SCE-9001

SOUTHERN CALIFORNIA EDISON COMPANY PWR REACTOR PHYSICS METHODOLOGY USING CASMO-3/SIMULATE-3

SEPTEMBER 1990

9010260220 901022 PDR ADUCK 05000206

SOUTHERN CALIFORNIA EDISON COMPANY

PWR REACTOR PHYSICS METHODOLOGY

USING

CASMO-3/SIMULATE-3

September 1990

Prepared By:

9/13/90 (Date)

Chang, Senior Engineer Nuclear Fuel Analysis

Prepared By:

C. W. Gabel, Engineer Nuclear Fuel Analysis

Approved By:

mali 0. J. Thomsen, Supervisor Nuclear Fuel Analysis

Approved By:

P. D. Myers, Manager Nuclear Fuel

Approved By:

D. F. Pilmer, Consulting Engineer (Date) Nuclear Engineering and Construction

718

Approved By:

A. Evinay Nuclear Engineering Analysis

Approved By:

s.

T-13-B (Date)

(Date)

C. Swoope Reactor Engineering, Station Technical

Southern California Edison Company Nuclear Engineering Safety and Licensing 23 Parker Street Irvine, California 92718

(Date

DISCLAIMER

This document was prepared by Southern California Edison Company for its own use. The use of information contained in this document by anyone other than Southern California Edison Company is not authorized, and in regard to unauthorized use neither Southern California Edison Company or any of its officers, directors, agents, or employees assumes any obligation, responsibility or liability, or makes any warranty or representation, with respect to the contents of this document, or its accuracy or completeness. ABSTRACT

This report documents the validation and level of accuracy of the reactor core physics methodology used by Southern California Edison Company to perform steady-state analyses for Pressurized Water Reactors (PWR). The methodology is based on the CASMO-3/SIMULATE-3 computer program package. This methodology has been validated by an in-house benchmarking effort of CASMO-3/SIMULATE-3 predictions with measured data from power reactors and critical experiments. Based on the results from this benchmarking effort, a set of 95/95 tolerance limits has been calculated. Southern California Edison Company intends to use this methodology to perform PWR calculations including reload design, input to safety analyses, startup predictions, core physics databooks, and, reactor protection system and monitoring system setpoint updates.

TABLE OF CONTENTS

Í

	<u>Page</u>
Disclaimer	ii
Abstract	iii
List of Tables	vi
List of Figures	ix
Acknowledgements	xi
SECTION 1 INTRODUCTION, OVERVIEW, AND SUMMARY	1
1.0 Introduction 1.1 Overview 1.2 Summary	1 1 2
SECTION 2 DESCRIPTION OF METHODOLOGY	5
2.0 Introduction 2.1 Computer Program Descriptions 2.2 Model Descriptions	5 5 7
SECTION 3 DESCRIPTION OF REACTORS USED IN THE BENCHMARKING	12
3.0 Introduction 3.1 San Onofre Unit 1 3.2 San Onofre Units 2 and 3 3.3 Arkansas Nuclear One - Unit 2	12 12 13 14
SECTION 4 BENCHMARK COMPARISONS	31
4.0 Introduction 4.1 Critical Boron Concentration 4.1.1 Zero Power Critical Boron Concentration 4.1.2 Hot-Full-Power Critical Boron Concentration	31 32 33 37
 4.2 Isothermal Temperature Coefficient 4.3 Power Coefficient 4.4 Control Rod Worth 4.5 Net (N-1) Rod Worth 4.6 Inverse Boron Worth 4.7 Assembly Power Distribution 	48 53 55 65 67 70
4.7.1 Radial and Axial Power Distributions 4.7.2 Axial Offset 4.7.3 Incore Detector Signal Comparison	71 97 99

TABLE OF CONTENTS (continued)

Į

١,

		Page
SECTION 5	PIN PEAKING FACTOR UNCERTAINTIES	111
5.1	Introduction Pin Power Reconstruction Uncertainty Calculation of Pin Peaking Factor Uncertainties	111 112 119
SECTION 6	CONCLUSIONS	121
SECTION 7	REFERENCES	122

LIST OF TABLES

A,

Numb	<u>er Title</u>	Page
1.1	List of Key PWR Physics Parameters	3
1.2	List of 95/95 Tolerance Limits (Bias ± Reliability Factors)	4
3.1	Mechanical Design Parameters SONGS 1	16
3.2	Mechanical Design Parameters SONGS 2&3	18
3.3	Mechanical Design Parameters ANO-2	20
4.1	Zero Power Critical Boron Comparison, SONGS 1, 2, and 3	34
4.2	Statistical Analysis of Zero Power Critical Boron Results	36
4.3	SONGS 2 Cycle 1 HFP Critical Boron Comparison	38
4.4	SONGS 3 Cycle 1 HFP Critical Boron Comparison	39
4.5	SONGS 2 Cycle 2 HFP Critical Boron Comparison	40
4.6	SONGS 3 Cycle 2 HFP Critical Boron Comparison	41
4.7	SONGS 2 Cycle 3 HFP Critical Boron Comparison	42
4.8	SONGS 3 Cycle 3 HFP Critical Boron Comparison	43
4.9	SONGS 2 Cycle 4 HFP Critical Boron Comparison	44
4.10	SONGS 3 Cycle 4 HFP Critical Boron Comparison	45
4.11	Statistical Analysis of Hot Full Power Critical Boron Results	47
4.12	Zero Power ITC Comparison	49
4.13	At Power ITC Comparison	50
4.14	Statistical Analysis of ITC Differences	52
4.15	Comparison of Measured and Calculated Power Coefficients	54

vi

LIST OF TABLES

8

0

Numb		
Nullid	<u>er</u> <u>Title</u>	<u>Page</u>
4.16	SONGS 1 Control Rod Worth Comparison	57
4.17	SONGS 2 Control Rod Worth Comparison	58
4.18	SONGS 3 Control Rod Worth Comparison	59
4.19	Control Rod Worths for Off-Nominal Conditions (SONGS 2 Cycle 1)	60
4.20	Statistical Analysis of the Observed Control Rod worth Differences	62
4.21	SONGS 2 and 3 Measured Control Rod Worths in Cycle 1	63
4.22	Determination of the Control Rod Worth Tolerance Limit	64
4.23	ANO-2 Net (N-1) Rod Worth Comparison	66
4.24	SONGS 1, 2, and 3 Zero Power IBW Comparison	69
4.25	Radial and Axial Power Distribution RMS Errors	96
4.26	Axial Offset Comparison	98
4.27	SONGS 2 Snapshot Information	102
4.28	SONGS 3 Snapshot Information	103
4.29	SONGS 2&3 Symmetric Detector Groups	104
4.30	SONGS 2 Incore Detector Statistics	105
4.31	SONGS 3 Incore Detector Statistics	106
4.32	Bartlett's Test Results for Assembly Peaking Factors	107
4.33	The Least Favorable Standard Deviations for Assembly Peaking Factors	108
4.34	Calculation of Maximum Standard Deviations in Terms of Percent	109
4.35	Calculation of 95/95 Tolerance Limits for Assembly Power Peaking	110

LIST OF TABLES

8

ı

1.

Numb	<u>er</u> <u>Title</u>	Page
5.1	SIMULATE-3 Pin Power Distribution Benchmark Results	116
5.2	Bartlett's Test Results for Pin Power Distributions	117
5 . 3	Pooled Statistics for SIMULATE-3 Pin Power Distribution Benchmark Results	118
5.4	Calculation of Peaking Factor Tolerance Limits	120

viii

LIST OF FIGURES

8

ļ

ľ

Numb	er <u>Title</u>	Page
2,1	Program Sequence Flow Chart	11
3.1	Reactor Core Control Rod Pattern - SONGS 1	22
3.2	Typical Fuel Assembly - SONGS 1	23
3.3	Reactor Core Instrumentation Locations - SONGS 1	24
3.4	Reactor Core Control Rod Pattern - SONGS 2&3	25
3.5	Typical Fuel Assembly - SONGS 2&3	26
.3.6	Reactor Core Instrumentation Locations - SONGS 2&3	27
3.7	Reactor Core Control Rod Pattern - ANO-2	28
3.8	Typical Fuel Assembly - ANO-2	29
3.9	Reactor Core Instrumentation Locations - ANO-2	30
4.1	SIMULATE-3 Critical Reactivity at HFP vs. Burnup	46
4.2	Observed ITC Differences vs. Soluble Boron Concentration	51
4.3	Relative Control Rod Worth Differences vs. the Measured Worth	61
4.4	Axially Integrated Radial Power Density - S2C1F026	72
4.5	Axially Integrated Radial Power Density - S2C1F038	73
4.6	Axially Integrated Radial Power Density - S2C2F051	74
4.7	Axially Integrated Radial Power Density - S2C2F055	75
4.8	Axially Integrated Radial Power Density - S2C3F005	76
4.9	Axially Integrated Radial Power Density - S2C3F027	77
4.10	Axially Integrated Radial Power Density - S2C3F048	78
4.11	Axially Integrated Radial Power Density - S2C4F007	79
4.12	Axially Integrated Radial Power Density - S2C4F042	8 ⁰
4.13	Axially Integrated Radial Power Density - S3C3F011	81

LIST OF FIGURES

Number	Title	Page
4.14 Axially Integrated	Radial Power Density - S3C3F026	82
4.15 Axially Integrated	Radial Power Density - S3C3F044	83
4.16 Core Average Axial	Power Distribution - S2C1F026	84
4.17 Core Average Axial	Power Distribution - S2C1F038	85
4.18 Core Average Axial	Power Distribution - S2C2F051	86
4.19 Core Average Axial	Power Distribution - S2C2F055	. 87
4.20 Core Average Axial	Power Distribution - S2C3F005	88
4.21 Core Average Axial	Power Distribution - S2C3F027	89
4.22 Core Average Axial	Power Distribution - S2C3F048	90
4.23 Core Average Axial	Power Distribution - S2C4F007	91
4.24 Core Average Axial	Power Distribution - S2C4F042	92
4.25 Core Average Axial	Power Distribution - S3C3F011	´93
4.26 Core Average Axial	Power Distribution - S3C3F026	94
4.27 Core Average Axial	Power Distribution - S3C3F044	95
5.1 Pin Power Distribut	ion Comparison - B&W Core 01	113
5.2 Pin Power Distribut	ion Comparison - B&W Core 12	114
5.3 Pin Power Distribut	ion Comparison - B&W Core 18	115

х

ACKNOWLEDGEMENTS

ľ

The authors wish to acknowledge the individuals who assisted in the development of the CASMO-3/SIMULATE-3 PWR methodology. Many different people within Southern California Edison Company assisted. In particular, we would like to acknowledge D. Bose-Roy, P. Brashear, J. Judd, B. Park, S. Wu, and O. Thomsen. From the San Onofre Nuclear Generating Station engineering staff we thank A. Eckhart, D. Ramendick, S. Swoope, and M. McDevitt for conducting the startup testing and core surveillance programs which provided the physics data used in this benchmarking.

SECTION 1

INTRODUCTION, OVERVIEW, AND SUMMARY

1.0 INTRODUCTION

This report describes Southern California Edison (SCE) Company's reactor core physics methodology for Pressurized Water Reactor (PWR) analyses using the CASMO-3/SIMULATE-3 computer program package (References 1 through 6). Studsvik AB and Studsvik of America developed the CASMO-3/SIMULATE-3 computer program package. This package is widely accepted within the nuclear industry.

Yankee Atomic Electric Company (YAEC) provided the theoretical basis and validation of this computer program package to the NRC (References 7 and 8). In these reports YAEC provided detailed descriptions of the computer programs and a general methodology for performing reactor physics analyses.

The objective of this report is to demonstrate SCE's ability to use the CASMO-3/SIMULATE-3 computer program package. The report also documents the uncertainty factors determined through the benchmarking of key PWR physics parameters, presented in Table 1.1, with plant measurements.

1.1 <u>OVERVIEW</u>

The data demonstrating the applicability of SCE's methodology for PWR core physics analyses are documented in Sections 2 through 7 of this report.

Section 2, Description of Methodology, presents a brief description of the CASMO-3/SIMULATE-3 computer program package.

Section 3, Description of Reactors Used in the Benchmarking, describes the PWRs used in the benchmarks.

Section 4, Benchmark Comparisons, details the benchmarking of the key PWR core physics parameters listed in Table 1.1. For each parameter, the calculated data were compared with plant measurements, the sample mean and standard deviation were quantified, and a 95/95 tolerance limit (bias ± reliability factor) determined.

Section 5, Pin Peaking Factor Uncertainties, presents the derivation of the pin peaking factor 95/95 tolerance limits.

Section 6, Conclusions, presents the conclusions of this report and the range of applications for which SCE will use this methodology.

Section 7, References, presents documents referenced in this report.

1.2 <u>SUMMARY</u>

Table 1.2 summarizes the 95/95 tolerance limits calculated in Sections 4 and 5. The tolerance limits are such that, when applied to the CASMO-3/SIMULATE-3 results, there is a 95 percent probability, with a 95 percent confidence that the calculated values will conservatively bound the "true" values.

SCE concludes that this methodology is acceptable for the performance of all steady-state PWR core physics analyses including:

- Reload design,
- Safety analyses input,
- Startup predictions,
- Core physics databooks, and
- Reactor protection and monitoring system updates.

Table 1.1

List of Key PWR Physics Parameters

Core Reactivity

R

- Zero Power
 - Full Power
- Inverse Boron Worth
- Power Coefficient
- Isothermal Temperature Coefficient
- Control Rod Worth
 - Axial Offset

Assembly Power Peaking - F_o^s

 $- F_{XY}^{s}$ $- F_{R}^{s}, F_{AH}^{S}$

Pin Peaking

 $- F_{Q}$ $- F_{XY}$ $- F_{R}, F_{\Delta H}$

Table	1	•	2
-------	---	---	---

List of 95/95 Tolerance Limits (Bias ± Reliability Factors)

Parameter	<u>Bias</u> <u>Reli</u>	ability Factor	Units*
Core Reactivity (%∆k/k) Zero Power Full Power	-0.08 0.01	0.26 0.35	Absolute Absolute
Critical Boron (PPM) Zero Power Full Power	-7 2	26 34	Absolute Absolute
Inverse Boron Worth (PPM/%∆K/K)	0.0	10%	Relative
Power Coefficient (10 ⁻⁴ ΔK/K/%P)	0.0	0.20	Absolute
Isothermal Temperature Coefficient (10 ⁻⁴ ∆K/K/°F)	0.05	0.24	Absolute
Control Rod Worth (%∆k/k)	1.2%	8.2%	Relative
Local Pin Power	0.0	2%	Relative
Axial Offset	-0.003	0014	Absolute
Assembly Peaking F ^S F ^S _R Y F ^S _R	0.0 0.0 0.0	4.17% 4.80% 3.34%	Relative Relative Relative
Pin Peaking F _Q F _{XY} F _R , F _{AH}	0.0 0.0 0.0	4.62% 5.20% 3.89%	Relative Relative Relative

*For those parameters with differences expressed in relative units:

Predicted = Calculated * (1 - Bias ± Reliability Factor) For parameters with differences in absolute units, the following equation applies:

Predicted = Calculated - Bias ± Reliability Factor

SECTION 2

DESCRIPTION OF METHODOLOGY

2.0 INTRODUCTION

This section provides a brief description of the CASMO-3/SIMULATE-3 methodology. Yankee Atomic Electric Company (YAEC) has already presented the theoretical bases and validation of CASMO-3 and SIMULATE-3 before the Nuclear Regulatory Commission (NRC). The computer program package has received NRC approval for use in core physics calculations (References 21 and 22).

2.1 <u>COMPUTER PROGRAM DESCRIPTIONS</u>

The CASMO-3/SIMULATE-3 computer program package (References 1 through 6) was developed by STUDSVIK AB, Nykoping, Sweden and their American subsidiary STUDSVIK OF AMERICA, Newton, Massachusetts. The computer program package consists of five computer programs:

- CASMO-3,
- CASLIB,
- MICBURN-3,

MOVEROD-3, and,

SIMULATE-3.

In addition, the Electric Power Research Institute's (EPRI) ESCORE computer program (Reference 9) was incorporated into the program sequence. The computer program sequence flow chart is shown in Figure 2.1.

These computer programs are briefly described below. Detailed information--theory, user manual, etc.--can be found in the referenced documents.

ESCORE

ESCORE (Reference 9) is a computer program for predicting bestestimate, steady-state fuel performance data for light water reactor fuel rods. This computer program has received NRC approval for use in calculating fuel rod temperatures for input to design and safety analyses (Reference 23). SCE uses this computer program to calculate the fuel temperature of the average rod as a function of burnup. Output from this computer program provides the burnup independent fuel pin temperature for use in CASMO-3, and a burnup dependent fuel pin temperature for the SIMULATE-3 model.

CASMO-3

CASMO-3 is a multigroup, two-dimensional transport theory computer program (Reference 1). This computer program models cylindrical fuel rods of varying composition in a square pitch array. CASMO-3 can model fuel rods, fuel rods with integral burnable absorber, burnable absorber rods, control rods, guide tubes, in-core instruments, and water gaps.

CASMO-3 generates all cross-section data for SIMULATE-3. SCE uses CASMO-3 in a single assembly format with reflective boundary conditions. A 40-energy group cross-section library is used.

CASLIB

CASLIB (Reference 2) produces a binary neutron cross-section library for input to CASMO-3 from a card-image, formatted library. The card-image, formatted library, supplied with CASMO-3 from STUDSVIK, is based mainly on data from ENDF/B-IV with an update from ENDF/B-V and other sources. Both forty- and seventy-group cross-section data are available for nearly 100 materials.

MICBURN-3

MICBURN-3 (Reference 3) calculates the microscopic burnup in a fuel rod containing an initially homogeneously distributed strong burnable absorber such as gadolinia. It generates effective cross-sections as a function of the absorber number density to be used in CASMO-3.

MOVEROD-3

MOVEROD-3 (Reference 4) is a file editing program that creates a new CASMO-3 restart file from existing files by selecting and rearranging data for specified fuel pins. The new restart file can then be used for continued CASMO-3 calculations on a reconstituted fuel assembly.

TABLES-3

TABLES-3 (Reference 5) is a data processing program that links CASMO-3 to SIMULATE-3. The program processes the following types of data from CASMO-3:

- two-group cross-sections,
- discontinuity factors,

- fission product data,
- in-core instrument response data,
- pin power reconstruction data, and
- kinetics data.

TABLES-3 reads the CASMO-3 card image files and produces a master binary cross-section library for SIMULATE-3.

SIMULATE-3

SIMULATE-3 is a two- or three-dimensional (2-D or 3-D), two-group coarse mesh diffusion theory reactor simulator program (Reference 6). The program explicitly models the baffle/reflector region, eliminating the need to normalize to higher-order fine mesh calculations such as PDQ. Homogenized cross-sections and discontinuity factors are applied to the coarse mesh nodal model to solve the two-group diffusion equation using the QPANDA neutronics model. QPANDA employs fourth order polynomial representations of the intra-nodal flux distributions in both the fast and thermal groups.

