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ABSTRACT 
 

The U.S. Nuclear Regulatory Commission is currently performing research on the development 
of probabilistic models for digital instrumentation and control systems for inclusion in nuclear 
power plant (NPP) probabilistic risk assessments.  As part of this research, Brookhaven 
National Laboratory (BNL) is exploring the inclusion of software failures into digital system 
reliability models.  A previous BNL technical report, entitled “Review of Quantitative Software 
Reliability Methods,” BNL-94047-2010 (ADAMS Accession No. ML102240566), documented a 
review of currently available quantitative software reliability methods (QSRMs) that can be used 
to quantify software failure rates and probabilities of digital systems at NPPs and identified a set 
of desirable characteristics for QSRMs.  In the current report, two candidate QSRMs are 
selected based on a structured comparison of the previously-identified QSRMs against the set 
of desirable characteristics.  Each selected method is further developed in preparation to be 
applied in a case study.  This report also identifies an example digital protection system for use 
in the case studies.  The actual case studies will be documented in separate reports.  
Completion of the case studies is expected to provide a much better understanding of the 
existing capabilities and limitations in treating software failures in digital system reliability 
models. 
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FOREWORD 
 
Nuclear power plants (NPPs) have traditionally relied upon analog instrumentation and control 
(I&C) systems for monitoring, control, and protection functions.  Due to the functional 
advantages of digital systems (e.g., fault-tolerance, self-testing, signal validation, and process 
system diagnostics), operating nuclear plants have begun replacing analog systems with digital 
technology, while new plant designs fully incorporate digital I&C systems.  However, digital 
systems have some unique characteristics (e.g., software), and may have different failure 
causes and/or modes than analog systems; thus, their incorporation into NPP probabilistic risk 
assessments (PRAs) presents special challenges. 
 
The current U.S. Nuclear Regulatory Commission (NRC) licensing process for digital systems 
relies on deterministic engineering criteria.  In its 1995 PRA Policy Statement, the Commission 
encouraged the use of PRA technology in all regulatory matters, to the extent supported by the 
state-of-the-art in PRA methods and data.  Though many activities are carried out in the life 
cycle of digital systems to ensure a high-quality product, there are presently no consensus 
state-of-the-art methods for quantifying the reliability of digital systems. 
 
To address this limitation, the NRC is currently performing research on the development of 
probabilistic models for digital I&C systems for inclusion in NPP PRAs.  This research is 
consistent with the recommendations from the 1997 National Research Council report on digital 
I&C in nuclear power plants and with the Commission staff requirements memorandum 
(M061108), dated December 6, 2006, which directs the staff to address the deployment of 
digital systems, including the area of risk-informed digital I&C. 
 
Brookhaven National Laboratory (BNL) is supporting the NRC in this research through a series 
of projects on digital I&C system reliability modeling and quantification.  Previous BNL projects 
have focused on reliability modeling and quantification of digital system hardware, and on a 
review of currently available quantitative software reliability methods (QSRMs) that can be used 
to quantify software failure rates and probabilities of digital systems at NPPs.  This previous 
work identified a set of desirable characteristics for QSRMs.  In this current report, two 
candidate QSRMs are selected based on a structured comparison of the previously-identified 
QSRMs against the set of desirable characteristics.  Each selected method is further developed 
in preparation to be applied in a case study.  The scope of the method development is limited to 
modeling failures of NPP protection systems to perform their functions when called upon 
(represented by the probability of failure on demand), due to the risk importance of these 
functions.  This report also identifies an example digital protection system for use in the case 
studies.  The actual case studies will be documented in separate reports.  Completion of the 
case studies is expected to provide a much better understanding of the existing capabilities and 
limitations in treating software failures in digital system reliability models for use in NPP PRAs. 
 
The NRC is conducting separate research on the analytical assessment of digital I&C systems.  
The current licensing deterministic approach is heavily dependent on expert judgment.  
Assuring that safety-related digital I&C systems will perform satisfactorily in service has become 
more difficult due to uncertainties arising from systemic causes, such as the use of increasingly 
complex software.  In order to provide reasonable assurance for deterministic licensing 
decisions, multiple approaches must be used to address these uncertainties (including testing 
and process audits).  To further enhance the NRC’s licensing reviews, ongoing analytical 
assessment research is focused on developing improved methods for obtaining reasonable 
assurance of the performance of safety-critical software and systems. 
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While these two areas of research (i.e., digital I&C reliability modeling for PRA and the analytical 
assessment of digital I&C systems in support of the current deterministic regulatory decision 
making approaches) are complementary in many ways, it should be emphasized that they are 
intended to support very different applications.  As such, some methods may be appropriate for 
one of these two areas, but not the other.  In the longer term, if the staff determines that the 
development and quantification of reliability models of digital I&C systems (including software) is 
practical and useful, it will consider the development of regulatory guidance for the use of risk 
information in regulatory decisions regarding digital I&C systems for new and operating reactors 
to be consistent with the Commission’s PRA policy statement. 
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EXECUTIVE SUMMARY 
 
The U.S. Nuclear Regulatory Commission (NRC) encourages the use of probabilistic risk 
assessment (PRA) technology in all regulatory matters, to the extent supported by the state-of-
the-art in PRA methods and data.  Although much has been accomplished in the area of risk-
informed regulation, the process of risk-informed analysis for digital systems has not been fully 
developed.  The NRC established a plan for digital system research to identify and develop 
methods, analytical tools, and regulatory guidance for (1) including models of digital systems in 
nuclear power plant (NPP) PRAs and (2) incorporating digital systems in the NRC’s risk-
informed licensing and oversight activities. 
 
Brookhaven National Laboratory (BNL) is supporting the NRC in this research through a series 
of projects on digital instrumentation and control (I&C) system reliability modeling and 
quantification.  In a previous project, BNL surveyed the quantitative software reliability 
methods (QSRMs) and developed a set of criteria to select the appropriate QSRMs that can be 
used to quantify software failure rates for NPP digital I&C systems.  The current study continues 
on this research path, with the following objectives: 
 

1. Evaluate the QSRMs identified by Chu [2010] against the desirable characteristics 
therein, and select a few candidate methods that can potentially be used in PRA 
modeling of software failures. 

2. Select a protection system for a case study of the selected method(s). 
3. Develop approaches to apply the candidate methods to the selected protection system. 

 
The following ten selection criteria were applied to the surveyed QSRMs. 
 

1. The description of the method and its application is comprehensive and understandable. 
2. The assumptions of the method have reasonable bases. 
3. The method allows for consideration of the specific operating conditions of the software. 
4. The method takes into consideration the quality of software life cycle activities. 
5. The method uses available test results and operational experience. 
6. The method addresses uncertainty. 
7. The method has been verified and validated. 
8. The method is capable of demonstrating the high reliability of a safety-critical system. 
9. The method is capable of estimating parameters that can be used to account for 

software common cause failures (CCFs) of diverse protection systems or channels. 
10. The data and necessary information exist and can be collected. 

 
Based on this review, the Bayesian Belief Network (BBN) and Statistical Testing Method (STM) 
were selected as appropriate candidate methods to be applied to an example system. 
 
Ideally, an example system for the case study should be a safety-critical digital I&C system.  
However, the selection of the example system was based on the availability of the system and 
the documentation that supports the case study.  For this research effort, BNL reached an 
agreement with the Idaho National Laboratory to apply the BBN and STM to the protection 
function of a control system of their Advanced Test Reactor. 
 
BNL’s BBN method assumes that the number of defects in the software is determined by the 
quality of the software development activities: in other words, the characteristics of the software 
development process and the software product determine the software’s quality, and, thus, the 
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number of defects in the software.  The software failure probability on demand will be derived 
from the number of defects and the operational environment that can trigger the defects, 
resulting in the software’s failure to perform its intended function.  NUREG-0800, Chapter 7, 
Branch Technical Position 7-14, “Guidance on Software Reviews for Digital Computer-Based 
Instrumentation and Control Systems” (BTP 7-14), provides guidelines for evaluating software 
life cycle processes, including quality assurance, for digital computer-based I&C systems.  
Furthermore, industry standards also describe quality attributes for software development 
activities.  The BBN models the causal relationship between quality attributes and the number of 
defects, and then the failure probability.  Subject matter experts are used to build the BBN 
causal relationships and provide inputs to the BBN model. 
 
As part of this research effort, BNL proposed the STM to quantify the probability of failure on 
demand.  The test cases are produced from a thermal-hydraulic simulation, and are intended to 
represent the actual reactor operational conditions. 
 
BNL developed a framework to include software failure in the NPP PRAs.  In this framework, a 
segment of cutset was used to represent the accidental conditions (termed the PRA context) 
under which the software is exercised.  The software failure probability obtained through the 
STM is, therefore, a conditional probability, given the PRA context.  This risk-informed approach 
may reduce the testing required to demonstrate that the reliability of a digital system is sufficient 
to support a desired plant-level risk target.  Three examples were then provided to demonstrate 
how to estimate the adequate number of test cases to achieve a certain level of software 
reliability. 
 
In summary, the current study selected the BBN and STM as two methods to be applied to an 
example system to demonstrate their feasibility and practicality for potential use in NPP PRAs.  
The actual case studies are being conducted as a follow-up research project, and the results will 
be presented in future reports. 
 
The following findings/limitations stand out as noteworthy for further investigations: 
 

1. This study assumes that the software failure of a protection system is modeled at the 
system level.  In general, it may be necessary to consider software failures at a more 
detailed level to fit the NPP’s PRA needs. 

2. The proposed STM allows PRA contexts to be explicitly identified, but requires that the 
operational profile for each PRA context be developed.  The realism of the operational 
profiles is a potential limitation of the proposed approach.  In addition, the thermal-
hydraulic models used to generate the test cases are a rough approximation of the 
physical processes of an NPP, and their ability to model all events that may affect the 
inputs to the software (e.g., pump failure) may be limited. 

3. This study conservatively assumes that the software in redundant channels fails 
simultaneously due to common software faults.  This assumption might be overly 
conservative if diverse software or other means of mitigating CCFs are deployed in 
redundant channels. 

4. The BBN method will depend heavily on expert opinion.  The uncertainty introduced by 
the expert opinion process needs to be addressed. 
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1 INTRODUCTION 
 

1.1 Background 
 
The U.S. Nuclear Regulatory Commission’s (NRC’s) current licensing process for digital 
systems relies on deterministic engineering criteria.  In its 1995 probabilistic risk assessment 
(PRA) policy statement [NRC 1995], the Commission encouraged the use of PRA technology in 
all regulatory matters, to the extent supported by the state-of-the-art in PRA methods and data.  
Although much has been accomplished in the area of risk-informed regulation, the process of 
risk-informed analysis for digital systems is not fully developed.  Since digital instrumentation 
and control (I&C) systems are expected to play an increasingly important safety role at nuclear 
power plants (NPPs), the NRC established a plan for digital system research [NRC 2010a] 
defining a coherent set of projects to support regulatory needs.  Some of the projects included in 
this research plan address risk assessment methods and data for digital systems.  The objective 
of the NRC’s digital system risk research is to identify and develop methods, analytical tools, 
and regulatory guidance for (1) including models of digital systems in NPP PRAs and 
(2) incorporating digital systems in the NRC’s risk-informed licensing and oversight activities. 
 
