

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

SEP 2 6 1979

Docket No. 50-29

PADDATINE DE COPY

MEMORANDUM FOR: Dennis Crutchfield, Chief Systematic Evaluation Program Branch, DOR

FROM: Kahtan Jabbour Systematic Evaluation Program Branch, DOR

SUBJECT: SUMMARY OF MEETING WITH SOUTHERN CALIFORNIA EDISON ON HIGH ENERGY LINE BREAK INSIDE CONTAINMENT FOR SAN ONOFRE (SEP TOPIC III-5.A)

Representatives of the Nuclear Regulatory Commission (NRC) and Southern California Edison (SCE) met in Bethesda to discuss the Systematic Evaluation Program (SEP) Topic III-5.A, "Effects of Pipe Break on Structures, Systems and Components Inside Containment", on September 19, 1979. A list of attendees is provided in Attachment 1.

Following brief introductory discussions of the criteria for postulating break locations and break scenarios, SCE representatives made a presentation on the San Onofre plant layout and identified the high energy lines and safetyrelated equipment inside containment. Their presentation is contained in a preliminary report (Attachment 2) to be utilized primarily to illustrate the philosophy and methodology of the approach to be used by SCE in evaluating the effects of pipe breaks on structures, systems and components inside containment. SCE representatives also stated that they will use either the mechanistic or effect oriented approach for each separate pipe run.

To date SCE has utilized the effect oriented approach (for evaluating the high energy line break effects) described in the attachment to the NRC letter to KMC dated July 20, 1978. This approach postulates a high energy pipe break inside containment near safety equipment and analyzes the capability of the remaining systems to safely shutdown the reactor. Licensee representatives discussed the interaction of the breaks (pipe whip and jet impingement) with the safety systems required to shutdown the plant.

The NRC representatives requested the licensee to study the pipe whip and jet impingement effects of the breaks postulated under NRC TASK ACTION PLAN (TAP) A-2 and to consider these effects for postulated breaks in the primary coolant loop at locations other than those required in TAP A-2 using either the mechanistic or effect oriented approach. The NRC representatives agreed to further review the interface between A-2 and SEP Topic III-5.A to assure that there is no unnecessary duplication of effort.

The licensee stated that the consideration of a whipping pipe as having sufficient energy to postentially rupture an impacted pipe of equal or greater nominal pipe size and equal or greater wall thickness is an ~ 010160353

escalation of current criteria. The NRC representatives agreed to attempt to resolve this concern in the near future. However, the licensee agreed to consider the effects of jet impingement loads from a ruptured pipe on a pipe of equal or greater nominal size.

The NRC representatives made the following statements concerning the effect oriented approach:

- 1. The safety objectives are:
 - A. To maintain a coolable core geometry following any postulated break.
 - B. To maintain the capability of safe plant shutdown (definition of safe shutdown consistent with that of safe shutdown reviews).
 - C. To maintain containment integrity.
- 2. It is of utmost importance that the consequences of each pipe break scenario be fully recognized and understood before a decision would be made on any proposed resolution. The staff further stated that pipe breaks should be considered at locations close to safetyrelated equipment (as stated in the enclosure to the NRC letter to KMC dated July 20, 1978). Consideration must be given to the effects of larger pipe damaging smaller pipes and causing multiple failures of piping, jet impingement and single failure. The methods of calculating the effects of jet impingement are discussed in the NRC Standard Review Plan (SRP), Section 3.6.2 or in the proposed ANS-58.2 (ANSI-N176) dated January 1979. Other types of enveloping solutions may be generated by the licensee and will be reviewed by the NRC staff. The single failure criteria to be used by the NRC staff in their review will be that of ANS-51.7, Draft 4; Rev. 1, November 1975, which states that the most limiting single failure will be taken in addition to the initiating break and its effects. The most limiting single failure can be taken either as a single active failure in the short-term or a single active or passive failure in the long-term. Short-term, long-term and the nature of the passive failure are defined in the standard.
- 3. General Design Criterion No. 17 and SRP Section 3.6.1 (BTP APCSB 3-1) will be employed relating to loss of offsite power; however, on a plant-by-plant basis, operational experience will be considered.

4. Credit for operator action will be considered on a case-by-case basis once the scenarios have been developed.

The licensee requested that augmented in-service inspection (ISI) be considered as a means to mitigate the consequences of the postulated pipe breaks where retrofitting or adding restraints is impractical.

At the conclusion of the meeting, the licensee approach and schedule for resolving this topic were discussed. The NRC representatives expressed concern about the schedule delay in developing postulated break scenarios. However, they agreed to discuss the revised schedule at a later date.

