SONGS 1

HYDRAULIC CALCULATION FOR

AFW LINES

FLOW REQUIREMENTS

9009140006 PDR ADO P

900910

	ICCN NO /PRELIMINARY CCN N		CCN CONVE	587.0151	9 _{REV.} 4
				$\frac{1}{2} \sum_{i=1}^{2} \frac{1}{2}$	CALC. REV.
Southern California Edison Company	CALCULATION NO. DC-2836		REV.	UNIT.	o-class SR
INTERIM CALCULATION	CALCULATION TITLE :]			JIC
CHANGE NOTICE (ICCN)/ CALCULATION CHANGE NOTICE	SONGS-IHYDRAUL	ic calc.F.	or AF	NEMES	- FID W RED
(CCN)	MENTS	1/1		SVS NO (STAT	SYS. DESIGNATOR
	PAX 51319	DATE 8-6-0			
1.		0-0-		PAGEC OF	
RENISE CALC. I	C-2336 TO INC	UNE ADD		SUDUER	IFITA
(ATTACHED.)		/		501,000	U ,
				•	
· · · ·					
· · ·					
		÷			
			,		
· ,					
INITIATING DOCUMENT (NCR, SPR, OTHER)		****			
2. OTHER AFFECTED DOCUMENTS (CHECK AS AP	PLICABLE):			•	
	ED DOCUMENTS EXIST AND ARE	IDENTIFIED ON AT	TACHED183	184 FORMS.	
THE APPLICABL	E SOURCE DOCUMENT IS IDENT	FIED AS FOLLOWS	:		
		LOWING DOCUME	NI:		
3. SCE DESIGN APPROVALS :		N			
NUCLEAR GENERATION SITE D	EPARTMENT	M. 11	NESAL	DEPARTMENT	
ORIGINATOR	DATE	CHIGALOR C	diti-	<i>ţ</i> -	
INDEPENDENT REVIEW ENGR.	DATE	NDERENDERVBE		(m.)	8/:10/4
	· · ·			<u>_</u>	<u>8731790</u>
GROUP SUPERVISING ENGINEER	DATE	GROUP SUPERVIS	OR		9/7/90
·		<u></u>			
DISCIPLINE MANAGER	DATE	DISCIPLINE MANA	GER		DATE

			DCP/MMP N REQUIREM						- -					
Engineer	ing Syst	em Numbe		Primary Station Sy							2			
Tech Spe	ec Effect	ing 🗋	YES	NO Section I	No. <u>3.4.</u>	<u> </u>	_ Equ	ipment Ta	ag No					
	Comp Prog		STANDARD COMPU	TER PROGRAM	.(S)	VERSION/RELEASE NO.								
				RECORI	ORD OF ISSUES									
SCE SC. or ESC	REV.		DESCRIPTIO	N	TOTA NO. (SHEE	of SH	IST EET O.	ORIG.	IRE	GS	DM	DA		
ECH.	0	AFW FI	ow verificat	on-suppli	e' 65	C1-	65	51-	0 29 A.K.A	J 3723	Oly14	,9/ ,		
												•		
						_								
ace for	RPE Sta	mp, referer	nce alternate calc., an	d notes as applica	able.	1				<u>;</u>				
									·					
			•											
					• •									
							•							
				,	·				·	·				

.

-

-

1

CALCULATION CROSS-INDEX Subject Calculation No. DC_2336 Suppl. C

Subject Calculation Revision No.	Superseded By Calc. No.	calculation, and if revised may require revision of the subject calculation.		OUTPUTS Results and conclusions of the su calculation are used in these inte calculations and/or documents.	rfacing	Does the out- put interface calc/document require revision?	Identify output interface calc/document CCN or DCN TCN/Rev.	Group Supervisor or Station Technical Group Supervising Engineer Signature/Date
		Calc/ Document No.	Rev. No.	Calc/ Document No.	Rev. No.	YES / NO		
0	NIA	DC-3414	0	IMPELLCALC. THI	1	YES	NIA	
	:	DC-2836 Suppl. A	5	DATED 4/22/85 SONGS-1 HYDRAULIC CALC. SUPPI. A	-	NO	NIA	SU.
	N/A	ETTER TO NAC ATWS		AIN	-	NIA	NIA	Å.
		MITIGATION SYSTEM DATED JULY 23, 1990						
							- - -	
							. *	
	• •							
								1
	- .							
							· .	

SCE 26-424 REV 5/90

	1	NES&	L DEPAR	TMENT	-		•				
		CALCUL	ΔΤΙΟ	N SI	HEET		ICCN NO./			C1-3	5
					i 1 km km f		PRELIM. CON NO.		N CONVERSI	PAGE OF	
	Project or	DCP/MMP 1-351	87.01St	1	Calo	NO. <u>DC</u>	-263850P		N CONVERSI	\sim	
	Subject 🛓	AFW FLOW'V	ERIFIC	ATIC	INC				s	heet No	
	REV	ORIGINATOR	DATE	IRE	DATE	REV	ORIGINATOR	DATE	IRE	DATE	۲ ۲
	$\langle \rangle$	SK	8/28/10	Ð	2411290						CATC
	\bigwedge	\									REV. FINDICATOR
											++
					TABLE O	F CONTE	NTS				
		Cashian		·							
		<u>Section</u>							<u>Page</u>		
	1.0	PURPOSE	-						C1-4	• •	
	2.0	RESULTS/CONCL	USIONS	AND R	ECOMMEND	ATIONS			C1-5	5	
i	3.0	ASSUMPTIONS							C1-1	.0	
	4.0	DESIGN INPUTS	5						C1-1	.1	7
	5.0	METHODOLOGY				·			C1-1	3	
	6.0	REFERENCES							C1-1	5	
	7.0	NOMENCLATURE							C1-1	6	
	8.0	COMPUTATIONS							C1-1	7	
	FIGUF	RES AND ATTACH	IMENTS								
	FIG.	1-7 CAVITATI	NG VENT	URI FI	LOW LIMI	T & SYS	TEM CURVES		C1-3	6	
		chment A DC- chment B Per	2836 Su mutit t	ppl."/ est da	A" Pump ata	curves			C1-4 C1-5		
	4										

.

.

						ICCN NO./			0-4	
	CALCUL	AIIU	IC N			PRELIM. CCN NO			PAGEOF	
ject or [DCP/MMP_1_35	87.01	SM	Calc	No. <u>D</u>	-2638501		NN NO. CC	\sim \cdot	
oject 📕	HFW FRW	VERIF	CAT	ion					Sheet No	
	ORIGINATOR	DATE	IRE	DATE	REV	ORIGINATOR	DATE	IRE	DATE	ЧÖ
$\overset{\circ}{\searrow}$	SK	8/28/90	Å	24,2040	\swarrow		· .			REV.
					$/ \setminus$					u B B B I I I I I I I I I I I I I I I I
100	URPOSE									
		.	. .							
	The purpose feedwater sy	of this stem can	meet	addition i	s to d nal fl	etermine if ow requireme	the aux ints tha	kiliary at were	y e not	
	specified in									
	Supplement "					ne if the AF	W syste	em can	meet the	
	requirements			•						
						heck valve check valve	1			
•		Blackou	t	- · ·						
	. Pump Rui	nout	CUWAL							
	• Water H	ammer								
	This Supplem	ent "C"	covers	s the fo	llowin	a additional	condit	ions e	extracted	
	from Ref.13:					y	·			
	C== 11 D		•							
	• Steam G	reak LOC enerator	Tube				·			
		Plant Co ne Break			nse					
	 Steamling 	ne Break ne Break	- Cor	ntainmen	t Resp					
	• ATWS									
	 Iurbine Appendix 		055 01	r Load,	LOSS O	f Condenser	Vacuum			
į	For complete	ness Sup	plemer	nt `C′ i	nclude	s the result	s of su	ppleme	ent `B'	
	and the marg cases of supp	ins betw	een th	ne requi	red and	d expected f	lows.	For sp	ecific	
i	are identific	ed in th	e resi	ilts sec	tion.	In addition,	this s	upplen	nent	
	incorporates field tests (to provi	de ger	neral ag	reemen	t with expec	ted fie	ld res	ults. In	
i	addition, the	is calcu	latior	n will f	orm the	e basis for	the tes	t guid	lelines.	
					· .					

	~ •						ICCN NO./			C1-5	
	CA	LCUL	.A HO	N 51	HEEI		PRELIM. CON NO			PAGEOF	
roject or	DCP/MI	MP 1-3	587	OISM	1 Cak	: NO. <u>DC</u>	-26385UPF		N CONVER		
		NFLO					•			Sheet No.	
ubject				IRE		REV	ORIGINATOR	DATE	IRE	Sheet No	T
$\overline{\mathbf{X}}$	SK		8/28/90		2911290						1.
$\frac{2}{2}$	1 27		1 61		2-7/10290	$\mathbb{Y}_{\mathcal{A}}$	· · · · · ·				
$ \leq $						\backslash					. "
2.0	DECIII	.TS/CONCL	USTONS								
2.0	RESUL		_031043		ECOMPENE	MITONS					
	2.1	The vent section					ow requireme	ents spe	ecifie	d in	
		Section	4.0 01	LIIIS	Supprenie	:nu.					
							i flow rates es the exped				
		the syst	.em desi	gn re	quiremer	nts. Th	e difference	e expres	sed as	s margin	
							31 venturies O of this ca			sign .	
	2.2						ly evaluated lement to de				
		conditio				o oupp				laring	
		• Cas	e 4.1	- Los	s of Nor	rmal Fe	ed (Suppleme	ont 'R'	Case I	No 3)	
				- Maiı	n Feedwa	iter Li	ne Break Ups				
		• Cas	se 4.3		e No. 5) n Feedwa		ne Break Dow	instream	ı (Supı	lement	
				`B'	Case No). 2)			· · ·		
		 Cas 	se 4.12	- Wate	erhammer	· (Supp	(Supplement lement `B' (ase No.	-1)	4)	
		• Cas	se 4.13	- Pumj	p Run Ou	it (Sup	plement `B'	Case No). 6)		
	2.3	Suppleme	ent "B"	cases	4.1, 4.	2, 4.3	, 4.8 are re	e-evalua	ited du	ue to the	
		conservatesting				data	available fr	om the	new ve	enturi	
		•		•						. ·	
							n identify b rations prod				
		results	and the	refore	e, do no	ot cont	rol the desi	gn.		reing	
	2.5	Case 4.1	1- Appe	ndix '	"R"						
				into	reacts t	ha mas	t restrictiv	a 5522	covite	tion	
		curve at	880 ps	ig & 3	353 gpm.	Sinc	e the ventur	ies are	cavit	tating,	
		the flow	rates ed with	throught	gh them flow ra	cannot	exceed 353 < 1%. This	gpm. T	he mar	rgin Servative	
		because	the cal	culate	ed press	ure dr	ops are grea	ter tha	n the	actual	
		test dat	a, thus	, addi	itional	flow i	s expected d	luring t	esting] -	
		In addit	ion, op	ening	the byp	ass ar	ound the 4"	venturi	provi	ides more	
		flow mar	gin. T	here	is ample	time	during the e	vent to	open	the by-	

AFN FR.								Sheet No
	BATE BABIGS	IRE	DATE	REV	ORIGINATOR	DATE	IRE	DATE
SK	9.001 13		241.297	$\langle \rangle$				
				$V \setminus$				
5532 ca margin opened system will re	avitating is avail (opening to water equire a	y ventu able y the l hamme revis	uri curv if the b bypass v er and p ion to t	ve at 3 oypass valves oump ru che ope	ed on Fig. 7 63 gpm & 10 around the has the pot in out condi rating proc	10 psig 3" vent ential tions). eedures	. Add uries to exp This	itional are also ose the
				-	n from < 1%		<i>.</i>	
0 C C	.7c Steam	nline E	Break Ou	ıtside	Containment	•		
Pump G is cons margin	lOS provi sidered t is based	he mos on a	st limit prelimi	ing ca nary W	rate of 315 se with the estinghouse	margin analys	of 129 is whic	%. The ch
Pump G is cons margin determ	lOS provi sidered t is based ines that I AFW flo	he mos on a the S w rate	st limit prelimi Steamlin 9.	ing ca nary h e Brea	se with the estinghouse k concerns	margin analys are sat	of 129 is whic	%. The ch
Pump G is cons margin determ reduced	lOS provi sidered t is based ines that I AFW flo	he mos on a the S w rate	st limit prelimi Steamlin 9.	ing ca nary h e Brea	se with the estinghouse k concerns	margin analys are sat	of 129 is whic	%. The ch
Pump G is cons margin determ reduced	lOS provi sidered t is based ines that I AFW flo	he mos on a the S w rate	st limit prelimi Steamlin 9.	ing ca nary h e Brea	se with the estinghouse k concerns	margin analys are sat	of 129 is whic	%. The ch
Pump G is cons margin determ reduced	lOS provi sidered t is based ines that I AFW flo	he mos on a the S w rate he cas	st limit prelimi Steamlin 9.	ing ca nary k e Brea identi	se with the estinghouse k concerns	margin analys are sat	of 129 is whic	%. The ch
Pump G is cons margin determ reduced	lOS provi sidered t is based ines that I AFW flo	he mos on a the S w rate he cas	st limit prelimi Steamlin Ses are	ing ca nary k e Brea identi	se with the estinghouse k concerns	margin analys are sat	of 129 is whic	%. The ch
Pump G is cons margin determ reduced	lOS provi sidered t is based ines that I AFW flo	he mos on a the S w rate he cas	st limit prelimi Steamlin Ses are	ing ca nary k e Brea identi	se with the estinghouse k concerns fied in Tab	margin analys are sat le 2.1.	of 129 is which isfied	% . The ch with
Pump G is cons margin determ reduced	lOS provi sidered t is based ines that I AFW flo	he mos on a the S w rate he cas	st limit prelimi Steamlin Ses are	ing ca nary k e Brea identi	se with the estinghouse k concerns	margin analys are sat le 2.1.	of 129 is whic	% . The ch with
Pump G is cons margin determ reduced	lOS provi sidered t is based ines that I AFW flo	he mos on a the S w rate he cas	st limit prelimi Steamlin Ses are	ing ca nary k e Brea identi	se with the estinghouse k concerns fied in Tab	margin analys are sat le 2.1.	of 129 is which isfied	% . The ch with
Pump G is cons margin determ reduced	lOS provi sidered t is based ines that I AFW flo	he mos on a the S w rate he cas	st limit prelimi Steamlin Ses are	ing ca nary k e Brea identi	se with the estinghouse k concerns fied in Tab	margin analys are sat le 2.1.	of 129 is which isfied	% . The ch with
Pump G is cons margin determ reduced	lOS provi sidered t is based ines that I AFW flo	he mos on a the S w rate he cas	st limit prelimi Steamlin Ses are	ing ca nary k e Brea identi	se with the estinghouse k concerns fied in Tab	margin analys are sat le 2.1.	of 129 is which isfied	% . The ch with
Pump G is cons margin determ reduced	lOS provi sidered t is based ines that I AFW flo	he mos on a the S w rate he cas	st limit prelimi Steamlin Ses are	ing ca nary k e Brea identi	se with the estinghouse k concerns fied in Tab	margin analys are sat le 2.1.	of 129 is which isfied	% . The ch with

TABLE 2.1

Design Condition	Re	equired Flows (GPM)	Expected Flows (GPM)	Mar	gin Bounding Case	Remarks
4.1 Loss of Normal Fe	ed	>185	G10W=255	37%	this Suppl. `C'	To 3 S/GS @ 1015 psig
4.2 MFW Line Break Up of Check Valve	ostream	>100	G10W=140	40%	this Suppl. 'C'	To 2 S/GS @ 1015 psig
4.3 MFW Line Break Do Stream of Check V		>175	G10S=210	20%	Case 2 Suppl. `B' GlOS Cavitate	To 2 S/GS @ 15 psia
4.4 Small Break LOCA		>185	G10W=255	37%	Bound by Case 4.1 Supplement 'C'	To 3 S/GS @1015 psig
4.5 S/G Tube Rupture	a)	>120	G10W=312	160%	this suppl.'C'	To 2 S/GS @ 250-750 psia.GlOS cavitate @ @210.com & 720.psia
	b)	>120	G10S=242	101%	Ditto	@319 gpm & 730 psig Ditto
4.6 Normal Plant Cooldown	a)	>185	G10W=295	59%	Case 4.6 this calc. Suppl. `C'	To 3 S/GS @ 125-923 psia
	b)	>185	G10S=319	72%	//	G10S controls @ < 500 psig
4.7 Steamline Break	a)	>150	G10W=255	70%	Case 4.1 above	To 3 S/GS @ 1015 psig
Outside Containment	b)	>280	G10W=352	26%	this suppl.'C'	To S/GS @ 700 psia
	c)	>280	G10S=319	14%	this supll.'C'	To 3 S/GS @ 15-700 psia, G10S controls* @ < 500 psig
	d)	>215	G10+G10S=393	82%	Ditto	To 3 S/GS @ 875 psia
	e)	>215	G10W=310	44%	Ditto	cavitate To 3 S/GS @ 875 psia

UC-263850201 C

SK 8/28/90 C1-7

TABLE 2.1

AFW REQUIREMENTS, EXPECTED FLOWS AND MARGINS

>185 >185	G10=300	62%	Case	8.6 above	To 3 S/GS @ 923 psia
>185					10 0 0/00 e 020 psta
	G10W=295	59%	Case	8.6 above	To 3 S/GS @ 923 psia
>185	G10W=255	37%	Case	8.1 above	To 3 S/GS @ 1015 psig
>185	a)G10W=295	59%			To 3 S/GS @ 125-923 psia. Both pumps cavitate as press.
	b)G10S=319	72%	Casè	4.6 above	decreases. G1OS controls @ < 500 psig
>185	G10W=295	59%	This	suppl. C	To 3 S/GS @ 923 psia
>350 >350 pen>350	G10W=353 G10W=363 G10W=450	<1% 3 . 7% 28%	Case	4.11 above	To 3 S/Gs @ 15 psia To 3 S/GS @ 15 psia To 3 S/Gs @ 15 psia
<450	G10+G10S +G10W=397	-	This	Suppl. 'C'	To 3 S/GS @ 15-1030 cavitate @less than
<420	G10S=319	-	Case	6 Suppl. `B'	450 gpm To 3 S/GS @ 15-1030 psia. Cavitate @ less than 420 gpm
<1419	G10W=352	-		3 Suppl. `B'	To 3 S/GS @ 15 psia cavitate @ less than 420 gpm
ŗ	>185 >350 >350 pen>350 <450 <420	b)G10S=319 >185 G10W=295 >350 G10W=353 >350 G10W=363 pen>350 G10W=450 <450 G10+G10S +G10W=397 <420 G10S=319	b)G10S=319 72% >185 G10W=295 59% >350 G10W=353 <1% >350 G10W=363 3.7% pen>350 G10W=450 28% <450 G10+G10S +G10W=397 - <420 G10S=319 - <1419 G10W=352 -	b)G10S=319 72% Case >185 G10W=295 59% This >350 G10W=353 <1%	b)G10S=319 72% Case 4.6 above >185 G10W=295 59% This suppl. 'C' >350 G10W=353 <1%

DC-263& Suppl. C

TABLE 2.1

AFW REQUIREMENTS, EXPECTED FLOWS AND MARGINS

Design Condition	Required Flows (GPM)	Expected Flows (GPM)	Margin	Bounding Case	Remarks
4.15 Steamline Break Inside Containment	<500	G10W=352	- Case	e 3 Suppl. 'B'	To 3 S/GS @ 15 psia cavitate @ less than 500 gpm
×					<u>.</u>
					•

*Shown as point in time when GlO not available, however, above S/G pressure at 500 psig GlO is available. Note: Where pressure ranges are shown the highest pressure was used to establish flow & margins.

CK O KAN

5

bject 🤟	AFN	1MP <u>1-358</u> F10W VE	RIFICA			-	2638 SUPP			Sheet No	
REV	1		DATE		DATE 29AX9D	REV	ORIGINATOR	DATE	IRE	DATE	
$\overline{\nabla}$			92410	4		$\langle \rangle$			-		REV.
						$\langle \rangle$				1	+
3.0	ASSI	JMPTIONS	•								
	1.	Auxilia	ry Feedw	ater '	temperat	ure is	70°F.				
	2.	Venturi	recover	y fac [.]	tors wil	l be t	he same as	those r	eported	d during	
					•		AFW ventur				
	3.						for the thro flows thro				
	4.						is Supplemen n the DC-283				
	5.	the 3" \	/enturie	s wil	l be clo	osed. F	s assumed zo or the Apper be opened wi	ndix `R	'Case	ass around 4.11b the	
	6.						t inlet to hich are as				
	7.	Pressure	e drop i	n suc	tion pip	oing is	negligible	•			
							*				
				•							

· . .

I	NES&	L DEPAR	TMENT				-				-
C	CALCUL	ATIO	N SI	HEET		ICCN NO./ PRELIM. CCN NO				0F	<u> </u>
Project or DC	P/MMP1-35	87.015	M	Cak	: No. <u>DC</u>	-2638 SUPF	01. C a	CN CONVER CN NO. CC	sion: N	-1	
SubjectA	EN FIDN	JERI	CAT	N	a .				Sheet No	o	<u> </u>
REV	ORIGINATOR	DATE	IRE	DATE	REV	ORIGINATOR	DATE	IRE	DAT	E	NO.
0	SK	8/28/9-	0	29AU690	\angle						REV. INDICATOR
				· · ·	$ / \setminus $						REV.
4.0 DE	SIGN INPUTS										
Ve	nturies are	sized	to mee	t the f	ollowir	ig parameter	s:				
4.	l Loss of AFW Flow Bound by	>185 G	PM to		@1030 p	osia.	•				
4.	2 Main Fee AFW Flow Bound by	>100 G	PM to	2 S/GS					·		•
4	3 Main Fee AFW Flow Bound by	>175 G	PM to	2 S/G @		check valve a.					
4.	4 Small Br AFW Flow			3 S/GS	@ 1030	psia (Ref.	6)				
4.	5 Steam Ge AFW >120					ia (Ref. 7)					
4.	5 Normal P AFW Flow (Ref. UF	>185 G	PM to	3 S/GS	0 125-9	23 psia					
4.	7 Steam Li G10W Flo G10W Flo G10W Flo G10W Flo	w >165 w >280 w >280	GPM to GPM to GPM to	3 S/GS 3 S/GS 2 S/GS	@ 1030 @ 700 @ 15 -	psia psia 700 psia					
• 4.:	B Station G10W Flo G10 Flow Bound by	w >185 >185 G	GPM to PM to	3 S/GS	@ 923 @ 923 p	psia (Ref. sia (Ref. 8	8)				
4.9	9 ATWS AFW FLow	>185 G	PM to	3 S/G @	1030 p	sia (Ref. 1	2)		·		
4.1	10 Turbine G10W Flo Bound by	w >185 (GPM to	3 S/GS	Loss of @ 125-	Condenser 923 psia	Vacuum				
										•	

