

\qquad REVISED OR ADPED-CEPG

\qquad
\qquad

\qquad
\qquad

\qquad

IMPORTANT
If the price or schedule is affected by this document approval, Bechtel must be notified prior to fabrication or such claims:are waived.
Approval of documents involving calculation, analysis or test report is only an acceptance of the method used by the supplier. Supplier retains full responsibility for design.
Approval of this document does not relieve the supplier from full responsibility for contract or purchase order requirements including, but not limited to, adequacy and suitability of materials and/ar equipment represented thereon for the intentiver function.

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad APPROVED EXCEPT AS NOTED. MAKE CHANGES AS APPROVED.
7 INFORMATION ONLY DISTRIBUTION REQUIRED

\qquad
\qquad
\qquad
\qquad

Circle AW Products Company
REPORT

2420 Reservoir Street
Post Office Box 2248
Pomona, California 91766
REPORT NO. $\frac{54498-2}{\text { ND54498 }}$
OUR JOB NO.
YOUR P. O. NO. $\frac{7651}{\text { N/A }}$
CONTRACT

Revised and Reissued.
8 February 1977

68-Page Report
date 3 December 1976

SEISMIC ANALYSIS

OF
CONTROL PANELS
FOR
CIRCLE AW PRODUCTS COMPANY
POMONA, CALIFORNIA
BY
WYLE LABORATORIES

SEE $\$ 0376$

NORCO, CALIFORNIA
$\left.\begin{array}{l}\text { STATE OF CALIFORNIA } \\ \text { COUNTY OF RIVERSIDE }\end{array}\right\}$ s.
Ray C. Myrick
, being duly sworn, deposes and says: That the information contained in this report is the result of complete and carefully conducted tests and is to the best of his knowledge true and correct in all respects.

SUBSCRIBED and sworn to before me this 3 rd day of December, 76

DEPARTMENT \qquad DYNAMICS

DEPT. MGR.

Registered Professional Engr $\frac{\text { G } 20 \text { Shipway }}{\square}$
$\frac{\text { N/A }}{\text { DCAS-QAR VERIFICATION }}$

REVISED AND REISSUED

T. Vickers

REGISTERED
PROFESSIONAL
ENGINEER

A. Heeseman

TABLE OF CONTENTS

SECTIONSPAGE NUMBER
TITLE PAGE 1
TABLE OF CONTENTS 2
1.0 PURPOSE 3
2.0 REFERENCES 3
3.0 APPROACH 5
4.0 SECTIONS 1-5 AND 12-16 6
5.0 SECTION 6 10
6.0 SECTIONS 8, 9, AND 17 11
7.0 SECTIONS 10 AND 11 1.2FIGURES1.-32
TABLES1-5
44 thru 48
APPENDIX I 49

1.0 PURPOSE

The purpose of this report is to verify the adequacy of the design of the control panels to withstand the seismic requirements of Reference 2.0. The verification is demonstrated by similarity to two of the sections which were subjected to a seismic test program and with supplementary analysis.
2.0 REFERENCES
2.1 Circle AW Purchase Order Number 7651.
2.2 Bechtel Specification Number S023-502-5, Appendix 4F.
2.3 Circle AW Drawings:

Title	Number	Sheets
Fabrication Details	702-E-348	1 to 7
Cut-outs	702-E-349	1 to 3
Shipping Section 1	702-E-350	1 to 5
Panel Assembly Shipping Section 1	702-E-301	1 of 1
Shipping Section 2	702-E-355	1 to 5
Panel Assembly Shipping Section 2	702-E-302	1 of 1
Shipping Section 3	702-E-360	1 to 5
Panel Assembly Shipping Section 3	702-E-303	1 of 1
Shipping Section 4	702-E-365	1 to 5
Panel Assembly Shipping Section 4	702-E-304	1 of 1
Shipping Section 5	702-E-370	1 to 5
Panel Assembly Shipping Section 5	702-E-305	1 of 1
Shipping Section 6	702-E-375	1 to 4
Panel Assembly	702-E-3.06	1 of 1

2.0 REFERENCES (Continued)
2.3 (Continued)

Title
Shipping Section 7
Panel Assembly
Shipping Section 7
Shipping Section 8
Panel Assembly
Shipping Section 8
Shipping Section 9
Panel Assembly
Shipping Section 9
Shipping Section 10
Panel Assembly
Shipping Section 10
Shipping Section 11
Panel Assembly
Shipping Section 11
Shipping Section 17
Panel Assembly
Shipping Section 17

Number	Sheets
$702-E-380$	1 to 3
$702-E-307$	1 of 1
$702-E-385$	1 to 4
$702-E-308$	1 of 1
$702-E-390$	1 to 11
$702-E-309$	1 to 4
$702-E-395$	1 to 4
$702-E-310$	1 of 1
$702-E-400$	1 to 3
$702-E-311$	1 of 1
$702-E-430$	1 to 3
$702-E-317$	1 of 1

2.4 TRW Systems Group Computer Programs "Two Dimensional and Three Dimensional Frame Mndal Analysis Programs" as maintained in the Library of Control Data Corporation's Cybernet System. CDC Publication Number 86612000.

3.0 APPROACH

The control panel shipping sections 1 through 17 are connected together to form three assemblies as shown in plan view in Figure l. This report will treat the sections in groups as follows:
a. Sections 1 through 5 and 12 through 16.
b. Section 6 .
c. Sections 8, 9, and 17.
d. Sections 7, 10, and 11.

The appendix presents the cabinet weight summary sheets as prepared by Circle AW.
\qquad
4.0
4.1 Intra-Section Response

Shipping section 3 was selected as a representative portion of this part of the console and was subjected to a seismic test program as reported in Wyle Laboratories' Report No. 54498-1. It should be noted that the test was performed with the section as a free standing unit without the support of the adjacent sections. The angle of the adjacent sections will add stiffness in the front-to-back direction and will tend to reduce the response of the cabinet. The test was therefore a conservative demonstration of console response. The following paragraphs will show that the structure and weight loading of the remaining sections are sufficiently similar to justify qualification by similarity.

All of the sections are much more rigid in the side-to-side direction due to the shear support of the front panels and due to the mutual support of the adjacent sections. Accordingly, the front-to-back direction is the critical horizontal direction and is the direction considered herein in combination with the vertical direction. Figure 2 illustrates a cutaway view of a typical section showing the major structural members.

Figure 3 illustrates one typical front-to-back cross section of section 1 and Figure 4 illustrates the other typical cross section for section 1. In similar fashion, Figures 5 through 12 illustrate typical cross sections for all shipping sections 1 through 5 and 12 through 16. A reviev of these figures' shows that all of the sections have similar front-to-back support structure.

4.0
4.1
4.2

SECTIONS 1-6 AND 12-16 (Continued)
Intra-Section Response (Continued)

Table 1 is a tabulation of the average weight distribution for these sections, and shows close correlation of the weight loading of the several sections. The structure and weight correlations are close enough to expect essentially the same dynamic response from all sections. The results of the conservative test of section 3 showed a comfortable margin better than specification requirements (Reference 2.2), and it is therefore reasonable to qualify all of these sections by similarity.

Assembly of Sections 1-6, 12-16

The capabilities of the cabinets as individual free standing units has been demonstrated by the test of section 3 . When installed as an assembly the cabinets will be bolted together. Since the cabinets have different stiffness characteristics in the different directions, there are potential interface loads during a seismic event. It is required that these loads not cause structural failures in the cabinets.

Consider first sections 1,2 and 3 with loading in the Y direction as shown on the following page. Sections 1,2 and $1 / 2$ of 3 will be considered and will be representative of the other three identical half assemblies.

To develop the interface loading; assume the upper portion or $1 / 3$ of the weight of section 3. This conservatively assumes that only the lower section--2/3 of the weight--as supported by the cabinet's internal structure and that the upper $1 / 3$ of the weight is supported by the adjacent cabinets through the interface connections. Multiply this weight by 2.2. (This was the maximum g level measured at the top of the cabinet during the free standing test.) Apply this load of 1,862 lbs. to the interface between sections 2 and 3 .
4.0 SECTIONS 1-6 AND 12-16 (Continued)
4.2 Assembly of Sections 1-6, 12-16 (Continued)

For section 2 assume the top $1 / 3$ of the weight times 1.6 g (Y component of 2.2 g s), which gives $2,442 \mathrm{lbs}$. Section 1 is approximately twice as stiff in the Y direction as section 2. Therefore, assume that $1 / 3$ of the loads are distributed internelly in section 2 and $2 / 3$ ($2,870 \mathrm{lbs}$.) are applied to the interface between sections 1 and 2 . The internal distribution in section 2 will be shared by the internal X-brace and the front panel. For simplicity of calculation, the conservative assumption is made that the internal X -brace carries all of the load, i.e., $1,435 \mathrm{lbs}$. It will be shown below that the loading on the X -brace in section l is higher and is therefore the governing case.
502. 5 - 50 H .

