 (2 sigm	Zn-65 Z	(n-65 2 sigma)	Cs-134 C	s-134 2 sigma)	Mn-54 Mn-5 (2 s	4 Zr (Nb)- 1gma)	95 Zr(Nb)-95 (2 sigma)		Cs-137 (2 s1gma)
96 97 98 99 100 101 102 103	04/11/0 04/11/0 04/11/0 09/17/0 09/17/0 09/17/0 09/17/0	86 2 86 3 86 4 86 1 86 2 86 3	12.9 0.6 13.2 0.7 15.4 0.8 17.8 0.8 14.3 0.7 16.6 0.8 12.9 0.6 17.5 0.9		0.22 0.22 0.22 0.22 0.22 0.22		0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0.	05 0 05 0 05 0 05 0 05 0 05 0	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		0.02 0.03 0.02 0.02 0.02 0.03 0.03 0.02 0.02
Observation Number	Calenda Date	ar Co-57 Co (2	-57 Mo(Tc sigma))-99 Mo(Tc (2 s1	;)-99 Ce-1 gma)	41 Ce-14 (2 si		8 Co-58 (2 sigma	Ru-103 Ru-10) (2 s)3 Ce-144 [gma]	Ce-144 (2 sigma	Fe-59 a)
96 97 98 99 100 101 102 103	04/11/0 04/11/0 04/11/0 09/17/0 09/17/0 09/17/0 09/17/0	86 0 86 0 86 0 86 0 86 0 86 0	0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0	10 5 20 5 5 5 5	Ŏ Ś	0. 0. 0. 0. 0. 0. 0.	1 0 1 0 1 0 1 0 1 0	0.05 0.05 0.05 0.05 0.05 0.05 0.05	0 0 0 0 0 0	1 0 1 0	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	
Observation Number	Calenda Date		Ru-106 Ru-1) (2 s	06 Ra-2 Igma)	26 Ra-226 (2 sig) Co-6 (ma)	0 Co-60 (2 sigma	Ag-110m a)	Ag-110m Th (2 sigma)	-228 Th-228 (2 sigma	I-131 a)	I-131 (2 sigma)
96 97 98 99 100 101 102 103	04/11/0 04/11/0 04/11/0 04/11/0 09/17/0 09/17/0 09/17/0	86 0.2 86 0.2 86 0.2 86 0.2 86 0.2 86 0.2	0 0 0 0 0 0 0 0 0 0 0 0	.3 0.1 .3 0.3 .3 0.1 .3 0.1 .3 0.1 .3 0.1 .3 0.1 .3 0.1 .3 0.1 .3 0.1 .3 0.2	17 0.05 14 0.05 17 0.05 17 0.05 19 0.05 12 0.05 15 0.05		0.05 0.05 0.05 0.05 0.05 0.05 0.05	0 0 0 0 0 0 0 0	0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.5 0.5 0.5 0.5 0.5 0.5 0.5

N

0 8

99

5 . 1

Τ

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Garders, Ph. D Date: 4/20/87 Table 11: Semi-Annual Ocean Bottom Sediment Gamma Spectral Analysis Control Location: Zn-65 Zn-65 (2 sigma) Observation Calendar Location K-40 K-40 Cs-134 Cs-134 Mn-54 Mn-54 Zr(Nb)-95 Zr(Nb)-95 Cs-137 Cs-137 Number Date (2 sigma) (2 sigma) (2 sigma) (2 stgma) (2 sigma) 106 05/12/86 10.6 0.2 0.5 ۵ ٥ 0.04 0.04 0.08 0.04 0.7 ŏ.2 05/12/86 13.8 105 B Ô G 0.04 0 0.04 0 0.09 Ō 0.04 106 05/12/86 č 15.2 2 × Õ 0.7 Ó 0.2 Õ 0.04 0 0.04 ٥ 0.09 0.04 0.2 107 05/15/86 13.2 E 0.6 0 Ō 0.04 0 0.04 Ō 0.08 Ô 0.04 108 05/21/86 D 15.2 0.7 Õ Ô 0.04 0 0.04 0 0,09 Ō 0.04 11/05/86 109 12.4 C 0.6 ۵ ۵ 0.04 Ô 0.04 Ō 0.08 Ō 0.04 110 11/05/86 10.6 0.6 Ō Ð Ô 0.04 0 0.04 Ô 0.08 Ω 0.04 0.2 0.2 0.2 11/06/86 0.7 111 Ē 14.6 Ô Ó 0.04 0 0.04 0 0.08 0 0.04 112 11/07/86 A 11.1 0.5 Û ٥ 0.04 Ō 0.08 0 0.04 Ô 0.04 113 11/07/86 B 12.5 0.6 Ô ٥ 0.04 0.09 Ô 0.04 0 ß 0.04 Observation Calendar Co-57 Co-57 Mo(Tc)-99 Mo(Tc)-99 Ce-141 Ce-141 Co-58 Co-58 Ru-103 Ru-103 Ce-144 Ce-144 Fe-59 Number Date (2 sigma) (2 sigma) (2 sigma) (2 stama) (2 sigma) (2 sigma) 106 05/12/86 0 0.04 ٥ 60000 0 0.08 0 0.04 0.08 0.2 0 0 0 05/12/86 105 0 0.04 40000 0 ۵ 0.09 0.04 0 0 0.09 ۵ 0.2 ۵ 106 05/12/86 0.04 90000 0 0 Δ 0.09 0 0.04 ٥ 0.09 0 ÷ 0.2 Ō 05/15/86 107 Ω 0.04 0 30000 0.08 0.04 0 0 0 0.08 0 0.2 Ō 0.09 108 05/21/86 Ô 0.04 Ō 9000 Ō Ô 0.04 Ô 0.09 ۵ 0.2 0 11/05/86 0.04 ŏ 109 0 6000 0 0.08 0 0.04 0 0.08 Ō 0.2 ŏ 11/05/86 110 0 0.04 Ō 20000 0 0.08 Ō Ō 0.04 0.08 Ô 0,2 Ô 111 11/06/86 Õ ٥ 0.04 8000 0 0.08 0.04 ۵ 0 0.08 Ô 0.2 Ô 112 11/07/86 Ó Ō 0.2 0.04 6000 0 0.08 Ô 0.04 Ô 0.08 Õ Ō 113 11/07/86 Ó 0.04 Ô 2000 ā 0.09 Û 0.04 0 0.09 0 Ô Observation Calendar Fe-59 Ru-106 Ru-106 Ra-226 Ra-226 Co-60 Co-60 Ag-110m Ag-110m (2 sigma) Th-228 Th-228 I-131 I-131 (2 sigma) Number Date (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) 05/12/86 0.2 104 0.2 Ô 0.56 0.04 0.06 0.04 0 0.08 0.04 0.64 0 2.0 105 05/12/86 0.2 ٥ 0.24 0.04 0.04 0.00 Û 0.09 0.28 0.04 0 2.0 0.2 0.2 106 05/12/86 Ó 0.3 0.16 0.04 0.00 0.04 0 0.09 0.12 0.04 ٥ 3.0 05/15/86 107 Ó 0.2 0.22 0.42 0.04 0,00 0.04 Ô 0.08 Ō 2.0 0.04 05/21/86 108 0.2 0 0.3 0.21 0.04 0.04 0.00 0 0.24 0.09 0.04 Û. 0.9 ŏ. 29 109 11/05/86 0.2 Õ 0.2 0.04 0.00 0.04 Ô 0.08 0.40 0.04 Ô 0.8 0.2 110 11/05/86 Ŏ.Z Ō 0.50 0.04 0.57 0.00 0.04 Ô 0.08 0.04 ۵ 2.0 111 11/06/86 0.2 0 0.2 0.25 0.04 0.00 0.04 Ō 0.08 0.04 0 0.8 11/07/86 0.2 0.3 ŏ.54 0.2 112 ٥ 0.04 0,00 0.04 0 0.08 0.70 0.04 Ő÷ 2.0 113 11/07/86 0.2 ň 0.25 0.04 0.25 0.00 Ó Ā 0.04 0.09 0.04 0.9

NE

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Coeders, Ph.D. Date: 4/20/87

A.C. B

1

	Tabl	Verified le 12a: Quarterly Nor				n <u>4/20/87</u> sh type)	 	
		· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	······································	Control L	ocation: C	•
Observation Number	Calendar Date	Sample Type Loc	ation K-40	K-40 Zn (2 sigma)	-65 Zn-65 (2 sigma)	Cs-134 Cs-134 (2 sigma	Mn-54 Mn) (2	-54 Zr(Nb)-95 sigma)
508 509 510 511 512 513 514 515	02/28/86 02/28/86 02/28/86 02/28/86 03/04/86 03/04/86 03/04/86 03/04/86	black perch spiny lobster keyhole limpet sheephead black perch sheephead	C 3.00 C 2.00 C 2.50 C 1.02 A 2.10 A 2.70 B 3.20 B 2.80	0.10 0.20 0.05 0.10 0.10 0.10	0 0.06 0 0.05 0 0.05 0 0.04 0 0.06 0 0.06 0 0.06 0 0.06 0 0.08	$\begin{array}{ccccccc} 0 & 0.006 \\ 0 & 0.005 \\ 0 & 0.005 \\ 0 & 0.004 \\ 0 & 0.006 \\ 0 & 0.006 \\ 0 & 0.006 \\ 0 & 0.008 \end{array}$	0 0 0 0 0 0	$\begin{array}{ccccc} 0.010 & 0 \\ 0.010 & 0 \\ 0.010 & 0 \\ 0.007 & 0 \\ 0.010 & 0 \\ 0.010 & 0 \\ 0.010 & 0 \\ 0.020 & 0 \\ \end{array}$
Observation Number	Calendar Date	Zr(Nb)-95 Cs-137 (2 sigma)	Cs-137 (2 sigma)	Co-57 Co-57 (2 sigma		Mo(Tc)-99 Ce-141 (2 sigma)	Ce-141 (2 sigma)	Co-58 Co-58 (2 sigma)
508 509 510 511 512 513 514 515	02/28/86 02/28/86 02/28/86 02/28/86 03/04/86 03/04/86 03/04/86 03/04/86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0002 0.0003 0.0002 0.0040 0.0010 0.0003 0.0003 0.0080	$\begin{array}{ccccccc} 0 & 0.010 \\ 0 & 0.010 \\ 0 & 0.010 \\ 0 & 0.007 \\ 0 & 0.010 \\ 0 & 0.010 \\ 0 & 0.010 \\ 0 & 0.020 \end{array}$		3 0 5 0 5 0 6 0 6 0 8 0	0.05 0.05 0.04 0.06 0.06 0.06	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Observation Number	Calendari Date	Ru-103 Ru-103 Ce-1 (2 sigma)	l44 Ce-144 (2 sigma	Fe-59 Fe-59) (2 sign	Ru-106 Ru-1 Na) (2 s	06 Ra-226 Ra-22 1gma) (2 s1		Co-60 (2 s1gma)
508 509 510 511 512 513 514 515	02/28/86 02/28/86 02/28/86 02/28/86 03/04/86 03/04/86 03/04/86 03/04/86	0 0.008 0 0 0.008 0 0 0.005 0 0 0.008 0 0 0.005 0 0 0.006 0 0 0.006 0 0 0.006 0		$\begin{array}{ccccccc} 0 & 0.06 \\ 0 & 0.05 \\ 0 & 0.05 \\ 0 & 0.04 \\ 0 & 0.06 \\ 0 & 0.06 \\ 0 & 0.06 \\ 0 & 0.08 \end{array}$	0 0. 0 0. 0 0. 0 0. 0 0. 0 0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 0.0000 20 0.0000 10 0.0021 20 0.0270 20 0.0043 20 0.0000	0.0050 0.0100 0.0009 0.0020 0.0009 0.0009
Observation ' Number	Calendar Date	Ag-110m Ag-110m (2 sigma)	Th-228 Th (2	-228 I-131 sigma)	I-131 Bo (2 sigma)	ound H-3 Bound H-3 (2 sigma)	Aqueous H-	3 Aqueous H-3 (2 sigma)
508 509 510 512 513 513 514 513	02/28/86 02/28/86 02/28/86 02/28/86 03/04/86 03/04/86 03/04/86 03/04/86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000 0.000 0.000 0.000 0.000	0.020 0 0.020 0 0.020 0 0.020 0 0.020 0 0.020 0 0.020 0 0.020 0	0.20 0.10 0.09 0.10 0.10 0.10 0.10 0.20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0	0.020 0.020

I-32

-

1

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Greaters, Ph.D. Date: 4/20/87

Table 12a: Quarterly Non-Migratory Marine Animals Analysis (Flesh type)