Ted Quay for

Kahtan Jabbour Systematic Evaluation Program Branch Division of Operating Reactors

Attachment: As stated

50.206 9.26-79 79.10160353

DISTRIBUTION FOR MEETING SUMMARIES

Docket NRC PDR Local PDR Central_Files-TERA SEPB Reading NRR Reading H. Denton E. Case L. Shao D. Eisenhut R. Vollmer W. Russell B. Grimes T. Carter T. Ippolito R. Reid G. Knighton V. Noonan A. Schwencer D. Ziemann D. Crutchfield G. Lainas J. Scinto, OELD OI&E (3) ACRS (16) Licensees NRC Participants D. Knuth, KMC R. Schaffstall, KMC W. Moody, SCE H. Smith, SCE J. Rainsberry, SCE K. Jabbour, NRC P. DiBenedetto, NRC R. Riessel, NRC C. Hofmayer, NRC J. Shapaker, NRC

ATTACHMENT 1

LIST OF ATTENDEES SEPTEMBER 19, 1979

: !

ł

ł

Southern California Edison

W. Moody

H. Smith 🜼

J. Rainsberry

KMC, Inc.

R. Schaffstall

NRC

- K. Jabbour
- P. DiBenedetto
- D. Crutchfield
- R. Kiessel
- C. Hofmayer
- J. Shapaker

AGENDA

SEP TOPIC III-5.A, HIGH ENERGY PIPE BREAK INSIDE CONTAINMENT SAN ONOFRE NUCLEAR GENERATING STATION UNIT 1 SEPTEMBER 19, 1979

I. Introduction

II. General Approach

III. Essential Systems

IV. High Energy Lines

V. Program

VI. Conclusion

GENERAL APPROACH

Identify Essential Systems 1.

> Safe shutdown a.

b. Emergency Core Cooling Systems

Identify High Energy Lines 2.

3. Identify Potential Impactees

4. Evaluate Effects of Breaks

> Coolable Core Geometry a.

> b.

Safe Shutdown Capability Offsite Doses Less Than 10CFR 100 с.

EVALUATION ASSUMPTIONS

- 1. Lines 1" Diameter Not Analyzed
- Piping Boundary is First Normally Closed Valve, Check Valve, Safety/Relief Valve or Valve Capable of Auto Closure

前最佳自己的

- 3. Single Active Failure
- 4. Pipe cannot Damage Pipe of Equal or Larger Size With the Same of Greater Wall Thickness
- 5. Reactor Coolant System Breaks To Be Evaluated As Part of Generic Issue on Asymmetric LOCA Loads.
- 6. Use of All Plant Systems to Shutdown is Acceptable

7. Operator Actions Permitted

PRELIMINARY

ESSENTIAL SYSTEMS LIST

		P&ID NO.
1.	Reactor Coolant System (RCS)	568766
2.	Chemical and Volume Control System (CVCS)	568767
	a. RCS Letdownb. Chargingc. Reactor Coolant Pump (RCP) seal water supply	
3.	Residual Heat Removal System (RHR)	568768
4.	Component Coolant Water System (CCWS)	568768
	a. Cooling water for RHR b. Cooling water for RCP	
5.	Safety Injection System (SIS) and including	568769
	a. Recirculation system b. Sphere spray system	
6.	Main Steam System	~ 568773
7.	Main Feedwater System	568779

5

8. Instrument Air System

ŧ.*

Page 1 Rev. 1 9/14/79

,

A. CONTAINMENT ISOLATION PHASE**

۷.

Equipment			Function
Number		Name	in Accident
1.	CV-40	Instrument air exhaust control valve	Isolates containment
	SV-19	Solenoid valve for CV-40	Actuates CV-40
2.	CV-116	Sphere pressure equalization value	Isolates containment
	SV-127	Solenoid valve for CV-116	Actuates CV-116
3.	CV-146	Sphere vapor sample control valve	Isolates containment
	SV-1212-6	Solenoid valve for CV-146	Actuates CV-146
4.	Cv-147	Sphere vapor sample (return) control valve	Isolates containment
	SV-1212-7	Solenoid valve for CV-147	Actuates CV-147
5.	€77-202, 203, 204	Loop A letdown isolation values	Isolate containment
		Solenoid valves for CV-202, 203 and 204	Actuates CV-202, CV-203 and CV-204
б.	CV-102, 104, 106	Sphere sump pump discharge valve, reactor coolant drain pump discharge valve, reactor coolant drain tank vent isolation valve.	Isolate containment on SIS.
	SV-108, 110, 112	Solenoid valves for CV-102, 104, 106	Actuate CV-102, 104, 106 ·
7.	(Undesignated)	Containment isolation valve limit switches	Provide indication of contain- ment isolation valve position.

