SOUTHERN CALIFORNIA EDISON COMPANY PWR REACTOR PHYSICS METHODOLOGY USING
 CASMO-3/SIMULATE-3

SEPTEMBER 1990

SOUTHERN CALIFORNIA EDISON COMPANY

PHR REACTOR PHYSICS METHODOLOGY
USING
CASMO-3/SIMULATE-3

September 1990

Prepared By: $\frac{\text { RY Chang }}{\text { R. Y. Chang, Senior Engineer }} \frac{9 / 13 / 90}{\text { (Date) }}$ Nuclear Fuel Analysis

Prepared By:
 Nuclear Fuel Analysis

Approved By:

$$
-10-1
$$

Approved By:

Approved By:
Approved By:

DISCLAIMER

This document was prepared by Southern California Edison Company for its own use. The use of information contained in this document by anyone other than Southern California Edison Company is not authorized, and in regard to unauthorized use neither southern California Edison company or any of its officers, directors, agents, or employees assumes any obligation, responsibility or liability, or makes any warranty or representation, with respect to the contents of this document, or its accuracy or completeness.

ABSTRACT

This report documents the validation and level of accuracy of the reactor core physics methodology used by Southern California Edison Company to perform steady-state analyses for Pressurized Water Reactors (PWR). The methodology is based on the CASMO-3/SIMULATE-3 computer program package. This methodology has been validated by an in-house benchmarking effort of CASMO-3/SIMULATE-3 predictions with measured data from power reactors and critical experiments. Based on the results from this benchmarking effort, a set of 95/95 tolerance limits has been calculated. Southern California Edison Company intends to use this methodology to perform PWR calculations including reload design, input to safety analyses, startup predictions, core physics databooks, and, reactor protection system and monitoring system setpoint updates.
Page
Disclaimer ii
Abstract iii
List of Tables vi
List of Figures ix
Acknowledgements xi
SECTION 1 INTRODUCTION, OVERVIEW, AND SUMMARY 1
1.0 Introduction 1
1.1 Overview 1
1.2 Summary 2
SECTION 2 DESCRIPTION OF METHODOLOGY 5
2.0 Introduction 5
2.1 Computer Program Descriptions 5
2.2 Model Descriptions 7
SECTION 3 DESCRIPTION OF REACTORS USED IN THE BENCHMARKING 12
3.0 Introduction 12
3.1 San Onofre Unit 1 12
3.2. San Onofre Units 2 and 3 13
3.3 Arkansas Nuclear One - Unit 2 14
SECTION 4 BENCHMARK COMPARISONS 31
4.0 Introduction 31
4.1 Critical Boron Concentration 32
4.1.1 Zero Power Critical Boron Concentration 33
4.1.2 Hot-Full-Power
Critical Boron Concentration 37
4.2 Isothermal Temperature Coefficient 48
4.3 Power Coefficient 53
4.4 Control Rod Worth 55
4.5 Net ($\mathrm{N}-1$) Rod Worth 65
4.6 Inverse Boron Worth 67
4.7 Assembly Power Distribution 70
4.7.1 Radial and Axial Power Distributions 71
4.7.2 Axial Offset 97
4.7.3 Incore Detector Signal Comparison 99

TABLE OF CONTENTS (continued)

Page
SECTION 5 PIN PEAKING FACTOR UNCERTAINTIES 111
5.0 Introduction 111
5.1 Pin Power Reconstruction Uncertainty 112
5.2 Calculation of Pin Peaking Factor Uncertainties 119
SECTION 6 CONCLUSIONS 121
SECTION 7 REFERENCES 122

LIST OF TABLES

Number Title Page
1.1 List of Key PWR Physics Parameters 3
1.2 List of 95/95 Tolerance Limits (Bias \pm Reliability Factors) 4
3.1 Mechanical Design Parameters SONGS 1 16
3.2 Mechanical Design Parameters SONGS 2\&3 18
3.3 Mechanical Design Parameters ANO-2 20
4.1 Zero Power Critical Boron Comparison, SONGS 1, 2, and 3 34
4.2 Statistical Analysis of Zero Power Critical Boron Results 36
4.3 SONGS 2 Cycle 1 HFP Critical Boron Comparison 38
4.4 SONGS 3 Cycle 1 HFP Critical Boron Comparison 39
4.5 SONGS 2 Cycle 2 HFP Critical Boron Comparison 40
4.6 SONGS 3 Cycle 2 HFP Critical Boron Comparison 41
4.7 SONGS 2 Cycle 3 HFP Critical Boron Comparison 42
4.8 SONGS 3 Cycle 3 HFP Critical Boron Comparison 43
4.9 SONGS 2 Cycle 4 HFP Critical Boron Comparison 44
4.10 SONGS 3 Cycle 4 HFP Critical Boron Comparison 45
4.11 Statistical Analysis of Hot Full Power Critical Boron Results 47
4.12 Zero Power ITC Comparison 49
4.13 At Power ITC Comparison 50
4.14 Statistical Analysis of ITC Differences 52
4.15 Comparison of Measured and Calculated Power Coefficients 54

LIST OF TABLES

Number Title Page
4.16 SONGS 1 Control Rod Worth Comparison 57
4.17 SONGS 2 Control Rod Worth Comparison 58
4.18 SONGS 3 Control Rod Worth Comparison 59
4.19 Control Rod Worths for Off-Nominal Conditions (SONGS 2 Cycle 1) 60
4.20 Statistical Analysis of the Observed Control Rod worth Differences 62
4.21 SONGS 2 and 3 Measured Control Rod worths in Cycle 1 63
4.22 Determination of the Control Rod Worth Tolerance Limit 64
4.23 ANO-2 Net ($\mathrm{N}-1$) Rod Worth Comparison 66
4.24 SONGS 1, 2, and 3 Zero Power IBW Comparison 69
4.25 Radial and Axial Power Distribution RMS Errors 96
4.26 Axial Offset Comparison 98
4.27 SONGS 2 Snapshot Information 102
4.28 SONGS 3 Snapshot Information 103
4.29 SONGS $2 \& 3$ Symmetric Detector Groups 104
4.30 SONGS 2 Incore Detector Statistics 105
4.31 SONGS 3 Incore Detector Statistics 106
4.32 Bartlett's Test Results for Assembly Peaking Factors 107
4.33 The Least Favorable Standard Deviations for Assembly Peaking Factors 108
4.34 Calculation of Maximum Standard Deviations in Terms of Percent 109
4.35 Calculation of 95/95 Tolerance Limits for Assembly Power Peaking 110
Number Title Page
5.1 SIMULATE-3 Pin Power Distribution Benchmark Results 116
5.2 Bartlett's Test Results for Pin Power Distributions 117
5.3 Pooled Statistics for SIMULATE-3 Pin Power Distribution Benchmark Results 118
5.4 Calculation of Peaking Factor Tolerance Limits 120

LIST OF FIGURES

Number Title Page
2.1 Program Sequence Flow Chart 11
3.1 Reactor Core Control Rod Pattern - SONGS I 22
3.2 Typical Fuel Assembly - SONGS 1 23
3.3 Reactor Core Instrumentation Locations - SONGS 1 24
3.4 Reactor Core Control Rod Pattern - SONGS $2 \& 3$ 25
3.5 Typical Fuel Assembly - SONGS 2\&3 26
3.6 Reactor Core Instrumentation Locations - SONGS $2 \& 3$ 27
3.7 Reactor Core Control Rod Pattern - ANO-2 28
3.8 Typical Fuel Assembly - ANO-2 29
3.9 Reactor Core Instrumentation Locations - ANO-2 30
4.1 SIMULATE-3 Critical Reactivity at HFP vs. Burnup 46
4.2 Observed ITC Differences vs. Soluble Boron Concentration 51
4.3 Relative Control Rod worth Differences vs. the Measured Worth 61
4.4 Axially Integrated Radial Power Density - S2C1F026 72
4.5 Axially Integrated Radial Power Density - S2C1F038 73
4.6 Axially Integrated Radial Power Density - S2C2F051 74
4.7 Axially Integrated Radial Power Density - S2C2F055 75
4.8 Axially Integrated Radial Power Density - S2C3F005 76
4.9 Axially Integrated Radial Power Density - S2C3F027 77
4.10 Axially Integrated Radial Power Density - S2C3F048 78
4.11 Axially Integrated Radial Power Density - S2C4F007 79
4.12 Axially Integrated Radial Power Density - S2c4F042 80
4.13 Axially Integrated Radial Power Density - S3C3F011 81

LIST OF FIGURES

Number Title Page
4.14 Axially Integrated Radial Power Density - S3C3F026 82
4.15 Axially Integrated Radial Power Density - S3C3F044 83
4.16 Core Average Axial Power Distribution - S2C1F026 84
4.17 Core Average Axial Power Distribution - S2C1F038 85
4.18. Core Average Axial Power Distribution - S2C2F051 86
4.19 Core Average Axial Power Distribution - S2C2F055 87
4.20 Core Average Axial Power Distribution - S2C3F005 88
4.21 Core Average Axial Power Distribution - S2C3F027 89
4.22 Core Average Axial Power Distribution - S2C3F048 90
4.23 Core Average Axial Power Distribution - S2C4F007 91
4.24 Core Average Axial Power Distribution - S2C4F042 92
4.25 Core Average Axial Power Distribution - S3C3F011 93
4.26 Core Average Axial Power Distribution - S3C3F026 94
4.27 Core Average Axial Power Distribution - S3C3F044 95
5.1 Pin Power Distribution Comparison - B\&W Core 01 113
5.2 Pin Power Distribution Comparison - B\&W Core 12 114
5.3 Pin Power Distribution Comparison - B\&W Core 18 115

ACKNOWLEDGEMENTS

The authors wish to acknowledge the individuals who assisted in the development of the CASMO-3/SIMULATE-3 PWR methodology. Many different people within Southern California Edison Company assisted. In particular, we would like to acknowledge D. Bose-Roy, P. Brashear, J. Judd, B. Park, S. Wu, and O. Thomsen. From the San Onofre Nuclear Generating Station engineering staff we thank A. Eckhart, D. Ramendick, S. Swoope, and.M. McDevitt for conducting the startup testing and core surveillance programs which provided the physics data used in this benchmarking.

1.0 INTRODUCTION

This report describes Southern California Edison (SCE) Company's reactor core physics methodology for Pressurized Water Reactor (PWR) analyses using the CASMO-3/SIMULATE-3 computer program package (References 1 through 6). Studsvik AB and Studsvik of America developed the CASMO-3/SIMULATE-3 computer program package. This package is widely accepted within the nuclear industry.

Yankee Atomic Electric Company (YAEC) provided the theoretical basis and validation of this computer program package to the NRC (References 7 and 8). In these reports YAEC provided detailed descriptions of the computer programs and a general methodology for performing reactor physics analyses.

The objective of this report is to demonstrate SCE's ability to use the CASMO-3/SIMULATE-3 computer program package. The report also documents the uncertainty factors determined through the benchmarking of key PWR physics parameters, presented in Table 1.1, with plant measurements.

1.1 OVERVIEW

The data demonstrating the applicability of SCE's methodology for PWR core physics analyses are documented in Sections 2 through 7 of this report.

Section 2, Description of Methodology, presents a brief description of the CASMO-3/SIMULATE-3 computer program package.

Section 3, Description of Reactors Used in the Benchmarking, describes the PWRs used in the benchmarks.

Section 4, Benchmark Comparisons, details the benchmarking of the key PWR core physics parameters listed in Table 1.1. For each parameter, the calculated data were compared with plant measurements, the sample mean and standard deviation were quantified, and a 95/95 tolerance limit (bias \pm reliability factor) determined.

Section 5, Pin Peaking Factor Uncertainties, presents the derivation of the pin peaking factor 95/95 tolerance limits.

Section 6, Conclusions, presents the conclusions of this report and the range of applications for which SCE will use this
methodology.
Section 7, References, presents documents referenced in this report.

1.2 SUMMARY

Table 1.2 summarizes the $95 / 95$ tolerance limits calculated in Sections 4 and 5. The tolerance limits are such that, when applied to the CASMO-3/SIMULATE-3 results, there is a 95 percent probability, with a 95 percent confidence that the calculated values will conservatively bound the "true" values.

SCE concludes that this methodology is acceptable for the performance of all steady-state PWR core physics analyses including:

- Reload design,
- Safety analyses input,
- Startup predictions,
- Core physics databooks, and
- Reactor protection and monitoring system updates.

List of Key PWR Physics Parameters

- Core Reactivity
- Zero Power
- Full Power
- Inverse Boron Worth
- Power Coefficient
- Isothermal Temperature Coefficient
- Control Rod Worth
- Axial Offset
- Assembly Power Peaking
$-\quad F_{Q}^{s}$
$-\quad \mathrm{F}_{\mathrm{XY}}^{\mathrm{s}}$
$-\quad F_{R}^{S}, F_{\Delta B}^{S}$
- Pin Peaking

$$
\begin{array}{ll}
- & F_{Q} \\
- & F_{X Y} \\
- & F_{R}, F_{\Delta B}
\end{array}
$$

List of $95 / 95$ Tolerance Limits (Bias \pm Reliability Factors)

Parameter	Bias	Reliability Factor	Units*
Core Reactivity ($\% \Delta k / k$)			
Zero Power	-0.08	0.26	Absolute
Full Power	0.01	0.35	Absolute
Critical Boron (PPM)			
Zero Power	-7	26	Absolute
Full Power	2	34	Absolute
Inverse Boron Worth (PPM/\% $\Delta K / K$)	0.0	10\%	Relative
Power Coefficient $\left(10^{-4} \Delta K / K / \% P\right)$	0.0	0.20	Absolute
Isothermal Temperature			
Control Rod Worth ($\% \Delta k / k$)	1.2\%	8. 2%	Relative
Local Pin Power	0.0	2\%	Relative
Axial Offset	-0.003	0.0 .14	Absolute
Assembly Peaking $\mathrm{F}_{8}^{\text {s }}$	0.0	4.17\%	Relative
$\mathrm{F}_{\mathrm{x}}^{\mathbf{s}} \mathrm{Y}$	0.0	4.80\%	Relative
$F_{R}^{\hat{S}}$	0.0	3.34\%	Relative
Pin Peaking $\quad F_{Q}$	0.0	4.62\%	Relative
F_{XY}	0.0	5.20\%	Relative
$\mathrm{F}_{\mathrm{R}}, \mathrm{F}_{\Delta \mathrm{B}}$	0.0	3.89\%	Relative

*For those parameters with differences expressed in relative units:

$$
\text { Predicted }=\text { Calculated } *(1-\text { Bias } \pm \text { Reliability Factor })
$$

For parameters with differences in absolute units, the following equation applies:

$$
\text { Predicted }=\text { Calculated }- \text { Bias } \pm \text { Reliability Factor }
$$

DESCRIPTION OF METHODOLOGY

2.0 INTRODUCTION

This section provides a brief description of the CASMO-3/SIMULATE-3 methodology. Yankee Atomic Electric Company (YAEC) has already presented the theoretical bases and validation of CASMO-3 and SIMULATE-3 before the Nuclear Regulatory Commission (NRC). The computer program package has received NRC approval for use in core physics calculations (References 21 and 22).

2.1 COMPUTER PROGRAM DESCRIPTIONS

The CASMO-3/SIMULATE-3 computer program package (References 1 through 6) was developed by STUDSVIK AB, Nykoping, sweden and their American subsidiary STUDSVIK OF AMERICA, Newton, Massachusetts. The computer program package consists of five computer programs:

•	CASMO-3,
•	MASLIB,
-	MICBURN-3,
•.	
- SIMUEROD-3, and,	

In addition, the Electric Power Research Institute's (EPRI) ESCORE computer program (Reference 9) was incorporated into the program sequence. The computer program sequence flow chart is shown in Figure 2.1 .

These computer programs are briefly described below. Detailed information--theory, user manual, etc.--can be found in the referenced documents.

ESCORE

ESCORE (Reference 9) is a computer program for predicting bestestimate, steady-state fuel performance data for light water reactor fuel rods. This computer program has received NRC approval for use in calculating fuel rod temperatures for input to design and safety analyses (Reference 23). SCE uses this computer program to calculate the fuel temperature of the average rod as a function of burnup. Output from this computer program provides the burnup independent fuel pin temperature for use in

CASMO-3, and a burnup dependent fuel pin temperature for the SIMULATE-3 model.

CASMO-3

CASMO-3 is a multigroup, two-dimensional transport theory computer program (Reference 1). This computer program models cylindrical fuel rods of varying composition in a square pitch array. CASMO-3 can model fuel rods, fuel rods with integral burnable absorber, burnable absorber rods, control rods, guide tubes, in-core instruments, and water gaps.

CASMO-3 generates all cross-section data for SIMULATE-3. SCE uses CASMO-3 in a single assembly format with reflective boundary conditions. A 40-energy group cross-section library is used.

