

SEISMIC ANALYSIS

Auxiliary Feedwater Pumps Southern California Edison Company -San Onofre Nuclear Generating Station Units 2 and 3

Specification Number:	S023-405-6
Purchase Order Number:	N-4140791
Byron Jackson Job Numbers:	$751-\mathrm{L}-0091$
	$751-\mathrm{L}-0092$
	$751-\mathrm{L}-0093$
	$751-\mathrm{L}-0094$

BYRON JACKSON PUMP DIVISION
BORG-WARNER CORPORATION
Los Angeles, California

$$
405-6-81-2
$$

Auxiliary Feedwater Pumps Southern California Edison Company San Onofre Nuclear Generating Station Units 2 and 3

Specification Number:	S023-405-6
Purchase Order Number:	N-4140791
Byron Jackson Job Numbers:	$751-1-0091$
	$751-L-0092$

Prepared By: $\frac{\text { Paul Doges }}{\text { Design Eminter }}$ Date 2 Mar. 78 Approved By: \qquad Date $3 M M_{2} 78$ Auxiliary Pumps

> BYRON JACKSON PUMP DIVISION
> BORG-WARNER CORPORATION
> LOS Angeles, California

BYRON JACKSON REPORT DC-1102 Revision 0

SEISMIC ANALYSIS
Auxiliary Feedwater Pumps
Southern California Edison Company
San Onofre Nuclear Generating Station Units 2 and 3

$$
\begin{array}{ll}
\text { Specification Number: } & \text { S023-405-6 } \\
\text { Purchase Order Number: } & \text { N-4140791 } \\
\text { Byron Jackson Job Numbers: } & 751-\mathrm{L}-0091 \\
& 751-\mathrm{L}-0092 \\
& 751-\mathrm{L}-0093 \\
& 751-\mathrm{L}-0094
\end{array}
$$

Prepared By:
 Date 4 Gym. 77

Approved By:

Section Head-Nuclear Auxiliary Pumps

BYRON JACKSON PUMP DIVISION BORG-WARNER CORPORATION
Los Angeles, California

1.0 CERTIFICATION

This report summarizes the seismic analysis
performed on a $4 \times 6 \times 9 \mathrm{x}$ 8-Stage DVMX and is certified to be in compliance with Bechtel Specification No. SO23-405-6.

Revision \emptyset
Revision A

Registration No. CAL. \#ME 18729

Revision B

Revision C
$\frac{\text { Leon Peak Rive }}{\text { Registration No } \frac{C A L: M E 18729}{405-6-81-2}}$

TABLE OF CONTENTS

PAGE
1.0 Certification 1
2.0 Method of Analysis 2
3.0 Materials 3
4.0 Calculation of Natural Frequencies of Vibration 4
4.1 Introduction 4
4.2 Computation Procedure - Vertical Frequencies 5
4.2.1 Vertical Frequencies - Turbine Driven Unit 6
4.2.2 Vertical Frequencies - Motor Driven Unit 8
4.3 Computation Procedures - Horizontal Frequencies 10
4.3.1 Horizontal Frequencies - Turbine Driven Unit 10
4.3.2 Horizontal Frequencies - Motor Driven Unit 13
4.4 Summary 15
5.0 Calculation of Stresses in Pump Mounting 16
5.1 Introduction 16
5.2 Computation Procedure 16
5.3 Determination of Seismic Loads 17
5.4 Seismic Stresses 18
5.5 Nozzle Load Stresses 18
5.6 Summary 19
6.0 Calculation of Stresses in the Foundation Bolts 20
6.1 Introduction 20
6.2 Seismic Stress (Turbine Driven Unit) 20
6.3 Seismic Stress (Motor Driven Unit) 21
6.4 Nozzle Loads (Turbine Driven Unit 2 22
6.5 Nozzle Loads (Motor Driven Unit) 22
6.6 Summary 23
7.0 Shaft Deflection Analysis 25
8.0 References
Figures

$$
405-6-87-\pi
$$

2.0 METHOD OF ANALYSIS

The natural frequency of vibration was determined for the pump and driver supports so that the seismic accelerations could be determined using the frequency response spectrums supplied by Bechtel.

The hold-down bolts, alignment dowels and foundation bolts were investigated to determine if they were adequate size to withstand gravitational, nozzle, and seismic loads.

	PUMP HOLD DOWN BOLTS	PUMP ALIGNMENT DOWELS	FOUNDATION BOLTS
Size	1 - 8 NC	$1 / 2^{\prime \prime}$ Dias.	$1 "-8 \mathrm{NC}$
Material	ASME-SA 193 GR. B7	ASME-SA 193 GR. B7	Note 1
Allowable Tensile Stress *(psi)	25,000	25,000	
Minimum Yield Stress *(psi)	105,000	105,000	

TABLE 1
*Stress values are taken from Ref. 2
Note 1: Foundation bolts are to be supplied by others.

$$
405-6-81-2
$$

4.0 CALCULATION OF NATURAL FREQUENCIES OF VIBRATION

4.1 Introduction

The determination of seismic effects on a structure using dynamic methods requires simplifying assumptions and idealization to formulate the problem that lies within the capability of known methods of solution. These simplifications, in effect, involve the substitution of a model for the structure and the response determined is that of the model. To calculate the natural frequencies we assume the pump, drivers and their pedestals to be an equivalent springmass system where we use conventional strength of materials to determine the spring constants.

Although this calculated frequency is approximate it has been shown to be adequate by test data. Actual testing for natural frequency has been done on a similar pump of this size. The results are summarized in Byron Jackson Engineering Report No. 247-30352. The minimum natural frequency tested for any direction was significantly higher than 33 Hz . In this section and in subsequent sections the following coordinate system will be used: The x-axis is parallel to the pump shaft and is positive toward the driver. The y-axis is vertical and is positive upward. The z-axis is perpendicular to the pump shaft and the positive direction is such that a right-handed coordinate system is defined.