The nodal thermal hydraulic properties are calculated based on the inlet temperature, RCS pressure, coolant mass flow rate, and the heat addition along the channels.

The pin-by-pin power distributions, on a 2-D or 3-D basis, are constructed from the inter- and intra-assembly information from the coarse mesh solution and the pin-wise assembly power distribution from CASMO-3.

The SIMULATE-3 program performs a macroscopic depletion. Individual Uranium, Plutonium, and lumped fission product isotope concentrations are not computed. However, microscopic depletion of Iodine, Xenon, Promethium, and Samarium is included to model typical reactor transients.

2.2 MODEL DESCRIPTIONS

CASMO-3 FUEL ASSEMBLY AND REFLECTOR MODELS

Each unique PWR fuel assembly type (defined by geometry, enrichment, and burnable poison pins) is separately modeled in CASMO-3 using octant symmetry. Enrichment zoning among fuel pins, burnable poison pins, and guide tubes are explicitly modeled. The water gap between assemblies in the reactor core is included in the CASMO-3 model. The spacer grids are also included. Design bases documents such as the updated Final Safety Analysis Report (FSAR), reload reports, and as-built drawings provide the necessary data to develop the CASMO-3 assembly models.

Three depletion cases are needed to generate each fuel assembly type's average cross-section data. First, the fuel assembly is depleted at hot full power, reactor average conditions. Moderator temperature, fuel temperature, and soluble boron concentration are set to constant average values for the complete depletion. The average fuel temperature at hot full power conditions is calculated with EPRI's ESCORE computer program (Reference 9). Next, the fuel assembly is depleted at a low moderator temperature, a few degrees below hot zero power conditions. However, the fuel temperature and the soluble boron concentration are kept at the constant hot full power, reactor average values. Last, the fuel assembly is again depleted at constant hot full power, reactor average conditions, but with a constant soluble boron concentration higher than is usually seen in normal operation. Restart files are saved from all three depletions. Each fuel assembly type is depleted to greater than 50 GWD/T assembly average burnup using the CASMO-3 default depletion steps.

Branch cases are performed to calculate instantaneous effects. Instantaneous effects are individually calculated and added together later to recreate the proper fuel assembly cross sections. The branch cases are executed from the hot full power, reactor average conditions restart file at typically 0, 5, 10, 20, 30, 40, and 50 GWD/T. Branch cases are run for off-normal moderator temperatures, fuel temperatures, soluble boron concentrations, and control rod insertions.

CASMO-3 also generates top, bottom, and radial reflector cross sections. The radial reflector consists of the stainless steel core baffle followed by about 15 centimeters (cm) of water. The top reflector extends from the top of the active fuel to the lower surface of the fuel assembly upper end fitting. The bottom reflector extends from the bottom of the active fuel to the lower surface of the core support plate. Reflector cross-sections are modeled as a function of soluble boron concentration and moderator temperature.

TABLES-3 MODEL

The TABLES-3 program generates two-dimensional reactor and cycle specific cross-section tables for SIMULATE-3. Data from the following CASMO-3 card image files are combined into binary cross-section libraries for input to SIMULATE-3:

- HFP Reactor Average Depletion + Branches,
 - Fuel Temperature Branches

- Moderator Temperature Branches
- Soluble Boron Concentration Branches
- Control Rod Insertion Branches
- Low Moderator Temperature Depletion,
- HFP High Soluble Boron Concentration Depletion,
- Bottom Reflector Data,
- Radial Reflector Data, and
 - Top Reflector Data.

SIMULATE-3 MODEL

The SIMULATE-3 model divides the active fuel region into 20 axial and four radial nodes per assembly. A pseudo-assembly, consisting of reflector material, surrounds the core and is divided into one radial and 20 axial nodes. Axially, the fuel is divided into a single bottom reflector node, 20 nodes for the active fuel region, and a single top reflector node.

Additional model input data are the:

- Full core assembly serial number map,
- Quarter core fuel assembly type map,
- Fuel assembly axial zone definition, including reflectors,
- Asymmetric (radially) fuel assembly node definition,
- Control rod locations,
- Grouping of control rods into banks,
- Axial zone definitions for control rods, especially part length rods,
- In-core instrumentation locations,
- Fuel temperature versus power level and burnup correlation (ESCORE program),
- Core MW-thermal output at 100% power,
- Core pressure, power density, and coolant mass flow rate at 100% power conditions,

Coolant inlet temperature versus power level,

• Input Restart files, and

Output Restart file.

I

8

IJ

After the cycle base model is set up, the user can specify the percent power level, rod bank positions (percent withdrawn), output and edit options, and the type of calculation: depletion, xenon transient, coefficient calculation (e.g., ITC, IBW, FTC, etc).

Program Sequence Flow Chart

Figure 2.1

ł

Boron Concentration, Cycle Length, Etc.

SECTION 3

DESCRIPTION OF THE REACTORS USED IN THE BENCHMARKING

3.0 INTRODUCTION

This report compares the CASMO-3/SIMULATE-3 predictions of key physics parameters against measured plant data. Data from four different reactor plants were used. The measurements were obtained during plant startup and normal operation. The reactor plants are:

San Onofre Nuclear Generating Station Unit 1,

San Onofre Nuclear Generating Station Unit 2,

San Onofre Nuclear Generating Station Unit 3, and

Arkansas Nuclear One - Unit 2.

The following sections provide brief descriptions of these reactor cores. Detailed information can be found in References 10, 11, and 12.

3.1 SAN ONOFRE NUCLEAR GENERATING STATION UNIT 1 (SONGS 1)

SONGS 1 is a commercial nuclear power plant. The unit began commercial operation in 1968 and has completed 10 cycles of operation. The plant is a Westinghouse three-loop PWR. The reactor core produces 1347 megawatts-thermal at 100% rated power.

The reactor core consists of 157 fuel assemblies arranged as shown in Figure 3.1. Both conventional and low leakage fuel management patterns have been used. Each fuel assembly consists of a 14 x 14 array of 180 fuel rods and 16 control rod guide thimbles. The fuel assembly cross-section is shown in Figure 3.2. Core, fuel assembly, and control rod data are summarized in Table 3.1.

The fuel rods consist of slightly enriched (3.15 to 4.0 weight percent U-235) uranium dioxide (UO_2) pellets with stainless steel cladding. The control rod guide thimbles are also stainless steel. Seven Inconel-718 grids are located along the length of the assembly.

The in-core instrumentation system for power distribution measurement consists of two moveable fission chambers. These instruments can be inserted into 30 core locations. The detector's neutron flux signal is processed off-line with the Westinghouse INCORE3 program (Reference 13). The 30 instrumented core locations are shown in Figure 3.3.

There are 45 full-length control rods, called rod cluster control assemblies (RCCA's). Each RCCA consists of 16 individual absorber rods fastened to a common hub. The RCCA's are not zoned. The single absorber material is Silver-Indium-Cadmium in stainless steel tubes. The RCCA's are moved in four symmetrically located banks. Banks #2 and #1 are called the Control Banks, and they are moved to control the reactor over the power range. The remaining RCCA's are called Shutdown Banks #1 and #2. Figure 3.1 shows the RCCA's locations.

The SONGS 1 reactor has two unique features which were modeled with CASMO-3/SIMULATE-3. The first unique feature modeled was the stainless steel fuel rod cladding. Most PWR cores use zircaloy cladding. The second unique feature was the use of mixed oxide ($PuO_2 - UO_2$) assemblies. In Cycles 2 and 3, four Edison Electric Institute (EEI) mixed oxide ($PuO_2 - UO_2$) demonstration assemblies were irradiated.

3.2 SAN ONOFRE NUCLEAR GENERATING STATION UNITS 2&3 (SONGS 2&3)

SONGS 2&3 are commercial nuclear power plants. SONGS 2 began commercial operation in 1983. SONGS 3 began commercial operation in 1984. Both units are in their fifth cycle of operation. SONGS 2&3 are Combustion Engineering two-loop PWRs. Each unit produces 3390 megawatts-thermal at 100% rated power.

Each reactor core consists of 217 fuel assemblies arranged as shown in Figure 3.4. Both conventional and low leakage fuel management patterns have been used. Each fuel assembly consists of a 16 x 16 array of 236 fuel/burnable absorber rods and 5 control rod guide tubes. A typical fuel assembly cross-section is shown in Figure 3.5. Core, fuel assembly, control rod, and burnable absorber data are summarized in Table 3.2.

The fuel rods consist of slightly enriched (1.87 to 4.05 weight percent U-235) UO₂ pellets clad in Zircaloy-4. The control rod guide tubes are also Zircaloy-4. Ten Zircaloy-4 grids and one Inconel-718 grid are located along the length of the assembly.

The in-core instrumentation system for power distribution measurement consists of 56 strings of fixed Rhodium detectors. Each detector string consists of five individual, 40 cm long, Rhodium detectors placed at about 10, 30, 50, 70, and 90 percent of active core height. The detector signals are processed offline with the Combustion Engineering CECOR program (Reference 14) to determine the power distribution in the core. The 56 instrumented core locations are shown in Figure 3.6.

There are 83 full-length and eight part-length (PL) control rods,

called control element assemblies (CEA's). Seventy-nine fulllength CEA's have five identical individual absorber rods consisting of 1-1/8" Inconel nose cap, 12-1/2" Ag/In/Cd, and 136" of B₄C pellets. Four full-length CEA's located on the periphery of the core have four identical individual absorber rods consisting of 8-5/8" Inconel nose cap, 5" Ag/In/Cd, and 135-1/2" of B₄C pellets. The eight PLCEA's each have five identical absorber rods consisting of 75" of Inconel, 58" of water filled Inconel tube, and 16" of B₄C pellets. The cladding material is Inconel-625. The CEA's are moved in nine symmetrical groups: Regulating Groups 1 through 6, PLCEA, and Shutdown Groups A and B. Figure 3.4 shows the CEA locations.

Burnable absorber rods, consisting of $B_4C-Al_2O_3$ pellets in Zircaloy-4 cladding, were used in all cycles for both units. The burnable absorber rods have the same outer dimension as fuel rods and replace fuel rods when used.

The SONGS 2&3 reactors have several unique features. The outermost row of four assemblies does not line up with the next interior row of assemblies. The four-finger CEA inserted in the middle pair of these "off-set" assemblies has two fingers in one assembly and two fingers in the adjacent assembly. The burnable absorber rods in SONGS 2&3 do not extend the full length of the active fuel region and result in axially zoned fuel assemblies. Both units have been transitioned to 24-month fuel cycles with Cycle 5 being the second such cycle for each unit. Finally, the five control rod guide tubes per fuel assembly are large compared to Westinghouse and Babcock & Wilcox designs and displace four fuel rods each.

3.3 ARKANSAS NUCLEAR ONE - UNIT 2 (ANO-2)

ANO-2 is a commercial nuclear power plant operated by the Arkansas Power And Light Company. ANO-2 began commercial operation in 1980, and only data from the first cycle of operation are used in this report. The plant is a Combustion Engineering two-loop PWR. The reactor core produces 2815 megawatts - thermal at 100% rated power.

The reactor core consists of 177 fuel assemblies arranged as shown in Figure 3.7. Each fuel assembly consists of a 16 x 16 array of 236 fuel/burnable poison rods and five control rod guide tubes. A typical fuel assembly cross-section is shown in Figure 3.8. Core, fuel assembly, control rod, and burnable absorber data are summarized in Table 3.3.

The fuel rods consist of slightly enriched (1.93 to 2.94 weight percent U-235 in Cycle 1) UO_2 pellets with Zircaloy-4 cladding. The control rod guide tubes are also Zircaloy-4. Eleven Zircaloy-4 grids and one Inconel-625 grid are located along the

length of the assembly.

The in-core instrumentation system for power distribution measurement consists of 44 strings of fixed Rhodium detectors. Each detector string consists of five individual, 40 cm long, Rhodium detectors placed at about 10, 30, 50, 70, and 90 percent of active core height. The detector signals are processed offline with the CECOR program (Reference 14). The 44 instrumented core locations are shown in Figure 3.9.

There are 73 full-length and eight part-length (PL) control rods, called control element assemblies (CEA's). The full-length CEA's have dissimilar absorber rods. The four corner rods consist of an Inconel nose cap, 12-1/2" of Ag/In/Cd, and 135-1/2" of B₄C pellets. The center absorber rod uses solid Inconel plugs instead of Ag/In/Cd. The eight PLCEA's each have five identical absorber rods consisting of 75" of Inconel, 58" of water filled Inconel tube, and 16" of B₄C pellets. The cladding material is Inconel-625. The CEAs are moved in nine symmetrical groups: Regulating Groups 1 through 6, PLCEA, and Shutdown Groups A and B. Figure 3.7 shows the CEA locations.

Burnable absorber rods, consisting of $B_4C-Al_2O_3$ pellets in Zircaloy-4 cladding, are used. The burnable absorber rods have the same outer dimension as fuel rods and replace fuel rods when used.

Cycle 1 of ANO-2 has some unique features. The burnable absorber rods within some fuel assembly types are asymmetrically distributed (See Figure 3.9). Also the burnable absorber rods do not extend the full length of the active fuel region and result in axially zoned fuel assemblies. Finally, the five control rod guide tubes per fuel assembly are large compared to Westinghouse and Babcock & Wilcox designs and displace four fuel rods each.

Table 3.1

MECHANICAL DESIGN PARAMETERS

SONGS 1

Core description

Power Level Number of Assemblies Number of Control Rods Fuel Assembly Pitch Core area Core Equivalent Diameter

Fuel Assembly Description

Fuel Rod Array Fuel Rod Pitch Outside Dimension Number of Guide Tubes Guide Tube I.D. Guide Tube O.D. Guide Tube Material

Fuel Rod Description

Material Pellet % t.d. of 10.96 g/cm³ Pellet Diameter Clad Material Clad I.D. Clad O.D. Clad Thickness Active Fuel Length

Full Length Control Rod

Number Clad Material Clad Thickness Clad O.D. Absorber Material Diameter Length

1347 N	legawati	ts-Thermal
157		
45		
7.803	inches	
67.1	Square	Feet
110.9	inches	

14 x 14 0.556 inches 7.76 inches 16 0.535 inches 0.511 inches Stainless Steel

UO₂ 95 nominal 0.3835 inches Stainless Steel 0.389 inches 0.422 inches 0.0165 inches 120 inches

45 (16-Finger) Stainless Steel 0.0185 inches 0.4315 inches

Ag-In-Cd 0.3905 inches 133 inches

Table 3.1 (continued)

EEI* Mixed Oxide Assemblies

Number of Assemblies Fuel Rod Array Outside Dimension Rod pitch Number of Guide Tubes Guide Tube Material

EEI Mixed Oxide Fuel Rods

Clad Material	Zircaloy-4
Outside Diameter	0.422 inches
Diametral Gap	0.0075 inches
Clad Thickness	0.0243 inches
Fuel Length	119.4 inches

EEI Mixed Oxide Fuel Pellets

Diameter Length Material Density, % T. D. Enrichment (w/o fissile Pu) Pu Isotopics a/o Pu-239 a/o Pu-240 a/o Pu-241 a/o Pu-242

4 14 x 14 7.76 inches 0.556 inches 16 Stainless Steel

0.3659 inches 0.600 inches $PuO_2 - UO_2$ 91 2.84 / 3.10 / 3.31 80.6 13.4

5.2

0.8

*EEI: Edison Electric Institute.

Table 3.2

MECHANICAL DESIGN PARAMETERS

SONGS 2&3

Core description

Power Level Number of Assemblies Number of Control Rods Fuel Assembly Pitch Core area Core Equivalent Diameter

Fuel Assembly Description

Fuel Rod Array Fuel Rod Pitch Outside Dimension Number of Guide Tubes Guide Tube I.D. Guide Tube O.D. Guide Tube Material

Fuel Rod Description

Material Stack Height Density Pellet Diameter Clad Material Clad I.D. Clad O.D. Clad Thickness Active Fuel Length

· Full-Length Control Rod

Number 5-Finger 4-Finger Clad Material Clad Thickness Clad O.D. Poison Material Length 5-Finger 4-Finger 3390 Megawatts-Thermal 217 91 8.180 inches 101.1 Square Feet 136 inches

16 x 16 0.506 inches 7.972 inches 5 0.90 inches 0.98 inches Zircaloy-4

 UO_2 10.061 g/cm³ 0.325 inches Zircaloy-4 0.332 inches 0.382 inches 0.025 inches 150 inches

83 79 4 Inconel-625 0.035 inches 0.816 inches

B₄C / Ag-In-Cd /Inconel

136"	12.5"	0.6"
135.5"	5.0"	8.6"

TABLE 3.2 (continued)

Full-Length Control Rod (continued)

B₄C pellet Diameter % T. D. of 2.52 g/cm³ Weight % Boron, Min

0.737 inches 73 77.5

Part Length Control Rod

Number Clad Material Clad Thickness Clad O.D. Poison Material Length B₄C pellet Diameter % T. D. of 2.52 g/cm³ Weight % Boron, Min

Burnable Poison Rod

Absorber Material Pellet Diameter Pellet Length Pellet Density, Min % T. D. Theoretical Density, Al₂O₃ Theoretical Density, B₄C Clad Material Clad I.D. Clad O.D. Clad Thickness Diametral Gap (Cold) Active Length 8 (5-Fingers) Inconel-625 0.035 inches 0.816 inches

Inconel / WATER / B₄C 75 " 58" 16"

0.737 inches 73 77.5

Al₂O₃ - B₄C 0.307 inches 1.0 inches 93 3.94 g/cm^3 2.52 g/cm³ Zircaloy-4 0.332 inches 0.382 inches 0.025 inches 136.0 inches

Table 3.3

MECHANICAL DESIGN PARAMETERS

<u>ANO-2</u>

Core description

4

Power Level Number of Assemblies Number of Control Rods Fuel Assembly Pitch Core area Core Equivalent Diameter

Fuel Assembly Description

Fuel Rod Array Fuel Rod Pitch Outside Dimension Number of Guide Tubes Guide Tube I.D. Guide Tube O.D. Guide Tube Material

Fuel Rod Description

Material Stack Height Density Pellet Diameter Clad Material Clad I.D. Clad O.D. Clad Thickness Active Fuel Length

Full Length Control Rod

Number Clad Material Clad Thickness Clad O.D. Center Finger Poison Material Length Outside Fingers Poison Material Length

- 2815 Megawatts Thermal 177 81 8.177 inches 82.25 Square Feet 123 inches
- 16 x 16 0.506 inches 7.977 inches 5 0.90 inches 0.98 inches Zircaloy-4
- UO_2 10.061 g/cm³ 0.325 inches Zircaloy-4 0.332 inches 0.382 inches 0.025 inches 150 inches

73 (5-Finger) Inconel-625 0.035 inches 0.816 inches

B₄C / Inconel 135.5" 12.5"

B₄C / Ag-In-Cd 135.5" 12.5"

Table 3.3 (continued)

Full Length Control Rod (continued)

B₄C pellet Diameter % T. D. of 2.52 g/cm³ Weight % Boron, Min

Part Length Control Rod

Number Clad Material Clad Thickness Clad O.D. Poison Material Length B₄C pellet Diameter % T. D. of 2.52 g/cm³ Weight % Boron, Min

Burnable Poison Rod

Absorber Material Pellet Diameter Pellet Length Pellet Density, Min % T. D. Theoretical Density, Al_2O_3 Theoretical Density, B_4C Clad Material Clad I.D. Clad O.D. Clad Thickness Diametral Gap (Cold) Active Length 0.737 inches 73 77.5

8 (5-Fingers) Inconel-625 0.035 inches 0.816 inches

Inconel / Water / B₄C 75 " 58" 16"

0.737 inches 73 77.5

Al₂O₃ - B₄C 0.310 inches 0.50 inches min 85 min 3.90 g/cm³ 2.52 g/cm³ Zircaloy-4 0.332 inches 0.382 inches 0.025 inches 0.022 inches 136.0 inches

Figure 3.1

8

REACTOR CORE CONTROL ROD PATTERN

SONGS 1

<u>BANK</u>	NUMBER OF RCCA's
1	12
2	17
S1	8
S2	8
TOTAL	45

Figure 3.2

TYPICAL FUEL ASSEMBLY

SONGS 1

• FUEL ROD LOCATION

x GUIDE TUBE LOCATION

Figure 3.3

REACTOR CORE INSTRUMENTATION LOCATIONS

SONGS 1

.*.