CASLIB

CASLIB (Reference 2) produces a binary neutron cross-section library for input to CASMO-3 from a card-image, formatted library. The card-image, formatted library, supplied with CASMO-3 from STUDSVIK, is based mainly on data from ENDF/B-IV with an update from ENDF/B-V and other sources. Both forty- and seventy-group cross-section data are available for nearly 100 materials.

MICBURN-3

MICBURN-3. (Reference 3) calculates the microscopic burnup in a fuel rod containing an initially homogeneously distributed strong burnable absorber such as gadolinia. It generates effective cro'ss-sections as a function of the absorber number density to be used in CASMO-3.

MOVEROD-3

MOVEROD-3 (Reference 4) is a file editing program that creates a new CASMO-3 restart file from existing files by selecting and rearranging data for specified fuel pins. The new restart file can then be used for continued CASMO-3 calculations on a reconstituted fuel assembly.

TABLES-3
TABLES-3 (Reference 5) is a data processing program that links CASMO-3 to SIMULATE-3. The program processes the following types of data from CASMO-3:
fission product data,

- in-core instrument response data,
- pin power reconstruction data, and
- kinetics data.

TABLES-3 reads the CASMO-3 card image files and produces a master binary cross-section library for SIMULATE-3.

SIMULATE-3

SIMULATE-3 is a two- or three-dimensional (2-D or 3-D), two-group coarse mesh diffusion theory reactor simulator program (Reference 6). The program explicitly models the baffle/reflector region, eliminating the need to normalize to higher-order fine mesh calculations such as PDQ. Homogenized cross-sections and discontinuity factors are applied to the coarse mesh nodal model to solve the two-group diffusion equation using the QPANDA neutronics model. QPANDA employs fourth order polynomial representations of the intra-nodal flux distributions in both the fast and thermal groups.

The nodal thermal hydraulic properties are calculated based on the inlet temperature, RCS pressure, coolant mass flow rate, and the heat addition along the channels.

The pin-by-pin power distributions, on a $2-\mathrm{D}$ or 3-D basis, are constructed from the inter- and intra-assembly information from the coarse mesh solution and the pin-wise assembly power distribution from CASMO-3.

The SIMULATE-3 program performs a macroscopic depletion. Individual Uranium, Plutonium, and lumped fission product isotope concentrations are not computed. However, microscopic depletion of Iodine, Xenon, Promethium, and Samarium is included to model typical reactor transients.

2.2 MODEL DESCRIPTIONS

CASMO-3 FUEL ASSEMBLY AND REFLECTOR MODELS

Each unique PWR fuel assembly type (defined by geometry, enrichment, and burnable poison pins) is separately modeled in CASMO-3 using octant symmetry. Enrichment zoning among fuel pins, burnable poison pins, and guide tubes are explicitly modeled. The water gap between assemblies in the reactor core is included in the CASMO-3 model. The spacer grids are also included. Design bases documents such as the updated Final Safety Analysis Report (FSAR), reload reports, and as-built
drawings provide the necessary data to develop the CASMO-3 assembly models.

Three depletion cases are needed to generate each fuel assembly type's average cross-section data. First, the fuel assembly is depleted at hot full power, reactor average conditions. Moderator temperature, fuel temperature, and soluble boron concentration are set to constant average values for the complete depletion. The average fuel temperature at hot full power conditions is calculated with EPRI's ESCORE computer program (Reference 9). Next, the fuel assembly is depleted at a low moderator temperature, a few degrees below hot zero power conditions. However, the fuel temperature and the soluble boron concentration are kept at the constant hot full power, reactor average values. Last, the fuel assembly is again depleted at constant hot full power, reactor average conditions, but with a constant soluble boron concentration higher than is usually seen in normal operation. Restart files are saved from all three depletions. Each fuel assembly type is depleted to greater than 50 GWD/T assembly average burnup using the CASMO-3 default depletion steps.

Branch cases are performed to calculate instantaneous effects. Instantaneous effects are individually calculated and added together later to recreate the proper fuel assembly cross sections. The branch cases are executed from the hot full power, reactor average conditions restart file at typically $0,5,10$, 20, 30, 40, and 50 GWD/T. Branch cases are run for off-normal moderator temperatures, fuel temperatures, soluble boron concentrations, and control rod insertions.

CASMO-3 also generates top, bottom, and radial reflector cross sections. The radial reflector consists of the stainless steel core baffle followed by about 15 centimeters (cm) of water. The top reflector extends from the top of the active fuel to the lower surface of the fuel assembly upper end fitting. The bottom reflector extends from the bottom of the active fuel to the lower surface of the core support plate. Reflector cross-sections are modeled as a function of soluble boron concentration and moderator temperature.

TABLES-3 MODEL

The TABLES-3 program generates two-dimensional reactor and cycle specific cross-section tables for SIMULATE-3. Data from the following CASMO-3 card image files are combined into binary cross-section libraries for input to SIMULATE-3:

- HFP Reactor Average Depletion + Branches,
- Fuel Temperature Branches

- Moderator Temperature Branches

- Soluble Boron Concentration Branches
- Control Rod Insertion Branches
- Low Moderator Temperature Depletion, - HFP High Soluble Boron Concentration Depletion,
- Bottom Reflector Data,
- Radial Reflector Data, and

Top Reflector Data.

SIMULATE-3 MODEL

The SIMULATE-3 model divides the active fuel region into 20 axial and four radial nodes per assembly. A pseudo-assembly, consisting of reflector material, surrounds the core and is divided into one radial and 20 axial nodes. Axially, the fuel is divided into a single bottom reflector node, 20 nodes for the active fuel region, and a single top reflector node.

Additional model input data are the:

- Full core assembly serial number map,
- Quarter core fuel assembly type map,
- Fuel assembly axial zone definition, including reflectors,
- Asymmetric (radially) fuel assembly node definition,
- Control rod locations,
- Grouping of control rods into banks,
- Axial zone definitions for control rods, especially part length rods,

In-core instrumentation locations,

- Fuel temperature versus power level and burnup correlation (ESCORE program),
- Core MW-thermal output at 100% power,
- Core pressure, power density, and coolant mass flow rate at 100% power conditions,
- Coolant inlet temperature versus power level,
- Input Restart files, and
- Output Restart file.

After the cycle base model is set up, the user can specify the percent power level, rod bank positions (percent withdrawn), output and edit options, and the type of calculation: depletion, xenon transient, coefficient calculation (e.g., ITC, IBW, FTC; etc).

Figure 2.1
Program Sequence Flow Chart

Pin/Assembly Power Distributions Reactivity Coefficients Control Rod Worths
Boron Concentration, Cycle Length, Etc.

3.0 INTRODUCTION

This report compares the CASMO-3/SIMULATE-3 predictions of key physics parameters against measured plant data. Data from four different reactor plants were used. The measurements were obtained during plant startup and normal operation. The reactor plants are:

- San Onofre Nuclear Generating Station Unit 1,
- San Onofre Nuclear Generating Station Unit 2,
- San Onofre Nuclear Generating Station Unit 3, and
- Arkansas Nuclear One - Unit 2.

The following sections provide brief descriptions of these reactor cores. Detailed information can be found in References 10, 11, and 12.

3.1 SAN ONOFRE NUCLEAR GENERATING STATION UNIT 1 (SONGS 1)

SONGS 1 is a commercial nuclear power plant. The unit began commercial operation in 1968 and has completed 10 cycles of operation: The plant is a Westinghouse three-loop PWR. The reactor core produces 1347 megawatts-thermal at 100% rated power.

The reactor core consists of 157 fuel assemblies arranged as shown in Figure 3.1. Both conventional and low leakage fuel management patterns have been used. Each fuel assembly consists of a 14×14 array of 180 fuel rods and 16 control rod guide thimbles. The fuel assembly cross-section is shown in Figure 3.2. Core, fuel assembly, and control rod data are summarized in Table 3.1.

The fuel rods consist of slightly enriched (3.15 to 4.0 weight percent U-235) uranium dioxide $\left(\mathrm{UO}_{2}\right)$ pellets with stainless steel cladding. The control rod guide thimbles are also stainless steel. Seven Inconel-718 grids are located along the length of the assembly.

The in-core instrumentation system for power distribution measurement consists of two moveable fission chambers. These instruments can be inserted into 30 core locations. The detector's neutron flux signal is processed off-line with the Westinghouse INCORE3 program (Reference 13). The 30 instrumented
core locations are shown in Figure 3.3.
There are 45 full-length control rods, called rod cluster control assemblies (RCCA's). Each RCCA consists of 16 individual absorber rods fastened to a common hub. The RCCA's are not zoned. The single absorber material is Silver-Indium-Cadmium in stainless steel tubes. The RCCA's are moved in four symmetrically located banks. Banks \#2 and \#1 are called the Control Banks, and they are moved to control the reactor over the power range. The remaining RCCA's are called Shutdown Banks \#1 and \#2. Figure 3.1 shows the RCCA's locations.

The SONGS 1 reactor has two unique features which were modeled with CASMO-3/SIMULATE-3. The first unique feature modeled was the stainless steel fuel rod cladding. Most PWR cores use zircaloy cladding. The second unique feature was the use of mixed oxide $\left(\mathrm{PuO}_{2}-\mathrm{UO}_{2}\right)$ assemblies. In Cycles 2 and 3, four Edison Electric Institute (EEI) mixed oxide ($\mathrm{PuO}_{2}-\mathrm{UO}_{2}$) demonstration assemblies were irradiated.

3.2 SAN ONOFRE NUCLEAR GENERATING STATION UNITS $2 \& 3$ (SONGS 2\&3)

SONGS $2 \& 3$ are commercial nuclear power plants. SONGS 2 began commercial operation in 1983. SONGS 3 began commercial operation
in 1984. Both units are in their fifth cycle of operation. SONGS 2\&3 are Combustion Engineering two-loop PWRs. Each unit produces 3390 megawatts-thermal at 100% rated power.

Each reactor core consists of 217 fuel assemblies arranged as shown in Figure 3.4. Both conventional and low leakage fuel management patterns have been used. Each fuel assembly consists of a 16×16 array of 236 fuel/burnable absorber rods and 5 control rod guide tubes. A typical fuel assembly cross-section is shown in Figure 3.5. Core, fuel assembly, control rod, and burnable absorber data are summarized in Table 3.2.

The fuel rods consist of slightly enriched (1.87 to 4.05 weight percent U-235) UO_{2} pellets clad in Zircaloy-4. The control rod guide tubes are also Zircaloy-4. Ten Zircaloy-4 grids and one Inconel-718 grid are located along the length of the assembly.

The in-core instrumentation system for power distribution measurement consists of 56 strings of fixed Rhodium detectors. Each detector string consists of five individual, 40 cm long, Rhodium detectors placed at about $10,30,50,70$, and 90 percent of active core height. The detector signals are processed offline with the Combustion Engineering CECOR program (Reference 14) to determine the power distribution in the core. The 56 instrumented core locations are shown in Figure 3.6.

There are 83 full-length and eight part-length (PL) control rods,
called control element assemblies (CEA's). Seventy-nine fulllength CEA's have five identical individual absorber rods consisting of 1-1/8" Inconel nose cap, 12-1/2" Ag/In/Cd, and 136" of $B_{4} C$ pellets. Four full-length CEA's located on the periphery of the core have four identical individual absorber rods consisting of 8-5/8" Inconel nose cap, $5^{\prime \prime} \mathrm{Ag} / \mathrm{In} / \mathrm{Cd}$, and 135-1/2" of $B_{4} C$ pellets. . The eight PLCEA's each have five identical absorber rods consisting of $75^{\prime \prime}$ of Inconel; 58" of water filled Inconel tube, and $16^{\prime \prime}$ of $\mathrm{B}_{4} \mathrm{C}$ pellets. The cladding material is Inconel-625. The CEA's are moved in nine symmetrical groups: Regulating Groups 1 through 6, PLCEA, and Shutdown Groups A and B. Figure 3.4 shows the CEA locations.

Burnable absorber rods, consisting of $\mathrm{B}_{4} \mathrm{C}-\mathrm{Al}_{2} \mathrm{O}_{3}$ pellets in Zircaloy-4 cladding, were used in all cycles for both units. The burnable absorber rods have the same outer dimension as fuel rods and replace fuel rods when used.

The SONGS $2 \& 3$ reactors have several unique features. The outermost row of four assemblies does not line up with the next interior row of assemblies. The four-finger CEA inserted in the middle pair of these "off-set" assemblies has two fingers in one assembly and two fingers in the adjacent assembly. The burnable absorber rods in SONGS $2 \& 3$ do not extend the full length of the active fuel region and result in axially zoned fuel assemblies. Both units have been transitioned to 24 -month fuel cycles with Cycle 5 being the second such cycle for each unit. Finally, the five control rod guide tubes per fuel assembly are large compared to Westinghouse and Babcock \& Wilcox designs and displace four fuel rods each.

3.3 ARKANSAS NUCLEAR ONE - UNIT 2 (ANO-2)

ANO-2 is a commercial nuclear power plant operated by the Arkansas Power And Light Company. ANO-2 began commercial operation in 1980, and only data from the first cycle of operation are used in this report. The plant is a Combustion Engineering two-loop PWR. The reactor core produces 2815 megawatts - thermal at 100% rated power.

The reactor core consists of 177 fuel assemblies arranged as shown in Figure 3.7. Each fuel assembly consists of a 16 x 16 array of 236 fuel/burnable poison rods and five control rod guide tubes. A typical fuel assembly cross-section is shown in Figure 3.8. Core, fuel assembly, control rod, and burnable absorber data are summarized in Table 3.3.

The fuel rods consist of slightly enriched (1.93 to 2.94 weight percent U-235 in Cycle 1) UO_{2} pellets with Zircaloy-4 cladding. The control rod guide tubes are also Zircaloy-4. Eleven Zircaloy-4 grids and one Inconel-625 grid are located along the
length of the assembly.
The in-core instrumentation system for power distribution measurement consists of 44 strings of fixed Rhodium detectors. Each detector string consists of five individual, 40 cm long, Rhodium detectors placed at about $10,30,50,70$, and 90 percent of active core height. The detector signals are processed offline with the CECOR program (Reference 14). The 44 instrumented core locations are shown in Figure 3.9.

There are 73 full-length and eight part-length (PL) control rods, called control element assemblies (CEA's). The full-length CEA's have dissimilar absorber rods. The four corner rods consist of an Inconel nose cap, 12-1/2" of $\mathrm{Ag} / \mathrm{In} / \mathrm{Cd}$, and 135-1/2" of $\mathrm{B}_{4} \mathrm{C}$ pellets. The center absorber rod uses solid Inconel plugs instead of Ag/In/Cd. The eight PLCEA's each have five identical absorber rods consisting of $75^{\prime \prime}$ of Inconel, $58^{\prime \prime}$ of water filled Inconel tube, and $16^{\prime \prime}$ of $\mathrm{B}_{4} \mathrm{C}$ pellets. The cladding material is Inconel-625. The CEAs are moved in nine symmetrical groups: Regulating Groups 1 through 6, PLCEA, and Shutdown Groups A and B. Figure 3.7 shows the CEA locations.

Burnable absorber rods, consisting of $\mathrm{B}_{4} \mathrm{C}-\mathrm{Al}_{2} \mathrm{O}_{3}$ pellets in Zircaloy-4 cladding, are used. The burnable absorber rods have the same outer dimension as fuel rods and replace fuel rods when used.

Cycle 1 of ANO-2 has some unique features. The burnable absorber rods within some fuel assembly types are asymmetrically distributed (See Figure 3.9). Also the burnable absorber rods do not extend the full length of the active fuel region and result in axially zoned fuel assemblies. Finally, the five control rod guide tubes per fuel assembly are large compared to Westinghouse and Babcock \& Wilcox designs and displace four fuel rods each.

Table 3.1

MECHANICAL DESIGN PARAMETERS

SONGS 1'

Core description

Power Level
Number of Assemblies
Number of Control Rods
Fuel Assembly Pitch
Core area
Core Equivalent Diameter

Fuel Assembly Description

Fuel Rod Array
Fuel Rod Pitch
Outside Dimension
Number of Guide Tubes
Guide Tube I.D.
Guide Tube O.D.
Guide Tube Material
Fuel Rod Description
Material
Pellet \% t.d. of $10.96 \mathrm{~g} / \mathrm{cm}^{3}$
Pellet Diameter
Clad Material
Clad I.D.
Clad O.D.
Clad Thickness
Active Fuel Length
Full Length Control Rod
Number
Clad Material
Clad Thickness
Clad O.D.
Absorber
Material
Diameter
Length

1347 Megawatts-Thermal
157
45
7.803 inches
67.1 Square Feet
110.9 inches
14×14
0.556 inches
7.76 inches

16
0.535 inches
0.511 inches

Stainless Steel
UO_{2}
95 nominal
0.3835 inches

Stainless Steel
0.389 inches
0.422 inches
0.0165 inches

120 inches

45 (16-Finger)
Stainless Steel
0.0185 inches
0.4315 inches

Ag-In-Cd
0.3905 inches

133 inches

EEI* Mixed Oxide Assemblies

Number of Assemblies
Fuel Rod Array
Outside Dimension
Rod pitch
Number of Guide Tubes
Guide Tube Material

EEI Mixed oxide Fuel Rods

Clad Material
Outside Diameter
Diametral Gap
Clad Thickness
Fuel Length
EEI Mixed Oxide Fuel Pellets
Diameter
Length
Material
Density, \% T. D.
Enrichment (w/o fissile Pu)
Pu Isotopics
a/o Pu-239
a/o Pu-240
0.3659 inches
0.600 inches
$\mathrm{PuO}_{2}-\mathrm{UO}_{2}$
91
$2.84 / 3.10 / 3.31$
80.6
a/o Pu-241
13.4
a/o Pu-242
5.2
0.8
*EEI: Edison Electric Institute.