Figure 1-1 graphically depicts the relationships between the various activities associated with 
the NRC’s digital system risk research.  The work on developing a digital system reliability 
modeling approach is being coordinated with several other related research efforts being carried 
out by the NRC.  As indicated in Figure 1-1, these other areas include failure mode identification 
and analysis [Chu 2008 and 2009a], operating experience analysis [Korsah 2010], and digital 
system inventory and classification [Wood 2012].  In addition, this research has benefited from 
interactions with the Electric Power Research Institute and the National Aeronautics and Space 
Administration (NASA) under separate memoranda of understanding, and with the Organisation 
for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA), more 
specifically the Working Group on Risk Assessment (WGRisk) and the OECD/NEA activity on 
Computer Systems Important to Safety (COMPSIS). 
 
An important insight from the initial digital system reliability research is the need to establish a 
commonly accepted basis for incorporating software behavior into digital I&C system reliability 
models that is compatible with existing NPP PRAs2.  For several years, Brookhaven National 
Laboratory (BNL) has worked on NRC projects, investigating methods and tools for the 
probabilistic modeling of digital systems, as documented mainly in NUREG/CR-6962 [Chu 2008] 
and NUREG/CR-6997 [Chu 2009a].  The NRC also sponsored research at the Ohio State 
University investigating the modeling of digital systems using dynamic PRA methods, as 
detailed in NUREG/CR-6901 [Aldemir 2006], NUREG/CR-6942 [Aldemir 2007], and 
NUREG/CR-6985 [Aldemir 2009]. 
 

                                                            

2 Existing NPP PRAs are assumed to be developed using traditional (static) event tree and fault tree methods.  To address software 
failures in the current PRA framework, software failures need to be captured in PRA sequences.  In other words, software functions 
or components need to be modeled as event tree top events or fault tree basic events and quantified using one or more quantitative 
software reliability methods, which are the primary interest of this study. 
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Figure 1-1 NRC research activities on digital system reliability 

 
Software failure has been defined in the literature differently [IEEE 610, Lyu 1996], and there is 
no consensus on the definition.  In this study, software failure is defined as the triggering of a 
fault of the software, introduced during its development life cycle, which results in, or contributes 
to, the host (digital) system failing to accomplish its intended function or initiating an unwanted 
action.  The triggering includes the generation of particular inputs to the software due to the 
state of the operating environment (i.e., of the NPP), in combination with the internal state of the 
digital system. 
 
BNL has been exploring how software failures can be included into these reliability models so 
that their contribution to the risk of the associated NPP can be assessed.  Based on a 
recommendation from the NRC’s Advisory Committee on Reactor Safeguards Subcommittee on 
Digital I&C Systems, the NRC tasked BNL in 2008 with organizing and running an expert panel 
meeting (workshop), with the goal of establishing a “philosophical basis” for incorporating 
software failures into digital system reliability models for use in PRAs [Chu 2009b].  The experts 
were recognized specialists from around the world with knowledge of software reliability and/or 
PRA.  The following philosophical basis for incorporating software failures into a PRA was 
established at the meeting [Chu 2009b]: 
 

“Software failure is basically a deterministic process.  However, because of our 
incomplete knowledge, we are not able to fully account for and quantify all the variables 
that define the software failure process.  Therefore, we use probabilistic modeling to 
describe and characterize it.” 

 
They also agree that: 
 

1. Software fails. 
2. The occurrence of software failures can be treated probabilistically. 
3. It is meaningful to use software failure rates and probabilities. 
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4. Software failure rates and probabilities can be included in reliability models of digital 
systems. 

 
Subsequently, BNL reviewed a spectrum of quantitative software reliability methods (QSRMs) to 
catalog potential methods that may serve to quantify software failure rates and per-demand 
failure probabilities of digital systems at NPPs, such that the system models can be integrated 
into a PRA [Chu 2010].  The QSRMs were identified by reviewing research on digital system 
modeling methods sponsored by the NRC or by NASA, performed by international 
organizations, and published in journals and presented at conferences.  The strengths and 
limitations of QSRMs for PRA applications were categorized, described, and evaluated.  In 
addition, a set of desirable QSRM characteristics was established.  While these characteristics 
are intended for use in evaluating and selecting QSRMs for future applications, a structured 
comparison between the methods and the individual characteristics was not undertaken at that 
time. 
 
The study documented in this report continued the preceding work on software reliability by 
selecting candidate QSRMs and further developing them in preparation for a case study of the 
selected method(s).  The actual case study, or studies, will be documented in a separate report. 
 

1.2 Objective and Scope 
 
This study was conducted with the following objectives: 
 

1. Evaluate the QSRMs reviewed by Chu [2010] against the desirable characteristics 
therein, and select a few candidate methods that can potentially be used in PRA 
modeling of software failures. 

2. Select a protection system for a case study of the selected method(s). 
3. Develop approaches for applying the candidate method(s) to the selected protection 

system. 
 
The study involves general development of the modeling methods.  Potential applications to 
plant-specific decision making are out-of–scope of this work.  After the actual case studies are 
completed and a fuller digital system model is developed, insights can be obtained into the 
feasibility, practicality, and usefulness of developing digital system models to include in PRAs. 
 
Digital protection systems modeled in a PRA may have multiple failure modes.  For example, a 
reactor protection system (RPS) may fail to generate a reactor trip signal when a trip condition 
occurs, or may generate a spurious trip signal.  In this study, the scope of the method 
development is limited to modeling software failures of protection systems to perform their 
functions (represented by the probability of failure on demand3) at an NPP, mainly due to the 
importance of these safety-related functions. 
 
Spurious trips would be included in a PRA as an initiating event (i.e., the starting point of an 
accident sequence analysis), and its failure rate (in terms of annual frequency of occurrence) 
would typically be estimated using operating experience.  If sufficient operating experience was 
not available, then a failure-rate-based modeling approach would be necessary.  On the other 
hand, after the occurrence of some other initiating event necessitating a reactor trip, a failure to 
generate a reactor trip signal would be modeled in the PRA as a demand failure probability, 

                                                            

3
 By “demand,” we mean a plant condition that requires actuation of safety systems (e.g., the reactor trip system). 
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necessitating the use of a failure-on-demand-based method.  Therefore, even for a single 
system, different QSRMs (e.g., one failure-rate-based and one failure-on-demand-based) may 
be needed, depending on the failure modes of interest. 
 
There is presently no consensus method for modeling digital systems in NPP PRAs [NRC 2008, 
NEA 2009].  Different methods have been proposed, including the fault tree method.  However, 
whether or not fault tree models adequately capture the dependencies of digital systems has not 
been adequately demonstrated.  Digital system reliability models may include software failures 
representing different software failure modes4 at different levels of detail (e.g., the software may 
be modeled at a system, subsystem, or module level).  However, a review of the literature [Chu 
2010] revealed that practically all available QSRMs consider the software system as a whole, 
not as separate modules or broken down by failure modes.  That is, the software system is a 
collection of software, including applications, the operating system, and platform software 
implemented in a digital system consisting of multiple microprocessors.  Depending on the 
method of reliability modeling used for digital systems in a PRA and the associated level of 
detail, different QSRMs may be needed to quantify the contribution of software failure to the 
digital system’s failure probability or rate.  It may also be necessary to separately model different 
types of software (e.g., application-specific software and operating system software) using 
different QSRMs.  These considerations notwithstanding, for practicality, this study considered 
only a system-level failure mode for the protection system to fail to perform its necessary 
function, consistent with most previous QSRM applications. 
 
The inclusion of software failures in a PRA requires that: 
 

1. The failure modes of the software component or function need to be defined for the 
specific scenarios defined in a PRA5. 

2. The software failure modes for the specific PRA scenarios have to be quantified using a 
QSRM. 

3. The software failure modes are included in a reliability model of the overall system 
(i.e., with hardware failure modes included), which is integrated into a PRA. 

 
“Context” is a confusing term in the literature, and has been used interchangeably with “software 
input space” and “operational profile.”  For this study, these terms are distinguished as defined 
below: 
 

 Software input space:  The set of all possible input values or ranges formulated in the 
software requirements specifications for a specific software function. 

 
 Operational profile:  The set of distributions of occurrence likelihood (or frequency) for 

the inputs over values6.  For instance, a binary input has two possible values, “0” and 
“1”; its operational profile can be defined (just a numerical example) as Pr(“0”) = 0.3 and 
Pr(“1”) = 0.7, which means that the value of “1” will appear 70% of the time and the value 
of “0” will appear 30% of the time. 

 

                                                            

4 Software failure modes in this report are defined as the ways in which software fails from the output perspective.  This definition 
differs from that found in software failure modes and effects analysis, which is the root cause of a software failure. 
5
 Software failures are known to be sensitive to the context in which the software operates [Garrett 1999]. 
6
 In a real NPP environment, different inputs might not be independent.  Such correlations and dependencies might be captured as 

joint distributions.  The following example implies an independent individual input, and is for demonstration purposes only. 
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 Context:  Also termed the “PRA context” in this report.  Context is defined as plant 
conditions determined by the PRA scenarios under which the software operates.  For 
instance, if an RPS appears as a top event after the small loss of coolant accident 
(LOCA) as an initiating event (IE), the condition (represented as input values for the 
software) associated with this IE is identified as the “PRA context” for this RPS software.  
An operational profile can be defined for each context. 

 
Many protection systems, including the one anticipated to be the subject of the example case 
study, are designed with identical redundant channels that run the same software.  As such, it is 
assumed that these channels would fail together, due to common software faults when the 
same input signals are encountered.  Therefore, this type of common-cause failure (CCF) can 
be quantified using the methods discussed in this study.  The potential for CCF between diverse 
channels of the same system or due to dependencies between two digital protection systems 
performing similar functions in the same accident scenarios was considered beyond the scope 
of this study.  Similarly, any CCFs that can affect other plant systems modeled in the PRA are 
beyond the scope of the study.  However, due to the potential importance of software CCF to 
plant risk, this is an area that is recommended for further research. 
 

1.3 Approach 
 
This study builds on earlier work at BNL (in particular by Chu [2010]) in selecting candidate 
QSRMs and developing approaches for applying them to an example system.  A set of 
desirable characteristics was also established and used to identify the example system.  The 
derivation of these characteristics was based on what the candidate methods need, and on 
practical considerations. 
 