Diject or DCP/MMP 1-3587.21SM Calc No. DC-2638SUPP CCN CONVERSION: CCN NO. CCN-C-2638SUPP	ICCN NO./				NES&	
 Caic No. <u>DC-26385019</u> <u>convo.CCN-C-1</u> Caic No. <u>DC-26385019</u> <u>convo.CCN-C-1</u> Consinator <u>DATE INE DATE INE ORIGINATOR DATE INE CONC.</u> AFW Flow NB5 GPM to 3 S/GS @ 923 psia Bound by Case No. 3 Ref. 1 AFW Flow S50 GPM to 3 S/GS @ 15 psia (Ref. 11) 4.12 Water Hammer (Ref. UFSAR 8.5) AFW Flow S50 GPM (total) to 3 S/GS @ 15-1030 psia Bound by Case No. 1 Ref. 1 4.13 Pump Runout G10S Flow <420 GPM to 3 S/GS @ 15-1030 psia Bound by Case No. 6 Ref. 1 4.14 Steamline Break - Core Response (Ref. 11) AFW Flow <500 GPM to 3 S/GS @ 15 psia Bound by Case No. 3 Ref. 1 4.15 Steamline Break Inside Containment AFW Flow <500 GPM to 3 S/GS @ 15 psia Bound by Case No. 1 Ref. 1 4.15 Steamline Break Inside Containment AFW Flow <500 GPM to 3 S/GS @ 15 psia Bound by Case No. 1 Ref. 1 AFW pump system curves (based on manufacturers curves and field test) and permutit venturi curves have been used to determine the margins available above the system design requirements. (Ref. 1, 2 and 6). 	PRELIM. CCN NO. PAGE OF	1661	N SF		CALCUL	
Afw fibw VERLECATION C' Sheet No. Rev ORGUMATOR DATE IME DATE		Calc	SM	\$7.01	DCP/MMP 1-35	piect or D
REV ORIGINATOR DATE IFE IFE DATE IFE IFE IFE IFE IFE IFE	(p)					
 St 9/8/4. d 24.84a AFW Flow >185 GPM to 3 S/GS @ 923 psia Bound by Case No. 3 Ref. 1 AFW Flow >185 GPM to 3 S/GS @ 15 psia (Ref. 11) 4.12 Water Hammer (Ref. UFSAR 8.5) AFW Flow <450 GPM (total) to 3 S/GS @ 15-1030 psia Bound by Case No. 1 Ref. 1 4.13 Pump Runout G10S Flow <420 GPM to 3 S/GS @ 15-1030 psia Bound by Case No. 6 Ref. 1 4.14 Steamline Break - Core Response (Ref. 11) AFW Flow <1419 GPM to 3 S/GS @ 15 psia Bound by Case No. 3 Ref. 1 4.15 Steamline Break Inside Containment AFW Flow <500 GPM to 3 S/GS @ 15 psia Bound by Case No. 1 Ref. 1 AFW pump system curves (based on manufacturers curves and field test) and permutit venturi curves have been used to determine the margins available above the system design requirements. (Ref. 1, 2 and 6). 					· · · · · · · · · · · · · · · · · · ·	
 4.11 Appendix 'R' AFW Flow >185 GPM to 3 S/GS @ 923 psia Bound by Case No. 3 Ref. 1 AFW Flow> 350 GPM to 3 S/GS @ 15 psia (Ref. 11) 4.12 Water Hammer (Ref. UFSAR 8.5) AFW Flow <450 GPM (total) to 3 S/GS @ 15-1030 psia Bound by Case No. 1 Ref. 1 4.13 Pump Runout GIOS Flow <420 GPM to 3 S/GS @ 15-1030 psia Bound by Case No. 6 Ref. 1 4.14 Steamline Break - Core Response (Ref. 11) AFW Flow <1419 GPM to 3 S/GS @ 15 psia Bound by Case No. 3 Ref. 1 4.15 Steamline Break Inside Containment AFW Flow <500 GPM to 3 S/GS @ 15 psia Bound by Case No. 1 Ref. 1 AFW pump system curves (based on manufacturers curves and field test) and permutit venturi curves have been used to determine the margins available above the system design requirements. (Ref. 1, 2 and 6). 						HEV
 AFW Flow >185 GPM to 3 S/GS @ 923 psia Bound by Case No. 3 Ref. 1 AFW Flow > 350 GPM to 3 S/GS @ 15 psia (Ref. 11) 4.12 Water Hammer (Ref. UFSAR 8.5) AFW Flow <450 GPM (total) to 3 S/GS @ 15-1030 psia Bound by Case No. 1 Ref. 1 4.13 Pump Runout G10S Flow <420 GPM to 3 S/GS @ 15-1030 psia Bound by Case No. 6 Ref. 1 4.14 Steamline Break - Core Response (Ref. 11) AFW Flow <1419 GPM to 3 S/GS @ 15 psia Bound by Case No. 3 Ref. 1 4.15 Steamline Break Inside Containment AFW Flow <500 GPM to 3 S/GS @ 15 psia Bound by Case No. 1 Ref. 1 AFW pump system curves (based on manufacturers curves and field test) and permutit venturi curves have been used to determine the margins available above the system design requirements. (Ref. 1, 2 and 6). 	,40	29A X 90	a	0/21/70	>~	2V
 AFW Flow >185 GPM to 3 S/GS @ 923 psia Bound by Case No. 3 Ref. 1 AFW Flow > 350 GPM to 3 S/GS @ 15 psia (Ref. 11) 4.12 Water Hammer (Ref. UFSAR 8.5) AFW Flow <450 GPM (total) to 3 S/GS @ 15-1030 psia Bound by Case No. 1 Ref. 1 4.13 Pump Runout G105 Flow <420 GPM to 3 S/GS @ 15-1030 psia Bound by Case No. 6 Ref. 1 4.14 Steamline Break - Core Response (Ref. 11) AFW Flow <1419 GPM to 3 S/GS @ 15 psia Bound by Case No. 3 Ref. 1 4.15 Steamline Break Inside Containment AFW Flow <500 GPM to 3 S/GS @ 15 psia Bound by Case No. 1 Ref. 1 AFW pump system curves (based on manufacturers curves and field test) and permutit venturi curves have been used to determine the margins available above the system design requirements. (Ref. 1, 2 and 6). 						$^{\prime}$
and permutit venturi curves have been used to determine the margins available above the system design requirements. (Ref. 1, 2 and 6).	GS @ 15 psia (Ref. 11) 8.5) to 3 S/GS @ 15-1030 psia 1 /GS @ 15-1030 psia 1 sponse (Ref. 11) /GS @ 15 psia 1 ntainment GS @ 15 psia	3 S/GS (SAR 8.5) tal) to ef. 1 3 S/GS ef. 1 e Respon 3 S/GS ef. 1 e Contai 3 S/GS (PM to ef. UF PM (to o. 1 R GPM to o. 6 R - Cor GPM to o. 3 R Insid PM to	y >185 G y> 350 G y <450 G y Case N out y <420 y Case N e Break y <1419 y Case N e Break y <500 G	AFW Flow AFW Flow 4.12 Water Ha AFW Flow Bound by 4.13 Pump Run GlOS Flo Bound by 4.14 Steamlin AFW Flow Bound by 4.15 Steamlin AFW Flow	
	ve been used to determine the margins	s have b	curve	venturi	and permutit	i
		, *				
	,					
	1					

	ect /		FIDW V	DATE	IRE		REV	ORIGINATOR	DATE	IRE	Sheet No	Ī
 5.0 METHODOLOGY Calculate AFW flow rates for each of the design conditions, Section 4.0, for the new venturies by using the following steps. 5.1 Identify AFW conditions covered by the calculation DC-2836 Supplement B. 5.2 Identify AFW conditions bound by the existing analyses. This is accomplished by a comparison between the additional AFW flow requirements and those AFW flows in the Supplement B at the same steam generator pressures. 5.3 The remaining conditions are analyzed per the following steps: 5.3.1 Plot pumps GIOS and GIOW curves using Ref. 2 5.3.2 Plot cavitating venturi curves using Wyle test results (attachment B) 5.3.3 Calculate system coefficient (K_{wn}) from Ref. 1 & 2.per the following steps: 5.3.1 Calculate the highest line losses from the pump through the discharge control valve to the steam generator venturi. (line losses from the pump to the first branch to other FCV's are based on the longest pipe run and full flow) 5.3.3.2 Calculate pressure drop across pump discharge valve and flow control valve using full flow through pump discharge valve and flow control valve using full flow through pump discharge valve and flow control valve using full flow through pump discharge valve and flow control valve using full flow through pump discharge valve and flow control valve using full flow through pump discharge valve and flow control valve using full flow through pump discharge valve and flow control valve using full flow through pump discharge valve and flow control valve using full flow through pump discharge valve to the FCV's are assumed to have the same pressure drop to the steam generators) 5.3.4 Calculate total system pressure drop using the equation 	Δ	,	ŝK	8/28/93	Ø	29AX 9)	\square				·····	
 Calculate AFW flow rates for each of the design conditions, Section 4.0, for the new venturies by using the following steps. 5.1 Identify AFW conditions covered by the calculation DC-2836 Supplement B. 5.2 Identify AFW conditions bound by the existing analyses. This is accomplished by a comparison between the additional AFW flow requirements and those AFW flows in the Supplement B at the same steam generator pressures. 5.3 The remaining conditions are analyzed per the following steps: 5.3.1 Plot pumps GlOS and GlOW curves using Ref. 2 5.3.2 Plot cavitating venturi curves using Wyle test results (attachment B) 5.3.3 Calculate system coefficient (K_{sya}) from Ref. 1 & 2.per the following steps: 5.3.1 Calculate the highest line losses from the pump through the discharge control valve to the steam generator venturi. (line losses from the pump to the first branch to other FCV's are based on the longest pipe run and full flow) 5.3.3.2 Calculate pressure drop across pump discharge valve and flow control valve using full flow through pump discharge valve to the FCV's are assumed to have the same pressure drop to the steam generators) 5.3.4 Calculate total system pressure drop using the equation 	\frown						$/ \setminus$					
 for the new venturies by using the following steps. 5.1 Identify AFW conditions covered by the calculation DC-2836 Supplement B. 5.2 Identify AFW conditions bound by the existing analyses. This is accomplished by a comparison between the additional AFW flow requirements and those AFW flows in the Supplement B at the same steam generator pressures. 5.3 The remaining conditions are analyzed per the following steps: 5.3.1 Plot pumps GlOS and GlOW curves using Ref. 2 5.3.2 Plot cavitating venturi curves using Wyle test results (attachment B) 5.3.3 Calculate system coefficient (K_{pm}) from Ref. 1 & 2.per the following steps: 5.3.1 Calculate the highest line losses from the pump through the discharge control valve to the steam generator venturi. (line losses from the pump to the first branch to other FCV's are based on the longest pipe run and full flow) 5.3.3.2 Calculate pressure drop across pump discharge valve and flow control valve using FUI flow through pump discharge valve and third through FCV. (branch piping downstream of the pump discharge valve to the FCV's are assumed to have the same pressure drop to the steam generators) 5.3.4 Calculate total system pressure drop using the equation 	5.0	METH	ODOLOGY									
 Supplement B. 5.2 Identify AFW conditions bound by the existing analyses. This is accomplished by a comparison between the additional AFW flow requirements and those AFW flows in the Supplement B at the same steam generator pressures. 5.3 The remaining conditions are analyzed per the following steps: 5.3.1 Plot pumps GlOS and GlOW curves using Ref. 2 5.3.2 Plot cavitating venturi curves using Wyle test results (attachment B) 5.3.3 Calculate system coefficient (K_{yya}) from Ref. 1 & 2.per the following steps: 5.3.1 Calculate the highest line losses from the pump through the discharge control valve to the steam generator venturi. (line losses from the pump tho generator venturi. (line losses from the pump the first branch to other FCV's are based on the longest pipe run and full flow) 5.3.3.2 Calculate pressure drop across pump discharge valve and flow control valve using full flow through pump discharge valve and third through FCV. (branch piping downstream of the pump discharge valve to the steam generators) 5.3.4 Calculate total system pressure drop using the equation 										s, Sec	tion 4.0,	
 accomplished by a comparison between the additional AFW flow requirements and those AFW flows in the Supplement B at the same steam generator pressures. 5:3 The remaining conditions are analyzed per the following steps: 5.3.1 Plot pumps GlOS and GlOW curves using Ref. 2 5.3.2 Plot cavitating venturi curves using Wyle test results (attachment B) 5.3.3 Calculate system coefficient (K_{sya}) from Ref. 1 & 2.per the following steps: 5.3.1 Calculate the highest line losses from the pump through the discharge control valve to the steam generator venturi. (line losses from the pump to the first branch to other FCV's are based on the longest pipe run and full flow) 5.3.2 Calculate pressure drop across pump discharge valve and flow control valve using full flow through pump discharge valve and third through FCV. (branch piping downstream of the pump discharge valve to the FCV's are assumed to have the same pressure drop to the steam generators) 5.3.4 Calculate total system pressure drop using the equation 		5.1			nditi	ons covi	ered by	the calcula	ation D(C-2836		
 5.3.1 Plot pumps G10S and G10W curves using Ref. 2 5.3.2 Plot cavitating venturi curves using Wyle test results (attachment B) 5.3.3 Calculate system coefficient (K_{sys}) from Ref. 1 & 2.per the following steps: 5.3.3.1 Calculate the highest line losses from the pump through the discharge control valve to the steam generator venturi. (line losses from the pump to the first branch to other FCV's are based on the longest pipe run and full flow) 5.3.3.2 Calculate pressure drop across pump discharge valve and flow control valve using full flow through pump discharge valve and third through FCV. (branch piping downstream of the pump discharge valve to the FCV's are assumed to have the same pressure drop to the steam generators) 5.3.4 Calculate total system pressure drop using the equation 		5.2	accompl [*] requirer	ished by nents an	a co d tho	mparison se AFW	n betwe	en the addi	tional /	AFW fl	ow	
 5.3.1 Plot pumps GIOS and GIOW curves using Ref. 2 5.3.2 Plot cavitating venturi curves using Wyle test results (attachment B) 5.3.3 Calculate system coefficient (K_{sys}) from Ref. 1 & 2.per the following steps: 5.3.3.1 Calculate the highest line losses from the pump through the discharge control valve to the steam generator venturi. (line losses from the pump to the first branch to other FCV's are based on the longest pipe run and full flow) 5.3.2 Calculate pressure drop across pump discharge valve and flow control valve using full flow through pump discharge valve and third through FCV. (branch piping downstream of the pump discharge valve to the FCV's are assumed to have the same pressure drop to the steam generators) 5.3.4 Calculate total system pressure drop using the equation 		5:3	The rema	aining c	ondit	ions ar	e analy	zed per the	follow	ing st	eps:	
 (attachment B) 5.3.3 Calculate system coefficient (K_{sys}) from Ref. 1 & 2.per the following steps: 5.3.3.1 Calculate the highest line losses from the pump through the discharge control valve to the steam generator venturi. (line losses from the pump to the first branch to other FCV's are based on the longest pipe run and full flow) 5.3.3.2 Calculate pressure drop across pump discharge valve and flow control valve using full flow through pump discharge valve and third through FCV.(branch piping downstream of the pump discharge valve to the FCV's are assumed to have the same pressure drop to the steam generators) 5.3.4 Calculate total system pressure drop using the equation 		Υ.	5.3.1	Plot pu	mps G	10S and	G10W c	urves using	Ref. 2			
 following steps: 5.3.3.1 Calculate the highest line losses from the pump through the discharge control valve to the steam generator venturi. (line losses from the pump to the first branch to other FCV's are based on the longest pipe run and full flow) 5.3.3.2 Calculate pressure drop across pump discharge valve and flow control valve using full flow through pump discharge valve and third through FCV. (branch piping downstream of the pump discharge valve to the FCV's are assumed to have the same pressure drop to the steam generators) 5.3.4 Calculate total system pressure drop using the equation 			5.3.2				turi cu	rves using N	Wyle te	st res	ults	
 through the discharge control valve to the steam generator venturi. (line losses from the pump to the first branch to other FCV's are based on the longest pipe run and full flow) 5.3.3.2 Calculate pressure drop across pump discharge valve and flow control valve using full flow through pump discharge valve and third through FCV. (branch piping downstream of the pump discharge valve to the FCV's are assumed to have the same pressure drop to the steam generators) 5.3.4 Calculate total system pressure drop using the equation 			5.3.3	Calcula followi	te sy ng st	stem co eps:	efficie	nt (K _{sys}) fro	m Ref.	1 & 2.	per the	
and flow control valve using full flow through pump discharge valve and third through FCV.(branch piping downstream of the pump discharge valve to the FCV's are assumed to have the same pressure drop to the steam generators) 5.3.4 Calculate total system pressure drop using the equation				5.3.3.1	thr gen the	ough the erator v first l	e disch venturi branch	arge contro . (line los to other FC	l valve ses from Vís are	to th m the	e steam pump to	
5.3.4 Calculate total system pressure drop using the equation $\Delta P = Ppsig + K_{sys} \cdot *Q^2 + Elev$. Difference for various flows (Q values are chosen from pump curves to plot ΔP).				5.3.3.2	and dis pip the	flow co charge ing down FCV's a	ontrol valve a nstream are ass	valve using nd third thi of the pum umed to have	full f rough F(o discha e the sa	low th CV.(b arge v	rough pump ranch alve to	
			5.3.4	Calcula ∆P = Pp values	te to sig + are c	tal syst K _{sys} .*Q² hosen fi	tem pre + Elev rom pum	ssure drop (. Difference p curves to	using th e for va plot ∆l	ne equ arious ?).	ation flows (Q	

	Р/ММР <u>1-355</u> NJ Flow				: No. <u>) (</u>	-26585	uppl.C a	ON NO. CC		
		DATE	IRE	DATE	REV	ORIGINATO	R DATE	IRE	Sheet No	
$\overline{\diamond}$	S/-	2/13/90	0	29 A x 90						REV.
					$\backslash \setminus$					₩ Z
	5.3.6	Determi with ei venturi	ther	the bour	s from nding p	intersect ump curve	ions of t or the c	he syst avitat	tem curves ing	
	5.3.7	the AFW	l flow	margins	s by co	mparing c	5.3.7 ab alculated yle number	and re	Calculate equired	
	5.3.9	Enter A	FW fl	ow rates	s and m	argins in	Table 2-	ι.		
•	5.3.10	Based o	on eng	ineering	g judge	ment, det	ermine if	the ma	argin is	
		accepta	ble f	or this	system	•			J	
	•	-								
:										
								•		
								·		
				·.						
		•								

 REV ORIGINATOR DATE INE DATE NEV ORIGINATOR DATE INE DATE SK Utility 214.240 G. O REFERENCES Calculation DC-2836 Supplement 'B' dated 5/9/90. Calculation DC-2836 Supplement 'A' dated 3/22/90. Westinghouse Feedline break reanalysis with reduced auxiliary feeflow dated 5/9/90 (SCE-90-578). UFSAR chapters 6, 15 and 16 are used to identify additional AFW frequirements. Impell calc. TH1 "Dedicated Safe Shutdown System" Job No. 0310-00 1372. Dated 4/22/85. SONGS 1 Small Break LOCA WCAP-9600, W NSSS Small Break Report 6/1979. Letter to NRC Emergency Procedure Upgrade, May 20, 1982. Station Blackout, SCE Doc. 90050 Rev. 1. Steamline Break Outside Containment WCAP.11294. Appendix 'R' Letter to NRC, Fire Protection Program, dated May 21 1985. Steamline Break Core Response UFSAR 6.2. ATWS, Letter to NRC, ATWS Mitigation System, July 1990. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements" 		PAGEC			ICCN NO./ PRELIM. CCN NO		IEET	N Sł	ΑΤΙΟ	ALCUL	C	
 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE S K 1/2/K 2/24.240 6.0 REFERENCES 1. Calculation DC-2836 Supplement 'B' dated 5/9/90. 2. Calculation DC-2836 Supplement 'A' dated 3/22/90. 3. Westinghouse Feedline break reanalysis with reduced auxiliary feefflow dated 5/9/90 (SCE-90-578). 4. UFSAR chapters 6, 15 and 16 are used to identify additional AFW i requirements. 5. Impell calc. TH1 "Dedicated Safe Shutdown System" Job No. 0310-00 1372. Dated 4/22/85. 6. SONGS 1 Small Break LOCA WCAP-9600, ¥ NSSS Small Break Report 6/1979. 7. Letter to NRC Emergency Procedure Upgrade, May 20, 1982. 8. Station Blackout, SCE Doc. 90050 Rev. 1. 9. Steamline Break Outside Containment WCAP.11294. 10. Appendix 'R' Letter to NRC, Fire Protection Program, dated May 21 1985. 11. Steamline Break Core Response UFSAR 6.2. 12. ATWS, Letter to NRC, ATWS Mitigation System, July 1990. 13. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements" 	- (1. C cc	28365UPP	: NO. <u>DC</u>	Cak	M	87.015	ммр <u>·1-35</u>	r DCP/	oject o
 5 K High & 24A±40 6.0 REFERENCES 1. Calculation DC-2836 Supplement 'B' dated 5/9/90. 2. Calculation DC-2836 Supplement 'A' dated 3/22/90. 3. Westinghouse Feedline break reanalysis with reduced auxiliary feeflow dated 5/9/90 (SCE-90-578). 4. UFSAR chapters 6, 15 and 16 are used to identify additional AFW frequirements. 5. Impell calc. THI "Dedicated Safe Shutdown System" Job No. 0310-00 1372. Dated 4/22/85. 6. SONGS 1 Small Break LOCA WCAP-9600, <u>W</u> NSSS Small Break Report 6/1979. 7. Letter to NRC Emergency Procedure Upgrade, May 20, 1982. 8. Station Blackout, SCE Doc. 90050 Rev. 1. 9. Steamline Break Outside Containment WCAP.11294. 10. Appendix 'R' Letter to NRC, Fire Protection Program, dated May 21 1985. 11. Steamline Break Core Response UFSAR 6.2. 12. ATWS, Letter to NRC, ATWS Mitigation System, July 1990. 13. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements" 		Sheet No			·/·							
 6.0 REFERENCES 1. Calculation DC-2836 Supplement 'B' dated 5/9/90. 2. Calculation DC-2836 Supplement 'A' dated 3/22/90. 3. Westinghouse Feedline break reanalysis with reduced auxiliary feedflow dated 5/9/90 (SCE-90-578). 4. UFSAR chapters 6, 15 and 16 are used to identify additional AFW frequirements. 5. Impell calc. THI "Dedicated Safe Shutdown System" Job No. 0310-00 1372. Dated 4/22/85. 6. SONGS 1 Small Break LOCA WCAP-9600, <u>W</u> NSSS Small Break Report 6/1979. 7. Letter to NRC Emergency Procedure Upgrade, May 20, 1982. 8. Station Blackout, SCE Doc. 90050 Rev. 1. 9. Steamline Break Outside Containment WCAP.11294. 10. Appendix 'R' Letter to NRC, Fire Protection Program, dated May 21 1985. 11. Steamline Break Core Response UFSAR 6.2. 12. ATWS, Letter to NRC, ATWS Mitigation System, July 1990. 13. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements" 		DATE	IRE	DATE	ORIGINATOR	REV	DATE	IRE				REV
 Calculation DC-2836 Supplement 'B' dated 5/9/90. Calculation DC-2836 Supplement 'A' dated 3/22/90. Westinghouse Feedline break reanalysis with reduced auxiliary feedflow dated 5/9/90 (SCE-90-578). UFSAR chapters 6, 15 and 16 are used to identify additional AFW frequirements. Impell calc. TH1 "Dedicated Safe Shutdown System" Job No. 0310-00 1372. Dated 4/22/85. SONGS 1 Small Break LOCA WCAP-9600, <u>W</u> NSSS Small Break Report 6/1979. Letter to NRC Emergency Procedure Upgrade, May 20, 1982. Station Blackout, SCE Doc. 90050 Rev. 1. Steamline Break Outside Containment WCAP.11294. Appendix 'R' Letter to NRC, Fire Protection Program, dated May 21 1985. Steamline Break Core Response UFSAR 6.2. ATWS, Letter to NRC, ATWS Mitigation System, July 1990. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements" 					.•	$\langle \rangle$	29 A 12 90	0	6/2/2	SK		0
 Calculation DC-2836 Supplement 'B' dated 5/9/90. Calculation DC-2836 Supplement 'A' dated 3/22/90. Westinghouse Feedline break reanalysis with reduced auxiliary feedflow dated 5/9/90 (SCE-90-578). UFSAR chapters 6, 15 and 16 are used to identify additional AFW frequirements. Impell calc. TH1 "Dedicated Safe Shutdown System" Job No. 0310-00 1372. Dated 4/22/85. SONGS 1 Small Break LOCA WCAP-9600, <u>W</u> NSSS Small Break Report 6/1979. Letter to NRC Emergency Procedure Upgrade, May 20, 1982. Station Blackout, SCE Doc. 90050 Rev. 1. Steamline Break Outside Containment WCAP.11294. Appendix 'R' Letter to NRC, Fire Protection Program, dated May 21 1985. Steamline Break Core Response UFSAR 6.2. ATWS, Letter to NRC, ATWS Mitigation System, July 1990. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements" 						\square						\wedge
 Calculation DC-2836 Supplement 'A' dated 3/22/90. Westinghouse Feedline break reanalysis with reduced auxiliary feedflow dated 5/9/90 (SCE-90-578). UFSAR chapters 6, 15 and 16 are used to identify additional AFW frequirements. Impell calc. TH1 "Dedicated Safe Shutdown System" Job No. 0310-00 1372. Dated 4/22/85. SONGS 1 Small Break LOCA WCAP-9600, <u>W</u> NSSS Small Break Report 6/1979. Letter to NRC Emergency Procedure Upgrade, May 20, 1982. Station Blackout, SCE Doc. 90050 Rev. 1. Steamline Break Outside Containment WCAP.11294. Appendix 'R' Letter to NRC, Fire Protection Program, dated May 21 1985. Steamline Break Core Response UFSAR 6.2. ATWS, Letter to NRC, ATWS Mitigation System, July 1990. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements" 										ERENCES	REF	6.0
 Westinghouse Feedline break reanalysis with reduced auxiliary feedflow dated 5/9/90 (SCE-90-578). UFSAR chapters 6, 15 and 16 are used to identify additional AFW frequirements. Impell calc. TH1 "Dedicated Safe Shutdown System" Job No. 0310-00 1372. Dated 4/22/85. SONGS 1 Small Break LOCA WCAP-9600, <u>W</u> NSSS Small Break Report 6/1979. Letter to NRC Emergency Procedure Upgrade, May 20, 1982. Station Blackout, SCE Doc. 90050 Rev. 1. Steamline Break Outside Containment WCAP.11294. Appendix 'R' Letter to NRC, Fire Protection Program, dated May 21 1985. Steamline Break Core Response UFSAR 6.2. ATWS, Letter to NRC, ATWS Mitigation System, July 1990. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements" 				0.	dated 5/9/9	nt 'B'	Suppleme	2836 \$	ion DC-	Calculat	1.	
 flow dated 5/9/90 (SCE-90-578). UFSAR chapters 6, 15 and 16 are used to identify additional AFW frequirements. Impell calc. TH1 "Dedicated Safe Shutdown System" Job No. 0310-00 1372. Dated 4/22/85. SONGS 1 Small Break LOCA WCAP-9600, <u>W</u> NSSS Small Break Report 6/1979. Letter to NRC Emergency Procedure Upgrade, May 20, 1982. Station Blackout, SCE Doc. 90050 Rev. 1. Steamline Break Outside Containment WCAP.11294. Appendix 'R' Letter to NRC, Fire Protection Program, dated May 21 1985. Steamline Break Core Response UFSAR 6.2. ATWS, Letter to NRC, ATWS Mitigation System, July 1990. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements" 				90.	dated 3/22/	ent `A'	Suppleme	2836 .	ion DC-	Calculat	2.	
 requirements. 5. Impell calc. TH1 "Dedicated Safe Shutdown System" Job No. 0310-00 1372. Dated 4/22/85. 6. SONGS 1 Small Break LOCA WCAP-9600, <u>W</u> NSSS Small Break Report 6/1979. 7. Letter to NRC Emergency Procedure Upgrade, May 20, 1982. 8. Station Blackout, SCE Doc. 90050 Rev. 1. 9. Steamline Break Outside Containment WCAP.11294. 10. Appendix 'R' Letter to NRC, Fire Protection Program, dated May 21 1985. 11. Steamline Break Core Response UFSAR 6.2. 12. ATWS, Letter to NRC, ATWS Mitigation System, July 1990. 13. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements" 	d	ary feed	uxilia	duced a	sis with re						3.	
 Dated 4/22/85. SONGS 1 Small Break LOCA WCAP-9600, <u>W</u> NSSS Small Break Report 6/1979. Letter to NRC Emergency Procedure Upgrade, May 20, 1982. Station Blackout, SCE Doc. 90050 Rev. 1. Steamline Break Outside Containment WCAP.11294. Appendix 'R' Letter to NRC, Fire Protection Program, dated May 21 1985. Steamline Break Core Response UFSAR 6.2. ATWS, Letter to NRC, ATWS Mitigation System, July 1990. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements" 	low	AFW flow	tional	fy addi	d to identi	are use	and 16	5, 15			4.	
 6/1979. 7. Letter to NRC Emergency Procedure Upgrade, May 20, 1982. 8. Station Blackout, SCE Doc. 90050 Rev. 1. 9. Steamline Break Outside Containment WCAP.11294. 10. Appendix 'R' Letter to NRC, Fire Protection Program, dated May 21 1985. 11. Steamline Break Core Response UFSAR 6.2. 12. ATWS, Letter to NRC, ATWS Mitigation System, July 1990. 13. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements" 	7-)310-007-	No. 0	em″ Job	utdown Syst	Safe Sł					5.	
 Station Blackout, SCE Doc. 90050 Rev. 1. Steamline Break Outside Containment WCAP.11294. Appendix 'R' Letter to NRC, Fire Protection Program, dated May 21 1985. Steamline Break Core Response UFSAR 6.2. ATWS, Letter to NRC, ATWS Mitigation System, July 1990. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements" 		ort	k Repo	11 Brea	<u>W</u> NSSS Sma	P-9600,	.OCA WCA	reak L	Small B		6.	
 Steamline Break Outside Containment WCAP.11294. Appendix 'R' Letter to NRC, Fire Protection Program, dated May 21 1985. Steamline Break Core Response UFSAR 6.2. ATWS, Letter to NRC, ATWS Mitigation System, July 1990. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements" 			82.	20, 19	pgrade, May	edure l	cy Proc	nergen	o NRC E	Letter t	7.	
 Appendix 'R' Letter to NRC, Fire Protection Program, dated May 21 1985. Steamline Break Core Response UFSAR 6.2. ATWS, Letter to NRC, ATWS Mitigation System, July 1990. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements" 					v. 1.	0050 Re	Doc. 9	t, SCE	Blackou	Station	8.	
 1985. Steamline Break Core Response UFSAR 6.2. ATWS, Letter to NRC, ATWS Mitigation System, July 1990. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements" 				•	WCAP.11294	ainment	de Cont	Outsi	e Break	Steamlin	9.	
 ATWS, Letter to NRC, ATWS Mitigation System, July 1990. 13. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements" 	,	May 21,	dated I	ogram, d	otection Pr	Fire Pr	o NRC,	tter t	`R' Le	Appendix 1985.	10.	
13. Design Calculation DC-3414 Rev. 0 "AFW Flow Requirements"					6.2.	e UFSAR	Respons	Core	e Break	Steamlin	11.	
			0.	uly 199	n System, J	tigatio	ATWS Mi	NRC,	tter to	ATWS, Le	12.	
14 Preliminary Engineering Package 1-3587 01SM			nts″	quireme	AFW Flow Re	ev. 0 "	-3414 R	ion DC	alculat	Design C	13.	
The mentaly ingreeting reckage 1-5507.015h					587.01SM	age 1-3	ng Pack	neeri	ary Eng	Prelimin	14.	
15. DC-2836 Rev 5.						-			Rev 5.	DC-2836	15.	
16. Crane Technical paper 410.					• •		410.	paper	chnical	Crane Te	16.	