AVLE lasoratomies Norco, Cellfomia
4.0 SECTIONS 1-6 AND 12-16 (Continued)
4.2 Assembly of Sections 1-6, 12-16 (Continued)

To demonstrate the capability of the top of the cabinets to carry the loading a math model was analyzed using the TRW Systems Group 2-dimensional structural analysis program. The model assumed that the loading was carried in the 2×2 square tubes underneath the top sheet without benefit of the top sheet except to reduce the L / r ratios. (The maximum L / r ratio is 113 without the top sheet.) The math model is illustrated on the following page. The model is restrained in the Y direction at the two ends of the section 1 X brace (joints 2 and 8) and in the X direction in the center of section 1 (joint 5), and at the centerline of symmetry (joints 17 and 18). The loads described above (2,870 lbs.) were distributed among the several joints of sections 2 and 3 . 1/3 of its weight (1,570 lbs.) was distributed athong the joints of section 1 . The analysis results show reaction loads of $2,909 \mathrm{lbs}$. at the $1-2$ interface end of the section 1 X brace (joint 8), and $1,520 \mathrm{lbs}$. at the opposite end of the X brace (joint 2). The maximum computed stress for any of the 2 in . square tubes was less than $9,000 \mathrm{psi}$. The computer printout of the member loads is included on the following pages.

The horizontal reaction loads in the top of the cabinet will be carried to the X -braces by the cabinet end members. The end members were modeled as follows:

\qquad pace mo

MEMBER LOALS

MEM	JT	$\bar{F}-\mathrm{XX}$	$F-Y Y$	M-2Z
1	1	$-1.670 E+02$	$1.060 i+03$	5.0UつE+03
	2	1.670E+02	-1.060E+03	$1.301 .5+04$
2	2	-1.670E+02	-4.600E+U2	$-1.301 E+04$
	3	1.670E+02	4.600E+02	-4.01.4E+03
3	1	-9.656E+02	$-1.670 E+02$	-5.005 $E+03$
	4	$9.656 E+02$	$1.670 k+02$	-2.007E+03
4	3	$1.337 \mathrm{E}+02$	$5.616 \mathrm{E}+01$	$2.363 \mathrm{E}+03$
	4	-1.337E+02	-5.616E+01	$1.479 \mathrm{E}+03$
5	3	-4.028E+02	$2.696 \mathrm{E}+01$	1.6.6.1E+03
	5	$4.028 \mathrm{E}+02$	-2.696E+01	4.249E+02
6	4	4.040E+01	-5.806E+00	$7.649 \mathrm{E}+\mathrm{J} 1$
	5	-4.040E+01	5.806E +00	-4.501E+02
7	4	-5.940E+0'2	$1: 0.10 \mathrm{E}+0.1$	$4.513 \mathrm{E}+02$
	6	5.940E+02	-1.010E+01	$3.364 E+02$
8	5	1.400E+03	-8.490E+00	$-4.735 E+02$
	6	-1.400E+03	8.490E+0U	$-1 \cdot 125 E+02$
9	5	-9.222E+02	2.480E+01	$4.987 \mathrm{E}+02$
	7	9.222E+02	-2.480E+01	$1.634 \mathrm{E}+\mathrm{U}^{1}$
10	6	$-1.455 E+03$	5:143E+01	$1.248 \mathrm{E}+03$
	7	1.455E+03	-5.143E+01	2.3U.2E+03
11	6	$1.586 E+03$	-7.098E+01	-1.472.E+03
	9	$-1.586 \mathrm{E}+03$	$7.098 \mathrm{E}+01$	-3.213E+03
12	8	-1.900E+03	$1.804 \mathrm{E}+03$	$2.419 E+04$
	9	$1.900 E+03$	-1.804E+03	$9.704 \mathrm{E}+03$
13	7	-7.059E+02	-7.909E+02	-7.381E+0.3
	8	7.059E+02	7.909E+02	-2.419E+04
14	7	-2.910E+03	$1.255 \mathrm{E}+02$	$3.445 E+03$
	10	2.910E+03	-1.255E+02	$1.52 .4 \mathrm{E}+03$
15	9	1.522E+03	-5.294E+01	-2.853E+03
	10	-1.522E+03	5.294E+01	-1.49,5E+03
16	9	-7.823E+02	-8.491E+01	-3.638E+03
	11	7.823E+02	8.491 E+01	-1.506E+03
17	10	-2.168E+02	$1.224 \mathrm{E}+01$	$1.926 \mathrm{E}+02$
	11	2.168E+02	-1.224E+01	$4.654 E+02$
18	10	$-1.294 E+03$	-6.773E+00	-1.568E+02
	12	$1.294 E+03$	$6.773 \mathrm{E}+00$	-6.3.46E+01
19	10	-5.919E+02	-2.009E+00	-6.458E+01
	13	5.919E+02	2.009E+00	-6.356E+01
20	11	1.402E+02	$1.012 \mathrm{E}+01$	4.103E+02
	12	-1.402E+02	-1.012E+01	2.252E+0.
21	11	-6.832E+02	$2.954 E+01$	7.105E+02
	13	$6.832 E+02$	$-2.954 E+01$	$2.714 \mathrm{E}+02$

ME：13E．Z LOADS（CONT．）

M	JT	$F-X X$	$F-Y Y$	11－22
22	12	$3.132 \dot{4}+02$	－4．053と－01	1．6く6E゙＋U1
	13	$-3.132 \pm+02$	4.053 L 01	－3．633上＋01
23	12	－8．073E＋02	－1．642E＋U1	－1．630E＋0．2
	14	8.07 ЗE゙＋02	$1.642 \mathrm{E}+01$	$-3.478 E+\cup 2$
24	12.	－3．446E＋02	$-1.463 E+00$	－1．504Ex＋01
	15	$3.446 E+32$	$1.463 E+00$	－9．616c＋01
くכ	13	－8．155i＋02	－7．644E＋UU	－1．69ذェ＋Uく
	15	$8.155 \mathrm{E}+02$	7.04	－2．305E＋
26	14	$5.605 \mathrm{E}+02$	－7．309E＋00	．110E＋0．
	15	－5．005E＋02	$7.309 \mathrm{E}+00$	－2．180E＋UC
27	15	－9．490E＋0C	3．49．3E＋U1	6．112E＋0く
	16	$9.490 \mathrm{E}+02$	－3．493E＋01	$1.485 \mathrm{E}+\mathrm{J} 3$
28	14	$2.1545+0.2$	$-1.097 E+00$	－7．844E＋ 01
	18	－2．154E＋02	1.097 E＋00	$8.233 E+00$
29	14	－9．477E＋02	$3.100 \mathrm{C}+\mathrm{l}$	6.37 cie 02
	10	$9.477 \mathrm{E}+02$	－3．160E＋01	1．431E＋U3
30	16	－1．51．1E＋03	－1．080E＋02	－2．916E＋03
	17	$1.511 \mathrm{E}+03$	$1.080 \mathrm{E}+02$	－7．276E－11
31	15	$2.015 E+02$	－7．29．5 E－01	－6．640上＋01
	18	－2．015上＋02	7．295E－01	－8．233E＋0

JOINT EUUILIBRIUM CHECK

INT	F－X	F－Y	M－2
1	－2．167E－09	9．400E＋0．1	2．326E゙－10
2	$3.110 \mathrm{E}-09$	－1．520E＋03	1．746E－10
3	－6．390E－10	$9.500 \mathrm{E}+0.1$	4．366L－10
4	－4．120E－10	$3.510 \mathrm{E}+02$	1.25
5	－1．124E＋03	3．420．E＋0＇2	1.0
6	－1．478E－10	$4.350 \mathrm{E}+02$	－0．
7	－1．179E－09	2．870E＋02	－6．548E－10
8	7．603E－10	$-2.909 E+03$	－3．492E－10
9	－6．731E－10	$2.880 \mathrm{E}+02$	－2．501上－0
10	1．183E－09	2．730E＋0．2	－2．31
11	1．182E－10	$2.730 E+02$	－8．7315－11
12	$9.763 \mathrm{E}-10$	$2.410 E+02$	－1．244E－10
13	1．04UE－09	2．410E＋02	－1．392E－10
14	$7.312 \mathrm{E}-10$	$3.360 \mathrm{E}+0$ C	－1．382と－1
15	7．494E－10	$3.3005+0.2$	C．ċos－1
16	2．547E－10	$6.210 E+02$	8．731E－11
17	$1.511 \mathrm{c}+03$		－7
18	－3．863E＋02	$1.080 E+0 ¢$	