In identifying the candidate methods among those reviewed by Chu [2010], the set of desirable 
characteristics for candidate QSRMs developed therein was expanded through the addition of a 
characteristic on the availability of necessary data.  The different QSRMs were compared 
against the expanded list of characteristics, and the Bayesian Belief Network (BBN) and 
statistical testing were chosen as candidates7. 
 
For each of these two candidate methods, the literature was reviewed to assess the method’s 
suitability for estimating demand-failure probabilities of safety-critical protection systems, and to 
formulate an approach for applying it to an example system.  As will be seen later in this report, 
it was decided that the statistical testing method is the preferred approach.  However, due to 
limitations with this method, and to account for the quality in carrying out software-life cycle 
activities, it was also decided to first develop a prior distribution with the BBN approach, and 
then update it by Bayesian inference using the statistical testing results.  The BBN approach is 
based on the understanding that the quality in carrying out the software development activities 
determines the reliability of the software.  Since developing and quantifying a detailed BBN can 
be very resource-intensive and the evidence needed for quantification may be lacking, both a 
simplified and a detailed BBN will be developed.  This exercise will provide insight into the costs 
and benefits of developing a detailed BBN model.  It is expected that results from BBNs will 
have large uncertainties due to their reliance on expert opinion, particularly in cases where 
evidence is very limited.  The results obtained from the BBN will be updated using evidence 

                                                            

7 One may argue that statistical testing is a part of the BBN method because a BBN model that estimates a distribution for software 
failure on demand can easily be modified to include the test results. 
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obtained from the statistical testing.  The statistical testing results will also be used to perform a 
Bayesian update of a non-informative prior, to provide an additional standard for comparison. 
 
Software reliability experts from the Center for Software Reliability (CSR) at City University 
London reviewed and commented upon the draft working material of this project.  This research 
and the input from CSR identified issues and limitations of the methods and, in a few cases, 
possible ways to address them.  It should be noted that it was originally intended to also 
develop a prior distribution using a discrete software reliability growth model (DSRGM) 
approach.  However, following extensive discussions with CSR, it was ultimately decided not to 
pursue the DSRGM approach due to the expected lack of data on demand-based debugging 
tests for highly reliable systems, as well as the other limitations. 
 
Figure 1-2 summarizes the structure of the report.  Section 2 documents the evaluation of the 
QSRM methods against the set of desirable characteristics and the selection of the two 
candidate methods, that is, the BBN and statistical testing methods.  Section 3 describes the 
selection of the example system for the case study.  Sections 4 and 5 detail the approach to 
developing the two candidate methods, respectively.  Figure 1-2 shows that for each context 
defined in a PRA for a protection system, a Bayesian analysis is performed using either a non-
informative prior distribution or a prior distribution derived from the BBN, and the test results of 
the statistical testing method.  Note that since this study only further developed an overall 
approach for the case study, Section 6 gives the conclusions and the insights obtained from the 
study.  Additional insights and lessons learned can be obtained only after the case studies are 
completed. 
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Figure 1-2 Development of quantitative software reliability models for digital 
protection systems of nuclear power plants 
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2 SELECTION OF QUANTITATIVE SOFTWARE RELIABILITY 
METHODS 

 
In this section, the quantitative software reliability methods (QSRMs) described in detail and 
reviewed in an earlier study [Chu 2010] are evaluated against the desirable characteristics 
developed therein.  The objective of this evaluation is to identify the most promising methods for 
quantifying software reliability to help formulate digital system reliability models for use in 
probabilistic risk assessments (PRAs) of nuclear power plants.  The set of desirable 
characteristics is repeated below, with a shortened description provided in parentheses.  Note 
that a tenth characteristic was added to account for the fact that some of the methods may 
require data, information, or models that are not available. 
 

1. The description of the method and its application is comprehensive and understandable.  
(method description) 

2. The assumptions of the method have reasonable bases.  (reasonable assumptions) 
3. The method allows for consideration of the specific operating conditions of the software.  

(consideration of operating conditions) 
4. The method considers the quality in carrying out life cycle activities.  (consideration of 

life cycle quality) 
5. The method uses available test results and operational experience.  (use of data) 
6. The method addresses uncertainty.  (addressing uncertainty) 
7. The method has been verified and validated.  (verification and validation) 
8. The method is capable of demonstrating the high reliability of a safety-critical system.  

(demonstrating high reliability) 
9. The method is capable of estimating parameters that can be used to account for 

software common-cause failures (CCFs) of diverse protection systems or channels.  
(software CCF) 

10. The data and necessary information exist and can be collected.  (availability of data) 
 
Section 2.1 describes QSRM common limitations.  Section 2.2 assesses each method against 
these characteristics by discussing its strengths and weaknesses; Table 2-1 summarizes the 
evaluations.  Section 2.3 identifies candidate methods for a future proof-of-concept case study.  
Sections 4 and 5 describe the approaches for developing the BBN and statistical testing 
methods, respectively.  Candidate methods developed BNL are further evaluated against the 
characteristics and the corresponding results, and discussions are presented at the end of 
Sections 4 and 5. 
 

2.1 Common Limitations of Quantitative Software Reliability Methods 
 
The following describes common limitations applicable to the set of reviewed QSRMs.  A 
detailed evaluation per characteristic per method is given in the following sections. 
 
Test profile vs. operational profile 
 
Most of the QSRMs reviewed use available test and/or operational data.  For test data, the 
QSRM descriptions did not always specify whether the test cases were sampled from the 
software’s operational profile.  There is often little description in these papers or reports of how 
the tests were performed, or what was done to ensure that they truly represent the operational 
profile.  Nonetheless, standard statistical methods were used in quantifying the software’s 
failure rates or probabilities.  It is commonly known that test profiles may not realistically 
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represent operational profiles [Miller 1992].  This source of uncertainty/inaccuracy should be 
accounted for in estimating software reliability. 
 
Context specificity (Characteristic 3) 
 
Software failures are dependent on the context (e.g., the specific system function being 
evaluated, the associated success criteria, and other relevant conditions in the plant) in which 
the software is operating [Garrett 1999]. 
 
In general, the QSRMs reviewed for this study consider the failure of a software program to 
perform its function without specifically considering the external context in which the software is 
expected to function (here, external context refers to contextual factors external to the digital 
system of interest).  In general, one may argue that a QSRM can be applied to a specific 
external context (e.g., actuation of a safety function, given the occurrence of a specific accident 
scenario).  For example, Guarro [2007] successfully demonstrated a Context-Based Software 
Risk Model in a PRA study for a space application.  Application of this concept is described in 
more detail in Sections 5.1 and 5.2. 
 
Demonstration of high reliability (Characteristic 8) 
 
It is expected that a digital reactor protection system (RPS) should have at least the reliability of 
the analog RPS it replaces (i.e., a failure probability on demand on the order of 10-5).  
Statistically it would require undertaking hundreds of thousands of tests without failure to 
demonstrate this level of reliability.  Automated testing, in which test cases are randomly 
generated from the operational profile, could demonstrate this high level of reliability, but it may 
be difficult to verify and validate the operational profile.  To BNL’s best knowledge, no studies in 
the literature have demonstrated this level of probability. 
 
Level of modeling detail 
 
As discussed in Section 1, the system-level failure modes of digital systems at an NPP can be 
defined.  For example, an expert workshop [Chu 2009b] identified three system-level failure 
modes: failure to generate signal in time, spurious signal, and adverse effects on other 
functions.  However, depending on the level of detail of system modeling, quantification of the 
failure probabilities for lower-level failure modes might be needed.  For example, it may be 
desirable to use generic failure modes to model software failures for each microprocessor 
(e.g., a microprocessor program continues to run but generates incorrect results), as is done in 
the reliability model of a digital feedwater control system [Chu 2009a], where software failure 
modes are included at the microprocessor level as placeholders.  Current QSRMs do not seem 
to address software failure modes at a more detailed level.  However, it may be possible to use 
the statistical testing method at this level of detail. 
 
CCF of two diverse digital systems (Characteristic 9) 
 
CCF is a very important issue for digital systems.  It is commonly assumed that if the redundant 
channels of a safety-related system (e.g., an RPS or engineered safety feature actuation 
system) run identical software, they would all fail given a software failure that leads to loss of a 
channel function.  This assumption may be too conservative, since some digital protection 
systems may be designed with two or more diverse channels [Wood 2009].  An NPP may add a 
second, diverse digital shutdown system with a different software program, and it would be 
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overly conservative to assume that the alternative shutdown system and the primary shutdown 
system would fail simultaneously. 
 
N-version programming is a software diversity strategy that has been quantitatively assessed in 
experiments8 [Lyu 2005] that demonstrated that it can enhance software reliability.  It can 
potentially be included in a reliability model using the concept of CCF models typically used in a 
PRA for modeling hardware failures (e.g., the alpha or beta factor model).  Littlewood and 
Rushby [2010] developed a mathematical approach for assessing the failure probability of two 
diverse software systems, a complex one and a simple one, that considers the possibility that 
the simple software is “perfect” [Littlewood 2011].  The approach provides considerations of 
diverse software systems in reliability modeling, and can serve as a starting point for assessing 
the potential dependencies between two diverse systems. 
 
Regardless of the level of diversity, the possibility that two different protection systems serving 
the same function can fail from the same cause cannot be completely precluded.  Hence, 
methods are needed to account for potential dependencies between diverse systems.  As 
discussed in Section 1, the scope of this study is limited to quantifying the probability of failure 
of the software of an individual protection system.  Therefore, CCF across different systems—
whether the systems are considered diverse or not—is beyond the scope of this study.  
However, due to its potential importance to plant risk, the need for further research into software 
CCF is noted in Section 6.4. 
 

2.2 Evaluation of Quantitative Software Reliability Methods 
 
In this section, the QSRMs are evaluated against the desirable characteristics.  The evaluation 
is based mainly on the information documented in the review of the QSRMs [Chu 2010], which 
provides more description of the methods and identifies whether the method addresses each 
characteristic.  The answers, “Yes,” “Maybe,” and “No,” depend on whether the method 
conceptually meets the desirable characteristics and whether the method’s implementation is 
deemed practical.  Table 2-1 summarizes the evaluation of the QSRMs against the desirable 
characteristics.  It may be argued that some of the characteristics are more important than 
others, and should therefore be given more weight.  However, it is difficult to justify the 
subjective assignment of weights, or to justify the resources required, should a formal expert 
elicitation process be used for this purpose. 
 

                                                            

8 N-version programming is a diversity strategy to reduce the likelihood of potential software CCFs, and is accomplished by using 
different software development teams to develop software using the same specifications. 
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2.2.1 Software Reliability Growth Methods 
 
Characteristic 1 – Method description 
 
Software reliability growth methods9 are used in determining whether a piece of software is 
ready to be released, or how much more testing is needed before release.  These models are 
failure-rate-based, and are not directly applicable to protection systems for which a failure-on-
demand probability needs to be estimated.  Essentially, these models assume that the system 
failure rate decreases in time as more software faults are identified and fixed, and use test 
results to estimate the parameters of the models.  They are the most developed and widely 
used QSRMs, and they and their applications are well described in the literature.  As such, they 
fully meet Characteristic 1. 
 
