
Reactor Coolant System, Connected Systems, and Emergency Core Cooling System

NP-PM-0913-4811-NP

Agenda

- Purpose
- Plant overview
- Background
- Design information for select Chapter 5, emergency core cooling system (ECCS) components, and decay heat removal
- NuScale DSRS Chapters 5 and 6 information for NRC development of NuScale DSRS
- Results achieved and next steps

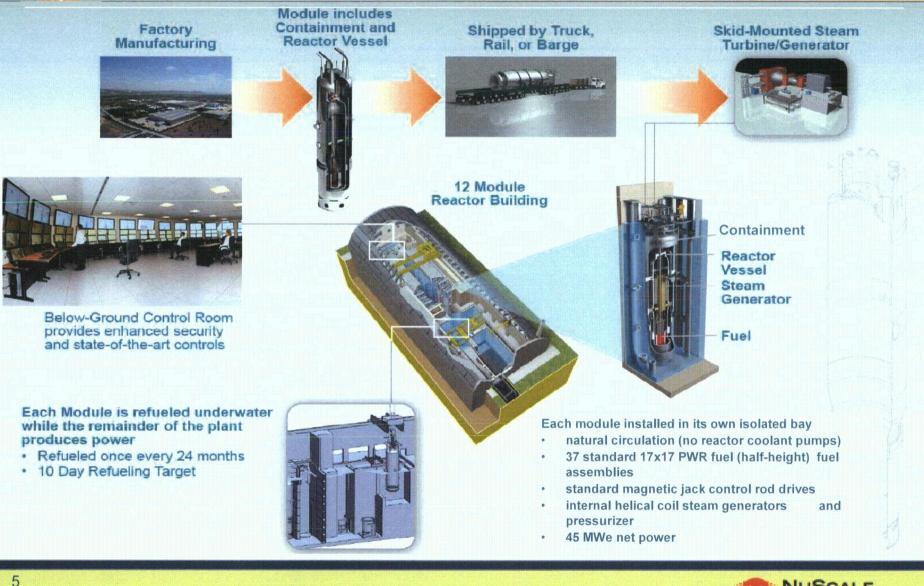
NP-PM-0913-4811-NP

Purpose

- Provide information for NRC development of NuScale DSRS for Chapter 5 and ECCS
 - design information
 - SRP/DSRS information
- Identify need for future DSRS Chapters 5 and 6 engagements

Overview and Background

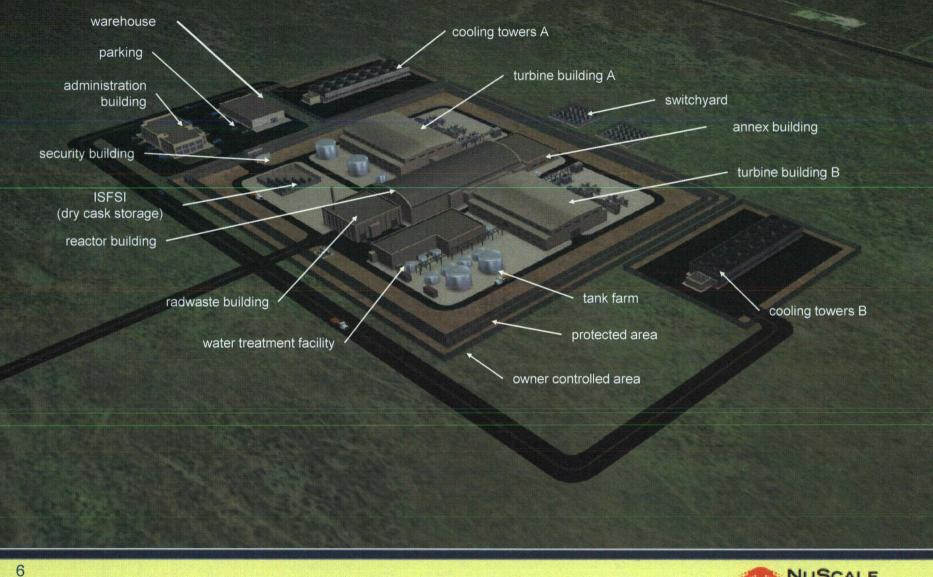
Steve Mirsky, P.E.