	rdcp/MMP <u>1-358</u> AFN Flow			-		200000			 Sheet No	
REV		DATE	IRE	DATE	REV	ORIGINATOR	DATE	IRE		
$\overline{\diamond}$	SK	8/2/92	Ø	291490	\square					REV.
\wedge					\square					REV
7.0	NOMENCLATURE	<u> </u>			· · · ·			*		
1.0	GPM - Gallons	Don Mir	nuto							
				C 66:						
	K _{sys} - System F									
	K _v - Pressure	Loss Co	effic	ient for	° Ventu	ri (Non cav	itating)			
	PD – Pump Dis	charge I	Pressu	ire psig						
	P _{s/g} - Static	Pressur	re psi	g Steam	Genera	tor				
	S/G - Steam G	enerator	•	•						2
	ΔP - Pressure	Drop fo	or Sys	tem						
	Q - Flow (GPM)								
	P _{discharge} - Pump	-	ae pro	essure ((psia)					
	P _s - Pump suct				(P 37					
	-									
	P _L - Piping pr							·		
calc	additional no ulation.	menclatu	ire is	identi	fied in	the in the	body o	f the		
						•				

/

	L DEPART								-
CALCUL	IOITA	N Sł	HEET		ICCN NO./ PRELIM. CCN NO).		PAGEOF	17
	7.015M	1	Calc	No. DC	-2618 SUD	1. C' co	ON CONVER	···· ~	
ubject AFN FIDW				<u>v</u>				Sheet No	
	DATE	IRE	DATE	REV	ORIGINATOR	DATE	IRE		T
	8/2/9.	Ø	29A3645	\square					REV.
	19413	0	210.010	(\land)				```	REV
				$/ \setminus$					<u>۳</u>
calculat from Wyl is moved cavitati To refer drops du discharg discharg A. Calculat Pipe ele	tion are le labs. i to the ion curve rence the ie to the ge and th ge pressu te the pr evation a	furth The ventues. e pump e elev ne ver ure for ressur nt ver	ner corr referen uri inle curves vation c nturi in or the d re drop nturi	ected ice poi t to p at th hanges let ha lesign ΔP due 23.	the previou for the actu nt of the pu rovide dire and line lo ve to be sub flow rates. to elevatio 17 Ft @ FE 3 B3 Ft @ GlOs	al vent imp and ect read let, th osses be otracted on chang 066 (hi	curi to system ling o me pres tween from ges: ghest	est data m curves f the ssure the pump the venturi)	
B. Calculat Compare return t	e line l calculat he servi	osses ed li ce te	s to the ine loss esting.	34 Ft ventu es to	5.34 Ft (Max * 0.4328 psi ri the field da essure drop	/Ft = 2 ta from	2.74 ps		
				·				· .	
26 psi @	325 gpm	ו (f	rom pum	p discl	narge to con	trol va	lves)		
the line simplifi venturie selected	e losses ed sketc s. The because	from h for Pump it h	control calcul G-10 fl as the	valve: ating A ow path highest	lculate line s to venturi AP from one n the Steam t resistance o lower pump	es. Use pump to Generat (The c	the to one co or B w alc wi	below of the was	^
			·						

· · · ·

roject or D	CP/MMP] -	-3587.0]SM	Calc No. <u>D (</u>	-2836 Supp		N CONVERSION: IN NO. CCN	C-1	
ubject <u>A</u>	FW flow n	requirement	verificatio	in		She	et No	
REV	ORIGINATOR	DATE IRE	DATE REV	ORIGINATOR	DATE	IRE	DATE	Ţ
	SK.	8/28/90 0	2410:40	L				
\square								
					·	I		T
			FIGURE 1					
			SYSTEM SCHEM	ATIC				
				•			•	
	•.							
			G	2		.		
		\bigcap			· · · · · · · · · · · · · · · · · · ·	SIGIC	•	
		φ	CI	2300C FES	3076	4 - L		.=
						-SIGIE	ζ.	
		Mov	C	12300B FE 3	1077	Polofic	,	
	\sum				*	<u>.</u>		
	AFW PUM	G				-SIG IA		
			230	οΔ FE3	066		• .	
					:			
								• •
			•					

•	C	ALCU	LATIO	N SI	HEET		ICCN NO./ PRELIM. CCN NO			CI - PAGEO	19
oject c	or DCP/N	1MP <u>1-3</u>	587.01	SM	Cak	c No. <u>DC</u>	-263850P	pić 🗠	IN CONVER	nsion: N C - 1	
			VERI	-						Sheet No	
REV	0	RIGINATOR	DATE	IRE	DATE	REV	ORIGINATOR	DATE	IRE	DATE	
0	5	K	\$/28/9-5	Ð	291444	1/			_		
$\overline{\ }$											BEV
			1	1	· .					<u>-</u>	1
	D.	31 W	25 gpm. ith the t	325 gr est da	om was s ata.	selecte	rge to the d d to provide	e a dire	ect com	mparison	
			onvert C _v alues:	value	s of th	e motor	operated a	nd cont	rol va	lves to K	
		K. W	control valve = NETE C _v =	891 d⁴ 28.8	/C,² (R (Ref.1	ef. 16) 5 page	Eq. 1 11) and d=	3″			-
		K,	control valve	87							
		K,	_{MOV} = 8.72	2 , wh	ere C _v =	91 (Re	ef. 15 page	11)			
	E.	. C	onvert li	ine lo	sses to	K valu	es:				
		L	= f L/D = 221 Ft, = 327 Ft,	K= 16	5 and,	Eq. 2 ,	where f=0.()18, D=0).25 F	t	
	F.	. D	etermine	total	К:						
		K,	_{otal} = K _{tine}	+ K _{mov}	= 16 +	8.72 =	24.72				8
		K,	_{otal} = K _{contre}	+ even is	K _{tine to vent}	uni =23.5	+ 87 = 110	.5			
	G.		alculate ncluded b				l valve inle	et (K co	ontrol	valve not	
		۵	P = 0.000	01799	* K * E	B * Q² /	′d⁴ Eq.∷	B			
		۵	P pump to	bran	ch:						
		S	olve the	above	equatio	on for	the followin	ng;			
		В	= 62.35	lb/ft	•, Q =	325 gpn	n, d = 3"				
		.•	K _{total} =24.7								

CALCULATION SHEETConcorrelation of the concorrelation of the	.1											
rejuct or DCPAMMP [(CALC	UL	ATIO	N Sł	HEET					PAGEOF	
REV ORIGNATOR DATE THE DATE REV ORIGNATOR DATE THE DATE $S \neq$ $(1/2)/2 \oplus 2/3 \times 2^{0}$ $(2/3 \times 2^{0})$ $(2/$	Project or DC	P/MMP (_	358	1.01SM		Cak	NO. DC.	- 2638 SUPPI.			^ .	
REV ORIGNATOR DATE THE DATE REV ORIGNATOR DATE THE DATE $S \neq$ $(1/2)/2 \oplus 2/3 \times 2^{0}$ $(2/3 \times 2^{0})$ $(2/$	Subject	EW FIR	ω	VERI	- ·						Sheet No	
$\Delta P = 36.15 \text{ psi}$ $\Delta P \text{ branch to Control Valve inlet:}$ $B = 62.35 \text{ lb/ft}^3, Q = 108.33 \text{ gpm, } d = 3''$ $K_{cont} = 23.5$ $\Delta P = 3.8 \text{ psi}$ Therefore; the pressure drop from the pump discharge to the inlet to the venturies at 325 gpm is; 36.15 psi + 3.8 psi 39.95 psi H. Comparing the field data to the calculated values; (39.95/25) = 59.8% difference This difference indicates that the calculation will be conservative for the cases sensitive to lower pump curves. Cases that are not conservative will be identified and corrected for higher expected pressures. It can be expected that the test results will be 15 psi higher at the inlet to the control valve is calculated to determine the pressure venturi inlet. I. The ΔP for the control valve is calculated to determine the pressure venturi inlet. $\Delta P = 14.14$ from eq. 2 where B= 62.35 lb/ft ² , Q= (325/3)=108 gpm, d=3'', K=87 Therefore, line losses to the venturi inlet are; $\Delta P = 39.95 + 14.14 = 54 \text{ psi} @ 325 \text{ gpm.}$ J. Create a pressure loss table, 8-1, as a function of pump flow:							REV	ORIGINATOR	DATE	IRE	DATE	
$\Delta P = 36.15 \text{ psi}$ $\Delta P \text{ branch to Control Valve inlet:}$ $B = 62.35 \text{ lb/ft}^3, Q = 108.33 \text{ gpm, } d = 3''$ $K_{cont} = 23.5$ $\Delta P = 3.8 \text{ psi}$ Therefore; the pressure drop from the pump discharge to the inlet to the venturies at 325 gpm is; 36.15 psi + 3.8 psi 39.95 psi H. Comparing the field data to the calculated values; (39.95/25) = 59.8% difference This difference indicates that the calculation will be conservative for the cases sensitive to lower pump curves. Cases that are not conservative will be identified and corrected for higher expected pressures. It can be expected that the test results will be 15 psi higher at the inlet to the control valve is calculated to determine the pressure venturi inlet. I. The ΔP for the control valve is calculated to determine the pressure venturi inlet. $\Delta P = 14.14$ from eq. 2 where B= 62.35 lb/ft ² , Q= (325/3)=108 gpm, d=3'', K=87 Therefore, line losses to the venturi inlet are; $\Delta P = 39.95 + 14.14 = 54 \text{ psi} @ 325 \text{ gpm.}$ J. Create a pressure loss table, 8-1, as a function of pump flow:		SK		8/2/9/2	0	29 A x 90	\square	•				REV.
$\Delta P \text{ branch to Control Valve inlet:}$ $B = 62.35 \text{ lb/ft}^3, Q = 108.33 \text{ gpm, } d = 3''$ $K_{\text{town}} = 23.5$ $\Delta P = 3.8 \text{ psi}$ Therefore; the pressure drop from the pump discharge to the inlet to the venturies at 325 gpm is; $36.15 \text{ psi} + 3.8 \text{ psi}$ 39.95 psi H. Comparing the field data to the calculated values; $(39.95/25) = 59.8\% \text{ difference}$ This difference indicates that the calculation will be conservative for the cases sensitive to lower pump curves. Cases that are not conservative will be identified and corrected for higher expected pressures. It can be expected that the test results will be is higher at the inlet to the control valve for this flow rate. I. The ΔP for the control valve is calculated to determine the pressure venturi inlet. $\Delta P = 14.14 \text{ from eq. } 2$ where B= 62.35 lb/ft ³ , Q= (325/3)=108 gpm, d=3'', K=87 Therefore, line losses to the venturi inlet are; $\Delta P = 39.95 + 14.14 = 54 \text{ psi } 0.325 \text{ gpm.}$ J. Create a pressure loss table, 8-1, as a function of pump flow:	$\left \right\rangle$						\square					
$\Delta P \text{ branch to Control Valve inlet:}$ $B = 62.35 \text{ lb/ft}^3, Q = 108.33 \text{ gpm, } d = 3''$ $K_{\text{town}} = 23.5$ $\Delta P = 3.8 \text{ psi}$ Therefore; the pressure drop from the pump discharge to the inlet to the venturies at 325 gpm is; $36.15 \text{ psi} + 3.8 \text{ psi}$ 39.95 psi H. Comparing the field data to the calculated values; $(39.95/25) = 59.8\% \text{ difference}$ This difference indicates that the calculation will be conservative for the cases sensitive to lower pump curves. Cases that are not conservative will be identified and corrected for higher expected pressures. It can be expected that the test results will be is higher at the inlet to the control valve for this flow rate. I. The ΔP for the control valve is calculated to determine the pressure venturi inlet. $\Delta P = 14.14 \text{ from eq. } 2$ where B= 62.35 lb/ft ³ , Q= (325/3)=108 gpm, d=3'', K=87 Therefore, line losses to the venturi inlet are; $\Delta P = 39.95 + 14.14 = 54 \text{ psi } 0.325 \text{ gpm.}$ J. Create a pressure loss table, 8-1, as a function of pump flow:	<u> </u>		4.0	26.15			K		<u></u>			
 B = 62.35 lb/ft³, Q = 108.33 gpm, d = 3" K_{totul} =23.5 ΔP = 3.8 psi Therefore; the pressure drop from the pump discharge to the inlet to the venturies at 325 gpm is; 36.15 psi + 3.8 psi 39.95 psi H. Comparing the field data to the calculated values; (39.95/25) = 59.8% difference This difference indicates that the calculation will be conservative for the cases sensitive to lower pump curves. Cases that are not conservative will be identified and corrected for higher expected pressures. It can be expected that the test results will be 15 psi higher at the inlet to the control valve for this flow rate. I. The ΔP for the control valve is calculated to determine the pressure venturi inlet. ΔP = 14.14 from eq. 2 where B= 62.35 lb/ft³, Q = (325/3)=108 gpm, d=3", K=87 Therefore, line losses to the venturi inlet are; ΔP = 39.95 + 14.14 = 54 psi @ 325 gpm. J. Create a pressure loss table, 8-1, as a function of pump flow: 					-						•	
 K_{tone} =23.5 ΔP = 3.8 psi Therefore; the pressure drop from the pump discharge to the inlet to the venturies at 325 gpm is; 36.15 psi + 3.8 psi										· .		
 ΔP = 3.8 psi Therefore; the pressure drop from the pump discharge to the inlet to the venturies at 325 gpm is; 36.15 psi + 3.8 psi			B =	62.35	1b/ft ³	, Q =	108.33	gpm, d = 3''				
Therefore; the pressure drop from the pump discharge to the inlet to the venturies at 325 gpm is; 36.15 psi 36.15 psi 39.95 psi H. Comparing the field data to the calculated values; (39.95/25) = 59.8% difference This difference indicates that the calculation will be conservative for the cases sensitive to lower pump curves. Cases that are not conservative will be identified and corrected for higher expected pressures. It can be expected that the test results will be 15 psi higher at the inlet to the control valve for this flow rate. I. The ΔP for the control valve is calculated to determine the pressure venturi inlet. $\Delta P = 14.14$ from eq. 2 where B= 62.35 lb/ft ³ , Q= (325/3)=108 gpm, d=3", K=87 Therefore, line losses to the venturi inlet are; $\Delta P = 39.95 + 14.14 = 54$ psi @ 325 gpm. J. Create a pressure loss table, 8-1, as a function of pump flow:			K,,	=23.5								
 inlet to the venturies at 325 gpm is; 36.15 psi 38 psi 39.95 psi H. Comparing the field data to the calculated values; (39.95/25) = 59.8% difference This difference indicates that the calculation will be conservative for the cases sensitive to lower pump curves. Cases that are not conservative will be identified and corrected for higher expected pressures. It can be expected that the test results will be 15 psi higher at the inlet to the control valve for this flow rate. I. The ΔP for the control valve is calculated to determine the pressure venturi inlet. ΔP = 14.14 from eq. 2 where B= 62.35 lb/ft³, Q= (325/3)=108 gpm, d=3", K=87 Therefore, line losses to the venturi inlet are; ΔP= 39.95 + 14.14 = 54 psi @ 325 gpm. J. Create a pressure loss table, 8-1, as a function of pump flow: 			ΔP	= 3.8 p	si		•				· .	
 + 3.8 psi 39.95 psi H. Comparing the field data to the calculated values; (39.95/25) = 59.8% difference This difference indicates that the calculation will be conservative for the cases sensitive to lower pump curves. Cases that are not conservative will be identified and corrected for higher expected pressures. It can be expected that the test results will be 15 psi higher at the inlet to the control valve for this flow rate. I. The ΔP for the control valve is calculated to determine the pressure venturi inlet. ΔP = 14.14 from eq. 2 where B= 62.35 lb/ft³, Q= (325/3)=108 gpm, d=3", K=87 Therefore, line losses to the venturi inlet are; ΔP= 39.95 + 14.14 = 54 psi @ 325 gpm. J. Create a pressure loss table, 8-1, as a function of pump flow: 									ıp disch	narge t	to the	
 39.95 psi H. Comparing the field data to the calculated values; (39.95/25) = 59.8% difference This difference indicates that the calculation will be conservative for the cases sensitive to lower pump curves. Cases that are not conservative will be identified and corrected for higher expected pressures. It can be expected that the test results will be 15 psi higher at the inlet to the control valve for this flow rate. I. The ΔP for the control valve is calculated to determine the pressure venturi inlet. ΔP = 14.14 from eq. 2 where B= 62.35 lb/ft³, Q= (325/3)=108 gpm, d=3", K=87 Therefore, line losses to the venturi inlet are; ΔP= 39.95 + 14.14 = 54 psi @ 325 gpm. J. Create a pressure loss table, 8-1, as a function of pump flow: 				•							•	
 H. Comparing the field data to the calculated values; (39.95/25) = 59.8% difference This difference indicates that the calculation will be conservative for the cases sensitive to lower pump curves. Cases that are not conservative will be identified and corrected for higher expected pressures. It can be expected that the test results will be 15 psi higher at the inlet to the control valve for this flow rate. I. The ΔP for the control valve is calculated to determine the pressure venturi inlet. ΔP = 14.14 from eq. 2 where B= 62.35 lb/ft³, Q= (325/3)=108 gpm, d=3", K=87 Therefore, line losses to the venturi inlet are; ΔP= 39.95 + 14.14 = 54 psi @ 325 gpm. J. Create a pressure loss table, 8-1, as a function of pump flow: 			• —									
 (39.95/25) = 59.8% difference This difference indicates that the calculation will be conservative for the cases sensitive to lower pump curves. Cases that are not conservative will be identified and corrected for higher expected pressures. It can be expected that the test results will be 15 psi higher at the inlet to the control valve for this flow rate. I. The ΔP for the control valve is calculated to determine the pressure venturi inlet. ΔP = 14.14 from eq. 2 where B= 62.35 lb/ft³, Q= (325/3)=108 gpm, d=3", K=87 Therefore, line losses to the venturi inlet are; ΔP= 39.95 + 14.14 = 54 psi @ 325 gpm. J. Create a pressure loss table, 8-1, as a function of pump flow: 				39.95 p	si,							
 This difference indicates that the calculation will be conservative for the cases sensitive to lower pump curves. Cases that are not conservative will be identified and corrected for higher expected pressures. It can be expected that the test results will be 15 psi higher at the inlet to the control valve for this flow rate. I. The ΔP for the control valve is calculated to determine the pressure venturi inlet. ΔP = 14.14 from eq. 2 where B= 62.35 lb/ft³, Q= (325/3)=108 gpm, d=3", K=87 Therefore, line losses to the venturi inlet are; ΔP= 39.95 + 14.14 = 54 psi @ 325 gpm. J. Create a pressure loss table, 8-1, as a function of pump flow: 		Η.	Com	paring	the fi	ield dat	a to tl	ne calculate	d value	es;	·	
conservative for the cases sensitive to lower pump curves. Cases that are not conservative will be identified and corrected for higher expected pressures. It can be expected that the test results will be 15 psi higher at the inlet to the control valve for this flow rate. I. The ΔP for the control valve is calculated to determine the pressure venturi inlet. $\Delta P = 14.14$ from eq. 2 where B= 62.35 lb/ft ³ , Q= (325/3)=108 gpm, d=3", K=87 Therefore, line losses to the venturi inlet are; $\Delta P = 39.95 + 14.14 = 54$ psi @ 325 gpm. J. Create a pressure loss table, 8-1, as a function of pump flow:			(39	.95/25)	= 59.	.8% diff	erence				·	
pressure venturi inlet. ΔP = 14.14 from eq. 2 where B= 62.35 lb/ft ³ , Q= (325/3)=108 gpm, d=3", K=87 Therefore, line losses to the venturi inlet are; ΔP= 39.95 + 14.14 = 54 psi @ 325 gpm. J. Create a pressure loss table, 8-1, as a function of pump flow:			con Cas cor tha	servati es that rected t the t	ve for are r for hi est re	the cand t cons gher ex sults w	ses ser ervativ pected vill be	nsitive to 1 /e will be i pressures. 15 psi high	ower pu dentifi It car	imp cur ed and i be ex	rves. I (pected	
where B= 62.35 lb/ft ³ , Q= (325/3)=108 gpm, d=3", K=87 Therefore, line losses to the venturi inlet are; ΔP= 39.95 + 14.14 = 54 psi @ 325 gpm. J. Create a pressure loss table, 8-1, as a function of pump flow:		Ι.						is calculate	d to de	termin	ne the	
Therefore, line losses to the venturi inlet are; ΔP= 39.95 + 14.14 = 54 psi @ 325 gpm. J. Create a pressure loss table, 8-1, as a function of pump flow:			ΔP	= 14.14	from	eq. 2						
ΔP= 39.95 + 14.14 = 54 psi @ 325 gpm. J. Create a pressure loss table, 8-1, as a function of pump flow:			whe	re B= 6	2.35 1	b/ft³,	Q= (32	5/3)=108 gpr	n, d=3″	, K=87		
ΔP= 39.95 + 14.14 = 54 psi @ 325 gpm. J. Create a pressure loss table, 8-1, as a function of pump flow:			The	refore,	line	losses	to the	venturi inl	et are;			
	•											
		J.						8-1, as a f	unction	of pu	mp flow:	

	originator SL	DATE 8/28/90	IRE Ø	DATE	REV	ORIGINATOR	DATE	IRE	DATE
		/28/10			$[\land]$				· <u> </u>
N		<u>1</u>	ł		<u> </u>				· ·
			L	ine Lo	ss Table	8-1			
	Pump Fl (gpm)	ow		oump branch		:h to Ventu	Tot	al Loss	5
	(JF)						<u> </u>		-
	50 100		0.8 3.4		0.42 1.7	2		.3	
	150		7.7	7	3.82	2	11	. 5	
	200 250		13.7 21.4		6.8 10.6		20	. 5	
	300		30.8		15.3		46	.1	
	350 400		41.9 54.8		20.82 27.82		62 82		
	450 500		69.3		34.4		. 103	.7	
	500		85.6)	42.5		128	.1	
	Based o	n the ab	ove va	alues i	n table	8-1 revise ump flow.	the pum	p curve	s to
	The tab	le is cr	eated	by red	ucing th	e pressure	at the	pump di	scharge
	by the	values i	n the	table	8-1.			• •	5
К.	The rev	ised sys	tem pr	ressure	curves	at inlet to	o ventur	i are s	hown on:
	Table 8		- G10W						
	Table 8	-3	G105				•		
	Table 8		G10						
1	G10 + G	10S curv rves.of	es wer	e gener	rated gr	aphically I	oy addin	g the r	esultant
	pamp ca								
									•