4.0 SECTIONS 1-6 AND 12-16 (Continued)
4.2 Assembly of Sections 1-6, 1.2-16 (Continued)

The member at joint 2 is subjected to a shear load of $1,060 \mathrm{lbs}$. and a moment of $13,000 \mathrm{in}$. lbs. The resultant stress is

$$
\begin{aligned}
& S_{s}=\frac{P}{A}=\frac{1,060 \mathrm{lbs} .}{1.61 \mathrm{in.2}}=6.58 \mathrm{lbs} . / \mathrm{in.}^{2} \\
& S_{b}=\frac{M}{Z}=\frac{13,000 \mathrm{in} .1 \mathrm{lbs} .}{.54 \mathrm{in}^{3}}=27,047 \mathrm{lbs} . / \mathrm{in} . .^{2}
\end{aligned}
$$

The members at joint 8, the combined members of sections 1 and 2, which are bolted together, are subjected to a shear load of $1,804 \mathrm{lbs}$. and a moment of $24,190 \mathrm{in}$. lbs. The resultant stress is

$$
\begin{aligned}
& S_{s}=\frac{P}{A}=\frac{1,804 \mathrm{lbs} .}{3.22 \mathrm{in} .2^{2}}=560 \mathrm{lbs} . / \mathrm{in} .^{2} \\
& S_{b}=\frac{M}{Z}=\frac{24,190 \mathrm{in} .1 \mathrm{bs} .}{1.08 \mathrm{in} .^{3}}=22,398 \mathrm{lbs} . / \mathrm{in} .^{2}
\end{aligned}
$$

The horizontal loads will be reacted by the X^{\prime} brace of section 1 as follows:
\qquad
4.0

SECTIONS 1-6 AND 12-16 (Continued)
4.2

Assembly of Sections 1-6, 12-16. (Continued)

The higher load shown above (2,909 lbs.) may be assumed to be reacted by one of the 2 in . sq. tube cross braces. The maximum L / r is less than 82.

The resultant load in the cross brace is $3,445 \mathrm{lbs}$. Therefore, the stress in the tube would be:

$$
\mathrm{S}=\frac{3,445 \mathrm{lbs} .}{1.27 \mathrm{in} .2}=2,713 \mathrm{lbs} . / \mathrm{in}^{2}
$$

The $3,445 \mathrm{lb}$. load is terminated at the bottom into a $3 \times 4 \times 1 / 4$ angle which is welded 2 in . in 8 in . centers ($1 / 4 \mathrm{in}$. fillet minimum). If one 2 in. long weld carries the load, 'then the stress is:
$P / A=3,445 \mathrm{lbs} . / .35 \mathrm{in} .^{2}=9,745 \mathrm{lbs} . / \mathrm{in} .2$ which is well below the allowable stress for welds of $13,600 \mathrm{lbs} . / \mathrm{in} .2$

502-5-501-1
4.0 SECTIONS 1-6 AND 12-16 (Continued)
4.2 Assembly of Sections 1-6, 12-16 (Continued)

The $3^{\prime \prime} \times 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ base angle at the intersection of sections 1 and 2 is not considered here since it is considered at the interface of sections 2-3 which carries a greater force.

The vertical component of the X brace load shown above will be primarily offset by the adjacent X brace in section 2 which will produce a vertical reaction in the opposite direction. The portion of the vertical load carried in the cabinet end frame is negligible.

The results of the analysis of the previous model may also be used to indicate the interface loading between sections 1 and 2. The maximum tension load occurs at the inside of the angle and is $2,371 \mathrm{lbs}$. The shear load is negligible.

SECTION ' $A \cdot A^{\prime \prime}$

The tension load of $2,371 \mathrm{lbs}$. may be carried by bolts \#3 and \#4. The bolts under consideration are 5/16-24 UNF, SAE Grade 5 (92,000 psi min. yield - 120,000 psi ultimate). The nominal stress area is . 058 in. 2. Therefore, the axial bolt stress is P / A or $2,371 \mathrm{lbs} .-\left(\right.$ area of two bolts $\left.=.116 \mathrm{in} \mathrm{C}^{2}\right)=20,440 \mathrm{lbs} . / \mathrm{in}^{2}$

4.0

SECTIONS 1-6 AND 12-16 (Continued)
4.2

Assembly of Sections 1-6, 12-16
(Continued)
To consider loading in the X direction, a similar rationale will be followed. The loads are all within 10% of the above except for the translational load in the X direction applied to section 3. As before, the load is developed by assuming $1 / 2$ of the upper portion of section 1 (the outer $1 / 2$ is supported by the internal structure in the free standing mode) and mutiplying it by the 2.2 g factor. The same load for section 2 of $2,442 \mathrm{lbs}$. is added. $2 / 3$ of the total is applied to section 3. Section 3 also supports the static weight of $1 / 2$ of the upper portion for a total of $3,618 \mathrm{lbs}$. The load of $3,618 \mathrm{lbs}$. is applied to one side of section 3 . Symmetry of the other portion of the assembly applies the same load to the opposite side of section 3. The detailed calculations follow.

502-5-501-1
4.0

SECTIONS 1-6 AND 12-16 (Continued)

Assembly of Sections 1-6, 12-16 (Continued)

A load of $3,618 \mathrm{lbs}$. is applied at the top of each end of section 3 . These two loads will be reacted through their respective X member to a $3^{\prime \prime} \times 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ angle at the lower corner which is bolted back to back to an identical angle in the adjacent cabinet. Since the front and back base angles of the sections are intermittently welded to the floor, the double angle beam will be considered greater than 1.2 in. 3 .

CROSS SECTION OF BOTTOM ANGLES

PLAN VIEW
SECTIONS 3-4 INTERFACE
. 3,324 ${ }^{\#}$

BEAM MODEL
4.0
4.2

SECTIONS 1-6 AND 12-16 (Continued)
Assembly of Sections 1-6, 12-16 (Continued)
$M=\frac{P a b^{2}}{l^{2}}=\frac{3,324 \times 17 \times 53^{2}}{70^{2}}=33,294$ in. lbs.
Stress $=S=\frac{M}{Z}=\frac{33,294}{1.2}=26,995 \mathrm{lbs} . / \mathrm{in} .{ }^{2}$
The actual stress will be lower than this value because of the support provided by the floor sheets.

The material is ASTM-A36 with a minimum yield of $36,000 \mathrm{lbs} . / \mathrm{in} .^{2}$
Considering the potential interface loads between sections 5, 6 and 12, a seismic load parallel to the 5-6 interface is assumed. It will be assumed that section 6 will transmit this loading through its upper portion into section 12. 1/2 of the upper portion of section 5 is multiplied by the very conservative 2.2 g loading factor. This translational load of $1,694 \mathrm{lbs}$. is applied to the $5-6$ interface. The static weight of the upper portion of section $6,1,223 \mathrm{lbs} .$, is added and the translational load of $2,917 \mathrm{lbs}$. is applied to the 6-12 interface. The moment across the 6-12 interface is computed as shown below and is 133,000 in. lbs.

4.0 SECTIONS 1-6 AND 12-16 (Continued)
4.2 Assembly of Sections 1-6, 12-16 (Continued)

4.0
4.2

Assembly of Sections 1-6, 12-16 (Continued)

SECTION "AAA"

The total moment is assumed to be reacted by 2 groups of 2 bolts ($1,2,3$ and 4) over a distance of $48^{\prime \prime}$. The bolts under consideration are 5/16-24 UNF, SAE Grade 5 bolts (92,000 psi min. yield - 120,000 psi ultimate). Nominal stress area is $.058 \mathrm{in}^{2}$

Therefore bolt stress is (133,757\# $\left.\div 48^{\prime \prime}\right) \div 2$ bolts $=1,393 \# /$ bolt $1,393 \# \div .058$ in. $^{2}=24,022 \mathrm{lbs} . / \mathrm{in} .^{2}$

The above calculations show that in spite of the conservative loading assumptions made; the maximum stress computed was less than 82% of the minimum yield of, any material used.

5.0 SECTION 6

Shipping section 6 is the sectir hat connects the two horseshoes. Its structure is differ: from the others in that in the plan view it curves in the opp e direction from the others.