MECHANICAL DESIGN PARAMETERS

SONGS 2\&3

Core description

Power Level
Number of Assemblies Number of Control Rods Fuel Assembly Pitch Core area
Core Equivalent Diameter
Fuel Assembly Description

Fuel Rod Array
Fuel Rod Pitch
Outside Dimension
Number of Guide Tubes
Guide Tube I.D.
Guide Tube O.D.
Guide Tube Material

Fuel Rod Description

Material
Stack Height Density
Pellet Diameter
Clad Material
Clad I.D.
Clad O.D.
Clad Thickness
Active Fuel Length
Full-Length Control Rod
Number
5-Finger
4-Finger
Clad Material
Clad Thickness
Clad O.D.
Poison
Material
Length
5-Finger
4-Finger

83
3390 Megawatts-Thermal
217
91
8.180 inches
101.1 Square Feet

136 inches
16×16
0.506 inches
7.972 inches

5
0.90 inches
0.98 inches

Zircaloy-4
UO_{2}
$10.061 \mathrm{~g} / \mathrm{cm}^{3}$
0.325 inches

Zircaloy-4
0.332 inches
0.382 inches
0.025 inches

150 inches

79
4
Inconel-625
0.035 inches
0.816 inches
$\mathrm{B}_{4} \mathrm{C} / \mathrm{Ag}-\mathrm{In}-\mathrm{Cd} /$ Inconel
136" 12.5" 0.6"
135.5" 5.0" 8.6"
$B_{4} C$ pellet
Diameter
$\%$ T. D. of $2.52 \mathrm{~g} / \mathrm{cm}^{3}$
Weight \% Boron, Min
Part Length Control Rod
Number
Clad Material
Clad Thickness
Clad O.D.
Poison
Material
Length
$B_{4} C$ pellet
Diameter
$\%$ T. D. of $2.52 \mathrm{~g} / \mathrm{cm}^{3}$.
Weight \% Boron, Min

Burnable Poison Rod
Absorber Material
Pellet Diameter
Pellet Length
Pellet Density, Min \% T. D.
Theoretical Density, $\mathrm{Al}_{2} \mathrm{O}_{3}$
Theoretical Density, $\mathrm{B}_{4} \mathrm{C}$
Clad Material
Clad I.D.
Clad O.D.
Clad Thickness
Diametral Gap (Cold)
Active Length
0.737 inches

73
77.5

8 (5-Fingers)
Inconel-625
0.035 inches
0.816 inches

Inconel / WATER / $\mathrm{B}_{4} \mathrm{C}$
75 " 58 " 16"
0.737 inches

73
77.5
$\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{B}_{4} \mathrm{C}$
0.307 inches
1.0 inches

93
$3.94 \mathrm{~g} / \mathrm{cm}^{3}$
$2.52 \mathrm{~g} / \mathrm{cm}^{3}$
Zircaloy-4
0.332 inches
0.382 inches
0.025 inches
0.025 inches
136.0 inches

Table 3.3

MECHANICAL DESIGN PARAMETERS

ANO-2

Core description

Power Level
Number of Assemblies
Number of Control Rods
Fuel Assembly Pitch
Core area
Core Equivalent Diameter
Fuel Assembly Description
Fuel Rod Array
Fuel Rod Pitch
Outside Dimension
Number of Guide Tubes
Guide Tube I.D.
Guide Tube O.D.
Guide Tube Material
Fuel Rod Description
Material
Stack Height Density
Pellet Diameter
Clad Material
Clad I.D.
Clad O.D.
Clad Thickness
Active Fuel Length

Full Length Control Rod

Number
Clad Material
Clad Thickness
Clad O.D.
Center Finger
Poison Material
Length
Outside Fingers
Poison Material Length

2815 Megawatts - Thermal 177
81
8.177 inches
82.25 Square Feet

123 inches
16×16
0.506 inches
7.977 inches

5
0.90 inches
0.98 inches

Zircaloy-4
UO_{2}
$10.061 \mathrm{~g} / \mathrm{cm}^{3}$
0.325 inches

Zircaloy-4
0.332 inches
0.382 inches
0.025 inches

150 inches

73 (5-Finger)
Inconel-625
0.035 inches
0.816 inches
$\mathrm{B}_{4} \mathrm{C}$ / Inconel
135.5" 12.5"
$\mathrm{B}_{4} \mathrm{C}$ / Ag-In-Cd
135.5"
12.5"

Full Length control Rod (continued)
$\mathrm{B}_{4} \mathrm{C}$ pellet
Diameter
$\%$ T. D. of $2.52 \mathrm{~g} / \mathrm{cm}^{3}$
Weight \% Boron, Min
0.737 inches

73
77.5

Part Lenath Control Rod

Number	8 (5-Fingers
Clad Material	Inconel-625
Clad Thickness	0.035 inches
Clad O.D.	0.816 inches
Poison	
Material	Inconel / Water / $\mathrm{B}_{4} \mathrm{C}$
Length	75 " 58' 16"
$\mathrm{B}_{4} \mathrm{C}$ pellet	
Diameter	0.737 inches
\% T. D. of $2.52 \mathrm{~g} / \mathrm{cm}^{3}$	
Weight \% Boron, Min	77.5

Burnable Poison Rod

Absorber Material
Pellet Diameter
Pellet Length
Pellet Density, Min \% T. D.
Theoretical Density, $\mathrm{Al}_{2} \mathrm{O}_{3}$
Theoretical Density, $\mathrm{B}_{4} \mathrm{C}$
Clad Material
Clad I.D.
Clad O.D.
Clad Thickness
Diametral Gap (Cold) Active Length
$\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{B}_{4} \mathrm{C}$
0.310 inches
0.50 inches min

85 min
$3.90 \mathrm{~g} / \mathrm{cm}^{3}$
$2.52 \mathrm{~g} / \mathrm{cm}^{3}$
Zircaloy-4
0.332 inches
0.382 inches
0.025 inches
0.022 inches
136.0 inches

Figure 3.1

REACTOR CORE CONTROL ROD PATTERN SONGS 1

SONGS 1

x GUIDE TUBE LOCATION

Figure 3.3

REACTOR CORE INSTRUMENTATION LOCATIONS

 SONGS 1

1-30 indicate incore instrumentation location

Figure 3.4

REACTOR CORE CONTROL ROD PATTERN

SONGS 2\&3

TYPICAL FUEL ASSEMBLY

SONGS 2\&3

Figure 3.6
REACTOR CORE INSTRUMENTATION LOCATIONS SOM

1-56 indicates incore instrumentation location

Figure 3.7
REACTOR CORE CONTROL ROD PATTERN - ANO-2

* indicates the location of the worst stuck rod, A-52.

BANK	NUMBER OF RODS
1	8
2	8
3	8
4	4
5	4
6	5
P	8
A	16
B	20
- --1	81
TOTAL	28

Figure 3.8

TYPICAL FUEL ASSEMBLY

ANO-2

Pitch $=0.5063^{\prime \prime}$

- FUEL ROD LOCATION
$x \times$
$x x$ GUIDE TUBE LOCATION
- TYPICAL ASYMMETRIC BURNABLE ABSORBER LOCATION

REACTOR CORE INSTRUMENTATION LOCATIONS

$$
\text { ANO- } 2
$$

1-44 indicate incore instrumentation locations

SECTION 4

BENCHMARK COMPARISONS

4.0 INTRODUCTION

This section compares the calculated parameters and the measured plant data. The measured data are from zero power startup testing and normal operations at San Onofre Nuclear Generating Station (SONGS) Units 1, 2, 3, and Arkansas Nuclear One - Unit 2 (ANO-2). Six cycles at SONGS 1, five cycles from SONGS 2, four cycles from SONGS 3, and one cycle from ANO-2 were analyzed for a total of sixteen cycles including initial and reload cores. For each parameter compared, the sample mean and standard deviation of the observed differences were calculated. Based on the mean, standard deviation, and the sample size, a conservative 95/95 tolerance limit (bias \pm reliability factor) was calculated.

Section 4.1 provides the Critical Boron Concentration (CBC) comparisons for Zero Power and Full Power conditions. Differences between calculated and measured data are represented in absolute terms, (Calculated - Measured). The SIMULATE-3 reactivity (1 - 1/Keff) is also calculated for each case:

Section 4.2 presents the Isothermal Temperature Coefficient (ITC) comparison. As in the CBC comparisons, the differences are in absolute terms.

Section 4.3 describes the Power Coefficient (PC) comparison with the differences represented in absolute terms.

Section 4.4 presents the control rod worth comparison. The difference between calculated and measured data is given in relative terms:

$$
\text { Difference }=(\text { Calculated }- \text { Measured }) / \text { Calculated } * 100 \% .
$$

Section 4.5 verifies the ability of SIMULATE-3 to predict the net ($\mathrm{N}-1$) rod worth.

Section 4.6 presents the Inverse Boron Worth (IBW) comparison. The differences are calculated in relative terms.

Section 4.7 compares the SIMULATE-3 assembly (radial and axial) power distributions, axial offset, and incore detector signals with plant measurements. The axial offset differences are quantified in absolute terms, and the assembly peaking factor differences are quantified in relative terms.

4.1 CRITICAL BORON CONCENTRATION

SIMULATE-3 Critical Boron Concentration (CBC) and reactivity predictions were compared to zero-power startup test measurements as well as to full-power operating data. The most reliable measurements are the zero-power startup tests. These measurements are made under well controlled conditions without significant thermal and xenon feedbacks.

The zero-power comparison statistics quantify SIMULATE-3's accuracy in predicting CBC and reactivity for Beginning-of-Cycle (BOC), zero-power conditions without xenon in the core. The full-power operating boron concentration data are from titration of reactor coolant system samples. The measurements are adjusted for control rod insertions and deviations from full power, equilibrium conditions. These full-power comparisons serve as conservative estimates of the SIMULATE-3 uncertainties for atpower equilibrium conditions with thermal feedback.

Sections 4.1.1 and 4.1.2 present the comparisons for zero-power and full-power CBC and reactivity, respectively.

Table 4.1 lists the measured and SIMULATE-3 predicted values for BOC, zero-power, xenon free Critical Boron Concentrations (CBC), and SIMULATE-3 calculated reactivities at the measurement conditions for SONGS 1, 2, and 3. Thirty-two measurements from 15 cycles of startup tests are included. Of these measurements, seventeen are unrodded and fifteen are with control rods inserted in the core. Five of the measurements were taken with the reactor critical at low temperatures during initial cycle startups.

The low temperature measurements were taken at $150^{\circ} \mathrm{F}$ and $320^{\circ} \mathrm{F}$ for SONGS 1 and 2, respectively. The low temperature cases were included to show temperature dependencies, if any, in the SIMULATE-3 CBC prediction. Comparing the differences between the low temperature and Hot-Zero-Power ($>535^{\circ} \mathrm{F}$) cases, it is concluded that the SIMULATE-3 CBC predictions are independent of the moderator's temperature.

A three-step statistical analysis was performed on the measured and SIMULATE-3 calculated CBC differences and on the SIMULATE-3 calculated reactivities for the CBCs as measured. First, the sample mean (\bar{x}), standard deviation (S), and Root-Mean-Squares (RMS) were calculated for CBC and reactivity differences, respectively. The differences are due to SIMULATE-3 calculational uncertainties, variations in B-10 isotopic concentrations, and measurement (titration) uncertainties. For example boron concentration measurement errors can be as high as 5 ppm . For conservatism, all differences are assumed due only to SIMULATE-3 calculational uncertainties.

Second, the two sample distributions were tested for normality using ANSI standard N15.15-1974 (Reference 15). The normality test is needed because the $95 / 95$ tolerance limit assumes that the population has a normal distribution. The test concludes that both distributions, CBC and reactivity differences, are normal. Finally, the bias, $95 / 95$ reliability factor and tolerance limit are calculated. Table 4.2 lists the results for each distribution using the method as described in Reference 16. The 95/95 tolerance limits for zero-power CBC and reactivity, for all temperatures and rodded conditions, are $-7 \pm 26 \mathrm{PPM}$ and -0.08 ± 0.26 $\% \Delta k / k$, respectively.

Table 4.1
Zero Power Critical Boron Comparison
SONGS 1,2 , and 3
(Beginning of Cycle)

CRITICAL PPM S - M REACTIVITY UNIT CYCLE CASE MEAS. SIM-3 \qquad ($\% \Delta K / K)$

1	1	$150^{\circ}{ }^{\circ}$ F, ARO	2250	2268	18	0.157
1	1	150° F, BANK 2 IN	2050	2052	2	0.024
1	1	$150^{\circ}{ }^{\circ}$ F, BANK1 IN	1898	1892	-6	-0.047
1	1	HZP, ARO	2524	2522	-2	-0.009
1	1	HZP, BANK 2 IN	2197	2187	-10	-0.067
1	1	HZP, BANK 1 IN	1944	1929	-15	-0.108
1	2	HZP, ARO	1609	1595	-14	-0.093
1	3	HZP, ARO	1876	1887	11	0.068
1	4	HZP, ARO	1956	1952	-4	-0.025
1	5	HZP, ARO	1822	1833	11	0.072
1	6	HZP, ARO	1774	1773	-1	-0.004
2	1	$320^{\circ}{ }^{\circ}$ F, ARO	869	857	-12	-0.171
2	1	320° F, BANKS 6-4 IN	797	783	-14	-0.208
2	1	HZP, ARO	833	824	-9	-0.115
2	1	HZP, BANKS 6-3 IN	629	614	-15	-0.188
2	1	HZP, BANKS 6-1 IN	499	472	-27	-0.342
2	2	HZP, ARO	1198	1174	-24	-0.249
2	2	HZP, BANKS 6-1 IN	883	849	-34	-0.360
2	3	HZP, ARO	1580	1561	-19	-0.171
2	3	HZP, BANK B IN	1382	1370	-12	-0.104
2	4	HZP, ARO	1803	1802	-1	-0.011
2	4	HZP, BANK B IN	1563	1547	-16	-0.127
2	5	HZP, ARO	1620	1640	20	0.164
2	5	HZP, BANKS 6-1 IN	1208	1208	0	0.003

UNIT	CYCLE	CASE		CRITICAL PPM		$\begin{gathered} S-M \\ (\mathrm{PPM}) \end{gathered}$	REACTIVITY$(\% \Delta K / K)$
				MEAS.	SIM-3		
3	1	HZP,	ARO	823	824	1	-0.001
3	1	HZP,	BANKS 6-1 IN	483	472	-11	-0.149
3	2	HZP,	ARO	1174	1161	-13	-0.139
3	2	HZP,	BANK B IN	968	953	-15	-0.165
3	3	HZP,	ARO	1550	1550	0	0.001
3	3	HZP,	BANK B IN	1369	1361	-6	-0.067
3	4	HZP,	ARO	1822	1831	9	0.071
3	4	HZP,	BANKS 6-1 IN	1403	1392	-11	-0.090
						$\overline{\mathrm{x}}$-7	-0.08
						s 12	0.12
						n 32	32

(BOC, No Xenon)

	$\triangle \mathrm{PPM}$	\% $\Delta \mathrm{k} / \mathrm{k}$
Mean ($\overline{\mathrm{x}}$)	-7	-0.08
Standard Deviation (S)	12	0.12
RMS	14	0.14
Normality Test		
Test Value (W)	0.972	0.976
Critical Value*	0.930	0.930
Result	Normal	Normal
Sample Size	32	32
Degree Of Freedom	31	31
$\mathrm{k}_{95 / 95}$	2.197	2.197
$\mathrm{k}_{95 / 95}$ * S	26	0.26
Bias	-7	-0.08
95/95 Tolerance Limit	-7 ± 26	-0.08 ± 0.26

Tables 4.3 to 4.10 compare the measured HFP CBCs from core follow calculations for SONGS 2 and 3 Cycles $1-4$ to the SIMULATE-3 results. Two low-power CBC measurements, one each from cycle 1 of SONGS 3 and Cycle 2 of SONGS 2 are also included to demonstrate that there is no significant increase in the differences at power levels less than 100\%. There are a total of 112 measurements from eight operating cycles. The reactivity data are plotted against the cycle burnup (GWD/T) in Figure 4.1.