	FOW VE	DATE	IRE	DATE	REV	ORIGIN	ATOR	DATE	IRE	Sheet No DATE
5	K	8/21 AD	A	29AU69)	\bigtriangleup					·
	n				\square					
			·							,
									к. С.	
	G10W sy	ystem pr	essur	e curve	at inle	t to v	/entur	i:Tabl	e 8-2	
	System f (gpm)	Flow		ch.Press ig)*	. Line to Ve		∆ele to v	v pump	Pump p @ vent	
	(377		(85	. 97		ncarr	00 4	encuri	(psig)	
	0	<u> </u>	1210	<u>.</u> .						
	50		1319 1310		- 1.3		2.7 2.7		1312 1306	.3
	100		1290		1.3		2.7		1286	
	150 200		1260 1200		11.5 20.5		2.7 2.7		1246	
	250		1130		32		2.7		1177 1095	
	300		1050		46.1		2.7		1001	
	350 400	-	590 830		62.7		2.7		885	
	450		705		82 103.7		2.7 2.7		745 599	
ischar	ge pressu									•
	G1OS sy	stem pr	essure	curve a	at inle	t to v	enturi	Table	e 8-3	
	System F (gpm)	low	Disc (psi	h.Press. g)**	Line to Ver			′pump enturi	Pump p @ vent (psig)	uri
	0		1225		-		2.	7	1222.	3
	50 100		1205 1170		1.3		2.		1201	0
	150		1170		$\begin{array}{c} 5.1 \\ 11.5 \end{array}$		2. 2.		1162. 1095.	
	200		1010		20.5		2.	-	986.	
	250		900		32		2.	7	865.	3
	300 350		780 640		46.1		2.		771.	
	400		480		62.7		2.	/	574.	6

REV	ORIGINATOR										_
		DATE	IRE	DATE	REV	ORIGINA		DATE	IRE	DATE	
0	SK	0/28/93	0	291490	$\langle \rangle$						
\frown											
N		.			<u>r</u>						-+
** Disc	harge pres	sures we	ere ext	tracted	from Fi	g.3 Pag	ge 51	of Ret	ference	e 2.	
	G10 sy	/stem pro	essure	curve	at inle	t to ve	nturi	Table	8-4		
	System (gpm)	Flow		ch.Press	5. Line	Loss	Aelev	pump	Pump		
	(90)		(ps)	ly)~	to Ve	nturi	to ve	nturi	0 ver (psig		
									(bs i	4)	
	0		1305		-		2.	7	130	02.3	-
	50		1280		1.3		2.		127	76.4	
	100		1245		5.1		2.			37.2	
	150 200		1210		11.5		2.			95.8	
	250		1170		20.5		2.			16.8	1
	300		1130 1070		32		2.			95.3	
	350		1000		46.1		2.			21.2	
	400		930		62.7		2.		93		
	400		930		82		2.	/	84	5.3	
* Discha	arge pressu	ure were	extra	cted fr	om Fia.	3 page	51 o	f Ref	2		
	•					- F-3-				•	
	G10 + G105	S system	press	ure cur	ve at i	nlet to	vent	uri Ta	ble 8-	.5	
	System A				. Line		∆elev			press.	
	(gpm)			g)**	to Ve		to ve		0 ven		
			- VE * *	57		, eur i		·	(psig		
									(0019		
	200	•	1210		6.8		2.	7	120	0	
,	300		1175		15.3		2.		115		
	400		1120		27.8		2.		108		
* Dicch					- .	•					
DISCI	large press	sure wer	e extr	acted f	rom Fig	. 3 pag	e 51 (of Ref	. 2.		
ine los	ses were t	ased on	1/2 +	ha flow	through	n tha h	wanah	and 1	/2 +h.	منتقل المراجع	
enturi	piping.		· · ·		throug	i the D	ranch	and I	/3 thr	ougn the	
			<u>.</u>						• .		

L

		-3587.015				PRELIM. CON NO	00		ION:	DF
		-5581.015 ON VER	•			1490 Stopping		N NO. CCN	•	
ject Ar			ITL	DATE		ORIGINATOR	DATE		Sheet No	
		611	D	29AUGD		UHIGINATUH	DATE	IRE	DATE	
$\overset{\circ}{\prec}$	SK	428 90	a	27/10690	\mathbb{Z}					_
					$\langle \rangle$	-				
	•	Calculate generators		levation	ı change	e from 3″ ve	nturi t	o the s	steam	
						erator i(FE 3076)				
							9.7 Ft			
		Comunent to		10.7.0						
		convert to	ps1 =	= 19./ T	τ×0.4	329 psi/ft	= 8.53			
M	1	Determine steam gene			drop fr	om the vent	uri out	let to	the	
		L = 174.5	Elev.	to stea	ım gener	ator B				
		convert L	to K:							
		K = f L/D	, wher	re_f = 0	.018 an	d D = 0.25	Ft			
		K = 12.56								
N	l	Calculate	∆P for	pump f	low of	325 gpm fro	m Eq.3:			
	·	$\Delta P = 2.04$ where B =	per si 62.35	ingle fl lb/ft³,	ow bran Q = 32	ch 5/3 = 108 gj	om, D =	3″		
0	•	Calculate	the ∆F	for th	e ventu	ries.				
		Refine the each ventu		ıri test	data a	nd determin	e the K	, value:	s for	
		$K_v = \Delta P/Q^2$								
				•						
		•								

•	<u></u>		M	Cak		PRELIM CON NO	CC	N CONVER	ISION:	DF
	W Flow		_	-		-663030			Sheet No	
REV	ORIGINATOR	DATE	IRE	DATE	REV	ORIGINATOR	DATE	IRE	DATE	
Δ	ς κ	2/28/As	A	29 AUL 90						REV.
$\overline{\mathbf{A}}$		1/00/10			$[\land]$				- · · · · · · · ·	REV.
	From th	e test d	lata (s	see atta	chment	A):				
			Tahl	le 8-6						
			ומטו	1e 0-0						
	ΔP		Q_{test}		К,		Ventur	^i		
	1 <u></u>	•		<u> </u>			<u></u>			
	86.9		106.		7.62		5530			
	55.6 32.2		84.2 61.4		7.84E 8.54E					
	27.3		55	r	9.03E					
					<u> </u>	3.26E-3				
					∿,ave [≕] (5.202-3	·			
	100.1		101.	c	0.75	,	5531			
	67.3		82.3		9.7E- 9.94E		5531			
	39.4		62.4	ļ	1.01E	-2				
	29.9		54.4		1.01E	-2				
					K,=9	.96E-3				
	72 E		105	1			5500			
	73.6 47		105. 84.7		6.67E 6.55E		5532			
	29		62.9) i i	7.33E	-3				
	21.5		54.5		7.24E	-3				
					K _{v.ave} =6	.95E-3				
Ρ.	ma					reate a syst the venturi				
	Οοι ΔΡ	nvert K, =K, * Q²	to ∆P	using K	$\zeta = \Delta P/r$	Q ² solving t	for ∆P;			
	ΔP	$= \Delta P_{venturi}$	+ ∆P	ping						

 $K_v = 6.95 \times 10^3 (5532)$

 $\dot{K_v} = 9.96 \times 10^{-3}$ (5531)

(CALC	ULAT	ION S	HEET		0./ I. C <u>CN NO.</u>				- 21 OF
	name l	2027.0	ICM	Calc No						<u> </u>
	_				<u>UL-1030</u>	SUPP		NNO.CC	<u> </u>	
ect <u>A</u>	W FR	W VEI		110NI					Sheet No	
	ORIGINAT				REV ORIGINA	TOR	DATE	IRE	DATE	_
	SK	8/20/	90 0	291AUR90/			•	• •		
					\sum					
N								·		╈
		Syst	em Loss	Table 8-7						
Pu	mp Flow	Single	Venturi				n.∆P			
ra	ce(gpm)	Flow(gp	n)	LOSS(PS1)	(psi)	(p:	si)			
50		16.6		0.043	2 7	1 (<u> </u>			
10		33.3		0.043	2.7 11	1.9				
15		50	I	0.43	24.75	17.3	37			
20 25		66.6		0.77	44 69.75	30.8				
30		83.7 100		1.2 1.7	68.75 99	48.2 69.5				
35		116		2.4	134.75	94.5				
40		133.33		3.1	176	123				
. 45	0	150		3.9	222.7	156.				
8.	l Case	4.1. Lo	oss of No	ormal Feed	(@ S/G pro	essure	of 10	30 psi	ia)	
	This numb	case is er 3. (1	identif [.] Ref. 1).	ied in the	calc. DC-28	335 Sup	pleme	nt ″B″	as case	
	•	Calculat	e the sy	/stem losse	s as a fund	ction c	of flo	N.		
	(-l-	ulated .		• .				•		
	elev	ation cha	P for the inges fro	e system cu om the vent	rves have 1 uries to si	cobea ceamge	idjust inerati	ed for ors.	•	
	Loss	due to e	levatior	n = 8.5 psi	d					
	∆P M	ax. and M	lin. vent	uri (Table:	8-5)					
	P =	P _{s/g} + ΔP	+ Elev.	Loss						
	Ρ=	1015.3 +	8.5 + A F	9 =1023.8 +	ΔP		-			
			m Curves		ased on Fig					
Ų	urve	Max.	psig Min.	GIOW	%	Margi	n			
	50	1052	1044	252-265	. 3	9%				-
2	50	1097	1077							
	50	1164	1123							
3	50	1254	1187							

	W FIOW		~		: No. <u> </u>	-2638 Sup			<u></u> <u>C-1</u>	
REV		DATE.	IRE	DATE	REV	ORIGINATOR	DATE	IRE	Sheet No DATE	
$\overline{\mathbb{A}}$	SK	8/20/95	Q	24 A.X.90			DAIL			4
$\tilde{\wedge}^{\dagger}$		100110			$[\land]$, , , , , , , , , , , , , , , , , , , 	·		·	
N										_
	Psig = P	9s/g + ΔF = % cal	P + El Iculat	ev. los ed base	s d on th	curve/3) pe e ratio of c.	Ň		itor	
	PS/G = 1	030 psia	a = 10	15.3 ps	ig					
	% margin	s of 36%	is b	ased on	pump G	10W.				
•	unt	il it re	aches	cavita	tion fl	of the broke ow rate. By d as follow	using a	increa attachm	ses ent "A"	
		= K, * ΔP								
	∆P=	1168.5	psid,	Q= 136	.3 gpm,	K _v = 15.9				
	Using Re	f. 1 met	hod o	btain th	ne follo	owing:				
	$Q_{T} = 2 * Q_{u}$	naffected S/G	+Q _{thre}	sughout the brea	nic .					
	Q _T = 2*Q ₁	+ Q ₂								
	Q _T = 2* K ₁	2 * (P _D ·	- P _{s/g} -	ΔP _{EL}) ^{1/2}	+ K _{CAVIT}	ATTON *(P_+(14	.7-P _v) ^{1/2}			
					,	sys without venturi	••			
						$K_{sys} = 5.12E$	- 4			
	-1,2 -7 (*			/ -	··• ,	"sys = 0.12L"	т			

oject or DCF	р/ммр <u>1-357</u>	37.015M	Cak	: No. <u>1)C - 2</u>	PRELIM. CON NO 638 SUPP		CN CONVER		DF
bject <u>AF</u>	W Flow	IERIFICAT	ION					Sheet No	
REV	ORIGINATOR			REV	ORIGINATOR	DATE	IRE	DATE	
0	SK	8/22/95 0	2 41 46 2	\mathbb{Z}				· · ·	REV.
				$\langle \rangle$					R.
					,				
	Venturi	∆P(ps	id)	Q(gpm)	K	itation			
				· · · · ·					
	5530 5531	1168. 1175.		136.3 139.7	-	.99 .07			
	5532	1178.2		136.5		.98			
	Use K _{cavita}	tion =4					-		
	K _{CAVITATION}	$= (K_{v})^{1/2} = 4,$	where K	= 15.9			•		
		÷							
	ΔP	2* Q,	Q2	Q_{τ}					
	1000	050							
	1200 1190	259 250	139 139	398 389					
	1180 1170	243 235	138 138	381					
	1160	227	138	373 364					
	1140 1100	209 168.5	136	345					
	1050	96.5	133.5 130.5	302 227					
	1026	0	129	129					
•	Plot abo	ve $\triangle P$ and Q	т.						ľ
	This cur	ve intersec	ts with n	1000 G10W	at 270 on	m @ 107	15 noid		
	Extendin	q this poin	t to the	5532 ven	turi curve	at 390) anm 8	1075	
	psig. Un	e third (ou	t the bre	ak) of t	his value	subtrac	ted fr:	om 270	
	gpm with	o 140 gpm (a margin o	f 40%.	j. inere	TOPE AFW 1	IOW TO	2 3/69	5 15 140	
		-							
		MEULO							
. 8.3	lase 4.3	MFW Break	Downstrea	m					
	This cas	e is identi	fied in t	he calc.	DC-2835 S	uppleme	ent `B'	as Case	
	No. 2 (R	ет. П.							1

SK	3/28/75 0	DATE 24111690	REV	ORIGINATOR	DATE	IRE	DATE	
								-
Venturi	∆P(psid)	Q(gpm)	K _{cavit}	ation			
5530 5531 5532	1168.5 1175.7 1178.2		136.3 139.7 136.5	3.9 4.0 3.9	07			
Use K _{cavita}	tion =4							
K _{CAVITATION}	$= (K_v)^{1/2} = 4, v$	where K _v =	15.9					
ΔP 2 ⁴	r Q ₁ Q ₂		Q _T					
1200 1190 1180 1170 1160 1140	259 250 243 235 227 209	139 139 138 138 137 136	398 389 381 373 364 345					
1100 1050 1026	168.5 96.5 0	133.5 130.5 129	302 227 129				,	
•	Plot above	ΔP and (Q _{T.}					
This cur	ve intersects	s with p	ump G10W	at 267 gpm	n.			
G10+G10S	cavitate at	393 gpm	•			•		
Margin f	or this case	for G10	l is 1679	.				

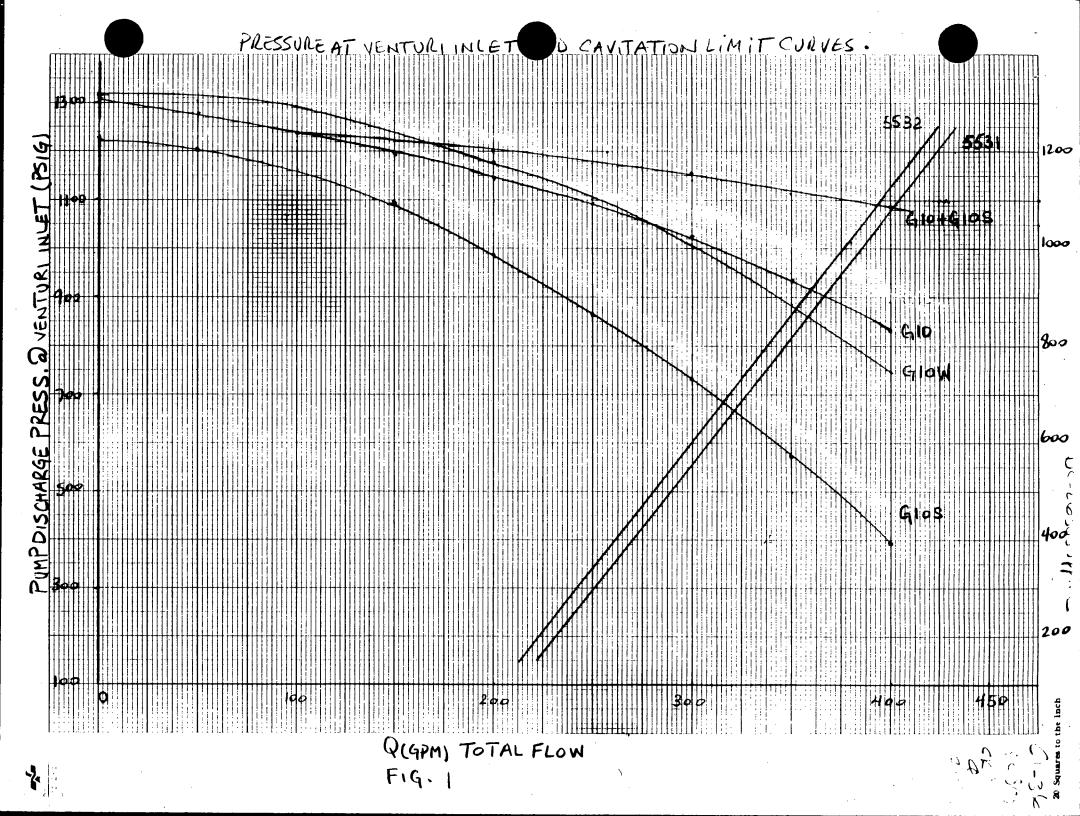
REV		I FIDW	DATE	ICO	DATE	REV	ORIGINATOR	DATE	IRE	Sheet No	
$\overline{\wedge}$		SK	8/28/92	0	29AJ690						REV.
Ň	\					\square					REV
		pump at expected pump cur gpm or 2 more pre the brea	steam g l can be ve and 10 gpm ssure t k and 1	enerat deter the 55 to 2 s o the ess flo	or pres mined f 32 vent team ge pump cu ow is a	sure o rom the uri cav nerato rve wi vailab	ent that pum f 15 psia. T e intersecti vitation cur rs with a ma ll allow mor le to the st not calcula	he maxi on of G ve. Tot rgin of e flow ceam gen	mum fl 10S re al flo 20%. to pas	low educed bw of 315 Adding ss through	
	8.4	Case 4.4 This cas of calc.	e is in	addit	ion to	the cas	ses identifi	ed in t	he Sup	oplement B	7
			his Sup				ase is boun I flow rate				
	0 5		Ctoor a	C		- D		·	. *		
	8.5	Case 4.5				•					
		postulat	ed fail case,	ure.			one steam g wath to the				
								w qoes	throug	h the	
		Determin branch.	e the s	ystem o	curve wi	hen 1/2	or lne fio	J			
		branch.	Table (8-7 cre	•	·	losses col		ed on	the 1/2	
		branch. From the	Table (8-7 cre	•	·			ed on	the 1/2	

