FEB 1 5 1979

Hang

Docket Nos. 50-361 and 50-362

> Mr. James H. Drake Vice President Southern California Edison Company 2244 Walnut Grove Avenue P. O. Box 800 Rosemead, California 91770

Distribution Docket File JLee RPDenise NRC PDR RJMattson ELD Local PDR JFKnight IE(3) RSBovd SHanauer XXXXXXXX DBVassallo RTedesco BGXXXXXX DFRoss RDeYoung JRBuchanan FJWilliams VAMoore TBAbernathy RLBaer RHVollmer ACRS(16) HRood MLErnst Mr. B. W. Gilman Senior Vice President San Diego Gas and Electric Company 101 Ash Street P. O. Box 1831 San Diego, California 92112

Gentlemen:

SUBJECT: CONTENTS OF THE OFFSITE DOSE CALCULATION MANUAL (San Onofre Nuclear Generating Station, Units 1 and 2)

The Radiological Effluent Technical Specifications for PWR and BWR facilities issued in November 1978 require you to provide an Offsite Dose Calculation Manual (ODCM) with your proposed Technical Specifications implementing 10 CFR 50.36a and other Federal Regulations. The enclosure to this letter describes the staff's recommendations for the general contents of the ODCM. The format for the ODCM is left to your discretion.

Sincerely,

Original signed by Robert L. Baer

Robert L. Baer, Chief Light Water Reactors Branch No. 2 Division of Project Management

Enclosure: General Contents of the ODCM

ccs w/enclosure: See next page

7903140104

 OFFICE
 DPM:LWR #2
 DPM:LWR #2
 DPM:LWR #2

 SURNAME
 JLke:ab
 HRood:ab
 RLBack
 HRood:ab

 DATE
 2/13/79
 2/15/79
 2/15/79
 2/15/79

NRC FORM 318 (9-76) NRCM 0240

X UI S. GOVERNMENT PRINTING OFFICE: 1976 - 626-62

Mr. James H. Drake Vice President Southern California Edison Company 2244 Walnut Grove Avenue P. O. Box 800 Rosemead, California 91770

Mr. B. W. Gilman Senior Vice President - Operations San Diego Gas and Electric Company 101 Ash Street P. O. Box 1831 San Diego, California 92112

cc: Charles R. Kocher, Esq. James A. Beoletto, Esq. Southern California Edison Company 2244 Walnut Grove Avenue P. O. Box 800 Rosemead, California 91770

> Chickering and Gregory ATTN: David R. Pigott, Esq. Counsel for San Diego Gas & Electric Company and Southern California Edison Company Three Embarcadero Center, 23rd Floor San Francisco, California 94112

Mr. Kenneth E. Carr City Manager City of San Clemente 100 Avenido Presidio San Clemente, California 92672

Alan R. Watts, Esq. Rourke & Woodruff 1055 North Main Street Suite 1020 Santa Ana, California 92701

Lawrence Q. Garcia, Esq. California Public Utilities Commission 5066 State Building San Francisco, California 94102 Mr. James H. Drake Mr. B. W. Gilman

cc: Mr. R. W. DeVane, Jr. Combustion Engineering, Inc. 1000 Prospect Hill Road Windsor, Connecticut 06095

> Mr. P. Dragolovich Bechtel Power Corporation P. O. Box 60860, Terminal Annex Los Angeles, California 90060

Mr. Mark Medford Southern California Edison Company 2244 Walnut Grove Avenue P. O. Box 800 Rosemead, California 91770

Henry Peters San Diego Gas & Electric Company Post Office Box 1831 San Diego, California 92112

Ms. Lyn Harris Hicks Advocate for GUARD 3908 Calle Ariana San Clemente, California 92672

Richard J. Wharton, Esq. 4655 Cass Street, Suite 304 San Diego, California 92109

Phyllis M. Gallagher, Esq. Suite 220 615 Civic Center Drive West Santa Ana, California 92701

Mr. Robert J. Pate United States Nuclear Regulatory Commission P. O. Box 4167 San Clemente, California 92672

Section 1 - Set Points

Provide the equations and methodology to be used at the station or unit for each alarm and trip set point on each effluent release point according to the Specifications 3.3.3.8 and 3.3.3.9. Provide the alarm and control location, the monitor description, location, power source, scale, range and identification number, and the effluent isolation control device, its location, power source and identification number. If the set point value is variable, provide the equation to be used to predetermine the set point value that will assure that the Specification is met at each release point, and the value to be used when releases are not in progress. If dilution or dispersion is used, describe the on-site equipment and measurement method used during release, the site related parameters and the set points used to assure that the Specification is met at each release point, including any administrative controls applicable at the station or unit. The fixed and predetermined set points should consider the radioactive effluent to have a radionuclide distribution represented by normal and anticipated operational occurrences. Other features, such as surveillance requirements and the calibration method, should be addressed.