1

.). 18 - 5

123

 $\frac{1}{4} > 1$

			,					Control Loc	ation	C	
Calendar Date	Sample Type	Location	K-40	K-40 (2 s1gma)	Zn-65		CS-134	Cs-134 (2 sigma)	Mn-54	Mn-54 (2 sigma)	Zr(Nb)-95
03/04/86 03/05/86 03/05/86 05/12/86 05/15/86 05/15/86 05/15/86	bay mussel spiny lobster bay mussel spiny lobster bay mussel sheephead black perch keyhole limpet	B A B C C C	0.70 2.90 0.67 3.30 0.75 2.60 2.20 0.89	0.08 0.10 0.06 0.20 0.07 0.10 0.10 0.04		0.03 0.07 0.03 0.06 0.03 0.05 0.05 0.05	000000000000000000000000000000000000000	0.007 0.005 0.005 0.006 0.003 0.005 0.005 0.003		0.007 0.010 0.006 0.010 0.007 0.010 0.010 0.010	
Calendar Date	Zr(Nb)-95 Cs-1 (2 sigma)		C Na)		57 5 (gma)	Mo(Tc)-99	Mo(Tc)-99 (2 sigma)	Ce-141 (e-141 2 sigma	Co-58)	Co-58 (2 sigma)
03/04/86 03/05/86 03/05/86 03/07/86 05/12/86 05/15/86 05/15/86 05/15/86	0.040 0.00 0.020 0.00 0.030 0.01 0.020 0.00 0.030 0.00 0.030 0.00 0.020 0.00	51 0.0004 16 0.0004 20 0.0006 00 0.0030 43 0.0003 45 0.0002	2	0 0. 0 0. 0 0. 0 0. 0 0. 0 0.	010 006 010 007 010 010	0 0 0 0 0 0 0	3 7 3 6 500 100 100 70	0 0 0 0 0 0 0 0	0.03 0.07 0.03 0.06 0.03 0.05 0.05 0.05	0.0000 0.0090 0.0090 0.0100 0.0100 0.0000 0.0000 0.0000	0.010 0.010 0.002 0.010 0.003 0.008 0.010 0.006
CalendarR Date	u-103 Ru-103 (2 sigma)	Ce-144 Ce-1 (2 s	(44 519ma)					226 Ra-226 (2 sign	Co-6(Na)		
03/04/86 03/05/86 03/05/86 03/07/86 05/12/86 05/15/86 05/15/86 05/15/86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		07 03 06 03 05 05		0.07 0.03 0.06 0.03 0.05	0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	00 0.030 00 0.010 00 0.020 00 0.020 00 0.020 00 0.020 00 0.020 00 0.020 00 0.020	0.01 0.01 0.00 0.01 0.01 0.01	4 0.0020 1 0.0010 6 0.0010 0 0.0020 0 0.0080 0 0.0050	
Calendar Date	Ag-110m Ag-110 (2 sig	n Th-228 na]		228 I- 61gma)	131 I- (2	131 B sigma)		ound H-3 2 sigma)	Aqueous	H-3 Aqueo (2 s	ous H-3 igma)
03/04/86 03/05/86 03/05/86 03/07/86 05/12/86 05/15/86 05/15/86 05/15/86	0.0080 0.0030 0.0000 0.0060 0.0180 0.0020 0.0000 0.0020 0.0000 0.0070 0.0000 0.0050 0.0000 0.0050	0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000		.030 .010 .020 .010 .020 .020		0.20 0.08 0.10 0.30 0.10 0.10		0.3 1.0 0.3 0.5 0.5 0.5		0. 0. 0. 0. 0.	010 030 010 020 008 010 010 010 009
	Date 03/04/86 03/05/86 03/05/86 03/05/86 05/12/86 05/15/86 05/15/86 05/15/86 03/05/86 03/05/86 05/15/86 05/15/86 05/15/86 03/05/86 03/05/86 03/05/86 05/15/86 05/15/86 05/15/86 05/15/86 05/15/86 03/05/86 03/05/86 03/05/86 03/05/86 03/05/86 03/05/86 03/05/86 03/05/86 03/05/86 03/05/86 03/05/86 03/05/86 03/05/86 03/05/86 03/05/86 03/05/86 05/15/86	Date 03/04/86 bay mussel 03/05/86 spiny lobster 03/05/86 bay mussel 03/07/86 bay mussel 05/12/86 bay mussel 05/15/86 black perch 05/15/86 black perch 05/15/86 black perch 05/15/86 black perch 05/15/86 black perch 05/15/86 black perch 05/15/86 black perch 03/04/86 0.010 0.00 03/05/86 0.040 0.00 03/05/86 0.020 0.00 03/05/86 0.020 0.00 05/15/86 0.020 0.00 05/15/86 0.020 0.00 05/15/86 0.010 0.00 CalendarRu-103 Ru-103 Date (2 sigma) 03/04/86 0 0.007 03/05/86 0 0.006 03/07/86 0 0.008 05/15/86 0 0.008 05/15/86 0 0.008 05/15/86 0 0.008 05/15/86 0 0.008 05/15/86 0 0.007 03/05/86 0 0.008 05/15/86 0 0.007 03/05/86 0 0.008 05/15/86 0 0.007 03/05/86 0 0.008 05/15/86 0 0.007 03/05/86 0 0.007 03/05/86 0 0.007 03/05/86 0 0.007 03/05/86 0 0.008 05/15/86 0 0.008 05/15/86 0 0.007 03/05/86 0.0000 0.005 05/15/86 0.00	Date 03/04/86 bay mussel 03/05/86 spiny lobster 03/07/86 spiny lobster 03/07/86 spiny lobster 05/12/86 bay mussel 05/15/86 black perch 05/15/86 keyhole limpet Calendar Zr(Nb)-95 Cs-137 Cs-137 Date 03/04/86 0.010 0.0000 0.0060 03/05/86 0.040 0.0051 0.0000 03/05/86 0.020 0.0016 0.0000 03/05/86 0.020 0.0016 0.0000 05/15/86 0.020 0.0016 0.0000 05/15/86 0.020 0.0000 0.0030 05/15/86 0.020 0.0043 0.0000 05/15/86 0.020 0.0045 0.0000 05/15/86 0.010 0.0000 0.0030 05/15/86 0.010 0.0000 0.0030 05/15/86 0.020 0.0045 0.0000 05/15/86 0.010 0.0000 0.0030 CalendarRu-103 Ru-103 Ce-144 Ce-1 Date (2 sigma) 03/04/86 0 0.009 0 05/15/86 0 0.009 0 05/15/86 0 0.009 0 05/15/86 0 0.009 0 05/15/86 0 0.009 0 05/15/86 0 0.007 0 0.005/15/86 0 0.008 0 0.005/15/86 0 0.007 0 0.000 0.0000 0.0030 0.0000 0.0030 0.0000 0 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Date Date Date Date 03/04/86 bay mussel B 0.70 03/05/86 bay mussel A 0.67 03/05/86 bay mussel A 0.67 03/07/86 spiny lobster B 3.30 05/12/86 bay mussel B 0.75 05/15/86 black perch C 2.60 05/15/86 black perch C 2.20 05/15/86 0.010 0.0000 0.0060 03/04/86 0.010 0.0000 0.0060 03/05/86 0.020 0.0016 0.0022 03/05/86 0.020 0.0043 0.0030 05/15/86 0.020 0.0045 0.0022 05/15/86 0.020 0.0045 0.0022 05/15/86 0.010 0.0000 0.0030 Calendar Ru-103 Ru-103 Ce-144 Ce-144 <	Date (2 sigma) 03/04/86 bay mussel B 0.70 0.08 03/05/86 spiny lobster A 2.90 0.10 03/05/86 bay mussel A 0.67 0.06 03/07/86 spiny lobster B 3.30 0.20 05/12/86 bay mussel B 0.75 0.07 05/15/86 sheephead C 2.60 0.10 05/15/86 sheephead C 2.60 0.10 05/15/86 keyhole limpet C 0.89 0.04 03/05/86 0.010 0.0000 0.0060 0 0 03/05/86 0.020 0.0016 0.0002 0 0 03/05/86 0.020 0.0016 0.0002 0 0 03/05/86 0.020 0.0045 0.0002 0 0 03/05/86 0.020 0.0045 0.0002 0 0 05/15/86 0.020 0.0045 0.0020	Date (2 sigma) 03/04/86 bay mussel B 0.70 0.08 0 03/05/86 spiny lobster A 2.90 0.10 0 03/05/86 spiny lobster B 3.30 0.20 0 03/05/86 spiny lobster B 3.30 0.20 0 05/15/86 sheephead C 2.60 0.10 0 05/15/86 black perch C 2.20 0.10 0 05/15/86 black perch C 2.20 0.10 0 05/15/86 black perch C 2.20 0.10 0 05/15/86 black perch C 0.89 0.04 0 Calendar Zr(Nb)-95 Cs-137 Cs-57 Cs-57 Date (2 sigma) (2 sigma) (2 sigma) 0 03/04/86 0.040 0.0051 0.0060 0 0.016 03/05/86 0.020 0.0016 0.0002 0 0.010 03/05/86 0.020 0.0045 0.0002 0	Date (2 sigma) (2 sigma) (2 sigma) 03/04/86 bay mussel B 0.70 0.08 0 0.03 03/05/86 bay mussel A 0.67 0.10 0 0.03 03/05/86 bay mussel A 0.67 0.66 0 0.03 03/05/86 bay mussel B 0.75 0.07 0 0.03 03/05/86 bay mussel B 0.75 0.07 0 0.03 05/15/86 bhack perch C 2.20 0.10 0 0.05 05/15/86 black perch C 2.20 0.10 0 0.05 05/15/86 0.040 0.0051 0.004 0 0.03 0 0.04 0 0.03 03/05/86 0.010 0.0000 0.0060 0 0.006 0 0.006 0 0.010 0 0.05 0.010 0 0.05 0 0.010 0.006 0 0.010	Calendar Date Sample Type (2 sigma) Location K-40 (2 sigma) Zn-65 (2 sigma) Cs-134 (2 sigma) 03/05/86 03/05/86 spiny lobster 03/05/86 spiny lobster 03/07/86 spiny lobster 05/15/86 spiny lobster 02/05/86 spiny lobster 02/05/	Calendar Date Sample Type (2 sigma) Location K-40 K-40 Zn-65 Zn-65 Cs-134 Cs-134 Cs-134 03704786 bay mussel B 0.70 0.08 0 0.03 0 0.007 03704786 bay mussel A 0.67 0.08 0 0.03 0 0.007 03704786 bay mussel B 0.70 0.20 0.066 0 0.003 0 0.007 03704786 bay mussel B 0.75 0.07 0 0.03 0 0.005 03704786 bay mussel B 0.75 0.07 0 0.03 0 0.003 03704786 black perch C 2.20 0.10 0 0.005 0 0.003 03704586 0.040 0 0.031 0 0.004 0 0.033 0 03704586 0.030 0.010 0.0000 0 0.0010 0 0 0 <	Calandar Sample Type Location K-40 Zn-65 Zn-65 Cs-134 Cs-134 Cs-134 Cs-134 Mn-54 03/05/86 bay mussel A 0.70 0.08 0 0.03 0 0.007 0 03/05/86 spiny lobster A 0.67 0.06 0 0.03 0 0.007 0 03/05/86 bay mussel B 0.75 0.67 0 0.05 0 0.005 0 0 0.005	Date Date <thdate< th=""> Date Date <thd< td=""></thd<></thdate<>

Southern California Edison Company Environmenter Monitoring Program Database Listings Verified by: Mina Geolers th.D. Date: 4/20/87

Table 12a: Quarterly Non-Migratory Marine Animals Analysis (Flesh type)

5

· · · · ·

ei i

ł

	•			· · · · · · · · · · · · · · · · · · ·			Control Locatio	
Observation Number	Calendar Date	Sample Type L	ocation K-40	K-40 (2 sigma)	Zn-65 Zn-65 (2 sig	Cs-134 gma)	Cs-134 Mn- (2 sigma)	54 Mn-54 Zr(Nb)-95 (2 sigma)
524 525 526 527 52 8 529 530 531	05/16/86 05/16/86 05/20/86 05/21/86 05/21/86 05/21/86 05/21/86 05/25/86	spiny lobster spiny lobster sheephead sheephead black perch black perch sea hare	A 2.40 B 2.90 C 2.90 B 2.70 A 2.50 A 2.30 B 1.80 A 0.84	$\begin{array}{c} 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \end{array}$	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	5 0 5 0 5 0 5 0 5 0 5 0	0.005 0 0.005 0 0.005 0 0.005 0 0.005 0 0.005 0 0.005 0 0.005 0	$\begin{array}{ccccccc} 0.010 & 0 \\ 0.010 & 0 \\ 0.010 & 0 \\ 0.010 & 0 \\ 0.010 & 0 \\ 0.010 & 0 \\ 0.010 & 0 \end{array}$
Observation Number	Calendar Date	Zr(Nb)-95 Cs-137 (2 sigma)	Cs-137 (2 sigma)	Co-57 Co-57 (2 \$1	Mo(Tc)-(gma)	99 Mo(Tc)-99 (2 sigma)	Ce-141 Ce-14 (2 si	1 Co-58 Co-58 gma) (2 sigma)
524 525 526 527 528 529 530 531	05/16/86 05/16/86 05/20/86 05/21/86 05/21/86 05/21/86 05/21/86 05/25/86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0002 0.0005 0.0020 0.0005 0.0002		10 0 10 0 10 0 10 0 10 0	100 100 20 10 10 5 8	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Observation Number	CalendarR Date	u-103 Ru-103 Ce (2 sigma)	-144 Ce-144 (2 sigma	Fe-59 Fe-59	9 Ru-106 ([gma]	Ru-106 Ra-á (2 sigma)	226 Ra-226 C (2 sigma)	o-60 Co-60 (2 Sigma)
524 525 526 527 528 529 530 531	05/16/86 05/16/86 05/16/86 05/20/86 05/21/86 05/21/86 05/21/86 05/25/86	0 0.010 0 0.007 0 0.008 0 0.008 0 0.005 0 0.008	0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05	0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0.	05 0 05 0 05 0 05 0 05 0 05 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 0.020 0 00 0.020 0 00 0.020 0 00 0.020 0 00 0.020 0 00 0.020 0	.008 0.0020 .010 0.0020 .000 0.0100 .000 0.0030 .046 0.0020 .012 0.0010 .000 0.0080 .041 0.0020
Observation ' Number	Calendar Date	Ag-110m Ag-110m (2 sigmi	Th-228 Th) (2	-228 I-1 Sigma)	31 I-131 (2 sigma)	Bound H-3	Bound H-3 Aque (2 sigma)	ous H-3 Aqueous H-3 (2 sigma)
524 525 526 527 528 529 530 531	05/16/86 05/16/86 05/16/86 05/20/86 05/21/86 05/21/86 05/21/86 05/25/86	0.0130 0.0020 0.0000 0.0070 0.0000 0.0080 0.0000 0.0050 0.0000 0.0050 0.0000 0.0050 0.0000 0.0050	0.000 0.000 0.000 0.000 0.000 0.000	0.020 0 0.020 0 0.020 0 0.020 0 0.020 0 0.020 0 0.020 0 0.020 0 0.020 0	0.20 0.10 0.10 0.10 0.10 0.10	0 0 0 0 0 0 0 0	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

I-34

10:37 MONDAY, APRIL 20, 1987 Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Beester J. ph.D. Date: 4/20/87 Table 12a: Quarterly Non-Migratory Marine Animals Analysis (Flesh type) 12.1.3 Control Location: **Observation** Calendar Sample Type Location K-40 K-40 Zn-65 Zn-65 Cs-134 Cs-134 Mn-54 Mn-54 Zr(Nb)-95 Number Date (2 sigma) (2 stgma) (2 sigma) (2:sigma) 532 08/05/86 sheephead

 B
 2.80

 B
 2.40

 A
 2.70

 A
 2.50

 A
 1.90

 B
 0.75

 B 2.80 0.20 0 0.05 0 0.005 0 0.010 0 533 08/05/86 black perch ō.10 Õ 0.06 0 0.006 Ō 0.010 Ō 534 08/06/86 sheephead 0.05 0.06 0.05 0.03 0.05 0.005 0.010 0.10 Ô 0.05 Ō Õ 0 0 black perch spiny lobster 535 08/06/86 0.10 ō Ō 0 536 08/06/86 0.10 0.005 Õ 0.010 Õ ٥ 537 08/06/86 bay mussel 0.006 0.08 Ō Ō 0.008 Ō 538 08/07/86 sheephead C 2.30 0.10 ŏ Ō 0.010 Ō 539 08/07/86 black perch Ē 2.50 0.10 0.06 0 0.006 0 0.010 Ô **Observation** Calendar Zr(Nb)-95 Cs-137 Mo(Tc)-99 Mo(Tc)-99 Cs-137 Co-57 Co-57 Ce-141 Ce-141 Co-58 Co-58 Number Date (2 sigma) (2 sigma) (2 sigma) (2 \$19ma) (2 \$19ma) (2 sigma) 532 08/05/86 0.02 0.0050 0.0020 0 0.010 0 0.05 0.0000 0.010 0 0.010 0 0.010 0 0.010 0 0.010 0 0.010 533 08/05/86 0.0008 0.03 0.0057 Ô 65653 Ó 0.06 0.0000 0.010 534 08/06/86 0.0050 0.03 Ō Ŏ 0.05 0,0000 0.010 535 08/06/86 0.03 0.0006 0 0 0 0.0051 0.06 0.0000 0.010 536 0.0010 08/06/86 0.02 0.0040 ŏ 0.0000 0.007 537 08/06/86 0.02 0.0000 0.0080 0 0.006 0.03 0.0000 0.020 538 08/07/86 0.02 0.0041 Õ 0.010 0.0002 Õ Õ 0.05 0.0000 0.008 539 08/07/86 0.03 0.0029 0.0003 Ō 0 0.06 0.0000 0.010 **Observation** CalendarRu-103 Ru-103 Fe-59 Fe-59 (2 sigma) Ce-144 Ce-144 Ru-106 Ru-106 Ra-226 Ra-226 Co-60 Co-60 Number Date (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) 532 08/05/86 0 0,008 ٥ 0.05 0 0.05 Û 0.05 0.000 0.020 0.000 0.0100 533 08/05/86 0.008 0 0 0.06 Õ 0,06 0 0.06 0.000 0.020 0.0080 0.000 0.008 534 08/06/86 0.05 0 ۵ 0.05 0 0 0.05 0.000 0.020 0.000 0.0100 535 08/06/86 Ō Õ ŏ 0.06 Ō 0.06 0.000 0.020 0.008 0.0030 536 08/06/86 0.007 0 Ō 0.05 Ô 0.05 Ô 0.05 0.000 0.020 0.017 0.0010 537 08/06/86 Ô 0.010 Ó 0.03 0.06 0.03 Ó Ŏ 0,000 0.010 0.019 0.0050 538 08/07/86 Ô 0.005 0 0.05 Ō õ 0.02 0.000 0.020 0.000 0.0080 539 08/07/86 ٥ 0.006 0 0.06 Ô 0.06 Ô. 0.06 0,020 0.000 0.000 0.0060 Observation Calendar Ag-110m Ag-110m Th-228 Th-228 I-131 I-131 Bound H-3 Bound H-3 Aqueous H-3 Aqueous H-3 (2 sigma) Number Date (2 sigma) (2 sigma) (2 sigma) 0.10 0.10 0.10 0.10 0.10 0.08 0.10 532 $\begin{array}{cccc} 0 & 0.5 \\ 0 & 0.6 \\ 0 & 0.5 \\ 0 & 0.6 \\ 0 & 0.7 \\ 0 & 0.3 \\ 0 & 0.5 \\ 0 & 0.6 \end{array}$ 08/05/86 0.0000 0.0080 0.020 0.020 0.000 0 0 533 534 0.020 08/05/86 0.000 0.020 0.020 0.020 0.020 0.020 0.010 0.0000 0.0080 Ō Ō 08/06/86 0.0050 0.0000 Õ O O Ō 0.020 535 08/06/86 0.0000 0.000 0.0060 0 0.020 536 ÷ . . . 08/06/86 0.0070 0,000 0.0020 0.010

50.3 ちもと 11

31 11

537

538

539

08/06/86

08/07/86

08/07/86 0.0000

0.0000

0.0000

0.0080

0.0050

0,0060

0.000

0.000

0.000

0.010

0.020

0.020

0.020

0.020

0 0 0

0.10

I-36

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Context, Ph.D. Date: 4/20/87

Table 12a: Quarterly Non-Migratory Marine Animals Analysis (Flesh type)