Washington DC Licensing Manager

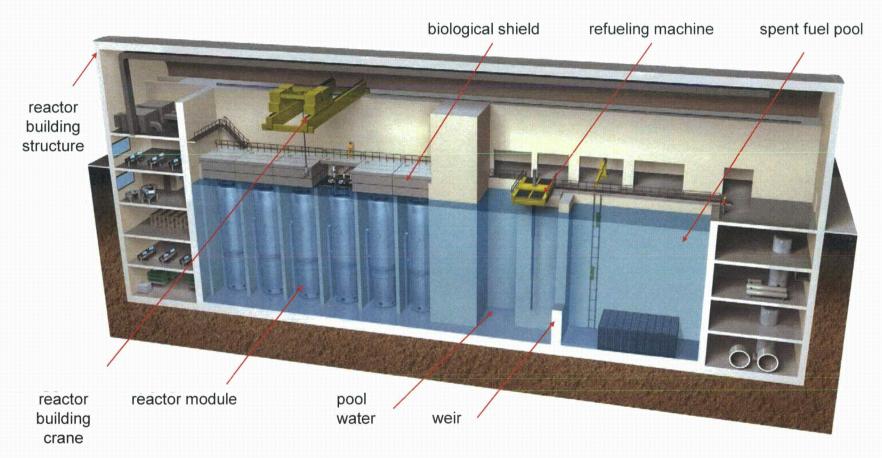
4

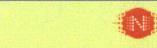
NP-PM-0913-4811-NP

Plant Design Overview



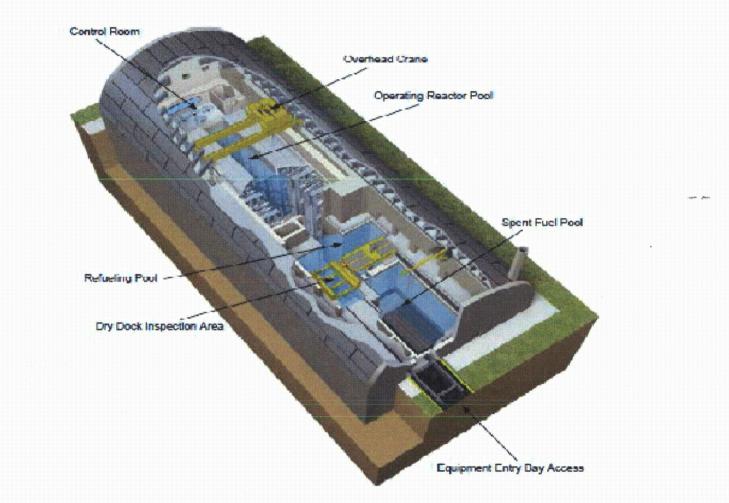
© 2013 NuScale Power, LLC


NP-PM-0913-4811-NP


Site Aerial View

Reactor Building Cross-Section

Reactor building houses reactor modules, spent fuel pool, and reactor pool



NUSCALE POWER[™]

NP-PM-0913-4811-NP

7

Reactor Building Overhead View

NP-PM-0913-4811-NP

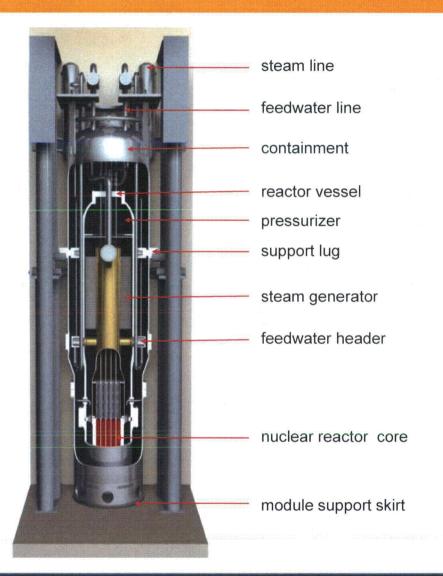
© 2013 NuScale Power, LLC

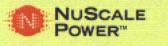
Basic Plant Parameters

Overall Plant

Net electrical output	Up to 540 MW(e)				
Plant thermal efficiency	> 30%				
Number of power generation units	Up to 12				
 Nominal plant capacity factor 	> 95%				
Total plant area	~44 acres				
Power Generation Unit					
Number of reactors	One				
Net electrical output	45 MWe				
Steam generator number	Two independent tube bundles (50% capacity each)				
Steam generator type	Vertical helical coil tube (secondary coolant boils inside tube)				
Steam cycle	Superheated				
Turbine throttle conditions	3.3 MPa (475 psia)				
Steam flow	67.5 kg/s (536,200 lb/hr)				
Feedwater temperature	149° C (300 °F)				
Reactor Core					
Thermal power rating	160 MV/t				
Operating pressure	12.7 MPa (1850 psia)				
 Fuel design 	UO ₂ (< 4.95% U ²³⁵ enrichment); 37 half height 17x17 geometry lattice fuel assemblies; Zircaloy-4 or advanced cladding material; negative reactivity coefficients				
 Refueling interval 	24 months				