Section 2 - Liquid Effluent Concentration

Provide the equations and methodology to be used at the station or unit for each liquid release point according to the Specification 3.11.1.1. For

^{*}The format for the ODCM is left up to the licensee and may be simplified by tables and grid printout. Each page should be numbered and indicate the facility approval and effective date.

continuous and/or batch releases, the assumptions used for manual and automatic termination of releases should be provided. For batch releases, the calculational methods, equations and assumptions used, together with the pre-release and post-release analyses should be provided. Other features, such as surveillance requirements, sampling and analysis program, detection limitations and representative sampling should be addressed.

Section 3 - Gaseous Effluent Dose Rate

Provide the equations and methodology to be used at the station or unit for each gaseous release point according to Specification 3.11.2.1. Consider the various pathways, release point elevations, site related parameters and radionuclide contribution to the dose impact limitation. Provide the equations and assumptions used, stipulating the pathway, receptor location and receptor age. Provide the dose factors to be used for the identified radionuclides released. Provide the annual average dispersion values (X/O and D/Q), the site specific parameters and release point elevations. Other features, such as surveillance requirements, sampling and analysis program, detection limitations and representative sampling should be addressed.

Section 4 - Liquid Effluent Dose

Provide the equations and methodology to be used at the station or unit for each liquid release point according to the dose objectives given in Specifications 3.11.1.2. The section should describe how the dose contributions are to be calculated for the various pathways and release points, the equations and assumptions to be used, the site specific parameters to be

- 2 -

measured and used, the receptor location by direction and distance, and the method of estimating and updating cumulative doses due to liquid releases. The dose factors, pathway transfer factors, pathway usace factors, and dilution factors for the points of pathway origin, etc., should be given, as well as receptor age group, water and food consumption rate and other factors assumed or measured. Provide the method of determining the dilution factor at the discharge during any liquid effluent release and any site specific parameters used in these determinations. Other features such as surveillance requirements, sampling and analysis program, detection limitations and representative sampling should be addressed.

Section 5 - Gaseous Effluent Dose

Provide the equations and methodology to be used at the station or unit for each gaseous release point according to the dose objectives given in Specifications 3.11.2.2 and 3.11.2.3. The section should describe how the dose contributions are to be calculated for the various pathways and release points, the equations and assumptions to be used, the site specific parameters to be measured and used, the receptor location by direction and distance, and the method estimating and updating cumulative doses due to gaseous releases. the location direction and distance to the nearest residence, cow, goat, meat animal, garden, etc., should be given, as well as receptor age group, crop yield, grazing time and other factors assumed or measured. Provide the method of determining dispersion values (X/Q and D/Q) for short-term and long-term releases and any site specific parameters

- 3 -

and release point elevations used in these determinations. Also, provide the criteria for determining short and long term releases. Other features such as surveillance requirements, sampling and analysis program, detection limitations and representative sampling should be addressed.

Section 6 - Projected Doses

For liquid and gaseous radwaste treatment systems, provide the method of projecting doses due to effluent releases for the normal and alternate pathways of treatment according to the specifications, describing the components and subsystems to be used.

Section 7 - Operability of Equipment

Provide a flow diagram(s) defining the treatment paths and the components of the radioactive liquid, gaseous and solid waste management systems that are to be maintained and used, pursuant to 10 CFR 50.36a, to meet Technical Specifications 3.11.1.3, 3.11.2.4 and 3.11.3.1. Subcomponents of packaged equipment can be identified by a list. For operating reactors whose construction permit applications were filed prior to January 2, 1971, the flow diagram(s) shall be consistent with the information provided in conformance with Section V.B.1 of Appendix I to 10 CFR Part 50. For OL applications whose construction permits were filed after January 2, 1971, the flow diagram(s) shall be consistent with the information provided in Chapter 11 of the Final Safety Analysis Report (FSAR) or amendments thereto.

- 4 -

Section 8 - Sample Locations

Provide a map of the Radiological Environmental Monitoring Sample Locations indicating the numbered sampling locations given in Table 3.12-1. Further clarification on these numbered sampling locations can be provided by a list, indicating the direction and distance from the center of the building complex of the unit or station, and may include a discriptive name for identification purposes.

- 5 -