Computation Procedure - Vertical Frequencies

It has been established for many structural materials that within certain limits the elongation of the pedestals is proportion to the force. This simple linear relationship is given by

$$
\begin{equation*}
\delta=\frac{F I}{A E} \tag{1}
\end{equation*}
$$

Rearranging Eq. (1) we define a spring constant as

$$
\begin{equation*}
K=\frac{F}{\delta}=\frac{E A}{1} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& E=\text { modulus of elasticity (psi) } \\
& A=\text { cross-sectional area of the pedestal }\left(\mathrm{in}^{2}\right) \\
& I=\text { height of the pedestal }
\end{aligned}
$$

For equipment mounted on more than one pedestal the combined spring constant is just the algebraic sum of the individual spring constants. Having obtained the combined spring constant the natural frequency is then given by

$$
\begin{equation*}
f=\frac{1}{2 \pi}\left(\frac{K}{M}\right)^{\frac{3}{2}} \tag{3}
\end{equation*}
$$

where M is the mass of the equipment on the pedestals.

$$
405-6-81-2
$$

4.2.1 Vertical Frequencies - Turbine Driven Unit

Tabulated below are geometric and material properties for the pump and turbine pedestals. (Refer to Figure 1 for the general arrangement.)

	PUMP	TURBINE\%	
E (psi)	29×10^{6}	29×10^{6}	29×10^{6}
A (in ${ }^{2}$)	13.75	26.88	10.00
L (in)	12.25	7.25	7.25
$M\left(1 b s-\sec ^{2} / \mathrm{in}\right)$	8.41	10,21	

TABLE 2

Using the formulas generated previously the combined spring constant for the pump pedestals is

$$
K=\frac{4 \times 29 \times 10^{6} \times 13.75}{12.25}=130.20 \times 10^{6} \mathrm{lb} / \mathrm{in}
$$

and the natural frequency is

$$
f=\frac{1}{2 \pi}\left(\frac{130.20 \times 10^{6}}{8.41}\right)^{\frac{3}{2}}=626 \mathrm{~Hz}
$$

*The turbine has two different types of pedestals.

$$
405-6-81-2
$$

Similarly the combined spring constant for the turbine pedestals is

$$
\begin{aligned}
& K=\frac{29 \times 10^{6} \times 26.88}{7.25}+\frac{2 \times 29 \times 10^{6} \times 10.00}{7.25} \\
& K=107.52 \times 10^{6}+80 \times 10^{6} \\
& K=187.52 \times 10^{6} \mathrm{Ib} / \mathrm{in}
\end{aligned}
$$

and the natural frequency is

$$
f=\frac{1}{2 \pi}\left(\frac{187.52 \times 10^{6}}{10.21}\right)^{\frac{3}{2}}=682 \mathrm{~Hz}
$$

$$
405-6-8-2
$$

4.2.2 Vertical Frequencies - Motor Driven Unit

Tabulated below are the geometric and material properties for the pump and motor pedestals (refer to Figure 2 for the general arrangement).

	PUMP	MOTOR
$E(p s i)$	29×10^{6}	29×10^{6}
$A\left(\right.$ in $\left.^{2}\right)$	13.75	338.00
$L(i n)$	17.25	1.75
$M\left(1 b-\sec ^{2} / \mathrm{in}\right)$	8.41	25.10

TABLE 3

The combined spring constant for pump pedestals is

$$
K=\frac{4 \times 29 \times 10^{6} \times 13.75}{17.25}=92.46 \times 10^{6} \mathrm{lb} / \mathrm{in}
$$

and the natural frequency is

$$
f=\frac{1}{2 \pi}\left(\frac{92.46 \times 10^{6}}{8.41}\right)^{\frac{3}{2}}=.528 \mathrm{~Hz}
$$

Similarly the combined spring constant for the motor pedestals is

$$
\begin{aligned}
& K=\frac{2 \times 29 \times 10^{6} \times 338.00}{1.75}=11202.29 \times 10^{6} \mathrm{lb} / \mathrm{in} . \\
& 405-68
\end{aligned}
$$

and the natural frequency is

$$
f=\frac{1}{2 \pi}\left(\frac{11202.29 \times 10^{6}}{25.10}\right)^{\frac{3}{2}}=3362 \mathrm{~Hz}
$$

This large frequency is due to the fact that the motor pedestals are 1-3/4" thick plate whereas the other pedestals are hollow. Therefore, these motor pedestals would be expected to be very rigid.
4.3 Computation Procedure - Horizontal Frequencies

The calculation of the horizontal frequencies is analogous to the vertical frequencies. The pedestals are assumed to be cantilevered beams and the deflection is given by

$$
\begin{equation*}
\delta=\frac{1}{3} \frac{F^{E I}}{}{ }^{3} \tag{4}
\end{equation*}
$$

Rearranging Eq. (3) the spring constant is defined as

$$
\begin{equation*}
K=\frac{F}{\delta}=\frac{3 E I}{1^{3}} \tag{5}
\end{equation*}
$$

where I is the area moment of inertia (in ${ }^{4}$).
4.3.1 Horizontal Frequencies - Turbine Driven Unit

Tabulated below are the geometric and material properties of the pump and turbine pedestals.