The front-to-back crons secti: are similar to that of the other secticn: as sho: in Fis"s 13 and 14. "The cabinet is also supported quite A ; dly i: : h horizontal directions by the side-to-side siffnes: the awent sections 5 and 12 . The effective stroure of is sect: is therefore significanty more rigid \quad : the cor $\sec ^{\circ}$:

The front pas arcoporte: an arrangement similar to the other sections anc ee weic loading is similar as shown in Table 1. 'The cont ation :' Emilar loading and stiffer structure will resuli $\therefore:$ a lowe \quad sponse level than that observed in tice test. \therefore ectio:

Section 6 is mefefor : accey le design.
\qquad
6.0 SECTIONS 8, 9, AND 17

Shipping sections 8,9 , and 17 are similar in shape to section 3 except that they are connected together in a straight line and the top section is removable. The following paragraphs will show that sections 8,9 , and 17 are dynamically similar to section 3 . Figures 15 through 19 show representative cross sections of these sections.

A representative front-to-back cross section of section 3 was modeled and loaded with representative joint weights. Figure 20 illustrates the math model, and Table 2 tabulates the joint weights. A two dimensional modal analysis of this model with the 2DFMAP computer program (Reference 2.4) showed a first mode frequency of 7. 3 Hz which compares with a first mode frequency of $9-10 \mathrm{~Hz}$ noted during the tesi. The mode shape is shown in Figure 21 ant Table 2 tabulates the modal displacement. This comparison serves to validate the modeling techniques and the computer program.

Section 9 was then modeled in a similar way. Figure 22 shows the math model. A two dimensional modal analysis of this section ind:cated a first mode frequency of 10.4 Hz . The mode shape is shown in Figure 23, and Table 3 tabulates the joint weights and the modal dieplacements. This higher frequency is still in the excitation range of the postulated environment and therefore these sections will exhib; essentially the same dynamic response and will be able to withstand the postulated environment as did section 3 . Figures 15 through 19 show repersentative cross sections of sections 8,9 , and 17 , which are all essentially the same. Table 1 tabulates the weight loading distribution for the se three sections.

As before, the side-to-side direction was not modeled due to the greater stiffness and resultant lower response of the sections in. that direction.

The similarity of these three sections to section 3 along with the supplemental analysis justifies their qualification.

WYLE LARORATORIES Norco. Celifornia

7.0 SECTIONS 7, 10 AND 11

The control panel shipping sections 10 and 11 are identical. Section 7 is similar to sections 10 and 11 , but there are sonic differences in structural details. Sections 10 and 11 may be qualified largely by similarity to section 7 which was tested (reference Wyle Test Report No. 54498). Due to the structur.: 1 differences, a modal analysis of section 10 was performed to further demonstrate that the modal frequencies of sections 10 and 11 were similar to or higher than those of section 7 .

The following is a description of the computer modeling and results of the modal analysis. The analysis was performed with the 3DFMAP special program (Reference 2.4 and previr page).

The front-to-back horizontal direction is obviously more flewhe than the side-to-side direction because the front panels provile considerable shear stiffness in the side-to-side direction. The front-to-back direction is the refore the critical horizontal direction. Accordingly the model was fixed in the side-to-side diyecticn with the vertical and front-to-back directions free to move. The cabinet was modeled with 64 joints and 107 members as shown in Figure 24. Several internal equipment support members were combined for the purpose of the analysis. Figures 25 through 30 show the details of the member properties. Since the cabinct will be installed by welding to the floor, all of the vertical members at the base level were fixed. The weight of the structural members was evenly divided between the 64 joints. The weight of the $1 / 4^{\prime \prime}$ front panel was distributed on the front joints; and the weight of the instruments was distributed as realistically as possible betweer. the front and internal joints. The resulting weight assigned to cach of the joints is tabulated in Table 4.
7.0 SECTIONS ? 10 AND 11 (Cominued)

The analysis of section 10 shovrs a first mode frequency of 20 Hz which compares favorably with the first mode frequenc; of 17.5 Hz which was observed in the test of section 7. The first four computed modal frequencies are as follows:

Natural Fregencies

Mode	Freq. (CPS)
1	$1.9974173 \mathrm{E}+01$
2	$3.6480252 \mathrm{E}+01$
3	$4.1573218 \mathrm{E}+01$
4	$5.4320627 \mathrm{E}+01$

The sirst mole shape is illustirted in Figures 31 and 32, and the modal displacements are tabulated in Table 5.

A second modal analysis was performed with the vertical members at the base level pinned in the front-to-back directic The first mode frequency complated for this condition was 16.6 T. This condition is clearly more flexible than the real case and thero. fore compares favorably with both the 20 Hz frequency comput. : above and the 17.5 Hz test results.

The nexibility of the $1 / 4^{\prime \prime}$ front panel was not included in the r. because: (1) the large instruments are supported on internal $61 / 10:$ members as well as the front panel; and (2) the loading of and tisue. fore the response of the panels will be similar to that observed dusin the test of section 7 .
7.0 SECTIONS 7, 10 AND 11 (C ritinued)

The computed model for sec ion 10 compares favorably with the experimental data f m the test of section 7 . It is reasonable to expect the dyn mic response of sections 10 anc? 11 to be similar to that of scion 7. It is therefore reasonalle to qualify sections 10 and 11 oy similarity to section 7 .

Sections 7 and 11 are bolted ogether in the assembly of the syofem. Since the two cabil its are essentially identical, the $:$ response in the horizonial d ections will be essentially equat. It is therefore reasonable to zepect no inter-section loading na amplification of motion in in assernbly.

FIGURE 1

Note: For clarity all framing members not shown.

FIGURE 2

REPORT NO. \qquad 17

page no

\qquad

Note: View $C-C$ is similar to Figure 9.

72.06

FIGURE 3
SECTION A-A (3 PLACES)
SHIPPING SECTIONS 1 AND 12

$$
502-5-501-1
$$

FIGURE 4

SECTION B-B (5 PLACES)

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8
SECTION B-B (TYPICAL 5 PLACES)

53.75

FIGURE 9
view c-c end (typical) 502-5-50

53.75

FIGURE 10
33

SECTION A-A (2 PLACES)

report no.
page no

FIGURE 11
SECTION B-B

REPORT NO

FIGURE 12

SECTICN A-A (TYPICAL)
35

REPORT NO
page no

FIGURE 13
SECTION A-A (2 PLACES)

FIGURE 14
SECTION B-B

\qquad
47.75
$83.88+\frac{1}{\square}$

83.88

Gauge Plate
 late

FIGURE 15
SECTION A-A (2 PLACES)

FIGURE 16
SECTION B-B (1 PLACE)

FIGURE 17

47.75

FIGURE 18
SECTION A-A (TYPICAL)
$502-5-5014$

47.75
83.88

FIGURE 19

SECTION B-B (1 PLACE)
SHIPPING SECTION 17
42

FIGURE 20

FIGURE 21

FIGURE 22

FIGURE 23

SHIPPING SECIION 9 FIRST MODE SHAPE

TJGON HLVN OI NOILJJS

(O)

SECTION A-A

LEGEVO mengen shounin © $=$
(B) $=$
(B) $=$ ricuar
(C) $=$ muen
(0) $=$ Huat
$(1)=$ ricure

* * Vouncte
*** = merota Mnorentics
MEngta Pno
ovadoupleo

$\begin{array}{lr}\text { Report No. } & 54498-2 \\ \text { Page No. } & 38\end{array}$

$$
\begin{aligned}
& A=.90 \mathrm{in.}^{2} \\
& \text { Ixx }=.92 \mathrm{in.}^{4} \\
& \text { Iyy }=.15 \mathrm{in.}^{4} \\
& \mathrm{~J}=.54 \mathrm{in.}^{4}
\end{aligned}
$$

FIGURE 25

MEMBER PROPERTIES

$$
\begin{aligned}
& \mathrm{A}=.66 \mathrm{in} .^{2} \\
& \text { IxX }=.32 \mathrm{in} .^{4} \\
& \text { IyY }=.10 \mathrm{in} .^{4} \\
& \mathrm{~J}=.30 \mathrm{in} .4
\end{aligned}
$$

FIGURE 26
MEMBER PROPERTIES

PAGE NO_ 40

$$
\begin{aligned}
& A=1.41 \mathrm{in}^{2} \\
& \text { Ixx }=.76 \mathrm{in} .^{4} \\
& \text { Iyy }=. \quad .67 \mathrm{in.} 4 \\
& \mathrm{~J}=.50 \mathrm{in} .4
\end{aligned}
$$

FIGURI:
MERAER PRO: ARTIES

FIGURE 28
MEMBER PROPERTIES :

$$
\begin{aligned}
& A=.39 \mathrm{in.}^{2} \\
& \text { Ixx }=.04 \mathrm{in} .^{4} \\
& \text { Iyy }=.14 \mathrm{in.}^{4} \\
& \mathrm{~J}=.10 \mathrm{in}^{4}
\end{aligned}
$$