9

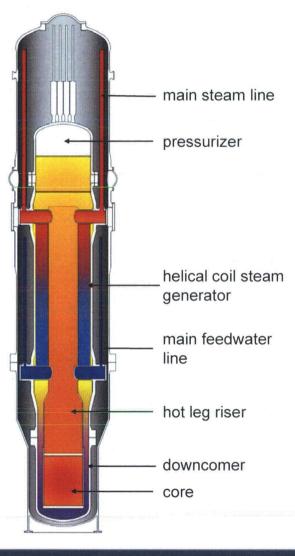

Reactor Module Overview

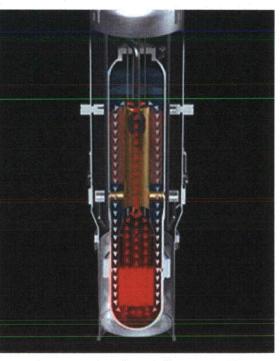

Natural convection for cooling

- passively safe, driven by gravity, natural circulation of water over the fuel
- no pumps, no need for emergency generators

Simple and small

- reactor is 1/20th the size of large reactors
- integrated reactor design, no large-break loss-of-coolant accidents

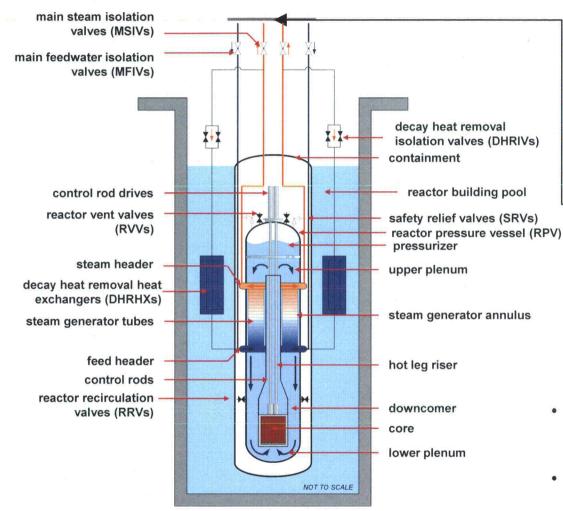


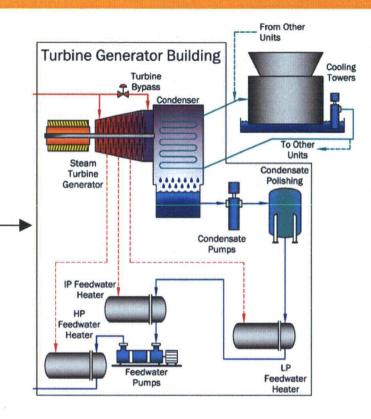

NP-PM-0913-4811-NP

10

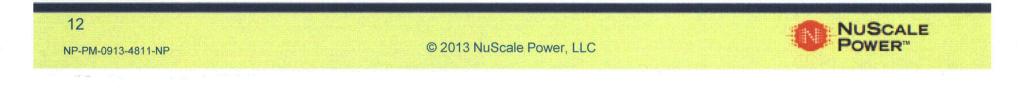
Module Normal Operation

- Primary side
 - natural circulation
 - integral pressurizer
- Secondary side
 - feedwater plenums
 - two helical steam generators
 - steam plenums


primary coolant flow path

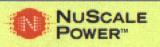

NP-PM-0913-4811-NP

11



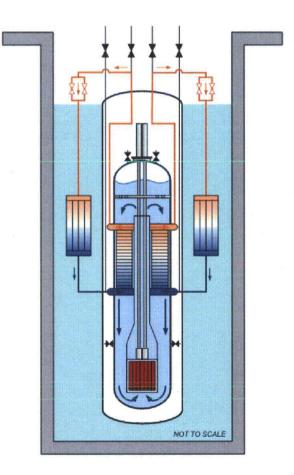
NuScale Power Train

- Each reactor module feeds one T-G train eliminating single-shaft risk
- Small, simple components support short simple refueling outages


Containment Design

High Pressure Containment – Enhanced Safety

- Containment volume sized so that core does not uncover following a LOCA (prevents fuel heat-up)
- Large water pool keeps containment shell cool and promotes efficient post-LOCA steam condensation
- Insulating vacuum
 - significantly reduces conduction and convection heat transfer during normal operation
 - requires no insulation on reactor vessel. Eliminates sump screen blockage issue (GSI-191)
 - improves LOCA steam condensation rates by eliminating air
 - prevents combustible hydrogen mixture in the unlikely event of a severe accident (i.e., little or no oxygen)
 - reduces corrosion and humidity problems inside containment