1 - 30 indicate incore instrumentation location

REACTOR CORE CONTROL ROD PATTERN

SONGS 2&3

TYPICAL FUEL ASSEMBLY

SONGS 2&3

x x x x GUIDE TUBE LOCATION

IJ

REACTOR CORE INSTRUMENTATION LOCATIONS

SONGS 2&3

1 - 56 indicates incore instrumentation location

REACTOR CORE CONTROL ROD PATTERN - ANO-2

-

* indicates the location of the worst stuck rod, A-52.

<u>BANK</u>	NUMBER OF RODS							
1	8							
2	8							
3	8							
4	4							
5	4							
6	5							
P	8							
· A	16							
В	20							
TOTAL	81							

TYPICAL FUEL ASSEMBLY

ANO-2

• FUEL ROD LOCATION

ХХ

x x GUIDE TUBE LOCATION

TYPICAL ASYMMETRIC BURNABLE ABSORBER LOCATION

FIGURE 3.9

1

REACTOR CORE INSTRUMENTATION LOCATIONS

<u>ANO-2</u>

						· · · · · · · · · · · · · · · · · · ·				_				
			ı											
					1		2		3	4.			4	
			. 5.		6		7		8	9	10			
	11		12		13		14		15	16	17			
		18										19		
			20		21		22		23	24	25			
		26										27		
			28		29		30		31	32	33		34	
			35		36		37		38	39	40			
	,													
		-			41		42		43	44				
			-				·				 ,			
				۰.	-									

1 - 44 indicate incore instrumentation locations

SECTION 4

BENCHMARK COMPARISONS

4.0 INTRODUCTION

This section compares the calculated parameters and the measured plant data. The measured data are from zero power startup testing and normal operations at San Onofre Nuclear Generating Station (SONGS) Units 1, 2, 3, and Arkansas Nuclear One - Unit 2 (ANO-2). Six cycles at SONGS 1, five cycles from SONGS 2, four cycles from SONGS 3, and one cycle from ANO-2 were analyzed for a total of sixteen cycles including initial and reload cores. For each parameter compared, the sample mean and standard deviation of the observed differences were calculated. Based on the mean, standard deviation, and the sample size, a conservative 95/95 tolerance limit (bias ± reliability factor) was calculated.

Section 4.1 provides the Critical Boron Concentration (CBC) comparisons for Zero Power and Full Power conditions. Differences between calculated and measured data are represented in absolute terms, (Calculated - Measured). The SIMULATE-3 reactivity (1 - 1/Keff) is also calculated for each case.

Section 4.2 presents the Isothermal Temperature Coefficient (ITC) comparison. As in the CBC comparisons, the differences are in absolute terms.

Section 4.3 describes the Power Coefficient (PC) comparison with the differences represented in absolute terms.

Section 4.4 presents the control rod worth comparison. The difference between calculated and measured data is given in relative terms:

Difference = (Calculated - Measured)/Calculated * 100%.

Section 4.5 verifies the ability of SIMULATE-3 to predict the net (N-1) rod worth.

Section 4.6 presents the Inverse Boron Worth (IBW) comparison. The differences are calculated in relative terms.

Section 4.7 compares the SIMULATE-3 assembly (radial and axial) power distributions, axial offset, and incore detector signals with plant measurements. The axial offset differences are quantified in absolute terms, and the assembly peaking factor differences are quantified in relative terms.

4.1 CRITICAL BORON CONCENTRATION

SIMULATE-3 Critical Boron Concentration (CBC) and reactivity predictions were compared to zero-power startup test measurements as well as to full-power operating data. The most reliable measurements are the zero-power startup tests. These measurements are made under well controlled conditions without significant thermal and xenon feedbacks.

The zero-power comparison statistics quantify SIMULATE-3's accuracy in predicting CBC and reactivity for Beginning-of-Cycle (BOC), zero-power conditions without xenon in the core. The full-power operating boron concentration data are from titration of reactor coolant system samples. The measurements are adjusted for control rod insertions and deviations from full power, equilibrium conditions. These full-power comparisons serve as conservative estimates of the SIMULATE-3 uncertainties for atpower equilibrium conditions with thermal feedback.

Sections 4.1.1 and 4.1.2 present the comparisons for zero-power and full-power CBC and reactivity, respectively.

4.1.1 <u>Zero-Power Critical Boron Concentration</u>

Table 4.1 lists the measured and SIMULATE-3 predicted values for BOC, zero-power, xenon free Critical Boron Concentrations (CBC), and SIMULATE-3 calculated reactivities at the measurement conditions for SONGS 1, 2, and 3. Thirty-two measurements from 15 cycles of startup tests are included. Of these measurements, seventeen are unrodded and fifteen are with control rods inserted in the core. Five of the measurements were taken with the reactor critical at low temperatures during initial cycle startups.

The low temperature measurements were taken at 150°F and 320°F for SONGS 1 and 2, respectively. The low temperature cases were included to show temperature dependencies, if any, in the SIMULATE-3 CBC prediction. Comparing the differences between the low temperature and Hot-Zero-Power (>535°F) cases, it is concluded that the SIMULATE-3 CBC predictions are independent of the moderator's temperature.

A three-step statistical analysis was performed on the measured and SIMULATE-3 calculated CBC differences and on the SIMULATE-3 calculated reactivities for the CBCs as measured. First, the sample mean (\overline{x}) , standard deviation (S), and Root-Mean-Squares (RMS) were calculated for CBC and reactivity differences, respectively. The differences are due to SIMULATE-3 calculational uncertainties, variations in B-10 isotopic concentrations, and measurement (titration) uncertainties. For example boron concentration measurement errors can be as high as 5 ppm. For conservatism, all differences are assumed due only to SIMULATE-3 calculational uncertainties.

Second, the two sample distributions were tested for normality using ANSI standard N15.15-1974 (Reference 15). The normality test is needed because the 95/95 tolerance limit assumes that the population has a normal distribution. The test concludes that both distributions, CBC and reactivity differences, are normal. Finally, the bias, 95/95 reliability factor and tolerance limit are calculated. Table 4.2 lists the results for each distribution using the method as described in Reference 16. The 95/95 tolerance limits for zero-power CBC and reactivity, for all temperatures and rodded conditions, are -7 ± 26 PPM and -0.08 ± 0.26 &Ak/k, respectively.

Zero Power Critical Boron Comparison

SONGS 1, 2, and 3

(Beginning of Cycle)

UNIT CYCLE	CASE		CAL PPM <u>SIM-3</u>		REACTIVITY (%∆K/K)
1 5	150°F, ARO 150°F, BANK 2 IN 150°F, BANK1 IN HZP, ARO HZP, BANK 2 IN HZP, BANK 1 IN HZP, ARO HZP, ARO HZP, ARO HZP, ARO	2524	2522 2187 1929 1595 1887 1952	11	0.024 -0.047 -0.009 -0.067 -0.108 -0.093 0.068 -0.025
1 6 2 1	HZP, ARO 320°F, ARO	1774 869	1773 857	· -1	-0.004
2 1 2 1 2 1 2 1 2 1	320°F, BANKS 6-4 II HZP, ARO HZP, BANKS 6-3 IN HZP, BANKS 6-1 IN	N 797 833 629 499	783 824	-14 -9	-0.208 -0.115 -0.188
2 4 2 4	HZP, ARO HZP, BANKS 6-1 IN HZP, ARO HZP, BANK B IN HZP, ARO HZP, BANK B IN HZP, ARO	1580 1382 1803	1561 1370 1802 1547	-34 -19 -12	-0.360 -0.171 -0.104 -0.011
2 5	HZP, BANKS 6-1 IN		1208	0	0.003

Table 4.1 (continued)

<u>UNIT</u>	CYCLE	CASE	s	CRITI <u>MEAS.</u>	CAL PPM <u>SIM-3</u>	S - M (PPM)	REACTIVITY $(\&\Delta K/K)$
3 3 3 3 3 3 3 3 3 3	1 1 2 2 3 3 4 4	HZP, ARO HZP, BANKS HZP, ARO HZP, BANK HZP, ARO HZP, BANK HZP, ARO HZP, BANKS	B IN	823 483 1174 968 1550 1369 1822 1403	824 472 1161 953 1550 1361 1831 1392	1 -11 -13 -15 0 -6 9 -11	-0.001 -0.149 -0.139 -0.165 0.001 -0.067 0.071 -0.090
• •						x -7 s 12 n 32	-0.08 0.12 32

Statistical Analysis of Zero Power Critical Boron Results

· · · ·	<u>Appm</u>	<u>8∆k/k</u>
Mean $(\overline{\mathbf{x}})$	-7	-0.08
Standard Deviation (S)	12	0.12
RMS	14	0.14
Normality Test		
Test Value (W)	0.972	0.976
Critical Value*	0.930	0.930
Result	Normal	Normal
Sample Size	32	32
Degree Of Freedom	31	31
k _{95/95}	2.197	2.197
k _{95/95} * S	26	0.26
Bias	-7	-0.08
95/95 Tolerance Limit	-7±26	-0.08±0.26

(BOC, No Xenon)

* Level of significance (α) = 0.05

4.1.2 HOT-FULL-POWER CRITICAL BORON CONCENTRATION

Tables 4.3 to 4.10 compare the measured HFP CBCs from core follow calculations for SONGS 2 and 3 Cycles 1-4 to the SIMULATE-3 results. Two low-power CBC measurements, one each from Cycle 1 of SONGS 3 and Cycle 2 of SONGS 2 are also included to demonstrate that there is no significant increase in the differences at power levels less than 100%. There are a total of 112 measurements from eight operating cycles. The reactivity data are plotted against the cycle burnup (GWD/T) in Figure 4.1.

The SIMULATE-3 at-power CBC and reactivity 95/95 tolerance limits were determined using the statistical methods outlined in Section 4.1.1. As summarized in Table 4.11, the 95/95 tolerance limits for all at-power and rodded or unrodded conditions for CBC and reactivity are 2 ± 34 ppm and 0.01 ± 0.35 $\Delta k/k$, respectively.

Í

ł

ŕ

CYCLE	BURNUP	CRITIC	AL PPM	s - M	CRITICAL	REACTIVITY
<u>GWD/T</u>	EFPD	MEAS.	SIM-3	(PPM)	K-EFF	(% ∆K/K)
1.934	51.2	476	461	-15	0.99826	-0.174
3.023	80.0	465	441	-24	0.99727	-0.274
4.039	106.9	457	421	-36	0.99600	-0.402
4.978	131.8	432	399	-33	0.99633	-0.368
5.977	158.2	402	380	-22	0.99755	-0.246
7.003	185.4	374	348	-26	0.99712	-0.289
7.987	211.4	342	311	-31	0.99646	-0.355
8.970	237.4	301	274	-27	0.99688	-0.313
9.994	264.5	252	229	-23	0.99733	-0.268
10.944	289.7	204	183	-21	0.99755	-0.246
12.030	318.4	138	125	-13	0.99841	-0.159
12.977	343.5	80	70	-10	0.99876	-0.124

SONGS 2 Cycle 1 HFP Critical Boron Comparison

Table 4.4

Ĩ

CYCLE	BURNUP	CRITICA	AL PPM	S - M	CRITICAL	REACTIVITY
<u>GWD/T</u>	EFPD	MEAS.	SIM-3	(PPM)	K-EFF	(% ∆K/K)
1.323	35.0	472	457	-15	0.99826	-0.174
2.356	62.4	471	455	-16	0.99820	-0.180
3.345	88.5	455	436	-19	0.99786	-0.214
4.955	131.2	430	410	-20	0.99772	-0.229
6.160	163.1	391	369	-22	0.99756	-0.245
6.935	183.6	377	347	-30	0.99663	-0.338
8.075	213.7	. 332	314	-18	0.99794	-0.206
9.370	248.0	279	258	-21	0.99757	-0.244
11.590	306.8	163	150	-13	0.99845	-0.155
12.357	327.1	121	107	-14	0.99830	-0.170
13.972	369.8	115	94	-21	0.99736	-0.265
	(55% POWE	R)				

SONGS 3 Cycle 1 HFP Critical Boron Comparison

CYCLE B	URNUP	CRITIC	AL PPM	s - M	CRITICAL	REACTIVITY
<u>GWD/T</u>	EFPD	MEAS.	SIM-3	(PPM)	K-EFF	(% ∆K/K)
0.800	21.2	741	750	9	1.00091	0.091
1.758	46.5	684	675	-9	0.99909	-0.091
2.258	59.8	654	636	-18	0.99812	-0.188
3.907	103.4	532	501	-31	0.99678	-0.323
5.941	157.3	339	332	-7	0.99927	-0.073
7.054	186.7	260	243	-17	0.99819	-0.181
7.726	204.5	182	187	5	1.00041	0.041
9.241	244.6	56	65	9	1.00107	0.107
9.612	254.4	72	77	5	1.00054	0.054
(80% POWE	R)				

SONGS 2 Cycle 2 HFP Critical Boron Comparison

ļ

Table 4.5

Table 4.6

CYCLE <u>GWD/T</u> 0.613 1.133 2.019 2.771 3.929 4.982 5.783	BURNUP EFPD 16.2 30.0 53.4 73.3 104.0 131.9 153 1	CRITIC MEAS. 722 690 623 560 471 376 320	<u>SIM-3</u> 750 708 636 575 479 392	S - M (PPM) 28 18 13 15 8 16	K-EFF 1.00288 1.00182 1.00137 1.00159 1.00092 1.00171	REACTIVITY (% ΔK/K) 0.287 0.182 0.137 0.159 0.092 0.171
4.982 5.783 7.041 7.996	131.9 153.1 186.4 211.7	376 320 203 122	392 326 221 148	16 6 18 26		

SONGS 3 Cycle 2 HFP Critical Boron Comparison

Table 4.7

CYCLE	BURNUP	CRITIC	AL PPM	S - M	CRITICAL	REACTIVITY
<u>GWD/T</u>	EFPD	MEAS.	<u>SIM-3</u>	<u>(PPM)</u>	K-EFF	(% ∆K/K)
1.006	27.1	1045	1060	15	1.00127	0.127
1.987	53.6	977	981	4	1.00035	0.035
2.965	79.9	907	905	-2	0.99986	-0.014
3.907	105.3	834	831	-3	0.99975	-0.025
5.182	139.7	733	731	-2	0.99987	-0.013
6.015	162.1	678	667	-11	0.99900	-0.100
6.957	187.5	593	596	3	1.00024	0.024
8.100	218.3	512	509	-3	0.99973	-0.027
8.965	241.6	441	445	4	1.00031	0.031
10.026	270.2	360	365	5	1.00045	0.045
10.913	294.1	286	299	13	1.00127	0.127
12.078	325.5	205	214	9	1.00084	0.084
13.042	351.5	135	143	. 8	1.00081	0.081
13.944	375.8	61	77	16	1.00164	0.164

SONGS 2 Cycle 3 HFP Critical Boron Comparison

Table 4.8

Î

CYCLE	BURNUP	CRITIC	AL PPM	S - M	CRITICAL	REACTIVITY
<u>GWD/T</u>	EFPD	MEAS.	<u>SIM-3</u>	<u>(PPM)</u>	K-EFF	(% ∆K/K)
0.664	17.9	1048.	1070	22	1.00190	0.190
0.961	25.9	1026	1044	18	1.00165	0.165
1.997	53.8	960	966	6	1.00055	0.055
3.008	81.1	903	887	-16	0.99865	-0.135
3.860	104.0	840	825	-15	0.99866	-0.134
5.064	136.5	741	728	-13	0.99884	-0.116
6.021	162.3	654	655	1	1.00001	0.001
6.981	188.1	580	581	1	1.00008	0.008
8.100	218.3	492	497	5	1.00049	0.049
8.988	242.2	427	431	4	1.00033	0.033
9.944	268.0	359	360	1	1.00005	0.005
10.908	294.0	281	281	0	1.00135	0.135
12.067	325.2	189	204	15	1.00152	0.152
12.950	349.0	121	140	19	1.00197	0.197
13.986	376.9	42	64	22	1.00228	0.227

SONGS 3 Cycle 3 HFP Critical Boron Comparison

Table 4.9

ļ

j

CYCLE	BURNUP	CRITIC	AL PPM	S - M	CRITICAL	REACTIVITY
<u>GWD/T</u>	EFPD	MEAS.	SIM-3	(PPM)	K-EFF	(% ∆K/K)
0.709	18.7	1253	1286	33	1.00259	0.258
1.993	52.6	1185	1219	34	1.00274	0.273
2.893	76.3	1154	1174	20	1.00156	0.156
4.080	107.6	1081	1112	31	1.00236	0.235
4.986	131.5	1041	1060	19	1.00149	0.149
5.968	157.4	992	1004	12	1.00100	0.100
6.962	183.6	943	950	7	1.00063	0.063
8.008	211.2	897	890	-7	0.99941	-0.059
8.899	234.7	827	843	16	1.00127	0.127
9.897	261.0	773	786	13	1.00081	0.081
11.091	292.5	705	714	9	1.00072	0.072
12.069	318.3	648	655	7	1.00062	0.062
12.976	342.2	598	599	1	1.00009	0.009
13.616	359.1	554	558	4	1.00035	0.035
14.837	391.3	448	479	31	1.00275	0.274
15.835	417.6	382	408	26	1.00231	0.230
16.680	439.9	324	347	23	1.00205	0.205
17.605	464.3	243	284	41	1.00379	0.378
19.054	502.5	131	172	41	1.00394	0.392
20.028	528.2	65	98	33	1.00323	0.322