FIGURE 29

MEMBER PROPERTIES

FIGURE 30

51

Note: Reference Figure 24 for Joint Numbers
\qquad 3 \qquad
\qquad
\qquad

TABLE 1

Joint No.	Weight (Lbs.)
1	48.0
2	48.0
3	48.0
4	94.8
5	94.8
6	94.8
7	48.0
8	94.8
9	94.8
10	94.8
11	48.0
12	94.8
13	94.8
14	48.0
15	48.0
16	48.0

MODE 1
FREQUENCY (CPS) $=7.2321$
GENERALIZED MASS $=1.0000$

JOINT	DELTA X	DELTA Y	THETA Z
1	0.	0.	$-3.497 E-03$
2	$-1.801 E-04$	$-5.830 E-02$	$-1.916 E-03$
3	$-1.876 E-04$	$-6.885 E-02$	$2.696 E-03$
4	0.	0.	$6.678 E-03$
5	$-3.136 E-01$	$7.561 E-02$	$8.351 E-03$
6	$-3.452 E-01$	$-3.380 E-02$	$5.889 E-03$
7	$-3.546 E-01$	$-6.777 E-02$	$7.125 E-03$
8	$-4.014 E-01$	$-6.743 E-02$	$6.6337 E-03$
9	$-4.015 E-01$	$-6.025 E-02$	$7.052 E-03$
10	$-8.065 E-01$	$-6.022 E-02$	$3.647 E-03$
11	$-8.064 E-01$	$-8.514 E-02$	$5.439 E-0.4$
12	$-8.063 E-01$	$-6.652 E-02$	$5.730 E-03$
13	$-8.446 E-01$	$-5.714 E-02$	$2.490 E-03$
14	$-8.445 E-01$	$-8.453 E-02$	$1.352 E-03$
15	$-8.445 E-01$	$-5.943 E-02$	$-2.529 E-03$
16	$-8.445 E-01$	$-4.500 E-03$	$-2.688 E-03$

TABLE 2
SHIPPING SECTION 3 MATH MODEL JOINT WEIGHTS

Joint No.	Weight (L
1	62.7
2	62.7
3	62.7
4	62.7
5	116.0
6	116.0
7	116.0
8	116.0
9	62.7
10	62.7
11	62.7
12	62.7
13	62.7
14	62.7
15	62.7
16	62.7
17	116.0

MODE 1
FREQUENCY (CPS) $=10.3593$ GENERALIZED MASS $=1.0000$

INT	DELTA X	DELTA Y	THETA 2
1	0.	0.	
2	-9.473E-04	-5.641E-02	$7.267 \mathrm{E}-03$
3	-1.102E-03	1.587E-02	7.
4	-7.442E-04	6.148E-02	
5	0 .	0.	
6	-3.229E-0	18 E	$7.327 \mathrm{E}-03$
7	-3.443E-01	. 755	. 74
8	-6.429E-01	$7.186 \mathrm{E}-02$	4.362E-03
9	-6.428E-01	1.085E-02	7.125E-03
10	-3.446E-01	. 160	-
11	-6.428E-01	-2.698	$\because .171 E-03$
12	-6:425E-01	-6.045	O091E-03
13	-6.425E-01	-9.154E-03	
14	-6.429E-01	5.143E-02	3
15	-8.366E-01	-2.785E-0	-
16	-8.368E-01	5.214E-02	6:245E-03
17	-8.371E-01	1.197E-01	5.693E-03

TABLE 3

Joint		Weight in Lbs.	Joint		Weight in Lbs.
1	$=$	0	33	$=$	45
2	=	0	34	=	45
3	=	0	35	=	45
4	$=$	0	36	$=$	25
5	=	0	37	=	25
6	=	0	38	$=$	0
7	=	0	39	$=$	25
8	$=$	67	40	$=$	25
9	$=$	43	41	=	0
10	$=$	47	42	$=$	25
11	=	43	43	$=$	25
12	=	43	44	=	40
13	$=$	84	45	=	40
14	$=$	69	46	$=$	25
15	$=$	86	47	$=$	25
16	=	69	48	$=$	25
17	=	82	49	$=$	25
18	$=$	92	50	=	25
19	$=$	84	51	=	30
20	$=$	116	52	$=$	30
21	$=$	62	53	=	25
22	=	60	54	=	25
23	$=$	74	55	$=$	25
24	$=$	25	56	$=$	25
25	=	25	57	=	60
26	=	25	58	$=$	55
27	$=$	25	59	=	0
28	$=$	25	60	$=$	- 35
29	$=$	35	61	$=$	35
30	=	40	6.2	=	35
31	$=$	30	63	$\overline{7}$	25
32	$=$	50	64	$=$	25

TABLE 4

FREQUENCY (CPS) $=19.9742$
GENERALIZED MASS = 1.0000

SOINT	delta X	delta y	DELTA 2	theta X	theta y	theta z
1	0.	0.	0 -	0.	0.	0.
2	0.	0 .	0.	0.	0.	0.
3	0.	0.	0.	0.	0 .	$0:$
4	10.	0.	0.	0.	0.	$0:$
5	0.	0.	0.	0.	0.	0.
6	0.	0.	0.	0.	0.	0.
7	0.	0.	0.	0.	0 .	0.
8	0 .	-1.442E-02	-3.614E-01	.	0.	0 :
9	0.	-1.451E-02	-3.856E-01	-•	0.	0.
10	0.	-1.468E-02	-4.209E-01	-•	0 :	10.
11	0.	-1.471E-02	-4.380E-01	.	0.	0.
12	0.	-3.095E-03	-4.425E-01	. . .	0 -	0 .
13	0.	-2.056E-03	-4.418E-01	0.	0 .
14	0.	$6.516 \mathrm{E}-0 \%$	-4.356E-01	.	0 :	0.
15	0.	9.527E-0.4	-4.334E-01	-•	0.	0.
16	0.	$1.146 \mathrm{E}-03$	-3.614E-01	0 :	0.
17	0.	1.278E-03	-2.748E-01	0.	0.
18	0.	-7.979E-0.	-3.605E-01	0.	0 .
19	0.	-1.104E-0.	..4.84 4 E - 01	0.	0 :
20	0.	-1.409E-C3	-5.22:E-01	-	0.	0.
21	0.	-2.422E-03	-4.752E-01	.	0%	0.
22	0.	-2.026E-03	.4.405E-01	. .	0.	0.
23	0.	-1.532E-03	-3.431E-01	0 .	0%
24	0.	-5.929E-02	-4.353E-01	-•	0.	0.
25	0.	-2.513E-ca	-4.416E-01	.	0.	0.
26	0.	-3.434E-03	-4.431E-01	. .	0.	0 .
27	0.	-1.582E-C3	-4.425E-01	. .	0.	0.
28	0.	-6.233E-C:	-4.313E-01	0 0.	0.
29	0.	-4.322E-02	-4.413E-01	0.	0.
30	0.	-6.282E-03	-4.425E-01	0.	0.
31	0.	-7.854E-02	-4.368E-01	. . \cdot	0.	0.
32	0.	-6.875E- -6	$4.424 \mathrm{E}-01$.	0.	0.
33	0.	-7.645E-:	4.338E-01	\therefore	0.	0 :
34	0.	-7.690E-C:	-4.544E-01	. . .	0 :	0.
35	0.	-7.723E-0:	- $3.604 \mathrm{E}-01$	0.	0.
36	0.	-6.564E-0:	-1.762E-01	.	0.	0 .
37	0.	-1.443E-06	$4.335 \mathrm{E}-01$	-••	0 .	0 :
38	- 0.	0.	0 .	0.	0 0.	0.
38	0.	-2.781E-U?	-4.909E-01	-•	0 .	0 0.
40	0.	-1.828E-¢3	-3.516E-01	. . .	0.	0.
41	0.	0.	0 .	0.	0%	0.
42	0.	-4.804E-02	-4.358E-01	0.	0.
43	0.	-1.863E-02	-1.923E-01	0 :	0.
44	0.	-1.022E-02	-4.917E-01	$0:$	0.
45	0.	-2.983E-04	-3.527E-01	...	0 :	0 \%
46	0.	-4.767E-02	-4.210E-01	. . .	$0:$	0%
47	0.	-1.826E-02	-1.751E-01	. . .	0.	0.
48	0.	-7.680E-02	-1.947E-01	-	0 :	0 :
49	0.	-4.491E-02,	$-1.955 E-01$	\cdots	0.	0.
50	0 .	1.400E-03	-1.752E-01	-•	0.	0 .
51	0.	-7.880E-02	-4.366E-01	0 :	0 0.
52	0.	-7.949E-02	$-3.835 \mathrm{E}-01$.	0.	0.
53	0.	-7.968E-02	-4.357E-01	0 :	0 :
54	0.	-1.005E-01	.4.544E-01	. . \cdot	0 :	0.
55	0.	-4.012E-02	-1.757Eー01	.	0.	0.
56	0.	$4.127 \mathrm{E}-03$	-1.960E-01	.	0.	0.
57	0.	-1.042E-02	-4.317E-01	. \cdot	0.	0.
58	0.	-1.147E-02	-2.834E-01	. . 0	0.	0.
59	0.	0.	0 .	;0.	0 :	0.
60	0.	-4.423E-02	-4.428E-01	O.	0 :	0.
61	0.	-4.41JE-02	-3.873E-01	. . .	0 :	0 .
62	0.	-2.639:-02	-3.814E-01	-•	0 .	0.
63	0.	-2.6245-02	-4.910E-01	. . .	0 .	0.
64	0.	-2.620E-02	-3.522E-01	-•	0.	0 .