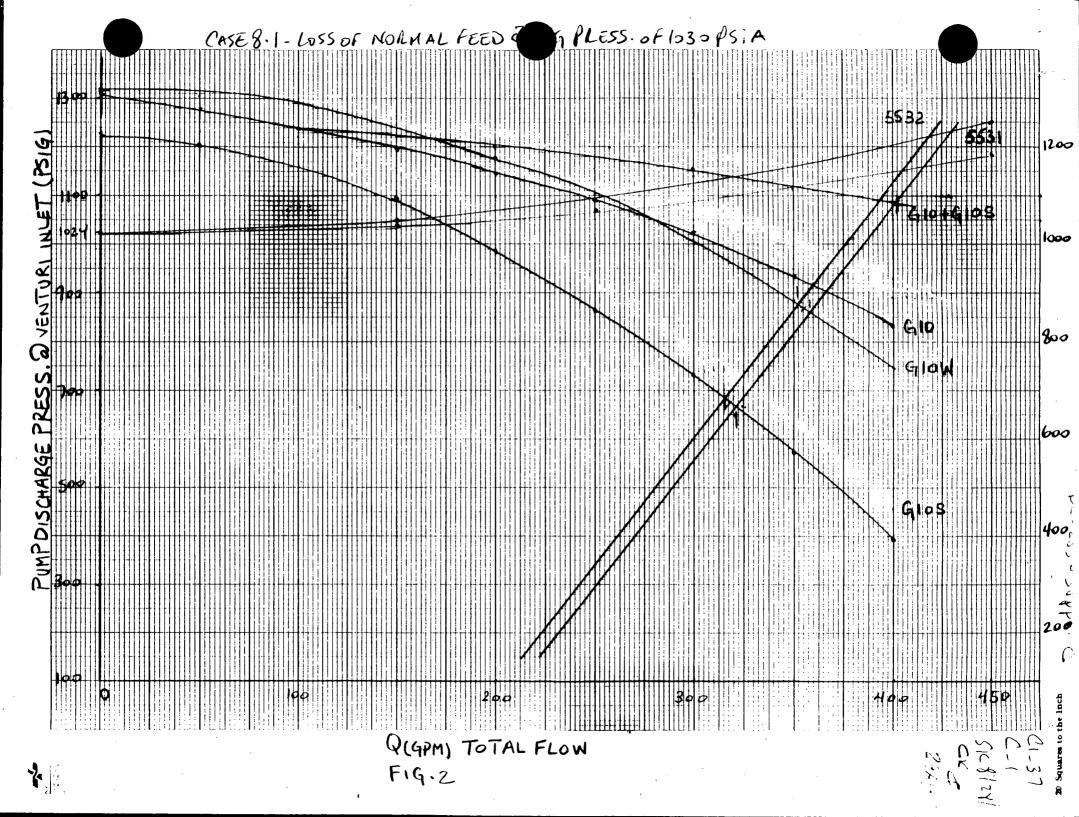
4/90

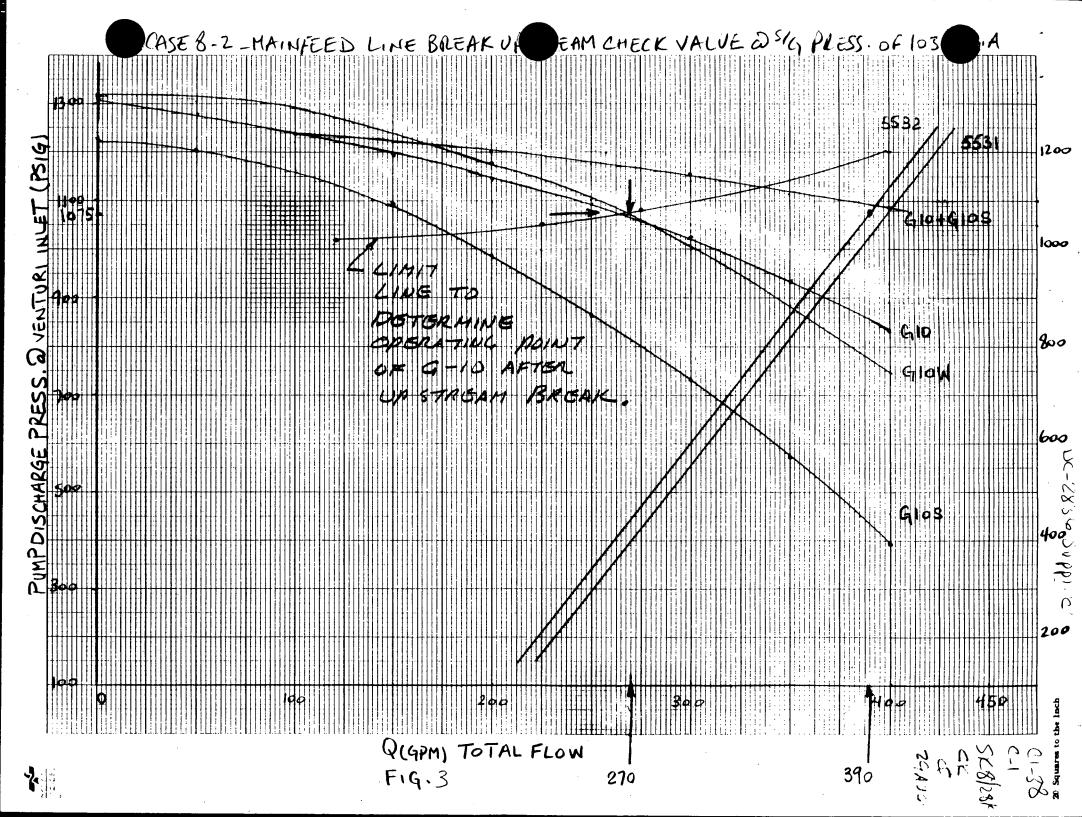
			DATE		DATE	REV	ORIGINATOR	DATE	_	Sheet No.
+	SK	ATOR	421/93		1		OHIGINATOR	DATE	IRE	DATE
¥-	<i><i>SP</i></i>		Y MFCS		ZGAIL					. <u></u>
nı	ump f	low	flow	each		∆P M	av Jina	Total	c.	/c
	•		psi	each		psi	ax. ∆line psi		S/ pre	988.
							·····			
	00 8		24.7	′5		0.43			768	
	00 10 00 1!	00 50	99 222.	7		1.7 3.9	100. 226.		844 970	
40	00 20	00	396			6.8	402.			6.3
ar	nd G10	curve)S at l% mar	312 gpm	tted b and 2	ased (55 gpr	on the abo n respect	ove data an ively. Thes	d it in e corre	tersect spond t	s G10W o 160%
ar ar	nd G1(nd 10) .6 Ca Th Al	DS at 1% mar ase 4. nis ca	312 gpm gins. 6 Norma se is b	and 2 1 Plan ound b	55 gpr t Cool y the	n respect Idown AFW flow	ove data an ively. Thes rate assum W expected	e corre ed tin	spond t the LON	o 160%
ar ar	nd G10 nd 10 .6 Ca Al be	DS at 1% mar ase 4. nis ca FW flo elow:	312 gpm gins. 6 Norma se is b w rate	and 2 Plan ound b of 185	55 gpr t Cool y the GPM.	n respect Idown AFW flow Pump GlON	ively. Thes rate assum	e corre ed tin flow is	spond t the LON	o 160%
ar ar	nd G10 nd 10 .6 Ca Al be P	DS at 1% mar ase 4. nis ca W flo elow: = P _{s/G}	312 gpm gins. 6 Norma se is b w rate	and 2 Plan ound b of 185 elev.	55 gpr t Cool y the GPM.	n respect Idown AFW flow Pump GlON	ively. Thes rate assum W expected	e corre ed tin flow is	spond t the LON	o 160%
ar ar	nd G10 nd 10 .6 Ca Al be P	DS at 1% mar ase 4. nis ca FW flo elow: = P _{s/g} 5/g =	312 gpm gins. 6 Norma se is b w rate + ΔP + 923 psi	l And 2 l Plan ound b of 185 elev. a	55 gpr t Cool y the GPM. loss	n respect Idown AFW flow Pump GlOV = 923-14	ively. Thes rate assum W expected	e corre ed tin flow is	spond t the LON	o 160%
ar ar	nd G10 nd 10 .6 Ca Al be P	DS at 1% mar ase 4. nis ca FW flo elow: = P _{s/g} 5/g =	312 gpm gins. 6 Norma se is b w rate + ΔP +	l And 2 l Plan ound b of 185 elev. a	55 gpr t Cool y the GPM. loss	n respect Idown AFW flow Pump GlOV = 923-14	ively. Thes rate assum W expected	e corre ed tin flow is	spond t the LON	o 160%
ar ar	nd G10 nd 10 .6 Ca Al be P	DS at 1% mar ase 4. mis ca W flo elow: = P _{s/G} = 916	312 gpm gins. 6 Norma se is b w rate + ΔP + 923 psi .8 + ΔP	l Plan ound b of 185 elev. a from sig	55 gpr t Cool y the GPM. loss	n respect Idown AFW flow Pump GlOV = 923-14	ively. Thes rate assum Wexpected .7 + 8.5 + .	e corre ed tin flow is	the LON calcul	o 160%
ar ar	nd G1(nd 10) .6 Ca Al be P P P	DS at 1% mar ase 4. mis ca W flo elow: = P _{s/g} = 916 e 9	312 gpm gins. 6 Norma se is b w rate $+ \Delta P +$ 923 psi .8 + ΔP Pp	l Plan ound b of 185 elev. a from sig	55 gpr t Cool y the GPM. loss Table	n respect Idown AFW flow Pump GlON = 923-14 8-7	ively. Thes rate assum Wexpected .7 + 8.5 + .	e corre ed tin flow is ∆P	the LON calcul	o 160% IF at an ated

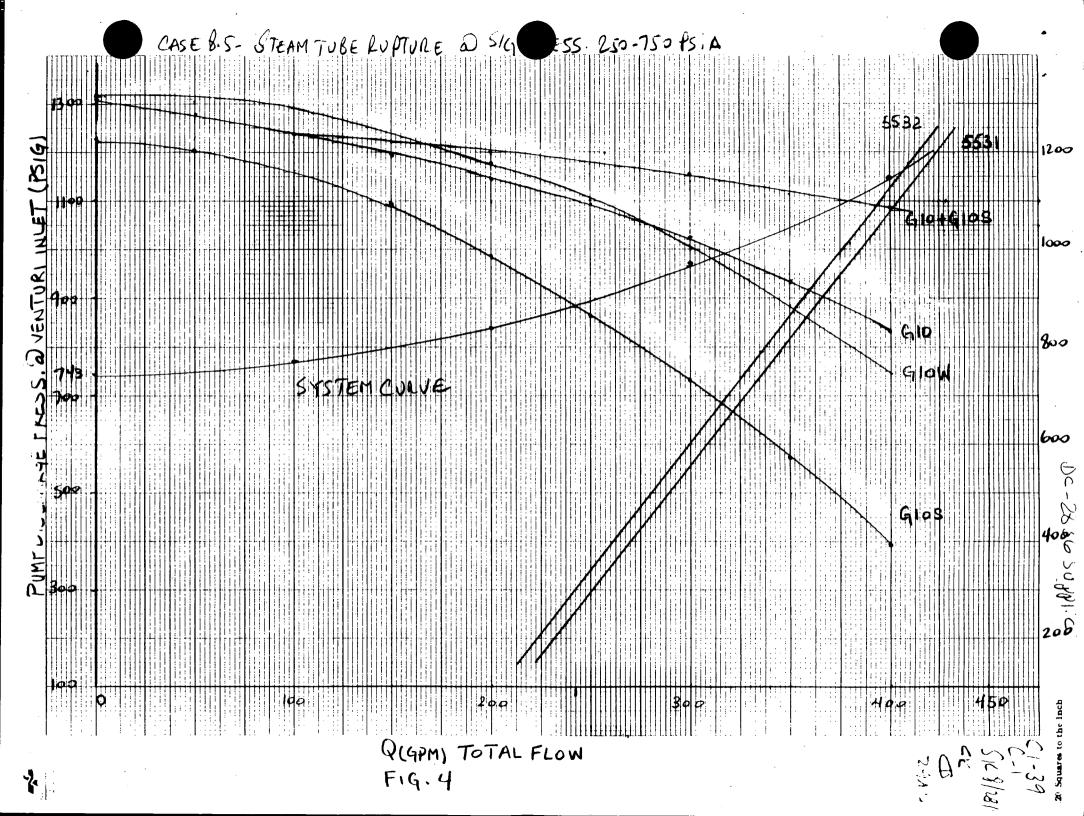
	W JERIF		DATE	REV	ORIGINATOR	DATE		DATE
SK-	8/20		2914440	\square				
				\square	,			
Psi	g = Ps/g	+ K*0 ² c	urve + E		055	-L		
					he ratio be	tween tl	ne minin	านต
flo	w rate re	equiremen	ts and Q	calc.		, ``		
PS/	G = 923 p	osia = 90	8 psig					
% m	argins of pectively	f 72% & 5	9% are u	ised fo	r pumps G10	S and G	LOW	
165	pectively	.						
8.7 Cas	e 4./ Ste	eamline B	reak Out	side C	ontainment			
• The	AFW flow	v rate fo	r this c	aso at	staam aana	rator n		of 1030
. psi	a is boun	nd by the	existin	g LONF	steam gene analysis (Case No.	. 4.1 of	[:] this
psi Sup	a is boun	nd by the (cept AFW	existin minimum	g LONF flow	steam gene analysis (is 150 gpm	Case No.	. 4.1 of	[:] this
psi Sup of • The	a is boun pl. C) ex 255 gpm w minimum	nd by the ccept AFW with 70% AFW flow	existin minimum margin). rate fo	g LONF flow	analysis (is 150 gpm case at st	Case No. with exp eam gene	4.1 of bected G erator p	⁷ this 110W flow pressure
psi Sup of • The of	a is boun pl.C) ex 255 gpm w minimum 685 psig	nd by the cept AFW with 70% AFW flow is 280 g	existin minimum margin). rate fo pm per R	g LONF flow r this ef. 14	analysis (Case No. with exp eam gene	4.1 of bected G erator p	⁷ this 110W flow pressure
psi Sup of • The of exp	a is boun pl. C) ex 255 gpm w minimum 685 psig ected flo A: P =	nd by the ccept AFW with 70% AFW flow is 280 g ow is as Ps/g + A	existin minimum margin). rate fo pm per R follow: P + Elev	g LONF flow r this ef. 14 (Ref.	analysis (is 150 gpm case at st Section 2.	Case No. with exp eam gene The pu	4.1 of bected G erator p ump G10W	this 10W flow pressure
psi Sup of • The of exp	a is boun pl. C) ex 255 gpm w minimum 685 psig ected flo A: P = P =	nd by the accept AFW with 70% AFW flow is 280 g bw is as Ps/g + A 693.5 +	existin minimum margin). rate fo pm per R follow: P + Elev	g LONF flow r this ef. 14 (Ref. . loss	analysis (is 150 gpm case at st Section 2. l Case 2) , P = 685 +	Case No. with exp eam gene The pu	4.1 of bected G erator p ump G10W	this 10W flow pressure
psi Sup of • The of exp DAT	a is boun pl. C) ex 255 gpm w minimum 685 psig ected flo A: P = P = System	nd by the ccept AFW with 70% AFW flow is 280 g bw is as Ps/g + A 693.5 + Curve	existin minimum margin). rate fo pm per R follow: P + Elev △P	g LONF flow r this ef. 14 (Ref. . loss From	analysis (is 150 gpm case at st Section 2. l Case 2)	Case No. with exp eam gene The pu	4.1 of bected G erator p ump G10W	this 10W flow pressure
psi Sup of • The of exp	a is boun pl. C) ex 255 gpm w minimum 685 psig ected flo A: P = P =	nd by the ccept AFW with 70% AFW flow is 280 g bw is as Ps/g + A 693.5 + Curve	existin minimum margin). rate fo pm per R follow: P + Elev	g LONF flow r this ef. 14 (Ref. . loss From	analysis (is 150 gpm case at st Section 2. l Case 2) , P = 685 +	Case No. with exp eam gene The pu	4.1 of bected G erator p ump G10W	this 10W flow ressure ble 8-5
psi Sup of • The of exp DAT	a is boun pl. C) ex 255 gpm w minimum 685 psig ected flo A: P = P = System	nd by the ccept AFW with 70% AFW flow is 280 g bw is as Ps/g + A 693.5 + Curve	existin minimum margin). rate fo pm per R follow: P + Elev △P	g LONF flow r this ef. 14 (Ref. . loss From	analysis (is 150 gpm case at st Section 2. l Case 2) , P = 685 + Figure 6	Case No. with exp eam gene The pu	4.1 of bected G arator p imp G10W from Ta	this 10W flow ressure ble 8-5
psi Sup of • The of exp DAT	a is boun pl. C) ex 255 gpm w minimum 685 psig ected flo A: P = P = System Ppsi Max.	nd by the (cept AFW with 70% AFW flow is 280 g ow is as Ps/g + A 693.5 + Curve g Min.	existin minimum margin). rate fo pm per R follow: P + Elev ∆P G10W	g LONF flow r this ef. 14 (Ref. . loss From	analysis (is 150 gpm case at st Section 2. l Case 2) , P = 685 + Figure 6 G10S *	Case No. with exp eam gene The pu	4.1 of bected G arator p imp GlOW from Ta Margi	this 10W flow ressure ble 8-5
psi Sup of • The of exp DAT	a is boun pl. C) ex 255 gpm w minimum 685 psig ected flo A: P = P = System Ppsi	nd by the (cept AFW vith 70% AFW flow is 280 g bw is as Ps/g + △ 693.5 + Curve g	existin minimum margin). rate fo pm per R follow: P + Elev △P	g LONF flow r this ef. 14 (Ref. . loss From	analysis (is 150 gpm case at st Section 2. l Case 2) , P = 685 + Figure 6	Case No. with exp eam gene The pu	4.1 of bected G arator p imp G10W from Ta	this 10W flow ressure ble 8-5

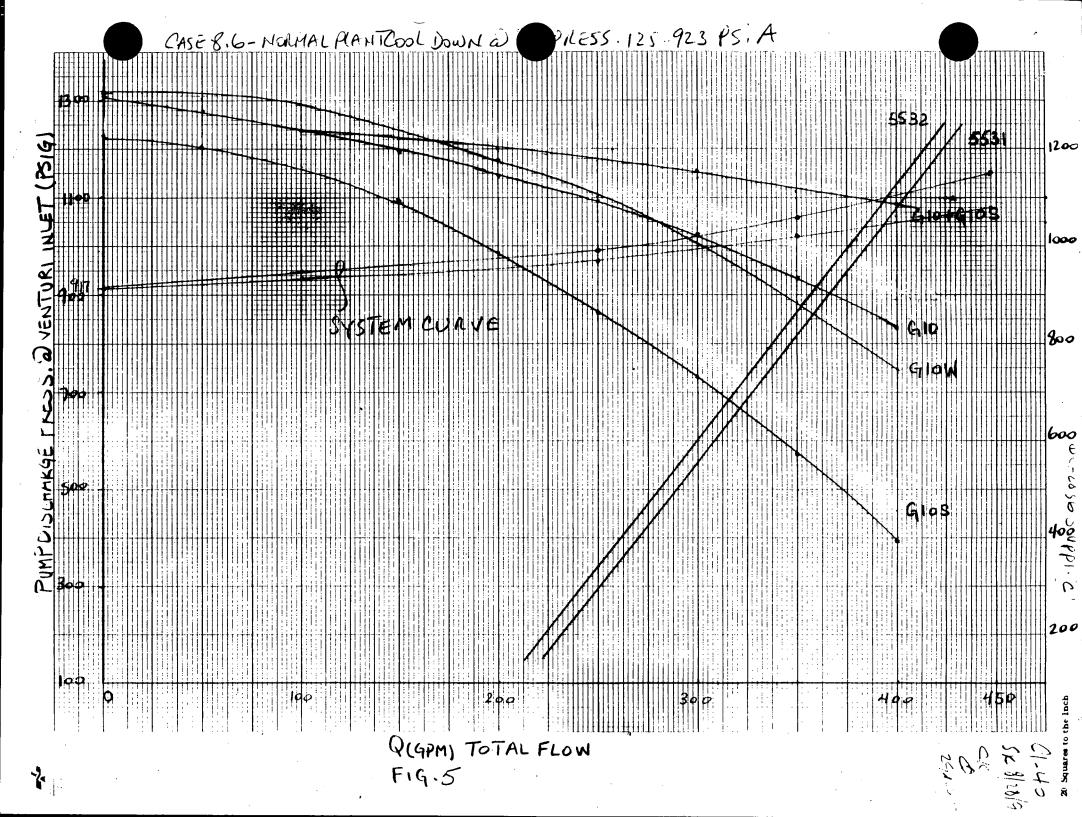
REV	ORIGINAT	N VERIFI		DATE	REV	ORIGINATOR	DATE	IRE	Sheet No	
$\overline{\mathbb{A}}$	SK	11		2915390						1
$\overline{\bigwedge}$						Y				REV.
	I				<u> </u>			1		┿
	Pps	ig = Syst	em pres	sure base	ed on	(Qcurve/3) p	er stea	m gene	rator	
	Psi	g = Ps/g	+ K _{sys} *	Q ² curve ·	+ Elev	. loss		· .		
	% M flc	largin = % w rate re	calcul	ated base	ed on	the differen	ce betw	een th	e minimum	
					laic.					
		′G = 700 p								
•		nargins of spectively		26% are (ised f	or pumps G10	S and G	10W		
	• AFW	flow >21	5 GPM to	n 3 5/65	@ 875	nsia				
				·		•				
		875 - 14				m Table 8-5				
				+ 8.5						
	Ρ=	868.6 +	ΔP							
()curve	Ppsig		Glow	. *	G10 + G10S		M	argin	
		Max.	Min.			*				
	150 250	893 937	886 917	310-	323	393		4	4%-82%	-
	350 450	1003 1091	963 1025						· .	
*	Value is curve.	taken fr	om G10 -	+G1OS pun	np cur	ve with the S	5532 cav	/itati	ng venturi	
-	Pps	ig = Syst	em press	sure base	ed on	(Qcurve/3) pe	er stear	n gener	rator	ŀ
										1

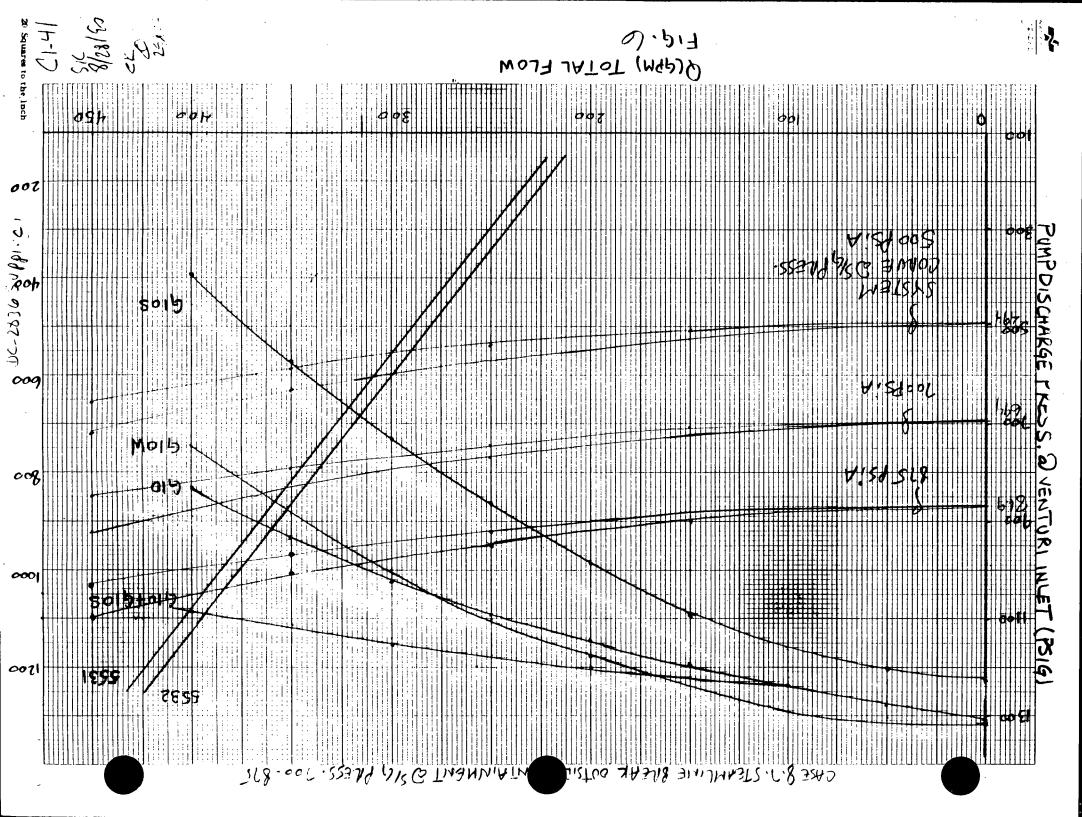

	ALCUL		N SI	HEET		ICCN NO./ PRELIM. CCN NO -2638 SUA				
	J F 101					-263824		<u>NNO. CC</u>	Sheet No	
		DATE	IRE	DATE	REV	ORIGINATOR	DATE	IRE	DATE	J
	SK	8/2/43	Ø	24 101.90	\square					
\frown					\square					
	% margin respect Case 4.8 This cas the stea intersec rate is 62% resp Case 4.9 This cas	ively. 8 Station se is sim am genera ction of 295 gpm pectively 9 ATWS se is bou	6 and Blac bilar the r and G 7.	82% are kout to case bressure hew syst 10 flow	8.6, 6 of 923 em curv rate se 4.1	for pumps G1 except that g psia and d ve with G10 is 300 gpm w	flows a etermin pump cu ith mar plement	re ad; ed by rve. (gins c	justed for G10W flow of 59% -	
8.10	Case 4.1 This cas The G10W	10 - Turb se is cov	oine T ered te is	rip, Lo by case 295 gp	ss of L 4.6 in m with	a 37% marg oad and Los Section 8. a margin of	s of Co 6.			
8.11	Case 4.1	ll Append	ix `R		`					
٠	this Sup	te of >18 oplement n a margi	`C'.	The AF	/Gs @ 9 W flow	23 psia is rate expect	bound b ed from	y Case G10W	4.6 of is 295	

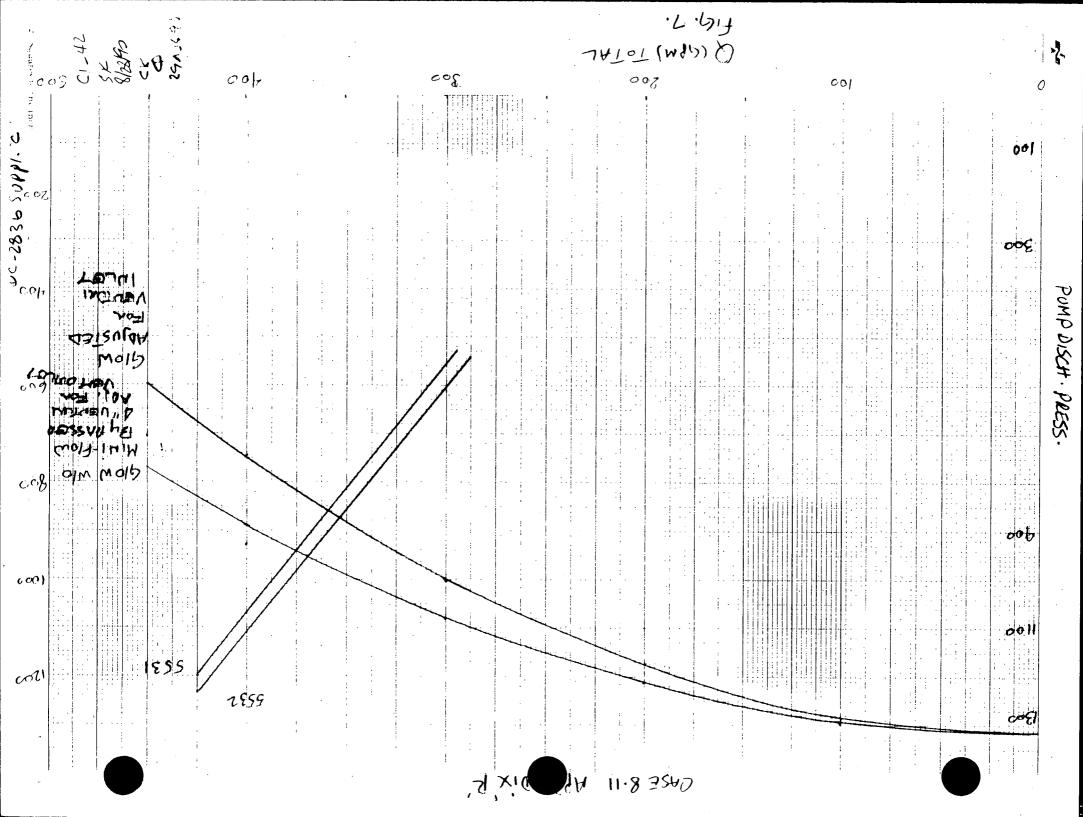

_	_	Flow								Sheet No	
REV			DATE 8/78/90		DATE 29AUL90	REV	ORIGINATOR	DATE	IRE	DATE	-
$\overset{0}{\swarrow}$			1010			$\left[\right]$					
	. ·						· · · · · · · · · · · · · · · · · · ·	1		<u> </u>	┿
	•	Flow rat	te of >3	50 GP	M to S/(GS @ 15	psia.			•	
		Steam ge	enerator	s are	used as	s once	through hea cenario the	t exchar	ngers	in the	
		GPM. ((G10W pow	ered	from DSS	S diese	1 Ref. 5).	require		12 220	
		<u>W</u> new ar	nalysis	requi	res a mi	inimum	of 350 GPM	to achie	eve a	cold	
					-	·	essures of	·		,	
		G10W pur discharg	np curve je press	inte ure o	rsects t f 870 ps	the 553 ig and	2 cavitation flow rate (n curve of 367 d	at the	e pump The margin	
		associal	ted with	this	flow ra	te is	< 1%.				
		With the	e AFW ve	nturi	bypass	valves	open this r Fig 7 for t	nargin v	ill be	e ion of the	
		5532 cav	/itating	vent	uri and	the Gl	OW pump curv	ve with	out ve	nturi, 0	
		AFW flow	v rate o	T 380	GPM)						
	8.12	Case 4.1	l2 water	hamme	r (G10 4	G105	+ G10W) to 3	3 steam	genera	ators	
		(GlOW pa	artial f	low o	f <57 GP	ΥM).					
		This cas Suppleme	se is id ent `B'	entif (Ref.	iedasa 1).	case	number 1 in	calc, [)C-2836	5	
				-	•	enturi	es were desi	ianed to	doli	ion flows	
		not to e	exceed l	40 + (D/-5 GPM	l per s	team generat 402 gpm Max.	or. How	ever.	pumps G10	
		420 gpm	Max.	cieu	LU LAVIL	ale e	toz gpin max.	which	would	De Delow	
	8 13	Case 4.1	2 Dump	Dunout							
	0.15		•								
		Suppleme	e is id ent 'B'	entifi Figure	ed as a 2-1. (case i Ref. 1	number 6 in)	calc. D	C-2836	5	
		The expe	cted AF	W pump	o G10S c	avitat	ing flow rat	e is 31	5 GPM	for the	
		5532 ven	ituri an	d 321	gpm for	the 5	531 venturi.				
										. ·	