The SIMULATE-3 at-power CBC and reactivity $95 / 95$ tolerance limits were determined using the statistical methods outlined in section 4.1.1. As summarized in Table 4.11, the 95/95 tolerance limits for all at-power and rodded or unrodded conditions for CBC and reactivity are $2 \pm 34 \mathrm{ppm}$ and $0.01 \pm 0.35 \% \Delta \mathrm{k} / \mathrm{k}$, respectively.

Table 4.3
SONGS 2 Cycle 1 HFP Critical Boron Comparison

CYCLE	BURNUP	CRITICAL PPM		S - M	CRITICAL	REACTIVITY
GWD/T	EFPD	MEAS.	SIM-3	(PPM)	K-EFF	(\% $\mathrm{O} / \mathrm{K} / \mathrm{K}$)
1.934	51.2	476	461	-15	0.99826	-0.174
3.023	80.0	465	441	-24	0.99727	-0.274
4.039	106.9	457	421	-36	0.99600	-0.402
4.978	131.8	432	399	-33	0.99633	-0.368
5.977	158.2	402	380	-22	0.99755	-0.246
7.003	185.4	374	348	-26	0.99712	-0.289
7.987	211.4	342	311	-31	0.99646	-0.355
8.970	237.4	301	274	-27	0.99688	-0.313
9.994	264.5	252	229	-23	0.99733	-0.268
10.944	289.7	204	183	-21	0.99755	-0.246
12.030	318.4	138	125	-13	0.99841	-0.159
12.977	343.5	80	70	-10	0.99876	-0.124

Table 4.4
SONGS 3 Cycle 1 HFP Critical Boron Comparison

CYCLE	BURNUP	CRITICAL PPM		$\begin{aligned} & S-M \\ & (P P M) \end{aligned}$	CRITICAL REACTIVITYK-EFF $(\% \Delta \mathrm{~K} / \mathrm{K})$	
GWD/T	EFPD	MEAS.	SIM-3			
1.323	35.0	472	457	-15	0.99826	-0.174
2.356	62.4	471	455	-16	0.99820	-0.180
3.345	88.5	455	436	-19	0.99786	-0.214
4.955	131.2	430	410	-20	0.99772	-0.229
6.160	163.1	391	369	-22	0.99756	-0.245
6.935	183.6	377	347	-30	0.99663	-0.338
8.075	213.7	332	314	-18	0.99794	-0.206
9.370	248.0	279	258	-21	0.99757	-0.244
11.590	306.8	163	150	-13	0.99845	-0.155
12.357	327.1	121	107	-14	0.99830	-0.170
13.972	369.8	115	94	-21	0.99736	-0.265
	5\% POWE					

Table 4.5
SONGS 2 Cycle 2 HFP Critical Boron Comparison

CYCLE	BURNUP	CRITICAL PPM		$\begin{aligned} & S-M \\ & (P P M) \end{aligned}$	CRITICAL REACTIVITYK-EFF $(\% \Delta K / K)$	
GWD/T	EFPD	MEAS.	SIM-3			
0.800	21.2	741	750	9	1.00091	0.091
1.758	46.5	684	675	-9	0.99909	-0.091
2.258	59.8	654	636	-18	0.99812	-0.188
3.907	103.4	532	501	-31	0.99678	-0.323
5.941	157.3	339	332	-7	0.99927	-0.073
7.054	186.7	260	243	-17	0.99819	-0.181
7.726	204.5	182	187	5	1.00041	0.041
9.241	244.6	56	65	9	1.00107	0.107
9.612	254.4	72	77	5	1.00054	0.054
	(80\% POWER)					

Table 4.6
 SONGS 3 Cycle 2 HFP Critical Boron Comparison

CYCLE	BURNUP
GWD/T	EFPD
0.613	16.2
1.133	30.0
2.019	53.4
2.771	73.3
3.929	104.0
4.982	131.9
5.783	153.1
7.041	186.4
7.996	211.7

CRITICAL			PPM
MEAS.	SIM-3		
722	750		
690	708		
623	636		
560	575		
471	479		
376	392		
320	326		
203	221		
122	148		

Table 4.7

SONGS 2 Cycle 3 HFP Critical Boron Comparison

CYCLE	BURNUP
GWD/T	EFPD
1.006	27.1
1.987	53.6
2.965	79.9
3.907	105.3
5.182	139.7
6.015	162.1
6.957	187.5
8.100	218.3
8.965	241.6
10.026	270.2
10.913	294.1
12.078	325.5
13.042	351.5
13.944	375.8

CRITICAL PPM | MEAS. | SIM-3 |
| :---: | :---: |
| 1045 | 1060 | $977 \quad 981$ $907 \quad 905$ $834 \quad 831$ $733 \quad 731$ 678667 593596 $512 \quad 509$ $441 \quad 445$ $360 \quad 365$ 286299 $205 \quad 214$

$135 \quad 143$ $61 \quad 77$

S - M CRITICAL REACTIVITY
(PPM)
15 $\mathrm{K}-\mathrm{EFF}(\% \Delta \mathrm{~K} / \mathrm{K})$ 0.127
$4 \quad 1.00035 \quad 0.035$
$-2 \quad 0.99986 \quad-0.014$
$-3 \quad 0.99975 \quad-0.025$
$-2 \quad 0.99987 \quad-0.013$
$\begin{array}{lll}-11 & 0.99900 & -0.100\end{array}$
$3 \quad 1.00024 \quad 0.024$
$-3 \quad 0.99973 \quad-0.027$
$4 \quad 1.00031 \quad 0.031$
$5 \quad 1.00045 \quad 0.045$
$13 \quad 1.00127 \quad 0.127$
$9 \quad 1.00084 \quad 0.084$
$8 \quad 1.00081 \quad 0.081$
$16 \quad 1.00164 \quad 0.164$

Table 4.8
 SONGS 3 Cycle 3 HFP Critical Boron Comparison

CYCLE	BURNUP
GWD/T	EFPD
0.664	17.9
0.961	25.9
1.997	53.8
3.008	81.1
3.860	104.0
5.064	136.5
6.021	162.3
6.981	188.1
8.100	218.3
8.988	242.2
9.944	268.0
10.908	294.0
12.067	325.2
12.950	349.0
13.986	376.9

CRITICAL PPM		$S-M$	CRITICAL	REACTIVI
MEAS.	SIM-3	(PPM)	K-EFF	(\% $\mathrm{O} \mathrm{K} / \mathrm{K}$)
1048	1070	22	1.00190	0.190
1026	1044	18	1.00165	0.165
960	966	6	1.00055	0.055
903	887	-16	0.99865	-0.135
840	825	-15	0.99866	-0.134
741	728	-13	0.99884	-0.116
654	655	1	1.00001	0.001
580	581	1	1.00008	0.008
492	497	5	1.00049	0.049
427	431	4	1.00033	0.033
359	360	1	1.00005	0.005
281	281	0	1.00135	0.135
189	204	15	1.00152	0.152
121	140	19	1.00197	0.197
42	64	22	1.00228	0.227

CYCLE	BURNUP	CRITICAL PPM		$S-M$	CRITICAL	REACTIVITY
GWD/T	EFPD	MEAS.	SIM-3	(PPM)	K-EFF	(\% $\% \mathrm{~K} / \mathrm{K}$)
0.709	18.7	1253	1286	33	1.00259	0.258
1.993	52.6	1185	1219	34	1.00274	0.273
2.893	76.3	1154	1174	20	1.00156	0.156
4.080	107.6	1081	1112	31	1.00236	0.235
4.986	131.5	1041	1060	19	1.00149	0.149
5.968	157.4	992	1004	12	1.00100	0.100
6.962	183.6	943	950	7	1.00063	0.063
8.008	211.2	897	890	-7	0.99941	-0.059
8.899	234.7	827	843	16	1.00127	0.127
9.897	261.0	773	786	13	1.00081	0.081
11.091	292.5	705	714	9	1.00072	0.072
12.069	318.3	648	655	7	1.00062	0.062
12.976	342.2	598	599	1	1.00009	0.009
13.616	359.1	554	558	4	1.00035	0.035
14.837	391.3	448	479	31	1.00275	0.274
15.835	417.6	382	408	26	1.00231	0.230
16.680	439.9	324	347	23	1.00205	0.205
17.605	464.3	243	284	41	1.00379	0.378
19.054	502.5	131	172	41	1.00394	0.392
20.028	528.2	65	98	33	1.00323	0.322

CYCLE	BURNUP	CRITICAL PPM		S - M	CRITICAL	REACTIVITY
GWD/T	EFPD			(PPM)	K-EFF	(\% $\Delta \mathrm{K} / \mathrm{K}$)
0.482	12.7	1291	1334	43	1.00338	0.337
1.388	36.6	1264	1282	18	1.00143	0.143
2.101	55.4	1248	1232	-16	1.00127	0.127
3.033	80.0	1198	1199	1	1.00010	0.010
3.974	104.8	1153	1147	-6	0.99964	-0.036
4.937	130.2	1118	1096	-22	0.99825	-0.175
6.086	160.5	1032	1031	-1	0.99990	-0.010
6.977	184.0	983	980	-3	0.99977	-0.023
7.955	209.8	938	924	-14	0.99892	-0.108
9.123	240.6	851	859	8	1.00069	0.069
10.105	266.5	803	801	-2	0.99987	-0.013
11.417	301.1	720	731	11	1.00089	0.089
12.312	324.7	666	670	4	1.00029	0.029
13.286	350.4	610	608	-2	0.99986	-0.014
14.041	370.3	557	559	2	1.00013	0.013
15.338	404.5	468	469	1	1.00004	0.004
16.316	430.3	401	398	-3	0.99977	-0.023
17.211	453.9	329	333	4	1.00034	0.034
18.151	478.7	257	264	7	1.00065	0.065
19.168	505.5	173	187	14	1.00135	0.135
20.093	529.9	89	120	31	1.00299	0.298
20.863	550.2	24	55	31	1.00311	0.310

Figure 4.1
SIMULATE-3 Critical Reactivity at HFP vs. Burnup
A14. S2C1 a $a \Delta a \triangle 53 C 1$
$\begin{array}{ll}0.0 .52 C 2 & 0000 \\ \text { SJC2 } \\ \text { S2C3 }\end{array}$

- men S2C3 oooeo S3C3
***S2C4 SBC4 FROM SONGS 2 AND 3 CORE FOLLOW CALCULATIONS

46

Critical Boron Results

	$\triangle \mathrm{PPM}$	$\% \Delta \mathrm{k} / \mathrm{k}$
Mean ($\overline{\mathrm{x}}$)	+2	0.0121
Standard Deviation (S)	18	0.1810
RMS	18	0.1806
Normality Test		
Test Value (${ }^{\prime}$)	338.1	336.5
Critical Values*	326.8	326.8
	339.8	339.8
Result	Normal	Normal
Sample Size	112	112
Degree of Freedom	111	111
$\mathbf{k}_{95 / 95}$	1.909	1.909
$\mathrm{K}_{95 / 95}$ * S	34	0.35
Bias	2	0.01
95/95 Tolerance Limit	2 ± 34	0.01 ± 0.35

4.2 ISOTHERMAL TEMPERATURE COEFFICIENT

The Isothermal Temperature Coefficient (ITC) is the change in the reactivity due to a $1^{\circ} \mathrm{F}$ change in the core average moderator and fuel temperature. Tables 4.12 and 4.13 list the comparisons of the calculated ITC's with measurements at SONGS 1,2 , and 3 . The temperature, power level, control rod position, and soluble boron concentration are also included. The measurements span a wide range of soluble boron concentrations (145 PPM to 2524 PPM) and temperatures $\left(150^{\circ} \mathrm{F}\right.$ to $\left.583^{\circ} \mathrm{F}\right)$. There are a total of 54 measurements from 14 cycles of operation. The measured and SIMULATE-3 calculated ITC differences have been plotted in Figure 4.2.

A statistical analysis has been performed on the ITC difference, (Calculated - Measured), using the process outlined in section 4.1.1 to determine the $95 / 95$ tolerance limit for all power, moderator temperature and rodded conditions. As summarized in Table 4.14, the $95 / 95$ tolerance limit (bias \pm reliability factor) is $(0.05 \pm 0.24) * 10^{-4} \Delta \mathrm{~K} / \mathrm{K} /{ }^{\circ} \mathrm{F}$.

Zero-Power ITC comparison

UNIT	CYCLE	(DEG. F)	CONTROL ROD POSITION	BORON (PPM)	$\begin{aligned} & \text { ITC }\left(10^{-4}\right. \\ & \text { MEASURED } \end{aligned}$	$\begin{gathered} \Delta K / K /{ }^{\circ} \\ \text { SIM }-3 \\ \hline \end{gathered}$	F) $P-M$
1	1	150	ARO	2250	0.340	0.257	-0.083
	1	150	BANK 2 IN	2050	0.240	0.140	-0.100
	1	150	BANK 1 IN	1898	0.160	0.045	-0.115
	1	535	ARO	2524	0.740	0.902	0.162
	1	535	BANK 2 IN	2197	0.230	0.387	0.157
	1	535	BANK 1 IN	1944	-0.170	-0.046	0.124
	2	535	ARO	1609	-0.590	-0.482	0.108
	2	535	BANK 2 IN	1160	-1.357	-1.224	0.133
	3	535	ARO	1876	-0.350	-0.247	0.103
	3	535	BANK 1 IN	1318	-1.190	-1.081	0.109
	4	535	ARO	1956	-0.338	-0.157	0.181
	4	535	BANK 1 IN	1425	-1.204	-0.983	0.221
	6	535	ARO	1774	-0.604	-0.390	0.214
2	1	320	ARO	869	-0.143	-0.093	0.050
	1	320	BANKS 6-4 IN	797	-0.346	-0.325	0.021
	1	545	ARO	833	-0.380	-0.326	0.054
	2	545	ARO	1198	0.075	0.180	0.105
	2	545	BANKS 6-1 IN	883	-0.914	-0.851	0.063
	3	545	ARO	1580	0.050	0.183	0.133
	3	545	BANK B IN	1382	-0.588	-0.545	0.043
	4	545	ARO	1803	0.077	0.212	0.135
	4	545	BANK B IN	1563	-0.364	-0.331	0.033
	5	545	ARO	1620	-0.082	0.013	0.095
	5	545	BANKS 6-1 IN	1208	-0.860	-0.874	-0.014
3	1	545	ARO	823	-0.450	-0.343	0.107
	1	545	BANKS 6-1 IN	484	-1.512	-1.388	0.124
	2	545	ARO	1175	0.052	0.141	0.089
	2	545	BANK B IN	968	-0.570	-0.586	-0.016
	3	545	ARO	1550	0.043	0.143	0.100
	3	545	BANK B IN	1369	-0.613	-0.570	0.043
	4	545	ARO	1822	0.113	0.242	0.129
	4	545	BȦNKS 6-1 IN	1403	-0.660	-0.612	0.048

At-Power ITC comparison

UNIT	CYCLE	POWER (\%)	$\begin{gathered} \text { BURNUP } \\ \text { (GWD/T) } \end{gathered}$	$\begin{gathered} \mathrm{CBC} \\ (\mathrm{PPM}) \end{gathered}$	ITC (10 MEASURED	$\begin{gathered} \Delta K / K / \\ S I M-3 \end{gathered}$	P - M
2	1	20	0.103	660	-0.628	-0.632	-0.004
	1	50	0.539	559	-0.824	-0.841	-0.017
	1	80	1.250	512	-0.942	-0.983	-0.041
	1	100	2.050	483	-1.037	-1.156	-0.119
	1	100	9.180	287	-1.647	-1.575	0.072
	2	98	0.208	818	-0.730	-0.760	-0.030
	2	100	1.466	693	-1.250	-1.043	0.207
	2	100	6.650	268	-2.230	-2.037	0.193
	2	100	8.123	145	-2.542	-2.333	0.209
	3	100	0.380	1095	-0.781	-0.761	0.020
	3	100	1.336	1024	-0.923	-0.875	0.048
	3	100	10.202	351	-1.920	-2.152	-0.232
	3	100	12.762	156	-2.300	-2.579	-0.279
	5	100	1.464	1063	-0.983	-1.067	-0.084
3	1	50	0.288	540	-0.826	-0.915	-0.089
	1	100	1.360	471	-1.072	-1.213	-0.141
	1	98	9.067	277	-1.478	-1.562	-0.084
	2	50	0.150	893	-0.559	-0.321	0.238
	2	89	0.378	758	-1.084	-0.862	0.222
	3	100	1.447	991	-0.964	-0.932	0.032
	3	100	9.867	367	-2.220	-2.117	0.103
	4	100	1.520	1255	-0.823	-0.761	0.062

Figure 4.2
Observed ITC Differences vs. Soluble Boron Concentration

Table 4.14
Statistical Analysis of ITC Differences

Normality Test
Test value (D^{\prime}).
Critical Values*
111.9

Result
Normal
Sample Size
Degree of Freedom
$k_{95 / 95}$
$\mathrm{k}_{95 / 95}$ * S 0.24
Bias 0.05
95/95 Tolerance Limit 0.05士0.24 I
I
||

* Level of significance $(\alpha)=0.05$

4.3 POWER COEFFICIENT

The power coefficient is defined as the change in reactivity due to a change in the core power level. SIMULATE-3 power coefficient predictions were compared with measurements from early cycles of SONGS 2 and 3, summarized in Table 4.15. The differences are given in absolute terms, (Calculated - Measured).