	- <u> , -</u>							(Control Loc	ation: C	
Observation Number	Calendar Date	Sample Type	Location	K-40	K-40 (2 sigma	Zn-65	Zn-65 (2 sigma)	Cs-134	Cs-134 (2 sigma)	Mn-54 Mn-54 (2 sigma)	Zr(Nb)-95
540 541 542 543 544 545 545 546 547	08/07/86 08/08/86 08/13/86 08/19/86 11/03/86 11/03/86 11/03/86 11/03/86	keyhole limpet spiny lobster sea hare sheephead sheephead black perch spiny lobster	6	0.68 2.90 1.90 0.94 3.20 2.90 2.40 2.50	$\begin{array}{c} 0.03 \\ 0.20 \\ 0.10 \\ 0.04 \\ 0.20 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \end{array}$		0.02 0.04 0.04 0.02 0.05 0.05 0.06 0.05		0.003 0.004 0.006 0.004 0.005 0.005 0.005 0.006 0.005	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Observation Number	Calendar Date	Zr(Nb)-95 Cs-1 (2 sigma)	37 Cs-137 (2 sig		0-57 Co- (2	57 I 61gma)	10(Tc)-99	Mo(Tc)-99 (2 sigma)		e-141 Co-58 2 sigma)	Co-58 (2 sigma)
540 541 542 543 544 545 545 546 547	08/07/86 08/08/86 08/13/86 08/19/86 11/03/86 11/03/86 11/03/86 11/03/86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 0.000 37 0.000 00 0.005 50 0.000 70 0.002 56 0.000	2 2 0 3 0 3	0 0 0 0 0 0 0 0 0 0 0 0	.005 .008 .009 .004 .010 .010 .010 .009	0 0 0 0 0 0 0	2 4 2 5 5 10 20	0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.005 0.008 0.009 0.003 0.010 0.010 0.010 0.010 0.009
Observation Number	CalendarR Date	u-103 Ru-103 (2 sigma)	C e-14 4 Ce- (2	144 sigma)	Fe-59 Fe	-59 sigma)	Ru-106 Ru-1 (2 s	06 Ra-1 igma)	226 Ra-226 (2 sign	Co-60 Co-60 aa) (2 sigma)	n de la composition de la comp
540 541 542 543 544 545 546 546 547	08/07/86 08/08/86 08/13/86 08/19/86 11/03/86 11/03/86 11/03/86 11/03/86	0 0.008 0 0.009 0 0.005		.02 .04 .04 .02 .05 .05 .05	0 0 0 0	0.02 0.04 0.02 0.05 0.05 0.05 0.06 0.05	0 0. 0 0. 0 0. 0 0. 0 0. 0 0.	02 0.00 04 0.00 04 0.00 05 0.00 05 0.00 05 0.00 05 0.00	00 0.020 00 0.020 05 0.001 00 0.020 00 0.020 00 0.020 00 0.020 00 0.020 00 0.020	0.000 0.0080 0.009 0.0020 0.084 0.0050 0.000 0.0100 0.000 0.0100 0.000 0.0100 0.000 0.0100 0.000 0.0100	
Observation Number	Calendar Date	Ag-110m Ag-110 (2 sig	m Th-22 ma)	8 Th-2	228 I 51gma)	-131 I- (2	131 Bo sigma)	ound H-3	Bound H-3 (2 sigma)	Aqueous H-3 Aqueo	ous H-3 igma)
540 541 542 543 544 545 546 546	08/07/86 08/08/86 08/13/86 08/19/86 11/03/86 11/03/86 11/03/86 11/03/86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0.000 0 0.000 0 0.038 0 0.000 0 0.000		.009 .020 .020 .020 .020 .020 .020 .020		0.06 0.10 0.05 0.10 0.05 0.10 0.10 0.10	0 0	0.6		008 010 005 020 020 020 020 009

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mma Garaters sph Date: 4/20/87 竹市 24 Table 12a: Quarterly Non-Migratory Marine Animals Analysis (Flesh type) 1. 1 Control Location: Observation Calendar Sample Type Location K-40 K-40 Zn-65 Zn-65 Cs-134 Cs-134 Mn-54 Mn-54 Zr(Nb)-95 Number Date (2 sigma) (2 sigma) · (2 stgma) (2 sigma) 548 11/03/86 sea hare B 1.20 0.06 A 0.02 0.002 0.005 0 0 549 11/05/86 black perch A 2.40 0.10 0 0.06 ۵ 0.006 Ó 0.010 0 550 11/05/86 spiny lobster 3.00 0.20 A ۵ 0.04 0.004 0 0.009 Ô Δ 551 11/06/86 sheephead С 2.50 0.10 Ó 0.06 0 0.010 0.006 **n** A 552 11/06/86 black perch Ĉ 2.50 0.10 0 0.06 0 0,006 Ô 0.010 0 553 11/06/86 3.20 spiny lobster Ĉ 0.20 Δ 0.05 Õ 0.005 ۵ 0.009 Ő 554 11/06/86 keyhole limpet Ĉ 0.96 0.05 Ô 0.03 Ô 0.003 Û 0.007 Ô 555 11/14/86 sea hare 0.99 0.05 ۵ 0.02 ٥ 0.003 0 0.004 Δ Observation Calendar Zr(Nb)-95 Cs-137 Cs-137 Co-57 Mo(Tc)-99 Mo(Tc)-99 Co-57 Ce-141 Ce-141 Co-58 Co-58 Number Date (2 sigma). (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) 548 11/03/86 0.01 0.0000 0.0020 0 0 0.005 10 0 0.02 0.000 0.003 549 11/05/86 0.03 0.0051 0.0006 Ō 0.010 ۰Ô. ----0 0.06 0.000 0.010 550 11/05/86 0.02 0.0047 0.0002 Ó. 0.009 Ó 0.000 4 0.04 0.004 551 11/06/86 0.03 0.0049 0.0003 ۵ 0.010 Ó 20 0 0.06 0.000 0.006 552 11/06/86 0.03 0.0046 0.0002 Ô. 0.010 <u>۱</u> 20 î۵. 0.06 0.000 0.010 553 11/06/86 0.02 0.0033 0.0002 0 0.009 0 20 Ω 0.05 0.000 0.009 554 11/06/86 0.0000 0.02 Ō 0.0030 0.007 Ō 50 Ô 0.03 0.000 0.007 555 11/14/86 0.01 0.0000 0.0030 Ó 0.004 0 2 Ô 0.02 0.026 0.003 Observation CalendarRu-103 Ru-103 Ce-144 Ce-144 Fe-59 Fe-59 Ru-106 Ru-106 Ra-226 Ra-226 Co-60 Co-60 Number Date (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) 548 11/03/86 0 0.003 Ω 0.02 ٥ 0.02 0 0.02 0.00 0.009 0.014 0.001 549 11/05/86 0.006 Ô 0 0.06 ٥ 0.06 0 0.06 0.00 0.020 0.001 0.002 550 11/05/86 Ω 0.007 0 0.04 0.04 ٥ Û 0.04 0.00 0.020 0.006 0.002 551 11/06/86 Ô 0.030 0.06 Ô Ô 0.06 ۵ 0.03 0.00 0.020 0.000 0.006 552 11/06/86 A 0.006 0 0.06 0 0.06 0 0.06 0.00 0.020 0.006 0.000 553 11/06/86 0 0.008 Û 0.05 0 0.05 Ō 0.05 0.00 0.020 0.000 0.009 554 11/06/86 0 0.005 Ô 0.03 Ô 0.03 Ô. 0.03 0.00 0.010 0.000 0.007 555 11/14/86 ۵ 0.004 0 0.02 0.02 0 0.02 0.04 0.010 0.136 0.007 Observation Calendar Ag-110m Ag-110m Th-228 Th-228 I-131 I-131 Bound H-3 Bound H-3 Aqueous H-3 Aqueous H-3 Number Date (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) 548 11/03/86 0.0000 0.0020 0.00 0.009 Ö 0.06 ٥ 0.2 0 0:008 549 11/05/86 0.0000 0.0060 0.00 0.020 ٥ 0.10 0 0.6 0 0.020 550 11/05/86 0.0040 0.0020 0.00 0.020 Ō 0.10 Ō 0.4 Ó 0.010 551 11/06/86 0.0000 0.0060 0.00 0.020 ٥ Ō 0.10 0.6 0 0.020 552 11/06/86 0,0000 0.0060 0.00 0.020 0 Ō 0.10 0.6 Õ 0.020 553 11/06/86 0.0000 0.0050 0.00 0.020 Ô Õ 0.5 0.10 ٥ 0.010 554 11/06/86 0.0070 0.0003 0.00 õ 0.010 Õ 0.10 0.3 0 0.010 555 11/14/86 0.0019 0.0001 0.05 0.040 Ā 0.05 Ω 0.2 Ô 0.006

NS:

68

.

. <mark>-</mark> 38

з х a		Southern Califo								stings	T	
n sa Ng ta		Ver	fied by: 🖊	Mino	Goede	J. Ph. [). Date	1 4/20	187			
1	Tabl	e 12b: Quarter	ly Non-Higr	atory r	larine Ani	mals Ana	lysis (Bond	e Type)				
				····			• • • • • • • • • • • • • • • • • • •		Control Lo	cation: C	 I	· ·
Observation Number	Calendar Date	Sample Type	Location	n K-40	K-40 (2 sigma	Zn65	Zn-65 (2 sigma)	C6-134	Cs-134 (2 sigma)	Mn-54 M	n-54 2 sigma)	Zr (Nb)-95
422 423 424 425 426 426 427 428 429	02/28/86 02/28/86 02/28/86 02/28/86 03/04/86 03/04/86 03/04/86 03/04/86	sheephead black perch spiny lobster keyhole limpe sheephead black perch sheephead black perch	C C C C A B B B	0.00 0.17 1.18 0.00 0.80 1.00 0.00 1.00	$\begin{array}{c} 0.30\\ 0.09\\ 0.09\\ 0.40\\ 0.30\\ 0.40\\ 0.50\\ 0.50\\ 0.30\end{array}$	0.00 0.00 0.00 0.00 0.00 0.00 0.00	$\begin{array}{c} 0.06 \\ 0.06 \\ 0.09 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \end{array}$		0.020 0.020 0.006 0.020 0.050 0.060 0.020 0.020	0 0 0 0 0 0 0	0.02 0.02 0.01 0.02 0.04 0.06 0.02 0.03	0 0 0 0 0 0 0 0
Observation Number	Calendar Date	Zr(Nb)-95 Cs (2 sigma)	-137 Cs-13 (2 s		0-57 Co- (2	57 §1gma)	Mo(Tc)-99	Mo(Tc)-99 (2 sigma)	Ce-141	Ce-141 (2 sigma)		Co-58 (2 sigma)
422 423 424 425 426 427 428 429	02/28/86 02/28/86 02/28/86 02/28/86 03/04/86 03/04/86 03/04/86 03/04/86	0.03 0.05 0.06 0.06 0.06)20)06)20)40)60)20	0 0 0 0 0 0 0 0	010 010 009 020 040 020 020		6 9 10 10 10 10		0.06 0.06 0.09 0.10 0.10 0.10 0.10		0.030 0.020 0.009 0.020 0.050 0.060 0.060 0.020 0.040
Observation Number	CalendarR Date	u-103 Ru-103 (2 sigma	Ce-144 C(2-144 2 sigma	Fe-59 Fe) (2	-59 2 sigma)	Ru-106 Ru- (2 s	106 Ra- sigma)	226 Ra-226 (2 sig		Co-60 (2 sigma	1)
\$22 \$23 \$24 \$25 \$26 \$26 \$28 \$28 \$29	02/28/86 02/28/86 02/28/86 02/28/86 03/04/86 03/04/86 03/04/86 03/04/86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Λ	0.06 0.09 0.06 0.09 0.20 0.30 0.10 0.20	0 0 0 0	0.06 0.06 0.09 0.10 0.20 0.10 0.10	0 0 0 0 0 0 0 0 0 0 0 0	10 0 20 0 06 0 20 0 40 0 60 0 20 0 30 0	0.06 0.03 0.04 0.06 0.10	0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.010\\ 0.030\\ 0.009\\ 0.020\\ 0.060\\ 0.100\\ 0.030\\ 0.050\\ \end{array}$	
Observation Number	Calendar Date	Ag-110m Ag-1 (2 s	10m Th-3 1gma)	228 Th {2	-228] sigma)	(-131 I- (2	-131 B(2 sigma)	ound H-3	Bound H-3 (2 sigma)	Aqueous		sigma)
422 423 424 425 426 427 428 428	02/28/86 02/28/86 02/28/86 02/28/86 03/04/86 03/04/86 03/04/86 03/04/86	0.000 0. 0.000 0. 0.000 0. 0.000 0. 0.000 0. 0.000 0.	020 0 020 0 009 0 020 0 040 0 060 0 030 0 050 0		0.03 0.03 0.04 0.06 0.10 0.05 0.05		0.2 0.2 0.5 0.3 0.3 0.3 0.2	美 美 美 美	* * * * *	الم الم <		英 英 英 英 英

1

 $\{ \cdot \}_{i=1}^{n}$

.

Π

10:37 MONDAY, APRIL 20, 1987

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Conters, Ph Date: 4/20/87 D.

0 8

1.1.1.1.1

· 20 •

		Verlf	ed by: M.	ma Go	sters, Ph.	D. Dat	te: <u>4/2</u>	0/87			
	Tabl	e 12b: Quarterly	Non-Migrat	tory Marin	e Animals An	alysis (Bor			· .	_[
• • •								Control Lo	cation: C	÷ .	
Observation Number	Calendar Date	Sample Type	Location	K-40 K-40 (2	0 Zn-6 sigma)	5 Zn-65 (2 sigma	Cs-134 a)	Cs-134 (2 sigma)		in-54 2 signa)	Zr(Nb)-95
430 431 432 433 433 435 435 436 437	03/04/86 03/05/86 03/05/86 03/07/86 05/12/86 05/15/86 05/15/86 05/15/86	bay mussel spiny lobster bay mussel spiny lobster bay mussel sheephead black perch keyhole limpet	A B C C	0.87 0 0.15 0 0.80 0 0.16 0 0.30 0 0.00 0	.05 0.00 .07 0.00 .05 0.00 .10 0.00 .06 0.00 .10 0.00 .06 0.00 .00 0.00 .00 0.00	0.07 0.10 0.06 0.09 0.10 0.10	0 0 0 0 0 0 0	$\begin{array}{c} 0.009 \\ 0.007 \\ 0.010 \\ 0.006 \\ 0.009 \\ 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \end{array}$	0 0 0 0 0 0 0 0	0.02 0.01 0.02 0.01 0.02 0.03 0.03 0.03	0 0 0 0 0 0 0 0
Observation Number	Calendar Date	Zr(Nb)-95 Cs-13 (2 sigma)	17 Cs-137 (2 sign	Co-57 Na)	Co-57 . (2 si gma)	Mo{Tc}-99	Mo(Tc)-99 (2 sigma)		Ce-141 (2 sigma)	Co-58	Co-58 (2 stgma)
430 431 432 433 434 435 436 437	03/04/86 03/05/86 03/05/86 03/07/86 05/12/86 05/15/86 05/15/86 05/15/86	0.05 0 0.04 0 0.05 0 0.03 0 0.05 0 0.06 0 0.06 0 0.04 0	0.009 0.007 0.010 0.009 0.030 0.030 0.030		0.020 0.010 0.020 0.010 0.020 0.020 0.020 0.020 0.009		20 7 10 6 400 600 1000 400		0.09 0.07 0.10 0.06 0.09 0.10 0.10 0.09	0 0 0 0 0 0 0	0.02 0.01 0.02 0.01 0.02 0.04 0.03 0.02
Observation Number	CalendarR Date	u-103 Ru-103 ((2 sigma)	e-144 Ce-1 (2 s	44 Fe-! ilgma)	59 Fe-59 (2 sigma)	Ru-106 Ru- (2	-106 Ra- sigma)	226 Ra-226 (2 stg	Co-60 Ma)	Co-60 (2 sigma	•
430 431 432 433 434 435 435 435 437	03/04/86 03/05/86 03/05/86 03/07/86 05/12/86 05/15/86 05/15/86 05/15/86	$\begin{array}{cccc} 0 & 0.020 \\ 0 & 0.010 \\ 0 & 0.020 \\ 0 & 0.010 \\ 0 & 0.020 \\ 0 & 0.060 \\ 0 & 0.060 \\ 0 & 0.030 \end{array}$	0 0. 0 0. 0 0. 0 0. 0 0.	09 0 07 0 10 0 06 0 09 0 10 0 10 0 09 0 09 0	0.09 0.07 0.10 0.06 0.09 0.10 0.10 0.09		0.09 0 0.07 0 0.10 0 0.06 0 0.09 0 0.20 0 0.20 0 0.20 0	0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04	0.017 0.000 0.005 0.000 0.000 0.000	$\begin{array}{c} 0.009\\ 0.020\\ 0.020\\ 0.002\\ 0.009\\ 0.030\\ 0.020\\ 0.020\\ 0.020\\ 0.020\end{array}$	· ·
Observation [•] Number	Calendar Date	Ag-110m Ag-110m (2 sign) Th-228 a)	Th-228 (2 sigmi	1-131 I a) (-131 E 2 sigma}	Bound H-3	Bound H-3 (2 sigma)	Aqueous H	-3 Aque	ous H-3 sigma)
430 431 432 433 434 435 436 435	03/04/86 03/05/86 03/05/86 03/07/86 05/12/86 05/15/86 05/15/86 05/15/86	0.000 0.020 0.000 0.007 0.000 0.020 0.000 0.020 0.000 0.020 0.000 0.020 0.000 0.020 0.000 0.020 0.000 0.020 0.000 0.030 0.000 0.030 0.000 0.030 0.000 0.030 0.000 0.030	0 0 0 0 0	0.04 0.03 0.04 0.02 0.04 0.04 0.04 0.04		0.2 0.2 0.2 0.3 0.6 1.0 0.5	첫 첫 첫 첫 첫 첫	* * * * *	년 16 16 16 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17		授 通 通 通 通 通 通 通 通 通 通 通 通 通

i

I-40

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Minor Contern ph.D. Date: 4/20/87