		PUMP	
$E(\mathrm{psi})$	29×10^{6}	29×10^{6}	29×10^{6}
$I\left(\mathrm{in}^{4}\right) \%$	$123.65,94.13$	$433.75,1186.07$	$48.33,35.83$
$I(\mathrm{in})$	12.25	7.25	7.25
$M\left(1 b-\sec ^{2} / \mathrm{in}\right)$	8.41		10.21

TABLE 4
*Since the pedestals have a rectangular cross-section there are two values for the area moment of inertia.

$$
405-6-81-2
$$

The spring constants for the pump pedestals are $K=\frac{4 \times 3 \times 29 \times 10^{6} \times 123.65}{(12.25)^{3}}=23.41 \times 10^{6} \mathrm{lb} /$ in (x-direction)
and
$K=\frac{4 \times 3 \times 29 \times 10^{6} \times 94.13}{(12.25)^{3}}=17.82 \times 10^{6} \mathrm{Jb} /$ in (z-direction)

The natural frequencies are

$$
\begin{aligned}
& f=\frac{1}{2 \pi}\left(\frac{23.41 \times 10^{6}}{8.41}\right)^{\frac{3}{2}}=266 \mathrm{~Hz} \text { (x-direction) } \\
& f=\frac{1}{2 \pi}\left(\frac{17.82 \times 10^{6}}{8.41}\right)^{\frac{3}{2}}=232 \mathrm{~Hz} \text { (z-direction) }
\end{aligned}
$$

Similarly the spring constants for the turbine pedestals are $K=\frac{3 \times 29 \times 10^{6} \times 433.75}{(7.25)^{3}}+\frac{2 \times 3 \times 29 \times 10^{6} \times 48.33}{(7.25)^{3}}=$ $K=99.02 \times 10^{6}+22.07 \times 10^{6}=121.09 \times 10^{6} 1 \mathrm{~b} /$ in (x-direction)
and $K=\frac{3 \times 29 \times 10^{6} \times 1186.07}{(7.25)^{3}}+\frac{2 \times 3 \times 29 \times 10^{6} \times 35.83}{(7.25)^{3}}=$ $K=270.78 \times 10^{6}+16.36 \times 10^{6}=287.14 \times 10^{6} \mathrm{Ib} /$ in (z-direction)

$$
405-6-81-2
$$

The natural frequencies of the turbine pedestals are

$$
\mathrm{f}=\frac{1}{2 \pi}\left(\frac{121.09 \times 10^{6}}{10.21}\right)^{\frac{3}{2}}=548 \mathrm{~Hz} \text { (x-direction) }
$$

and

$$
f=\frac{1}{2 \pi}\left(\frac{287.14 \times 10^{0}}{10.21}\right)^{\frac{1}{2}}=844 \mathrm{~Hz} \text { (z-direction) }
$$

4.3.2 Horizontal Frequencies - Motor Driven Unit

Tabulated below are the geometric and material properties of the purn and motor pedestals

	PUMP	MOTOR		
$E(p s i)^{\circ}$	29×10^{6}	29×10^{6}		
$I\left(\right.$ in $\left.^{4}\right)$	$123.65,94.13$	$50279.26,1802.67$		
$1(\mathrm{in})$	17.25	1.75		
$M\left(\mathrm{lb}-\sec ^{2} / \mathrm{in}\right)$	8.41	25.10		

The spring constants for the pump pedestals are $K=\frac{4 \times 3 \times 29 \times 10^{6} \times 123.65}{(17.25)^{3}}=8.38 \times 10^{6} \mathrm{Ib} /$ in (x -direction) and $K=\frac{4 \times 3 \times 29 \times 10^{6} \times 94.13}{(17.25)^{3}}=6.38 \times 10^{6} \mathrm{lb} /$ in (z-direction)

The natural frequencies are

$$
f=\frac{1}{2 \pi}\left(\frac{8.38 \times 10^{6}}{8.41}\right)^{\frac{1}{2}}=159 \mathrm{~Hz} \text { (x-direction) }
$$

and

$$
\begin{aligned}
& f=\frac{1}{2 \pi}\left(\frac{6.38 \times 10^{6}}{8.41}\right)^{\frac{1}{2}}=139 \mathrm{~Hz}(z \text {-direction }) \\
& 405-6-81-Q
\end{aligned}
$$

Similarly the spring constants for the motor pedestals are $K=\frac{2 \times 3 \times 29 \times 10^{6} \times 50279.26}{(1.75)^{3}}=1632390.20 \times 10^{6} \mathrm{lb} /$ in (x-direction)
and
$K=\frac{2 \times 3 \times 29 \times 10^{6} \times 1802.67}{(1.75)^{3}}=58526.34 \times 10^{6} \mathrm{lb} /$ in (z-direction)
and the natural frequencies are

$$
f=\frac{1}{2 \pi}\left(\frac{1632390.20 \times 10^{8}}{25.10}\right)^{\frac{3}{2}}=40588 \mathrm{~Hz} \text { (x-direction) }
$$

and

$$
f=\frac{1}{2 \pi}\left(\frac{58526.34 \times 10^{6}}{25.10}\right)^{\frac{3}{2}}=7.685 \mathrm{~Hz} \text { (z-direction) }
$$

Again these high frequencies are due to the fact that these pedestals are 1-3/4" thick solid plate.

$$
405-6-81-2
$$

4.4 Summary

All of the calculated frequencies are very high and well in excess of 30 Hz . Therefore, the accelerations will be taken from the zero period acceleration part of response spectruns Sketch No. S023-SK-S-986 Rev. A, S023-SK-S-987 Rèv A, SO23-SK988. Rev. A, and S023-SK-989 Rev. A and are tabulated below.