**Pressure and radiation sensors which initiate containment isolation are located outside the containment sphere.

Page 2 Rev. 1 9/14/79

ł

B. INJECTION PHASE

Equipment Number		Name	Runction in Accident
1.	MOV-850 A, B & C	Safety injection valves	Open to permit safety injection flow to primary loops
2.	PT-430*, PT-431*, PT-432*, PT-425**	Pressurizer pressure transmitters	*Provides automatic initiation of safety injection upon signals from 2 out of 3 trans- mitters indicating low pres- surizer pressure. **Provides surveillance of RCS.
3.	LT-430, 431, 432, 435	Level transmitters	Provide pressurizer level indication
4.	Lcop A 1. TE 402C Lcop B 1. TE 412C Lcop C 1. TE 422C	Reactor coolant temperature detectors	Provide indication of reactor coolant temperature for surveil- lance of SIS performance.

Pressurizer

1. TE 430 A, B, C

Page 3 Rev. 1 9/14/79

.

C. RECIRCULATION PHASE

Bqui Nu	pment. mber	Name	Function in Accident
1.	G45 A&B	Recirculation pumps	Operate to provide for long- term cooling subsequent to safety injection in LOCA
2.	MDV-866 A,B	Recirculation pump isolation valves	Open to line up long-term recirculation subsequent to safety injection in LOCA
3.	MCN-356, 357, 358	Recirculation line isolation valves	Open to line up long-term recirculation subsequent to safety injection in LOCA
4.	Loop A 1. TE 402C	Reactor coolant temperature detectors	Provide indication of reactor coolant temperature for surveil- lance of cool down.
•	Lcop B 1. TE 412C		
	Lcop C 1. TE 422C		
	Pressurizer 1. TE 430 A, B, C		
5.	PT-430 , 431, 432, 435	Pressurizer pressure trans- mitters	Provide indication of pressurizer pressure and level
	LT-430, 431, 432, 435	Pressurizer level trans- mitters	·
6.	FT 500, 501	Flow transmitter for recirculation	Monitors recirculation flow from the recirc pupps.

1

D. HOT LEG RECIRCULATION

.

Buipment Number		Name	Function in Accident
1.	CV 304	Charging line to Loop A isolation valve	CV isolates the loop A charging line during hot leg recircula- tion
2.	CV 305	Pressurizer aux. spray valve	CV allows flow of recirculation water to loop B hot leg.
3.	FCV 430C and 430H	Pressurizer spray valves	Isolates loop A and B cold legs during hot leg recirculation
4.	Lcop A 1. TE 402C Lcop B 1. TE 412C Lcop C 1. TE 422C Pressurizer 1. TE 430 A, B, C	Reactor coolant temperature detectors	Provide indication of reactor coolant temperature for surveil- lance of cool down.

E -

RELIMINATION OF A

Page 5 Rev. 1 9/14/79

· :

E. RESIDUAL HEAT REMOVAL HEASE**

:

یں۔ • • •

Equipment Number		Name	Function in Accident
1.	G-14 A&B	Residual heat removal pumps	Operate to provide for long- term cooling subsequent to safety injection in MSB
	* .		
2.	MOV-813, 834	Residual heat removal pres- sure interlock valves	Open to line up long-term cooling subsequent to safety injection in MSB
3.	MDV-814, 833	Residual heat removal isolation valves	Open to line up long-term subsequent to safety injection in MSB
4.	HCV-602	Residual heat exchanger flow control valve	Regulates flow through the residual heat exchangers during during long-term cooling subsequent to MSB
5.	FT-602	RER flow transmitter	Provide indication of RER flow
6.	Lcop A 1. TE 402C Lcop B 1. TE 412C	Reactor coolant temperature detectors	Provide indication of reactor coolant temperature for surveil- lance of cool down.
	Lcop C. 1. TE 422C		
	Pressurizer 1. TE 430 A, B, C		
7.	MOV 822 A&B	RER heat exchanger isolation valve	Provide flow path to RHR heat exchangers

**RER not required post-LOCA.

.......

Page 6 Rev. 1 9/14/79

	Equi Nu	pment. mber	Name	Function in Accident
	8.	TE 600 TE 601 A, B	RER hot and cold leg bangerature transmitter	Monitor RER performance
	9.	RV 206	NER pressure relief valve	Provide overpressure protec- tion during RHR operation
f.	<u></u>	AINMENT SPRAY		
	1.	CV-82, 114	Sphere spray control valves	Reduce fission product concentration and containment pressure during LOCA and containment pressure during MSB
		5v-118, 128	Solenoid valves for CV-82,	Actuates CV-82, CV-114
G.	MISC	FLIANEOUS		
	1.	III-450, 451, 452	Steam generator level. transmitters	Monitor steam generator inventory
	2.	PCV 1115 A, B, C	Reactor coolant pump seal water control valves	Provide seal and cooling water to maintain seal integrity
	3.	ICV 1112 and associated SV	RCS letdown control valve	Cool down and depressurize RCS post-MSIB
	4.	CV 530, 531, 532, 533, 545, 546	RCS safety and pressure valves	Provide overpressure protection for RCS

.