Table 12b: Quarterly Non-Migratory Marine Animals Analysis (Bone Type)

				·			· · · · · · · · · · · · · · · · · · ·	·		Control Loc	ation: (;	
•	Observation Number	Calendar Date	Sample Type	Location	K-40	K-40 (2 sigma)	Zn-65	Zn-65 (2 sigma)	Cs-134)	Cs-134 (2 sigma)	Mn-54	Mn-54 (2 sigma)	Zr(Nb)-95
· ·	438 439 440 441 442 443 444 445	05/16/86 05/16/86 05/20/86 05/20/86 05/21/86 05/21/86 08/05/86	spiny lobster spiny lobster black perch sheephead sheephead black perch sheephead	A B C A B A B B	$\begin{array}{c} 0.91 \\ 1.11 \\ 0.91 \\ 0.80 \\ 2.00 \\ 0.60 \\ 0.40 \\ 0.70 \end{array}$	0.07 0.07 0.40 1.00 0.30 0.30 0.20	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.07 0.07 0.09 0.10 0.10 0.10 0.10		0.007 0.007 0.030 0.030 0.020 0.030 0.030 0.030 0.030	0 0 0 0 0 0 0	0.01 0.01 0.03 0.02 0.02 0.03 0.03	0 0 0 0 0 0 0 0
	Observation Number	Calendar Date	Zr(Nb)-95 Cs-1 (2 sigma)	37 Cs-137 (2 sig	C ma)	0-57 Co-5 (2 s	7 M igma)	10 (T c) - 99	Mo(Tc)-99 (2 sigma)		e-141 [2 sigma]	Co-58	Co-58 (2 sigma)
	438 439 440 441 442 443 445	05/16/86 05/16/86 05/20/86 05/20/86 05/20/86 05/21/86 05/21/86 08/05/86	0.03 0 0.03 0 0.05 0 0.06 0 0.05 0 0.06 0 0.05 0 0.06 0 0.05 0 0.06 0 0.05 0	0.00 0.00 0.04 0.03 0.03 0.03 0.04 0.03	7 7 0 0 0	0 0. 0 0. 0 0. 0 0. 0 0. 0 0.	010 010 020 020 020 020 020 020 020	0 0 0 0 0 0 0 0	30 100 200 90 100 100 20 10	0 0 0 0 0 0 0	0.07 0.07 0.09 0.10 0.10 0.10 0.10		0.01 0.01 0.05 0.03 0.04 0.04 0.04
	Observation Number	CalendarR Date	u-103 Ru-103 (2 sigma)	Ce-144 Ce- (2	144 5 1 9ma)	Fe-59 Fe- (2	59 R sigma)	u-106 Ru-1 (2 s	106 Ra-a sigma)	226 Ra-226 (2 sign	Co-60) Co-60 (2 sigma	
	438 439 440 441 442 443 445	05/16/86 05/16/86 05/20/86 05/20/86 05/20/86 05/21/86 05/21/86 08/05/86	0 0.010 0 0.010 0 0.050 0 0.050	0 0 0 0 0 0 0 0 0 0 0 0	.07 .07 .20 .10 .10 .20 .10	0 0 0 0 0 0 0 0 0 0 0 0 0 0	.07 .07 .07 .10 .10 .10 .10 .10		.07 0 .07 0 .30 0 .20 0 .20 0 .30 0 .30 0	0.03 0.03 0.09 0.05 0.05 0.05 0.05	0.007	0.002 0.010 0.050 0.050 0.020 0.026	
	Observation Number	Calendar Date	Ag-110m Ag-110 (2 sig) m Th-22 jma)	8 Th- (2	228 I- sigma)	131 I-1 (2	31 Bo sigma)	ound H-3	Bound H-3 (2 sigma)	Aqueous	H-3 Aque	ous H-3 sigma)
-	438 439 440 441 442 443 443 445	05/16/86 05/16/86 05/20/86 05/20/86 05/21/86 05/21/86 08/05/86	0.005 0.00 0.000 0.00 0.000 0.00 0.000 0.03 0.000 0.03 0.000 0.03 0.000 0.03 0.000 0.03 0.000 0.03 0.000 0.03 0.000 0.03 0.000 0.03	10 0 10 0 40 0 30 0 30 0 50 0		.03 .03 .05 .05	0	0.2 0.2 0.5 0.6 0.5 0.3 0.3	* * * * *	* * * *	ž ž ž ž		英 英 英 英 英

Τ

10:37 MONDAY, APRIL 20, 1987

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Graders, PLD, Date: 4/20/87

Table 12b: Quarterly Non-Migratory Marine Animals Analysis (Bone Type)

	4					· · · · · · · · · · · · · · · · · · ·			Control Lo	cation: C	!	
	Observation Number	Calendar Date	Sample Type	Location	K-40 K-4 (2	0 Zn-6. sigma)	5 Zn-65 (2 sigma)	CS-13 4	Cs-134 (2 s†gma)	Mn-54	Mn-54 (2 sigma)	Zr (Nb)-95
	446 447 448 450 450 4552 3	08/05/86 08/06/86 08/06/86 08/06/86 08/06/86 08/07/86 08/07/86 08/07/86	black perch sheephead black perch spiny lobster bay mussel sheephead black perch keyhole limpet	B A A B C C C	0.40 0 0.70 0 0.85 0 0.11 0 0.40 0 0.00 0	.40 0.00 .30 0.00 .20 0.00 .06 0.00 .07 0.00 .20 0.00 .20 0.00 .20 0.00 .20 0.00	0.10 0.10 0.06 0.09 0.10 0.10		0.060 0.050 0.040 0.009 0.009 0.040 0.040 0.040 0.040	0 0 0 0 0 0 0	0.06 0.05 0.01 0.02 0.03 0.05 0.02	0 0 0 0 0 0 0
	Observation Number	Calendar Date	Zr(Nb)-95 Cs-1 (2 sigma)	37 Cs-137 (2 sig	Co-57 Na)	Co-57 (2 sigma)	Mo(Tc)-99	Mo(Tc)-99 (2 sigma)	Ce-141 (2e-141 (2 sigma)		Co-58 (2 sigma)
	446 447 448 450 451 452 453	08/05/86 08/06/86 08/06/86 08/06/86 08/06/86 08/07/86 08/07/86 08/07/86	0.06 0 0.06 0 0.03 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0 0.05 0	0.06 0.05 0.05 0.01 0.00 0.04 0.04 0.04		0.040 0.030 0.010 0.020 0.020 0.020 0.020 0.020		10 10 6 20 10 10 20	0 0 0 0 0 0 0	0.10 0.10 0.06 0.09 0.10 0.10 0.09		0.06 0.04 0.06 0.01 0.02 0.04 0.04 0.04
	Observation Number	CalendarR Date	u-103 Ru-103 ((2 sigma)	Ce-144 Ce- (2	l44 Fe-: igma)	59 Fe-59 (2 sigma)	Ru-106 Ru-1 (2 s	LOG Ra-á sigma)	226 Ra-226 (2 sigu	Co-60	Co-60 (2 sigma)
	446 447 448 450 451 452 453	08/05/86 08/06/86 08/06/86 08/06/86 08/06/86 08/07/86 08/07/86 08/07/86	0 0.060 0 0.060 0 0.020 0 0.020 0 0.020 0 0.050	0 0 0 0 0 0 0 0 0 0 0 0	30 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 09 0	0.10 0.10 0.06 0.09 0.10 0.10		.50 0 .40 0 .30 0 .09 0 .09 0 .20 0 .40 0 .20 0	$\begin{array}{c} 0.10\\ 0.10\\ 0.03\\ 0.04\\ 0.05\\ 0.10\\ 0.04 \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.020 0.060 0.010 0.009 0.040 0.040	
8	Observation Number	Calendar Date	Ag-110m Ag-110 (2 sign	n Th-22 na)	Th-228 (2 signa	I-131 I a) (;	-131 Bo 2 sigma)	ound H-3	Bound H-3 (2 sigma)	Aqueous	H-3 Aque (2	ous H-3 sigma)
6 D	446 447 448 449 450 451 452 8 523	08/05/86 08/06/86 08/06/86 08/06/86 08/06/86 08/07/86 08/07/86 08/07/86	0.000 0.060 0.000 0.040 0.000 0.040 0.000 0.010 0.000 0.020 0.000 0.030 0.000 0.050 0.000 0.050 0.000 0.020		$\begin{array}{c} 0.10\\ 0.06\\ 0.03\\ 0.04\\ 0.04\\ 0.05\\ 0.04 \end{array}$		0.4 0.3 0.2 0.3 0.2 0.3 0.2 0.2 0.2	黃黃 黃黃 黃 黃 黃 杨 杨	**************************************	<u>بر</u> پې پې پې		

à

4.1 • • • •

4.83

e 5. a

11

ZL (ND)-95 signa) 00000000 **60** • Co-58 (2 \$1 Aqueous (2 s1gm 00-58 Co-60 (2 51g Mn-54 (2 \$19 00000000 00000000 m Ŧ ю 09-00 Ce-141 (2 \$19ma) Aqueous Mn-54 *** 889999868 889999868 Location 00000000 Listings 00000000 00000000 Ra-226 (2 s19ma) Cs-134 (2 sigma) Mm **5 | 9**8a Ce-141 Ŧ Monitoring Program Database Control Bound (2 s1g 0000000 ***** Date: 4/20/87 a-226 Mo(Tc)-99 (2 sigma) 0000000 Cs-134 M õž ****** Ŧ Type] 00000000 (u-106 [2 sigma] Bound ***** (Bone 66-(ā Zn-65 (2 s12 Ru-106 [Jc] 00000000 Analysis HOMMINAMO I-131 (2 s1; 00000000 0.49 00000000 Ē ZN-65 y Environmental 6805 -57 sigma) 00000000 Quarterly Non-Migratory Marine Animals I-131 20-20 00000000 K-40 (2 s1gma) 9 8 8 ت ک ŝ Th-228 (signa) 00000000 **CO-57** l Company 0000000 Ľ, Mina ce-144 (2 sigma) K-40 Th-228 (2 819B Edison Location 0000000 Verified by: Ce-144 00<000<< 00000000 California Ag-110m (2 \$19ma) Cs-137 spiny lobster spiny lobster sheephead black perch black perch black perch spiny lobster spiny lobster 00000000 Ru-103 [2 sigma] 00000000 Type Zr(Nb)-95 (sigma) 00000000 Southern A9-110m Sample 12b: 103 00000000 5 00000000 Table 08/08/86 08/13/86 11/03/86 11/03/86 11/03/86 11/03/86 11/05/86 CalendarR Date 08/08/86 08/13/86 11/03/86 11/03/86 11/03/86 11/03/86 11/05/86 08/08/86 08/13/86 11/03/86 11/03/86 11/03/86 11/03/86 11/05/86 11/05/86 08/08/86 08/13/86 11/03/86 11/03/86 11/03/86 11/03/86 11/03/86 Calendar Date Calendar Date Calendar Date servation Number Observation Number 6 5 servat 1 Number Servat! Number 40000000 900000000 94444444 ğ ã

I-42

10:37 MONDAY, APRIL 20, 1987 Southern California Edison Company Environmental Monitoring Program Database Listings verified by: Mina Goeders, Date: 4/20/87 ٠D Table 12b: Quarterly Non-Migratory Marine Animals Analysis (Bone Type) Control Location: C Calendar Sample Type Location K-40 K-40 Zn-65 Zn-65 Cs-134 Cs-134 Mn-54 Mn-54 Zr(Nb)-95 Date (2 sigma) (2 sigma) (2 sigma) (2 sigma) 11/06/86 sheephead C 0.60 0.30 0 0.10 Û 0.040 0 0.03 0 11/06/86 black perch Č 0.00 ð.50 0 0.10 Õ 0.020 ō 0.03 ۵ 11/06/86 spiny lobster C 0.62 0.06 Õ 0.06 Ó 0.006 Ô 0.01 0 11/06/86 keyhole limpet Ĉ 0.18 0.09 Ō 0.09 Ô 0.020 Ó 0.02 0 Calendar Zr(Nb)-95 Cs-137 Cs-137 Co-57 Co-57 Mo(Tc)-99 Mo(Tc)-99 Ce-141 Ce-141 Co-58 Co-58 Date (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) 11/06/86 0.05 0 0.040 0 0.020 Û 50 0 0.10 0 0.04 0.05 11/06/86 Ô 0.030 Ô 0.020 ŏ 100 Ŏ 0.10 Ō 0.04 0.03 11/06/86 ٥ 0.006 0 0.010 Õ 30 Ō 0.06 0 0.01 11/06/86 ň

7

465	11/06/86	0.0	i õ		0.020	ŏ	0.009	0	30 40		0	0.06 0.09	- 0 0	0.01
Observation Number	CalendarR Date	u-103 (Ru-103 (2 sigma)	C e-1 44	Ce-144 (2 sig		Fe-59 (2 sigma	Ru-106	Ru-106 R (2 sigma)		Ra-226 (2 sigma	Co-60	Co-60 (2 sigma)	
462 463 464 465	11/06/86 11/06/86 11/06/86 11/06/86	0000	0.050 0.050 0.009 0.040	0000	0.10 0.10 0.06 0.09	0	0.10 0.10 0.06 0.09	0 0 0	0.20 0.20 0.06 0.20	0000	0.04 0.05 0.02 0.04	0 0 0	0.040 0.040 0.006 0.020	• • • • • •
Observation Number	Calendar Date	Ag-11(0m Ag-110 (2 sig)m T jma)	h-228	Th-228 (2 sigma)		1-131 (2 sigma)	Bound H-3		d H-3 /	Aqueous		us H-3 igma)
462 463 465	11/06/86 11/06/86 11/06/86 11/06/86	0000	0.03 0.03 0.00 0.02	50 16	0 0 0	0.04 0.05 0.02 0.04	0 0 0	0.4 0.5 0.2 0.4	¥ ¥ ¥		≚ ¥ ¥	ž ž		Kalan Kalan Kalan

٥

0

â

14.17 f . . . 491 キュエ 4.1 415 **Š** ,

4 1

. .

1.1 * **** 66

.

Ŕ ĩ

1. 4 4.1

4 4.1 9.00

Observation

462

463

464

465

Observation

462

463

464

Number

Number

4.17

.