	OBE	DBE
Horizontal (g's)	0.6	1.2
Vertical (g's)	0.7	1.3

TABLE 6

$$
405-6-87-2
$$

5.1 Introduction

Shown in Figure 3 is a typical pump foot with a hold down bolt hole and a locating dowel hole. The maximum stresses of the pump mounting are found in the hold down bolts and dowels because their tensile and shear area is much less than the area of attachment between the foot and the case.
5.2 Computation Procedure

Since the dowels are located in tight fitting holes which permit vertical motion and the bolts are installed in clearance holes the shear forces are transmitted only to the dowels and tensile forces are transmitted only to the bolts. After determining the forces and moments on the pump we translate them from their point of application to the center of the bolting shear plane, which is the center of the rectangle formed by the hold down bolts. The vertical force and the moments about the horizontal axis contribute only to the tensile load. Similarily, the horizontal forces and the moment about the vertical axis contribute only to the shear load.

The vertical force, F_{y}, is divided equally between the bolts. The moments about the horizontal axis, M_{x} and M_{y}, are each assumed to be a couple consisting of two forces of equal

$$
405-6 \cdot 87-2
$$

magnitude and opposite direction. The sum of the three tensile forces acting at each bolt is evaluated and the largest is divided by the root area of the bolt to obtain the tensile stress.

The horizontal forces F_{X} and F_{z} are divided equally between the dowels. The moment about the vertical axis, M_{y}, is also assumed to be a couple. The forces comprising this couple are added vectorially to the other shear forces. The resultant forces are evaluated and the langest one is divided by the cross-sectional area of the dowel to obtain the shear stress.
5.3 Determination of Seismic Loads

In general the horizontal and vertical seismic forces are given by

$$
\begin{equation*}
F h=\frac{W}{g} a h \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
F v=\frac{W}{g} a v-W \tag{7}
\end{equation*}
$$

where
Fh = horizontal force
$\mathrm{Fv}=$ vertical force
W = component weight
$\mathbf{g}=$ acceleration due to gravity
$a h=$ horizontal seismic acceleration
$a v=$ vertical seismic acceleration

$$
405-6-81-2
$$

Using the accelerations given in Table 6 the seismic forces acting at the C.G. of the pump are

	OBE	DBE
Horizontal (lbs)	1950	3900
Vertical (lbs)	-975	975

TABLE 7

5.4 Seismic Stresses

The shear stress in the dowels and the tensile stress in the bolts were calculated using the previously outline methodology. The horizontal forces were taken in the direction that maximized the stresses. The results are tabulated in Table 8.

SEISMIC LOADS	BOLTS (Tensile)	DOWEIS (Shear)
psi	psi	
OBE	46	9558
DBE	1402	19116

TABLE 8
5.5 Nozzle Load Stresses

The shear stress in the dowels and the tensile stress in the bolts were calculated due to the nozzle loads for the operating, OBE and DBE condition. The methodology used in Section 5.4 is again used in this section with the results given in Table 9.

$$
405-6.81-2
$$

NOZZLE LOADS	TURBINE DRIVEN PUMP		MOTOR DRIVEN UNIT	
	Tensile psi	Shear psi	Tensile psi	Shear psi
Operating	479	3685	133	1635
ORE	604	3541	546	1749
DEE	1209	7082	1092	3497

TABLE 9

5.6 Summary

The total stresses are obtained by combining Tables 8 and 9 and comparing with the stress criteria.

Examination of Table 10 shows that in all cases the calculated stress values are less than the stress criteria and therefore the hold down bolting and doweling are of sufficient strength.

	TURBINE DRIVEN UNIT			
	Tensile		Shear	
\vdots	Calculated Stress psi	Stress Criteria psi	Calculated Stress psi	Stress Criteria psi
. OBE(5)	1129	$25000(1)$	16784	$20000(2)$
DEE	3090	$94500(3)$	29883	$75600(4)$

	MOTOR DRIVEN UNIT			
	Tensile .		Shear	
	Calculated Stress psi	Stress Criteria psi	Calculated Stress psi	Stress Criteria psi
OBE(5)	725	25000	12942	20000
DEE	2627	94500	24248	75600

TABLE 10

FOOTNOTES - TABLE 10 (Page 19)
(1) Stress Criteria = allowable tensile stress
(2) Stress Criteria $=0.8 \times$ allowable tensile stress
(3) Stress Criteria $=0.9 \times$ yield stress
(4) Stress Criteria $=0.8 \times 0.9 \times$ yield stress
(5) The calculated stresses for the $O B E$ and $D B E$ includes the operating nozzle loads.
6.0 CALCULATION OF STRESSES IN THE FOUNDATION BOLTS

6.1 Introduction

In this section the stresses in the baseplate foundation bolts of the turbine and motor driven units are calculated. The computational procedure used previously in this report is used again in this section. The foundation bolt patterns are shown in Figures 1 and 2. The foundation bolts are one inch in tiameter, have eight threads per inch with a root area of $0.551 \mathrm{in}^{2}$. The coordinate system is similar to that used in the previous section except that the origin is at the center of the rectangle formed by the foundation bolts.
6.2 Seismic Stress (Turbine Driven Unit)

Using the accelerations from Table 6 and Eqs. (6) and (7) the loads acting at the C.G. of the pump, turbine, baseplate system are:

	ORE	DEE
Horizontal (lbs)	6117	12234
Vertical (lbs)	-3059	3059

The loads and stresses were calculated using the previously outline procedure and were found to be:

	ORE		DEE	
	Load (lbs)	Stress (psi)	Load (lbs)	Stress (psi)
Tension	596	1081	2289	4154
Shear	766	1390	1532	2780

TABLE 12
6.3 Seismic Stresses (Motor Driven Unit)

Using the accelerations from Table 6 and Es. (6) and (7) the loads acting at the C.G. of the pump, motor, and baseplate system are:

	ODE	DEE
Horizontal (lbs)	10170	20340
Vertical (lbs)	-5085	5085

TABLE 13

$$
405-6-81-2
$$

The loads and stresses were found to be

	OBE		DBE	
	Load (lbs)	Stress (psi)	Load (Ibs)	$\begin{aligned} & \text { Stress } \\ & \text { (psi) } \end{aligned}$
Tension	1246	2262	4123	7483
Shear	1757	3188	3514	6377

TABLE 14
6.4 Nozzle Loads (Turbine Driven Unit)

In this section the foundation bolt stresses are calculated due to the normal operating, OBE and DBE nozzle loads acting on the purp and the turbine. Tabulated below in Tables 15 and 16 are the foumdation bolt loads and stresses from the pump and turbine respectively.