Due to the limited size of the database, a meaningful 95/95 tolerance limit could not be derived. However, all of the differences are within $0.2 \times 10^{-4} \Delta \mathrm{k} / \mathrm{k} / \% \mathrm{P}$, and the sample mean and standard deviation are 0.03 and 0.09 , respectively. Since the differences include both the calculational and the measurement uncertainties, a conservative 95/95 tolerance limit of 0.2×10^{-4} $\Delta k / k / \% \mathrm{P}$ can be assumed based on engineering judgment.

Table 4.15
Comparison of Measured and Calculated Power Coefficients

UNIT	CYCLE	$\begin{gathered} \text { POWER } \\ \vdots \\ \hline \end{gathered}$	$\begin{gathered} \text { BURNUP } \\ \text { MWD/T } \end{gathered}$	$\begin{gathered} \text { BORON } \\ \text { PPM } \\ \hline \end{gathered}$	COEFFICIENT ($10^{-4} \Delta \mathrm{k} / \mathrm{k} / \% \mathrm{P}$)		
					MEASURED	CALCULATED	DIFF.
2	1	50	539	559	-1.104	-1.124	-0.020
2	1	80	1250	512	-0.946	-0.981	-0.035
2	1	100	2050	483	-0.947	-0.879	0.068
2	2	98	208	818	-0.990	-0.911	0.079
2	3	100	380	1095	-1.103	-0.907	0.196
3	1	50	288	540	-1.041	-1.119	-0.078
3	1	100	1360	471	-0.893	-0.893	-0.000
						Mean	0.030
					andard De	iation	0.092

4.4 CONTROL ROD WORTH

SIMULATE-3's predictions for control rod worth were compared to the zero-power startup measurements from SONGS 1, 2, and 3.

Tables 4.16 through 4.19 list the measured and the calculated control rod worths with the differences (in percent) for beginning-of-cycle, zero power, nominal and off-nominal cases. The differences are plotted in Figure 4.3. Two cases have very small measured rod worths (less than $0.03 \% \Delta \mathrm{~K} / \mathrm{K}$). These two cases (Cases 1 and 4 in Table 4.19) were excluded from the statistical analysis to avoid skewing.

A statistical analysis was performed on the control rod worth differences. The analysis determined the bias, standard deviation, and the normality of the difference distribution. The results are summarized in Table 4.20. The bias and standard deviation are 1.18% and 4.89%, respectively.

The uncertainty ($\mathrm{S}_{\mathrm{OBs}}$) has two components: the measurement uncertainty $\left(S_{M}\right)$, and the calculational uncertainty $\left(S_{C}\right)$. These two components are related to the observed uncertainty by,

$$
S_{\mathrm{OBS}}^{2}=S_{M}^{2}+S_{C}^{2}
$$

(Eq. 4.4.1)
The measurement uncertainty can be quantified by comparing the measured control rod worths from the initial startup of SONGS 2 and 3. Since these two units are duplicate plants (identical fuel management, enrichments, burnable absorber worth, etc.,) one would expect the measured control rod worths at the beginning of the first cycle to be exactly the same. Therefore, the observed difference in SONGS 2 and 3 measurements can be attributable to the measurement uncertainty. Table 4.21 presents the comparison for a total of seven rod worth measurements. The standard deviation (S_{D}) of the difference in the measured rod worths, which includes measurement uncertainties from two measurements, is four percent. Therefore, the net measurement uncertainty can be calculated:

$$
\begin{equation*}
S_{M}^{2}=1 / 2 * S_{D}^{2}=8.00 \% \tag{Eq.4.4.2}
\end{equation*}
$$

Once the measurement uncertainty is quantified, the control rod worth calculational uncertainty can be calculated:

$$
\begin{aligned}
S_{C} & =\left(S_{O B S}^{2}-S_{M}^{2}\right)^{1 / 2} \\
& =\left((4.89)^{2}-(8.00)\right)^{1 / 2} \\
& =3.99(\%)
\end{aligned}
$$

Finally, the 95/95 reliability factor for the calculational error can be calculated:

$$
\text { Reliability Factor }=\mathrm{K}_{95 / 95} * \mathrm{~S}_{\mathrm{c}}
$$

(Eq. 4.4.5)
$\mathrm{K}_{95 / 95}$ is the critical factor associated with the sample size of 54. From Reference 16, the critical value has been found to be 2.046. Substituting the appropriate values into the above formula, as shown in Table 4.22, the $95 / 95$ tolerance limit (bias \pm reliability factor) becomes $-1.2 \pm 8.2 \%$.

The tolerance limit will be applied to the SIMULATE-3 calculation of CEA worth at all power and moderator temperature conditions by,

Predicted CEA Worth $=$ (Calculated CEA Worth) *

$$
(1-\operatorname{Bias} \pm \mathrm{R} \cdot \mathrm{~F} .)
$$

(Eq. 4.4.6)

SONGS 1 Control Rod Worth Comparison

Cycle Case

1 150F BANK 2
150F BANK 1
HZP, BANK 2 HZP, BANK 1

2 BANK 2
SHUTDOWN BANK
3. BANK 2

BANK 1
4 BANK 2
BANK 1
6 BANK 2

Reactivity Worth Measured Calculated

Diff. (\%)
1.999
1.918
-4.23
1.484
1.436
-3. 34
2.504
2.375
-5.43
2.001
1.846
-8.40
2.103
3.394
2.008
-4.73
3.156
-7.54
2.465
1.378
2.369
1.373
-4.05
2.113
-6.72
2.255
1.554
2.123
1.441
-7.84
1.72

Case List

Reactivity worth
Measured calculated

Diff. (\%)

Cycle 1
A. CEA Banks Sequentially Inserted :

| 1. Bank 6 Worth | | 0.411 | 0.395 | -4.05 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2. Bank 5 Worth | 0.383 | 0.370 | -3.51 | |
| 3. Bank 4 Worth | | 0.928 | 0.892 | -4.04 |
| 4. Bank 3 Worth | | 1.029 | 0.976 | -5.43 |
| 5. Bank 2 Worth | | 0.662 | 0.638 | -3.76 |
| 6. Bank 1 Worth | | 1.203 | 1.197 | -0.50 |
| 7. Bank B Worth (Banks 6-1 \& P in) | 3.143 | 3.020 | -4.07 | |

B. Other CEA worth :
8. Bank P Worth (Other Rods Out)
0.211
0.196
-7.65
9. Bank P Worth (Banks 6-1 In)
$0.390 \quad 0.353 \quad-10.48$
10. Center CEA (2-1) Worth, Other Rods Out

Cycle 2
A. CEA Banks Sequentially Inserted :
11. Bank 6 Worth

0.315	0.320	1.56
0.275	0.279	1.43
0.542	0.562	3.56
0.950	0.986	3.65
0.450	0.453	0.66
0.819	0.852	3.87
1.395	1.424	2.04

Cycle 3
18. Bank B Worth, Other Rods Out $1.608 \quad 1.705 \quad 5.69$

Cycle 4

19. Bank B Worth, Other Rods Out $\quad 1.899 \quad 2.052 \quad 7.46$

Table 4.18
SONGS 3 Control Rod Worth Comparison

Case List

Reactivity Worth

 Measured CalculatedDiff. (\%)

Cycle 1

A. CEA Banks Sequentially Inserted :

1. Bank 6 Worth	0.392	0.397	1.26
2. Bank 5 Worth	0.385	0.370	-4.05
3. Bank 4 Worth	0.894	0.892	-0.22
4. Bank 3 Worth	1.054	0.978	-7.77
5. Bank 2 Worth	0.698	0.636	-9.75
6. Bank 1 Worth	1.213	1.198	-1.25
7. Bank P in, Other Rods Out	0.200	0.195	-2.56
8. Center CEA(2-1) Worth,	0.089	0.089	0.00
Other Rods Out			

Cycle 2
9. Bank 3 Worth, Other Rods Out 10. Bank B Worth, Other Rods Out
0.686
0.709
3.24
2.183
2.227
1.98

Cycle 3

11. Bank B Worth, Other Rods Out	1.605	1.695	5.31
12. Bank 1 Worth,	0.416	0.440	5.45
13. Bank 4 Worth,	0.683	0.726	5.92

SONGS - 3 Cycle 4

14	Bank 6 Worth	0.268	0.284	5.63
15. Bank 5 Worth	0.410	0.430	4.65	
16. Bank 4 Worth	0.680	0.706	3.68	
17. Bank 3 Worth	0.760	0.783	2.94	
18. Bank 2 Worth	0.980	0.995	1.51	
19. Bank 1 Worth	0.345	0.325	-6.15	

Table 4.19
 Control Rod Worths for Off-Nominal conditions

(SONGS 2 Cycle 1)

Case List
A. Hot Zero Power Dropped Rod Worth

| 1. Worst PLCEA $($ CEA $P-30)$ | 0.028 | 0.024 | -16.67 |
| :--- | :--- | :--- | :--- | ---: |
| 2. Worst SUBGP (CEA P-1) | 0.108 | 0.109 | 0.92 |

B. Hot Zero Power Ejected Rod Worth

3. From ZPDIL (CEA 5-45)	0.257	0.259	0.77
(Banks 3 at 47%)			
4. From FPDIL (CEA 6-20)			
(Bank 6 at 71\%)	0.014	0.014	0.00

C. Cold Zero Power - Inlet temperature 320 F System Pressure 600 psi
5. Rod Group 6 Worth
0.230
0.218
-5.51
6. Rod Group 5 Worth
0.270
0.247 -9.31
7. Rod Group 4 Worth
0.616
0.608
-1.32

Figure 4.3
Relative Control Rod Worth Differences vs. the Measured Worth

Table 4.20
Statistical Analysis of the Observed Control Rod Worth Differences

	\%Worth
Mean	-1.18
Standard Deviation (S)	4.89
RMS	4.99

Normality Test Test Value (${ }^{\prime}$) Critical Values* 113.0 Result 107.5, 113.7 Normal

Sample Size	54
Degree Of Freedom	53
$\mathrm{k}_{95 / 95}$	2.046

* Level of significance $(\alpha)=0.05$

Table 4.21

SONGS 2 and 3

Measured Control Rod Worths in Cycle 1

SONGS 2
 6 5 4
3
2
1
P

SONGS 3

Boron (PPM)	Rod Worth $(\%)$	Difference (PERCENT)
823	0.392	4.62
794	0.385	-0.52
766	0.894	3.66
701	1.054	-2.43
624	0.698	-5.44
573	1.213	-0.83
823	0.200	5.21
	MEAN (\%)	0.61
	RMS (\%)	3.75
	S.D. (\%)	3.99

Observed Mean -1.18
Observed S 4.89
Observed RMS 4.95
Normality TestTest Value (D^{\prime})Critical Values*Result
Measurement error
Observed S_{D} 3.99
Measurement S_{M} 2.83
Model S_{c} 3.99
Sample Size 54
Degree Of Freedom 53
k $\mathbf{k S / 9 5}^{\prime}$ 2.046
$k_{95 / 95} * S_{C}$

$$
8.16
$$

95/95 Tolerance Limit (Rounded)

$$
-1.2
$$

-1.2 ± 8.2
113.0

$$
107.5, \quad 113.7
$$ Normal

[^0]
4.5 NET ($\mathrm{N}-1$) ROD WORTH

The net ($\mathrm{N}-1$) rod worth is defined as the reactivity worth of the insertion of all of the control rods except the most reactive rod, which remains stuck out. Due to the intense peaking in the assembly in which the stuck control rod is located, this configuration represents the most severe challenge to any reactor physics method.

SIMULATE-3 capabilities in predicting the net rod worth and the worst stuck rod worth are verified in this section by simulating the measurement performed during the initial startup of Arkansas Nuclear One - Unit 2 (ANO-2). ANO-2 is a Combustion Engineering PWR owned by the Arkansas Power And Light Company. As has been described in Section 3, the basic parameters of this reactor are very similar to those of SONGS 2 and 3. The worst stuck rod was CEA A-52 as identified in Figure 3.7.

Table 4.23 lists the comparison of the SIMULATE-3 calculated All-Rods-In (ARI), Net ($N-1$), and the worst (most reactive) stuck rod worth with the measurement. The agreement is good, and the observed differences for these cases are all within the 95/95 tolerance limits of -9.4% and $+7.0 \%$, as established in the control rod worth comparison in Section 4.4. Therefore, it is concluded that the $95 / 95$ tolerance limit for the control rod worth (Section 4.4) is applicable to the net ($\mathrm{N}-1$) worth also.

Table 4.23

ANO-2 Net (N-1) Rod Worth Comparison

Case	Measured		Calculated	
ARI Worth	12.188	11.587	-5.19	
Net (N-1) Worth	10.666	10.177	-4.80	
Worst Stuck Rod Worth	1.522	1.410	-7.94	

4.6 INVERSE BORON WORTH

This section compares the SIMULATE-3 Inverse Boron Worths (IBW) to the SONGS 1, 2, and 3 measurements. The 95/95 tolerance limit for the IBW using the SIMULATE-3 methodology is also derived.

The IBW is calculated using:

$$
\text { IBW }=-\left(\mathrm{CBC}_{1}-\mathrm{CBC}_{2}\right) /(\text { (AReactivity }) \quad(\text { Eq. 4.6.1) }
$$

where,
$C B C_{1}$ is the critical boron concentration for state-point \#1,
$C B C_{2}$ is the critical boron concentration for state-point \#2,
Δ Reactivity is the required reactivity change ($\% \Delta k / k$) to go from state-point \#1 to \#2. Normally, this reactivity change is accomplished by control rod insertion/withdrawal.

Table 4.24 compares the calculated IBWs with measurements at BOC, zero-power conditions, for a total of 16 measurements from 14 cycles of operations. The differences are all within 10%. The mean and standard deviation are 2.5% and 5.6%, respectively.

The differences include both the calculational and measurement uncertainties. The measurement uncertainty, which includes boron titration errors and control rod worth measurement errors, could not be quantified due to the insufficient number of duplicate IBW measurements at SONGS 2 and 3. A realistic estimate of the 95/95 tolerance limit associated with the SIMULATE-3 prediction of IBW was not possible. Therefore, an alternative method was used to quantify the reliability factor (RF).

Equation 4.6.1 relates the IBW to the calculated rod worth and CBCs for the two state-points. Assuming that all three variables $\left(C B C_{1}, C B C_{2}\right.$, and rod worth) are independent estimates, the IBW error can be calculated using:

$$
(\text { R. F. })_{\text {IBW }}=\left((\text { R. F. })_{C B C 1}^{2}+(R \cdot F \cdot)_{C B C 2}^{2}+(R \cdot F \cdot)_{C E A}^{2}\right)^{1 / 2}(\text { Eq. } 4 \cdot 6 \cdot 2)
$$

Where,
(R. F.) ${ }_{c B c}$ is the critical boron concentration reliability
factor in percent
(R. F.) ${ }_{\text {ceA }}$ is the control rod worth reliability factor in
percent

Using Table 4.1, a $95 / 95$ reliability factor of 3.1% for the relative (percent) uncertainty in the calculation of the critical boron concentration was derived. In Section 4.4, the 95/95 reliability factor for the control rod worth was found to be 8.2\%. Substituting these two values into Eq. 4.6.2, a 95/95 reliability factor of 9.3% was calculated. For conservatism, this reliability factor was rounded to 10%. The conservatism of this 10% reliability factor was corroborated by the fact that all of the IBW differences listed in Table 4.24 were within 10%.