I-44

· · · · · · · · · · · ·		rn California Verified Semi-Annual I	by: Mr	ina Con	eters, Ph.). Date:	4/20/87	-		
Observation Number	Calendar Date	Sample Type	Locatio	n Be-7	Be-7 (2 sigma)	Zr(Nb)-		rol Locati)-95 Cs gmal	-134	Cs-134 (2 sigma)
91 92 93 94 95 96 97 98	06/25/86 06/25/86 06/25/86 11/10/86 11/10/86 11/10/86 11/13/86	cucumber corn kale tomato cauliflower kale tomato tomato	1 1 2 2 1 2 2 1		0.01 0.08 0.04 0.02 0.02 0.04 0.02 0.04 0.02 0.01	0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	04 30 10 05 06 10 06	0 0 0 0 0 0 0 0	0.0010 0.0080 0.0040 0.0020 0.0020 0.0020 0.0030 0.0010 0.0009
Observation Number	Calendar Date	K-40 K-4 (2	0 i stgmą)	Ru-103	Ru-103 (2 sigma)	Cs-137	Cs-137 (2 sigma)	Co-58	Co-58 (2 sigi	Ag-110m Na)
91 92 93 94 95 96 97 98	06/25/86 06/25/86 06/25/86 11/10/86 11/10/86 11/10/86 11/10/86 11/13/86	15.40 0 2.80 0 1.60 0 2.20 0 2.60 0 1.17 0	.04 .80 .10 .10 .10 .10 .06 .09	0 0 0 0 0 0 0	0.004 0.030 0.010 0.005 0.006 0.010 0.006 0.005	0.0000 0.0037 0.0100 0.0000 0.0000 0.0000 0.0000 0.0000	0.0010 0.0080 0.0003 0.0050 0.0010 0.0030 0.0010 0.0010 0.0009	0 0 0 0 0 0 0	0.00 0.01 0.00 0.00 0.00 0.00 0.00	0 0 7 0 2 0 3 0 7 0 3 0
Observation Number	Calendar Date	Ag-110m (2 sigma)	Ce-141	Ce-141 (2 sigma)	Co-60	Co-60 (2 sigma)	1-131	I-131 (2 sigma)	Ce-	144 Ce-144 (2 sigma)
91 92 93 94 95 96 97 98	06/25/86 06/25/86 06/25/86 06/25/86 11/10/86 11/10/86 11/10/86 11/13/86	0.002 0.010 0.007 0.002 0.003 0.007 0.003 0.002		$\begin{array}{c} 0.004 \\ 0.030 \\ 0.010 \\ 0.005 \\ 0.006 \\ 0.010 \\ 0.006 \\ 0.005 \end{array}$		0.002 0.010 0.007 0.002 0.003 0.007 0.003 0.003 0.002		0.001 0.008 0.004 0.002 0.002 0.004 0.002 0.001		$\begin{array}{c} 0.008\\ 0.050\\ 0.030\\ 0.010\\ 0.010\\ 0.030\\ 0.010\\ 0.010\\ 0.009\end{array}$

ł

M=

5

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Minia Genters, Ph.D. Date: <u>4/20/87</u>

Table 135: Semi-Annual Local Crops Tritium and Strontium Activities

Contro	L Locat	lon: #2
--------	---------	---------

Observation Number	Calendar Date	Sample Type	Location	Sr-89	Sr-89 (2 sigma)	sr-90	Sr-90 (2 sigma)	Bound H-3	Bound H-3 (2 sigma)	Aqueous H-3	Aqueous H-3 (2 sigma)
157 158 159 160 161 162 163 164	06/25/86 06/25/86 06/25/86 11/10/86 11/10/86 11/10/86 11/13/86	cucumber corn kale tomato cauliflower kale tomato tomato	1 2 2 1 2 2 1	***	* * * * *	0.000 0.010 0.000 0.000 0.001 0.011 0.000 0.000	0.001 0.010 0.006 0.002 0.002 0.005 0.002 0.002		0.08 0.50 0.30 0.10 0.10 0.30 0.10 0.09		0.003 0.020 0.008 0.004 0.004 0.008 0.003 0.003

N=

- 41 - 41

3.4

	Southern California Edison Company Environmental Monitoring Program Database Listin Verified by: Minor Gesters, Ph. D. Date: 4/20/87 Table 14: Annual Soil Analysis										
	• • • • • • • • • • • • • • • • • • •	· · ·		· · · · · · · · · · · · · · · · · · ·		Control Location: #4					
Observation Number	Calendar Date	Location	Be-7 Be-7 (2 sigmu	Zr (Nb)-95 a)	Zr(Nb)-95 (2 sigma)	Cs-134 Cs-1 (2 s	134 K-40 51gma)	K-40 (2 sigma)	Ru-103		
55 56 57 58 59	12/17/86 12/17/86 12/18/86 12/18/86 12/18/86	1 2 3 4 5	0 0.3 0 0.3 0 0.3 0 0.3 0 0.3 0 0.3	0 0 0 0	0.1 0.1 0.1 0.1 0.1		.05 17.4 .05 5.8 .05 14.4 .05 18.0 .05 15.1	0.9 0.3 0.7 1.0 0.8	0 0 0 0		
Observation Number	Calendar Date	Ru-103 (2 sigma)		Cs-137 Co (2 sigma)	-58 Co-58 (2 sig	Ag-110: jma)	n Ag-110m (2 sigma)	Ce-141	Ce-141 (2 sigma)		
55 56 57 58 59	12/17/86 12/17/86 12/18/86 12/18/86 12/18/86 12/18/86	0.1 0.1 0.1 0.1 0.1	$\begin{array}{c} 0.11 \\ 0.03 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$	0.02 0.02 0.02 0.02 0.02 0.02	0 0.05 0 0.05 0 0.05 0 0.05 0 0.05		0.05 0.05 0.05 0.05 0.05	0 0 0 0	0.1 0.1 0.1 0.1 0.1 0.1		
Observation Number	Calendar Date	CO-60 CO- (2	60 I-131 sigma)	I-131 (2 s†gma)	Ce-144 Ce-1 (2 s	44 Sr-89 ilgma)	Sr-89 (2 sigma)	sr-90 sr - (2	90 s 1 gma)		
55 56 57 58 59	12/17/86 12/17/86 12/18/86 12/18/86 12/18/86		0.02 0 0.02 0 0.02 0 0.02 0 0.02 0	0.5 0.5 0.5 0.5 0.5).2 ¥).2 ¥).2 ¥	¥ ¥ ¥	0.03 0.02 0.00 0.02	.01 .01 .01 .01 .01		

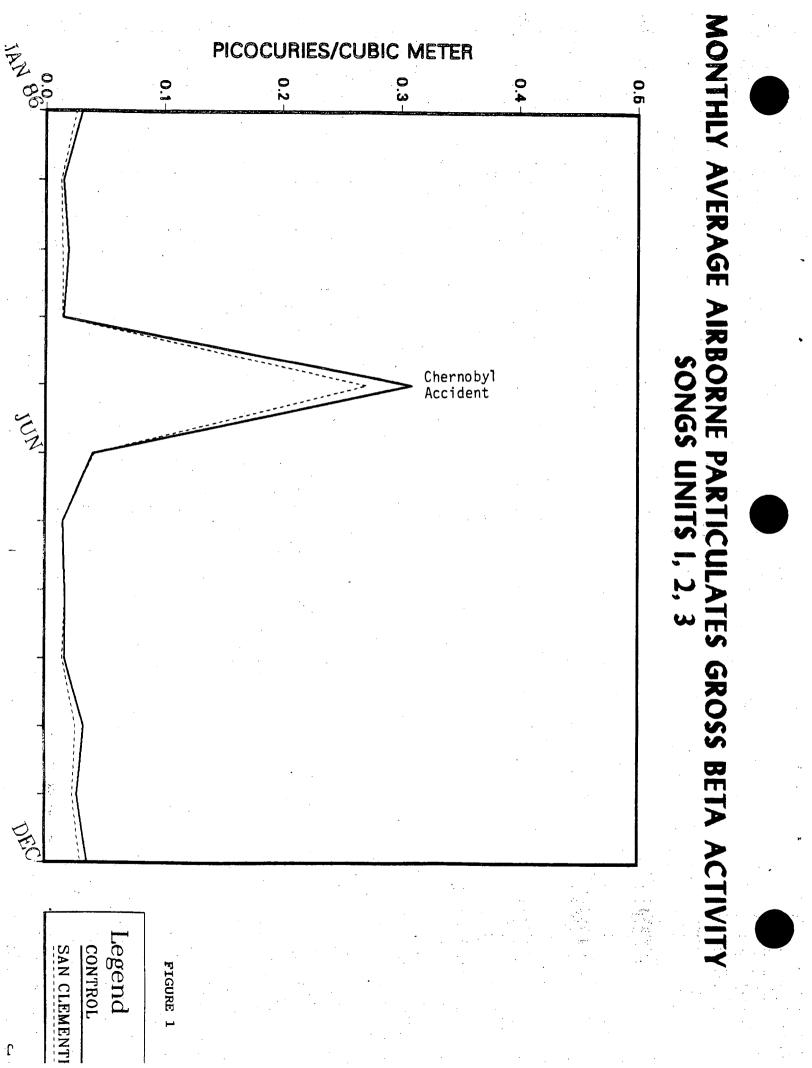
í.

1

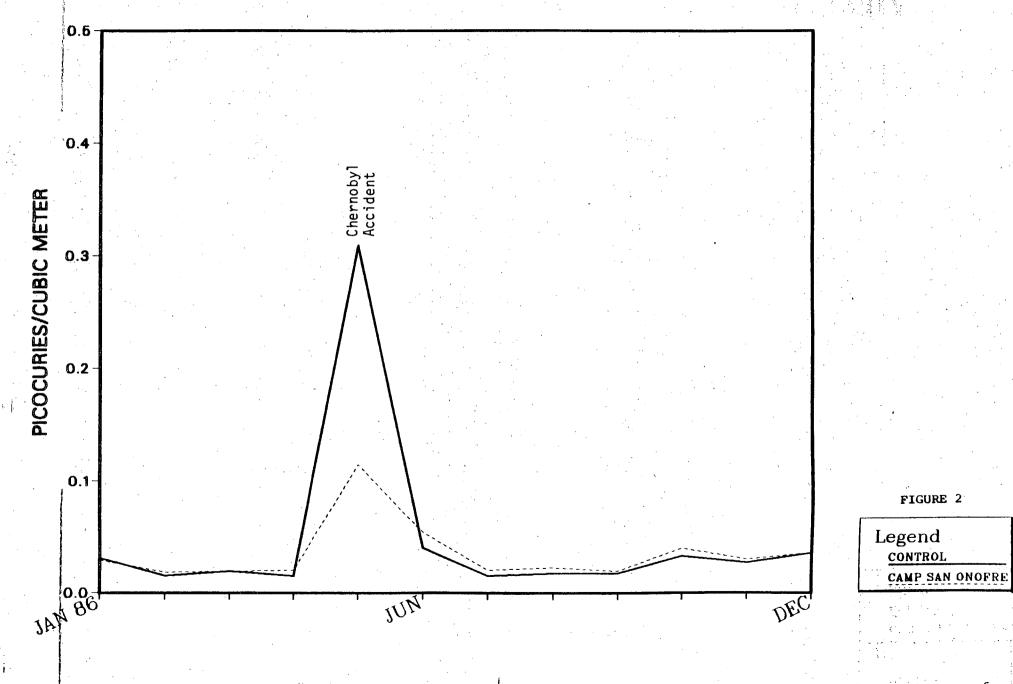
:-46

• •	Tabl	Southern Californ Verifi le 15: Semi-Annual	ed by: <u>Mu</u>	na Gos	ironmental ders, Ph.	Monitoring \mathcal{O}_{\cdot} Date	Program Da a: <u>4/20</u> /	itabase Lis ' <u>87</u>	tings		
			· · · · · · · · · · · · · · · · · · ·				(control Loca	ation: D		
Observation Number	Calendar Date	Sample Type	ocation K-4	0 K-40 (2 s1)	Zn-65 gma)	Zn-65 (2 sigma)	Cs-134)	Cs-134 (2 sigma)	Mn-54 1	4n-54 (2 sigma)	Zr(Nb)-95
99 100 101 102 103 104 105 106	05/14/86 05/14/86 05/14/86 06/16/86 06/16/86 06/16/86 11/18/86 11/18/86	Macrocystis p. Macrocystis p. Macrocystis p. Macrocystis p. Macrocystis p. Macrocystis p. Macrocystis p. Macrocystis p.	A 7.6 B 6.8 D 6.9 A 8.3 B 5.2 D 5.3 A 7.6 B 5.5	0.	3 0 4 0 3 0 2 0 3 0	0.02 0.03 0.02 0.03 0.03 0.02 0.02 0.02	0 0 0 0 0 0 0	0.003 0.006 0.005 0.005 0.004 0.003 0.003 0.003	0 0 0 0 0 0	0.004 0.005 0.005 0.007 0.005 0.005 0.005 0.004 0.004	
Observation Number	Calendar Dat e	Zr(Nb)-95 Cs-13 (2 sigma)	7 Cs-137 (2 sigma)	Co-57	Co-57 (2 signa)	10 (T C)-99	Mo(Tc)-99 (2 sigma)	Ce-141 C	e-141 2 sígma)		o-58 2 sigma)
99 100 101 102 103 104 105 106	05/14/86 05/14/86 05/14/86 06/16/86 06/16/86 06/16/86 11/18/86 11/18/86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0003 0.0002 0.0002 0.0003 0.0050 0.0050		0.004 0.006 0.005 0.007 0.005 0.005 0.005 0.004	0 0 0 0 0 0 0	23233222	0	0.02 0.03 0.02 0.03 0.03 0.02 0.02 0.02		0.004 0.004 0.004 0.007 0.004 0.005 0.005 0.004 0.005
Observation Number	CalendarR Date	u-103 Ru-103 Co (2 sigma)	-144 Ce-144 (2 sigm	Fe-59 a)	'Fe-59 ((2 sigma)	lu-106 Ru-1 (2 s		26 Ra-226 (2 sigma	Co-60	Co-60 (2 sigma)	•
99 100 101 102 103 104 105 106	05/14/86 05/14/86 05/14/86 06/16/86 06/16/86 06/16/86 11/18/86 11/18/86	0 0.010 0 0.009 0 0.010 0 0.010 0 0.009 0 0.009	0 0.02 0 0.03 0 0.02 0 0.03 0 0.03 0 0.03 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02 0 0.02		0.02 0.03 0.02 0.03 0.03 0.02 0.02 0.02		02 0 03 0 02 0 03 0 03 0 03 0 02 0 02 0	$\begin{array}{c} 0.009\\ 0.010\\ 0.009\\ 0.010\\ 0.010\\ 0.010\\ 0.009\\ 0.009\\ 0.008\\ 0.008\end{array}$	0 0 0 0	0.004 0.005 0.007 0.007 0.005 0.005 0.006 0.004 0.004	· • . •
Observation Number	Calendar Date	Ag-110m Ag-110m (2 sigma	Th-228 T	h-228 2 sigma)	I-131 I-1 (2	31 Bo Sigma)	ound H-3 g	ound H-3 / 2 sigma)	Aqueous H	l-3 Aqueo (2 s	us H-3 1gma)
99 100 101 102 103 104 105 106	05/14/86 05/14/86 05/14/86 06/16/86 06/16/86 06/16/86 11/18/86 21/18/86	0 0.003 0 0.004 0 0.005 0 0.005 0 0.004 0 0.004 0 0.004 0 0.003 0 0.003 0 0.003 0 0.003		$\begin{array}{c} 0.009\\ 0.010\\ 0.009\\ 0.010\\ 0.010\\ 0.009\\ 0.009\\ 0.009\\ 0.008 \end{array}$	0.240 (0.129 (0.065 (0.056 (0.049 (0.049 (0.010 0.010 0.008 0.009 0.006 0.006 0.006		0.200.300.200.200.200.200.200.200.200.20	0 0 0 0 0 0 0		007 008 008 010 009