SONGS 2 Cycle 4 HFP Critical Boron Comparison

т	ab	1	е	4	•	1	0

CYCLE	BURNUP	CRITIC	AL PPM	s - M	CRITICAL	REACTIVITY
GWD/T	EFPD	MEAS.	SIM-3	<u>(PPM)</u>	K-EFF	(% ∆K/K)
0.482	12.7	1291	1334	43	1.00338	0.337
1.388	. 36.6	1264	1282	18	1.00143	0.143
2.101	55.4	1248	1232	-16	1.00127	0.127
3.033	80.0	1198	1199	1	1.00010	0.010
3.974	104.8	1153	1147	-6	0.99964	-0.036
4.937	130.2	1118	1096	-22	0.99825	-0.175
6.086	160.5	1032	1031	-1	0.99990	-0.010
6.977	184.0	983	980	-3	0.99977	-0.023
7.955	209.8	938	924	-14	0.99892	-0.108
9.123	240.6	851	859	8	1.00069	0.069
10.105	266.5	803	801	-2	0.99987	-0.013
11.417	301.1	720	731	11	1.00089	0.089
12.312	324.7	666	670	4	1.00029	0.029
13.286	350.4	610	608	2	0.99986	-0.014
14.041	370.3	557	559	2	1.00013	0.013
15.338	404.5	468	469	1	1.00004	0.004
16.316	430.3	401	398	-3	0.99977	-0.023
17.211	453.9	329	333	4	1.00034	0.034
18.151	478.7	257	264	7	1.00065	0.065
19.168	505.5	173	187	14	1.00135	0.135
20.093	529.9	89	120	31	1.00299	0.298
20.863	550.2	24	55	31	1.00311	0.310

SONGS 3 Cycle 4 HFP Critical Boron Comparison

Statistical Analysis of Hot Full Power

Critical Boron Results

	ΔPPM	<u>%∆k/k</u>
Mean (\overline{x}) Standard Deviation (S)	+2 18	0.0121 0.1810
RMS	18	0.1806
Normality Test		
Test Value (D')	338.1	336.5
Critical Values*	326.8	326.8
	339.8	339.8
Result	Normal	Normal
Sample Size	112	112
Degree of Freedom	111	111
k _{95/95}	1.909	1.909
k _{95/95} * S	34	0.35
Bias	2	0.01
95/95 Tolerance Limit	2±34	0.01±0.35

* Level of significance $(\alpha) = 0.05$

Į

D

8

4.2 ISOTHERMAL TEMPERATURE COEFFICIENT

R

The Isothermal Temperature Coefficient (ITC) is the change in the reactivity due to a 1°F change in the core average moderator and fuel temperature. Tables 4.12 and 4.13 list the comparisons of the calculated ITC's with measurements at SONGS 1, 2, and 3. The temperature, power level, control rod position, and soluble boron concentration are also included. The measurements span a wide range of soluble boron concentrations (145 PPM to 2524 PPM) and temperatures (150°F to 583°F). There are a total of 54 measurements from 14 cycles of operation. The measured and SIMULATE-3 calculated ITC differences have been plotted in Figure 4.2.

A statistical analysis has been performed on the ITC difference, (Calculated - Measured), using the process outlined in Section 4.1.1 to determine the 95/95 tolerance limit for all power, moderator temperature and rodded conditions. As summarized in Table 4.14, the 95/95 tolerance limit (bias \pm reliability factor) is (0.05 \pm 0.24) \pm 10⁻⁴ Δ K/K/°F.

8

Î

Zero-Power ITC comparison

TINTT	CYCLE	(DEG E)	CONTROL ROD POSITION	BORON	ITC (10 ⁻⁴ _MEASURED	∆K/K/°F) SIM-3 P - M
<u>UNLI</u>		1003.11	ROD FOSTION	(FFM)	MEASURED	<u> </u>
1	1	150	ARO	2250	0.340	0.257 -0.083
	1	150	BANK 2 IN	2050	0.240	0.140 -0.100
	1	150	BANK 1 IN	1898	0.160	0.045 -0.115
	1	535	ARO	2524	0.740	0.902 0.162
	1	535	BANK 2 IN	2197	0.230	0.387 0.157
	1	535	BANK 1 IN	1944	-0.170	-0.046 0.124
	1 2 2 3	535	ARO	1609	-0.590	-0.482 0.108
	2	535	BANK 2 IN	1160	-1.357	-1.224 0.133
	3	535	ARO	1876	-0.350	-0.247 0.103
	3	535	BANK 1 IN	1318	-1.190	-1.081 0.109
	4	535	ARO	1956	-0.338	-0.157 0.181
	4	535	BANK 1 IN	1425	-1.204	-0.983 0.221
	6	535	ARO	1774	-0.604	-0.390 0.214
2	1	320	ARO	869	-0.143	-0.093 0.050
	1	320	BANKS 6-4 IN	797	-0.346	-0.325 0.021
	1	545	ARO	833	-0.380	-0.326 0.054
	2 2	545	ARO	1198	0.075	0.180 0.105
	2	545	BANKS 6-1 IN	883	-0.914	-0.851 0.063
	3	545	ARO	1580	0.050	0.183 0.133
	3	545	BANK B IN	1382	-0.588	-0.545 0.043
	4	545	ARO	1803	0.077	0.212 0.135
	4	545	BANK B IN	1563	-0.364	-0.331 0.033
	5	545	ARO	1620	-0.082	0.013 0.095
	5	545	BANKS 6-1 IN	1208	-0.860	-0.874 -0.014
3	1	545	ARO	823	-0.450	-0.343 0.107
	1	545	BANKS 6-1 IN	484	-1.512	-1.388 0.124
	2	545	ARO	1175	0.052	0.141 0.089
	2	545	BANK B IN	968	-0.570	-0.586 -0.016
	3	545	ARO	1550	0.043	0.143 0.100
	3	545	BANK B IN	1369	-0.613	-0.570 0.043
	4	545	ARO	1822	0.113	0.242 0.129
	4	545	BANKS 6-1 IN	1403	-0.660	-0.612 0.048

Ĵ

At-Power ITC comparison

	POWER	BURNUP	СВС	ITC (10	⁻⁴ ΔK/K/°	F)
UNIT CYC	LE (%)	(GWD/T)	<u>(PPM)</u>	MEASURED	SIM-3	Р — М
2 1	20	0.103	660	-0.628	-0.632	-0.004
1	50	0.539	559	-0.824	-0.841	-0.017
1	. 80	1.250	512	-0.942	-0.983	-0.041
1	100	2.050	483	-1.037	-1.156	-0.119
1	100	9.180	287	-1.647	-1.575	0.072
2	98	0.208	818	-0.730	-0.760	-0.030
2	100	1.466	693 [·]	-1.250	-1.043	0.207
2	100	6.650	268	-2.230	-2.037	0.193
2	100	8.123	145	-2.542	-2.333	0.209
3	100	0.380	1095	-0.781	-0.761	0.020
3	100	1.336	1024	-0.923	-0.875	0.048
3	100	10.202	351	-1.920	-2.152	-0.232
. 3	100	12.762	156	-2.300	-2.579	-0.279
5	100	1.464	1063	-0.983	-1.067	-0.084
31	50	0.288	540	-0.826	-0.915	-0.089
1	100	1.360	471	-1.072	-1.213	-0.141
1	98	9.067	277	-1.478	-1.562	-0.084
2	50	0.150	893	-0.559	-0.321	0.238
2	89	0.378	758	-1.084	-0.862	0.222
3	100	1.447	991	-0.964	-0.932	0.032
3	100	9.867	367	-2.220	-2.117	0.103
4	100	1.520	1255	-0.823	-0.761	0.062

Б Н

Statistical Analysis of ITC Differences

	Δ ITC (10 ⁻⁴ Δ K/K/°F)
Mean (\overline{x})	0.053
Standard Deviation (S)	0.115
RMS	0.126
Normality Test Test Value (D') Critical Values [*] Result	111.9 113.7, 107.5 Normal
Sample Size	54
Degree Of Freedom	53
k _{95/95}	2.046
k _{95/95} * S	0.24
Bias	0.05
95/95 Tolerance Limit	0.05±0.24

* Level of significance (α) = 0.05

4.3 POWER COEFFICIENT

The power coefficient is defined as the change in reactivity due to a change in the core power level. SIMULATE-3 power coefficient predictions were compared with measurements from early cycles of SONGS 2 and 3, summarized in Table 4.15. The differences are given in absolute terms, (Calculated - Measured).

Due to the limited size of the database, a meaningful 95/95 tolerance limit could not be derived. However, all of the differences are within $0.2 \times 10^{-4} \Delta k/k/$ °P, and the sample mean and standard deviation are 0.03 and 0.09, respectively. Since the differences include both the calculational and the measurement uncertainties, a conservative 95/95 tolerance limit of $0.2 \times 10^{-4} \Delta k/k/$ °P can be assumed based on engineering judgment.

Ta	bl	е	4	•	1	5

l

۰,

<u>Comparison of</u>	<u>Measured</u>	<u>and Ca</u>	lculated	Power	Coefficients
----------------------	-----------------	---------------	----------	-------	--------------

		POWER	BURNUP		COEFFIC	IENT (10 ⁻⁴ Δ)	k/k/%P)
<u>unit</u>	<u>CYCLE</u>	%	<u>MWD/T</u>	<u>PPM</u>	<u>MEASURED</u>	CALCULATED	DIFF.
2	1	50	539	559	-1.104	-1.124	-0.020
2	1	80	1250	512	-0.946	-0.981	-0.035
2	1	100	2050	483	-0.947	-0.879	0.068
2	2	98	208	818	-0.990	-0.911	0.079
2	3	100	380	1095	-1.103	-0.907	0.196
3	l	50	288	540	-1.041	-1.119	-0.078
3	1	100	1360	471	-0.893	-0.893	-0.000

Mean 0.030 Standard Deviation 0.092

4.4 <u>CONTROL ROD WORTH</u>

SIMULATE-3's predictions for control rod worth were compared to the zero-power startup measurements from SONGS 1, 2, and 3.

Tables 4.16 through 4.19 list the measured and the calculated control rod worths with the differences (in percent) for beginning-of-cycle, zero power, nominal and off-nominal cases. The differences are plotted in Figure 4.3. Two cases have very small measured rod worths (less than $0.03\%\Lambda K/K$). These two cases (Cases 1 and 4 in Table 4.19) were excluded from the statistical analysis to avoid skewing.

A statistical analysis was performed on the control rod worth differences. The analysis determined the bias, standard deviation, and the normality of the difference distribution. The results are summarized in Table 4.20. The bias and standard deviation are 1.18% and 4.89%, respectively.

The uncertainty (S_{oBS}) has two components: the measurement uncertainty (S_M) , and the calculational uncertainty (S_c) . These two components are related to the observed uncertainty by,

$$S_{OBS}^2 = S_M^2 + S_C^2$$
 (Eq. 4.4.1)

The measurement uncertainty can be quantified by comparing the measured control rod worths from the initial startup of SONGS 2 and 3. Since these two units are duplicate plants (identical fuel management, enrichments, burnable absorber worth, etc.,) one would expect the measured control rod worths at the beginning of the first cycle to be exactly the same. Therefore, the observed difference in SONGS 2 and 3 measurements can be attributable to the measurement uncertainty. Table 4.21 presents the comparison for a total of seven rod worth measurements. The standard deviation (S_D) of the difference in the measurement uncertainties from two measurements, is four percent. Therefore, the net measurement uncertainty can be calculated:

$$S_{M}^{2} = 1/2 * S_{D}^{2} = 8.00\%$$

(Eq. 4.4.2)

Once the measurement uncertainty is quantified, the control rod worth calculational uncertainty can be calculated:

$$S_{c} = (S_{OBS}^{2} - S_{M}^{2})^{1/2}$$
 (Eq. 4.4.3)
= $((4.89)^{2} - (8.00))^{1/2}$
= 3.99 (%)

Finally, the 95/95 reliability factor for the calculational error can be calculated:

Reliability Factor =
$$K_{es/es} * S_c$$
 (Eq. 4.4.5)

 $K_{95/95}$ is the critical factor associated with the sample size of 54. From Reference 16, the critical value has been found to be 2.046. Substituting the appropriate values into the above formula, as shown in Table 4.22, the 95/95 tolerance limit (bias \pm reliability factor) becomes -1.2 \pm 8.2 %.

The tolerance limit will be applied to the SIMULATE-3 calculation of CEA worth at all power and moderator temperature conditions by,

Predicted CEA Worth = (Calculated CEA Worth) * $(1 - Bias \pm R. F.)$ (Eq. 4.4.6)

Table	4.	16
-------	----	----

ľ

<u>Cycle</u>	Case	Reactivit <u>Measured Ca</u>	-	Diff. _(%)_
	ана стали стали Стали стали стал	:	•	
1	150F BANK 2	1.999	1.918	-4.23
	150F BANK 1	1.484	1.436	-3.34
	HZP, BANK 2	2.504	2.375	-5.43
	HZP, BANK 1	2.001	1.846	-8.40
2	BANK 2	2.103	2.008	-4.73
	SHUTDOWN BANK	3.394	3.156	-7.54
3 .	BANK 2	2.465	2.369	-4.05
	BANK 1	1.378	1.373	-0.36
4	BANK 2	2.255	2.113	-6.72
	BANK 1	1.554	1.441	-7.84
6	BANK 2	2.123	2.087	1.72

SONGS 1 Control Rod Worth Comparison

SONGS 2 Control Rod Worth Comparison

<u>Case List</u> Cycle 1		ity Worth <u>Calculated</u>	
 A. CEA Banks Sequentially Inserted : 1. Bank 6 Worth 2. Bank 5 Worth 3. Bank 4 Worth 4. Bank 3 Worth 5. Bank 2 Worth 6. Bank 1 Worth 7. Bank B Worth (Banks 6-1 & P in) 	0.411 0.383 0.928 1.029 0.662 1.203 3.143		-4.04 -5.43 -3.76 -0.50
B. Other CEA Worth :			
 Bank P Worth (Other Rods Out) Bank P Worth (Banks 6-1 In) Center CEA(2-1) Worth, Other Rods Out 	0.211 0.390 0.085	0.196 0.353 0.093	
Cycle 2			
A. CEA Banks Sequentially Inserted :			
 Bank 6 Worth Bank 5 Worth Bank 4 Worth Bank 3 Worth Bank 2 Worth Bank 1 Worth Bank A Worth, Other Rods Out 	0.315 0.275 0.542 0.950 0.450 0.819 1.395	0.986 0.453 0.852	1.56 1.43 3.56 3.65 0.66 3.87 2.04
Cycle 3			
18. Bank B Worth, Other Rods Out Cycle 4	1.608	1.705	5.69
19. Bank B Worth, Other Rods Out	1.899	2.052	7.46

.

SONGS 3 Control Rod Worth Comparison

<u>Case List</u>	Reactivi [.] Measured <u>C</u>	ty Worth alculated	Diff. (%)
A. CEA Banks Sequentially Inserted :			
 Bank 6 Worth Bank 5 Worth Bank 4 Worth Bank 3 Worth Bank 2 Worth Bank 1 Worth Bank P in, Other Rods Out Center CEA(2-1) Worth, Other Rods Out 	0.392 0.385 0.894 1.054 0.698 1.213 0.200 0.089	0.397 0.370 0.892 0.978 0.636 1.198 0.195 0.089	-2.56
Cycle 2			• .
9. Bank 3 Worth, Other Rods Out 10. Bank B Worth, Other Rods Out	0.686 2.183	0.709 2.227	3.24 1.98
Cycle 3			2
 Bank B Worth, Other Rods Out Bank 1 Worth, Bank 4 Worth, 	1.605 0.416 0.683	1.695 0.440 0.726	5.31 5.45 5.92
SONGS - 3 Cycle 4			
 Bank 6 Worth Bank 5 Worth Bank 4 Worth Bank 3 Worth Bank 2 Worth Bank 1 Worth 	0.268 0.410 0.680 0.760 0.980 0.345	0.284 0.430 0.706 0.783 0.995 0.325	5.63 4.65 3.68 2.94 1.51 -6.15

ļ

Control Rod Worths for Off-Nominal Conditions

(SONGS 2 Cycle 1)

<u>Case List</u> A. Hot Zero Power Dropped Rod Worth		vity Worth <u>Calculated</u>	Diff. (%)	
1. Worst PLCEA (CEA P-30) 2. Worst SUBGP (CEA P-1)	0.028 0.108	0.024 0.109	-16.67 0.92	
B. Hot Zero Power Ejected Rod Worth				
3. From ZPDIL (CEA 5-45) (Banks 3 at 47%)	0.257	0.259	0.77	
4. From FPDIL (CEA 6-20) (Bank 6 at 71%)	0.014	0.014	0.00	
C. Cold Zero Power - Inlet temperature 320 F System Pressure 600 psi				
5. Rod Group 6 Worth 6. Rod Group 5 Worth 7. Rod Group 4 Worth	0.230 0.270 0.616	0.218 0.247 0.608		

Statistical Analysis of the Observed Control Rod Worth Differences

	<u>%Worth</u>
Mean	-1.18
Standard Deviation	(S) 4.89
RMS	4.99
Normality Test Test Value (D') Critical Values [*] Result	113.0 107.5, 113.7 Normal
Sample Size	54
Degree Of Freedom	53
k _{95/95}	2.046

* Level of significance (α) = 0.05

Į

ļ

L .

SONGS 2 and 3

Measured Control Rod Worths in Cycle 1

	SO	NGS 2	SO	NGS 3	
Control	Boron	Rod Worth	Boron	Rod Worth	Difference
<u>Bank</u>	(PPM)	(%)	<u>(PPM)</u>	(%)	(PERCENT)
6	833	0.411	823	0.392	4.62
5	800	0.383	794	0.385	-0.52
4	770	0.928	766	0.894	3.66
3	700	1.029	701	1.054	-2.43
2	632	0.662	624	0.698	-5.44
1	580	1.203	573	1.213	-0.83
P .	833	0.211	823	0.200	5.21
		•		MEAN (%)	0.61
				RMS (%)	3.75
				S.D. (%)	3.99

N

ĺ

J

Determination of the Control Rod Worth Tolerance Limit

	<u>%Worth</u>
Observed Mean Observed S Observed RMS	-1.18 4.89 4.95
Normality Test Test Value (D') Critical Values [*] Result	113.0 107.5, 113.7 Normal
Measurement error Observed S _D Measurement S _M	3.99 2.83
Model S _c	3.99
Sample Size Degree Of Freedom k _{95/95}	54 53 2.046
k _{95/95} * s _c Bias 95/95 Tolerance Limit (Rounded)	8.16 -1.2 -1.2±8.2

64

* Level of significance (α) = 0.05

4.5 <u>NET (N-1) ROD WORTH</u>

The net (N-1) rod worth is defined as the reactivity worth of the insertion of all of the control rods except the most reactive rod, which remains stuck out. Due to the intense peaking in the assembly in which the stuck control rod is located, this configuration represents the most severe challenge to any reactor physics method.