Unit Cycle Tmod ($\left.{ }^{\circ} \mathrm{F}\right) \quad$\begin{tabular}{c}
IBW (PPM/ $\% \Delta \mathrm{~K} / \mathrm{k})$

Difference
\end{tabular}

1	1	150	101	112	9.8
	1	535	129	141	8.5
	2	535	135	148	8.8
	3	535	152	156	2.6
	4	535	156	158	1.3
	5	535	162	158	-2.5
	6	535	162	158	-2.5
2	1	320	-65	-69	6.0
	1	545	-72	-79	8.6
	2	545	-94	-94	0.1
	3	545	-123	-112	-9.9
	4	545	-126	-124	-1.7
3	1	545	-73	-79	7.0
	2	545	-95	-93	-1.3
	3	545	-113	-112	-1.2
	4	545	-118	-125	5.4
				Mean	2.5
				S	5.6
				RMS	6.0

4.7 ASSEMBLY POWER DISTRIBUTION

The SIMULATE-3 assembly power distribution predictions were verified. The calculated radial and axial power distributions and the calculated rhodium incore detector signals were compared to measurements from Cycles 1 through 4 of SONGS 2 and 3.

SONGS 2 and 3 are equipped with fixed rhodium incore detector systems consisting of 56 strings of detectors. Each string has five detectors of 40 cm in length, centered at axial core heights of $10 \%, 30 \%, 50 \%, 70 \%$, and 90%, respectively. The core power distribution is measured by first taking a snapshot of the detector signals. A snapshot contains signals for all of the detectors at the specific moment. Signals in the snapshot are then corrected for sensitivity depletion and background effects. Finally, a computer program, CECOR (Reference 14), is executed to determine the core power distribution based on the sensitivity and background corrected signals and pre-calculated assembly coupling coefficients and axial boundary conditions.

Section 4.7.1 compares the SIMULATE-3 calculated radial and axial power distributions with CECOR measurements.

Section 4.7.2 details the comparison of the axial offsets for the snapshots used in the axial power distribution comparison in Section 4.7.1. The 95/95 tolerance limit is also derived.

Section 4.7.3 compares the calculated rhodium detector signals with measurements from detector snapshots. Since the detector signals are the true measured quantities, results from these comparisons are also used in the derivation of $95 / 95$ tolerance limits for assembly/nodal peaking factors.

4.7.1 RADIAL AND AXIAL POWER DISTRIBUTIONS

Figures 4.4 to 4.15 compare the SIMULATE-3 axially integrated, quarter core assembly power distributions to CECOR measurements from SONGS 2 Cycles 1 through 4 and SONGS 3 Cycle 3 with burnups close to BOC, MOC, and EOC. These measurements were taken close to Hot-Full-Power and All-Rods-Out conditions. Exact power levels and burnup values are shown in the figures. The CECOR powers shown in these figures are average values from quarter core symmetric locations.

The comparisons demonstrate that the SIMULATE-3 assembly powers agree very well with the CECOR measured powers. The RMS error listed in Table 4.25 for each case is within 0.020 (absolute difference).

Figures 4.16 to 4.27 compare the core average axial power distribution for the corresponding snapshots presented in the assembly power comparison. The 51-node SIMULATE-3 axial powers were derived from the spline-fitting of the 20 -node SIMULATE-3 solution. The SIMULATE-3 results agree well with the CECOR measurements. The RMS values of differences, (Calculated Measured), are well below 0.05 (absolute difference). For those state-points with RMS error greater than 0.02 , the two power distributions agree very well except in the top 5\% and bottom 5\% axial zones of the core. Since the CECOR powers in these regions are inferred using pre-calculated extrapolation distances, one would expect the "measured" CECOR powers to be less accurate. In fact, when these two regions are removed from the comparison, the RMS errors all drop below 0.02. Table 4.25 summarizes the RMS errors for core axial power distributions in the axial region from 5\% to 95\% core height.

The excellent agreement between SIMULATE-3 and CECOR results demonstrates the ability of the SIMULATE-3 methodology to predict the assembly power distribution accurately. Therefore, the SIMULATE-3 computer program can be used to generate representative power distributions of the reactor core for use in the statistical evaluation of overall uncertainties associated with safety system setpoints as per Reference 17.

Figure 4.4 Axially Integrated Radial Power Density - S2C1F026

Figure 4.5 Axially Integrated Radial Power Density - S2C1F038

Figure 4.6 Axially Integrated Radial Power Density - S2C2F051

Figure 4.7 Axially Integrated Radial Power Density - S2C2F055

Date $=09 / 11 / 85$
Power Level $=100.1 \%$
Burnup $=4970 . \mathrm{NWd} / \mathrm{T}$
Absolute Difference
RMS Error $=0.010$
Max Positive Error $=0.022$
Box $=6$
Max Negative Error $=-0.026$ Box $=24$

Figure 4.8 Axially Integrated Radial Power Density - S2C3F005

Figure 4.9 Axially Integrated Radial Power Density - S2C3F027

Date $=02 / 25 / 87$
Power Level $=99.1 \%$
Burnup $=8746 . \mathrm{MWd} / T$
Absolute Difference
RMS Error $=0.013$
Max Positive Error $=0.035$
Box $=44$
Mox Negative Error $=-0.023$

$$
\text { Box }=3
$$

Figure 4.10 Axially Integrated Radial Power Density - S2C3F048

Figure 4.11 Axially Integrated Radial Power Density - S2C4F007

Daie $=2 / 17 / 88$
Power Level $=99.9 \%$
Burnup $=2214 . \mathrm{MWd} / \mathrm{T}$
Absolute Difference
RMS Error $=0.019$
Max Positive Error $=0.032$
Box $=7$
Max Negative Error $=-0.054$
Box $=60$

Figure 4.12 Axially Integrated Radial Power Density - S2C4F042

$$
\text { Date }=10 / 31 / 88
$$

Power Level $=99.1 \%$
Burnup $=10983 . \mathrm{MWd} / \mathrm{T}$
Absolute Difference RMS Error $=0.010$
Max Positive Error $=0.020$

$$
\text { Box }=18
$$

Mox Negative Error $=-0.024$

$$
80 x=61
$$

CECOR
CECOR SIMULATE- 3

Figure 4.13 Axially Integrated Radial Power Density - S3C3F011

Figure 4.14 Axially Integrated Radial Power Density - S3C3F026

Figure 4.15 Axially Integrated Radial Power Density - S3C3F044

Date $=03 / 23 / 88$
Power Level $=99.8 \%$
Burnup $=12974$. MWd $/ T$
Absolute Difference
RMS Error $=0.012$
Mox Positive Error $=0.027$
Box $=44$
Max Negative Error $=-0.025$

Box $=1$

CECOR		
CECOR - SINULATE-3	0.689	0.841^{2}

		$\begin{gathered} 0.792^{14} \\ 0.018 \end{gathered}$	$\begin{aligned} & 1.129^{15} \\ & 0.009 \end{aligned}$	$\begin{aligned} & 1.139^{16} \\ & 0.009 \end{aligned}$	$\begin{aligned} & 17 \\ & 1.264 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 18 \\ & 0.956 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 1.273^{19} \\ & 0.005 \end{aligned}$	1.063^{20} 0.009^{20}
	$\begin{array}{r} { }^{21} \\ 0.674 \\ -0.022 \end{array}$	$\begin{aligned} & { }^{22} \\ & 0.994^{2} \\ & 0.006 \end{aligned}$	1.133^{23}	0.922^{24} 0.004	0.995 ${ }^{25}$	1.273^{26} 0.009	$\begin{aligned} & { }^{27} \\ & 0.966^{27} \\ & 0.012 \end{aligned}$	$\begin{aligned} & 1.309^{28} \\ & 0.007^{28} \end{aligned}$
	$\begin{aligned} & 0.877^{29} \\ & -0.019 \end{aligned}$	$\begin{aligned} & { }^{30} \\ & 0.849^{30} \\ & 0.002 \end{aligned}$	$1.261^{31} 0.002{ }^{3}$	$\begin{aligned} & 0.992^{32} \\ & 0.002 \end{aligned}$	$0.92{ }^{33}$	1.131^{34}	1.115 0.014	$\begin{aligned} & 38 \\ & 0.961 \\ & 0.019 \end{aligned}$
0.690^{45}	1.049^{37}	1.065^{38}	$\begin{aligned} & 0.955^{39} \\ & 0.003 \end{aligned}$	$\begin{aligned} & 1.269^{40} \\ & 0.007 \end{aligned}$	$\begin{aligned} & 1.130 \\ & 0.008 \end{aligned}$	0.897^{42} 0.007	1.109^{43} 0.009	1.223^{44} 0.027
-0.024	$991{ }^{46}$	934 ${ }^{47}$	71^{18}	$0.961{ }^{49}$	1.113^{50}	1.110^{51}	0.840^{32}	0.822^{53}
0.841^{54}	0.000	0.001	0.003	0.007	0.015	0.011	0.003	0.020
$\begin{array}{r}0.841 \\ -0.024 \\ \hline\end{array}$	${ }^{55}$	1.245^{56}	1.069^{57}	1.314^{58}	$0.59{ }^{59}$	1.203^{60}	$0.79{ }^{61}$	0.708
						0.007	-0.009	-0.014

Figure 4.16 Core Average Axial Power Distribution - S2C1F026

Figure 4.17 Core Average Axial Power Distribution - S2C1F038

Figure 4.18 Core Average Axial Power Distribution - S2C2F051

Figure 4.19 Core Average Axial Power Distribution - S2C2F055

Figure 4.20 Core Average Axial Power Distribution - S2C3F005

Figure 4.21 Core Average Axial Power Distribution - S2C3F027

Figure 4.22 Core Average Axial Power Distribution - S2C3F048

Figure 4.23 Core Average Axial Power Distribution - S2C4F007

Figure 4.24 Core Average Axial Power Distribution - S2C4F042

Figure 4.25 Core Average Axial Power Distribution - S3C3F011

Figure 4.26 Core Average Axial Power Distribution - S3C3F026

Figure 4.27 Core Average Axial Power Distribution - S3C3F044

SNAPSHOT ID	RADIAL RMS ERROR
S2C1F026	0.008
S2C1F038	0.008
S2C2F051	0.011
S2C2F055	0.010
S2C3F005	0.012
S2C3F027	0.013
S2C3F048	0.013
S2C4F007	0.019
S2C4F042	0.010
S3C3F011	0.011
S3C3F026	0.011
S3C3F044	0.012

AXIAL
RMS ERROR
0.0177
0.0127
0.0195
0.0157
0.0126
0.0108
0.0133
0.0154
0.0182
0.0160
0.0135
0.0151

4.7.2 AXIAL OFFSET

Table 4.26 compares the axial offset, as defined in Eq. 4.7.1, for the axial power distributions shown in Figures 4.16 through 4.27. Altogether, 12 measurements from five cycles of operation were compared.

$$
\text { Axial Offset }=\left(P_{T}-P_{B}\right) /\left(P_{T}+P_{B}\right)
$$

(Eq. 4.7.1)

$$
\begin{aligned}
& P_{T}=\text { Power in the top half of the core, and } \\
& P_{B}=\text { Power in the bottom half of the core. }
\end{aligned}
$$

As summarized in Table 4.26 , the mean and the standard deviation for the differences, (Calculated - Measured), are -0.003 and 0.005 , respectively. The maximum difference is -0.011 .

The 95/95 reliability factor for the calculation of the axial offset is determined using:

$$
\begin{aligned}
\text { Reliability Factor } & =\mathrm{K}_{95 / 95} * \text { (Standard Deviation) } \\
& =\mathrm{K}_{95 / 95} * 0.005
\end{aligned}
$$

From Reference 16 , the critical factor, $\mathrm{K}_{95 / 95}$, for the sample size of 12 is 2.736 . Using this value, the $95 / 95$ reliability factor becomes 0.014 .

The mean and the reliability factor are applied to the SIMULATE-3 calculation of the axial offset using:
$\begin{aligned} \text { Predicted Axial Offset }= & \text { (Calculated Axial Offset) * } \\ & (1-\text { Bias } \pm \text { Reliability Factor })\end{aligned}$
(Eq. 4.7.3)

Table 4.26

Axial Offset Comparison

Axial Offset			Difference
S2C1F026	-0.028	-0.025	0.003
S2C1F038	0.008	0.005	-0.003
S2C2F051	0.001	-0.010	-0.011
S2C2F055	-0.004	-0.009	-0.005
S2C3F005	-0.008	-0.013	-0.005
S2C3F027	-0.020	-0.018	0.002
S2C3F048	-0.021	-0.024	-0.003
S2C4F007	-0.001	-0.004	-0.004
S2C4F042	-0.022	-0.013	0.008
S3C3F011	-0.007	-0.014	-0.007
S3C3F026	-0.020	-0.021	-0.001
S3C3F044	-0.015	-0.021	-0.007
		$\begin{aligned} & \text { Mean } \\ & \mathrm{S} \end{aligned}$	$\begin{array}{r} -0.003 \\ 0.005 \end{array}$

This section compares the SIMULATE-3 predicted rhodium detector reaction rates with the measured rhodium detector signals for SONGS 2 and 3. Also, the 95/95 tolerance limits were derived for the following assembly peaking factors: $F_{X Y}^{S}$ - planar peak power, F_{Q}^{S} - overall peak power, and F_{R}^{S} - radial power sharing ($F_{\Delta H}^{S}$).

Seventy-two incore detector snapshots taken close to All-Rods-Out and Hot-Full-Power conditions from Cycles 1 through 4 of SONGS 2 and 3 were used. Tables 4.27 and 4.28 summarize the conditions of these snapshots.

The detector comparison was performed in the following manner:

1. Corrected each measured detector signal for self-shielding effects based on the fraction of rhodium atoms remaining.
2. Determined Overall peak power ($\mathrm{F}_{\mathrm{Q}}^{\mathrm{S}}$):

At each instrumented location the difference between the SIMULATE-3 calculated signal and the corrected detector signal was found (Calculated - Measured).
3. Determined Assembly power sharing ($F_{R}^{S}, F_{\Delta \mathrm{B}}^{\mathrm{S}}$):

At each instrumented assembly all five levels of the predicted and measured signals were summed up separately, and the difference was found.
4. Determined Planar peak power ($\mathrm{F}_{\mathrm{XY}}^{\mathrm{S}}$):

For each level, the predicted and measured signals were normalized, and the difference at each detector location was calculated.
5. Calculated the mean (\bar{x}) and the standard deviation ($S_{o b s}$) for the differences in 2,3 , and 4.
6. The detector measurement uncertainty at any axial level was reflected in the variations in the detector signals from symmetric core locations. The measurement uncertainty was estimated using:

$$
\begin{align*}
& S_{\text {meas }}^{2}(l)=\left(1 . /\left(N_{\ell}-1\right)\right) * \\
& \left(\sum_{g} \sum_{k}\left(\left(R_{m}(k, g, \ell)-\overline{R R}_{m}(g, \ell)\right) / \overline{R R}_{m}(g, \ell)\right)^{2}\right. \tag{Eq.4.7.1}
\end{align*}
$$

Where,
$\ell=$ axial detector level index from 1 to 5
$g=$ symmetric detector group index from Table 4.29
$k=$ detector location index within each symmetric group
$\mathrm{N}_{\ell}=$ total number of comparisons in level ℓ.
$R R_{m}(k, g, \ell)=$ measured individual detector signal
$\overline{\mathrm{RR}}_{\mathrm{m}}(\mathrm{g}, \ell)=$ average signal at level ℓ in group g
7. Similar to the level-by-level measurement uncertainties, the detector channel (sum of five levels) measurement uncertainty was determined using:

$$
S_{\text {meas }}^{2}=(1 . /(N-1)) *\left(\sum_{g} \sum_{k}\left(\left(R R_{m}(k, g)-\overline{R R}_{m}(g)\right) /{\overline{R R_{m}}}_{m}(g)\right)^{2}\right.
$$

(Eq. 4.7.2)
Where,

$$
\begin{aligned}
& N=\text { total number of detector channels } \\
& \mathrm{RR}_{\mathrm{m}}(k, g)=\text { measured signal in channel } k \text {, group } g \\
& \overline{\mathrm{RR}}_{\mathrm{m}}(g)=\text { average signal in group } g
\end{aligned}
$$

8. Calculated the model uncertainties for planar peak power, overall peak power, and assembly power sharing by subtracting the measurement uncertainties from the variances of the observed differences using:

$$
\begin{equation*}
S_{\text {model }}^{2}=S_{o b s}^{2}-S_{\text {meas }}^{2} \tag{Eq.4.7.3}
\end{equation*}
$$

Using the above procedure, the standard deviations for the snapshots listed in Tables 4.27 and 4.28 were calculated. Tables 4.30 and 4.31 summarize the results, including the assembly power peaking factors. Bartlett's test (Reference 18) was used to determine the poolability of standard deviations from all the snapshots for each reactor unit. Passing the poolability test
snapshots for each reactor unit. Passing the poolability test would allow for the pooling of the comparisons from all of the snapshots into one large sample to take advantage of the combined sample size and the reduced 95/95 (probability/confidence) k -value.

Table 4.3.2 summarizes the parameters used to determine whether the snapshot data could be combined into a single statistical sample. When compared with the critical values from a χ^{2} distribution, the individual snapshot results cannot be pooled. For conservatism then, the maximum standard deviations were used. Table 4.33 lists the maximum standard deviations for both reactor units.