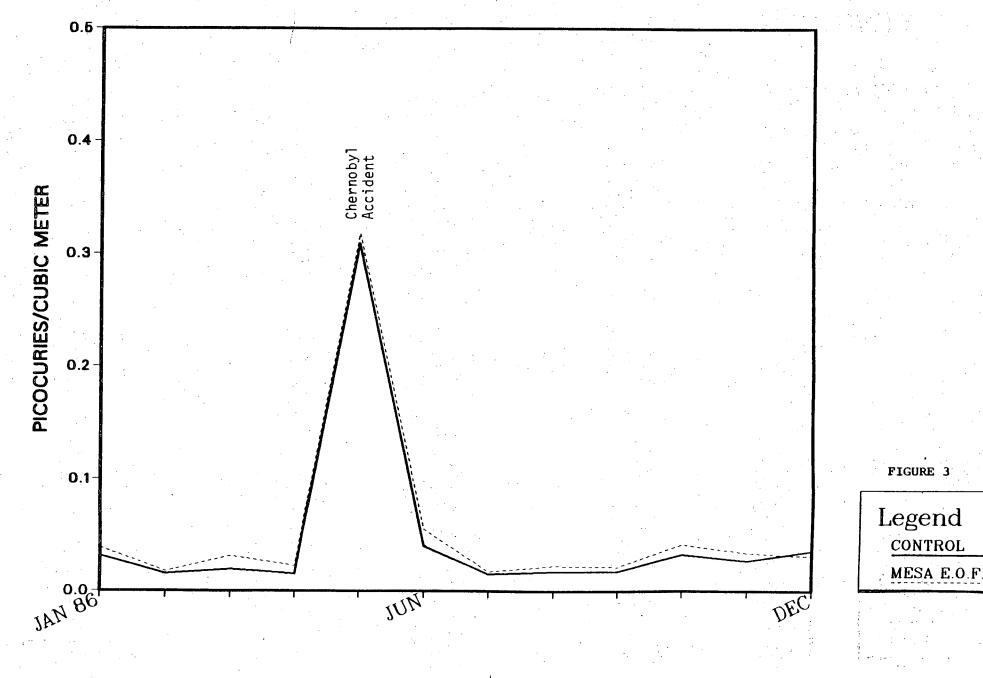
1

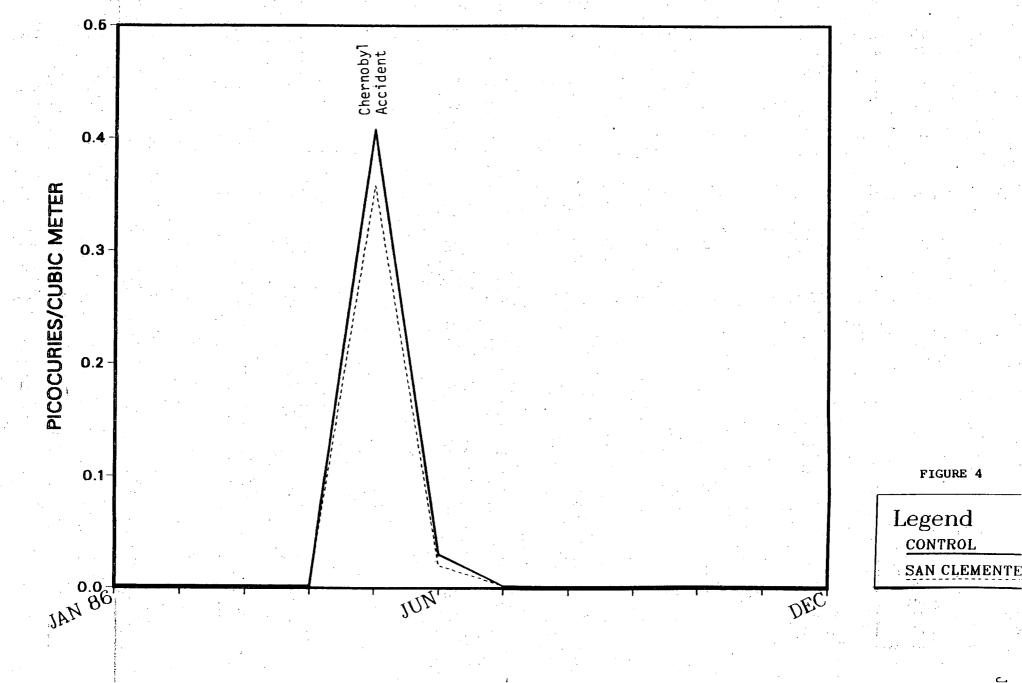

-48

Southern California Edison Company Environmental Monitoring Program Database Listings Verified by: Mina Counters Ph.D. Date: 4/20 182 Table 15: Semi-Annual Kelp Analysis Control Location: D Observation Calendar Sample Type Location K-40 K-40 Zn-65 Zn-65 Cs-134 Cs-134 Mn-54 Mn-54 Zr(Nb)-95 Number Date (2 sigma) (2 sigma) (2 sigma) (2:sigma) 107 11/19/86 macrocystis p. 7.3 0.4 ۵ 0.02 D 0 0.003 0.004 n Λ Observation Calendar Zr(Nb)-95 Cs-137 Cs-137 Co-57 Co-57 Mo(Tc)-99 Mo(Tc)-99 Ce-141 Ce-141 Co-58 Co - 58Number Date (2 signa) (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) 107 11/19/86 0.0034 0.02 0.01 0.0007 0 0.004 0 2 0 0.004 Ce-144 Ce-144 Observation CalendarRu-103 Ru-103 Fe-59 Fe-59 Ru-106 Ru-106 Ra-226 Ra-226 Co-60 Co-60 Number Date (2 s1gma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) 107 11/19/86 0 0.008 0 0.02 0 0.02 Ô 0.02 0.008 Ω 0.005 Δ Th-228 Th-228 Observation Calendar Ag-110m Ag-110m I-131 I-131 Bound H-3 Bound H-3 Aqueous H-3 Aqueous H-3 Number Date (2 sigma) (2 sigma) (2 sigma) (2 sigma) (2 sigma) 107 11/19/86 0.003 0 0.008 0.049 0.005 ٥ 0 0.2 ۵ 0.007 9 Ma e da muzica azarzenteten era


APPENDIX J

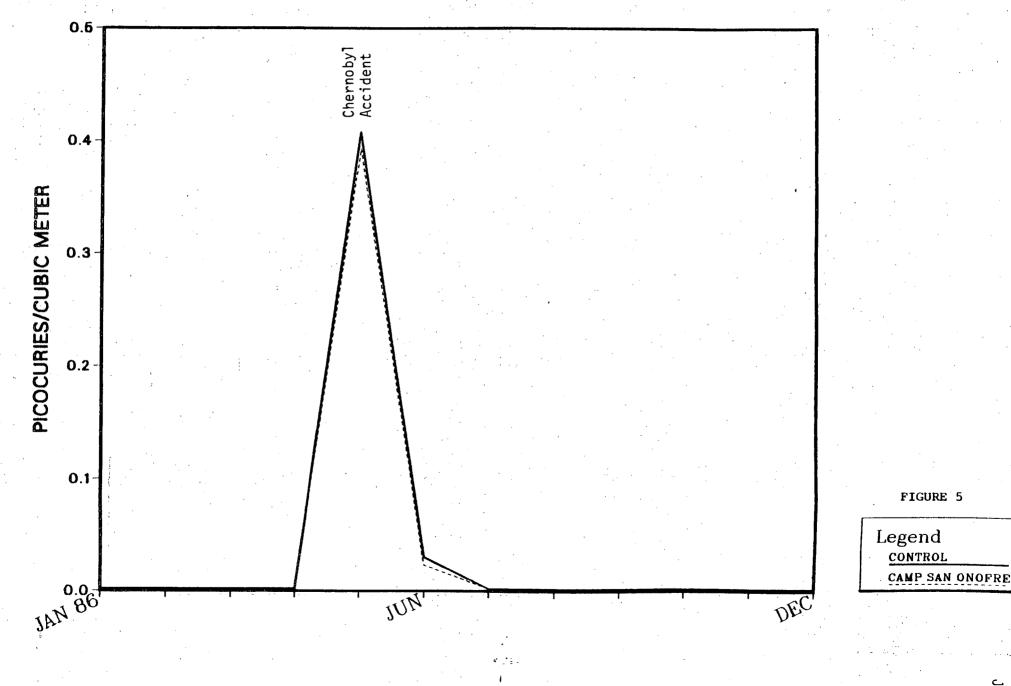
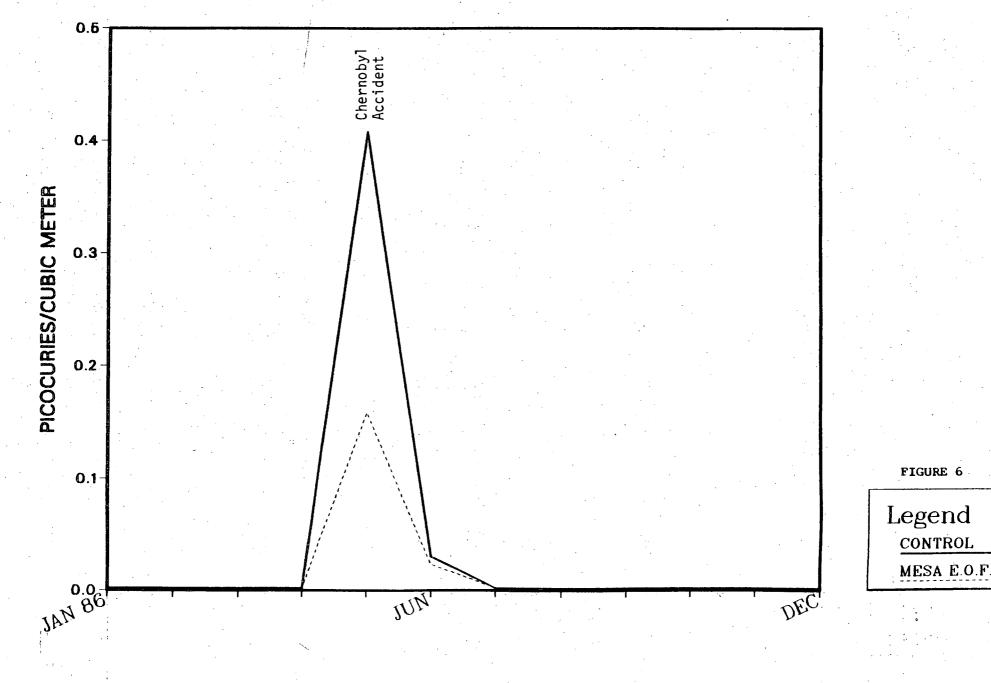
FIGURES