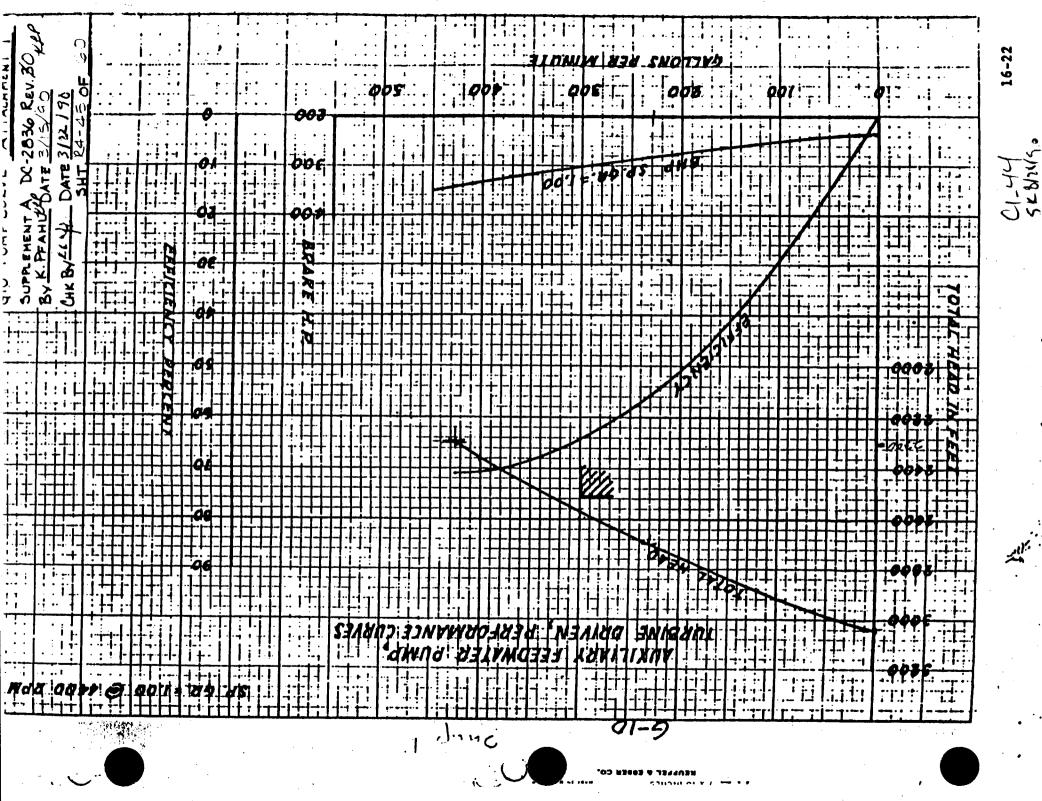

SCE 26-426 NEW 4/90

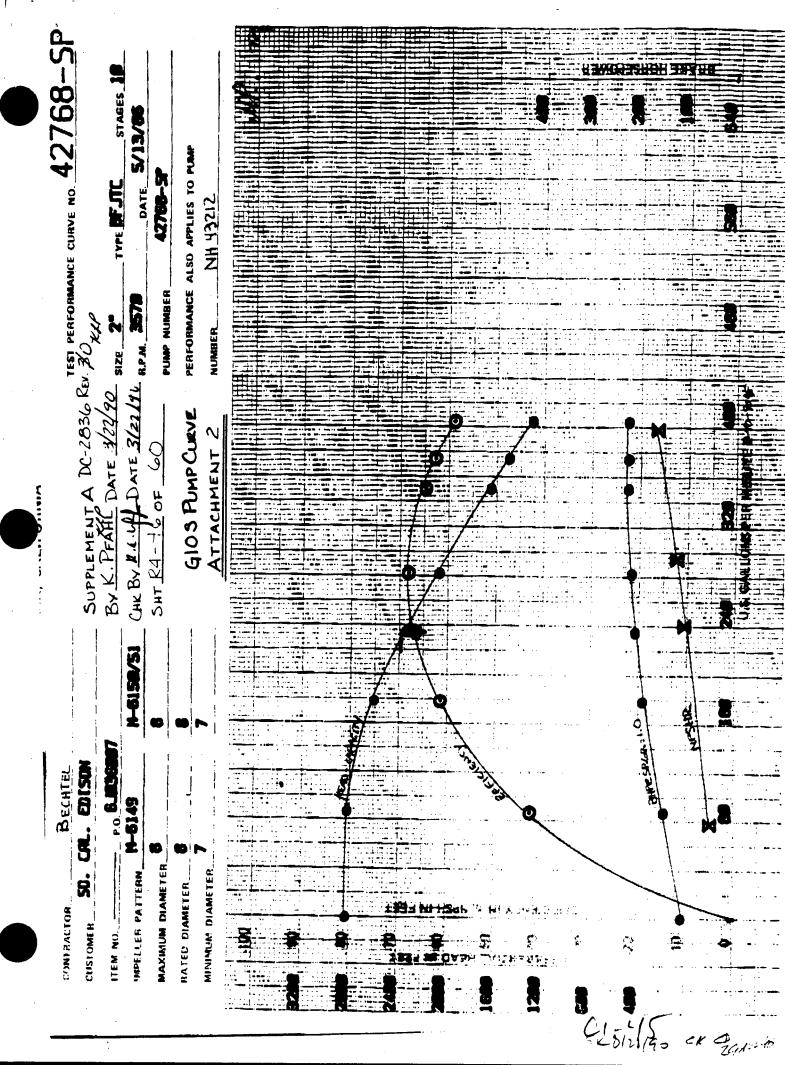



. '		L DEPART				ICCN NO./ PRELIM. C		.		, 35
	depimmp <u>1-35</u> Afus Fib					-2638 50	ppl.C	CCN CONVER		
	ORIGINATOR		IRE	DATE	REV	ORIGINATO	R DATE	IRE	Sheet No	
	SIL	8/28/90	0	29 N.X.40	\bigtriangleup					REV.
										REV.
	bound by the PEP Steamlin initiate is relea GPM by o to resiz	those a 1-3587.0 e break d at tim sed. Th perator ed ventu	analy: e zero e Zero action ries a	d in the afety Ev sis assu o to max flow ra n. Ther are boun	e feedl valuati mes an timize te is refore, d by t	a reduct he LONF e	k events 14). w rate of Jary side uced at 1 tion in A event. T	as disc 500 GPI invent 0 minuto FW flow	ussed in	
	is dound	by the	450 GI	PM water	hamme	r limit ((Ref. 1).			
				•						
				•						
SCE 26-426 NE	W 4/90									
** 740 '14 5	•/#•		-							•
	•		·	ł		• •			• ·	

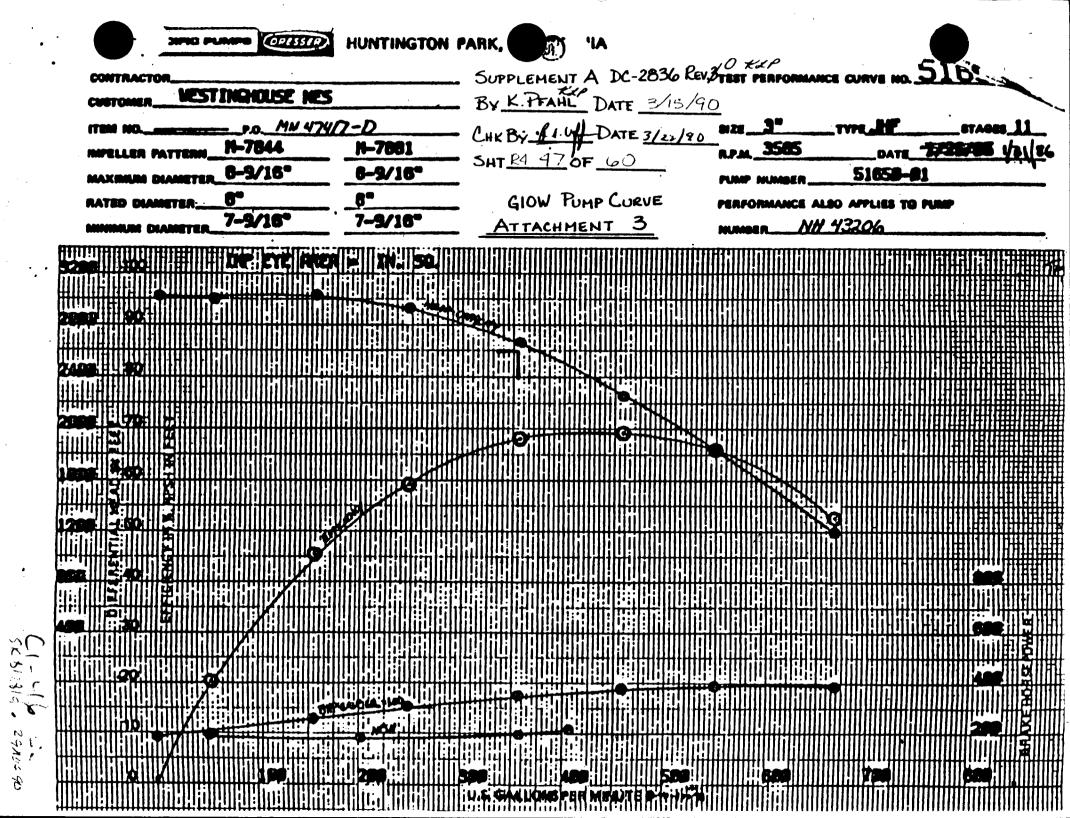






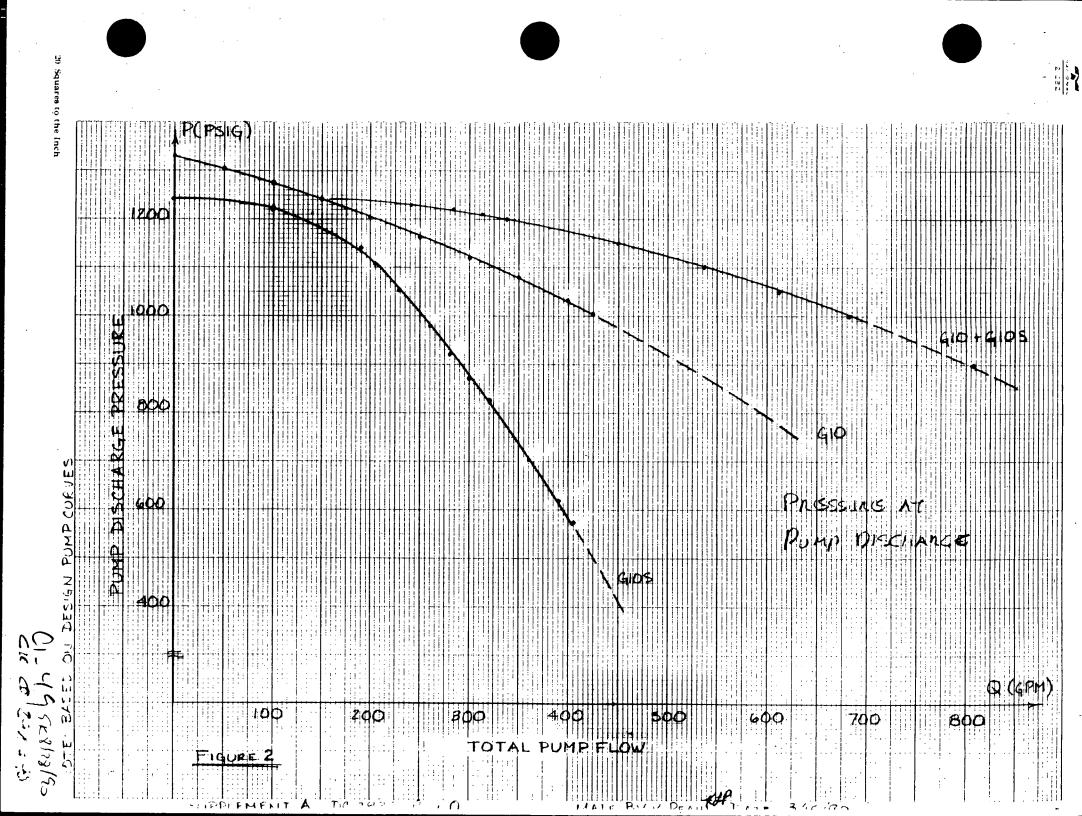


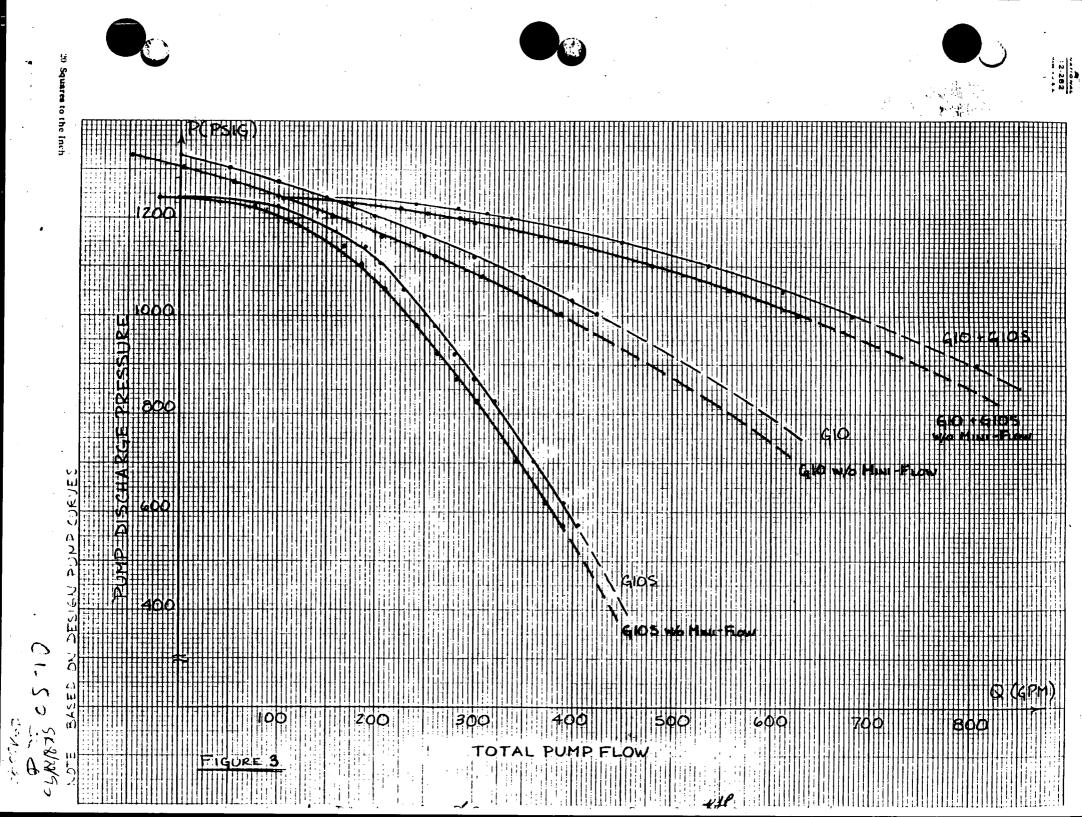
	CALCUI	-				ICCN NOJ PRELIM, CCN N			PAGE)F
Project or DO		3587.0	ois M	Cak	: No. <u>0</u>	-2836 SU	<u>1. č</u>	CN CONVER	sion: <u>N C-1</u>	
	fn frow								Sheet No	
REV	ORIGINATOR	DATE	RE	DATE	REV	ORIGINATOR	DATE	HRE	DATE	
0	SK	9/28/93	4	2925690	$/ \setminus$					
\square					\square					HEV.
			1,	<u></u>						╺╌┨╌
-	•									
			AT	TACH	ME	NTA				
								,		
									•	
		•								7
	•									
		•								
		•								
	 .									
							·		. •	
·										
								>		
		×		•						
		ويرون الأحيار المراجع								

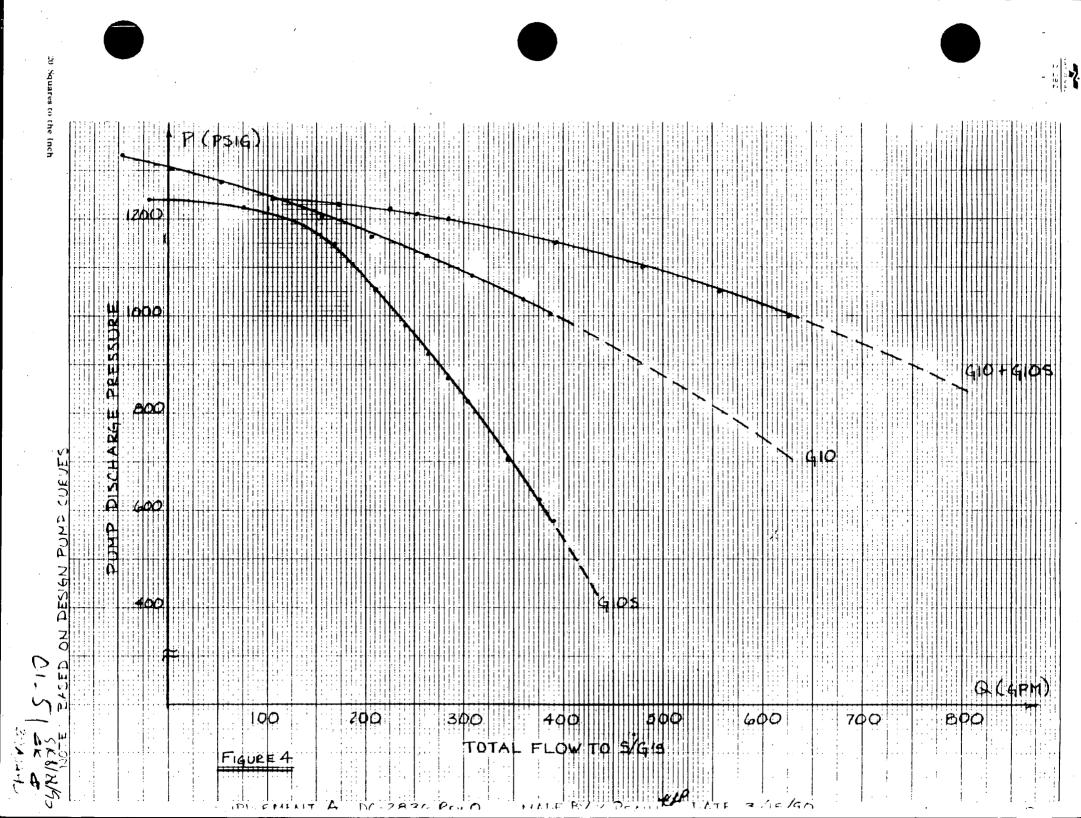

.