For the purpose of calculating the relative (\%) uncertainties associated with SIMULATE-3 predictions of peak assembly/nodal powers, the standard deviations can be converted from power fraction (absolute) units to a percentage basis by dividing by the minimum peak assembly power for each reactor unit. Table 4.34 summarizes the maximum standard deviations $S_{F X Y}^{s}, S_{F Q}^{s}, ~ a n d ~ S_{F R}^{s}$ in percent.

The 95/95 tolerance limits for assembly peaking factors ($F_{X Y}^{S}, F_{Q}^{S}$, and F_{R}^{S}) were calculated by multiplying the standard deviations listed in Table 4.34 with the k-value corresponding to the size of each sample. Table 4.35 summarizes the $95 / 95$ tolerance limits for the assembly peaking factors. The 95/95 tolerance limits for $\mathrm{F}_{\mathrm{XY}}^{\mathrm{S}}, \mathrm{F}_{\mathrm{Q}}^{\mathrm{S}}$, and $\mathrm{F}_{\mathrm{R}}^{\mathrm{S}}$ are $4.80 \%, 4.17 \%$, and 3.34%, respectively for all power levels and rodded conditions.

.CYCLE	$\begin{aligned} & \text { SNAPSHOT } \\ & \quad \text { ID } \\ & \hline \end{aligned}$	DATE	TIME	$\begin{gathered} \text { BURNUP } \\ \text { GWD } / T \end{gathered}$	POWER $(\%)$	$\begin{array}{r} \text { BANK } 6 \\ \text { POSITION } \\ \hline \end{array}$
1	S2C1F011	08/30/83	10:54:24	3.017	99.8	150.0
1	S2C1F014	09/20/83	11:04:11	3.747	99.7	150.0
1	S2C1F026	03/08/84	05:02:00	7.289	99.5	150.0
1	S2C1F034	05/17/84	14:01:53	9.689	99.9	150.0
1	S2C1F037	06/08/84	15:10:43	10.523	99.4	150.0
1	S2C1F038	06/13/84	15:09:48	10.687	99.8	150.0
1	S2C1F039	08/01/84	10:14:13	11.088	100.4	142.5
2	S2C2F046	06/24/85	18:29:32	2.092	99.8	144.0
2	S2C2F051	08/08/85	14:28:57	3.701	99.9	142.5
2	S2C2F053	08/28/85	09:52:12	4.433	99.5	124.5
2	S2C2F055	09/11/85	16:41:14	4.972	100.0	150.0
2	S2C2F064	12/14/85	08:51:59	7.019	99.5	145.5
2	S2C2F067	01/02/86	14:36:28	7.690	100.2	145.5
2	S2C2F069	01/23/86	09:30:18	8.402	99.6	150.0
2	S2C2F077	03/12/86	13:02:45	10.009	70.2	142.5
3	S2C3F005	08/22/86	09:36:13	2.240	100.0	142.5
3	S2C3F012	09/10/86	10:38:35	2.898	100.0	147.0
3	S2C3F021	12/17/86	02:44:28	6.263	98.8	150.0
3	S2C3F027	02/18/87	08:43:24	8.746	99.1	150.0
3	S2C3F034	02/25/87	08:43:24	10.653	100.0	150.0
3	S2C3F035	04/22/87	08:26:46	10.911	99.7	150.0
3	S2C3F040	04/29/87	08:37:35	. 12.227	99.7	142.5
3	S2C3F041	06/03/87	10:28:45	12.445	100.0	150.0
3	S2C3F042	06/10/87	07:17:22	12.704	100.0	150.0
3	S2C3F04.7	06/17/87	07:20:24	13.684	99.9	150.0
3	S2C3F048	07/15/87	07:54:08	13.943	99.8	150.0
4	S2C4F001	07/29/87	09:37:12	0.471	99.2	150.0
4	S2C4F005	12/31/87	10:11:57	1.691	99.8	150.0
4	S2C4F007	2/3/88	10: 6: 5	2.214	99.9	150.0
4	S2C4F008	2/17/88	6:13: 7	2.480	99.6	150.0
4	S2C4F010	2/29/88	14:22:51	2.746	100.0	150.0
4	S2C4F012	3/ 2/88	10:33:16	3.273	99.4	150.0
4	S2C4F016	4/27/88	8:36:27	4.347	99.8	150.0
4	S2C4F020	5/18/88	11: 3:34	5.130	99.8	150.0
4	S2C4F024	6/15/88	8:43:42	6.191	99.5	150.0
4	S2C4F025	6/22/88	5: 0:23	6.454	99.8	150.0
4	S2C4F030	7/27/88	7:49:54	7.754	99.9	150.0
4	S2C4F032	8/10/88	8:42:55	8.273	99.3	150.0
4	S2C4F039	9/28/88	11:36:52	10.009	99.7	150.0
4	S2C4F043	10/26/88	7: 4:13	10.983	99.1	150.0

Table 4.28
SONGS 3 Snapshot Information

CYCLE	$\begin{gathered} \text { SNAPSHOT } \\ \text { ID } \\ \hline \end{gathered}$	DATE	TIME	BURNUP GWD/T	POWER (\%)	$\begin{array}{r} \text { BANK } 6 \\ \text { POSITION } \end{array}$
1	S3C1F013	05/31/84	10:01:17	4.051	99.8	145.5
1	S3C1F039	05/02/85	18:15:47	10.736	99.4	148.5
2	S3C2F019	05/07/86	12:52:37	2.779	99.5	145.5
2	S3C2F020	05/14/86	09:37:58	3.035	99.9	145.5
2	S3C2F022	05/27/86	13:54:17	3.531	99.6	148.5
2	S3C2F023	06/04/86	10:43:12	3.829	96.8	144.0
2	S3C2F027	07/09/86	10:46:46	5.122	85.1	148.5
2	S3C2F028	07/16/86	09:36:08	5.305	100.0	148.5
2	S3C2F032	08/20/86	10:34:18	6.433	99.7	150.0
2	S3C2F039	11/05/86	10:25:17	8.167	83.6	150.0
2	S3C2F040	11/12/86	09:23:21	8.411	83.2	145.5
2	S3C2F043	12/03/86	08:49:41	9.029	84.3	148.5
2	S3C2F044	12/11/86	09:17:27	9.319	83.6	148.5
2	S3C2F046	12/31/86	08:49:49	9.913	66.4	144.0
3	S3C3F007	05/06/87	09:04:16	1.963	99.8	150.0
3	S3C3F010	06/03/87	15:05:13	2.981	99.8	150.0
3	S3C3F011	06/17/87	07:25:59	3.481	100.2	148.5
3	S3C3F017	08/26/87	08:44:32	5.801	99.9	148.5
3	S3C3F021	09/23/87	07:46:15	6.911	99.5	150.0
3	S3C3F023	10/07/87	08:40:11	7.884	99.4	150.0
3	S3C3F026	11/04/87	07:36:17	8.398	99.8	150.0
3	S3C3F030	12/02/87	07:34:13	9.431	100.0	150.0
3	S3C3F032	12/23/87	08:27:08	10.373	99.7	150.0
3	S3C3F034	01/06/88	08:38:42	10.891	99.8	150.0
3	S3C3F035	01/13/88	13:35:31	11.527	95.3	148.5
3	S3C3F039	02/17/88	06:29:10	12.043	99.8	148.5
3	S3C3F041	03/02/88	09:52:15	12.455	99.6	148.5
3	S3C3F043	03/16/88	07:36:58	12.963	99.9	150.0
3	S3C3F046	04/06/88	09:09:44	13.497	99.7	150.0
4	S3C4F005	9/21/88	13: 2:43	1.035	99.7	150.0
4	S3C4F006	9/28/88	13:35: 6	1.299	99.6	150.0
4	S3C4F007	10/5/88	9:10:31	1.564	99.9	150.0

$\frac{\text { Group }}{1}$

Detector			
Number*			
1,	5,	52,	56
2,	4,	53,	55
3,	54,		
6,	12,	45,	51
7,	11,	46,	50
8,	10,	47,	49
9,	48		
13,	19,	38,	44
14,	18,	39,	43
15,	17,	40,	42
16,	41,		
20,	21,	36,	37
22,	28,	29,	35
23,	27,	30,	34
24,	26,	31,	33
25,	32		

* Detector locations are shown in Figure 3.6

SONGS 2 Incore Detector Statistics

SNAPSHOT	BURNUP GWD/T	$\begin{aligned} & \text { TOTAL } \\ & \mathrm{S} \\ & \hline \end{aligned}$	SHARING S DF		$\begin{array}{cc} \text { LEVEL } & 5 \\ S \end{array}$		$\begin{array}{cc} \text { LEVEL } \\ S \end{array}$		$\text { LEVEL - } 3$		$\begin{gathered} \text { LEVEL }-2 \\ \mathrm{~S} \end{gathered}$		$\underset{S}{\text { LEVEL }}-\frac{1}{D F}$		RADIAL PEAKING
S2C1F011	3.017	0.0195273	0.0039	50	0.0121	55	0.0069	54	$\overline{0.0042}$	55	0.0028	55	0.0157	50	1.240
S2C1F014	3.747	0.0219275	0.0036	52	0.0123	55	0.0070	54	0.0032	55	0.0039	55	0.0157	52	1.235
S2C1F026	7.289	0.0213273	0.0055	53	0.0169	54	0.0089	53	0.0086	54	0.0107	54	0.0116	54	1.231
S2C1F034	9.689	0.0154268	0.0060	52	0.0119	53	0.0063	52	0.0089	53	0.0095	53	0.0133	53	1.204
S2C1F037	10.523	0.0150268	0.0062	52	0.0122	53	0.0068	52	0.0097	53	0.0090	53	0.0136	53	1.196
S2C1F038	10.687	0.0159268	0.0067	52	0.0129	53	0.0077	52	0.0097	53	0.0094	53	0.0133	53	1.195
S2C1F039	11.088	0.0219266	0.0048	48	0.0155	53	0.0061	52	0.0072	54	0.0060	53	0.0098	50	1.187
S2C2F046	2.092	0.0234259	0.0152	47	0.0143	51	0.0145	51	0.0130	52	0.0181	51	0.0248	50	1.284
S2C2F051	3.701	0.0180256	0.0086	47	0.0132	51	0.0091	52	0.0085	51	0.0103	50	0.0171	48	1.267
S2C2F053	4.433	0.0229256	0.0079	47	0.0138	51	0.0090	52	0.0087	51	0.0096	50	0.0159	48	1.261
S2C2F055	4.972	0.0129254	0.0076	46	0.0108	51	0.0091	52	0.0066	50	0.0098	50	0.0144	47	1.258
S2C2F064	7.019	0.0182266	0.0087	47	0.0158	52	0.0100	52	0.0089	52	0.0117	54	0.0115	52	1.237
S2C2F067	7.690	0.0189265	0.0090	46	0.0123	51	0.0113	52	0.0102	52	0.0134	54	0.0127	52	1.231
S2C2F069	8.402	0.0195264	0.0095	45	0.0123	50	0.0122	52	0.0109	52	0.0138	54	0.0127	52	1.227
S2C2F077	10.009	0.0191266	0.0130	47	0.0156	52	0.0131	52	0.0133	52	0.0173	54	0.0137	52	1.210
S2C3F005	2.240	0.0154263	0.0083	44	0.0101	52	0.0086	52	0.0054	52	0.0099	54	0.0193	49	1.245
S2C3F012	2.898	0.0141263	0.0078	44	0.0090	52	0.0077	51	0.0052	52	0.0086	54	0.0182	50	1.244
S2C3F021	6.263	0.0170264	0.0073	45	0.0079	52	0.0101	52	0.0091	52	0.0111	54	0.0127	50	1.245
S2C3F027	8.746	0.0139265	0.0098	46	0.0122	52	0.0133	52	0.0115	52	0.0134	54	0.0130	51	1.266
S2C3F034	10.653	0.0141265	0.0105	46	0.0103	52	0.0138	52	0.0122	52	0.0149	54	0.0145	51	1.288
S2C3F035	10.911	0.0144265	0.0109	46	0.0112	52	0.0141	52	0.0123	52	0.0154	54	0.0146	51	1.291
S2C3F040	12.227	0.0204265	0.0122	46	0.0166	52	0.0154	52	0.0128	52	0.0161	54	0.0156	51	1.283
S2C3F041	12.445	0.0159265	0.0120	46	0.0120	52	0.0153	52	0.0132	52	0.0167	54	0.0157	51	1.300
S2C3F042	12.704	0.0169265	0.0120	46	0.0131	52	0.0151	52	0.0128	52	0.0166	54	0.0155	51	1.301
S2C3F047	13.684	0.0216265	0.0129	46	0.0139	52	0.0158	52	0.0137	52	0.0175	54	0.0162	51	1.302
S2C3F048	13.943	0.0179265	0.0130	46	0.0138	52	0.0159	52	0.0140	52	0.0179	54	0.0163	51	1.302
S2C4F001	0.471	0.0210257	0.0175	42	0.0194	49	0.0176	52	0.0160	52	0.0182	52	0.0229	48	1.309
S2C4F005	1.691	0.0195255	0.0166	40	0.0196	49	0.0181	52	0.0127	50	0.0190	52	0.0239	48	1.318
S2C4F007	2.214	0.0200256	0.0185	41	0.0183	49	0.0182	52	0.0158	51	0.0196	52	0.0231	48	1.320
S2C4F008	2.480	0.0208256	0.0188	41	0.0184	49	0.0179	52	0.0165	51	0.0197	52	0.0238	48	1.321
S2C4F010	2.746	0.0198255	0.0166	40	0.0178	49	0.0178	52	0.0132	50	0.0194	52	0.0235	48	1.322
S2C4F012	3.273	0.0204255	0.0158	40	0.0180	49	0.0170	52	0.0134	50	0.0181	52	0.0225	48	1.324
S2C4F016	4.347	0.0211245	0.0154	34	0.0177	48	0.0174	52	0.0138	49	0.0183	50	0.0196	42	1.327
S2C4F020	5.130	0.0206245	0.0152	34	0.0172	48	0.0174	52	0.0139	49	0.0181	50	0.0195	42	1.330
S2C4F024	6.191	0.0202244	0.0152	34	0.0175	48	0.0180	51	0.0142	49	0.0172	50	0.0201	42	1.334
S2C4F025	6.454	0.0187243	0.0151	34	0.0168	48	0.0177	51	0.0135	49	0.0155	49	0.0196	42	1.334
S2C4F030	7.754	0.0175241	0.0130	32	0.0175	48	0.0132	49	0.0147	48	0.0174	50	0.0193	42	1.339
S2C4F032	8.273	0.0187241	0.0128	32	0.0181	48	0.0132	49	0.0143	48	0.0176	50	0.0199	42	1.341
S2C4F039	10.009	0.0170249	0.0126	37	0.0191	49	0.0140	49	0.0126	48	0.0138	52	0.0182	47	1.344
S2C4F043	10.983	0.0183250	0.0133	37	0.0186	49	0.0143	49	0.0136	48	0.0170	53	0.0193	47	1.344

$\begin{array}{llllllllllll}0.0187 & 10379 & 0.0116 & 1750 & 0.0149 & 2037 & 0.0134 & 2069 & 0.0117 & 2053 & 0.0147 & 2103\end{array} 0.01741957$

* DF: Degrees-of-Freedom

Table 4.31
SONGS 3 Incore Detector Statistics

DF: Degrees-of-Freedom

Table 4.32
Bartlett's Test Results for Assembly Peaking Factors

SONGS 2

	Total	Sharing	Level-5	Level-4	Level-3	Level-2	Level-1
b-value	447.6	528.5	192.0	412.8	413.2	512.5	208.2
DF*	39	39	39	39	39	39	39
$\chi_{0.05}^{2}$	55.6	55.6	55.6	55.6	55.6	55.6	55.6
Conclusion	Fail						

SONGS 3
107

	Total	Sharing	Level-5	Level-4	Level-3	Level-2	Level-1
b-value	487.5	380.1	384.4	745.2	386.2	354.3	250.0
DF*	31	31	31	31	31	31	31
$\chi_{0.05}^{2}$	40.3	40.3	40.3	40.3	40.3	40.3	40.3
Conclusion	Fail						

Table 4.33
The Least Favorable Standard Deviations

for Assembly Peaking Factors

	$\underline{\text { SONGS-2 }}$	$\underline{\text { SONGS-3 }}$
$\mathrm{S}_{\mathrm{FXY}}^{\mathrm{S}}$	0.0248	0.0280
Degrees-of-Freedom	50	54
$\mathrm{~S}_{\mathrm{FQ}}^{\mathrm{S}}$	0.0234	0.0275
Degrees-of-Freedom	259	258
$\mathrm{~S}_{\mathrm{FR}}^{\mathrm{S}}$	0.0188	0.0190
Degrees-of-Freedom	41	50