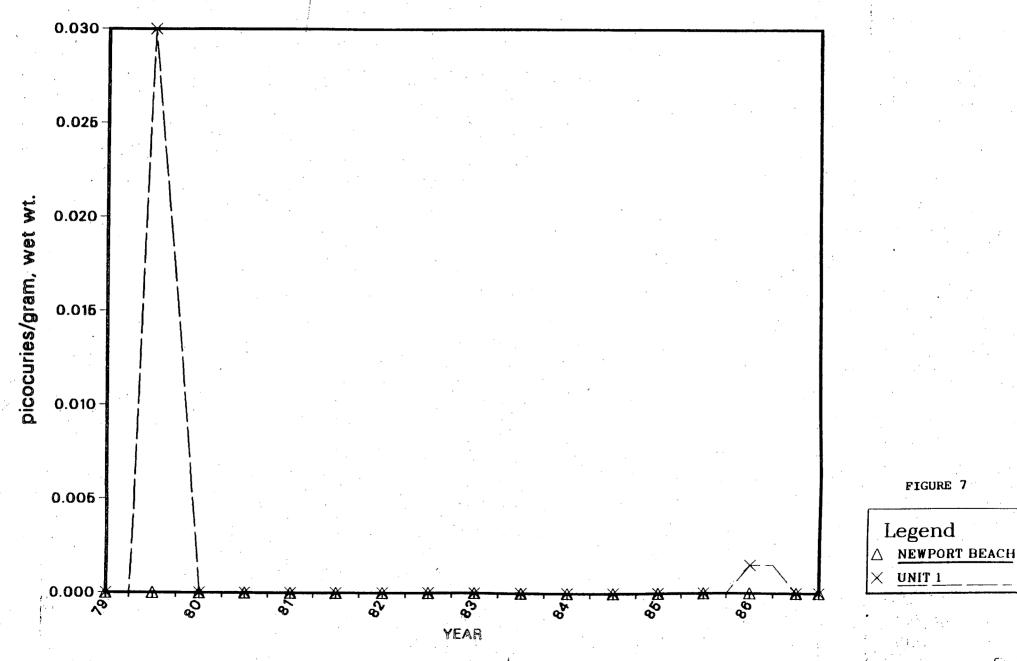



MONTHLY AVERAGE AIRBORNE PARTICULATES GROSS BETA ACTIVITY SONGS UNITS 1, 2, 3

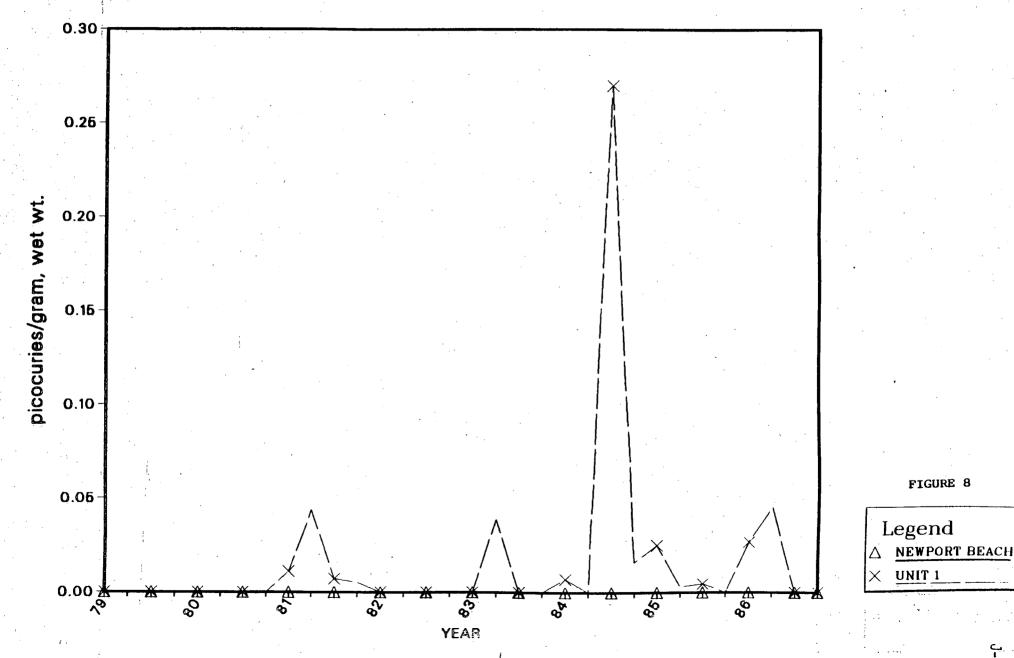
MONTHLY AVERAGE AIRBORNE PARTICULATES GROSS BETA ACTIVITY SONGS UNITS 1, 2, 3

MONTHLY AVERAGE IODINE-131 IN AIR FOR 1986 SONGS UNITS 1, 2, 3

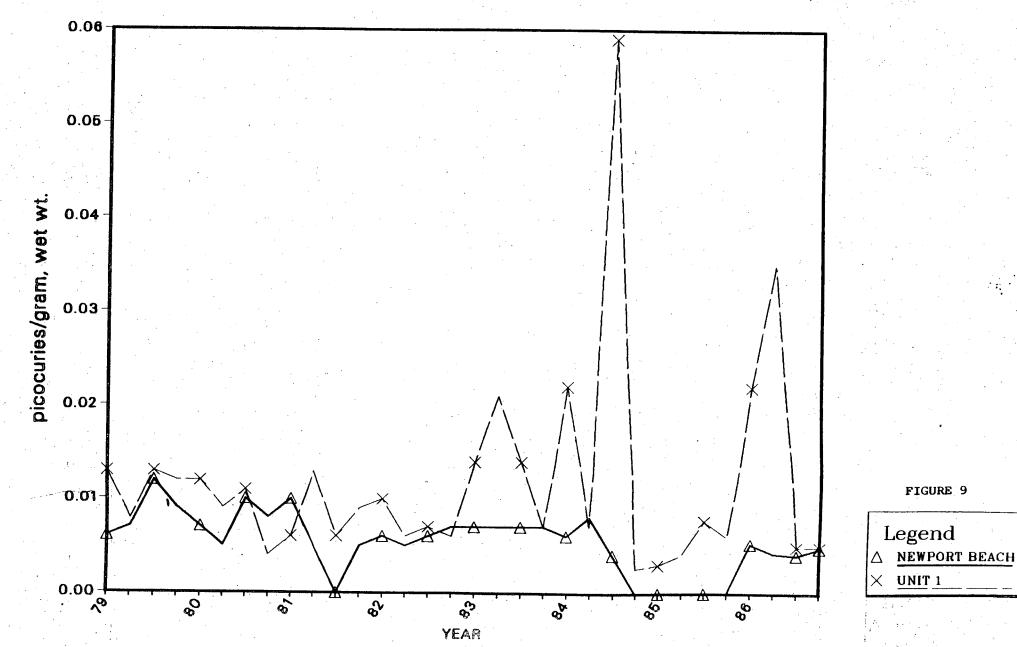



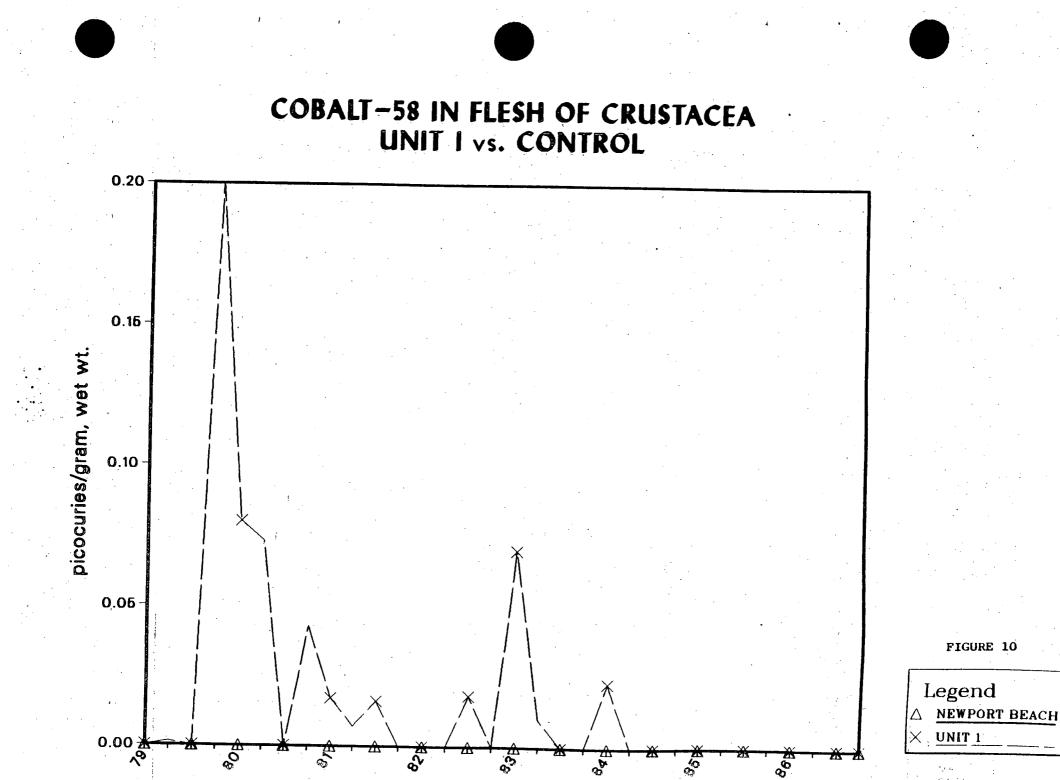

FIGURE 5

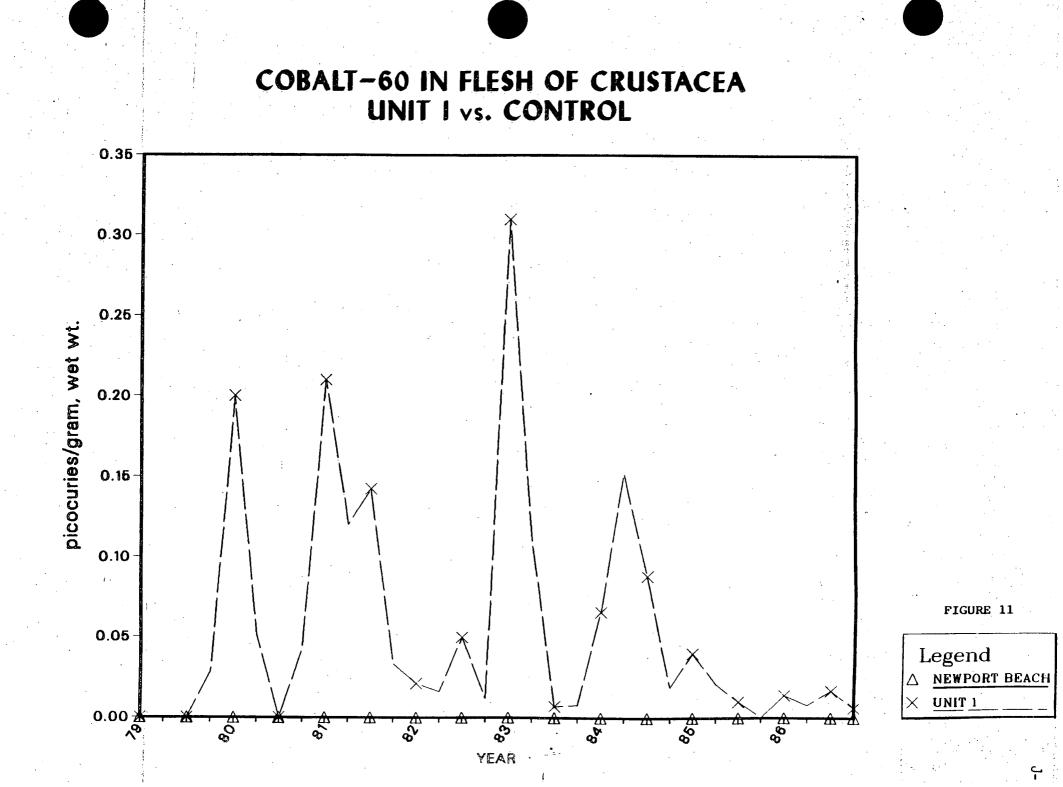
MONTHLY AVERAGE IODINE-131 IN AIR FOR 1986 SONGS UNITS 1, 2, 3



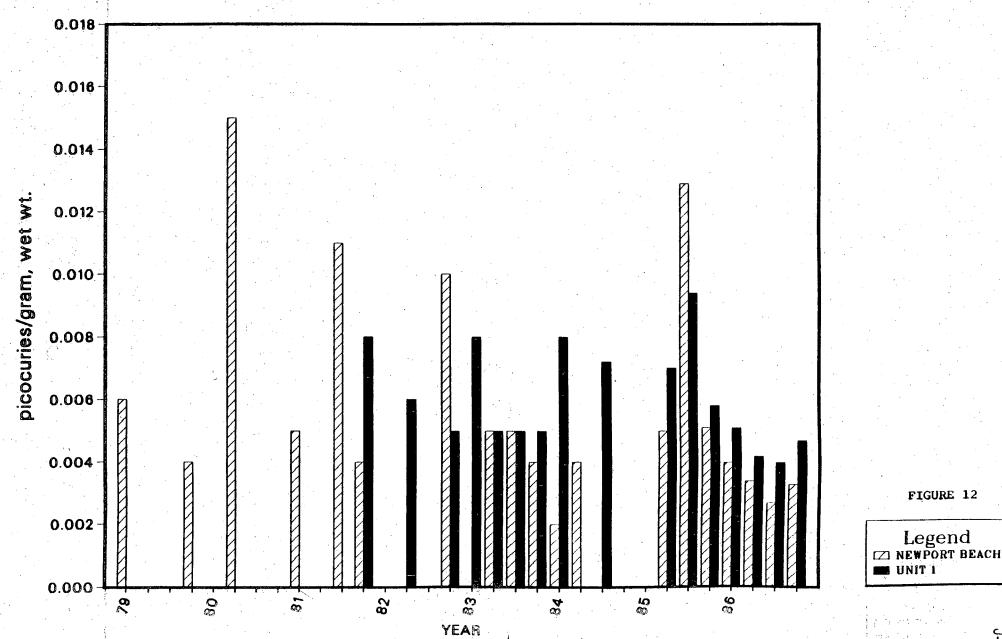
COBALT-58 IN FLESH OF SHEEPHEAD UNIT I vs. CONTROL



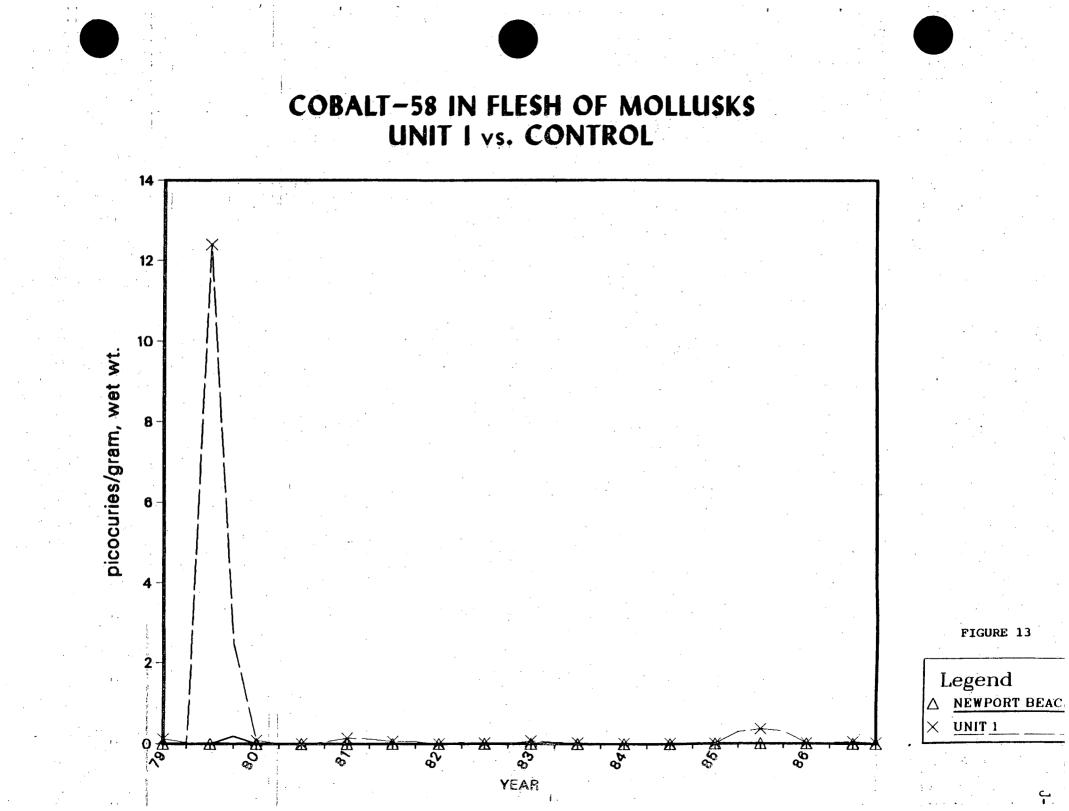

COBALT-60 IN FLESH OF SHEEPHEAD UNIT I vs. CONTROL

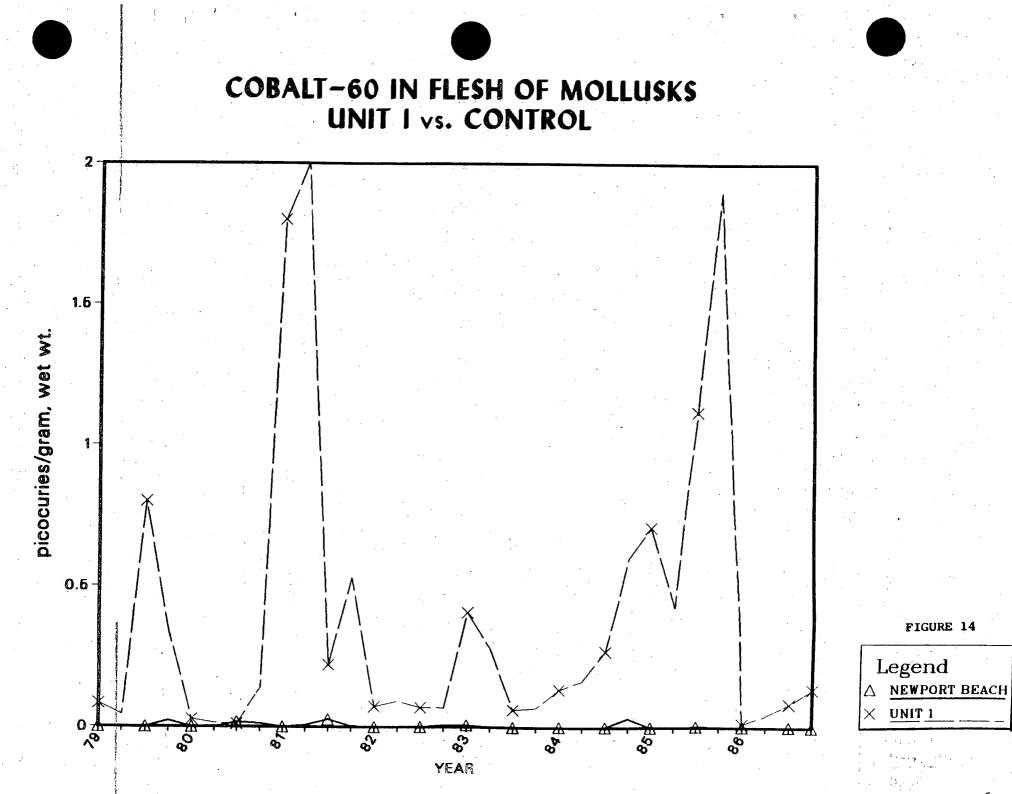

نې m

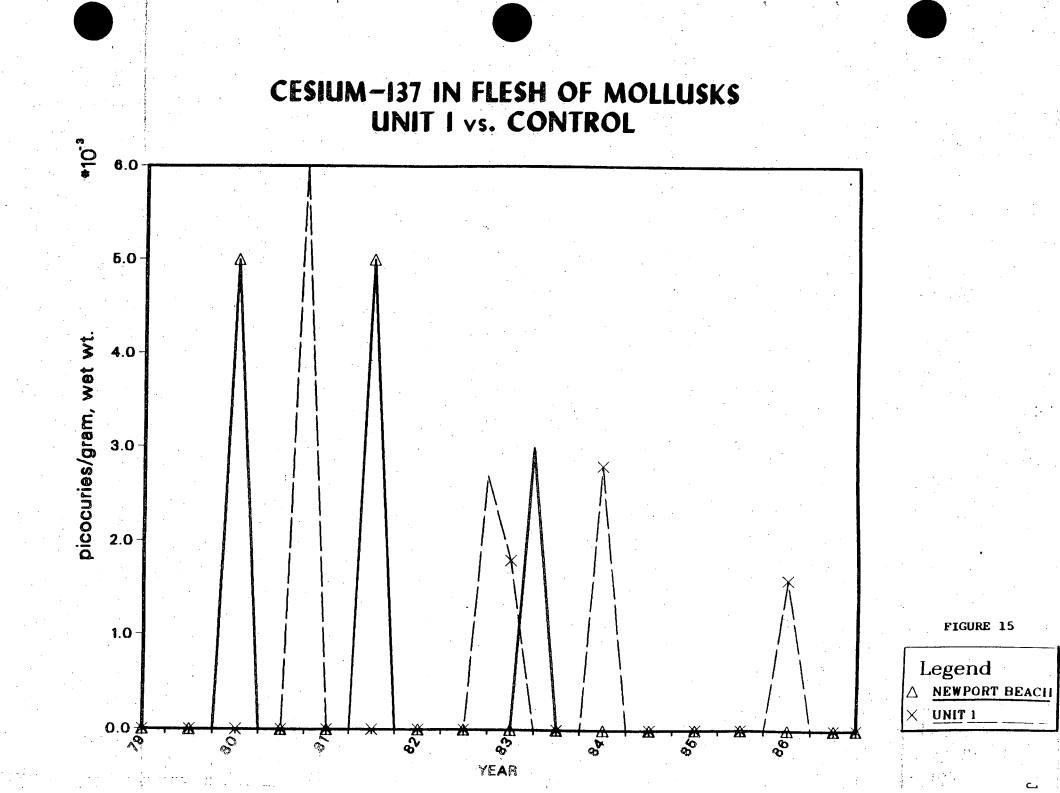
CESIUM-137 IN FLESH OF SHEEPHEAD UNIT I vs. CONTROL

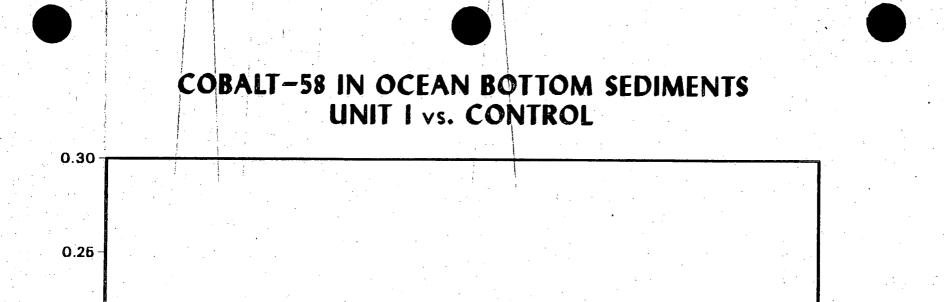


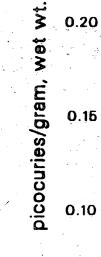
YEAR






CESIUM-137 IN FLESH OF CRUSTACEA UNIT I vs. CONTROL




<u>с</u>.