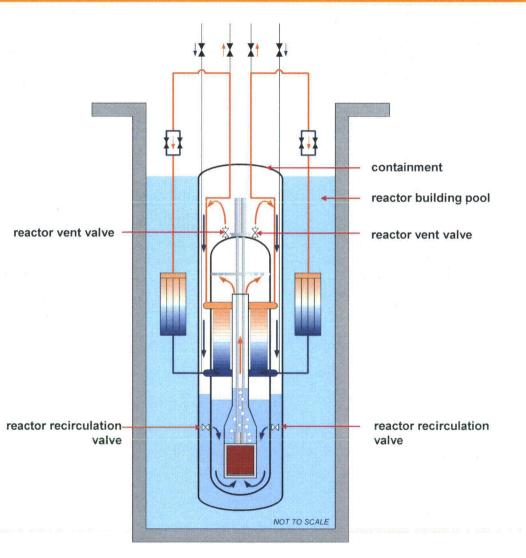


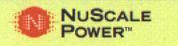

NP-PM-0913-4811-NP

13

Passive Decay Heat Removal System

- Main steam and main feedwater isolated
- Decay heat removal (DHR) isolation valves opened
- Decay heat passively removed via the steam generators and DHR heat exchangers to the reactor pool
- DHR system is composed of:
 - four actuation valves (1 of 4 needed)
 - two heat exchangers (1 of 2 needed)
 - two independent single failure proof trains (1 of 2 trains needed)

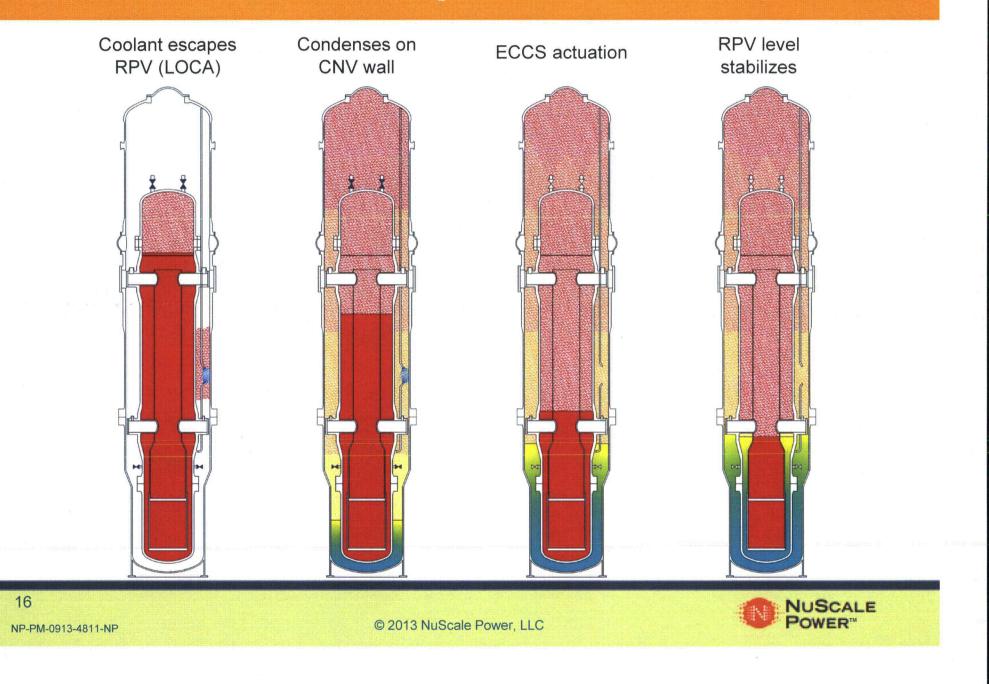



NP-PM-0913-4811-NP

14

Emergency Core Cooling System (ECCS) and Containment Heat Removal System (CHRS)

- Design does not require safety injection. Reactor water inventory is protected by containment isolation.
- Reactor vent valves opened on safety signal
- When containment liquid level is high enough, reactor recirculation valves open
- Decay heat removed
 - condensing steam on inside surface of containment vessel
 - convection and conduction through liquid and both vessel walls



NP-PM-0913-4811-NP

15

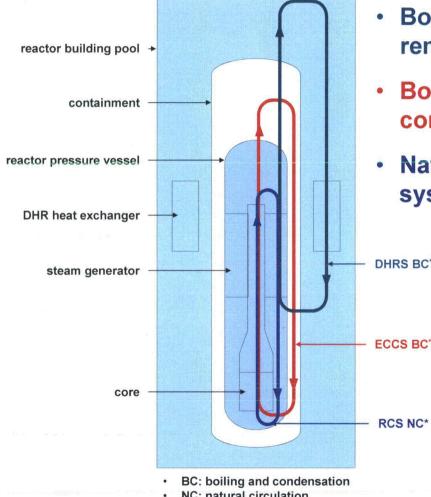
ECCS Accident Operation

Module Component Assembly

.