APPENDIX I

TABULATED WEIGHTS SUPPLIED BY CIRCLE AW

SHIPPING SECTION 1

AREA OF FRONT PANEL $=101.84174$ [FT
WEIGHT OF. 25 THICK STEEL $=10.20=/ \square F T$.
GROSS WEIGHT OF FIONT PANEL $=1033.7857^{\circ}$
NET WEGHT OF FRONT PANEL $=.719 .6488$
SHEET 3 WEIGHT $=659.005$
5 HEET 4 WEIGHT $=4677.9677$
TOTAL WEIGHT OF SHPPING SEETION $=6056.62 / \mathrm{S}^{\prime \prime}$
\qquad
\qquad

Shipping Section 2

AREA OF FEONT PANEL : 68.9玉4-264
WEIGHT OF 25 THICK STEEL $=10.203 /$ DAFT
GROSS Weight OF Front Panel $=703: 0275^{\text {th }}$
Net Weight of FGONT PANEL $=454.04629^{\circ}$
SHEET 3 wEIGHT $=643.54 \mathrm{Z}$
SHEET 4 WEIGHT $=3476.3759$ *
Total Weight of Shipping Sect. $2=4573.962$ Ne
\qquad
page no. \qquad

SHIPPING SECTION 3

AREA OF FRONT PANEL $=84.744264$ 目FT.
WEIGHT OF . 25 THICK STEEL $=10.20 \% /$ aFT.
GROSS WEIGHT OF FRONT PANEL $=664.39149^{\circ}$
NET WEIGHT OF FRONT PANEL $=55.1 .35917$ *

$$
\begin{aligned}
& \text { SHEETS WEIGHT }=635.71 * \\
& \text { SHEET } 6 \text { WEIGHT }=3694.97914
\end{aligned}
$$

TOTAL WEIGHT OF SHIPPING SECTION $3=5082.0482 *$

61
\qquad
\qquad

Stipping Section 소.

AREA OF FRONT PANEL $=68.924264$
WEtGIt OF $2 S T$ THCK $5 T E E L=10.20 \approx /$ OFT
Giase WeIqut OF FRONT PAHZ=703.0275
RE:WeIGHT of FRANT PA:EL $=442.66133^{=}$
SheEr 3 weigit $=578.82{ }^{7}$
SHEET 4 WERITT $=3709.2544$
Total Welaht of Shipping Sert. $4=4730.7357$
\qquad

SHIPPING SECTION 5

TOTAL AREA OF INSTRUMEIUT PANEL $=101.69713$
WEICHT OF INSTRUMENT FANEL $=1037.3107$ NET WEIGHT OFINSTRUMENT PANEL $=698.7615$
WEIGMT OF INSTRUMENTS $\quad=828.80$
WEIGHT OF STRUCTURE $=4499.3753$
TOTAL WEIGHT OF SHIPPING SECTION $5=6026.9368$

SHIPPING SECTION 6

TOTAL AREA OF INSTRUMENT PANEL $=86.12578$ aFT. WEIGHT OF INSTRUMENT PANEL $\quad=878.4829$ LBS. WEIGHT OFINSTRUMENT CUTOUTS $=175.14128$ LBS. Net Weight of instrument Panel $=703.34162$ lbs. Weight of instruments (Shes 3) $=459.62$ LBS Weight of Structure (sheet) $=2507.1608 \mathrm{Lbs}$ total Weight of Shipping Sections $=3670.1224 \mathrm{lbs}$.

s?

$$
\begin{array}{ll}
\text { TOTAL AREA OF INSTRUIIENT PANEL } & =56.00 \text { IFT. } \\
\text { WEIGHT OF INSTRUMENT PANEL } & =571.20 \mathrm{LBS} . \\
\text { WEIGHT OF INSTRUMENT CUTOUTS } & =135.59502 \mathrm{LBS} . \\
\text { NET WEIGHT OFINSTRUMENT PANEL } & =435.6049 \mathrm{LBS} . \\
\text { WEIGHT OF INSTRUMENTS } & =\$ 24.72 \mathrm{LBS} . \\
\text { WEIGHT OF STRUCTURE } & =1610.238 \mathrm{LBS} . \\
\text { TOTAL WEIGHT OF SHIPFING SECT. } & =2370.5629 \mathrm{LBS} .
\end{array}
$$

\qquad
\qquad
SHIPPING SECTION \&

RREA OFFROKT FANEL = 38.770332日FT.
VEIENT SO . 26 THLCK STEEL $=10.20$ NARFT.
GROSS WEIGHT OF FRONTPANEL=395.46247苂
NET MEIGHT OFFRONT PANEL $=283.0370972$

$$
\begin{aligned}
& \text { PLUS SNEET } 3=357.4 \text { S }^{2} \\
& \text { "IHEET4 }=2035.9167^{4} \\
& \text { SHIPPING SECT.8 TOTAL WT: }=2676.35^{3}
\end{aligned}
$$

66

SHIPPING SECTION 9

AREA OFFRENT PANEL : 170.59166 OFT.
WEIGHT OF . 25 THICK STEEL $=10.20505$ ロ FT.
GROSS WEIGHT OF FRONT PANEL $=1740.034 .9 *$
NET WEIGHT OFFRRONT PANEL $=1320.032 \approx$
PLUS SHEET $3=978.07$
PLUS SHEET $4=8360.6589$
Total Wt. of Smppusg sect. $9=10658.76$ 21

SHIPPING SECTION

TOTAL AREA OF INSTRUMENT PANEL = S6.00 O: WEIGHT OF INSTRUMENT PANEL $=571.20$ LEE WEIGHT OF INSTRUMENT CUTOUTS $=163.91524 \mathrm{LE}$. NET WEIGHT OF INSTRUMENT PANEL $=407.28476 \mathrm{LB}$. WEIGHT OF INSTRUMENTS . $\quad 671.48$ LES. WEIGHT OF STRUCTURE. \quad. $=1618.5683$ LE. Total VíEigitt of Shipping Sect. $=2697.3335$ Les. $\frac{5}{4}$

SHIPPING SECTION

AREA．OFFRENT PANEL $=23.2625$ ロFT．
WEIGHT OF ． 25 THICK STEEL $=10.20$ シロFT．
GROSS WEIGHT OF FRONT PANEL＝237．2775＊ NET WEIGHT OFFRONT PANEL $=165.20902 \#$ SHEET $3=214.92 \neq$ SHEET $4=\frac{1319.3982^{2}}{}$ SHIPPING SECTION 17 TOTALWT． $169 \% .53^{\text {id }}$

WYLE LABORATORIES/Norco, California. 737-6071, 689.2104. TWX 910.332.1204. Cable WYLAB

JELCO, INC.
P. O. Box 2248

Pomona, California 91766
report ne. .. 516
OUR Job re - - W6 5499
YOURP.C.RS _7651
CONTRACT

60 - Page Report.
date 31 March 1970

SEISMIC TESTING

ON
ONE CONTROL PANEL
PART NUMBER $2 / 3$ CR-62
FOR
JELLO, INC.
SUPERSEDES
$5023-502-5-120$

$5023-502-5-501-0$

SCE\#O326

STATE OF CALIFORNIA
COUNTY OF RIVERSIDE $\}^{\text {ss. }}$
Roy C. Sadlier

- being duly sworn,
deposes and says: That the information contained in this report is the result of complete and carefully conducted tests and is to the best of his hooviedere true and correct in all respects.