Table 4.34

Calculation of Maximum Standard Deviations
 in Terms of Percent

	SONGS-2	SONGS-3	MAXIMUM
$S_{\text {FXY }}^{\text {S }}$ (Absolute)	0.0248	0.0280	
Minimum $\mathrm{F}^{\text {R }}$	1.187	1.194	
$S_{\text {FXY }}^{\text {S }}$ (\%)	2.09	2.35	2.35
Degrees-of-Freedom	50	54	
$S_{\text {FQ }}^{\text {S }}$ (Absolute)	0.0234	0.0275	
Minimum F_{R}	1.187	1.194	
$\mathrm{S}_{\mathrm{FQ}}^{\mathrm{S}}$ (\%)	1.97	2.30	2.30
Degrees-of-Freedom	259	258	
$\mathrm{S}_{\mathrm{FR}}^{\mathrm{S}}$ (Absolute)	0.0188	0.0190	
Minimum F_{R}	1.187	1.194	
$\mathrm{S}_{\mathrm{FR}}^{\mathrm{S}}$ (\%)	1.58	1.59	1.59
Degrees-of-Freedom	41	50	

Table 4.35
Calculation of $95 / 95$ Tolerance Limits
for Assembly Power Peaking

SONGS-2

2.09

50
2.060
4.30
1.97

259
1.812
3.57
4.17
4.17
$S_{\mathrm{FR}}^{\mathrm{S}}$
Degrees-of-Freedom
$\mathrm{K}_{95 / 95}$
$\mathrm{K}_{95 / 95} \mathrm{~S}$ (\%)
1.58

41
2.111
3.34

SONGS-3
2.35

54
2.042
4.80
4.80

$$
2.30
$$

$$
2.30
$$

Degrees-of Freedom
258
1.813
$\mathrm{K}_{95 / 95} \mathrm{~S}$ (\%)
1.59
1.59

50

2.060
3.28
3.34

PIN PEAKING FACTOR UNCERTAINTIES

5.0 INTRODUCTION

The SIMULATE-3 pin peaking factor uncertainties for the Planar Radial Peaking Factor ($F_{x y}$), One-Pin Peaking Factor (F_{Q}), and Integrated Radial Peaking Factor ($F_{R}, F_{\Delta H}$) were determined by combining the assembly power peaking uncertainties $\left(S_{F X Y}^{S}, S_{F Q}^{S}\right.$, and $S_{\mathrm{FR}}^{\mathrm{S}}$) from Section 4.7.3 with an appropriate uncertainty factor for the pin power reconstruction.

Yankee Atomic Electric Company verified the pin power reconstruction capabilities of SIMULATE-3 in extensive benchmarking (Reference 8). Three of the benchmark problems; B\&W critical experiments: Core 01, Core 12, and Core 18; were lattice configurations (pin dimensions, water hole, etc.) similar to the SONGS lattices.

Section 5.1 describes the three $B \& W$ cases and the results which were used as an estimate of the pin power reconstruction uncertainty. Since the lattice configurations are explicitly represented in the model, the pin power reconstruction uncertainty is applicable to lattices with small water holes (W) and large water holes (CE).

In Section 5.2 the uncertainties for pin peaking factors were calculated by combining the assembly power peaking uncertainties (Section 4.7.3) with the pin power reconstruction uncertainty (Section 5.1).

5.1 PIN POWER RECONSTRUCTION UNCERTAINTY

This section compares the SIMULATE-3 predicted pin-by-pin power distributions with the measured data from B\&W critical core configurations 01, 12, and 18 described in Reference 19.

Figures 5.1 through 5.3 show the SIMULATE-3 pin power distributions and the measurements. The differences, (Calculated - Measured)/Calculated, are also shown for each pin location. The SIMULATE-3 results agree well with the measurements. The Root-Mean-Squares (RMS) are all within one percent. Table 5.1 summarizes the mean ($\overline{\mathrm{x}}$), standard deviation (S), and RMS for each case.

The standard deviations from these cases were tested for poolability with the Bartlett's test (Reference 20). Table 5.2 summarizes the parameters. The test confirms that the samples are poolable. Table 5.3 provides the pooled mean (\bar{x}), standard deviation (S), as well as the K*S value for the $95 / 95$ tolerance limit.

The tolerance limit ($\overline{\mathrm{x}}-\mathrm{K}_{95 / 95} \mathrm{~S}$) was calculated by subtracting the mean from the $\mathrm{K}_{95 / 95} \mathrm{~S}_{\text {pooled }}$. Since the sample mean was very small and positive, it was assumed zero. The resulting tolerance limit was 1.608\%. For conservatism, the 95/95 tolerance limit for pin power reconstruction, $\mathrm{K}_{95 / 95} \mathrm{~S}$ (pin), was set to 2.00%.

Figure 5.1

Pin Power Distribution Comparison

B\&W Core 01

Measured	----	1.018	1.011	0.987	0.981	0.997	0.966	0.945
SIM-3		1.037	1.003	0.989	0.985	0.982	0.963	0.943
Diff (\%)	----	1.83	-0.80	0.20	0.41	-1.53	-0.31	-0.21
		1.019	1.067	1.012	1.009	1.058	0.999	0.945
		1.030	1.068	1.014	1.011	1.050	0.984	0.947
		1.07	0.09	0.20	0.20	-0.76	-1.52	0.21
			-	1.081	1.090	----	1.032	0.953
			----	1.083	1.085	----	1.040	0.952
			----	0.18	-0.46	----	0.77	-0.11
				1.054	1.104	1.086	0.989	0.945
				1.060	1.105	1.087	0.990	0.946
				0.57	0.09	0.09	0.10	0.11
					----	1.059	0.965	0.934
					----	1.057	0.962	0.934
					----	-0.19	-0.31	0.00
AVG. (\%)		0.012				0.988	0.938	0.923
						0.983	0.942	0.924
RMS (\%)		0.631				-0.51	0.42	0.11
S.D. (\%)		0.641					0.925	0.914
							0.927	0.914
							0.22	0.00
								0.903
								0.905
								0.22

Figure 5.2

Pin Power Distribution Comparison

B\&W Core 12

Measured SIM-3 Diff (\%)		$\begin{array}{r} 1.075 \\ 1.095 \\ 1.83 \end{array}$	1.041 1.033 -0.77	1.006 1.012 0.59	1.019 0.999 -2.00	1.000 0.987 -1.32	0.960 0.956 -0.42	0.923 0.920 -0.33
		1.067	1.125	1.044	1.034	1.075	0.987	0.927
		1.073	1.123	1.040	1.028	1.079	0.979	0.923
		0.56	-0.18	-0.38	-0.58	0.37	-0.82	-0.43
			----	1.114	1.118	---	1.034	0.942
			----	1.127	1.119	----	1.052	0.924
			----	1.15	0.09	----	1.71	-1.95
				1.083	1.137	1.102	0.979	0.908
				1.078	1.138	1.108	0.977	0.913
				-0.46	0.09	0:54	-0.20	0.55
					----	1.071	0.939	0.895
					----	1.067	0.938	0.896
					----	-0.37	-0.11	0.11
AVG (\%)		-0.048				0.958	0.900	0.883
						0.965	0.911	0.879
RMS (\%)		0.872				0.73	1.21	-0.46
S.D. (\%)		0.885					0.884	0.856
							0.885	0.860
							0.11	0.47
								0.845
								0.838
								-0.84

Figure 5.3

Pin Power Distribution Comparison

B\&W Core 18

Measured SIM-3 Diff (\%)		1.205 1.217 0.99	1.033 1.035 0.19	0.997 1.002 0.50	$\begin{array}{r} 0.977 \\ 0.988 \\ 1.11 \end{array}$	$\begin{array}{r} 0.959 \\ 0.970 \\ 1.13 \end{array}$	0.941 0.948 0.74	0.909 0.922 1.41
		1.076	1.021	1.012	1.010	0.982	0.946	0.912
		1.082	1.033	1.028	1.014	0.983	0.951	0.920
		0.55	1.16	1.56	0.39	0.10	0.53	0.87
			1.065	1.228	1.203	1.043	0.957	0.928
			1.079	1.211	1.197	1.038	0.958	0.919
			1.30	-1.40	-0.50	-0.48	0.10	-0.98
				----	----	1.183	0.974	0.924
				----	----	1.168	0.966	0.913
				----	----	-1.28	-0.83	-1.20
					----	1.170	0.970	0.909
					----	1.154	0.953	0.901
					----	-1.39	-1.78	-0.89
AVG. (\%)		0.048				0.995	0.924	0.886
						0.999	0.922	0.883
RMS (\%)		0.925				0.40	-0.22	-0.34
S.D. (\%)		0.939					0.893	0.866
							0.890	0.862
							-0.34	-0.46
								0.833
								0.838
								0.60

Table 5.1

SIMULATE-3 Pin Power Distribution

Benchmark Results

CASE	$\frac{\bar{x}(\%)}{}$	S (\%)	RMS $(\%)$	$\frac{N}{2}$
Core 01	0.012	0.641	0.631	32
Core 12	-0.048	0.885	0.872	32
Core 18	0.048	0.939	0.925	32

Table 5.2

Bartlett's Test Results for Pin Power Distributions

b-value	4.773
Degrees-of-Freedom	2
$\chi_{0.05}^{2}$	5.991
Conclusion	Poolable
$S_{\text {pooled }}(\%)$	0.832

Table 5.3
Pooled Statistics for SIMULATE-3

Pin Power Distribution

Benchmark Results
$\frac{\bar{x}(\%)}{0.004}$
$\underline{S}_{\text {pooled_(\%) }}$
0.832
N

96 \quad| $\underline{K}_{95 / 95}$ |
| :--- |
| 1.933 |

$\underline{K}_{95 / 95} \underline{S}_{\text {POOLED_(}}(\%)$
1.608

For conservatism, the tolerance limit is set to 2.00%

5.2 CALCULATION OF PIN PEAKING FACTOR UNCERTAINTIES

The 95/95 tolerance limits for Planar Radial Peaking Factor $\left(F_{X Y}\right)$, One-Pin Peaking Factor (F_{Q}), and the Integrated Radial Peaking Factor ($F_{R}, F_{\Delta B}$) can be calculated by using:

$$
\begin{gathered}
\mathrm{K}_{95 / 95} \mathrm{~S}(\text { combined })=\left(\left(\mathrm{K}_{95 / 95} \mathrm{~S}(\text { assembly })\right)^{2}+\left(\mathrm{K}_{95 / 95} \mathrm{~S}(\mathrm{pin})\right)^{2}\right)^{1 / 2} .5 \mathrm{E}^{1 / 2.1)}
\end{gathered}
$$

where,

$K_{95 / 95} S$ (assembly)	are the $95 / 95$ tolerance limits for assembly power peaking. From Section
	4.7 .3, the $95 / 95$ tolerance limits for

$\mathrm{K}_{95 / 95} \mathrm{~S}(\mathrm{pin}) \quad$ is the $95 / 95$ tolerance limit for the pin power reconstitution. From Section 5.1, this uncertainty component is 2%.

Table 5.4 summarizes the calculation of the tolerance limits for $F_{X Y}, F_{Q}$, and $F_{R}\left(F_{\Delta B}\right)$ of $5.20 \%, 4.62 \%$, and 3.89%, respectively.

The tolerance limits are applied to the SIMULATE-3 calculated peaking factors at all power levels and for all rodded and unrodded cases using:

Adjusted Peaking Factor $=(S I M U L A T E-3$ results $)$ * (1 + Tolerance Limit/100)
(Eq. 5.2.2)

Table 5.4

Calculation of Peaking Factor Tolerance Limits

	$\underset{\substack{\mathrm{K}_{9 / 95} \mathrm{~S}(\text { Assembly }) \\(\%)}}{ }$	$\begin{gathered} \mathrm{K}_{95 / 95} \mathrm{~S}(\operatorname{Pin}) \\ (\%) \\ \hline \end{gathered}$	$\frac{\mathrm{K}_{95 / 95} \mathrm{~S} \text { (Combined) }}{(\%)}$
$F_{X Y}$	4.780	2.000	5.20
F_{Q}	4.170	2.000	4.62
F_{R}	3.340	2.000	3.89

SECTION 6

CONCLUSIONS

Southern California Edison Company (SCE) has performed extensive benchmarking using the CASMO-3/SIMULATE-3 methodology. This effort consisted of comparisons of calculated physics parameters to measurements from both Pressurized Water Reactors (PWR) and Critical Experiments. The results were used to determine a set of 95/95 (probability/confidence) tolerance limits for application in the calculation of key PWR physics parameters. This effort has also successfully demonstrated SCE's ability to use the CASMO-3/SIMULATE-3 computer program package.

Based on the analyses and results contained in this report, SCE concludes that the CASMO-3/SIMULATE-3 methodology applies to all steady-state PWR reactor physics calculations. The accuracy of this methodology is sufficient for use in licensing applications, PWR reload physics analysis, safety analysis inputs, startup predictions, core physics databooks, and, reactor protection system and monitoring system setpoint updates.

SECTION 7

REFERENCES

1. Malte Edenius, Ake Ahlin, Bengt H. Forssen, "CASMO-3, A Fuel Assembly Burnup Program, User's Manual, Version 4.4" STUDSVIK/NFA - 89/3, Studsvik Energiteknik AB, Sweden, November 1989.
2. Malte Edenius, Clas Gragg, "CASLIB User's Manual, Version 1.3, STUDSVIK/NFA - 89/13, Studsvik Energiteknik AB, Sweden, November 1989.
3. Malte Edenius, Ake Ahlin, "MCBURN-3, Microscopic Burnup in Burnable Absorber Rods, User's Manual" STUDSVIK/NFA - 86/26, Studsvik Energiteknik AB, Sweden, November 1989.
4. Malte Edenius, Bengt H. Forssen, "MOVEROD-3 User's Manual," STUDSVIK/NFA - 89/14, Studsvik Energiteknik AB, Sweden, November 1989.
5. K. S. Smith, J. A. Umbarger, D. M. Ver Planck, "TABLES-3, Library Preparation Code for SIMULATE-3, User's Manual, Version 3.0," STUDSVIK/SOA - 89/05, Studsvik of America,Inc., November 1989.
6. K. S. Smith, J. A. Umbarger, D. M. Ver Planck, "SIMULATE-3, Advanced Three-Dimensional Two-Group Reactor Analysis Code, User's Manual, Version 3.0," STUDSVIK/SOA - 89/03, Studsvik of America, Inc., November 1989.
7. "CASMO-3G Validation," YAEC-1363A, Yankee Atomic Electric Company, 1988.
8. "SIMULATE-3 Validation and Verification," YAEC-1659A, Yankee Atomic Electric Company, 1988.
9. "ESCORE: The EPRI Steady-State Core Reload Evaluator Code; General Description," EPRI NP-5100-A, May 1990.
10. Updated Final Safety Analysis Report, San Onofre Nuclear Generating Station, Unit 1, Revision 1.
11. Updated Final Safety Analysis Report, San Onofre Nuclear Generating Station, Units 2\&3, Revision 6.
12. Final Safety Analysis Report, Arkansas Nuclear One - Unit 2, Revision 0.
13. "INCORE3 User's Manual," Westinghouse Electric Corporation, October 1988.
14. "CECOR 2.0 General Description, Methods, and Algorithms," NPSD-103-P, Combustion Engineering, Inc., June 1980.
15. ANSI N15.15-1974, "American National Standard: Assessment of the Assumption of Normality (Employing Individual Observed Values)," October 1973.
16. Factors for One-Sided Tolerance Limits and for Variables Sampling Plans, D. B. Owen, Sandia Corporation Monograph, SCR-607, March 1963.
17. "Statistical Combination of Uncertainties, Part II," CEN-283(S)-P, Combustion Engineering, Inc., October 1984.
18. Probability and Statistics for Engineers and Scientists, Walpole and Myers, Macmillan Publishing Company, pp. 358361, 1972.
19. "Urania-Gadolinia: Nuclear Model Development and Critical Experiment Benchmark," DOE/ET/34212-41, April 1984.
20. Reference 18, pp. 154-158.
21. Letter, USNRC to G. Papanic, Jr. (YAEC), "Acceptance for Referencing of Topical Report YAEC-1363, CASMO-3G Validation," March 21, 1990.
22. Letter, USNRC to G. Papanic, Jr. (YAEC), "Acceptance for Referencing of Topical Report YAEC-1659, SIMULATE-3, Validation and Verification," February 20, 1990.
23. Letter, USNRC to C. R. Lehmann (PP\&L), "Acceptance for Referencing of Licensing Topical Report EPRI-NP-5100, ESCORE - The EPRI Steady-State Core Reload Evaluation Code: General Description," May 23, 1990.

[^0]: * Level of significance $(\alpha)=0.05$