Design Simplification

- New system
 - containment evacuation
- Eliminated systems
 - containment spray
 - containment fan cooler
 - auxiliary feedwater
 - ECCS injection and recirculation
 - steam generator blowdown
 - main plant electrical generator hydrogen supply


- Eliminated components
 - reactor coolant pumps
 - ECCS pumps, tanks, and RPV injection lines
 - containment sumps and tanks
 - refueling water storage tank
 - reactor coolant hot leg and cold leg piping
 - pressurizer surge line and relief tank
 - reactor vessel and primary coolant system insulation
 - safety-related emergency diesel generators

NP-PM-0913-4811-NP

18

Passive Cooling Systems

- Boiling and condensation in the decay heat removal system (DHRS)
- Boiling and condensation in the emergency core cooling system (ECCS)
- Natural circulation in the reactor coolant system (RCS)

DHRS BC' transient operation

ECCS BC' accident operation

normal operation

NC: natural circulation

NUSCALE

19 NP-PM-0913-4811-NP

Background

- July 2012 submittal: Gap Analysis Summary Report
- May 2013 Federal Register Notice (FRN): mPower DSRS issued for public comment
- June 2013 meetings: NuScale Design-Specific Review Standard development
 - Chapter 6 (Containment Design)
 - Chapters 11 and 12 (by telephone)
- August 2013 meetings: Design and SRP/DSRS information for NRC development of NuScale DSRS Chapters 7, 9, and 10

Design of Select Chapters 5 and 6 Systems and Components

- Chapter 5
 - reactor module
 - reactor coolant system (RCS)
 - RCS vs. reactor coolant pressure boundary (RCPB)
 - pressurizer and pressure control
 - reactor vessel
 - reactor vessel internals
 - steam generators
 - design provisions permitting access for inspections
- Chapter 6
 - emergency core cooling system
- Decay heat removal (DHR) system

NP-PM-0913-4811-NP

Reactor Module

Dr. Tamás Liszkai, P.E.

Reactor Module Design Supervisor

22 NP-PM-0913-4811-NP

Reactor Module Design Status

• Design status

{{

}}^{3(a)-(c)}

Reactor Module Components

{{

NP-PM-0913-4811-NP

© 2013 NuScale Power, LLC

Reactor Module Critical Dimensions

{{

.

.

.

.

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

25

Reactor Module Metal Mass

{{

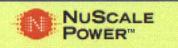
·

.

.

·

}}^{3(a)-(c)}



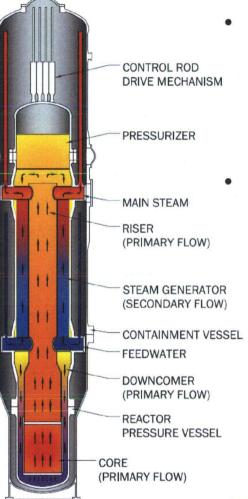
NP-PM-0913-4811-NP

26

Reactor Module Service Conditions

Service Condition	Parameter		CNV	RPV	SG	
Design Conditions	Internal pressure	{{				
	External design pressure					
	Design temperature					}} ^{3(a)-(c)}
Normal operating conditions	Internal pressure	{{	}} ^{3(a)-(}	1850 psia c)	{{	}} ^{3(a)-(c)}
	External pressure {	{				
	Temperature					
						}} ^{3(a)-(c)}

NP-PM-0913-4811-NP

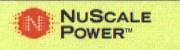

27

Reactor Module Operation

- Primary side
 - natural circulation
 - integral pressurizer
- Secondary side
 - feedwater plenums
 - two independent helical steam generators
 - steam plenums
- Containment

small, dry, high pressure capable

}}^{3(a)-(c)}



- Safety heat removal
 - ECC primary side
 - natural circulation inside CNV to RPV
- DHR secondary side
 - natural circulation within feedwater (FW) and main steam (MS) lines thru DHR

NP-PM-0913-4811-NP

28

{{

J.J. Arthur, P.E.