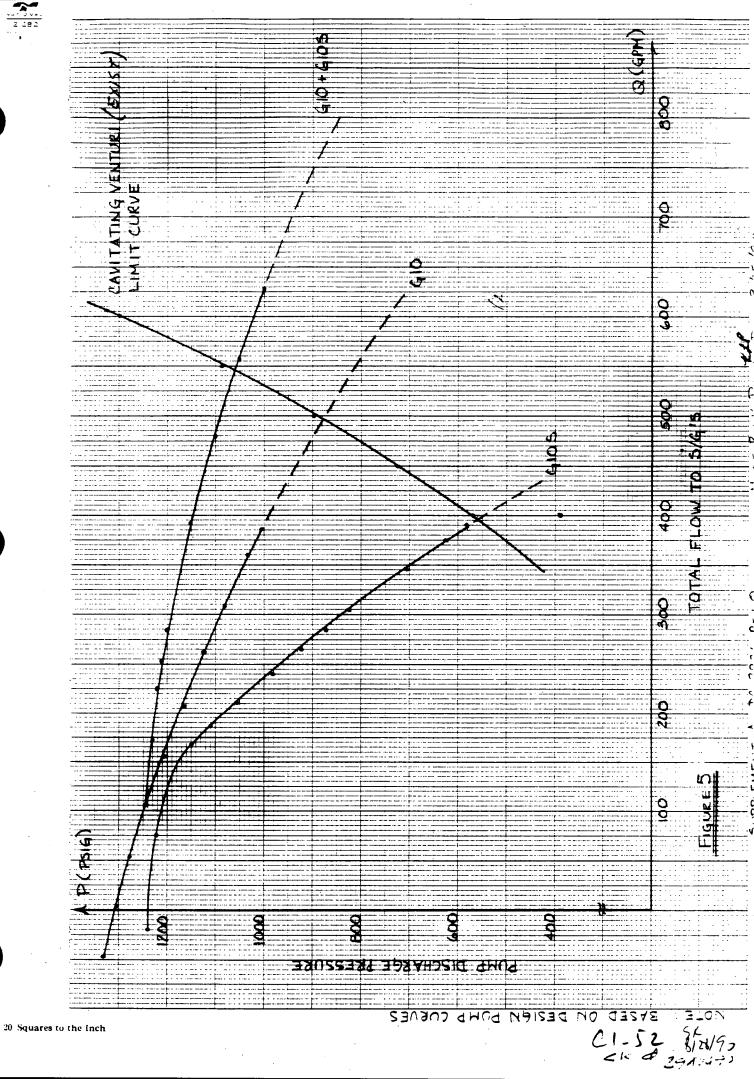
V 20162

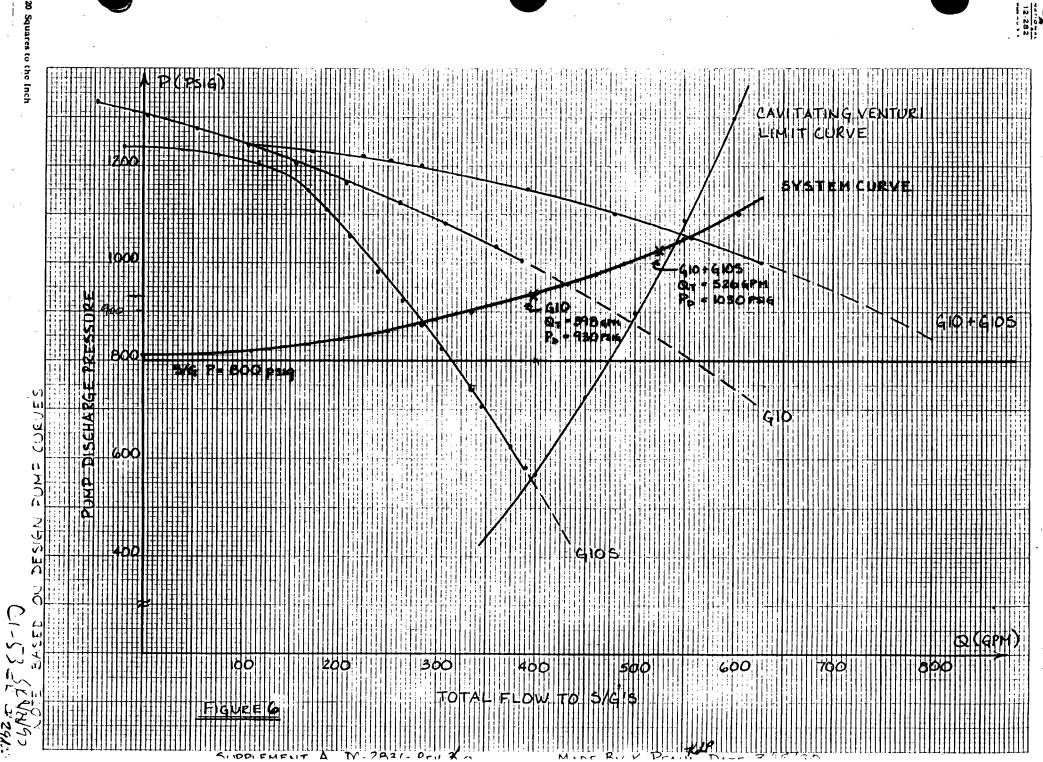
CK

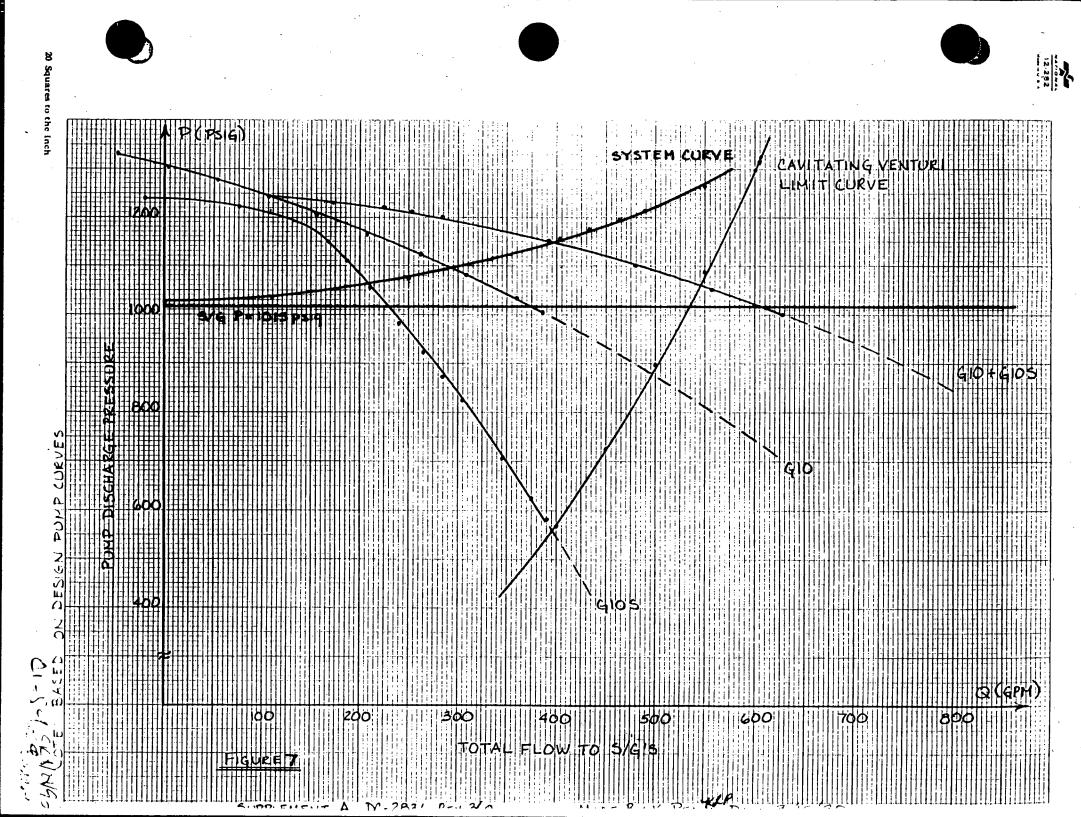

NS	ER		UMP	TEST RECOR	DSUPPLE	IENT A]	x-20⊃(₩1 ^{x-} К∧-	6 REV. 30 KA	-/ Vi Encode No _		
	Test P	ocedure Us	ed	7	14.1			ATE 3/22/90		<u></u>	5-10-
ι	Unit	<u>!</u>		·	Citch 3	SHT <u>R4-4</u>	8 OF	60	Record No	1	- 4 - 5
1 5	Plant T	ag No	AM+ (+	224 0 132 52120344C23	ετς. 2 Ρυπο	Name (System)		- IELAMPLE COM	PONENT COOLING		(76)
	Tested		· · · · · ·	<u> ()</u>				QUARTE	RLY POST MAINTER		
-	Plant P		122	<u>27030</u> 17. j. m. m. 18. N		ence IST Record		INT FRUNTE	•	<u>Mary</u>	
		11	$\frac{1-1}{2}$	< 25%				(
<u> </u>		equency .	ما ما ير	SHUTIENN		2-14	1-89	/ y Hun	time Before 1e		Solat iclises were
HYD	RAUL	JC DATA	ENTER	NSTRUMENT ID			INITS SET REF.	REFERENCE VALUE	TEST VA	ALUE _	ACCEPTABLE RA
10	Prestai Pressu	t Suction re (Pa)	NE	.5353	8/16/1	19 H	31	15.Z	15	2	>0
11 :	Speed	(N)	14.2	-56:4	9/27/8	19 1	om	4274	440)2 /	4400 =1
12	Discha Pressu	rge re (Po)	N:2	-4349	9/18/8	-9 4	31	1420	107		11A
13	Runnin Pressu	g Suction re (Pi)	11 7	. < 757	8/16/8	9	1	13.5 woken	+ 12	1	>0
14 🖁	Differei Pressu	ntial re (Po - Pi)		C	NA	ŕ	51	1106.5	106	7.9 1	(2= to ;
15	Motor (Current (A)		136	NA		٨	NA	T	1.74	NA
16 F	Flow Ra	ate (Q)		C	C	L.	M.	300	296.		300 = 10
ald	cula	tions		1 3453	FTL 3455	FTI	1-1454	$(\Delta P = ic$	080 -	12.13	= 167
		× -		2 / 3-11-89) -1	W W W	2-87) (M	5 17 4 × / 11.	··· Y ·)	nottled	(1. m.)	
				Type -	35.1"w	r.	z., ² w				
		4 - 1	_1⊇.	1 5	102.691						
		_			102.01		8.19	m.	·		متبه الأموس
1E <i>1</i>			1.1	F.M. Vibration	where Q			- Con Tot	Locogn	e %1-	-xxv1=
AEC	ि. CHA		296 DATA	F.M. Vibration			18.19 Journe	Calibration Due Date 11-	11-99_b		- xxv1-2
AEC		Tel Z NICAL Vibration	296 DATA	Vibration Instrument ID T	where Q	- 300		- Con Tot		<u></u>	ACCEPTABLE RAM
<u>AEC</u>	-		DATA Axis	Vibration Instrument ID T Displacement (Mils)	where Q 2.8620/262	- 300	SUU WE	Calibration Due Date 11 - Velocity (IPS)	11-99	<u></u>	·
	-	Vibration	DATA Axis Deg.)	Vibration Instrument ID T Displacement (Mila) REFERENCE VALUE	12 94 20/262	= 300	SOU'WE	Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE	11-99	<u></u>	ACCEPTABLE RA
17	Point No. 1	Vibration	DATA Axis Deg.)	Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.3%	Where Q 29420/262 TEST VALUE .4 .2	- 300	SOUNCE	Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10		<u></u>	ACCEPTABLE RA
17 18	Point No. 1	Vibration / Horiz: (0 [Vert. (90]	DATA Axis Deg.)	Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.38 0.27 0.32	Where Q 29620/262 TEST VALUE .4 .2 .38	= 300 -	BLE PANGE	+ CEL TPST Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23	TEST VA	<u></u>	ACCEPTABLE RA
17 18 19	2 Point No. 1	Vibration Horiz. (0 C Vert. (90 C Axial	DATA Axis Deg.) Deg.)	Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.38 0.22 0.32 0.32 0.22	Where Q 29620/362 TEST VALUE .4 .2 .38 .2	= 300	SOUNC	+ CEL TPST Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09	TEST VA . 1 . 1 . 1 . 2 . 1		ACCEPTABLE RA
17 18 19 20 21	2 Point No. 1	Vibration A Horiz (0 C Vert. (90 C Axial Horiz, (0 C Vert. (90 C	DATA Axis Deg.) Deg.)	Vibration Instrument ID T Displacement (Mila) REFERENCE VALUE 0.38 0.27 0.32 0.32 0.22 0.32 0.22	Where Q 29(120/362 TEST VALUE .4 .2 .38 .2 .19	= 300 -	SOUNC	+ CEL TPST Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09 0.13			ACCEPTABLE RA
17 18 19 20	Point No. 1	Vibration A Horiz. (0 C Vert. (90 C Axiał Horiz. (0 C	DATA Axis Deg.) Deg.)	Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.38 0.22 0.32 0.32 0.22	Where Q 29620/362 TEST VALUE .4 .2 .38 .2	= 300	SOUNC	+ CEL TPST Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09	TEST VA . 1 . 1 . 1 . 2 . 1		ACCEPTABLE RA
17 18 19 20 21 22	Point No. 2 Point No. 1	Vibration A Horiz (0 C Vert. (90 C Axial Horiz, (0 C Vert. (90 C	DATA Axis Deg.) Deg.) Deg.)	Vibration Instrument ID T Displacement (Mila) REFERENCE VALUE 0.38 0.27 0.32 0.32 0.22 0.32 0.22	Where Q 29620/362 TEST VALUE .4 .2 .38 .2 .19 .78	= 300	BLE RANGE	+ 322 TP5T Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.23 0.23 0.29 0.13 0.10			ACCEPTABLE RA
17 18 19 20 21 22 23	Point No. 2 Point No. 1	Vibration Horiz. (0 C Vert. (90 C Axial Horiz. (0 C Vert. (90 C Axial	DATA Axis Deg.) Deg.) Deg.) Deg.)	Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.3% 0.2% 0.3%	Where Q 29620/362 TEST VALUE .4 .2 .38 .2 .19 .78	= 300 ACCEPTAN 0 - 0 - 0 - 0 - 0 -	BLE RANGE	+ CEC TPST Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09 0.13 0.10 19.10			ACCEPTABLE RA
17 18 19 20 21 22 23 23 24 E	Point No. 2 Point No. 1	Vibration A Horiz (0 C Vert. (90 C Axia) Horiz (0 C Vert. (90 C Axia) tion Level/P RING T D. <u>1</u> 2	DATA Axis Deg.) Deg.) <td>Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.38 0.27 0.32 0.32 0.12 0.12 0.12 0.32 Buils Eye RATURES 37 / M 1 2</td> <td>Where Q 29(1/20/262 TEST VALUE .4 .2 .38 .2 .19 .78 Chicken F 281</td> <td>= 300</td> <td>DLE RANGE</td> <td>+ CEC TPST Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09 0.13 0.10 19.10</td> <td></td> <td></td> <td>ACCEPTABLE RA</td>	Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.38 0.27 0.32 0.32 0.12 0.12 0.12 0.32 Buils Eye RATURES 37 / M 1 2	Where Q 29(1/20/262 TEST VALUE .4 .2 .38 .2 .19 .78 Chicken F 281	= 300	DLE RANGE	+ CEC TPST Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09 0.13 0.10 19.10			ACCEPTABLE RA
17 18 19 20 21 22 23 23 24 E Instru Cal. [Lumment I Due Da	Vibration . Horiz (0 0 Vert. (90 0 Axial Horiz. (0 0 Vert. (90 0 Axial tion Level/P RING T D. <u>T</u> <u>2</u> te <u>F-2</u>	DATA Axis Deg.) Deg.) <td>Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.3% 0.2% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1%</td> <td>where Q $2 \frac{9620}{262}$ TEST VALUE .4 .2 .38 .2 .19 .78 Chicken F 281 1</td> <td>= 300 ACCEPTAN 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -</td> <td>ILE RANGE</td> <td>+ 322 TP5T Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.07 0.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10</td> <td>TEST VA . 1 . 1 . 1 . 2 . 1 . 15 . 14 Wick TIME</td> <td>Sat Point No. TEMP</td> <td>ACCEPTABLE RA</td>	Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.3% 0.2% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1%	where Q $2 \frac{9620}{262}$ TEST VALUE .4 .2 .38 .2 .19 .78 Chicken F 281 1	= 300 ACCEPTAN 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	ILE RANGE	+ 322 TP5T Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.07 0.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10	TEST VA . 1 . 1 . 1 . 2 . 1 . 15 . 14 Wick TIME	Sat Point No. TEMP	ACCEPTABLE RA
17 18 19 20 21 22 23 L 24 E Instru Cal. [Date Refer	Unica BEA ument I Lubrica	Vibration . Horiz: (0 0 Vert. (90 0 Axial Horiz: (0 0 Vert. (90 0 Axial tion Level/P RING T D. <u>1</u> 2 te <u>F-2</u> aken Data Record	DATA Axis Deg.)	Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.3% 0.2% 0.3% 0.1% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.3% 0.1%	where Q 2.9(1/20/26/2) TEST VALUE .4 .2 .38 .2 .19 .78 Chicken F 28/ .2 .2 .19 .28 .2 .19 .28 .2 .19 .28 .2 .28 .2 .19 .28 .2 .28 .2 .19 .28 .28 .28 .28 .28 .28 .28 .28	= 300 ACCEPTAI 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	ALE RANGE	+ 322 TP5T Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09 0.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10 1.2 1.2	TEST VA TEST VA . 1 . 1 . 2 . 1 . 75 . 14 . 15 . 14 	Sat 124 124	ACCEPTABLE RA 1.3 A. 1.3 A. 1.3 A. 1.3 A. 1.3 A. 1.4 A. 2.4 A.
17 18 19 20 21 22 23 23 24 E Instru Cal. [Date Refer Refer	Lubrica	Vibration . Horiz. (0 C .Vert. (90 C Axial Horiz. (0 C Vert. (90 C Axial tion Level/P RING T D. <u>T</u> Z te <u>F- Z</u> aken Data Record emperature	DATA Axis Deg.) Deg.) </td <td>Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.3% 0.2% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.1% 0.3% 0.1% 0.1% 0.3% 0.1% 0.1% 0.3% 0.1% 0.3% 0.1%</td> <td>where Q 2.9(1/20/26/2) TEST VALUE .4 .2 .38 .2 .19 .78 Chicken F 28/ .2 .2 .19 .28 .2 .19 .28 .2 .19 .28 .2 .28 .2 .19 .28 .2 .28 .2 .19 .28 .28 .28 .28 .28 .28 .28 .28</td> <td>= 300 ACCEPTAI 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -</td> <td>BLE RANGE I I I I Other S Point No. TEMP 91.5 91.7 91.9</td> <td>+ 322 TP5T Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09 0.13 0.10 14+4100 / 10 14+4100 / 10 14+4100 / 10 14+4100 / 10 14+4100 / 10</td> <td>TEST VA . 1 . 1 . 2 . 1 . 15 . 15 . 14 . UICK.</td> <td>Sat Point No. TEMP</td> <td>ACCEPTABLE R IJA UNSat UNSat 2 3 CHAN 2 1.0</td>	Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.3% 0.2% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.1% 0.3% 0.1% 0.1% 0.3% 0.1% 0.1% 0.3% 0.1% 0.3% 0.1%	where Q 2.9(1/20/26/2) TEST VALUE .4 .2 .38 .2 .19 .78 Chicken F 28/ .2 .2 .19 .28 .2 .19 .28 .2 .19 .28 .2 .28 .2 .19 .28 .2 .28 .2 .19 .28 .28 .28 .28 .28 .28 .28 .28	= 300 ACCEPTAI 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	BLE RANGE I I I I Other S Point No. TEMP 91.5 91.7 91.9	+ 322 TP5T Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09 0.13 0.10 14+4100 / 10 14+4100 / 10 14+4100 / 10 14+4100 / 10 14+4100 / 10	TEST VA . 1 . 1 . 2 . 1 . 15 . 15 . 14 . UICK.	Sat Point No. TEMP	ACCEPTABLE R IJA UNSat UNSat 2 3 CHAN 2 1.0
17 18 19 20 21 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	Under Carlor Car	Vibration A Horiz (0 C Axial Horiz (0 C Axial Vert. (90 C Axial tion Level/P RING T D. <u>I</u> 2 te <u>F- 2</u> aken Data Record emperature ble Temperature	DATA Axis Deg.) Deg.) </td <td>Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.3% 0.2% 0.3% 0.2% 0.3% 0.2% 0.3% 0.1% 0.3% 0.3% 0.1% 0.3% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1%</td> <td>$\begin{array}{c} \text{where} & \text{Q} \\ 2 \frac{9}{2} \frac{7}{2} \frac{1}{2}$</td> <td>= 300 ACCEPTAI 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -</td> <td>ALE RANGE</td> <td>+ 322 TP5T Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09 0.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10 1.2 1.2</td> <td>TEST VA . 1 . 1 . 2 . 1 . 15 . 14 </td> <td>Sat 124 124</td> <td>ACCEPTABLE R IJA UNSat UNSat 2 3 CHAN 2 1.0</td>	Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.3% 0.2% 0.3% 0.2% 0.3% 0.2% 0.3% 0.1% 0.3% 0.3% 0.1% 0.3% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1%	$ \begin{array}{c} \text{where} & \text{Q} \\ 2 \frac{9}{2} \frac{7}{2} \frac{1}{2} $	= 300 ACCEPTAI 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	ALE RANGE	+ 322 TP5T Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09 0.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10 1.2 1.2	TEST VA . 1 . 1 . 2 . 1 . 15 . 14 	Sat 124 124	ACCEPTABLE R IJA UNSat UNSat 2 3 CHAN 2 1.0
17 18 19 20 21 22 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24	United and a second	Vibration A Horiz (0 C Vert. (90 C Axial Horiz (0 C Vert. (90 C Axial tion Level/P RING T D te Data Record emperature ble Tempera CTIVE A	DATA Axis Deg.) Deg.) </td <td>Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.3% 0.2% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.1% 0.3% 0.1% 0.1% 0.3% 0.1% 0.1% 0.3% 0.1% 0.3% 0.1%</td> <td>$\begin{array}{c}$</td> <td>= 300 ACCEPTAI 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -</td> <td>DUINC BLE RANGE 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>+ 322 TP5T Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09 0.13 0.10 14+4100 / 10 14+4100 / 10 1 * CHANGE 2 .2 .4 .5</td> <td>TEST VA . 1 . 1 . 2 . 1 . 1 . 2 . 1 . 1 . 15 . 14 . UIC K</td> <td>Sat 124. 124. 125.5</td> <td>ACCEPTABLE RA IJ A IJ A UNSat 2 90 CMAN 2 7 4 5 I.O</td>	Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.3% 0.2% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1% 0.1% 0.3% 0.1% 0.1% 0.3% 0.1% 0.1% 0.3% 0.1% 0.3% 0.1%	$ \begin{array}{c} $	= 300 ACCEPTAI 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	DUINC BLE RANGE 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 322 TP5T Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09 0.13 0.10 14+4100 / 10 14+4100 / 10 1 * CHANGE 2 .2 .4 .5	TEST VA . 1 . 1 . 2 . 1 . 1 . 2 . 1 . 1 . 15 . 14 . UIC K	Sat 124. 124. 125.5	ACCEPTABLE RA IJ A IJ A UNSat 2 90 CMAN 2 7 4 5 I.O
17 18 19 20 21 22 23 L 23 L 24 E 19 20 21 22 23 L 24 E 19 20 21 22 23 L 23 L 23 L 23 L 23 L 23 L 23 L 24 25 26 27 27 27 27 27 27 27 27 27 27	Unica BEA Allowa RREC	Vibration . Horiz (0 C Vert. (90 C Axial Horiz. (0 C Vert. (90 C Axial tion Level/P RING T D. <u>1</u> 2 te <u>7-2</u> aken Data Record emperature ble Temperature DI ACTION	DATA Axis Deg.) Deg.) </td <td>Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.3% 0.2% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1%</td> <td>$\begin{array}{c}$</td> <td>= 300 ACCEPTAI 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -</td> <td>Di Di Vi C BLE RANGE 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>+ 322 TP5T Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09 0.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10</td> <td>TEST VA . 1 . 1 . 2 . 1 . 1 . 2 . 1 . 1 . 15 . 14 . UIC K</td> <td>с. <u>12</u> ALUE ALUE Sat</td> <td>ACCEPTABLE RA 13 F- 13 F- 1 1 1 1 1 2 2 3 6 CHAN 2 7 4 5 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5</td>	Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.3% 0.2% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1%	$ \begin{array}{c} $	= 300 ACCEPTAI 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Di Di Vi C BLE RANGE 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 322 TP5T Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09 0.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10 1.13 0.10	TEST VA . 1 . 1 . 2 . 1 . 1 . 2 . 1 . 1 . 15 . 14 . UIC K	с. <u>12</u> ALUE ALUE Sat	ACCEPTABLE RA 13 F- 13 F- 1 1 1 1 1 2 2 3 6 CHAN 2 7 4 5 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
17 18 19 20 21 22 23 24 E 23 24 E 24 E 19 20 21 20 21 22 23 23 23 23 23 23 23 23 23	Under State	Vibration A Horiz (0 C Vert. (90 C Axial Horiz. (0 C Vert. (90 C Axial tion Level/P RING T D D te bata Record emperature ble Temperature ble Temperature ble Temperature	DATA Axis Deg.) Deg.) </td <td>Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.3% 0.2% 0.3% 0.2% 0.3% 0.2% 0.3% 0.1% 0.3% 0.3% 0.1% 0.3% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1%</td> <td>$\begin{array}{c}$</td> <td>- 300 -</td> <td>DUINC DLE RANGE 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>+ 322 TP5T Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09 0.13 0.10 14+4100 / 10 14+4100 / 10 1 * CHANGE 2 .2 .4 .5</td> <td>TEST VA . 1 . 1 . 2 . 1 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 1 . 1 . 2 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1</td> <td>Sat 124 124 124 124 125 126 126</td> <td>ACCEPTABLE RA 1.2 A. 1.2 A. UNSat 2 30 CHAN 2 7 .4 5 1.0 1.5 1.0 1.5 1.0 1.5</td>	Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.3% 0.2% 0.3% 0.2% 0.3% 0.2% 0.3% 0.1% 0.3% 0.3% 0.1% 0.3% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1%	$ \begin{array}{c} $	- 300 -	DUINC DLE RANGE 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 322 TP5T Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09 0.13 0.10 14+4100 / 10 14+4100 / 10 1 * CHANGE 2 .2 .4 .5	TEST VA . 1 . 1 . 2 . 1 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 1 . 1 . 2 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	Sat 124 124 124 124 125 126 126	ACCEPTABLE RA 1.2 A. 1.2 A. UNSat 2 30 CHAN 2 7 .4 5 1.0 1.5 1.0 1.5 1.0 1.5
17 18 19 20 21 22 23 24 E 23 24 E 24 E 19 20 21 20 21 22 23 23 23 23 23 23 23 23 23	Under State	Vibration . Horiz (0 C Vert. (90 C Axial Horiz. (0 C Vert. (90 C Axial tion Level/P RING T D. <u>1</u> 2 te <u>7-2</u> aken Data Record emperature ble Temperature DI ACTION	DATA Axis Deg.) Deg.) </td <td>Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.3% 0.2% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1%</td> <td>$\begin{array}{c}$</td> <td>= 300</td> <td>DUINC DLE RANGE 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>+ 322 TP5T Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09 0.13 0.10 1.3 0.10 1.4 4.4 5 0.00 0.10 0.23 0.23 0.23 0.10 1.4 1.4 1.4 5 0.00 0.10 0.00</td> <td>TEST VA . 1 . 1 . 2 . 1 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 1 . 1 . 2 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1</td> <td>Sat 124 124 124 124 125 126 126</td> <td>ACCEPTABLE R IJ A UNSat 2 3 CHAI 2 3 CHAI 2 1.0 1.0 1.5</td>	Vibration Instrument ID T Displacement (Mils) REFERENCE VALUE 0.3% 0.2% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.1% 0.3% 0.1% 0.3% 0.1%	$ \begin{array}{c} $	= 300	DUINC DLE RANGE 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 322 TP5T Calibration Due Date 11- Velocity (IPS) REFERENCE VALUE 0.16 0.10 0.23 0.09 0.13 0.10 1.3 0.10 1.4 4.4 5 0.00 0.10 0.23 0.23 0.23 0.10 1.4 1.4 1.4 5 0.00 0.10 0.00	TEST VA . 1 . 1 . 2 . 1 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 1 . 1 . 2 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	Sat 124 124 124 124 125 126 126	ACCEPTABLE R IJ A UNSat 2 3 CHAI 2 3 CHAI 2 1.0 1.0 1.5