One limitation, in which the software reliability growth model (SRGMs) are not directly applicable 
to protection systems for which a failure-on-demand probability needs to be estimated, might be 
eliminated by extending discrete SRGMs to modeling software failure on demand.  Discrete 
SRGMs (e.g., see Yamada [1985] and Okamura [2004]) consider test results in the form of the 
number of software faults discovered in each test, and show that this number follows a discrete 
non-homogeneous Poisson Process (DNHPP).  One of their advantages is that the software 
failure occurrence times do not have to be collected.  Many continuous-time SRGMs can be 
converted into DNHPP models.  These models represent software failures on demand in a way 
similar to how SRGMs model software failure rates. 
 
Characteristic 2 – Reasonable assumptions 
 
Some assumptions made in individual SRGMs may be incorrect, for example, assuming that a 
fault is fixed perfectly.  However, as discussed by Chu [2010], for models based on empirical 
formulas, the focus is primarily on how well they predict/fit the data.  As such, SRGMs are rated 
“Maybe” for Characteristic 2. 
 
Characteristic 3 – Consideration of operating conditions 
 
As discussed in Section 2.1, this characteristic is a limitation common to many QSRMs.  Since 
SRGMs do not account for the software context, they do not meet Characteristic 3. 
 
Characteristic 4 – Consideration of life cycle quality 
 
Since SRGMs do not explicitly account for the quality in carrying out life cycle activities, they do 
not meet Characteristic 4. 
 
Characteristic 5 – Use of data 
 
SRGMs depend heavily on the availability of test data, that is, data collected during software 
development, though they also can be used with operational experience.  As such, SRGMs 
meet Characteristic 5. 
 

                                                            

9 Many of the references for Sections 2 and 4 and Appendix A of this report refer to reliability growth models, not methods.  While 
the authors of this report believe that it is more appropriate to characterize them as methods, they are often described in this report 
as models to maintain consistent terminology with the referenced documents. 
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Characteristic 6 – Addressing uncertainty 
 
Many different SRGMs have been proposed.  They all assume that the system’s failure rate 
decreases with time; however, each SRGM assumes that the rate of decrease follows a 
different type of curve, expressed in terms of an empirical formula.  Using a few different 
SRGMs with the same set of test data would allow variability among the models to be captured.  
Although an SRGM’s parameter uncertainty is not typically assessed, this is not an inherent 
model limitation.  For example, Musa described an approach for handling parameter uncertainty 
for software reliability [Musa 1987].  Alternatively, a Bayesian analysis could be used to 
determine parameter uncertainties.  Applying these approaches would satisfy Characteristic 6. 
 
Characteristic 7 – Verification and validation 
 
SRGMs have previously been demonstrated with test data from the National Aeronautics and 
Space Administration (NASA) and military applications (see Chapter 7 of Lyu [1996]), meeting 
Characteristic 7. 
 
Characteristic 8 – Demonstrating high reliability 
 
SRGMs require failure data on debugging tests or operating experience.  In order to 
demonstrate a high reliability, a few failures in a very large number of tests and/or operational 
demands are needed.  However, it is not likely that the large number of tests or operational 
demands is available for a safety-related nuclear power plant system.  This will make it difficult 
to satisfy Characteristic 8.  A “No” ranking is assigned. 
 
Characteristic 9 – Software CCF 
 
As discussed in Section 2.1, SRGMs cannot be used to estimate software CCF parameters.  
They do not meet Characteristic 9. 
 
Characteristic 10 – Availability of data 
 
SRGMs require software debugging/testing data to estimate model parameters.  Such data is 
normally proprietary, and is therefore not publically available.  This makes it difficult to meet 
Characteristic 10. 
 
2.2.2 Bayesian Belief Network Method 
 
Characteristic 1 – Method description 
 
A BBN is a probabilistic graphical model depicting a set of random variables and their 
conditional independencies10 via a directed acyclic graph.  Here, “acyclic” means that the graph 
does not form a feedback loop.  In a BBN, the nodes represent random variables, and the arcs 
signify their dependencies.  The BBN method has been used successfully in non-nuclear 
applications and is well documented in the literature, meeting Characteristic 1.  A few studies 
have been performed by the nuclear industry, for instance, by Gran [2002a] and Eom [2009].  A 
basic idea from these studies is that the quality in carrying out the software development 

                                                            

10 In a BBN, a node is independent of its non-descendent nodes, given its parent nodes. 
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activities, which includes both software product quality and software development process 
quality, determines the reliability of the software. 
 
Characteristic 2 – Reasonable assumptions 
 
An important assumption of a BBN is the conditional independence implied in its structure 
[Jensen 2002, Chu 2010].  One way to confirm the correctness of the BBN structure is to ask 
whether any two nodes should be connected by an arc representing a “direct” dependency.  If 
two nodes are not connected by an arc, then the only dependency between them should be 
through intermediate nodes.  It may be difficult to demonstrate such implied conditional 
independence (i.e., showing that the two nodes should not have a direct link/arc), resulting in a 
ranking of “Maybe” for Characteristic 2. 
 
Characteristic 3 – Consideration of operating conditions 
 
Since the applications of the BBN method do not account for the software context, it is assumed 
that the BBN method does not meet Characteristic 3. 
 
Characteristic 4 – Consideration of life cycle quality 
 
A BBN uses conditional probability tables to represent interdependency among disparate 
events, and, in PRA applications, can potentially combine qualitative information, such as 
quality in carrying out software life cycle activities (thereby meeting Characteristic 4), with 
quantitative information, such as test and operational data (meeting Characteristic 5). 
 
Characteristic 5 – Use of data 
 
See the preceding discussion. 
 
Characteristic 6 – Addressing uncertainty 
 
With a BBN approach, uncertainties associated with the events/nodes are represented explicitly 
in their probabilities, thereby meeting Characteristic 6. 
 
Characteristic 7 – Verification and validation 
 
The BBN method was used in modeling both software failure rates and probabilities [Gran 2000, 
Eom 2004].  These applications appear to be exploratory in nature, even though a few experts 
have stated that the method is promising [Littlewood 2000], earning a “Maybe” for 
Characteristic 7. 
 
Characteristic 8 – Demonstrating high reliability 
 
Gran [2000] formulated a BBN that assesses the quality of the software development activities 
to obtain a prior distribution for the probability of failure, and test results were used in a standard 
Bayesian analysis of the probability.  While that study did not result in estimates of very high 
reliability, restrictions that kept it from applying to highly reliable nuclear protection system 
software were not identified either.  A “Maybe” rating was assigned. 
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Characteristic 9 – Software CCF 
 
As was discussed in Section 2.1, the inability to account for software CCF between diverse 
systems is a common limitation of the current QSRMs. 
 
Characteristic 10 – Availability of data 
 
Applications of the BBN method often use discretized probability distributions to represent the 
nodes, and subjective expert elicitation in estimating the conditional probability tables 
representing the impacts that parent nodes have on child nodes.  In practice, efforts used to 
develop conditional probability tables are very significant, with expert elicitation as a resource-
intensive part.  It is expected that the qualifications of the experts and the validity and credibility 
of the inputs they provide have to be scrutinized carefully.  All of these concerns result in a 
“Maybe” rating for Characteristic 10 for BBN. 
 
2.2.3 Test-Based Methods 
 
Characteristic 1 – Method description 
 
Test-based methods fall into two categories (i.e., black-box and white-box methods11), 
depending on how the tests are performed.  These two methods employ different quantification 
approaches, and both are documented comprehensively, thereby meeting Characteristic 1.  A 
few studies have been performed for the nuclear industry, for example, by Miller [1992], 
May [1995], Littlewood [1997a], and Zhang [2004]. 
 
Characteristic 2 – Reasonable assumptions 
 
In general, any method that uses test data can be considered a test-based method, and is 
subject to the QSRM limitations discussed in Section 2.1.  In particular, the common assumption 
that the software’s testing profile is representative of its operational profile is often not well 
supported.  Accordingly, all test-based methods are rated as “Maybe” for Characteristic 2. 
 
Characteristic 3 – Consideration of operating conditions 
 
A basic requirement of statistical testing is that the test cases be sampled from its operational 
profile, which is expected to be an approximation of the operating condition.  Therefore, in 
general, statistical testing methods satisfy this characteristic.  A “Maybe” was assigned because 
the methods have not been applied to specific contexts defined in an NPP PRA.  Section 5 
describes how the black-box methods can account for the specific contexts defined in a PRA: 
that is, an operational profile is developed for each context defined by the PRA model, thereby 
likely meeting Characteristic 3. 
 
Characteristic 4 – Consideration of lifecycle quality 
 
Since test-based methods do not specifically account for the quality of life cycle activities, they 
do not meet Characteristic 4. 
 

                                                            

11 The definitions of these two methods are vague in the literature.  Many times knowledge gained from white-box testing is used to 
guide the black-box testing.  In literature, such testing practices are called “gray-box.” 
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Characteristic 5 – Use of data 
 
Test-based methods perform tests and use the results in quantifying software failure probability, 
thereby meeting Characteristic 5. 
 
Characteristic 6 – Addressing uncertainty 
 
Black-box test-based methods use standard statistical methods, including parameter uncertainty 
analysis, to quantify software reliability, thereby meeting Characteristic 6.  White-box methods 
develop their own quantification methods, which take into consideration the structure of the 
software (e.g., Zhang [2004] derived formulas for calculating an averaged system failure 
probability over different nodes and paths in the software) and parameter uncertainty. 
 
Characteristic 7 – Verification and validation 
 
Conceptually and mathematically, the black-box method can be used in assessing software 
reliability, as has been done in non-software applications.  Realistic applications of the black-
box method to quantify the failure probability of a digital protection system remain 
undemonstrated, so this method is rated “Maybe” for Characteristic 7. 
 
White-box test-based methods were developed in only a few studies (e.g., Zhang [2004] and 
May [1995]).  Zhang [2004] considers the internal structure of the software.  These methods 
require additional resources, such as those for assessing the coverage of different structural 
elements (e.g., estimating the frequency of visitation at a path or node of a software program).  
May [1995] considers partitioning the input space of a software with associated partitioning of 
the area of the code that is executed, and estimates a failure probability for each partition.  Both 
of these methods advantageously account for information about the internal structure of the 
software, and may detect faults that would otherwise remain undetected.  However, it may be 
difficult to determine the set of inputs (that is, the partition) that would force the execution of a 
software program to follow a specific path.  Also, these white-box test-based methods estimate 
the software failure probability from the failure probabilities of individual paths of the software or 
individual partitions of the input space.  The expressions show that the number of tests without 
failure for each individual node or partition has to be equal to the number of tests without failure 
using a black-box method in order to produce the same mean software failure probability [Chu 
2010].  This suggests that a much larger number of tests would be needed, as compared with 
the black-box testing method.  Therefore, from the perspective of estimating software failure 
probability (as opposed to testing for licensing purposes), it is not obvious that the white-box 
methods would give better statistical results than the black-box test-based methods.  In addition, 
Zhang indicated that, due to the many possible paths, she was unable to evaluate all of them 
using her method.  Due to the potentially much greater number of tests required for white-box 
testing, it is assigned a rating for Characteristic 7 (“No”) that is lower than that for black-box 
testing (“Maybe”).  The ability (or inability) of white-box testing methods to meet all of the other 
desirable characteristics is essentially the same as that for black-box testing methods. 
 