Pump Nozzle Loads	TENSILE		SHEAR	
	Load (lbs)	Stress (psi)	Load (lbs)	Stress (psi)
Operating	313	568	356	646
OBE	137	248	220	398
DBE	274	497	439	797

TABLE 15

Turbine Nozzle Loads	TENSILE		SHEAR	
Load (lbs)	Stress (psi)	Load (lbs)	Stress (psi)	
Operating	115	27	91	165
OBE	11	20	30	55
DBE	20	36	63	114

TABLE 16

$$
405-6-87-2
$$

6.5
 Nozzle Loads (Motor Driven Unit)

This section contains the foundation bolt stresses for the motor driven unit due to the operating, OBE and DBE nozzle loads.

	TENSILE		SHEAR	
	Load (Ibs)		Stress (psi)	Load (Ibs)
Operating	126	230	139	252
OBE	-3	-6	52	95
DBE	-6	-12	105	191

TABLE 17
6.6 Sumary

In this section the loads and stresses from the previous four sections are combined with the resulting loads and stresses given below in Table 18.

	TURBINE DRIVEN UNIT				
	Tensile			Shear	
	Load (Ibs)	Stess (psi)	Load (lbs)	Stress (DSi)	
OBE	1072	1945	1463	2655	
DBE	2911	5283	2481	4502	

	MOTOR DRIVEN UNIT				
	Tensile			Shear	
	Load (lbs)	Stress (psi)	Load (lbs)	Stress (psi)	
OBE	1369	2485	1948	3535	
DBE	4243	7701	3758	6820	

TABLE 18

$$
405-6-81-2
$$

It should be noted that the loads and stresses from the normal operating conditions are included in the total stresses given . in Table 18. Although the foundation bolts are beyond the scope of Byron Jackson's supply, these loads and stresses are low and should be well within the capability of standard foundation bolt material.

The rotor displacement due to seismic loading under DBE conditions is calculated and compared to the allowable rotor clearance. The pump shaft has been sag-bored to allow for shaft deflection due to dead weight.

The shaft is modeled as a beam with pinned supports at the two end bearings and with a spring support at the center stage piece. The shaft model is shown in Fig. 4. The reactions at the pinned supports and deflections on the shaft are determined by the program MULTISPAN. (Reference 5) The output is shown on pages 26 and 27.

The deflection of the spring support at the center stage piece is calculated by using the spring constant,

$$
K=1.32\left(10^{5}\right) \mathrm{ibs} . / \mathrm{in} .
$$

obtained by the Byron Jackson computer program Lomakin*. The output is shown on page 28 . The reaction force at the center stage piece from the MULTISPAN run is,

$$
F_{R}=296 \text { lbs. }
$$

The deflection at this point is,

$$
S=\frac{F R}{K}=.00224 \mathrm{in} .
$$

The deflection of the spring is added to the deflections of the shaft determined by MULTISPAN. This is a conservative assumption since the deflection will not exceed the valve determined but can be less.

Max. deflection $=.00261$, minimum rotor clearance $=.006$ The resulting maximum shaft deflection is less than the minimum rotor clearance.

$$
405-6-81-2
$$

PERFORMS THE EENDING ANALYSIS OF MULTI-SF'AN BEAMS

\author{

- OUTPUT-
 * * * * * * * * * * * * * * *
}
*** INFUT DATA SUMMARY ***
- GEDMETRY -
$\begin{array}{ll}\text { LEFT ENI } & =\text { PINNEII } \\ \text { RIGHT ENI. }=; \text { PINNEI }\end{array}$

SFAN	FROM	TO
NUMEER	X-STATION	X-STATION
	(IN)	(IN)
1	0	$3.540 E+01$
2	$3.540 E+01$	$7.160 E+01$

X-STATION	E	I
(IN)	(PSI)	(IN**4)
$7.160 E+01$	$2.900 E+07$	$5.070 E+00$

- CONCENTFATED LDAIIS -

X-STATION MAGNITUDE
(IN) (LES)
$1.620 E+01$ 4.100E+01
$2.370 E+01$ 2.050E+01
$2.820 \mathrm{E}+01$ 2.050E+01
3.270E+01 2.050E+01
3.820E+01 2.750E+01
$4.270 E+01 \quad 2.050 E+01$
$4.720 \mathrm{E}+01 \quad 2.050 \mathrm{E}+01$
5.170E+01 2.050E+01

- DISTRIBUTEI LOAIS -

START		END	
X-STATION	MAGNITUNE	X-STATION	magnitune
(IN)	(LES/IN)	(IN)	(LBS/IN)
0.	2.960E+00	7.160E+01	2.960E+00

*** REACTIONS ***

X-STATION	UERTICAL REACTION	INTERNAL MOMENT
(IN)	(LBS)	(IN-LRS)
0	$-5.954 E+01$	0.
$3.540 E+01$	$-2.951 E+02$	$9.768 E+02$
$7.160 E+01$	$-4.877 E+01$	0.
	$405-6-89-0$	