Mechanical Engineering Supervisor

29 NP-PM-0913-4811-NP

• Design status

{{

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

© 2013 NuScale Power, LLC

}}^{3(a)-(c)}

0

NP-PM-0913-4811-NP

© 2013 NuScale Power, LLC

31

{{

RCS versus RCPB

{{

- The NuScale RCS consists of
- reactor pressure vessel (RPV), including the reactor vessel nozzles to which connecting RCPB systems and components are attached
- pressurizer at the top (upper head region) of the RPV interior, including the baffle plate, heaters, and spray nozzles
- RPV code safety valves
- steam generator tube bundles and plenums within the RPV
- components internal to the reactor vessel that partition and direct the reactor coolant flow within the vessel (e.g., riser, downcomer, and lower plenum)

NP-PM-0913-4811-NP

RCS versus RCPB

The RCPB consists of the pressure-retaining portions of the following:

- RCS (as defined on preceding slide)
- systems and components connected to the RCS
 - control rod drive mechanisms
 - ECC system valves
 - chemical and volume control (CVC) system piping up to and including the outermost containment isolation valve

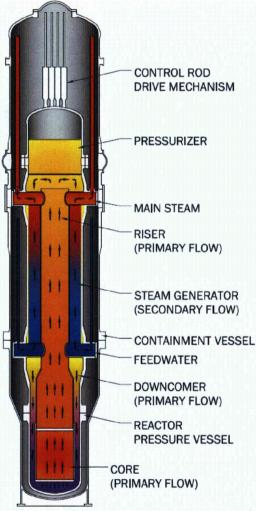
NP-PM-0913-4811-NP

33

© 2013 NuScale Power, LLC

{{

- System functions
 - The reactor coolant
 - transfers the heat generated in the reactor core to the power conversion systems during normal operation and forced cooldown.
 - transfers decay heat to the reactor pool. Neither power nor additional water inventory is required to provide long term core cooling.
 - provides neutron reflection and moderation in the reactor core.
 - The RPV provides a high integrity pressure boundary to contain the reactor coolant, support and enclose the reactor core, and provide a secondary barrier against the release of radioactive fission products.
 - The reactor vessel internals and the RPV direct the natural circulation primary coolant flow.


NP-PM-0913-4811-NP

- System functions
 - The pressurizer maintains pressure and level within the normal operating range, dampens pressure responses to transient operating conditions, and provides a surge volume to accommodate density changes in the primary coolant.
 - The SGs provide superheated steam to the turbine generator system. The tubes and plenums serve as a reactor coolant pressure boundary and prevent the transfer of radioactivity generated in the core to the secondary system.
- Documents available for audit

{{

}}^{3(a)-(c)-}

The RCS consists of a primary coolant heat transfer circuit between the reactor core and the two helical-coil SGs.

- Integral design: the reactor core, SGs, pressurizer, and the primary coolant flow path are entirely contained within the RPV, which serves as part of the reactor coolant pressure boundary.
 - eliminates large piping within the primary system, thus eliminating the potential for a high-consequence accident resulting from a large pipe break and subsequent rapid loss of coolant
 - **Natural circulation:** the difference in density and height between the core and SGs drives the reactor coolant flow.
 - passive natural circulation eliminates transients associated with reactor coolant pump malfunction and simplifies RCS maintenance
 - contains more than four times the volume of currently certified PWRs per unit of power, improving accident and transient performance

NP-PM-0913-4811-NP

Reactor Coolant System

- Steam generation: two once-through, helical coil SGs are located in the annular space between the riser and RPV.
 - secondary flow is inside the steam generator tubes

{{

{{

NP-PM-0913-4811-NP

Pressurizer

{{

{{

}} ^{3(a)-(c)}

Design	Nominal pressurizer steam volume (ft³)	Rated thermal power (MW _{th})	Ratio of steam volume to power (ft³/MW _{th})	
SIR	2830	1000	2.83	1 1
NuScale	{{ }}} ^{3(a)}	(c) 160	{{	}} ^{3(a)-(c)}
IRIS	1730	1000	1.73	
AP1000	1100	3415	0.32	
US-APWR	840	4451	0.19	
US-EPR	883	4590	0.19	

38

NP-PM-0913-4811-NP

Reactor Pressure Vessel

Dr. Tamás Liszkai, P.E.

Reactor Module Design Supervisor

NP-PM-0913-4811-NP

39

Reactor Module, Containment Vessel, Reactor Pressure Vessel Assembly

113(a)-(c)

NP-PM-0913-4811-NP

© 2013 NuScale Power, LLC

40

{{

Reactor Pressure Vessel Support System Inside the Containment Vessel

}}^{3(a)-(c)}

{{

Reactor Pressure Vessel Design and Normal Operating Data

Service Condition	Parameter	Value	
	internal design pressure	{{	
Design Conditions	external design pressure		
	design temperature		}} ^{3(a)-(c)}
	internal RPV pressure	1850 psia	
	external RPV pressure	{{	
Normal Operating	RPV temperature		
Conditions	feedwater pressure		
	feedwater temperature		
	steam pressure		
	steam temperature		} ^{3(a)-(c)}

NP-PM-0913-4811-NP

42

Reactor Pressure Vessel Weld Locations

{{

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

43

Reactor Pressure Vessel Wall Material Selection

{{

. .