Characteristic 8 – Demonstrating high reliability 
 
As was mentioned in Section 2.1, automated testing may be a means of undertaking a large 
number of tests, thereby potentially allowing black-box methods to satisfy Characteristic 8.  A 
rating of “maybe” was assigned. 
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Characteristic 9 – Software CCF 
 
As was discussed in Section 2.1, the inability to account for software CCF between diverse 
systems is a common limitation of the current QSRMs. 
 
Characteristic 10 – Availability of data 
 
The National Research Council committee [1997] recommended employing test results to 
determine software failure probabilities.  For licensing purposes, tests have been used to 
identify software bugs and to demonstrate that a system performs its intended functions.  
However, the results are not suitable for quantifying software failure reliability because the test 
cases are not sampled randomly from the operational profile.  Therefore, specific tests are 
needed to support test-based methods [May 1995].  The test configuration used in performing 
required tests for licensing can be adopted for statistical testing, thereby satisfying 
Characteristic 10. 
 
2.2.4 A Correlation Method Using Software Development Practices 
 
Characteristic 1 – Method description 
 
Neufelder’s correlation approach [2002], which was implemented in a computer code called 
“Frestimate” [SoftRel 2009], provides a point estimate for the software failure rate by making 
use of the software engineering practices of past software development projects.  Because of 
the unavailability of detailed information on the past software development projects and the 
correlation/regression analyses used to construct its predictive model, the method could not be 
evaluated in detail, and therefore does not meet Characteristic 1. 
 
Characteristic 2 – Reasonable assumptions 
 
Neufelder fails to give a solid technical basis for using her simple equation to convert the 
number of defects to a failure rate, thereby limiting the method’s ability to meet Characteristic 2.  
A rating of “Maybe” was assigned. 
 
Characteristic 3 – Consideration of operating conditions 
 
Since it does not explicitly account for the software context, it does not meet Characteristic 3. 
 
Characteristic 4 – Consideration of life cycle quality 
 
Similar to the BBN methods discussed in Section 2.2.1, the method attempts to account for the 
quality in carrying out software development activities, thereby meeting Characteristic 4. 
 
Characteristic 5 – Use of data 
 
The general concept of undertaking correlation/regression analyses using past software 
development experience/data is reasonable.  The resulting estimate can be further updated with 
test data and operating experience, thereby meeting Characteristic 5. 
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Characteristic 6 – Addressing uncertainty 
 
Since it only provides point estimates, it does not meet Characteristic 6. 
 
Characteristic 7 – Verification and validation 
 
Since independent organizations have not validated or benchmarked the method, it only 
partially meets Characteristic 7.  A rating of “Maybe” was assigned. 
 
Characteristic 8 – Demonstrating high reliability 
 
The authors are unaware of any peer-reviewed, publicly available literature that provides a 
technical basis for calculating ultra-high reliability failure probabilities better than 10-4 using the 
Frestimate method.  Therefore, the method does not meet Characteristic 8. 
 
Characteristic 9 – Software CCF 
 
As was discussed in Section 2.1, the inability to account for software CCF between diverse 
systems is a common limitation of the current QSRMs. 
 
Characteristic 10 – Availability of data 
 
Information on the previous projects is an essential part of the method, and its proprietary 
nature leads to a rating of “Maybe” for Characteristic 10. 
 
2.2.5 Metrics-Based Methods 
 
Two of the methods described in NUREG/CR-6848 [Smidts 2004] are associated with mean 
time to failure (MTTF) and defect density, respectively.  The former is a standard black-box test-
based method, while the latter is considered a white-box test-based method that does not treat 
uncertainty (and therefore does not meet Characteristic 6).  In addition, instead of testing the 
actual software, the defect density method uses the defects identified by inspection and the 
frequency of visits to the paths of the software by running a finite-state machine model of the 
software.  As such, this method is rated “Maybe” for Characteristic 5.  For all other desirable 
characteristics, the MTTF method and defect-density method have the same answers as the 
black-box and white-box testing methods, respectively.12 
 

                                                            

12 The NRC has sponsored additional work on metrics-based methods.  While this work was not completed in time to be included in 
this study, it may be considered as part of the follow-up case studies. 
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2.2.6 Standard-Based Method 
 
International Electrotechnical Commission (IEC) Standard 61508 [IEC 61508] defines safety 
integrity levels (SILs) for software and specifies recommended strategies/measures for each 
SIL; the strategies and measures are related to the quality of the software development 
activities, thereby meeting Characteristics 1 and 4 (the only characteristics satisfied).  For 
example, using formal methods to develop system requirement specifications is highly 
recommended for a SIL of 4.  In addition, the IEC Standard 61508 assigns target failure rates 
and probabilities to the SILs.  This may be considered a way of estimating software failure rates 
and probabilities at the system level, based on lower-level qualitative requirements: for example, 
the lowest software failure probability is 10-4 for a SIL of 4.  The assignment, made by expert 
opinion (members of a committee), does not seem to have a strong basis, that is, it was not 
validated by case studies.  Hence, this method does not meet Characteristics 2, 5, 7, 8, or 10.  
The standard allows different ways (i.e., different strategies and measures) of meeting the 
requirements of the same SIL, but the assignment of software failure rates and probabilities 
does not account for this variability, nor does the standard address other forms of uncertainty; 
thus, this method fails to meet Characteristic 6.  Also, since IEC Standard 61508 neither 
accounts for the software context nor addresses the issue of software CCF parameters, it does 
not meet Characteristics 3 and 9. 
 
2.2.7 Other Considerations 
 
The Context-Based Software Risk Model (CSRM) [Guarro 2007] is an overall integrated risk-
modeling approach that incorporates hardware, software, and their static or dynamic 
interactions, and has been demonstrated by a NASA application.  The probability of software 
failures is quantified using a test method in the NASA application.  BNL does not consider it a 
candidate QSRM for the following reasons: 
 

1. The dynamic scenario modeling does not fit the immediate needs of current NPP PRAs, 
which are static scenario (event tree/fault tree)-based. 

2. CRSM’s software reliability component is essentially a black-box testing method and is 
covered in this study in Section 5, where the underlying concept of CSRM is used with 
PRA-defined contexts and thermal hydraulic modeling instead of the dynamic modeling 
of the CSRM. 

 
N-version programming is a diversity strategy to reduce the likelihood of potential software 
CCFs, and is not a QSRM.  Accordingly, it is not evaluated against the set of desirable QSRM 
characteristics.  Nonetheless, it offers some interesting concepts for addressing software CCFs, 
as described here.  N-version programming is accomplished by using different software 
development teams to develop software using the same specifications and performing tests to 
determine whether different versions fail concurrently.  N-version programming experiments, 
such as those performed by Lyu [2005], demonstrated that multi-versions can improve software 
reliability, that is, multi-versions do not fail concurrently at all times.  On the other hand, software 
failures are correlated, that is, the software does fail concurrently in some cases. 
 

2.3 Selected Candidate Methods 
 
Based on the evaluation of Section 2.2, summarized in Table 2-1, it can be seen that none of 
the methods reviewed has all of the desired characteristics, and no single method clearly stands 
out as the most appropriate.  Based on the insights from Section 2.2, the BBN method and the 
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test-based methods were selected as candidates for further assessment.  The BBN method can 
account for the quality in carrying out software life cycle activities while the test-based methods 
use standard statistical methods, including treatment of parameter uncertainties.  These 
methods also appear to have great potential for demonstrating high software reliability.  (It 
should be noted that the Metrics-MTTF method is a type of test-based method.)  This finding is 
consistent with the results of the expert panel meeting on modeling software failures in PRA 
[Chu 2009b], where the panelists specifically identified testing and BBNs as general methods 
with potential for quantifying software failure rates and probabilities.  The BBN method requires 
significant support from experts to build the BBN network and provide inputs to the network.  
The effort of soliciting expert opinions needs to be estimated, and the expert opinion elicitation 
process needs to be structured and engineered.  One concern with the test-based methods is 
the availability of the equipment (hardware and software) needed to undertake the tests. 
 
To advance the state-of-the-art, the QSRMs were not considered solely as individual, stand-
alone methods: that is, consideration was given to combining the best features of different 
methods.  Based on the more detailed assessment of the candidate methods documented in 
this report, it was decided that the black-box statistical testing method is the preferred approach 
for the case study.  The white-box method was not selected because it has not been well 
demonstrated, and its implementation requires extra effort and has no obvious benefits, as 
pointed out earlier and further discussed in Section 5.1.  In conjunction with the black-box 
method, a risk-informed testing profile will be explored to help account for the software context 
and limit the testing burden.  Due to the limitations of the test-based methods, and to account 
for the quality in carrying out software life cycle activities, it was decided to first develop a prior 
distribution via the BBN approach, and then use the black-box test-based method to generate 
the data needed for a Bayesian analysis.  As stated in Section 1.3, since developing and 
quantifying a detailed BBN can be very resource-intensive and the evidence needed for 
quantification may be lacking, both a simplified and a detailed BBN will be developed as part of 
the case study.  This exercise will provide insight into the costs and benefits of developing a 
detailed model.  It is expected that the prior distribution that results from both the simple and the 
detailed BBNs will be fairly broad, due to the high level of uncertainty associated with the use of 
expert opinion (particularly in cases where evidence is very limited).  As such, the statistical 
testing results will also be used to perform a Bayesian update of a non-informative prior 
distribution, following existing guidance in the handbook of parameter estimation [Atwood 2002] 
to examine the usefulness of the BBN method. 
 
SRGMs were also found to meet several of the desirable characteristics, as seen in Table 2-1.  
They employ information collected during software development, that is, the results from 
debugging, and are the most commonly used software reliability methods.  As part of this study, 
a discrete SRGM (DSRGM) was explored as an alternative to the BBN method for generating a 
prior distribution for software failure probability.  Since this study only developed a DSRGM 
approach in parallel to the continuous approach in the literature, a separate specific evaluation 
of DSRGMs was not undertaken.  The comparison results of the SRGM approach against the 
desirable characteristics are assumed to be applicable to the DSRGMs.  The most likely limiting 
factor in using a DSRGM is that data on demand-based debugging tests may not be available, 
particularly for highly reliable safety systems.  Based on this and on other limitations associated 
with this method, it was ultimately decided not to develop a prior distribution using the DSRGM 
approach. 
 