*** INTERNAL FORCES ANI DISPLACEMENTS ***
X-STATION
(IN)

- SPAN NUMBER 1 -

0.	$-5.954 \mathrm{E}+01$	0.	$3.677 \mathrm{E}-05$	0.
$2.500 \mathrm{E}+00$	$-5.21 .4 \mathrm{E}+01$	$-1.396 \mathrm{E}+02$	$3.556 \mathrm{E}-05$	$9.090 \mathrm{E}-05$
$5.000 \mathrm{E}+00$	$-4.47 .4 \mathrm{E}+01$	$-2.607 \mathrm{E}+02$	$3.213 \mathrm{E}-05$	$1.759 \mathrm{E}-04$
$7.500 \mathrm{E}+00$	$-3.734 \mathrm{E}+01$	$-3.633 \mathrm{E}+02$	$2.680 \mathrm{E}-05$	$2.500 \mathrm{E}-04$
$1.000 \mathrm{E}+01$	$-2.994 \mathrm{E}+01$	$-4.474 \mathrm{E}+02$	$1.988 \mathrm{E}-05$	$3.086 \mathrm{E}-04$
$1.250 \mathrm{E}+01$	$-2.254 \mathrm{E}+01$	$-5.131 \mathrm{E}+02$	$1.168 \mathrm{E}-05$	$3.483 \mathrm{E}-04$
$1.500 \mathrm{E}+01$	$-1.51 .4 \mathrm{E}+01$	$-5.602 \mathrm{E}+02$	$2.534 \mathrm{E}-06$	$3.662 \mathrm{E}-04$
$1.620 \mathrm{E}+01$	$-1.159 \mathrm{E}+01$	$-5.762 \mathrm{E}+02$	$-2.106 \mathrm{E}-06$	$3.665 \mathrm{E}-04$
$1.620 \mathrm{E}+01$	$2.941 \mathrm{E}+01$	$-5.762 \mathrm{E}+02$	$-2.106 \mathrm{E}-06$	$3.665 \mathrm{E}-04$
$1.750 \mathrm{E}+01$	$3.326 \mathrm{E}+01$	$-5.355 \mathrm{E}+02$	$-7.024 \mathrm{E}-06$	$3.605 \mathrm{E}-04$
$2.000 \mathrm{E}+01$	$4.066 \mathrm{E}+01$	$-4.431 \mathrm{E}+02$	$-1.537 \mathrm{E}-05$	$3.322 \mathrm{E}-04$
$2.250 \mathrm{E}+01$	$4.806 \mathrm{E}+01$	$-3.322 \mathrm{E}+02$	$-2.199 \mathrm{E}-05$	$2.851 \mathrm{E}-04$
$2.370 \mathrm{E}+01$	$5.161 \mathrm{E}+01$	$-2.724 \mathrm{E}+02$	$-2.446 \mathrm{E}-05$	$2.572 \mathrm{E}-04$
$2.370 \mathrm{E}+01$	$7.211 \mathrm{E}+01$	$-2.724 \mathrm{E}+02$	$-2.446 \mathrm{E}-05$	$2.572 \mathrm{E}-04$
$2.500 \mathrm{E}+01$	$7.596 \mathrm{E}+01$	$-1.762 \mathrm{E}+02$	$-2.644 \mathrm{E}-05$	$2.240 \mathrm{E}-04$
$2.750 \mathrm{E}+01$	$8.336 \mathrm{E}+01$	$2.298 \mathrm{E}+01$	$-2.777 \mathrm{E}-05$	$1.555 \mathrm{E}-04$
$2.820 \mathrm{E}+01$	$8.543 \mathrm{E}+01$	$8.205 \mathrm{E}+01$	$-2.752 \mathrm{E}-05$	$1.362 \mathrm{E}-04$
$2.820 \mathrm{E}+01$	$1.059 \mathrm{E}+02$	$8.205 \mathrm{E}+01$	$-2.752 \mathrm{E}-05$	$1.362 \mathrm{E}-04$
$3.000 \mathrm{E}+01$	$1.113 \mathrm{E}+02$	$2.775 \mathrm{E}+02$	$-2.533 \mathrm{E}-05$	$8.824 \mathrm{E}-05$
$3.250 \mathrm{E}+01$	$1.187 \mathrm{E}+02$	$5.649 \mathrm{E}+02$	$-1.820 \mathrm{E}-05$	$3.282 \mathrm{E}-05$
$3.270 \mathrm{E}+01$	$1.192 \mathrm{E}+02$	$5.887 \mathrm{E}+02$	$-1.741 \mathrm{E}-05$	$2.925 \mathrm{E}-05$
$3.270 \mathrm{E}+01$	$1.397 \mathrm{E}+02$	$5.887 \mathrm{E}+02$	$-1.7 .41 \mathrm{E}-05$	$2.925 \mathrm{E}-05$
$3.500 \mathrm{E}+01$	$1.466 \mathrm{E}+02$	$9.179 \mathrm{E}+02$	$-5.648 \mathrm{E}-06$	$1.749 \mathrm{E}-06$
$3.540 \mathrm{E}+01$	$1.477 \mathrm{E}+02$	$9.768 \mathrm{E}+02$	$-3.070 \mathrm{E}-06$	$1.388 \mathrm{E}-17$