UBS Cu time and sworn to before me mi31.st day of \qquad 19 76

Notary Public in and for the Sammy of Riverside g fate of california

1.0 REFERENCES

1.1 Jelco, Inc. Purchase Order 7651.
1.2 Bechtel Specification Number S023-502-5, Appendix 4F.
1.3 Bechtel Drawing Number 53018-C, entitled "Control Panel Layout Chemical and Volume Control, Reactor Coolant and Reactivity Systems Shipping Section 3".
1.4 Bechte1 Drawing Number 53022-C, titled "Control Panel Layout Chemical Control Shipping Section 7".
1.5 Wyle Laboratories Test Procedure No. 3570, Revision A
2.0 GENERAL

Although Reference 1.1 above is applicable to the testing of two control panel specimens, namely, shipping section No. 7, and shipping section No. 3, only the testing of the former is described in this document. An addendum shall be issued to cover the testing performed on the latter. These steps are necessary due to an anticipated time lapse in the testing of the latter; however, the procedures described herein shall be identically applicable to shipping section No. 3, except for the mounting methods.

3.0 PROCEDURES

3.1 Receiving Inspection

Prior to testing, the specimen, shipping section No. 7, was subjected to a visual examination for evidence of shipping damage. Specimen identification information was recorded on a receiving inspection data sheet included in the body of this report.

3.2 Test Fixture and Specimen Orientations

The specinen base was welded to a one-inch thick steel interiece plate which, in turn, was welded to the test machine table. Two inch long welds ($1 / 4$-inch fillets) were employed on the outr. periphery of the specimen at eight-inch spacing increments io simulate the in-service mounting methoo. No welds were placed along the open end.

With the specimen in its normal upright position, its lateral axis was initially aligned parallel to the horizontal test mach. ine driver axis. For the second test orientation the speciren was rotated ninety degrees about its vertical centerline such that its longitudinal axis was aligned with the horizontal driver. The specimen remained in its normal upright positio: throughout testing. Axis definitions are presented in Figurc. . The actual setups are shown in the attached photographs.

3.3 Instrumentation

3.3.1 Accelerometers

Twenty accelerometers were attached to the specimen near the mounting points for each instrument in the panel assembly. The orientations, and in some cases, the locations of the accel:. meters were changed to suit each individual test run. The locations and orientations of each are shown in Figure 1 and Table I. These accelerometer data were recorded for each teot run on a galvanometer recorder system.

3.3.2 Strain Gages

Four strain gages were mounted near the base of the specimen, two on the open end structure, and two on the inside rear contce vertical support strut. A sketch of these locations is proconted in Figure 2. All the gages were oriented vertically to mcasme cantilever type bending strains. Strains for all the test cetupo were also continuously recorded via a'galvanometer recorder system.
\qquad

3.4 Functional Test

No electrical functional tests were conducted. The panel was simply assembled with dummy weights fabricated by Wyle Laboratories. The weights, composed of wood and steel, were designes to simulate the weight, center of gravity, and mounting method for each instrument at its proper location. The dummies are depicted in the attached photographs.

3.5 SeimricTesting

3.5.1 Resomane Search

The specimen was subjected to sinusoidal sweep testing in the freqiency range of from 1 to 35 to 1 Hz .

A loga:ithmic frequency sweop rate of one-half octave per minut was employed at an input level of 0.2 g peak.

This lype test was performed uniaxially in the three principal axer, one at a time.
3.5.2 Rardon and Superimposed Sine Beat

Following iterative "bare table" motion calibrations the specimen was subjected to biaxially applied random motions with biaxial sine beat motions superimposed at specific frequencies.

The biaxial random motions were amplitude controlled with a series of adjustable attenuation filters tuned to discrete frequencies in one-third octave increments from 1.25 to 35 Hz . Ten oscillation-per-beat sine beats were superimposed on the random excitation at frequencies of $1.6,2.0$, and 2.5 Hz .

Twenty oscillations-per-beat sine beats wer'e employed at 1.25 Hz . One, three, and five beats per frequency were used for the 1.25 to 2.5 Hz test conditions, respectively, with a two-second interbcat delay.

Each test run consisted of thirty seconds of random excitation with the aforementioned appropriate sine beat excitations superimposed. A separate test run was made for each of two sine beat phasing conditions; i.e., the horizontal and vertical test machIne drivers in phase and the two drivers 180° out of phase. The horizontal/vertical random waveform excitations were phase incoherent throughout the testing sequence.

3.5.2 (continued)

The test response spectra were determined with the use of a shock spectra analyscr, tuned in one-twelfth octave frequerc, increments from 1 to 100 Hz . The data were formatted in plots of peak acceleration versus frequency.

3.5.3 Test Sequence

The detailed sequence following in the conduction of the te:* is given below.
3.5.3.1 Calibrated the biaxial seismic input motion so that an aneyy.: of the random signal and the four sine beats enveloped the required response spectra.
3.5.3.2 Installed the specimen into the test setup as previously described.
3.5.3.3 Installed the instrumentation which is called out in Paragrah 3.3 and verificd that it was being recorded on an oscillogr:ph:
3.5.3.4 Conducted a sine sweep resonance search in the lateral axis detailed in Paragraph 3.5.1.
3.5.3.5 Conducted a sine sweep resonance search in the vertical axis.
3.5.3.6 Input the 30 seconds of biaxial seismic motion as detailed in Paragraph 3.5.2, with the 1.25 Hz sine beat superimposed; firs with horizontal and vertical drivers in phase and then repeated the test with the drivers out of phase.
3.5.3.7 Repeated Paragraph 3.5.3.6 only input the sine beats at 1.6 Fiz .
3.5.3.8 Repcated Paragraph 3:5.3.6 only input the sine beats at 2.0 Hz
3.5.3.9 Repeated Paragraph 3.5.3.6 only input the sine beats at 2.5 Hz . Reoriented the specimen so that its longitudinal axis was parallel to the horizontal axis of excitation. Reoriented tine
appropriate accelerometers to coincide with the horizontal excitation axis.

3.5.3.10 Conducted a aine sweep as detailed in Paragraph 3.5.1 in the horizontal axis.

3.5.3.11 Repeated Paragraphs 3.5.3.6 through 3.5.3.9

4.0 RESULTS
4.1 Receiving Indection

Inspection of the specimen revealed no visible damage due to shipping. Recriving inspection data and specimen identification are shown on a following data sheet.
4.2 Test Fixtures

No visible cridence of fixture or mounting method anomalier. occurred.
4.3 Functional Tests

No visible anomalies occurred in the dumy weights or thej.r mounting methods.
4.4 Seismic Tests
4.4.1 Resonance Searches

Resonance behavior was observed at 17.5 Hz during the lateral axis test only. All the accelerometers displayed this behavior except number five, mounted inside on a low strut. The highest responses occurred at the top: open end and at the number seven and eifht accelerometcr locations on the instrument mounting panel. The response values are tabulated in Table II (Page 9) for these conditions.

4.4.2 Random with Sine Beats

4.4.2.1 Test Response Spectra (TRS)

The required response spectra (RRS) were enveloped by the TRS, for each sine beat condition, as shown in the attached plots. Peak table input acceleration valucs (2PA) varied from 1.1 to 2.6 for the horizontal test axis; the maximum occurring at
\qquad

4.4.2.1 (continued)

the 1.25 Hz in phase sine bes condition ($\mathrm{Z}-\mathrm{Y}$ axes). For t. vertical axis, the ZPA varic: from about 1.3 to 2.0 g ; the maximum occurring in the $Z \cdots$ xis at the 1.6 Hz out of phe: sine beat condition.
4.4.2.2 Instrument Location Acceler Gons

The maximura output of each '. ponse accelerometer for the ? Hz out of phase sine beat :. mic test condition in the Z -: axes plane is also shown i? ble II, Page 9.

These data consist of the $:=$ al peak accelerations at eac: acceleroneter location, as : cribed in Table I, Page 3, f. input peak acceleration (i? Thus, the requirement whici. tion shall exceed 3.0 g is ra .

The 2.5 Hz sine $\mathrm{b} a \mathrm{a}$ condit: in the $\mathrm{Z}-\mathrm{Y}$ axes was chosen fur this tabulation since only $\%$. namely, 17.5 Hz in the Z d: tion; therefore, the highest ite. quency $Z-Y$ axes sine beat $\%$ point such that the respon:.: amplification.

4.4.2.3 Strain Gages

 orizontal 2PA) value of 1.4 g ates that no device input acco. cabinet resonance was detect :ad chosen to be nearest the reson : recorded would be the highest ilNo significant strains wert wasured throughout testing. Th. maximum strain recorded wat the order of 100 microinchec per inch.