Sections 4 and 5 describe how a QSRM can be developed for a digital protection system using 
each of the two selected methods, in light of the common limitations of the current methods 
described in Section 2.1. 
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Table 2-1 Evaluation of QSRMs against desirable characteristics. 

 1 2 3 4 5 6 7 8 9 10

SRGM Y M N N Y Y Y N N N

BBN Y M N Y Y Y M M N M

Test-based 
(black-box) 

Y M M N Y Y M M N Y

Test-based 
(white-box) 

Y M M N Y Y N M N Y

Frestimate N M N Y Y N M N N M

Metrics-MTTF Y M M N Y Y M M N Y

Metrics-Defect 
Density 

Y M M N M N N M N Y

Standard-based Y N N Y N N N N N N

 
Desirable Characteristics 

 
1. The description of the method and its application is comprehensive and understandable. 
2. The assumptions of the method have reasonable bases. 
3. The method considers the specific operating conditions of the software. 
4. The method considers the quality in carrying out life cycle activities. 
5. The method uses test results and operational experience. 
6. The method addresses uncertainty. 
7. The method was verified and validated for software reliability applications. 
8. The method can demonstrate the high reliability of a safety-critical system (e.g., a failure 

on demand probability of ~10-5, commensurate with an analog reactor protection 
system). 

9. The method can estimate parameters that can be used to account for software common-
cause failures of diverse protection systems or channels. 

10. The data and necessary information exist and can be collected. 
 

Legend 
YES – Method conceptually meets the characteristic and its implementation is 
deemed practical 
MAYBE – Method may conceptually meet the characteristic and/or its 
implementation may not be practical 
NO – Method does not conceptually meet the characteristic 

 

Y 

M 

N 
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3 SELECTION OF AN EXAMPLE SYSTEM AND SYSTEM 
DESCRIPTION 

 

3.1 Example System Identification and Familiarization 
 
Since the objective of the study is to develop methods for quantifying the probability of failure on 
demand of digital protections systems at nuclear power plants, it is preferable that the example 
system be such a system.  To account for the quality in carrying out software development 
activities using the BBN method, it is desirable to obtain information associated with the 
activities, such as verification and validation reports.  In addition, due to the desire to release the 
details of the case study to the public, it is preferable to use a system with publicly available 
documentation (recognizing that the study can be documented, if necessary, so as to omit or 
mask proprietary information).  On the other hand, very few protection systems at U.S. NPPs 
have been digitally upgraded.  The protection systems for many of the advanced reactors may 
only be designs on paper, and those that have been built may be proprietary. 
 
The Oconee Nuclear Station recently received regulatory approval from the U.S. Nuclear 
Regulatory Commission (NRC) for digital upgrades to its reactor protection system (RPS) and 
engineered safeguard protection system (ESPS) [NRC 2010b], and the Wolf Creek Generating 
Station received NRC approval to replace its Main Steam and Feedwater Isolation System 
controls [NRC 2009].  Systems such as these would be ideal example systems for the study in 
this report because a large amount of design information, including the development of 
application software, is potentially available.  However, since many of the documents associated 
with these digital upgrades are proprietary, and due to expected difficulties in obtaining all of the 
required system and software information from the plant or vendor—particularly for systems for 
which the licensee is currently seeking regulatory approval—it was concluded that alternative 
systems would need to be pursued.  Digital protection systems either currently installed or being 
planned at several foreign nuclear power plants were also considered, but it was concluded that 
the logistics of establishing the necessary international cooperation and potential difficulties in 
obtaining and using the necessary information, particularly if it is documented in a foreign 
language, were prohibitive. 
 
Due to the expected difficulties associated with obtaining the necessary information and data for 
an NPP protection system, the search for an example system was expanded to include systems 
at other types of facilities.  Through the NRC, a contact with the National Aeronautics and 
Space Administration (NASA) was established to explore the feasibility of using a NASA 
system.  However, as with the NPP protection systems, the proprietary nature of the supporting 
information and data for most NASA systems complicated this effort.  Brookhaven National 
Laboratory also explored the protection systems at BNL accelerator facilities (i.e., the personnel 
access control systems).  Due to a lack of detailed documentation for these systems, they were 
found to be unsuitable. 
 
Availability of system information became the most limiting factor in the search for an example 
system.  The NRC contacted Idaho National Laboratory (INL) for assistance, and obtained INL’s 
agreement to supply the information for a control system of a test facility of the Advanced Test 
Reactor (ATR).  Though it is a control system, it does generate a reactor trip signal when certain 
conditions occur at the test facility.  In this sense, it can be considered a protection system, 
since it serves a protection function.  The remainder of this section describes this example 
system in more detail.  Additional system details will be included as part of the subsequent 
documentation of the case studies. 
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Due to the difficulties in finding an example system for the case studies, the following system 
information did not become available until very late in the project.  Additional system details will 
be included as part of the subsequent documentation of the case studies. 
 

3.2 System Description 
 
The ATR (see Figure 3-1) is the third generation of test reactors built at INL’s Reactor 
Technology Complex to study the effects of intense neutron and gamma radiation on reactor 
materials and fuels [Grover 2005].  As shown in Figure 3-2, the ATR core consists of 40 curved 
plate fuel elements in a serpentine arrangement around a 3 x 3 array of primary testing 
locations, including nine large high-intensity neutron flux traps.  Five of the nine flux traps in the 
ATR are equipped with pressurized water loops, which are used for materials and fuels testing.  
While there are variations in the designs of the various loops, Figure 3-3 shows a typical loop 
cross section.  Three concentric tubes form the piping assembly for each water loop in the ATR.  
The assembly penetrates the vessel’s bottom closure plate, and has an inlet and an outlet 
below the vessel.  Coolant comes up through the innermost tube, the flow tube, and passes the 
sample.  Near the top of the vessel, on four of the five loops, the coolant passes through 
positions in the flow tube and into the annulus enclosed by the pressure tube, and returns down 
that annulus to the outlet.  On the fifth loop, the water passes only one way, up through the in-
pile tube and out. 
 

 
Figure 3-1 Advanced Test Reactor at Idaho National Laboratory 
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Figure 3-2 Core cross section of Advanced Test Reactor 
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Figure 3-3 Cross section of the in-core portion of a typical pressurized water loop 

 
Loop cubicles and equipment occupy the space around the reactor on two basement floors.  
The pressurized water loop equipment includes piping within the reactor vessel and pumps, 
heat exchangers, a pressurizer, and demineralizers within a shielded cubicle (Figure 3-4). 
 
 

 
 

Figure 3-4 Pressurized water loop system 
 
3.2.1 Design and Operation of ATR Loop Operating Control System 
 
Five in-pile tubes (IPTs) installed within the ATR are supported by loop systems installed within 
shielded cubicles in one of the two basement levels of the ATR facility [INL 2008].  The 
designed loops are 1C-W, 1D-N, 2B-SE, 2D-SW, and 2E-NW.  The primary function of each 
loop system is to circulate water through IPTs at the proper pressure, temperature, and flow 
conditions for irradiation of experimental material and nuclear fuel specimens.  The purpose of 
the Loop Operating Control System (LOCS) is to detect abnormal conditions within the IPTs and 
the supporting loop systems that can lead to possible experiment or hardware damage, to 
control the loop parameters per sponsor experiment requirements, and to provide loop 
equipment protective interlocks. 
 
The major portion of the LOCS is a MAX 1000 Distributed Control System (DCS) consisting of 
five remote processing units and eight computer workstations.  Each of the five remote 
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processing units is used to control the equipment for a specific loop facility.  The eight 
workstations are used by operations and engineering personnel to control and monitor the 
system.  The eight workstations and the remote processing units communicate through a dual-
directional fiber-optic highway.  The remote processing units contain input/output (I/O) modules, 
two pairs of redundant distributed processing units (DPUs), two pairs of redundant power 
supplies, and two optical-to-electrical interface modules.  The input modules interface with the 
loop equipment to convert field signals to digital signals (for example, converting a 4-20 mA 
signal to a digital signal).  The output modules convert digital signals to interface with loop 
equipment (for example, stopping and starting equipment).  The two pairs of redundant DPUs, 
designated the A/B and C/D pair, interface with the I/O modules to operate the loop equipment 
at operator-requested values.  Two pairs of DPUs are necessary, as a single DPU cannot 
process all of the information necessary to control a loop facility.  One of the two pairs of 
redundant power supplies is used to provide power to the electrical equipment in the remote 
processing unit and transmitters, and to provide power to the field optical-to-electrical interface 
units for communicating over the fiber highway.  The other pair of redundant powers supplies is 
used to provide power to field electrical equipment. 
 
The LOCS controls the following equipment: 
 

1. primary coolant pumps 
2. loop line heaters 
3. loop pressurizer heaters 
4. makeup pumps 
5. purification flow control valve 
6. makeup system recirculation pump control 
7. conductivity flow control 

 
and performs the following process functions: 
 

1. primary coolant flow control function 
2. primary coolant temperature control function 
3. primary coolant pressure control function 
4. pressurizer level control function 
5. loop degassing flow control function 
6. ion exchange column flow control function 
7. makeup system storage tank level control function 

 
The objective of the loop protective functions is to detect abnormal conditions and initiate 
required mitigating actions to preclude damage to the IPTs, experiments, and associated loop 
hardware.  For each experiment’s IPT loop, there are seven loop protective functions provided 
by this system by monitoring the following parameters: 
 

1. IPT coolant temperature (inlet) 
2. IPT coolant flow (inlet) 
3. IPT coolant pressure (inlet) 
4. Test specimen temperatures 
5. IPT coolant temperature (outlet) 
6. IPT coolant temperature (∆T) 
7. Loop coolant pump power supply 

 
In addition, there is a maximum useful capacity holder (MUCH) experiment flow (low) protection 
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function applicable to loops 1C-W and 1D-N.  IPT protection is provided by low IPT inlet flow, 
high IPT inlet temperature, high IPT outlet temperature, low IPT inlet pressure, high IPT 
pressure tube differential pressure for 1C-W, and low MUCH experiment flow (when a MUCH 
experiment is installed).  These functions will result in an alarm and a reactor scram.  The 
MUCH experiment flow protective function can be disabled when a MUCH experiment is not 
installed.  High specimen temperature and high IPT differential temperature protective actions 
will, upon reaching a predetermined condition, result in an alarm and either a reactor scram 
signal or a reactor power setback signal, which initiates the insertion of the controlling regulating 
rod.  These signals can be individually disabled, as prescribed by experiment operating 
documentation.  The pump power protective function has an alarm and scram (that is, no power 
setback option), or can be disabled. 
 
As indicated by INL [2008], Chapter 15 of the ATR safety analysis report SAR-153 contains the 
loop facility accident sequence analysis, which estimated the sequence frequencies using 
selected protective functions of the LOCS. 
 