SIMULATE-3 capabilities in predicting the net rod worth and the worst stuck rod worth are verified in this section by simulating the measurement performed during the initial startup of Arkansas Nuclear One - Unit 2 (ANO-2). ANO-2 is a Combustion Engineering PWR owned by the Arkansas Power And Light Company. As has been described in Section 3, the basic parameters of this reactor are very similar to those of SONGS 2 and 3. The worst stuck rod was CEA A-52 as identified in Figure 3.7.

Table 4.23 lists the comparison of the SIMULATE-3 calculated All-Rods-In (ARI), Net (N-1), and the worst (most reactive) stuck rod worth with the measurement. The agreement is good, and the observed differences for these cases are all within the 95/95 tolerance limits of -9.4% and +7.0%, as established in the control rod worth comparison in Section 4.4. Therefore, it is concluded that the 95/95 tolerance limit for the control rod worth (Section 4.4) is applicable to the net (N-1) worth also.

ANO-2 Net (N-1) Rod Worth Comparison

Case	Measured	<u>Calculated</u>	Difference (%)
ARI Worth	12.188	11.587	-5.19
Net (N-1) Worth	10.666	10.177	-4.80
Worst Stuck Rod Worth	1.522	1.410	-7.94

4.6 INVERSE BORON WORTH

This section compares the SIMULATE-3 Inverse Boron Worths (IBW) to the SONGS 1, 2, and 3 measurements. The 95/95 tolerance limit for the IBW using the SIMULATE-3 methodology is also derived.

The IBW is calculated using:

$$IBW = -(CBC_1 - CBC_2) / (\Delta Reactivity)$$

(Eq. 4.6.1)

where,

CBC₁ is the critical boron concentration for state-point #1,

CBC₂ is the critical boron concentration for state-point #2,

 Δ Reactivity is the required reactivity change ($\Delta k/k$) to go from state-point #1 to #2. Normally, this reactivity change is accomplished by control rod insertion/withdrawal.

Table 4.24 compares the calculated IBWs with measurements at BOC, zero-power conditions, for a total of 16 measurements from 14 cycles of operations. The differences are all within 10%. The mean and standard deviation are 2.5% and 5.6%, respectively.

The differences include both the calculational and measurement uncertainties. The measurement uncertainty, which includes boron titration errors and control rod worth measurement errors, could not be quantified due to the insufficient number of duplicate IBW measurements at SONGS 2 and 3. A realistic estimate of the 95/95 tolerance limit associated with the SIMULATE-3 prediction of IBW was not possible. Therefore, an alternative method was used to quantify the reliability factor (RF).

Equation 4.6.1 relates the IBW to the calculated rod worth and CBCs for the two state-points. Assuming that all three variables (CBC₁, CBC₂, and rod worth) are independent estimates, the IBW error can be calculated using:

 $(R. F.)_{IBW} = ((R. F.)_{CBC1}^2 + (R. F.)_{CBC2}^2 + (R. F.)_{CEA}^2)^{1/2}$ (Eq. 4.6.2)

Where,

 $(R. F.)_{CBC}$ is the critical boron concentration reliability factor in percent

 $(R.\ F.)_{\text{CEA}}$ is the control rod worth reliability factor in percent

Using Table 4.1, a 95/95 reliability factor of 3.1% for the relative (percent) uncertainty in the calculation of the critical boron concentration was derived. In Section 4.4, the 95/95 reliability factor for the control rod worth was found to be 8.2%. Substituting these two values into Eq. 4.6.2, a 95/95 reliability factor of 9.3% was calculated. For conservatism, this reliability factor was rounded to 10%. The conservatism of this 10% reliability factor was corroborated by the fact that all of the IBW differences listed in Table 4.24 were within 10%.

Table 4.24

<u>Unit</u>	<u>Cycle</u>	<u>Tmod (°F)</u>	IBW (PPM Measured	¶/ %∆k/k) Calculated	Difference <u>(C-M)/C*100%</u>
1	1 2 3 4 5 6	150 535 535 535 - 535 535 535	101 129 135 152 156 162 162	112 141 148 156 158 158 158	9.8 8.5 8.8 2.6 1.3 -2.5 -2.5
2	1 1 2 3 4	320 545 545 545 545	-65 -72 -94 -123 -126	-69 -79 -94 -112 -124	6.0 8.6 0.1 -9.9 -1.7
3	1 2 3 4	545 545 545 545	-73 -95 -113 -118	-79 -93 -112 -125 Mean	7.0 -1.3 -1.2 5.4 2.5
				S RMS	5.6

SONGS 1, 2, and 3 Zero Power IBW Comparison

4.7 ASSEMBLY POWER DISTRIBUTION

The SIMULATE-3 assembly power distribution predictions were verified. The calculated radial and axial power distributions and the calculated rhodium incore detector signals were compared to measurements from Cycles 1 through 4 of SONGS 2 and 3.

SONGS 2 and 3 are equipped with fixed rhodium incore detector systems consisting of 56 strings of detectors. Each string has five detectors of 40 cm in length, centered at axial core heights of 10%, 30%, 50%, 70%, and 90%, respectively. The core power distribution is measured by first taking a snapshot of the detector signals. A snapshot contains signals for all of the detectors at the specific moment. Signals in the snapshot are then corrected for sensitivity depletion and background effects. Finally, a computer program, CECOR (Reference 14), is executed to determine the core power distribution based on the sensitivity and background corrected signals and pre-calculated assembly coupling coefficients and axial boundary conditions.

Section 4.7.1 compares the SIMULATE-3 calculated radial and axial power distributions with CECOR measurements.

Section 4.7.2 details the comparison of the axial offsets for the snapshots used in the axial power distribution comparison in Section 4.7.1. The 95/95 tolerance limit is also derived.

Section 4.7.3 compares the calculated rhodium detector signals with measurements from detector snapshots. Since the detector signals are the true measured quantities, results from these comparisons are also used in the derivation of 95/95 tolerance limits for assembly/nodal peaking factors.

4.7.1 RADIAL AND AXIAL POWER DISTRIBUTIONS

Figures 4.4 to 4.15 compare the SIMULATE-3 axially integrated, quarter core assembly power distributions to CECOR measurements from SONGS 2 Cycles 1 through 4 and SONGS 3 Cycle 3 with burnups close to BOC, MOC, and EOC. These measurements were taken close to Hot-Full-Power and All-Rods-Out conditions. Exact power levels and burnup values are shown in the figures. The CECOR powers shown in these figures are average values from quarter core symmetric locations.

The comparisons demonstrate that the SIMULATE-3 assembly powers agree very well with the CECOR measured powers. The RMS error listed in Table 4.25 for each case is within 0.020 (absolute difference).

Figures 4.16 to 4.27 compare the core average axial power distribution for the corresponding snapshots presented in the assembly power comparison. The 51-node SIMULATE-3 axial powers were derived from the spline-fitting of the 20-node SIMULATE-3 solution. The SIMULATE-3 results agree well with the CECOR The RMS values of differences, (Calculated measurements. Measured), are well below 0.05 (absolute difference). For those state-points with RMS error greater than 0.02, the two power distributions agree very well except in the top 5% and bottom 5% axial zones of the core. Since the CECOR powers in these regions are inferred using pre-calculated extrapolation distances, one would expect the "measured" CECOR powers to be less accurate. In fact, when these two regions are removed from the comparison, the RMS errors all drop below 0.02. Table 4.25 summarizes the RMS errors for core axial power distributions in the axial region from 5% to 95% core height.

The excellent agreement between SIMULATE-3 and CECOR results demonstrates the ability of the SIMULATE-3 methodology to predict the assembly power distribution accurately. Therefore, the SIMULATE-3 computer program can be used to generate representative power distributions of the reactor core for use in the statistical evaluation of overall uncertainties associated with safety system setpoints as per Reference 17. Figure 4.4 Axially Integrated Radial Power Density - S2C1F026

ι

	/08/84 el= 99.5% 7035. MWc		,	CECÓR CECOR	- SIMULAT	1 2 96 0.771 007 0.005		
Absolute D RMS Error Max Positi		0.016	n ⊐ini kasimaninga yang kasa basi	3 0.545 -0.009	4 0.759 -0.004		s 1.148 0.014	7 1.030 -0.017
Box = 55 Max Negative Error = -0.019 Box = 58			8 0.604 -0.007	9 0.947 -0.002	10 0.982 -0.008	0.996	12 1.125 -0.007	13 1.052 0.006
		14 0.605 -0.006	15 0.789 0.002	16 0.998 -0.008	17 1.002 0.007	1.135	19 1.069 0.004	20 1.170 -0.003
	21 0.544 -0.010	22 0.948 -0.001	23 1.000 -0.005	24 1.000 0.007		26 1.078 0.009 [,]		28 1.073 -0.019
	29 0.759 -0.004	30 0.983 -0.007	31 1.003 0.008	32 1.141 0.001	33 1.081 0.011	34 1.199 0.001	35 1.107 0.007	35 1.215 0.000
45 0.596	37 0.960 -0.008	38 0.997 0.008	39 1.136 -0.002			42 1.111 0.009	43 1.221 -0.001	44 1.123 0.011
-0.007 54 0.771	46 1.149 0.015	47 1.125 -0.006		49 1.189 -0.005	50 1.106 0.005	51 1.220 -0.002	52 1.123 0.008	53 1.227 -0.004
0.005	55 1.063 0.016	56 1.056 0.010	57 1.172 -0.007	58 1.073 -0.019	59 1.207 -0.009	50 1.120 0.007	61 1.232 0.001	62 1.127 0.008

Figure 4.5 Axially Integrated Radial Power Density - S2C1F038

9

	/13/84 vel= 99.8% 10687.MW		•	CECOR 0.587 0.751 CECOR - SIMULATE-3 -0.009 -0.001				
RMS Error	Difference = 0.008 ive Error =	0.022		3 0.548 -0.014	4 0.757 -0.008	5 0.961 -0.009		7 1.063 -0.009
Box = 55 Max Nega Box = 3	tive Error =	-0.014	8 0.608 -0.013	9 0.973 -0.001	10 1.022 -0.005	11 0.994 0.004	12 1.155 0.001	13 1.053 0.008
		14 0.610 -0.010	15 0.803 -0.002	16 1.047 -0.005	17 1.011 0.003	18 1.158 0.000	19 1.061 0.005	20 1.187 0.000
	21 0.549 -0.013	22 0.976 0.002	23 1.050 -0.002	24 1.012 0.004	25 1.162 0.000	25 1.063 0.005	27 1.194 0.003	28 1.078 0.010
-	23 0.759 -0.006	30 1.025 -0.002	31 1.015 0.007	32 1.166 0.004	33 1.063 0.005		35 1.069 0.001	36 1.196 0.001
45 0.588	37 0.965 -0.005	38 0.998 0.008	39 1.166 0.008		41 1.186 -0.003	1. A.	43 1.187 -0.005	44 1.067 0.001
-0.009 54 0.751	46 1.153 0.019	47 1.163 0.009	48 1.064 0.008	49 1.194 0.003	50 1.069 0.001		52 1.061 -0.003	53 1.178 -0.012
-0.001	55 1.094 0.022	56 1.056 0.011	57 1.193 0.006		59 1.193 -0.002		.€1 1.185 -0.005	52 1.059 -0.004

Figure 4.6 Axially Integrated Radial Power Density - S2C2F051

8

IJ

N

	1 1		·					
Date = 08, Powerlay	/08/85 el= 99.9%			CECOR		.0.6	1 89 0.8	2
	ei = 99.9% 3701. MWd				- SINULAT		1	
Absolute [3	4	5	8	7
RMS Error				0.724	0.964	1.115	0.880	0.967
	ve Error =	0.030		-0.010	-0.001	0.009	0.021	0.007
Box = 58			8	Ş	10	11	12	13
Max Negat	ive Error =	-0.028	0.741	1.136	0.917	1.080	1.030	0.931
Box = 24			-0.014	-0.007	0.008	0.001	0.000	0.015
		14	15	16	17	18		20
		0.746	0.862	0.850	0.915	1.248	1.073	1.279
		-0.007	-0.010		The second second	-0.001	0.011	0.012
	21 0.728	22 1.143	23 0.854	24 0.992	25 0.958	26 1.032	27 1.202	28 1.063
	-0.004	0.002	-0.002		-0.015	0.002	0.006	0.017
	29	30	31	32	33	34	35	35
	0.966	0.920	0.920	0.961	1.148	1.180	1.130	1.017
	0.001	0.012	-0.001	-0.012	-0.015	0.000	-0.001	0.012
	37	38	39	40	41	42	43	44
45	1.112	1.082	1.255	1.035	1.180	1.119	0.981	1.239
0.690	0.007	0.003	0.006	0.004	-0.001	-0.005	0.003	0.007
-0.006	46 0.879	47 1.028	48	49	50	51	52	53
54	0.020	-0.002	1.074	1.203	1.129	0.975	1.017	0.924
0.861	55	-0.002	0.012 57		-0.003	-0.002	-0.022	0.008
-0.007	0.962	0.933	ءر 1292	58 1.075	59 1.014	60 1.222	⁶¹ 0.912	52 0.784
	0.003	0.017	0.025	0.030	0.009		-0.004	-0.013
1	470727072442		Contract one of provide the				• • • • •	

Figure 4.7 Axially Integrated Radial Power Density - S2C2F055

I

	/11/85 el= 100.17 4970.NW6			CECOR CECOR		0.8 TE-3 -0.0		
RMS Error Max <u>Positi</u>	Difference = 0.010 veError=	0.022		3 0.724 -0.012	4 0.960 -0.002		₿ 0.889 0.022	7 0.976 0.011
Box = 6 Max Negative Error = -0.026 Box = 24			8 0.748 -0.015 15	• 1.135 -0.006	10 0.920 0.008	11 1.078 0.002	12 1.033 0.001	13 0.937 0.016
14 0.752 -0.009			0.874 -0.009	16 0.862 -0.007	17 0.924 -0.004	18 1.239 -0.001	19 1.070 0.011	20 1.266 0.007
	21 0.728 -0.007	22 1.141 0.002		24 1.002 -0.026	25 0.966 -0.012	26 1.030 0.003	27 1.191 0.003	28 1.058 0.006
	29 0.962 0.000	30 0.924 0.012	31 0.927 -0.001		33 1.142 -0.012	34 1.170 0.002	35 1.120 -0.003	36 1.013 0.010
45 0.696	37 1.108 0.007	38 1.080 0.003	39 1.246 0.006		41 1.168 -0.002		43 0.979 0.002	44 1.228 0.006
-0.005 54 0.868	46 0.888 0.022	47 1.031 -0.001	48 1.071 0.012	49 1.191 0.003		51 0.975 -0.001	52 1.018 -0.022	53 0.929 0.008
-0.004	55 0.970 0.005	56 0.939 0.018	57 1.278 0.020	58 1.069 0.017		50 1.213 -0.009	61 0.917 -0.004	62 0.795 -0.012

Figure 4.8 Axially Integrated Radial Power Density - S2C3F005

1

				· ·					
Date = 08/	22/86						1	2	
Power Leve	el = 100.2	%		CECOR	758 0.	958			
Burnup = 3	222 4. MWa	∃∕T		CECOR	- SIMULA	TE-3 -0.	007 -0.	014	
Absolute D	ifference			3	4	5	8	7	
RMS Error :	= 0.012			0.688	0.928	1.142	1.098	0.988	
Max Positiv	e Error =	0.024		-0.011	-0.010	0.018	0.013	-0.003	
Box = 55			8	8	10	11	1 2	13	
Max Negati	ve Error =	-0.024	0.812	1.036	0.831	1.102	0.940	1.223	
Box = 17		200 ⁻⁰⁰ , 1995-00, 1995-00, 1995-00, 1995-	-0.003	0.014	0.002	0.008	0.002	-0.022	
		14	15		17		19	20	
		0.817	1.139	1.158	1.112	0.888	1.192	0.998	
Ĩ		0.003	0.013	0.010	-0.024	-0.010	-0.015	-0.004	
	21 0.690	22	23	24	25		27	28	
	-0.009	1.039	1.163	0.878	0.940	1.208	0.893	1.123	
ļ		0.018	0.017	-0.007	-0.008	-0.012	-0.001	-0.015	
	29 0.927	30 0.830	31 1.114	32	33	34	35	35	
	-0.010	0.003		0.940	0.908	1.180	1.142	0.925	
	37	Commentation and the second second	-0.019	Heat and a construction of the	-0.010	0.008	0.019	0.019	
	1.135	38 1.101	39 0.892	40 1.206	41 1.173	42	43	44	
45	0.012	0.008		-0.012		0.911	1.150	1.198	
0.759	46	47	48		0.003	0.000	0.008	0.024	
-0.005	1.097	0.940	1.191	49 0.890	. 50 1.135	51 1.143	52 0.801	53	
54	0.013			-0.002	0.014	0.003		0.756	
0.321	55	56	57	58	59		0.000	0.021	
-0.014	1.016	1.244	1.012	1.127	0.906	50 1.167	61 0.721	62 0.602	
	0.024	-0.001	0.010	-0.011		-0.007	-0.014	0.802	
		and the second				4.007		V.UU4	

· 76

Figure 4.9 Axially Integrated Radial Power Density - S2C3F027

Date = 02/ Power Lev Burnup =	•	i/T		CECOR CECOR	- SIMULAT	0.7 E-3-0.0		
Absolute D RMS Error Max Positi		3 0.671 -0.023	4 0.890 -0.017	5 1.075 0.001		7 0.921 -0.014		
Box = 44 Max Negative Error = -0.023 Box = 3				9 1.004 0.006	10 0.844 0.003	1.078	12 0.934 0.002	13 1.224 -0.019
14 0.796			15 1.125 0.004			0.933	13 1.248 -0.007	20 1.042 0.001
	21 0.674 -0.020	22 1.008 0.011	23 1.146 0.009			28 1.256 -0.001	27 0.947 0.008	28 1.257 -0.009
	29 0.889 -0.017	30 0.845 0.004	31 1.217 -0.009	32 0.978 -0.001	33 0.924 -0.001	34 1.157 0.015	35 1.134 0.021	36 0.963 0.029
45 0.703	37 1.069 -0.005	38 1.077 0.004	39 0.936 0.001	40 1.255 -0.001	41 1.152 0.011	42 0.907 0.010	43 1.131 0.017	44 1.224 0.035
-0.019 54 0.867	46 1.017 0.003	47 0.934 0.001	48 1.249 -0.005	49 0.946 0.007	50 1.130 0.019	51 1.126 0.014	52 0.830 0.009	53 0.806 0.033
-0.022	55 0.948 0.013	56 1.242 -0.001	57 1.056 0.015	58 1.262 -0.004	59 0.943 0.009	50 1.195 0.006	61 0.770 -0.003	⁵² 0.673 0.017

Figure 4.10 Axially Integrated Radial Power Density - S2C3F048

Ì

l

	/22/87 vel = 99.89 13943. MY			1 CECOR 0.691 CECOR - SINULATE-3 -0.024				
RMS Error	Difference = 0.013 ive Error =	0.039		3 0.673 -0.026	4 0.880 -0.016	5 1.053 -0.004	6 0.991 0.002	7 0.905 -0.012
Box = 44 Max Negat Box = 3	Box = 44 Max Negative Error = -0.026			9 0.992 0.005	10 0.858 0.004	11 1.066 0.004	0.936	13 1.228 -0.010
		14 0.794 -0.018	15 1.126 0.006	16 1.131 0.003	17 1.256 0.004	18 0.954 -0.001	19 1.270 0.004	20 1.052 0.000
	21 0.675 -0.023	22 0.996 0.009	23 1.136 0.009		25 0.987 -0.005	25 1.268 0.007	27 0.963 0.006	28 1.314 0.012
	29 0.880 -0.017	30 0.858 0.005	31 1.269 0.009	32 0.987 -0.004	33 0.919 -0.006	34 1.127 0.008	35 1.111 0.014	36 0.971 0.027
45 0.691	37 1.049 -0.009	38 1.066 0.004	39 0.956 0.002	40 1.267 0.007	41 1.122 0.004	42 0.896 0.003	43 1.109 0.011	44 1.235 0.039
-0.024 54 0.842	46 0.990 0.002	47 0.935 0.001	48 1.271 0.005	49 0.963 0.007	50 1.108 0.012	51 1.105 0.008	52 0.847 0.007	53 0.840 0.034
-0.020	55 0.927 0.009	56 1.247 0.009	57 1.069 0.017	58 1.316 0.014	59 0.951 0.006	50 1.204 0.008	61 0.800 -0.006	62 0.721 0.017

Figure 4.11 Axially Integrated Radial Power Density - S2C4F007

. .