TABLE I

ACCELEROMETER LOCATIONS AND DIRECTIONS

RESPONSE ACCELEROMETER DATA

Accelerometc: \qquad Number	Z Axis Resonance Response in Peak g's ($17.51 \mathrm{z}, 0.2 \mathrm{~g}$ inrut)	Z-Y Axes Seismic* Respoc in Peak g's
3	1.6	0.96
4	1.3	1.54
5	0.2	1.54
6	1.4	1.54
7	2.0	1.74
8	1.8	1.74
9	1.4	Malfunctione
10	1.3	1.40
11	1.2	1.40
12	Malfunctioned	1.40
13	1.2	Malfunctione:
14	1.0	1.16
15	1.1	1.54
16	1.0	1.54
17	1.0	1.74
18	0.7	1.54
19	1.0	1.74
20	1.5	1.54
21	1.6	1.54
22	1.6	1.54
* 2.5 II i sine beat, out of phase, 1.4 g horizontal TRS ZPA: 1.38 vertical TRS 2PA, scismic test conditions.		

Customer \quad NELCO $\quad 2 \mathrm{NO} \frac{54498}{3-14.76}$

necervine

PECTION

WYLE LABORATOREES
DATA SMEET $\frac{\text { JELCO }}{\text { SEASNC AONOOM MNITH SNAE REQTS }}$
Test Titio: Spocimon CRNTROR ELAEC:

Port No. SKE REC T:U5,
Job No. 54<498
S/N SEC TOEC $24+6$
Date_s- $24 \operatorname{Ha}^{2}$ \qquad

WYE LABORATORIES
Customer \qquad JELLO Job No. \qquad 54498

Channel Identification: T/R \qquad 1 Tr. No. \qquad 2

Transducer S/N \qquad 1168 \qquad Control (x).
\qquad 500 MVPK/ \qquad 1.0
\qquad
Operator AEEHAAN
Date \qquad $3 / 24 / 76$

Polarity \qquad $+$ 05% VERTICAL RESPONSE SPECTRA

Report No. \qquad 54498
Page No. \qquad 14

Accel. No. \qquad 2 Response ()

WYE LABUKAIUKIES
Report No.
54498
Page No. \qquad
Accel. No
Transducer S/N \qquad 1143 \qquad Control Cl.

Response
Full Scale 100 G

L
Operator MEEHARS
Mode \qquad MVPK/ \qquad
ت Date \qquad 3/26/76 Polarity $+05 \%$ Axis of Test $\frac{X}{1.2 S}$

HOEI ZONTAL RESPONSE SPECTRA

WYLE LABORATORIES
Customer \qquad JELCO

Job No.
54498
Trk. No. \qquad
Channel Identification: T/R \qquad Accel. No.
Transducer S/N \qquad 1143 \qquad Control Bl

Operator MEEHAN

Date \qquad $3 / 24 / 76$ \qquad
HORIEONTAL RESPONET
Polarity of 05
Report No. \qquad
Page No. \qquad

WYLE LABORATORIES
Report No.
Customer JELCO __ Job No. 54498
Channel Identification: T/R \qquad Trk. No.
2
Transducer $S / N \ldots / / E E$ Control (K)

Page No.
Accel. No.
Response !

Full Scale_ 120 G Cal Voltage__500_MVPK/_, 1,0
Mode PRIEERY Specimen CON:

Operator AEEGEN
Date $3 / 24 / 26$ Polarity +0.590
P/N $2 /=1$
Axis of Test $X=Y$

VERTICAL RESPONSE SPECTRA

WYE LABUHAIUKIES
Customer_JELCO Job No. 54498
Channel Identification: T / R \qquad 1 616 \qquad
Transducer S/N

Full Scale 100 Gal Voltage_ 500 MVPKI 1.0 Control (X).

Report No.
Page No.
Accel. No.
Response
Mode PRIERAET

Operator MEEHAQ
Date 34 Polarity $4 \rightarrow 16$
Specimen
CON:
P/N 2/3 Axis of Test X -
HCRAEOSTAL RESPONSE SPECTRA

WYLE LABORATORIES
Report No. $\quad 54498$
Customer JELCO Job No. 54498
Channel Identification: T/R \qquad 1 Page No. Trk. No. 2 Accel. No. 2

Trance: : $\operatorname{ser} S / N — 11$ O 8 Control (X).

Response 1)
ult Sale 100_G Cal Voltage_500_MVPK/ Mode PRIARARE Specimen CON: OS PANE

Operator GYEEHAN

Date $.2 / 2417 t$
Polarity t 059 VERTICAL RESPONSE SPECTRA

Axis of Test $X-Y$ 1.6 HE M

Customer TELCO Job No. 54498
Channel Identification: T/R_I_ Irk. No.__ Accel. No.

WYE LABORATORIES

Customer JELCO_ Job No. 54498
Chanel Identification: T/R \qquad ___ Irk. No. Control (X).
Transducer $\mathrm{S} / \mathrm{N} \quad / / 68$
Report No.
Page No. 25
Accel. No. 2
Response 1)

Full Scale 100 G Cal Voltage_500_MVPKI__

Mode PRIARPEK Specimen CONISI- PRN:

Operator MEEHAN

Date 3/24/76 Polarity $+0.5 \%$
VERTICAL RESPONSE SPECTRA

Axis of Test \times 2.0 HZ of

WYLE LABORATORIES
Customer \qquad Job No. 54498

Channel Identification: T/R \qquad 1 116.8

Transducer S / N \qquad all Scale \qquad Cal Voltage \qquad MVPK/ \qquad 1.0
VERTICAL RESPONSE SPECTRA

$$
\text { Date } 3 / 24 / 78
$$

$$
2.5 \mathrm{HZ}
$$

$$
\text { Customer JELCO Job No. } 54498
$$

Page No.
Channel Identification: T / R \qquad Tr. No. \qquad Accel. No. \qquad

Transducer $\mathrm{S} / \mathrm{N} \quad 1143$
Control (iN),
Response (
Full Scale _100_G
Cal Voltage_ 500 MVPKI _ 1.0

Mode PRIFIARY
Specimen CONTE PRQEL
Operator MEEHAV
Date $3 / 23 / 76$ Polarity +0 5\%

HORIZONTAL RESPONSE SPECTRA

Axis of Test $\frac{z}{z} \cdot \gamma$
1.6 dz 心

Full Scale $100 \quad G \quad$ Cal Voltage_ $5 \mathbb{C O}$ MVPK/ Mode pelficas)

Customer JELCO
Job No. 54498
Page No.
Channcl Identificication: T/R _ I_ Trk. No. 2
Accel. No.
-
Tranctucer $S / N \ldots \quad 1168 \ldots$ Rentrol (K).

WYE LABORATORIES

Report No.
Customer TELCO Job No. 54498 Page No.
Channel Identification: T/R__ Ark. No.__ Accel. No.
Transucer $S / N \ldots C / 2$
Response (

Full!! Sal: 100 G \quad Cal Voltage_ 500 MVPK/ 1,0

Mode SERFARE Specimen COA:

Operator ABLEEHA,
 Date $3-27-76$ Polarity t 0546

HORA EOIUTAE RESPONSE SPECTRA
Axis of Test $\underset{\sim}{\boldsymbol{z}} \cdot \mathbf{V}$
(1)

SPECIMEN COMTAOL JAGE
CUSTOMER SELLCO

DATE 3.23. 76
PARTNO SEE REC TASP
TEST BY
S / N
$\operatorname{SES} 6 \leq \sin$
witivess
TEST: SEISMLC RANEDMQNOTH SMAN REGATS

TEST: SE/SKT/C RAANSOM MOPTN SHAK SEATV

JOB NO.
5世<<
DATE 5-25-76
TEST BY \qquad
WITNESS \qquad
WYLELABORATORTES
TEST: GENSMIC RONDCR WUTH SMNR REATS

WYLELABORA4

PHOTOGEATH 1

7. Y AYB:

122

Page No.

Tु

. 1 ب.
bamonendy;

124

tymbal achememmer l.cGathon
126

LAGORATORIES/Norco, California. 737-0871, 689-2104. TWX 910-332-1204 . Cable WYLAB

2.0 PURIOSE

The purpose of this addendum is to incorporate four pages of test data shects inadvertently omitted from Reference 1.2. These
sheets furnish test information for resonance search and son
random with sine beat tests on Shipping Section No. $\left.\begin{array}{cc}\text { STATE OF CALIFORNIA } \\ \text { COUNTY OF RIVERSIDE }\end{array}\right\} .5 s$

, being duly sworn, deposes and says: That the information contamed in this report is the result of complete and carefutif conducted tests and is to the best of his knowledge true and correct in all respes

CUSTOMER JECCO
Ton THIt: SEISMIC ANNCOM WITN SINE PEATS

Spocimen courtiol
Pon No. SGE REC INSP

Job No. se/e/78
S/N SKE RECNO
Dato S-23-7C