0.05

0.20

0.00

79

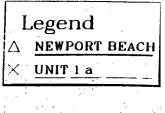
臼 Т 81 80 1 1

ð

82

×

84

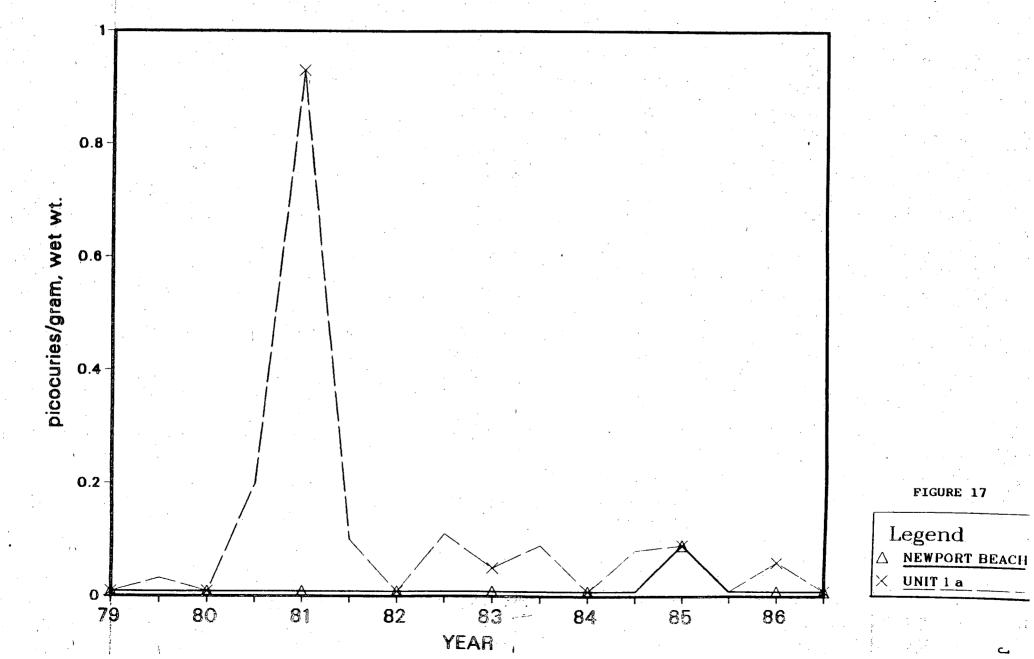

Ž

85

Å

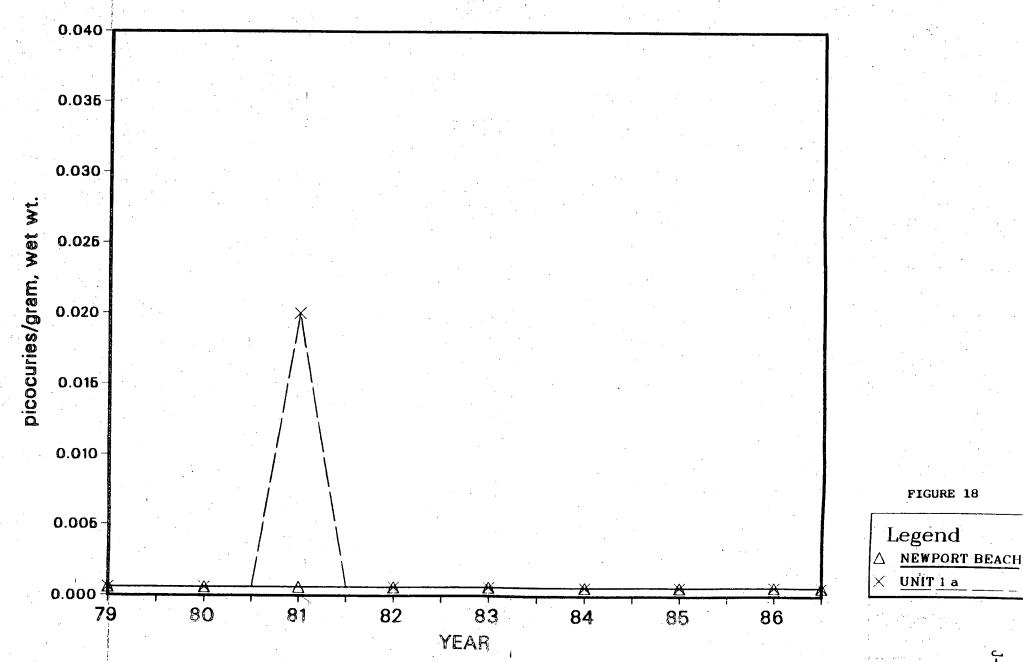
86

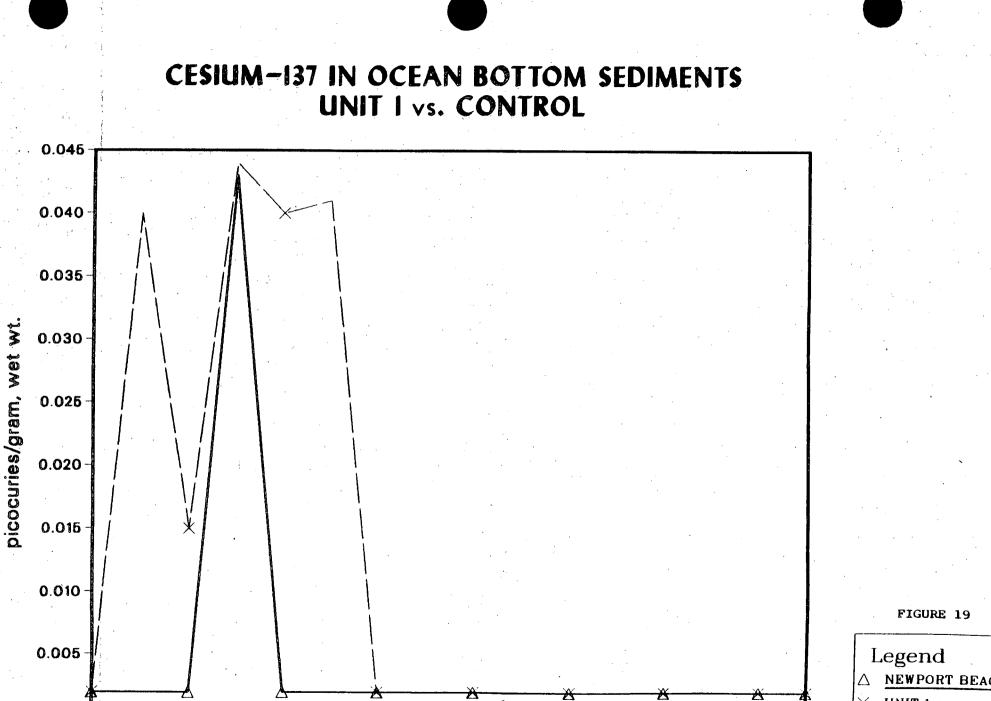
FIGURE 16


ب

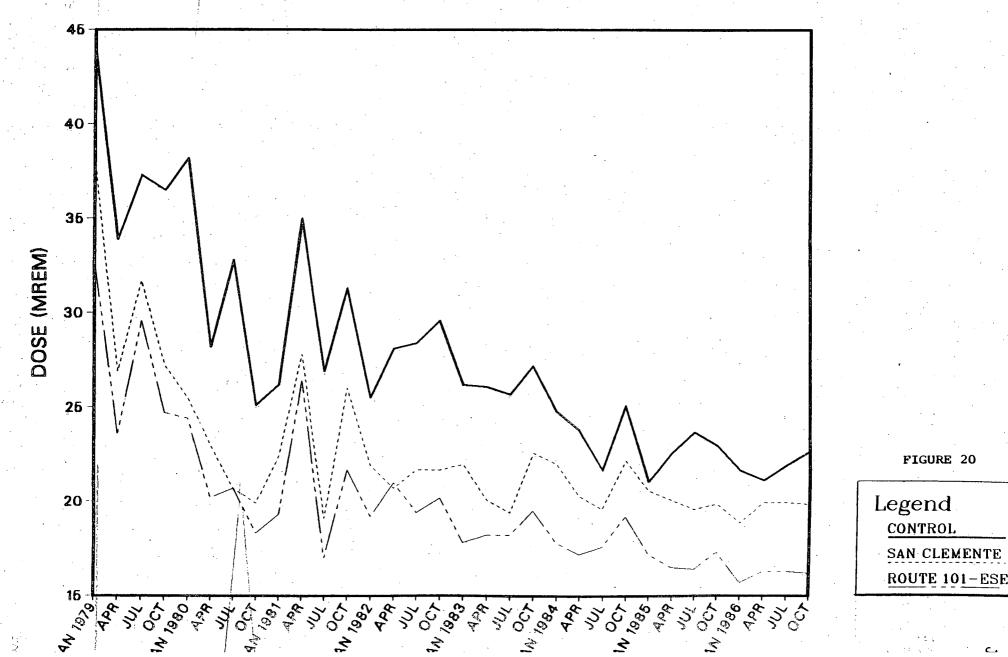
YEAR

83




COBALT-60 IN OCEAN BOTTOM SEDIMENTS UNIT 1 vs. CONTROL

SILVER-IIOm IN OCEAN BOTTOM SEDIMENTS UNIT I vs. CONTROL

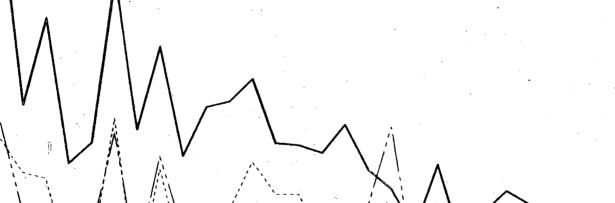


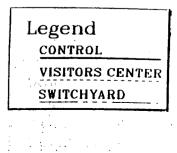
YEAR

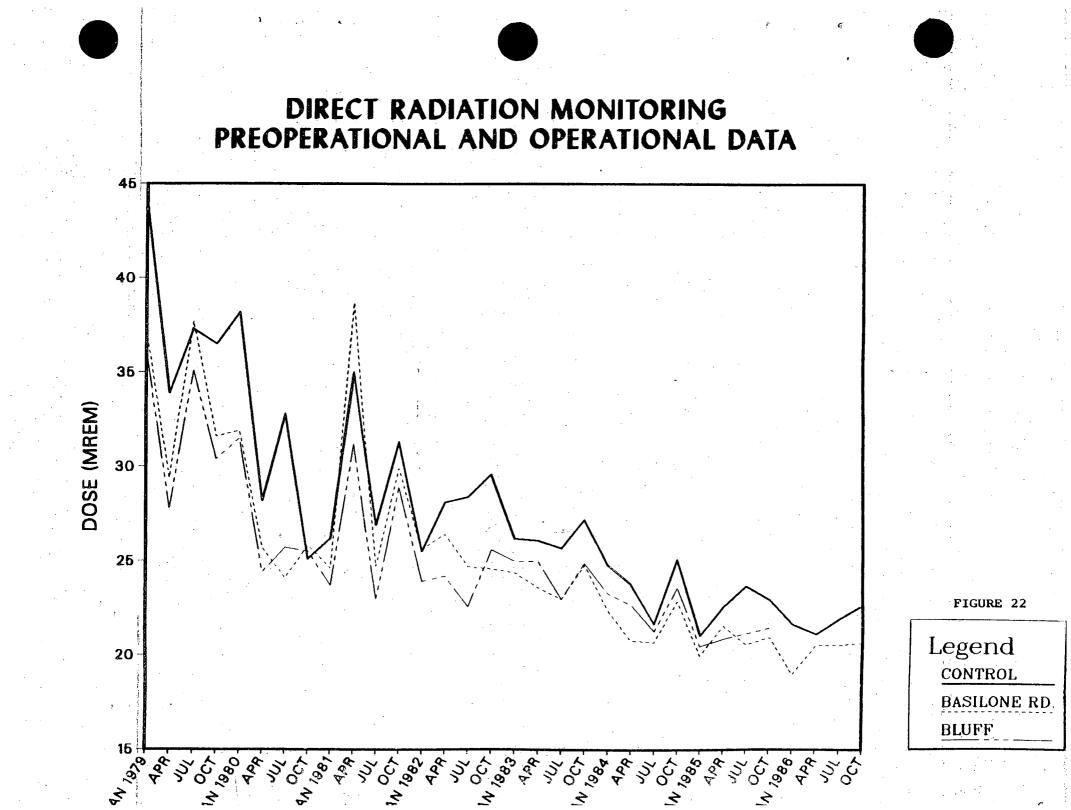
0.000-

 $\Delta \frac{\text{NEWPORT BEACH}}{\text{VINIT 1 a}}$

DIRECT RADIATION MONITORING PREOPERATIONAL AND OPERATIONAL DATA




44, 19,04


1987

DOSE (MREM)

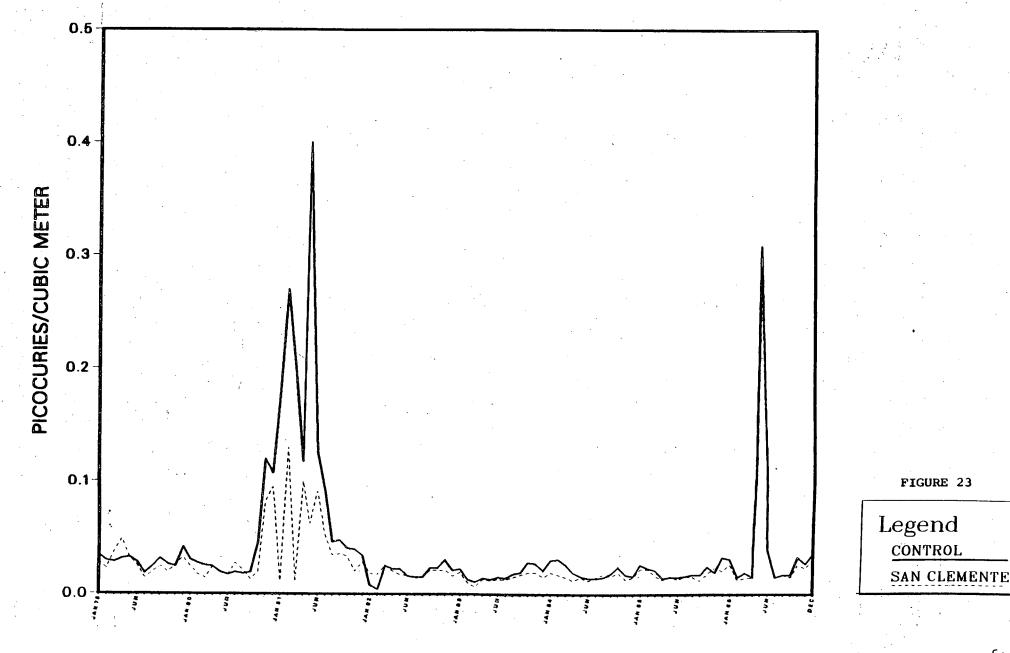
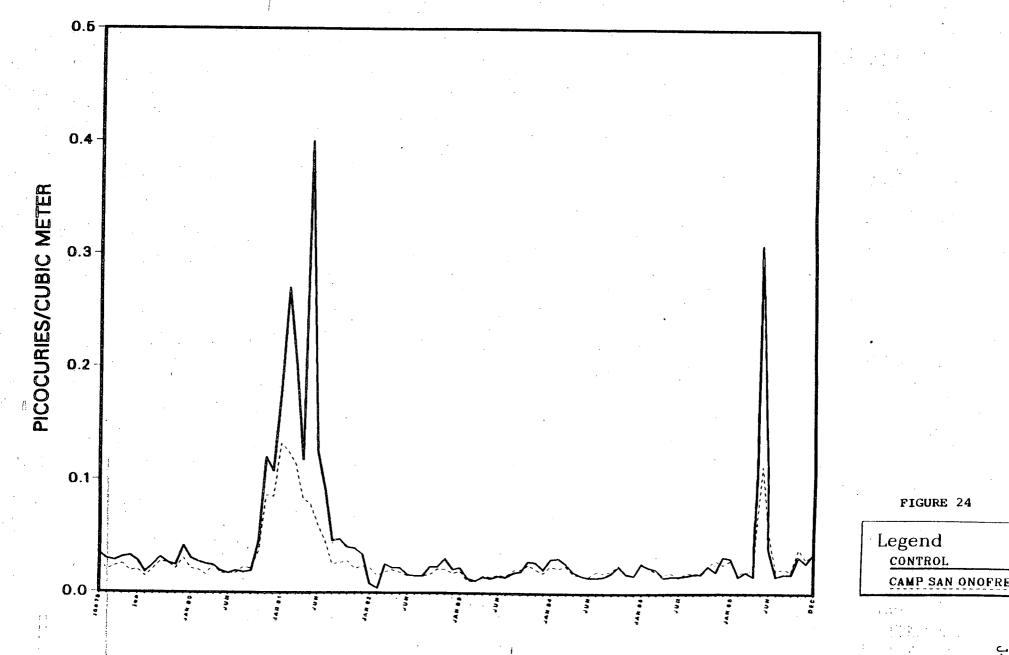


FIGURE 21



AIRBORNE PARTICULATES GROSS BETA ACTIVITY **PREOPERATIONAL AND OPERATIONAL DATA FOR SONGS UNITS 2/3**

AIRBORNE PARTICULATES GROSS BETA ACTIVITY PREOPERATIONAL AND OPERATIONAL DATA FOR SONGS UNITS 2/3