3.2.2 Description of Software Development 
 
This section summarizes the initial information obtained from INL on the development of the 
ATR Loop DCS software.  This information supports the development of the BBN model, which 
evaluates the quality in carrying out software development activities.  The ATR Loop DCS 
software is commercial software provided by Metso Automation Max Controls, Inc.  The 
software documentation stipulates that Metso Automation will have and maintain a quality 
program in compliance with the American Society of Mechanical Engineers’s NQA-1 [ASME 
NQA].  The quality level determination for the ATR loop DCS software was made as Quality 
Level 2, and the software was determined to be non-safety, configurable software13. 
 
The software-related documentation provided by INL does not contain information describing 
the software development activities for the recent upgrade of the ATR Loop DCS that was 
originally installed in 1993.  The software quality assurance plan of the LOCS upgrade is 
described in PLN-2766.  The review activities of the software development cycle are briefly 
discussed in the documentation provided.  Document PLN-2768 illustrates the software 
verification and validation (V&V) plan of the LOCS upgrade project.  A configuration 
management plan is documented in PLN-313714, and contains some information on the 
software development activities.  Document PG-T-94 details a previous upgrade project of the 
LOCS and defines the phases in the software development cycle.  The information extracted 
from these documents is briefly summarized below as a high-level introduction of the software 
development activities for the upgraded LOCS.  Note that information on guidance adopted in 
each development phase is not included in the documents provided so far.  In some cases, the 
descriptions below reflect assumptions made about the activities completed in each phase for 
the ATR Loop DCS.  This information will be confirmed or updated as more information on the 
software development activities of the Loop DCS upgrade is obtained.  PLN-3137 provides a list 
of references in which standards for the design/development of the LOCS-DCS can be found.  
Additional standards that are applicable to design and development are also provided in 
PLN-3137. 

                                                            

13 Idaho National Laboratory, “Software Quality Assurance Plan (SQAP): ATR Loop Distributed Control System Upgrade,” Revision 
0, 2009.  Not publicly available. 
14 Idaho National Laboratory, “Configuration Management Plan Advanced Test Reactor Loop Operating Control System Distributed 
Control System,” Revision 0, 2009.  Not publicly available. 
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1. Requirements Phase 
 
The requirements phase is the period of time during which the requirements of functional and 
performance capabilities for a software product are defined and documented15.  At the 
beginning of the software development, requirements were included as a baseline16 as part of 
the design document, addressing both the technical and functional requirements of the software 
application.  The requirements specifically addressed operating system interface, performance, 
installation, design input, and design constraint issues15.  The requirements were used in 
conjunction with subsequent requirement and design documents to determine whether the 
functionality that has been implemented satisfies the requirements.  A traceability matrix of 
requirements was created and contained as part of the verification and validation plan13. 
 
2. Design Phase 
 
In the design phase, the designs for the architecture, components, and interfaces of the 
software were created, documented, and verified to satisfy the requirements15. 
 
3. Implementation Phase 
 
During this time period, the software product was created and debugged15. 
 
4. Test Phase 
 
In test phase, the components of a software product were evaluated and integrated, and the 
software product was evaluated to determine whether or not all of the requirements had been 
satisfied15. 
 
For the ATR, Loop DCS V&V was accomplished by performing a series of tests, including the 
factory acceptance test (FAT), the grooming test, and the system operability (SO) test17. 
 
FAT occurs at the end of the software development cycle.  It is used to provide confidence that 
the software satisfies the general requirements.  For the ATR Loop DCS software, the FAT was 
performed at Metso and witnessed by the Battelle Energy Alliance (BEA) after BEA approved 
the test procedure.  In general, the FAT environment should be comparable to the environment 
in which the equipment would be installed and used. 
 
Prior to SO testing, “grooming” tests were performed by the development engineers to evaluate 
the fully integrated system in the field (the ATR site) and make the appropriate modifications to 
ensure that the implemented installation met the engineering design requirements.  This phase 
was performed by thoroughly testing the completed loops after the system was installed at the 
ATR facility and connected to the experiment loop instrumentation.  As part of the 
documentation of the grooming tests, logs were created to record deficiencies and corrections 
and reviewed to ensure that the modifications made during the grooming tests also satisfied the 

                                                            

15 TRA Construction Projects Management, “Software Verification and Validation Report, ATR Loop Operating Control System 
(LOCS) Upgrade Project,” Revision 0.0, 1997.  Not publicly available. 
16 A baseline is a specification or product that has been formally reviewed and agreed upon, that serves thereafter as the basis for 
further development, and that can only be changed through formal change control procedures. 
17 Idaho National Laboratory, “Verification and Validation (V&V) Plan: ATR Loop Distributed Control System Upgrade,” Revision 1, 
2009.  Not publicly available. 



 

3-8 

requirements.  If the system did not pass the grooming tests, the errors had to be corrected and 
the grooming test process repeated to obtain a corrected baseline release. 
 
The purpose of SO testing, which is performed at the site, is to gain confidence that the 
software functions correctly in its operating environment.  The SO test is a stand-alone 
controlled system test procedure prepared, approved, and performed by ATR Operations.  Both 
functional and operational tests were undertaken to thoroughly exercise and verify the system 
functions.  In those cases where the SO test was not passed, the errors were corrected and 
verified within the scope of the SO test work order and documented.  If the errors could not be 
corrected and verified within the scope of the work order, then the previous DCS baseline was 
restored, and the V&V process repeated17. 
 
5. Installation and Checkout 
 
During this time period, the software product was integrated into its operational environment and 
tested in the environment to ensure that it performed as required. 
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4 DEVELOPMENT OF A BBN METHOD 
 
The BBN method has been a topic of research in many different areas, such as medical 
diagnosis [Lauritzen 1988], risk assessment of natural hazards [Regamey 2006, Bensi 2010], 
and supporting tsunami-warning decisions [Blaster 2009].  Lauritzen [1988] provided an 
example causal network using probabilistic reasoning in a prototype expert system, MUNIN 
(MUscle and Nerve Inference Network), by structuring the medical knowledge necessary for 
diagnosing neurological disease.  Regamey [2006] developed a BBN for assessing avalanche 
risk using an avalanche model and a geographical information system.  An example of the 
commercial employment of the BBN method is its usage in the Office Assistant of Microsoft 
Office ’97 [Horvitz 1998]. 
 
Some experts consider the BBN method to be a promising way of quantifying software reliability 
[Johnson 2000, Littlewood 2000, Dahll 2007, Eom 2009].  The basic idea is that the quality in 
carrying out the software development activities determines the reliability of the software [Neil 
1996, Johnson 2000, Littlewood, 2000, and Dahll 2007].  However, only a few studies by the 
Halden Reactor Project, the VTT Technical Research Centre of Finland, and the Finnish 
government authority for the nuclear industry (STUK) [Helminen 2001, 2003a, 2003b, 2005, and 
2007; Gran 2000, 2002a, and b] have used a BBN to quantify software reliability.  A recent 
study by the Korea Atomic Energy Research Institute (KAERI) [Eom 2009] developed an 
approach to estimating the number of software faults based on the quality in carrying out 
software development activities, without quantifying software failure probabilities.  The basic 
idea behind the BBN application is that better quality results in fewer faults in the software. 
 
Brookhaven National Laboratory proposes using a BBN approach to generate a prior 
distribution for the probability of software failure of a protection system.  Then the context-
specific statistical testing results (as described in Section 5) can be used in a Bayesian update 
for this prior.  Note that the Bayesian update component can easily be integrated into the BBN 
framework as a “grand” BBN model.  In this study, BBN and statistical testing methods are 
discussed in separate sections because they can be used as distinct methods. 
 
In this section, possible methods are examined for quantifying software-failure probabilities 
using BBNs.  Issues and limitations of each approach are discussed.  As applications of BBN 
might heavily depend on expert opinion or other evidence, the BBN output uncertainty is 
expected to be significant.  Discussion of the sources of uncertainties is provided throughout 
this section, and possible treatment of the uncertainties is discussed in Section 4.2.5. 
 

4.1 Introduction 
 
A BBN is a special mathematical representation, in terms of nodes and directed arcs, of an 
underlying model and its associated data.  The dependencies between parent and child nodes 
and the probabilities of root nodes18 might be based on theoretical models, empirical relations, 
expert opinion, engineering judgment, or any mixture of them.  As discussed earlier, developing 
BBNs for quantifying software reliability essentially involves (1) constructing a BBN that models 
the causal relationship between the software failure probability and the quality in carrying out 
software development activities and (2) evaluating the quality in carrying out software 
development activities against the guidance/requirements in such standards as the NRC’s 

                                                            

18  A parent node has an arc pointing to its child node(s), and a node without a parent is a root node. 
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Branch Technical Position (BTP 7-14) [NRC 2007] and other factors that may affect software 
reliability, and applying the results to the BBN model.  The results of the BBN can then be used 
as the prior distribution of the software failure rate or probability, and a Bayesian update of the 
prior can be performed using testing/operating data to produce a posterior distribution of the 
software’s reliability.  As mentioned previously, the Bayesian update process can be 
incorporated directly into the BBN, or can be applied as a separate, follow-up analysis. 
 
BBN methods are capable of aggregating disparate information about software (e.g., 
aggregation of software failure data and quality in carrying out software life cycle activities, 
which is assessed using expert elicitation [Gran 2002a and 2002b, Eom 2004 and 2009]), and 
include parameter uncertainties as a part of the modeling.  However, there are challenges in 
developing a BBN that takes full advantage of these capabilities, including the substantial 
development effort needed, the expertise of the BBN developers, the qualification of experts 
used to elicit information, and the availability of thorough documentation of the software 
development activities.  Another challenge is that qualitative evidence (e.g., the impact of the 
quality in carrying out software development on the software’s reliability) must be quantified.  
Since there may be insufficient data to “anchor” the conversion of qualitative information to 
quantitative values, the resulting uncertainty in the quantitative data from the experts may be 
very significant.  Therefore, the BBN model’s application to safety-related systems that are 
expected to have a very small failure probability may be overwhelmed by the uncertainty (for 
instance, a lognormal distribution with the mean value of 10-5 but an error factor of 100).  In the 
BBN developed for a helicopter-location identification system by the Halden Reactor Project 
[Gran 2002a], experts had to estimate the distributions of the software failure probability 
conditional on the Quality of Product, Solution Complexity, and Quality of Analysis.  Finding 
experts capable of estimating this type of information and willing to participate is a challenge.  
The accuracy with which experts can make such estimations is highly uncertain.  However, a 
structured elicitation process with well-trained experts might be an effective solution to reduce 
the uncertainty.  BNL also recognizes that the estimation of the number of faults poses less 
uncertainty than the direct estimation of the failure probability, because some data on the 
number of faults may be available.  However, estimating failure probability for a given number of 
faults is a different challenge. 
 