1

Date = 2/	17/88				•	•	1	2
Power Lev	Power Level = 99.9%			CECOR 0.361 0.683			583	
Burnup =	2214. MWd	/T		CECOR - SIMULATE-3 0.001 0.002				
Absolute D)ifference		•	3	4	5	6	7
RMS Error	= 0.019			0.375	0.825	0.950	1.030	0.891
Max Positi	ve Error =	0.032		0.006	0.011	0.008	0.010	0.032
Box = 7			8	9	10			
Max Negat	ive Error =	-0.054	0.452	1.005	1.120	1.270	1.220	1.274
Box = 60			0.003	0.013	0.028	0.020	0.027	0.011
		14	15	16	17			
		0.456	1.038	1.157	1.294	1.221	1.320	1.071
		0.006	0.010	0.010	0.001	0.014	.0.000	-0.005
	21	22	23	24	25			28
	0.376	1.011	1.169	1.259		1.262	1.120	1.206
	0.007	0.019	Bornard or therefore the	-0.013		-0.021	-0.004	-0.014
	29 0.827	30 1.121	31 1.299	32 1.048	33 1.177	÷	35	36
	0.012	0.029	· ·				1.159	0.754
	= "" It community and	TALL THE CONTRACTOR	0.006	Carlos and a second		-0.011		0.024
	37 0.953	38 1.270	39 1.219	40 1.264	41 0.977	42 1.144	43 1.032	44 1.096
45	0.010	0.019		-0.019				
0.362	46	47	48	49	50	51	52	-0.024
0.001	1.031	1.219	1.320		.1.159		32 0.864	•53 0.824
54	0.011	0.026			-0.034			-0.010
0.684	55	56	57	58	59	5.010	6 1	
0.003	0.873	1.264	1.081			1.066		0.593
	0.015	0.001	0.005		-0.017			-0.027

Figure 4.12 Axially Integrated Radial Power Density - S2C4F042

Date = 10/31/88 Power Level = 99.1% Burnup = 10983. MWd/T			1 CECOR 0.390 0.70 CECOR - SIMULATE-3 -0.008 -0.00					
RMS Error	Absolute Difference RMS Error = 0.010 Max Positive Error = 0.020			3 0.353 -0.007	4 0.775 -0.003	5 0.991 -0.002	s 1.090 0.006	7 0.891 0.016
Box = 18 Max Negat Box = 61	ive Error =	-0.024	8 0.422 -0.012	9 0.921 -0.003	10 1.027 0.014	11 1.285 0.019	12 1.181 0.019	13 1.306 0.008
•		14 0.426 -0.008	15 0.943 -0.006	16 1.042 -0.002	17 1.275 0.002	18 1.174 0.020	19 1.354 0.010	20 1.069 0.000
	21 0.354 -0.006	22 0.925 0.001	23 1.052 0.008	24 1.242 -0.013	25 1.027 -0.009	1.312	27 1.123 0.002	28 1.281 -0.006
	29 0.775 -0.002	30 1.024 0.011	31 1.276 0.003	32 1.031 -0.005	33 1.245 -0.022	34 1.004 0.000	35 1.255 -0.009	35 0.810 0.018
45 0.388 -0.010 54 0.700 -0.002	37 0.996 0.003	38 1.282 0.016	39 1.166 0.011	40 1.310 -0.006	41 1.004 0.000	42 1.227 -0.003	43 1.047 0.004	44 1.175 -0.003
	48 1.089 0.005	47 1.177 0.016	48 1.350 0.006	49 1.122 0.001	50 1.253 -0.011	51 1.040 -0.004	52 0.870 -0.019	53 0.836 0.001
	55 0.887 0.011	56 1.302 0.004	57 1.075 0.006	58 1.275 -0.012		50 1.156 -0.023	61 0.810 -0.024	62 0.626 -0.011

Figure 4.13 Axially Integrated Radial Power Density - S3C3F011

Î

•

- andread

•							÷ .	
Date = 06/17/87			,				1	2
Power Level = 100.2%				CECOR	!	o .	750 0.	940
Burnup =	3480. NW	d/T		CECOR	- SIMULA	TE-3 -0.	008 -0.	015
Absolute i	Difference			. 3	4	5	6	7
RMS Error	= 0.011		• •	0.693	0.919	1,121	1.082	0.978
Max Positi	ive Error =	0.022		-0.007	-0.013	0.007	0.013	-0.003
Box = 55			8	8	10	11	12	13
Max Negat	ive Error =	-0.032	0.823	1.035	0.828	1.096	0.941	1.231
Box = 62		A CONTRACTOR OF A CONTRACTOR	0.008	0.018	0.002	0.008	0.005	-0.016
		14			17	18	19	20
		0.814	1.141	1.160	1.137	0.903	1.208	1.019
	NATES IN THE OWNER AND A DESCRIPTION OF THE OWNER AND A DESCRIPTION OF THE OWNER AND A DESCRIPTION OF THE OWNER	0.001	0.014	0.016	-0.018	-0.001	-0.010	0.006
<u>.</u>	21 0.685	22			25	26	27	28
		1.028	1.153			1.221	0.906	1.149
	-0.014	0.012	0.011	0.003	0.001	-0.007	0.003	-0.021
	29 0.918	30 0.828	31 1.132	32		34	35	36
	-0.014	0.002		0.954	0.914	1.171	1.136	0.918
	37	- Contraction of the second state	-0.020	0.001	-0.002	0.007	0.016	0.009
	1.126	38 1.094	0.900 39	40 1.216	41	42	43	44
45	0.012		-0.003		1.167	0.907	1.137	1.188
0.753	46	47			0.005	0.003	0.002	0.009
	1.082	0.938	48 1.204	⁴¹ 998.0	50 1.130	51 1.135	52 0 800	53
54	0.013			-0.003	0.012		0.800	0.750
0.941	55	56	57.	58	in and the second second second		-0.007	0.002
-0.014	1.003	1.242	1.021		59 0.913	⁵⁰ 1.169	61 0.726	52 0.510
	0.022	-0.005	0.008			1		
E				Contract (Second		-v.viv	-0.022	-0.032

Figure 4.14 Axially Integrated Radial Power Density - S3C3F026

Í

Date = 11/04/87 Power Level = 99.8% Burnup = 8395. MWd/T				1 2. CECOR 0.705 0.870 CECOR - SIMULATE-3 -0.019 -0.022				
Absolute D RMS Error = Max Positiv	= 0.011	0.020		3 0.678 -0.017	4 0.888 -0.020	s 1.069 -0.008		7 0.925 -0.014
Box = 44 Max Negati Box = 2	Box = 44 Max Negative Error = -0.022 -0.005			9 1.011 0.012	10 0.837 0.001	11 1.076 0.003	0.936	13 1.228 -0.017
		14 0.799 -0.010	15 1.131 0.009	16 1.150 0.012	17 1.214 -0.009	0.936	19 1.250 -0.004	20 1.049 0.008
	21 0.677 -0.018	22 1.007 0.009	23 1.143 0.007	24 0.912 0.005		25 1.258 0.002		28 1.250 -0.011
	29 0.890 -0.018		31 1.210 -0.012	32 0.982 0.004		34 1.155 0.012	35 1.131 0.018	36 0.947 0.016
45 0.708	-0.003	38 1.076 0.005	39 0.934 0.001	40 1.254 0.000		42 0.904 0.009		44 1.210 0.020
-0.017 54 0.871	46 1.021 0.004	47 0.934 0.002	48 1.247 -0.006	49 0.941 0.006	50 1.128 0.017	51 1.125 0.011	52 0.823 0.001	53 0.789 0.011
-0.021	55 0.951 0.012	58 1.242 -0.003	57 1.054 0.013	58 1.255 -0.005			51 0.764 -0.014	52 0.664 -0.021

Figure 4.15 Axially Integrated Radial Power Density - S3C3F044

Ì

,

•								<u></u>
Date = 03/23/88							1	2
Power Leve	el= 99.8%			CECOR			89 0.8	
Burnup =	12974. MW	d/T		CECOR	- SINULAT	E-3 -0.0)25 -0.0)24
Absolute D	ifference			3	4	5		7
RMS Error	= 0.012			0.674	0.875	1.045	0.991	0.905
Max Positiv	ve Error =	0.027		-0.022	-0.021	-0.014	0.000	-0.015
Box = 44			8	9	10			13
Max Negati	ve Error =	-0.025	0.798	0.997	0.847	1.065	0.937	1.231
Box = 1			-0.012	0.009	-0.001	0.002	0.004	-0.010
		14	15	16	17		19	20
		0.792	1.129	1.139	1.264	0.956	1.273	1.063
		-0.018	0.009	0.009	0.004	0.004	0.005	0.009
	21	22	2 3	24	25	26	27	28
	0.674	0.994	1.133	0.922	0.995	1.273	0.966	1.309
•	-0.022	0.005	0.004	0.004	0.004	0.009	0.012	0.007
	29	30	31	32	33	34	35	38
	0.877	0.849	1.261	0.992	0.924	1.131	1115	0.961
· .	-0.019	0.002	0.002	0.002	0.000	0.008	0.014	0.019
	37	38	39	40	41	42	43	44
45	1.049	1.065	0.955	1.269	1.130	0.897	1.109	1.223
0.690	-0.010	0.002	0.003	0.007	0.008	0.007	0.009	0.027
-0.024	46	47	48	49	50	51	52	53
54	0.991	0.934	1.271	0.961	1.113	1.110	0.840	0.822
0.841	0.000	0.001	0.003	0.007	0.015	0.011	0.003	0.020
-0.024	55	56	57	58	59	50	<u>61</u>	52
V.VZ+	0.928	1.245	1.069	1.314	0.952	1.203	0.793	0.708
	0.008	0.003	0.016	0.012	0.011	0.007	-0.009	-0.014
				the second s	The second statement of the se			

Figure 4.16 Core Average Axial Power Distribution - S2C1F026

Figure 4.17 Core Average Axial Power Distribution - S2C1F038

Į

Figure 4.18 Core Average Axial Power Distribution - S2C2F051

Figure 4.19 Core Average Axial Power Distribution - S2C2F055

Figure 4.20 Core Average Axial Power Distribution - S2C3F005

B

Figure 4.21 Core Average Axial Power Distribution - S2C3F027

Figure 4.22 Core Average Axial Power Distribution - S2C3F048

A

Figure 4.24 Core Average Axial Power Distribution - S2C4F042

U

Figure 4.25 Core Average Axial Power Distribution - S3C3F011

i

Figure 4.26

Figure 4.27 Core Average Axial Power Distribution - S3C3F044

,

•

•

: •

	RADIAL	AXIAL
SNAPSHOT ID	RMS ERROR	RMS ERROR
S2C1F026	0.008	0.0177
S2C1F038	0.008	0.0127
S2C2F051	0.011	0.0195
S2C2F055	0.010	0.0157
S2C3F005	0.012	0.0126
S2C3F027	0.013	0.0108
S2C3F048	0.013	0.0133
S2C4F007	0.019	0.0154
S2C4F042	0.010	0.0182
S3C3F011	0.011	0.0160
S3C3F026	0.011	0.0135
S3C3F044	0.012	0.0151

Radial and Axial Power Distribution RMS Errors

4.7.2 <u>AXIAL OFFSET</u>

Table 4.26 compares the axial offset, as defined in Eq. 4.7.1, for the axial power distributions shown in Figures 4.16 through 4.27. Altogether, 12 measurements from five cycles of operation were compared.

Axial Offset =
$$(P_{T} - P_{B}) / (P_{T} + P_{B})$$
 (Eq. 4.7.1)

 P_{T} = Power in the top half of the core, and

 $P_{\rm B}$ = Power in the bottom half of the core.

As summarized in Table 4.26, the mean and the standard deviation for the differences, (Calculated - Measured), are -0.003 and 0.005, respectively. The maximum difference is -0.011.

The 95/95 reliability factor for the calculation of the axial offset is determined using:

Reliability Factor = $K_{95/95}$ * (Standard Deviation) = $K_{95/95}$ * 0.005 (Eq. 4.7.2)

From Reference 16, the critical factor, $K_{95/95}$, for the sample size of 12 is 2.736. Using this value, the 95/95 reliability factor becomes 0.014.

The mean and the reliability factor are applied to the SIMULATE-3 calculation of the axial offset using:

Predicted Axial Offset = (Calculated Axial Offset) * (1 - Bias ± Reliability Factor) (Eq. 4.7.3)

ļ

Axial Offset Comparison

	Axial	Offset	
<u>Snapshot</u>	Measured	Calculated	<u>Difference</u>
S2C1F026	-0.028	-0.025	0.003
S2C1F038	0.008	0.005	-0.003
S2C2F051	0.001	-0.010	-0.011
S2C2F055	-0.004	-0.009	-0.005
S2C3F005	-0.008	-0.013	-0.005
S2C3F027	-0.020	-0.018	0.002
S2C3F048	-0.021	-0.024	-0.003
S2C4F007	-0.001	-0.004	-0.004
S2C4F042	-0.022	-0.013	0.008
S3C3F011	-0.007	-0.014	-0.007
S3C3F026	-0.020	-0.021	-0.001
S3C3F044	-0.015	-0.021	-0.007

Mean -0.003 S 0.005

4.7.3 <u>INCORE DETECTOR SIGNAL COMPARISON</u>

This section compares the SIMULATE-3 predicted rhodium detector reaction rates with the measured rhodium detector signals for SONGS 2 and 3. Also, the 95/95 tolerance limits were derived for the following assembly peaking factors: F_{XY}^{s} - planar peak power, F_{Q}^{s} - overall peak power, and F_{R}^{s} - radial power sharing $(F_{\Delta H}^{s})$.

Seventy-two incore detector snapshots taken close to All-Rods-Out and Hot-Full-Power conditions from Cycles 1 through 4 of SONGS 2 and 3 were used. Tables 4.27 and 4.28 summarize the conditions of these snapshots.

The detector comparison was performed in the following manner:

- 1. Corrected each measured detector signal for self-shielding effects based on the fraction of rhodium atoms remaining.
- 2. Determined Overall peak power (F_0^s) :

At each instrumented location the difference between the SIMULATE-3 calculated signal and the corrected detector signal was found (Calculated - Measured).

3. Determined Assembly power sharing (F_R^S, F_{AH}^S) :

At each instrumented assembly all five levels of the predicted and measured signals were summed up separately, and the difference was found.

4. Determined Planar peak power (F_{xy}^{s}) :

For each level, the predicted and measured signals were normalized, and the difference at each detector location was calculated.

5. Calculated the mean (\overline{x}) and the standard deviation (S_{obs}) for the differences in 2, 3, and 4.

6. The detector measurement uncertainty at any axial level was reflected in the variations in the detector signals from symmetric core locations. The measurement uncertainty was estimated using:

$$S_{\text{meas}}^{2}(\ell) = (1./(N_{\ell} - 1)) * (\sum_{\substack{g \in k}} \Sigma((RR_{m}(k,g,\ell) - \overline{RR}_{m}(g,\ell))/\overline{RR}_{m}(g,\ell))^{2} (Eg. 4.7.1)$$

Where,

 ℓ = axial detector level index from 1 to 5

g = symmetric detector group index from Table 4.29

k = detector location index within each symmetric group

 N_{ℓ} = total number of comparisons in level ℓ .

 $RR_m(k,g,\ell) = measured individual detector signal$

 $\overline{RR}_{m}(g, \ell)$ = average signal at level ℓ in group g

7. Similar to the level-by-level measurement uncertainties, the detector channel (sum of five levels) measurement uncertainty was determined using:

$$S_{\text{meas}}^{2} = (1./(N-1)) * (\sum_{g k} \sum_{k} ((RR_{m}(k,g) - \overline{RR}_{m}(g)) / \overline{RR}_{m}(g))^{2}$$
(Eq. 4.7.2)

Where,

N = total number of detector channels $RR_m(k,g)$ = measured signal in channel k, group g $\overline{RR}_m(g)$ = average signal in group g

8. Calculated the model uncertainties for planar peak power, overall peak power, and assembly power sharing by subtracting the measurement uncertainties from the variances of the observed differences using:

$$S_{model}^2 = S_{obs}^2 - S_{meas}^2$$
 (Eq. 4.7.3)

Using the above procedure, the standard deviations for the snapshots listed in Tables 4.27 and 4.28 were calculated. Tables 4.30 and 4.31 summarize the results, including the assembly power peaking factors. Bartlett's test (Reference 18) was used to determine the poolability of standard deviations from all the snapshots for each reactor unit. Passing the poolability test snapshots for each reactor unit. Passing the poolability test would allow for the pooling of the comparisons from all of the snapshots into one large sample to take advantage of the combined sample size and the reduced 95/95 (probability/confidence) k-value.

Table 4.3.2 summarizes the parameters used to determine whether the snapshot data could be combined into a single statistical sample. When compared with the critical values from a χ^2 distribution, the individual snapshot results cannot be pooled. For conservatism then, the maximum standard deviations were used. Table 4.33 lists the maximum standard deviations for both reactor units.