- SPAN NUMEEF 2 -

$3.540 E+01$	$-1.474 \mathrm{E}+02$	$9.768 \mathrm{E}+02$
$3.750 \mathrm{E}+01$	$-1.412 \mathrm{E}+02$	$6.738 \mathrm{E}+02$
$3.820 \mathrm{E}+01$	$-1.391 \mathrm{E}+02$	$5.757 \mathrm{E}+02$
$3.820 \mathrm{E}+01$	$-1.116 \mathrm{E}+02$	$5.757 \mathrm{E}+02$
$4.000 \mathrm{E}+01$	$-1.063 \mathrm{E}+02$	$3.79 .6 \mathrm{E}+02$
$4.250 \mathrm{E}+01$	$-9.887 \mathrm{E}+01$	$1.232 \mathrm{E}+02$
$4.270 \mathrm{E}+01$	$-9.828 \mathrm{E}+01$	$1.035 \mathrm{E}+02$
$4.270 \mathrm{E}+01$	$-7.778 \mathrm{E}+01$	$1.035 \mathrm{E}+02$
$4.500 \mathrm{E}+01$	$-7.097 \mathrm{E}+01$	$-6.755 \mathrm{E}+01$
$4.720 \mathrm{E}+01$	$-6.446 \mathrm{E}+01$	$-2.165 \mathrm{E}+02$
$4.720 \mathrm{E}+0.1$	$-4.396 \mathrm{E}+01$	$-2.165 \mathrm{E}+02$
$4.750 \mathrm{E}+01$	$-4.307 \mathrm{E}+01$	$-2.296 \mathrm{E}+02$
$5.000 \mathrm{E}+01$	$-3.567 \mathrm{E}+01$	$-3.280 \mathrm{E}+02$
$5.170 \mathrm{E}+01$	$-3.064 \mathrm{E}+01$	$-3.844 \mathrm{E}+02$
$5.170 \mathrm{E}+01$	$-1.014 \mathrm{E}+01$	$-3.844 \mathrm{E}+02$
$5.250 \mathrm{E}+01$	$-7.770 \mathrm{E}+00$	$-3.915 \mathrm{E}+02$
$5.500 \mathrm{E}+01$	$-3.695 \mathrm{E}-01$	$-4.017 \mathrm{E}+02$
$5.750 \mathrm{E}+01$	$7.030 \mathrm{E}+00$	$-3.934 \mathrm{E}+02$
$6.000 \mathrm{E}+01$	$1.443 \mathrm{E}+01$	$-3.665 \mathrm{E}+02$
$6.250 \mathrm{E}+01$	$2.183 \mathrm{E}+01$	$-3.212 \mathrm{E}+02$
$6.500 \mathrm{E}+01$	$2.923 \mathrm{E}+01$	$-2.574 \mathrm{E}+02$
$6.750 \mathrm{E}+01$	$3.663 \mathrm{E}+01$	$-1.751 \mathrm{E}+02$
$7.000 \mathrm{E}+01$	$4.403 \mathrm{E}+01$	$-7.424 \mathrm{E}+01$
$7.160 \mathrm{E}+01$	$4.877 \mathrm{E}+01$	0.

$-3.070 \mathrm{E}-06$	$1.388 \mathrm{E}-17$
$8.702 \mathrm{E}-06$	$6.670 \mathrm{E}-06$
$1.168 \mathrm{E}-05$	$1.383 \mathrm{E}-05$
$1.168 \mathrm{E}-05$	$1.383 \mathrm{E}-05$
$1.751 \mathrm{E}-05$	$4.046 \mathrm{E}-05$
$2.176 \mathrm{E}-05$	$9.047 \mathrm{E}-05$
$2.192 \mathrm{E}-05$	$9.483 \mathrm{E}-05$
$2.192 \mathrm{E}-05$	$9.483 \mathrm{E}-05$
$2.218 \mathrm{E}-05$	$1.461 \mathrm{E}-04$
$2.004 \mathrm{E}-05$	$1.929 \mathrm{E}-04$
$2.004 \mathrm{E}-05$	$1.929 \mathrm{E}-04$
$1.958 \mathrm{E}-05$	$1.988 \mathrm{E}-04$
$1.481 \mathrm{E}-05$	$2.422 \mathrm{E}-04$
$1.069 \mathrm{E}-05$	$2.640 \mathrm{E}-04$
$1.069 \mathrm{E}-05$	$2.640 \mathrm{E}-04$
$8.575 \mathrm{E}-06$	$2.717 \mathrm{E}-04$
$1.806 \mathrm{E}-06$	$2.847 \mathrm{E}-04$
$-4.980 \mathrm{E}-06$	$2.807 \mathrm{E}-04$
$-1.147 \mathrm{E}-05$	$2.600 \mathrm{E}-04$
$-1.734 \mathrm{E}-05$	$2.239 \mathrm{E}-04$
$-2.229 \mathrm{E}-05$	$1.741 \mathrm{E}-04$
$-2.599 \mathrm{E}-05$	$1.135 \mathrm{E}-04$
$-2.813 \mathrm{E}-05$	$4.545 \mathrm{E}-05$
$-2.854 \mathrm{E}-05$	$-1.249 \mathrm{E}-16$

RELEASE 1.0

DETAILS? (YES=1, NO=0)
? 0
ENTER JOB IDENTIFICATION. (2 LINES, 50 CHAR/LINE)
?SAN ONOFRE
PCENTEF STAGE FIECE
;
ENTER $\mathrm{E}, \mathrm{L}, \mathrm{D}, \mathrm{F}, \mathrm{D}, \mathrm{R}, \mathrm{T}$. ?.006,3.56,4.75,611,5.18,.00224,100

REYNOLDS NUMBER $=0.252 E+04$
USING WELDONS CHART OF REYNOLDS NUMEEF US. FRICTION COEFFICIENT, ENTEF FC. (FLAIN OR GROOUEII SLEEUE WITH OR OFFOSITE TO FLUII FLOW). ?. 062