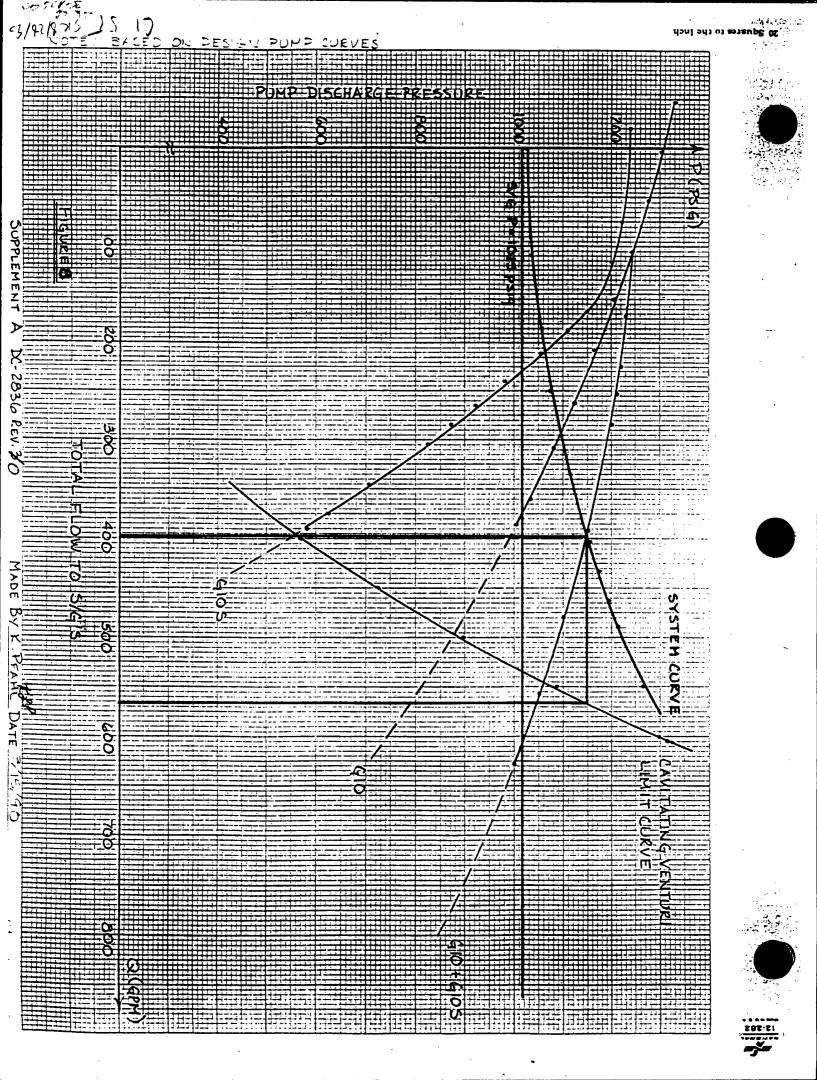

-

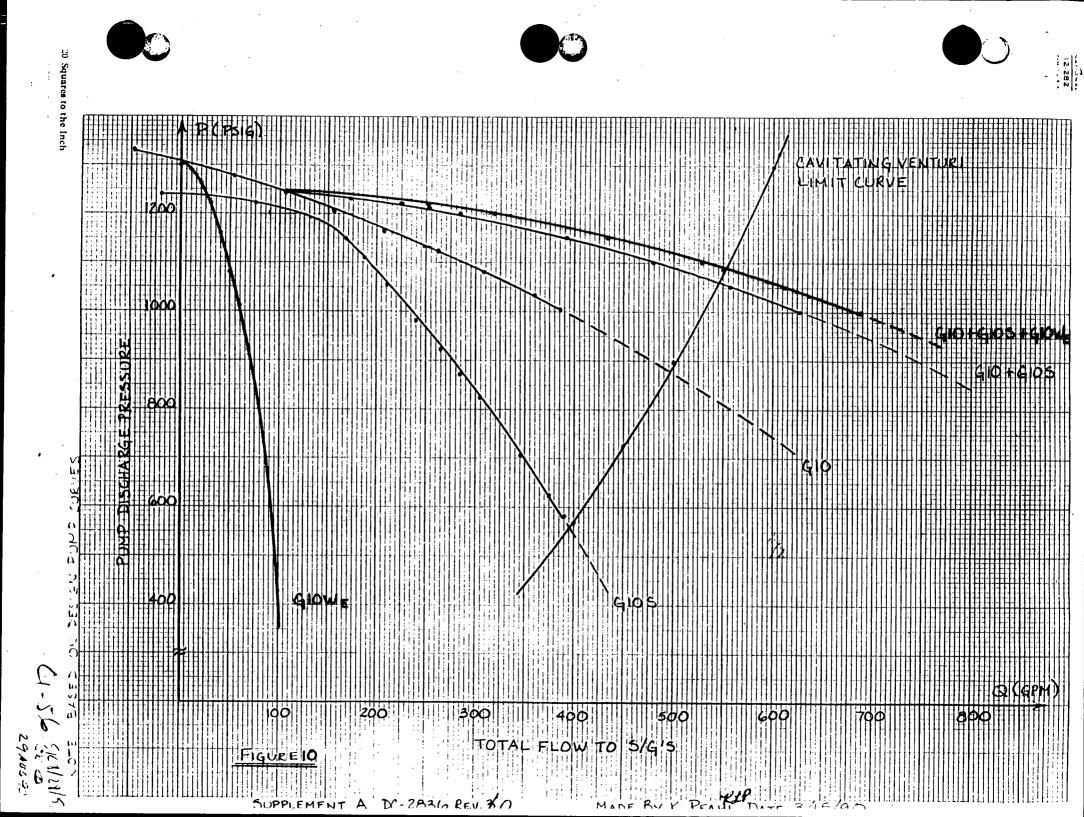


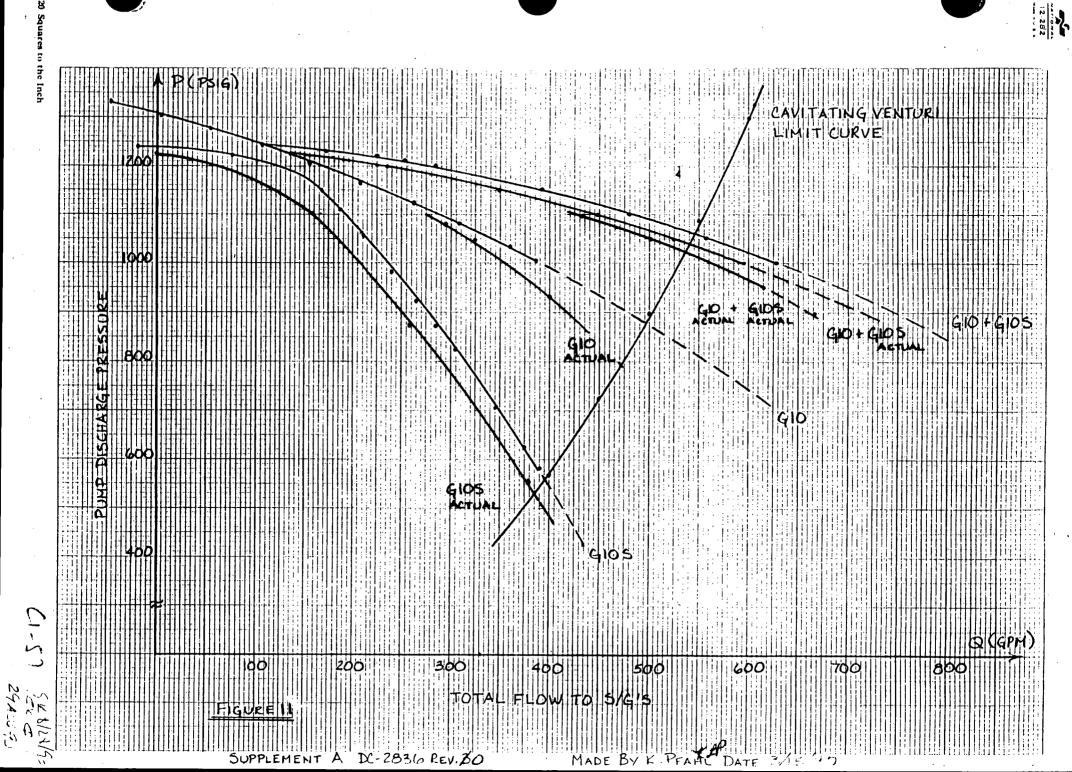

AUXILIARY FEEDWATER SYSTEM NUCLEAR GENERATION SITE SYSTEM DESCRIPTION SD-S01-620 UNIT 1 **REVISION 2** PAGE 25 OF 37 AFW LOGIC FROM EAST 1ST POINT HEATER - CA CONTAINMENT MOV-1204 - TRAIN A FEGULATOR -PT-2010 1ST PT BYPASS OUTSIDE INSIDE -PT-2011 HTA OUT Q CV-143 -AFW LOGIC THAIN A MOTOR DAIVEN AUX. FEED PUMP G-105 4" FIRE HOSE (PT гÞ⊘ ₽₽ CONN. H HOV-22 FCV-458 (*** FWS-455 **BYPASS** ₽4--1202 S/G FE3078 E-1C WEST 1ST POINT HEATER E-68 -2-2-1 FWS-469 2010 AFW LOGIC **(**, 3300 14 -CR AFW AFW LOGIC L -LOGIC 1 FCV TRAIN 6 CR 23000 F#5-441 FROM WEST - CA - PT-3010 NOTOR DRIVEN TO PRIMARY HEATER •**Þ4**-**Þ4** BYPASS REGULATOR PLANT MAKEUP CONDENSATE FE 3083 TANK PHU-D-STORAGE G-10W FROM WEST 9 TANK D-5 HEATER (FT 3010) CV-3110 Q FCV-45 ത Δ -tXi (m) MICHU BYPASS MOV-20 - PT-2610 ſ ₽€ NOTE TO TRAIN & AFW PUMPS GIOS CONTROL & GIO DISCHARGE FCV 33008 11-AFW LOGIC FE3077 101 E-18 THAIN A VALVE -0-0-**PQ** 141 OVERSPEED FROM UNIT 1 DEMINERALIZER WATER HEADER 344 4 ca - h 11-TURBINE DRIVEN Z - CA AFM 1 LOGIC са TRAIN A AUXILIARY G-10 FEEDWATER FEGULATOR BYPASS CV-STORAGE 2620 TANK ЪH (#1 2411 φ 0-24 CV-142 AFW T 345 ъ× ø 1 -100 C12-18 553/21/5 -∞-⊳ MOV-21 BYPASS 11 ÷ 1 CA AFW LOGIC 4" FIRE HOSE CONN. **S/**G (#1.) - CA 1 E-14 AFW LOGIC TRAIN A TO 1ST PT HTR INLET FCV-33604 FIGURE 1 - Ref. 8 NOTE 1: TYPICAL OF FOUR LOW FLOW SWITCHES (FSL-2306, 2307, 2308, 2309) 1 6 %. N FIGURE 1 A\$1006500 SUPPL A DC-2836 REV. 30 E 50-501-620-01-5 0293W.AUT

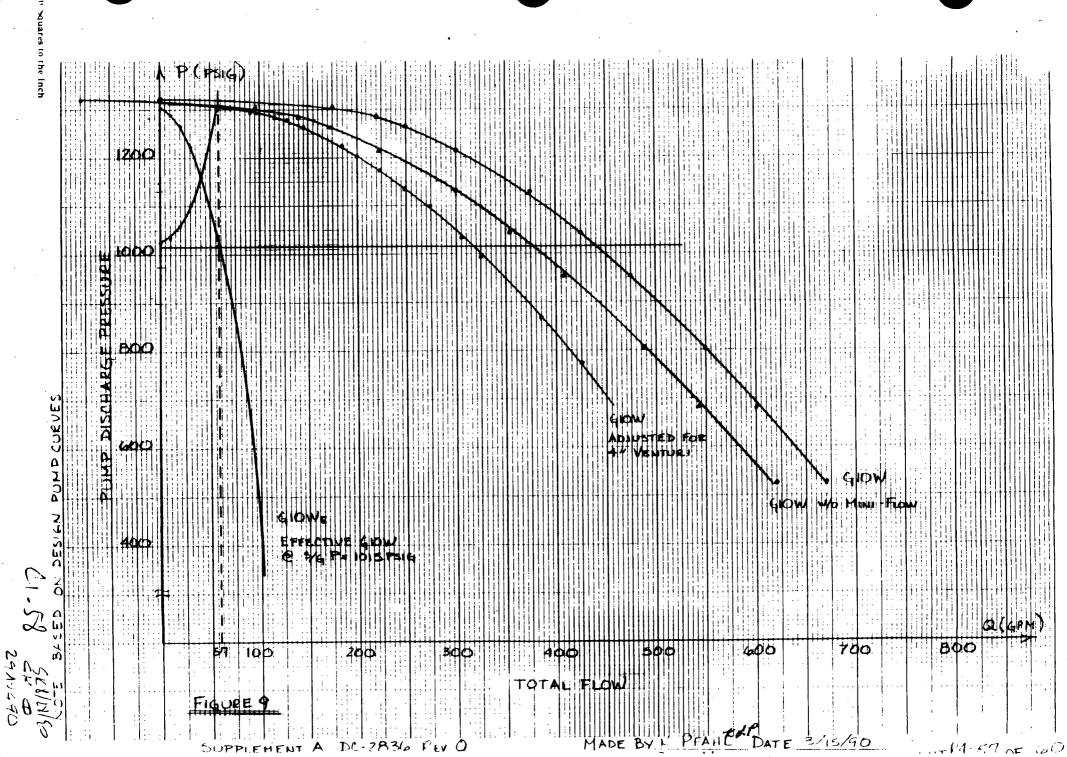

MADE BY Y PFAHL 44 DATE 3/15/90











Project or DCI		3587.0	ois M	Cah	No. Dr	-2836 SU		CN CONVER CN NO. CC	<i>n</i>	
	FN Alow								Sheet No.	······
REV	ORIGINATOR	DATE	RE	DATE	REV	ORIGINATOR	DATE	IRE	DATE	- - -
0	SK	6/0/93	A	2411:440	\wedge					
	, <u></u>				\square					
			<u> </u>					1		
			AT	TACH	h men	J TB				
									•	
									. ·	-
						•				
							• *			
	•									
		· · ·								
		•								
	. کې									
			•							
										ŀ
E 26-426 NEW	4/90								······	
								01	.59	sk NN/

WY	LE							Procedur	e No. 4	703
,				DATA		EET		Page No.		13
		CUSTOWER .	Per	ZMUT						
			Specimen .	VEN	DARL		leb !	4e.		
			Port No				\$/ነቶ	252		
RUN NO.	Q	ті	Ρ́1	PZ	P3	P1-P2	P1-P3	· .		T
	(GPH)	(DEG. F)	(PS1)	(PSIA)	(PSI.)	(PSID)	(PSID)	· .		
					1			<u> </u>		+-
	136.3	84	1155.4	1.23	923.5	11168.5	2319	0 51		+
	136.3	84	1158.8	1.68	772.6	1171.4	201 -	TI TH	TT TOUR	+-
	1368	80	1162.5		688.2	1176 1	172 2	01 11	LET TEMP	+
	136.8	83	1162.7	.67	573.8	1171 3	600 0	07 TU	LEI PRES	SURE
	127.7	81	1163.4	372.7	10.38.8	805 0		07 OU	KUAL PRE	SSUR
	842	89	1152.7	827.0	1097.1	340.0		<u>rs - 00</u>	LEI PRE	SSURI
	61.4	88	1153.7	986.7	1121.5	181.3			+	+
	55.0	88	1160.8	1030.1	1133.5	145.0			+	┼━
	36.4	88	1158.3	111	1142.8	61.2	156		<u> </u>	+
	106.8	88	1150.8	693	1063.9	560.8				+-
	126.8	83	995.7	.81	718.0	1009.2	2777		<u> </u>	+
	120,8	83	901.9	.83	511.5		390.4	•	<u> </u>	+
	12.0	-	775.8	.81	450.6	700 2	2-5-			┼──

C1-60 SK8/18/SD CK @ C=11-100

,	WY	ц <u>Е</u>								re No. (703
		· 1	CUSTOMER Ted Tider	Pe	DAT	A SHI	EET		Page No.	•	13
				Specimen Port He	Vero	TURI		leb (S/N Data	31		
	RUN NO.	Q	TI	P1	PZ	P3	P1-P2	P1-P3			T
		(GPH)	(DEG. F) (PSI)	(PSIA)	(PSI)	(PSID)	(PSID)	1		
F		139.7	26 80	1162.7		288.1	1175.7	274.6	Q - FL	OWRATE	
F	- <u>N</u>	139.9	83	1166.1	.Ko .73	764.1	1179.6	1000	T1 - IN	ET TEMP	BRF
F		121.1	86	1169.8	627.0	5339 1014.6	1183.3 553.4	435.9	PZ - THR	LET PRES	SURE
		82.3	83 83	1152,7 1155,2	784.3 921.0	1050%					-
		62.4 54.4	83 83	1158.8 1159.0	1029.6	<u>шр</u> .4 [1935 107.8			· · · · · · · · · · · · · · · · · · ·	
	+	36.1	83	1161.3	1129.5	11-169	46.1				
		27.6	83 83	999.1 904.9	1.15		1012.3		•		
		47		7255	44	5022	718.1	223			

CI-61 SK8/H/SO EK 9/H/SO

				DATA		FT	ſ	Page No.	•	13
Ì		custower	$\overline{\mathbf{D}}$	ZMUT						
	:	(96 1717)	Specimen _	VENT	URI		lob N			
			Port No					155 R/1	and the second secon	
IUN Ko.	Q	TI	P1	PZ	P3	P1-P2	P1-P3	• .		
∾.	(GPH)	(DEG. F)	(PSIG)	(PSIA)	(PSIG)	(PSID)	(PSID)	.		
	136.5	. 83	1166.1	2.2	926.5	1178.Z	239.6		-	
	136.1	26	1164.9	1.10	79.0		415.9		OURATE	+
	136.1	26	1164.9	1.10	655				LET TEMP	+
	136.1	86	1164.9	1.0	5385				ILET PRES	
	136.1	87	164.9	.87	403.2				RDAT PRE	
	136.1	87	1161.9	.83	246.1				TLET PRE	
-+	127.3	88	1168.3	420.3		7563				-
	105.1	8	1165.4	673.9	1091.8	505.8				
	84.7	81	1166.6	260.9	1119.6	320.0	430			
	62.9	83		998.4		178.4				
-	515	87		102 L		131.5	215			
\neg	31.6	87	1168.6	1200	1161.1	37.7				1
+	126.6	83	999.7	2.12	(de 2 -4	1011.9	2272			
	120.4	83	903.7	1.81	561.0					+
T	112.2	83	777.9	1.23	427.5					

CI-62 5KBIWIGA 23474-9-

li

w	LE							Procedure		03			
Lagnar,				DATA	SHE	ET	ĺ	Page No.	· .	15			
		CUSTOMER	TER	MUTI	<u> </u>	·····							
Specimen Iob No. Specimen S/N Part No. Dete													
PT. NO.	Q	T1	P1	P2	Р3	P1-P2	P1-P3						
. 	(GPH)	(DEG. F)	(PSIG)	(PSIA)	(PSIG)	(PSID)	(PSID)						
	135.6	77	1140.5	.89	822.2	[153.9	318.3	Q - FLO	VRATE	· · ·			
2	106.7	8	696.7	.78	517.8	710,2	178.9		ET TEMP	loc			
- <u>·</u>						· · · · · · · · · · · · · · · · · · ·		PI - INC P2 - THR	ET PRESS				
								<u> P3 - OUT</u>	ET PRES	SURE			

· .

C1-63 SK 1/77/

12 •

I

1407		,					F	Procedure	No. 47	03
				DATA		ET		Page No.		15
		CUSTOMER _	PE	ZMUT	17	· · · · · · · · · · · · · · · · · · ·			• •	
	. 1	led Title:	Specimen _		· · · · · · · · · · · · · · · · · · ·		lob N	N-5		
•			Part No,	· · · · · · · · · · · · · · · · · · ·	······································			8/15		
PT. NO.	Q	T1	P1	P2	Р3	P1-P2	P1-P3			
····	(GPH)	(DEG. F)	(PSIG)	(PSIA)	(PSIG)	(PSID)	(PSID)			
1.	129.9	80	1055.1	70	2475		0070			
1. 2.	106.7	80	699.8	.78 .69	247.5	713.4		<u>Q - FLO</u> T1 - INL		<u> </u>
			· · · · · · · · · · · · · · · · · · ·					P1 - INL	†	URE
						 		<u>P2 - THR</u> P3 - OUT		

C1-65 SK4128192

Procedure	No.
•	

Page No. 15

4703

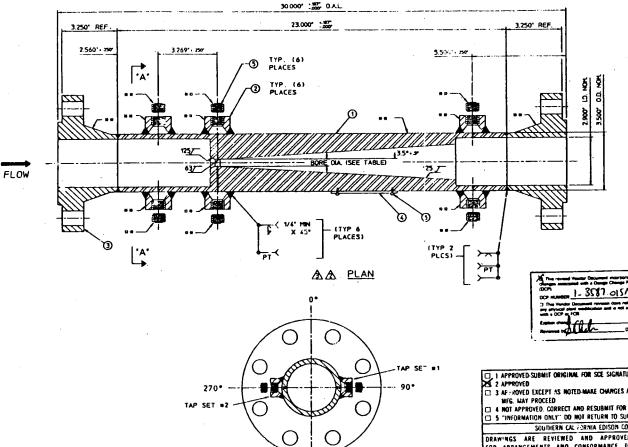
WYLE

DATA SHEET

PT. NO.	Q	· T1	P1	P2	P3	P1-P2	P1-P3		•			
NO.	(GPM)	(DEG. F)	(PSIG)	(PSIA)	(PSIG)	(PSID)	(PSID)	·				
	·	<u> </u>	698 ([
	107.1	79	1003.8	.61	1885	712.3	210.1	Q	-	FLO	VRATE	
Z.	130.0	79	1003.8	.74	516.1		487.7				ET TEMP	
		ļ]	l	ļ'				P1			ET PRESS	PRE
<u> </u>		l		<u> </u>	ļ!	· · · · · · · · · · · · · · · · · · ·		P2	- 1	THR	DAT PRES	SURE
				'	ļ!	ļ	ļ'	P3	- (Ουτ	LET PRES	\$URE
i I	4 <u> </u>	. · · · · · · · · · · · · · · · · · · ·	- I	, I	1 1	4 /	1 '			·		

· · · · ·

. .


C1-64 5K8/13/20 ENCLOSURE 2

PERMUTIT

CAVITATING VENTURI

OUTLINE DRAWING

	. 8			7	l		6 I		5		4
ſ	CUSTOMER TAG NUMBER	PERMU SERIAL NO	PIPE	BETA RATIO	0-≝S I GN		OPERATING		DESIGN FLOW RATE	D D	THROAT DIAMETER
					PRESSURE	TEMP	PRESSURE	TEMP	(CAVITATING MODE)		(•)
н	FE-3066	N-5530	3" - SCH 80	. 1262	1330 PSIG	200 °F	1160 PSIG	60*F	140 : GPH . 60 *F	WATER	0,366*
- 1	FE- 3076	N-5531	3" - SCH 80	. 1262	1330 PSIG	200 °F	1160 PSIG	60'F	140 " GPH 8 60 "F	WATER	0.366*
	FE-3077	N-5532	3" - SCH 80	. 1262	1330 PSIG	200 'F	1160 PSIG	60*F	140 1 GPH 8 60 *F	WATER	0.366*
		ا. <u>ــ</u> ، ـــــا		d			• • • • • • • • • • • • • • • • • • •	•			

E

n

в

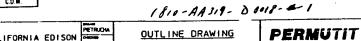
DO NOT SCALE THIS DRAWING - USE DIHENSIONS ONLY

180 SECT 'A-A' REVISIONS

REV AY DATE

and expression - 3587 OISM NEW A m 2652

C 1 APPROVED SUBMIT ORIGINAL FUR SCE SIGNATURE	
3 AF-KOVED EXCEPT AS NOTED-MAKE CHANGES AND RESUBMIT	
4 NOT APPROVED. CORRECT AND RESUBMIT FOR REVIEW 5 "INFORMATION ONLY" DO NOT RETURN TO SUPPLIER	
SOUTHERN CAL FORNIA EDISON CO.	_
DRAWINGS ARE REVIEWED AND APPROVED STREET	は
RELIEVE THE SUBMITTER FROM THE RESPONSIBIL DATE ITY OF ADEQUACY AND SUITABILITY OF DESIGN. 8-20-90 MATERIALS AND/OR EQUIPMENT REPRESENTED. C.D.M.	,


·I	Г	556-34380 2	
		BILL OF 1	
ILEN	OTY	DESCRIPTION	MATERIAL
1	1	ELEMENT - BOOY	ASTH A-182, F304 S.S.
2	6	1/2" - 6000# THREADOLETS	ASTH A-182, F304 S.S.
3	2	3 - 600# REWN FLANGE	ASTH A-105, C.S.
4	1	NAMEPLATE	ASTH A-240, 300 SERIES S.S.
5	6	1/2" PIPE PLUGS	ASTH A-182, F304 S.S.
6	4	DRIVE PINS	300 SERIES S.S.

NOTES:

Э

- 1. GOVERNING CODE: ANSI/ASA 831.1 1989 EDITION
- 2. ESTIMATED WEIGHT 130 L85.
- 3. HYDROTEST PRESSURE 1995 PSIG. (1.5 X DESIGN PRESSURE).
- ## INDICATES MATERIAL IDENTIFICATION MARK 4. (APPROXIMATE LOCATION).
- 5. STAMP TAP SET NUMBERS ON BOC & ADJACENT TO EACH TAP SET. USE LOW STRESS INTERRUPTED DOT DIE STAMP. TAP SET ORIENTATION IS IN HORIZONTAL PLANE WITH TAP SET #1 8 90°, #2 8 270°, EACH 'TAP SET' CONSISTS OF THREE (5) TAPS, THE UPSTREAM, THE THRUNT AND THE RECOVERY TAP.
- PIPE PLUGS (ITEM 5) WILL BE SCREWED HAND TIGHT IN THE 6. THREADED TAP SOCKET FOR SHIPMENT. THESE SOCKETS WILL THEN BE COVERED WITH TAPE PRIOR TO FINAL PACKAGING.
- 7. THE TERM 'REFERENCE' IMPLIES 'FOR INFORMATION ONLY'
- . THE THROAT DIAMETER AS NOTED IS FOR REFERENCE 8. ONLY. THE AS BUILT/CALIBRATED DIMENSION WILL BE RECORDED LATER.
- THE FOLLOWING DESIGN CONDITIONS ARE ALSO APPLICABLE Δ, IN ADDITION TO THE DESIGN FLOW RATE (CAVITATING HODE) NOTED IN THE TABLE ON THIS DRAWING.

CASE	INLET PRESSURE	6 P (PSID)	FLOWRATE (GPM)	TEMP (*F)	CAVITATING
1	1160	N/A	140, +05	60	YES
2	775	N/A	100.+400	60	YES
3	N/A	< 35	55	60	NO
4	N/A	< 65	62.5	60	NO