.

·

.

.

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

44

Reactor Pressure Vessel Wall Material Selection

{{

}}^{3(a)-(c)}

45

Steam Generator Feedwater Plenums

. [{

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

46

Steam Generator Steam Plenums

그는 그는 것이 그렇지도 하는 것을 하고 않는 것을 하는 것이 못했다. 그는 것은 것을 하는 것을 수 없을 수 없을 것을 했는 것을 수 없는 것을 수 있는 것이 가지?

{{

}}^{3(a)-(c)}

47

Reactor Pressure Vessel Surface Cladding

{{

}}^{3(a)-(c)}

48 NP-PM-0913-4811-NP

Reactor Pressure Vessel Closure Flanges

이 이 사람이 사람이 있는 것을 하는 것을 다 가장을 하는 것을 하는 것을 하는 것을 수 있는 것을 수 있다. 이 가장을 가지 않는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것 같은 것은 것은 것은 것은 것은 것은 것을 하는 것을 하는 것을 수 있는 것을 수 있는

{{·

.

.

. .

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

Control Rod Drive Mechanism (CRDM) Noźzle Assembly

{{

}}^{3(a)-(c)}

© 2013 NuScale Power, LLC

50

Reactor Pressure Vessel 54 Effective Full-Power Year (EFPY) Fluence

{{

- - · · · ·

.

.

·

.

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

51

54 EFPY RPV Pressurized Thermal Shock

- Screening criterion ullet
 - 10 CFR 50.61, "Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events"

}}^{3(a)-(c)}

*Typical RT_{NDT} for SA-508, Grade 3, Class 1 -67°F to -22°F •

- Range
- At T/4 average -31°F

T/4 = One-quarter of shell thickness

{{

NP-PM-0913-4811-NP

P-T Curve for EOL Core Critical

{{

.

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

53

P-T Curve for Inservice EOL Leak Test

{{

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

54

Preliminary RPV Surveillance Program

{{

}}^{3(a)-(c)}

Pressurizer

{{

NP-PM-0913-4811-NP

56

© 2013 NuScale Power, LLC

}}^{3(a)-(c)}

Reactor Safety Valves

{{

.

. . .

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

57

Reactor Vessel Internals

Dr. Tamás Liszkai, P.E.

Reactor Module Design Supervisor

NP-PM-0913-4811-NP

58

Reactor Vessel Internals Functional Requirements

{{

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

59

Reactor Vessel Internals Assembly

.

.

© 2013 NuScale Power, LLC

© 2013 NuScale Power, LLC

NP-PM-0913-4811-NP

60

}}^{3(a)-(c)}

Reactor Vessel Internals General Support Functions

{{

.

.

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

61

Steam Generators

Dr. Tamás Liszkai, P.E.

Reactor Module Design Supervisor

© 2013 NuScale Power, LLC

· .

62

NP-PM-0913-4811-NP

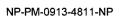
Integrated Helical Coil Steam Generator

{{

- Two SGs are fully integrated within the RPV
- Contained in annulus between the upper riser and the RPV shell

}}^{3(a)-(c)}

NP-PM-0913-4811-NP


63

{{

Two Independent Steam Generators

{{

}}^{3(a)-(c)}

64

Major Steam Generator Physical Dimensions

{{

}}^{3(a)-(c)}

65

Operating Conditions

{{

·

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

66

Steam Generator Materials

{{

}}^{3(a)-(c)}

67

NP-PM-0913-4811-NP

Thermally Treated Alloy 690 Tubing

{{

.

۱ .

.

· · · ·

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

68

Tube Supports

NP-PM-0913-4811-NP

69

Flow Induced Vibration

.

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

70

{{

Inspection Considerations

Dr. Tamás Liszkai, P.E.

Reactor Module Design Supervisor

© 2013 NuScale Power, LLC

71

NP-PM-0913-4811-NP

Provide Refueling Access

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

72

{{

Access for Repair, Maintenance, and Inservice Inspections

{{

.

. .

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

73

Steam Plenum Access

{{

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

74

Access to Feedwater Plenums

© 2013 NuScale Power, LLC

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

75

Pressurizer Heater Port Access

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

© 2013 NuScale Power, LLC

76

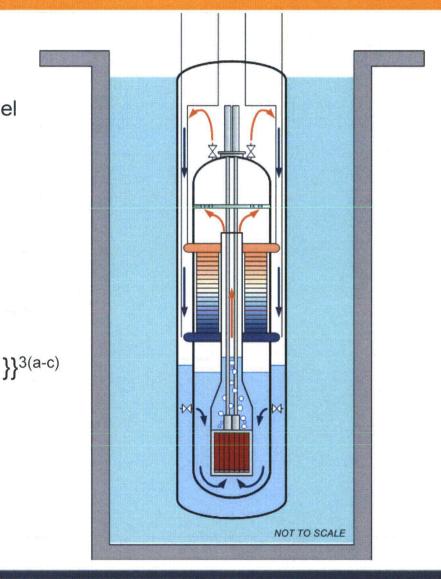
J.J. Arthur, P.E.