INPUT VARIABLES

RAIIIAL CLEAFANCE	0.006	IN
EUSHING LENGTH	3.560	IN
BUSHING IIIAMETER	4.750	IN
PRESSURE IRROP	611.000	FSI
FLUIf Leakage	5.180	GPM
ROTOR RALIAAL IIISFL	0.002	IN
TEMFERATURE (WATER)	100.000	IIEGF
KINEMATIC UISCOSITY	0.737E-05	FT-SQ/SEC
FRICTION CDEFFICIENT	0.062	

RESULTS

LABYRINTH FAATIO(MU)	0.227	
ECCENTRICITY RATIO(EF	0.373	
FLUID UELOCITY	222.655	IN/SEC
REYNOLIIS NUMEER	$0.252 \mathrm{E}+04$	
FORCE	$0.296 E+03$	LB
BEARING STIFFNESS	$0.132 \mathrm{E}+06$	LB/IN

$$
405-6-81-2
$$

1. Bechtel Specification for Auxiliary Feedwater Pumps and Drivers for the Southern California Edison Company, San Onofre Nuclear Generating Station, Units 2 and 3. Specification Number S023-405-6. SCE Number 4079. October 28, 1974.
2. ASME Boiler and Pressure Vessel Code, Section III, 1974 Edition including Winter 1974 Addenda.
3. Den Hartog, J.P., Mechanical Vibrations, McGraw-Hill Book Company, Inc., (1940).
4. DeLaval Engineering Handbook, Third Edition, Edited by H. Gartman, McGraw-Hill Book Company (1970).
5. Program Multispan, Strupak Instruction Guides, TRW Systems Group, Redondo Beach, California, 90278.

$$
405-6-81-2
$$

FIGURES

FIGURE 3 TYPICAL PURP FOOT

- ADDENDUM I TO DC-1102

BECHTEL NOZZLE LOADS

AUXILLARY FEEDWATER PUNP P-141 UNIT 2
MOTOR DRIVEN
6" SUCTION

	THERMAL EXPANSION	WEIGHT (PIPE, FLUID \& INSULATION)	OPERATING BASIS EARTHQUAKE O.B.E.	$\begin{array}{ll} & \text { DESIGN } \\ \text { BASIS } \\ & \text { EARTHQUAKE } \\ & \text { D.B.E. }\end{array}$
F_{X}	$+558$	- 14	± 42	± 84
.$_{Y}$	+ 117	- 235	± 29	± 58
F_{Z}	- 200	+ ${ }^{1} 11$	± 25	± 50
M_{X}	- 180	+ 358	± 205	± 410
M_{Y}	+ 1053	- 39	± 41	± 82
M_{z}	+. 287	+ 46	± 67	± 134
$4^{\prime \prime}$	ischarge		.	
F_{X}	+ 499	+ 22	± 135	± 270
F_{Y}	+ 66	- 108	± 127	± 254
$\mathrm{F}_{\mathbf{Z}}$	+ 35	- 7	± 175	± 350
${ }^{M} \mathrm{X}$	+80	- 100	± 246	± 492
M_{Y}	- 792	- 16	± 163	± 326
Mz	- 13	+. 11	± 115	± 230

$$
405-6-81-2
$$

AUXILIARY FEEDWATER PUMP P-140 UNIT 2
TURBINE DRIVEN
6" \emptyset SUCTION

	THERMAL EXPANSION	WEIGHT (PIPE, FLUID \& INSULATION)	- OPERATING BASIS EARTHOUAKE O.B.E.	$\begin{gathered} \text { DESIGN } \\ \text { BASIS EARTHQUAKE } \\ \text { D.B.E. } \end{gathered}$
F_{X}	$+690$	0	± 89	± 178
F_{Y}	$+13$	+20	± 97	± 194
F_{Z}	- 196	0	± 38	± 276
M	-13	-175	± 124	± 248
$\mathrm{M}_{\mathbf{Y}}$	+ 1327	0	± 110	± 220
M_{2}	$+49$	-11	± 115	± 230

4"Ø DISCHARGE

F_{X}	+964	+29	± 412	± 824
F_{Y}	-76	-125	± 87	± 174
F_{Z}	-170	-11	± 166	± 332
M_{X}	-143	-131	± 378	± 756
M_{Y}	-1148	-28	± 459	± 918
M_{Z}	+22	+18	± 154	± 308

AUXILIARY FEEDWATER TURBINE

8" Outlet Nozzle *

	THERMAL EXPANSION	WEIGHT (PIPE, FLUID \& INSULATION)	OPERATING BASIS EARTHQUAKE O.B.E	DESIGN BASIS EARTHQUAKE D.B.E.
F_{X}	180	$\therefore 0$	± 25	± 40
F_{Y}	-5	-33	± 25	± 40
F_{Z}	30	0	± 25	± 40
M_{X}	- 10	0	0	0
M_{Y}	-53	0	0	0
M_{2}	0	0	0	0

4" Inlet Nozzle

F_{X}	-141	-6	± 37	± 74
F_{Y}	32	-55	± 104	± 208
F_{Z}	-12	0	± 82	± 164
M_{X}	-16	82	± 159	± 308
M_{Y}	-101	-5	± 44	± 88
M_{Z}	244	5	± 24	± 48

* There is an additional 100 lbs. of thrust due to an untied expansion joint in the F_{Z} direction.

$$
405-6-81-2
$$

- NOTICE -

the attached files are official record os of the DIVISION OF DOCUMENT CONTROL. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE RECORDS FACILITY BRANCH 016. PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGES) FROM DOCUMENT FOR REPRODUCTION MUST BE REFERRED TO FILE PERSONNEL.

DEADLINE RETURN DATE

CONTROL H 8103060541
DATE. $2 / 13 / 81$