For the purpose of calculating the relative (%) uncertainties associated with SIMULATE-3 predictions of peak assembly/nodal powers, the standard deviations can be converted from power fraction (absolute) units to a percentage basis by dividing by the minimum peak assembly power for each reactor unit. Table 4.34 summarizes the maximum standard deviations S_{FXY}^s , S_{FQ}^s , and S_{FR}^s in percent.

The 95/95 tolerance limits for assembly peaking factors (F_{XY}^s, F_Q^s) and F_R^s were calculated by multiplying the standard deviations listed in Table 4.34 with the k-value corresponding to the size of each sample. Table 4.35 summarizes the 95/95 tolerance limits for the assembly peaking factors. The 95/95 tolerance limits for F_{XY}^s , F_Q^s , and F_R^s are 4.80%, 4.17%, and 3.34%, respectively for all power levels and rodded conditions.

SONGS 2 Snapshot Information

	CYCLE		SNAPSHOT	DATE	TIME	BURNUP GWD/T	POWER (%)	BANK 6 POSITION
	1		S2C1F011	08/30/83	10:54:24	3.017	99.8	150.0
	1		S2C1F014	09/20/83	11:04:11	3.747	99.7	150.0
	1		S2C1F026	03/08/84		7.289	99.5	150.0
	1		S2C1F034	05/17/84		9.689	99.9	150.0
	1		S2C1F037	06/08/84		10.523	99.4	150.0
,	1		S2C1F038	06/13/84	15:09:48	10.687	99.8	150.0
	1 2 2 2 2 2 2 2 2		S2C1F039	08/01/84	10:14:13	11.088	100.4	142.5
	2		S2C2F046	06/24/85	18:29:32	2.092	99.8	144.0
	2		S2C2F051	08/08/85		3.701	99.9	142.5
	2		S2C2F053	08/28/85		4.433	99.5	124.5
:	2		S2C2F055	09/11/85	16:41:14	4.972	100.0	150.0
	2		S2C2F064	12/14/85		7.019	99.5	145.5
	2		S2C2F067	01/02/86		7.690	100.2	145.5
	2		S2C2F069	01/23/86		8.402	99.6	150.0
	2		S2C2F077	03/12/86		10.009	70.2	142.5
	3 3		S2C3F005	08/22/86		2.240	100.0	142.5
	2		S2C3F012	09/10/86		2.898	100.0	147.0
	3 3		S2C3F021 S2C3F027	12/17/86		6.263	98.8	150.0
	3		S2C3F027	02/18/87		8.746	99.1	150.0
	3		S2C3F034	02/25/87		10.653	100.0	150.0
	3		S2C3F035	04/22/87 04/29/87		10.911	99.7	150.0
	3		S2C3F040	04/29/87		12.227	99.7	142.5
•	3		S2C3F041 S2C3F042	06/10/87		12.445	100.0	150.0
	3 3		S2C3F042	06/17/87		12.704	100.0	150.0
	3		S2C3F047	07/15/87		13.684	99.9	150.0
	4	•	S2C3F048	07/29/87		13.943	99.8	150.0
	4		S2C4F001	12/31/87	10:11:57	0.471	99.2	150.0
	4		S2C4F007		10: 6: 5	1.691 2.214	99.8 99.9	150.0
	4		S2C4F008	2/17/88	6:13: 7	2.214	99.9 99.6	150.0 150.0
	4		S2C4F010	2/29/88	14:22:51	2.480	100.0	150.0
•	- 4		S2C4F012	3/ 2/88	10:33:16	3.273	99.4	150.0
	4		S2C4F016	4/27/88	8:36:27	4.347	99.8	150.0
	4		S2C4F020		11: 3:34	5.130	99.8	150.0
	4		S2C4F024	6/15/88	8:43:42	6.191	99.5	150.0
	4		S2C4F025	6/22/88	5: 0:23	6.454	99.8	150.0
	4		S2C4F030	7/27/88	7:49:54	7.754	99.9	150.0
	4		S2C4F032	8/10/88	8:42:55	8.273	99.3	150.0
	4		S2C4F039		11:36:52	10.009	99.7	150.0
	4	• .	S2C4F043	10/26/88	7: 4:13	10.983	99.1	150.0
			1,					

SONGS 3 Snapshot Information

H

CYCLE	SNAPSHOT	DATE	TIME	BURNUP GWD/T	POWER (%)	BANK 6 <u>POSITION</u>
1	S3C1F013 S3C1F039	05/31/84 05/02/85	10:01:17 18:15:47	4.051 10.736	99.8 99.4	145.5 148.5
2	S3C2F019	05/07/86	12:52:37	2.779	99.5	145.5
2	S3C2F020	05/14/86	09:37:58	3.035	99.9	145.5
2	S3C2F022	05/27/86	13:54:17	3.531	99.6	148.5
2	S3C2F023	06/04/86	10:43:12	3.829	96.8	144.0
2	S3C2F027	07/09/86	10:46:46	5.122	85.1	148.5
2	S3C2F028		09:36:08	5.305	100.0	148.5
. 2	S3C2F032	08/20/86	10:34:18	6.433	99.7	150.0
2	S3C2F039	11/05/86	10:25:17	8.167	83.6	150.0
2	S3C2F040		09:23:21	8.411	83.2	145.5
2	S3C2F043	12/03/86	08:49:41	9.029	84.3	148.5
2 2	S3C2F044	12/11/86	09:17:27	9.319	83.6	148.5
	S3C2F046	12/31/86	08:49:49	9.913	66.4	144.0
3	S3C3F007		09:04:16	1.963	99.8	150.0
3 3 3	S3C3F010	06/03/87	15:05:13	2.981	99.8	150.0
3	S3C3F011		07:25:59	3.481	100.2	148.5
3	S3C3F017		08:44:32	5.801	99.9	148.5
3	S3C3F021		07:46:15	6.911	99.5	150.0
3	S3C3F023		08:40:11	7.884	99.4	150.0
3	S3C3F026	11/04/87	07:36:17	8.398	99.8	150.0
3	S3C3F030	12/02/87	07:34:13	9.431	100.0	150.0
3	S3C3F032	12/23/87	08:27:08	10.373	99.7	150.0
3 3	S3C3F034	01/06/88	08:38:42	10.891	99.8	150.0
3	S3C3F035	01/13/88	13:35:31	11.527	95.3	148.5
3	S3C3F039	02/17/88	06:29:10	12.043	99.8	148.5
3 3 3	S3C3F041	03/02/88	09:52:15	12.455	99.6	148.5
	S3C3F043	03/16/88	07:36:58	12.963	99.9	150.0
3	S3C3F046	04/06/88	09:09:44	13.497	99.7	150.0
4	S3C4F005	9/21/88	13: 2:43	1.035	99.7	150.0
4	S3C4F006	9/28/88	13:35: 6	1.299	99.6	150.0
4	S3C4F007	10/ 5/88	9:10:31	1.564	99.9	150.0

B

SONGS 2&3	Symmetric	Detector	<u>Groups</u>

Group	۴,	Dete	ctor	Numbe	·**
1		$\frac{DCCC}{1}$,	5,	52,·	56
2		2,	4,	53,	55
3		3,	54	•	• •
4	:	6,	12,	45,	51
5	£	7,	11,	46,	50
6		8,	10,	47,	49
7		9,	48		
8	<i>.</i>	13,	19,	38,	44
9		14,	18,	39,	43
10		15,	17,	40,	42
11		16,	41	•	•
12		20,	21,	36,	37
13		22,	28,	29,	35
14		23,	27,	30,	34
15		24,	26,	31,	33
16		25,	32		

* Detector locations are shown in Figure 3.6

SONGS 2 Incore Detector Statistics

SNAPSHOT S2C1F011 S2C1F014 S2C1F034 S2C1F037 S2C1F039 S2C2F053 S2C2F051 S2C2F053 S2C2F055 S2C2F055 S2C2F059 S2C2F059 S2C2F069 S2C2F077 S2C3F012 S2C3F012 S2C3F012 S2C3F040 S2C3F041 S2C3F041 S2C3F048 S2C4F005 S2C4F005	BURNUP <u>GWD/T</u> 3.017 3.747 7.289 9.689 10.523 10.687 11.088 2.092 2.092 7.019 7.690 8.402 10.009 2.240 2.898 6.263 8.746 10.653 10.911 12.227 12.445 12.704 13.684 13.943 0.471 1.621 2.214	T0TAL S DF 0.0195 273 0.0219 275 0.0213 273 0.0154 268 0.0150 268 0.0159 268 0.0219 266 0.0234 259 0.0180 256 0.0129 254 0.0189 265 0.0191 266 0.0191 266 0.0191 266 0.0191 265 0.0141 263 0.0141 265 0.0141 265 0.0141 265 0.0142 265 0.0141 265 0.0141 265 0.0142 265 0.0141 265 0.0141 265 0.0141 265 0.0141 265 0.0142 255 0.0210 257 0.0195 255 0.0200 255	SHARING S DF 0.0039 50 0.0036 52 0.0055 53 0.0060 52 0.0067 52 0.0067 52 0.0068 47 0.0086 47 0.0076 46 0.0090 46 0.0090 46 0.0095 45 0.0130 47 0.0078 44 0.0078 44 0.0078 44 0.0078 45 0.0105 46 0.0109 46 0.0122 46 0.0129 46 0.0125 42 0.0166 40 0.0165 41	0.0121 55 0.0123 55 0.0129 53 0.0129 53 0.0129 53 0.0129 53 0.0129 53 0.0129 53 0.0125 53 0.0125 53 0.0125 53 0.0132 51 0.0138 51 0.0123 50 0.0123 51 0.0123 50 0.0166 52 0.0101 52 0.0123 50 0.0123 50 0.0166 52 0.0170 52 0.0103 52 0.0120 52 0.0120 52 0.0120 52 0.0131 52 0.0138 52 0.0138 52 0.0138 52 0.0138 52 0.0138 52 0.0138<	0.0069 54 0.0070 54 0.0089 53 0.0063 52 0.0068 52 0.0061 52 0.0061 52 0.0091 52 0.0091 52 0.0091 52 0.0091 52 0.0100 52 0.0101 52 0.0125 52 0.0131 52 0.0131 52 0.0133 52 0.0134 52 0.0135 52 0.0138 52 0.0154 52 0.0153 52 0.0154 52 0.0154 52 0.0158 52 0.0158 52 0.0159 52 0.0159 52 0.0176 52 0.0181 52	$\begin{array}{c} LEVEL & -3 \\ & & & & \\ \hline \mathbf{S} & & & \\ \hline 0,0042 & & & \\ \hline 55 \\ 0,0032 & & & \\ \hline 55 \\ 0,0089 & & & \\ \hline 0,0097 & & & \\ \hline 30,0097 & & & \\ \hline 30,0085 & & & \\ \hline 30,0086 & & & \\ \hline 30,0086$	$\begin{array}{c ccccc} LEVEL & - & 2 & & & DF \\ \hline 0.0028 & 55 & & \\ 0.0039 & 55 & & \\ 0.0095 & 53 & & \\ 0.0090 & 53 & & \\ 0.0090 & 53 & & \\ 0.0090 & 53 & & \\ 0.0090 & 53 & & \\ 0.0090 & 53 & & \\ 0.0090 & 53 & & \\ 0.0090 & 53 & & \\ 0.0090 & 50 & & \\ 0.0098 & 50 & & \\ 0.0098 & 50 & & \\ 0.0098 & 50 & & \\ 0.0098 & 50 & & \\ 0.0098 & 50 & & \\ 0.0098 & 50 & & \\ 0.0098 & 50 & & \\ 0.0098 & 50 & & \\ 0.0098 & 50 & & \\ 0.0098 & 50 & & \\ 0.0098 & 50 & & \\ 0.0098 & 50 & & \\ 0.00134 & 54 & & \\ 0.0134 & 54 & & \\ 0.0134 & 54 & & \\ 0.0134 & 54 & & \\ 0.0161 & 54 & & \\ 0.0161 & 54 & & \\ 0.0161 & 54 & & \\ 0.0166 & 54 & & \\ 0.0179 & 54 & & \\ 0.0182 & 52 & & \\ 0.0190 & 52 & & \\ 0.0190 & 52 & & \\ \end{array}$	$\begin{array}{c c} LEVEL & -1 \\ S & DF \\ \hline 0.0157 & 50 \\ 0.0157 & 52 \\ 0.0116 & 54 \\ 0.0133 & 53 \\ 0.0136 & 53 \\ 0.0098 & 50 \\ 0.0098 & 50 \\ 0.00136 & 53 \\ 0.0098 & 50 \\ 0.00171 & 48 \\ 0.0159 & 48 \\ 0.0171 & 48 \\ 0.0115 & 52 \\ 0.0127 & 51 \\ 0.0155 & 51 \\ 0.0163 & 51 \\ 0.0229 & 48 \\ 0.0231 & 49 \\ 0.0231 & 48 \\ 0.031 & 48 \\ 0.031$	RADIAL PEAKING 1.240 1.235 1.231 1.204 1.196 1.195 1.187 1.284 1.267 1.261 1.258 1.237 1.231 1.227 1.210 1.245 1.245 1.245 1.266 1.288 1.245 1.266 1.288 1.291 1.283 1.300 1.302 1.302 1.309 1.318
S2C3F047	13.684	0.0216 265	0.0129 46	0.0139 52	0.0158 52				
			0.0166 40	0.0196 49	0.0181 52	0.0127 50	0.0190 52	0.0239 48	1.318
S2C4F007 S2C4F008	2.214	0.0200 256	0.0185 41 0.0188 41	0.0183 49 0.0184 49	0.0182 52 0.0179 52	0.0158 51 0.0165 51	0.0196 52 0.0197 52	0.0231 48 0.0238 48	1.320 1.321
S2C4F010	2.746	0.0198 255	0.0166 40	0.0178 49	0.0178 52	0.0132 50	0.0194 52	0.0235 48	1.322
S2C4F012 S2C4F016	3.273 4.347	0.0204 255 0.0211 245	0.0158 40	0.0180 49	0.0170 52	0.0134 50	0.0181 52	0.0225 48	1.324
S2C4F010	5.130	0.0206 245	0.0154 34 0.0152 34	0.0177 48 0.0172 48	0.0174 52 0.0174 52	0.0138 49 0.0139 49	0.0183 50 0.0181 50	0.0196 42 0.0195 42	1.327 1.330
S2C4F024	6.191	0.0202 244	0.0152 34	0.0175 48	0.0174 52	0.0139 49	0.0172 50	0.0201 42	1.330
S2C4F025	6.454	0.0187 243	0.0151 34	0.0168 48	0.0177 51	0.0135 49	0.0155 49	0.0196 42	1.334
S2C4F030	7.754	0.0175 241	0.0130 32	0.0175 48	0.0132 49	0.0147 48	0.0174 50	0.0193 42	1.339
S2C4F032	8.273	0.0187 241	0.0128 32	0.0181 48	0.0132 49	0.0143 48	0.0176 50	0.0199 42	1.341
S2C4F039	10.009	0.0170 249	0.0126 37	0.0191 49	0.0140 49	0.0126 48	0.0138 52	0.0182 47	1.344
S2C4F043	10.983	0.0183 250	0.0133 37	0.0186 49	0.0143 49	0.0136 48	0.0170 53	0.0193 47	1.344
POOLED		0.0187 10379	0.0116 1750	0.0149 2037	0.0134 2069	0.0117 2053	0.0147 2103	0.0174 1957	

* DF: Degrees-of-Freedom

SONGS 3 Incore Detector Statistics

SNAPSHOT	BURNUP	TOTAL	SHARING	LEVEL - 5	LEVEL - 4	LEVEL - 3	LEVEL - 2	LEVEL - 1	RADIAL
S3C1F013	<u>GWD/T</u> 4.051	$\frac{S}{0.0226} \frac{DF}{277}$	$-\frac{S}{0.0065}$ $\frac{DF}{53}$	<u><u>S</u><u>DF</u></u>	<u>S DF</u>	<u>S</u> DF	<u>S</u> <u>DF</u>	<u><u>S</u><u>OF</u></u>	PEAKING
\$3C1F013	10.736	0.0220 277		0.0103 54	0.0067 55	0.0028 55	0.0051 55	0.0172 54	1.235
S3C2F019	2.779	0.0239 270	0.0069 51 0.0190 50	0.0108 54	0.0058 54	0.0107 53	0.0109 55	0.0137 54	1.194
\$3C2F020	3.035	0.0241 268	0.0163 48	0.0175 52 0.0152 51	0.0164 52 0.0153 52	0.0174 54	0.0221 54	0.0280 54	1.279
\$3C2F022	3.531	0.0224 268	0.0160 48	0.0152 51		0.0154 54	0.0190 54	0.0253 53	1.276
\$3C2F023	3.829	0.0191 268	0.0142 48	0.0141 52	0.0136 51 0.0129 51	0.0140 54 0.0126 54	0.0196 54	0.0246 53	1.272
S3C2F027	5.122	0.0157 268	0.0114 48	0.0128 52	0.0129 51	0.0126 54 0.0102 54	0.0156 54 0.0124 54	0.0231 53	1.267
\$3C2F028	5.305	0.0195 268	0.0103 48	0.0091 52	0.0106 51	0.0087 54	0.0124 54 0.0118 54	0.0210 53 0.0204 53	1.257
\$3C2F032	6.433	0.0237 268	0.0097 48	0.0093 51	0.0110 51	0.0092 54	0.0109 54		1.255
\$3C2F039	8.167	0.0172 271	0.0114 51	0.0133 53	0.0119 52	0.0104 54	0.0130 54	0.0194 54	1.246
S3C2F040	8.411	0.0192 271	0.0109 51	0.0111 53	0.0088 52	0.0103 54	0.0113 54	0.0211 54	1.227
S3C2F043	9.029	0.0180 271	0.0122 51	0.0134 53	0.0118 52	0.0117 54	0.0115 54	0.0187 54	1.223
\$3C2F044	9.319	0.0181 270	0.0111 50	0.0117 52	0.0102 52	0.0107 54	0.0114 54	0.0189 54	1.223
S3C2F046	9.913	0.0163 271	0.0119 51	0.0144 53	0.0106 52	0.0118 54	0.0120 54	0.0189 54	1.212
S3C3F007	1.963	0.0241 261	0.0137 45	0.0163 51	0.0082 51	0.0104 53	0.0186 51	0.0246 51	1.248
S3C3F010	2.981	0.0196 260	0.0093 45	0.0132 51	0.0029 50	0.0049 53	0.0131 51	0.0237 51	1.247
\$3C3F011	3.481	0.0164 260	0.0066 44	0.0115 51	0.0002 51	0.0045 53	0.0104 51	0.0176 50	1.247
\$3C3F017	5.801	0.0253 261	0.0049 45	0.0086 51	0.0078 51	0.0084 53	0.0078 51	0.0131 51	1.244
\$3C3F021	6.911	0.0247 260	0.0051 44	0.0085 51	0.0092 50	0.0094 53	0.0074 51	0.0123 51	1.248
 \$3C3F023 	7.884	0.0187 259	0.0045 43	0.0081 51	0.0090 50	0.0081 53	0.0065 51	0.0107 50	1.253
S3C3F026	8.398	0.0144 259	0.0070 43	0.0087 51	0.0119 50	0.0109 52	0.0088 51	0.0112 51	1.261
S3C3F030	9.431	0.0210 260	0.0083 44	0.0099 51	0.0128 50	0.0123 53	0.0099 51	0.0115 51	1.275
S3C3F032	10.373	0.0144 259	0.0082 43	0.0096 51	0.0140 50	0.0116 52		0.0121 52	1.286
S3C3F034	10.891	0.0233 260	0.0092 44	0.0101 51	0.0142 50	0.0132 53	0.0100 51	0.0118 51	1.291
\$3C3F035	11.527	0.0210 260	0.0084 44	0.0094 51	0.0137 50	0.0120 52	0.0100 51	0.0121 52	1.291
\$3C3F039	12.043	0.0167 260	0.0109 44	0.0140 51	0.0165 50	0.0141 53	0.0109 51	0.0122 51	1.294
S3C3F041	12.455	0.0195 260	0.0111 44	0.0143 51	0.0159 50	0.0141 53	0.0112 51	0.0125 51	1.295
S3C3F043	12.963	0.0193 261	0.0111 45	0.0148 51	0.0166 50	0.0146 53	0.0110 51	0.0133 52	1.302
\$3C3F046	13.497	0.0234 261	0.0117 45	0.0133 51	0.0167 50	0.0147 53	0.0121 51	0.0145 52	1.302
S3C4F005	1.035	0.0275 258	0.0181 44	0.0261 52	0.0195 50	0.0181 51	0.0186 50	0.0171 51	1.305
S3C4F006	1.299	0.0262 258	0.0184 44	0.0265 52	0.0198 50	0.0179 51	0.0187 50	0.0165 51	1.307
S3C4F007	1.564	0.0249 258	0.0181 44	0.0260 52	0.0199 50	0.0181 51	0.0185 50	0.0166 51	1.308
POOLED		0.0209 8458	0.0117 1490	0.0141 1655	0.0128 1631	0.0122 1701	0.0132 1672	0.0180 1671	