Mechanical Engineering Supervisor

• Design status

{{

}}^{3(a-c)}


- System functions
 - provides a portion of the reactor coolant pressure boundary
 - transfers decay heat from the RCS to containment
 - re-circulates inventory retained in containment to keep core covered
- System design
 - system consists of four valves mounted directly to the reactor pressure vessel.
- Documents available for audit

{{

- The ECCS is used to ensure core cooling after a LOCA inside containment
- Returns coolant from the containment vessel (CNV) to the reactor pressure vessel and ensures core cooling
- The ECCS does not add inventory to the reactor coolant system, and a minimum inventory is required for its effective operation

{{

 Two reactor vent valves and two reactor recirculation valves provided, only one of each is required

NP-PM-0913-4811-NP

80

{{

.

.

}}^{3(a-c)}

NP-PM-0913-4811-NP

81

{{

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

82

{{

}}^{3(a)-(c)}

83

{{

·

.

}}^{3(a-c)}

NP-PM-0913-4811-NP

84

J.J. Arthur, P.E.

Mechanical Engineering Supervisor

85

NP-PM-0913-4811-NP

• Design status

{{

}}^{3(a-c)}

NP-PM-0913-4811-NP

86

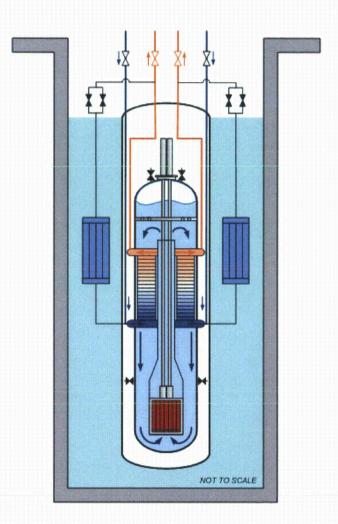
- System function
 - provides secondary-side cooling for non-LOCA design-basis events when normal secondary-side cooling is unavailable*
- {{ System design

Documents available for audit

}}^{3(a-c)}

}}^{3(a-c)}

NP-PM-0913-4811-NP


© 2013 NuScale Power, LLC

• Design overview

}}^{3(a-c)}

NP-PM-0913-4811-NP

}}^{3(a)-(c)}

NP-PM-0913-4811-NP

89

{{

© 2013 NuScale Power, LLC

}}^{3(a)-(c)}

90

Design Specific Review Standard

Michael Brasel

Director, Licensing

NP-PM-0913-4811-NP

91

NuScale Design Specific Review Standard

}}^{3(a-c)}

NP-PM-0913-4811-NP

92

{{

NuScale Design Specific Review Standard

}}^{3(a-c)}

NP-PM-0913-4811-NP

© 2013 NuScale Power, LLC

93

NuScale Chapter 5 DSRS

.

.

}}^{3(a-c)}

NP-PM-0913-4811-NP

94

{{

NuScale Chapter 5 DSRS

}}^{3(a-c)}

NP-PM-0913-4811-NP

95

NuScale Chapter 6 DSRS

NUSCALE.

}}^{3(a-c)}

NP-PM-0913-4811-NP

96

{{

NuScale Chapter 6 DSRS

{{

}}^{3(a-c)}

NP-PM-0913-4811-NP

© 2013 NuScale Power, LLC

- -

NuScale Chapter 6 DSRS

}}^{3(a-c)}

NP-PM-0913-4811-NP

98

{{

NuScale Design Specific Review Standard

4

SRP/DSRS INFORMATION

- Current NuScale assessment for each section is as indicated in overview tables on previous slides
- As appropriate, NuScale Gap Analysis to be revised to reflect current assessment
- Information for NRC development of NuScale DSRS
 - NuScale design information
 - NuScale comments on mPower DSRS
 - NuScale Gap Analysis and updates

Results Achieved and Path Forward

- Provided information for development of NuScale DSRS for select Chapters 5 and 6 sections
 - design information

- SRP/DSRS information
- Plan for future interactions

6650 SW Redwood Lane, Suite 210 Portland, OR 97224 503.715.2222

1100 NE Circle Blvd., Suite 200 Corvallis , OR 97330 541.360.0500

11333 Woodglen Ave., Suite 205 Rockville, MD 20852 301.770.0472

http://www.nuscalepower.com