* DF: Degrees-of-Freedom

IUDIC 4.JL	Ta	ble	4.	32
------------	----	-----	----	----

Bartlett's Test Results for Assembly Peaking Factors

SONGS 2

b-value	<u>Total</u> 447.6	<u>Sharing</u> 528.5	<u>Level-5</u> 192.0	<u>Level-4</u> 412.8	Level-3 413.2	<u>Level-2</u> 512.5	<u>Level-1</u> 208.2
DF*	39	39	39	39	39	39	39
$\chi^{2}_{0.05}$	55.6	55.6	55.6	55.6	55.6	55.6	55.6
Conclusion	Fail	Fail	Fail	Fail	Fail	Fail	Fail

SONGS 3

b-value	<u>Total</u> 487.5	<u>Sharinq</u> 380.1	<u>Level-5</u> 384.4	<u>Level-4</u> 745.2	<u>Level-3</u> 386.2	<u>Level-2</u> 354.3	<u>Level-1</u> 250.0
DF*	31	31	31	31	31	31	31
χ ² _{0.05}	40.3	40.3	40.3	40.3	40.3	40.3	40.3
Conclusion	Fail	Fail	Fail	Fail	Fail	Fail	Fail
· ·							

* DF: Degrees-of-Freedom

.

The Least Favorable Standard Deviations

for Assembly Peaking Factors

	SONGS-2	SONGS-3	
S ^s _{FXY}	0.0248	0.0280	
Degrees-of-Freedom	50	54	
	•	· · ·	
S ^S _{FQ}	0.0234	0.0275	
Degrees-of-Freedom	259	258	
S ^S _{FR}	0.0188	0.0190	

Degrees-of-Freedom	41	50

l

Calculation of Maximum Standard Deviations

in Terms of Percent

		•	
	SONGS-2	SONGS-3	MAXIMUM
S ^s _{FXY} (Absolute)	0.0248	0.0280	
Minimum F ^R	1.187	1.194	
S ^s _{FXY} (%)	2.09	2.35	2.35
Degrees-of-Freedom	50	54	
			·
S ^S _{FQ} (Absolute)	0.0234	0.0275	
Minimum F _R	1.187	1.194	
S ^s _{FQ} (%)	1.97	2.30	2.30
Degrees-of-Freedom	259	258	
S ^s _{FR} (Absolute)	0.0188	0.0190	
Minimum F _R	1.187	1.194	
S ^S _{FR} (%)	1.58	1.59	1.59
Degrees-of-Freedom	41	50	

ŀ

1

Calculation of 95/95 Tolerance Limits

for Assembly Power Peaking

	SONGS-2	SONGS-3	MAXIMUM
S ^S _{FXY} (%)	2.09	2.35	2.35
Degrees-of-Freedom	50	54	
K _{95/95}	2.060	2.042	
K _{95/95} S (%)	4.30	4.80	4.80
			ч
S ^S _{FQ} (%)	1.97	2.30	2.30
Degrees-of Freedom	259	258	÷
K _{95/95}	1.812	1.813	
K _{95/95} S (%)	3.57	4.17	4.17
	· · · · · · · · · · · · · · · · · · ·	•	
S ^S FR (%)	1.58	1.59	1.59
Degrees-of-Freedom	41	50	
K _{95/95}	2.111	2.060	х. Х
K _{95/95} S (%)	3.34	3.28	3.34

SECTION 5

PIN PEAKING FACTOR UNCERTAINTIES

5.0 <u>INTRODUCTION</u>

The SIMULATE-3 pin peaking factor uncertainties for the Planar Radial Peaking Factor (F_{XY}) , One-Pin Peaking Factor (F_{Q}) , and Integrated Radial Peaking Factor (F_{R}, F_{AR}) were determined by combining the assembly power peaking uncertainties $(S_{FXY}^{s}, S_{FQ}^{s})$, and S_{FR}^{s} from Section 4.7.3 with an appropriate uncertainty factor for the pin power reconstruction.

Yankee Atomic Electric Company verified the pin power reconstruction capabilities of SIMULATE-3 in extensive benchmarking (Reference 8). Three of the benchmark problems, B&W critical experiments: Core 01, Core 12, and Core 18; were lattice configurations (pin dimensions, water hole, etc.) similar to the SONGS lattices.

Section 5.1 describes the three B&W cases and the results which were used as an estimate of the pin power reconstruction uncertainty. Since the lattice configurations are explicitly represented in the model, the pin power reconstruction uncertainty is applicable to lattices with small water holes (\underline{W}) and large water holes (CE).

In Section 5.2 the uncertainties for pin peaking factors were calculated by combining the assembly power peaking uncertainties (Section 4.7.3) with the pin power reconstruction uncertainty (Section 5.1).

5.1 <u>PIN POWER RECONSTRUCTION UNCERTAINTY</u>

This section compares the SIMULATE-3 predicted pin-by-pin power distributions with the measured data from B&W critical core configurations 01, 12, and 18 described in Reference 19.

Figures 5.1 through 5.3 show the SIMULATE-3 pin power distributions and the measurements. The differences, (Calculated - Measured)/Calculated, are also shown for each pin location. The SIMULATE-3 results agree well with the measurements. The Root-Mean-Squares (RMS) are all within one percent. Table 5.1 summarizes the mean (\bar{x}) , standard deviation (S), and RMS for each case.

The standard deviations from these cases were tested for poolability with the Bartlett's test (Reference 20). Table 5.2 summarizes the parameters. The test confirms that the samples are poolable. Table 5.3 provides the pooled mean (\bar{x}) , standard deviation (S), as well as the K*S value for the 95/95 tolerance limit.

The tolerance limit $(\overline{x} - K_{95/95}S)$ was calculated by subtracting the mean from the $K_{95/95}S_{pooled}$. Since the sample mean was very small and positive, it was assumed zero. The resulting tolerance limit was 1.608%. For conservatism, the 95/95 tolerance limit for pin power reconstruction, $K_{95/95}S(pin)$, was set to 2.00%.

Figure 5.1

Pin Power Distribution Comparison

B&W Core 01

Measured SIM-3 Diff (%)	 1.018 1.037 1.83	1.011 1.003 -0.80	0.987 0.989 0.20	0.981 0.985 0.41	0.997 0.982 -1.53	0.966 0.963 -0.31	0.945 0.943 -0.21
	1.019 1.030 1.07	1.067 1.068 0.09	1.012 1.014 0.20	1.009 1.011 0.20	1.058 1.050 -0.76	0.999 0.984 -1.52	0.945 0.947 0.21
			1.081 1.083 0.18	1.090 1.085 -0.46		1.032 1.040 0.77	0.953 0.952 -0.11
			1.054 1.060 0.57	1.104 1.105 0.09	1.086 1.087 0.09	0.989 0.990 0.10	0.945 0.946 0.11
· ·					1.059 1.057 -0.19	0.965 0.962 -0.31	0.934 0.934 0.00
AVG. (%)	0.012				0.988	0.938	0.923
RMS (%)	0.631				0.983 -0.51	0.942 0.42	0.924 0.11
S.D. (%)	0.641					0.925 0.927 0.22	0.914 0.914 0.00
							0.903 0.905 0.22

Í

Figure 5.2

Į

B

ĺ

l

ß

Pin Power Distribution Comparison

B&W Core 12

Measured SIM-3 Diff (%)	 1.075 1.095 1.83	1.041 1.033 -0.77	1.006 1.012 0.59	1.019 0.999 -2.00	1.000 0.987 -1.32	0.960 0.956 -0.42	0.923 0.920 -0.33
	1.067 1.073 0.56	1.125 1.123 -0.18	1.044 1.040 -0.38	1.034 1.028 -0.58	1.075 1.079 0.37	0.987 0.979 -0.82	0.927 0.923 -0.43
			1.114 1.127 1.15	1.118 1.119 0.09		1.034 1.052 1.71	0.942 0.924 -1.95
	·		1.083 1.078 -0.46	1.137 1.138 0.09	1.102 1.108 0.54	0.979 0.977 -0.20	0.908 0.913 0.55
	:				1.071 1.067 -0.37	0.939 0.938 -0.11	0.895 0.896 0.11
AVG (%)	-0.048				0.958	0.900	0.883
RMS (%)	0.872			,	0.965 0.73	0.911 1.21	0.879 -0.46
S.D. (%)	0.885		. •	·	·	0.884 0.885 0.11	0.856 0.860 0.47
							0.845 0.838 -0.84

Figure 5.3

l

J

Pin Power Distribution Comparison

B&W Core 18

Measured SIM-3 Diff (%)	 1.205 1.217 0.99	1.033 1.035 0.19	0.997 1.002 0.50	0.977 0.988 1.11	0.959 0.970 1.13	0.941 0.948 0.74	0.909 0.922 1.41
	1.076 1.082 0.55	1.021 1.033 1.16	1.012 1.028 1.56	1.010 1.014 0.39	0.982 0.983 0.10	0.946 0.951 0.53	0.912 0.920 0.87
		1.065 1.079 1.30	1.228 1.211 -1.40	1.203 1.197 -0.50	1.043 1.038 -0.48	0.957 0.958 0.10	0.928 0.919 -0.98
					1.183 1.168 -1.28	0.974 0.966 -0.83	0.924 0.913 -1.20
					1.170 1.154 -1.39	0.970 0.953 -1.78	0.909 0.901 -0.89
AVG. (%)	0.048				0.995 0.999	0.924	0.886
RMS (%)	0.925				0.999	0.922 -0.22	0.883 -0.34
S.D. (%)	0.939					0.893 0.890 -0.34	0.866 0.862 -0.46
							0.833 0.838 0.60

	Tab	le	5.1				
					•		
 - ·	- ·	_		- 1		• •	

₿

SIMULATE-3 Pin Power Distribution

Benchmark Results

	•			
CASE	<u> </u>	<u>S (%)</u>	<u>RMS (%)</u>	<u> N </u>
Core 01	0.012	0.641	0.631	32
Core 12	-0.048	0.885	0.872	32
Core 18	0.048	0.939	0.925	32

116

.

Table 5.2

Bartlett's Test Results for Pin Power Distributions

b-value	4.773
Degrees-of-Freedom	2
X ² _{0.05}	5.991
Conclusion	Poolable
S _{pooled} (%)	0.832

Table 5.3

-

Pooled Statistics for SIMULATE-3

Pin Power Distribution

Benchmark Results

<u>x (%)</u>	Spooled (%)	<u>N</u> .	<u>K</u> 95/95	<u>K95/95Spooled (%)</u>
0.004	0.832	96	1.933	1.608

For conservatism, the tolerance limit is set to 2.00%

5.2 CALCULATION OF PIN PEAKING FACTOR UNCERTAINTIES

The 95/95 tolerance limits for Planar Radial Peaking Factor (F_{xx}) , One-Pin Peaking Factor (F_{Q}) , and the Integrated Radial Peaking Factor $(F_{R}, F_{\Delta H})$ can be calculated by using:

 $K_{95/95}S(\text{combined}) = ((K_{95/95}S(\text{assembly}))^2 + (K_{95/95}S(\text{pin}))^2)^{1/2}$ (Eq. 5.2.1)

where,

K_{95/95}S(assembly)

are the 95/95 tolerance limits for assembly power peaking. From Section 4.7.3, the 95/95 tolerance limits for F_{XY}^{s} , F_{Q}^{s} , and F_{R}^{s} are 4.80%, 4.17%, and 3.34%, respectively.

K_{95/95}S(pin) is the 95/95 tolerance limit for the pin power reconstitution. From Section 5.1, this uncertainty component is 2%.

Table 5.4 summarizes the calculation of the tolerance limits for F_{xx} , F_o , and F_R (F_{AH}) of 5.20%, 4.62%, and 3.89%, respectively.

The tolerance limits are applied to the SIMULATE-3 calculated peaking factors at all power levels and for all rodded and unrodded cases using:

Adjusted Peaking Factor = (SIMULATE-3 results) * (1 + Tolerance Limit/100)

(Eq. 5.2.2)

Table 5.4

Calculation of Peaking Factor Tolerance Limits

_	K _{95/95} S(Assembly) (%)	K _{95/95} S(Pin) (%)	K _{95/95} S(Combined) (%)
F _{XY}	4.780	2.000	5.20
Fq	4.170	2.000	4.62
F _R	3.340	2.000	3.89

SECTION 6

CONCLUSIONS

Southern California Edison Company (SCE) has performed extensive benchmarking using the CASMO-3/SIMULATE-3 methodology. This effort consisted of comparisons of calculated physics parameters to measurements from both Pressurized Water Reactors (PWR) and Critical Experiments. The results were used to determine a set of 95/95 (probability/confidence) tolerance limits for application in the calculation of key PWR physics parameters. This effort has also successfully demonstrated SCE's ability to use the CASMO-3/SIMULATE-3 computer program package.

Based on the analyses and results contained in this report, SCE concludes that the CASMO-3/SIMULATE-3 methodology applies to all steady-state PWR reactor physics calculations. The accuracy of this methodology is sufficient for use in licensing applications, PWR reload physics analysis, safety analysis inputs, startup predictions, core physics databooks, and, reactor protection system and monitoring system setpoint updates.

SECTION 7

REFERENCES

- Malte Edenius, Ake Ahlin, Bengt H. Forssen, "CASMO-3, A Fuel Assembly Burnup Program, User's Manual, Version 4.4" STUDSVIK/NFA - 89/3, Studsvik Energiteknik AB, Sweden, November 1989.
- 2. Malte Edenius, Clas Gragg, "CASLIB User's Manual, Version 1.3, STUDSVIK/NFA - 89/13, Studsvik Energiteknik AB, Sweden, November 1989.
- 3. Malte Edenius, Ake Ahlin, "MCBURN-3, Microscopic Burnup in Burnable Absorber Rods, User's Manual" STUDSVIK/NFA - 86/26, Studsvik Energiteknik AB, Sweden, November 1989.
- 4. Malte Edenius, Bengt H. Forssen, "MOVEROD-3 User's Manual," STUDSVIK/NFA - 89/14, Studsvik Energiteknik AB, Sweden, November 1989.
- 5. K. S. Smith, J. A. Umbarger, D. M. Ver Planck, "TABLES-3, Library Preparation Code for SIMULATE-3, User's Manual, Version 3.0," STUDSVIK/SOA - 89/05, Studsvik of America, Inc., November 1989.
- K. S. Smith, J. A. Umbarger, D. M. Ver Planck, "SIMULATE-3, Advanced Three-Dimensional Two-Group Reactor Analysis Code, User's Manual, Version 3.0," STUDSVIK/SOA - 89/03, Studsvik of America, Inc., November 1989.
- 7. "CASMO-3G Validation," YAEC-1363A, Yankee Atomic Electric Company, 1988.
- 8. "SIMULATE-3 Validation and Verification," YAEC-1659A, Yankee Atomic Electric Company, 1988.
- 9. "ESCORE: The EPRI Steady-State Core Reload Evaluator Code; General Description," EPRI NP-5100-A, May 1990.
- 10. Updated Final Safety Analysis Report, San Onofre Nuclear Generating Station, Unit 1, Revision 1.
- 11. Updated Final Safety Analysis Report, San Onofre Nuclear Generating Station, Units 2&3, Revision 6.
- Final Safety Analysis Report, Arkansas Nuclear One Unit 2, Revision 0.
- 13. "INCORE3 User's Manual," Westinghouse Electric Corporation, October 1988.

- 14. "CECOR 2.0 General Description, Methods, and Algorithms," NPSD-103-P, Combustion Engineering, Inc., June 1980.
- ANSI N15.15-1974, "American National Standard: Assessment of the Assumption of Normality (Employing Individual Observed Values)," October 1973.
- 16. <u>Factors for One-Sided Tolerance Limits and for Variables</u> <u>Sampling Plans</u>, D. B. Owen, Sandia Corporation Monograph, SCR-607, March 1963.
- 17. "Statistical Combination of Uncertainties, Part II," CEN-283(S)-P, Combustion Engineering, Inc., October 1984.
- Probability and Statistics for Engineers and Scientists, Walpole and Myers, Macmillan Publishing Company, pp. 358-361, 1972.
- 19. "Urania-Gadolinia: Nuclear Model Development and Critical Experiment Benchmark," DOE/ET/34212-41, April 1984.
- 20. Reference 18, pp. 154-158.
- 21. Letter, USNRC to G. Papanic, Jr. (YAEC), "Acceptance for Referencing of Topical Report YAEC-1363, CASMO-3G Validation," March 21, 1990.
- 22. Letter, USNRC to G. Papanic, Jr. (YAEC), "Acceptance for Referencing of Topical Report YAEC-1659, SIMULATE-3, Validation and Verification," February 20, 1990.
- 23. Letter, USNRC to C. R. Lehmann (PP&L), "Acceptance for Referencing of Licensing Topical Report EPRI-NP-5100, ESCORE - The EPRI Steady-State Core Reload Evaluation Code: General Description," May 23, 1990.