In this study, two BBN studies (i.e., [Gran 2002a] and [Eom 2009]) that assessed the quality in 
carrying out software development activities are summarized, and additional published 
information was collected and used in proposing possible enhancements to the approaches, 
such that they might possibly be applied to modeling protection systems of a nuclear power 
plant.  Section 4.2 describes an approach for developing a BBN to quantify the probability of 
failure on demand, along with its associated issues and limitations.  Section 4.3 details the steps 
in implementing the approach.  Section 4.4 summarizes the evaluation of this enhanced BBN 
approach against the desirable characteristics developed in Section 2, highlighting the fact that 
the newly developed BBN method performs better than the ones in the literature with respect to 
the 10 characteristics. 
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4.2 The BNL BBN Method 
 
4.2.1 Development of a BBN that Captures the Quality of Software Development 

Activities 
 
Guidance on carrying out software development activities is available in different applications.  
In the case of the helicopter-location identification system [Gran 2002a], the avionic standard 
DO-178B [RTCA 1999] was used, and the BBN considered the 10 life cycle stages it defines.  
For the Korea Nuclear Instrumentation and Control System (KNICS) [Eom 2004 and 2009], the 
guidance was the KNICS procedure, developed with information from the NRC BTP 7-14 [NRC 
2007].  The BBNs in both studies are examples of how to formulate a BBN to evaluate the 
quality in carrying out software development activities.  In general, the qualitative 
guidance/requirements in the standards are used to define those nodes in the BBNs that 
represent the quality in carrying out software development activities [Gran 2002a and Eom 
2009], and these nodes are used as factors that affect the addition, detection, and removal of 
faults, which, in turn, determine the number of faults remaining in the software program 
[Eom 2009].  Since guidance, such as BTP 7-14, is used in licensing, the vendors and licensees 
need to demonstrate, and the U.S. Nuclear Regulatory Commission (NRC) needs to verify, that 
the relevant guidance is followed.  Therefore, useful information should be available from these 
associated evaluations, such as verification and validation reports.  Furthermore, since the 
people involved in the evaluations are familiar with the guidance, they can potentially serve as 
experts for developing the BBN and participate in expert elicitation in quantifying node 
probability tables (NPTs). 
 
The next two subsections describe two methods for obtaining the software failure probability, 
depending upon the information provided in the BBNs.  The number of faults is the intermediate 
result from the first method. 
 
4.2.2 Conversion of Number of Faults to Software Failure Probability 
 
In the BBN studies [Eom 2004 and 2009] by KAERI, there was no attempt to compute the RPS 
software’s failure rate or probability of failure.  In particular, the Eom study [2009] focused on 
using the BBN to estimate the number of faults remaining at the end of the software life cycle by 
modeling the mechanisms of fault insertion at each development phase, and of fault removal in 
the current and previous phases.  This approach is similar to that used by Fenton [2007], which 
is based on the understanding that a poor-quality development increases the number of defects 
likely to be present, and high-quality testing increases the proportion of defects found.  The 
number of inserted and removed faults is affected by the quality of software development work, 
which is estimated by comparing the development activities against the standards used in the 
development cycle.  In addition, some data on the number of faults detected at each 
development phase were available, and were used in this study to support estimates of the 
number of undetected ones.  Furthermore, KAERI adopted the waterfall model of software 
development, and the interconnection between the previous-phase BBN and the current one 
passes undetected faults from phase to phase [Eom 2009]. 
 
A few studies and methods in the literature convert the number of faults in a software program 
into software failure rates or probabilities, and are summarized below: 
 

1. Delic et al. [1997] developed a simple BBN for estimating the probability of failure-on-
demand for a software program by using a “size distribution” of faults [Littlewood 1980], 
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and the number of estimated faults multiplied by this size distribution produces the 
distribution of the probability of such failure.  The size distribution was estimated from 
experience with similar software development projects by the same vendor.  One 
difficulty here is that vendor-specific data must be available; the size distribution 
developed using data from one vendor’s software cannot be used for other projects. 

 
2. Musa [1987] introduced the concept of a fault exposure ratio that converts the number of 

faults into software failure rates.  It is consistent with the assumption commonly used in 
software reliability growth models (SRGMs) that software failure rate is proportional to 
the number of faults in a software program.  In addition to providing a formula and a 
procedure to calculate this fault exposure ratio for a specific software, Musa provided a 
representative constant fault exposure ratio based on a number of Bell Lab software 
projects [Musa 1987].  This might be considered a less detailed version of Delic’s model 
[Delic 1997] by integrating over the size distribution of the faults.  The same idea was 
used in more recent studies/methods (i.e., Smidts [Smidts 2004] in her metrics-based 
methods and Neufelder [Neufelder 2002] in her correlation method).  A direct use of 
Musa’s constant may be problematic, since software projects differ from each other in 
many ways (e.g., in terms of complexity), and the constant does not account for these 
differences (i.e., it assumes that two programs with the same estimated number of faults 
have the same failure rate/probability).  In that sense, the differences between the 
software are “averaged out,” and are assumed to be reflected solely by the number of 
faults.  It is questionable whether such a simplified constant adequately estimates the 
failure probability, since it does not account for many other factor variations that can 
affect this probability (e.g., the software’s complexity).  Another concern is the general 
applicability to current software when the constant is derived with data obtained from the 
outdated software, as software development has changed over time (e.g., automated 
code generation is now prevalent for digital systems). 

 
Since vendor/software-specific data are more applicable to the software being evaluated, they 
are preferred to the generic constant fault exposure ratio.  In addition, data from safety-related 
software should not be mixed with those from non-safety-related software. 
 
A more detailed conceptual model for converting the estimated number of software faults into a 
software failure probability can be developed by considering faults to be distributed in different 
paths or parts of software (similar to the defect density method developed by Smidts [2004]).  
This model assumes the following: (1) different challenges to the software (e.g., different 
initiating events requiring a reactor trip) may follow different paths or parts of the software, and 
(2) the estimated number of faults is distributed among the different paths/parts according to 
some rules, such as the complexity of the paths or parts (the faults may also be evenly 
distributed over them).  Given a demand to the system, the path or part of the software must 
first be determined with an estimated number of faults for the path or part.  The path-/part-
specific failure probability is then estimated using the concept of (1) fault size distribution, 
obtained from a specific vendor (preferred, if available) [Delic 1997], or (2) fault exposure ratio, 
obtained from various software projects (if vendor-/software-specific data is unavailable) [Musa 
1987]. 
 
BNL’s proposed case study focuses on fault(s) located in the code for the protective logic that 
may cause the reactor protection system (RPS) to fail.  A safety-related software program, such 
as the RPS software, also commonly performs several auxiliary functions, such as self-testing.  
There is still a possibility that a fault relating to these functions, once triggered, could cause the 
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RPS software to fail.  The impact of auxiliary function failure on the entire software must be 
evaluated for a complete reliability assessment of the software. 
 
4.2.3 Direct Estimation of Software Failure Probability Using Expert Elicitation 
 
A few studies that estimated software failure probability/rate using expert elicitation were 
published in a series of papers and reports [Helminen 2001, 2003a, 2003b, 2005, and 2007 and 
Gran 2000, 2002a, and 2002b].  In particular, Gran [2002a and b] developed models accounting 
for the quality in carrying out software development activities and the problem complexity, and 
used the results of the quality evaluation to estimate software failure probability by expert 
elicitation.  He used expert elicitations to build BBNs, including node probability tables, to 
convert qualitative evidence to quantitative evidence, and to collect evidence for inferences 
[Gran 2002a and 2002b].  After collecting evidence for a specific application’s software 
development, a prior distribution of the software failure probability can be calculated and then 
updated via testing and/or operational data.  An important part of these studies includes 
specifying the qualifications of the experts needed in different elicitations. 
 
As discussed in Section 4.1, the accuracy with which experts can estimate software failure 
probability is likely to be highly uncertain; no known benchmark studies have been undertaken 
to validate the findings from expert elicitation.  The potential use of the failure likelihood index 
method (FLIM) [Chu 1995] to estimate software failure probability is under BNL’s investigation.  
In FLIM, factors that affect software performance are used to estimate software failure 
probabilities.  Similarly, Neufelder’s correlation method [2002], which uses the Frestimate 
computer code, converts process/quality information into the number of faults, which is then 
converted to a failure rate.  It uses proprietary data on past software projects in a regression 
analysis to assess the number of faults left in a software program.  Regression analysis is 
another mathematical representation relating quantitative information.  The same idea might be 
extended to directly estimating software failure probability.  The limitations here are the lack of 
data on past software projects and the method’s applicability to specific software.  In addition, a 
benchmark system, with operational data available for the analysis, is necessary to validate the 
software reliability assessments. 
 
4.2.4 Summary of Assumptions and Issues 
 
The BBN method can combine disparate information, such as quality in carrying out software 
development activities and statistical test data.  In practice, converting the qualitative 
information obtained from assessing software development activities into quantitative 
information is often difficult, and introduces significant uncertainties.  This section discusses 
some of the key assumptions and issues associated with using the BBN approach to estimate 
software reliability.  The assumptions and issues relate to (1) converting qualitative information 
to quantitative estimates, (2) the BBN structure, and (3) other potential limitations of the 
approach. 
 
Converting Qualitative Information to Quantitative Estimates 
 
1. The existing methods for converting the qualitative information obtained from assessing 

software development activities into software reliability (e.g., see Gran [2002a] and Delic 
[1997]) have severe limitations/difficulties, essentially because of the lack of justification for 
relating quality in carrying out software development and the number of faults with reliability.  
Converting the number of faults to the software failure rate via the constant fault exposure 
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ratio [Musa 1987] assumes a very simple relationship between the number of faults and 
software reliability and depends on very old software projects, calling into question its 
general applicability.  It should be pointed out that it is widely assumed in SRGMs that the 
failure rate is proportional to the remaining fault content of the software.  Such a simple 
relationship also implies that the fault contributions to the software failure are equal, and that 
the contribution from each fault can be characterized by a constant similar to the fault 
exposure ratio.  Employing the “fault size distribution” [Littlewood 1980, Delic 1997] is limited 
to software that was developed for a particular vendor, and that has operational data from 
similar software projects.  The problem of lacking failure experience parallels the dearth of 
data for human reliability analysis (HRA).  In light of recent benchmark analyses of human 
reliability (e.g., NRC [2011]), it would be beneficial to perform benchmark exercises to 
validate or calibrate a BBN by collecting operational data on past software development 
projects and/or performing the statistical testing described in Section 5. 
 
Currently, there is little publicly available information on operational experience for nuclear 
power plant protection system software.  It is expected that vendors will have collections of 
such information on the software they developed.  However, these data are most likely 
proprietary.  If adequate operating experience for a software program of a protection system 
and the associated detailed information needed for developing a BBN are available, the 
BBN could be evaluated against the software’s performance so that the parameters and 
structure could be tuned and the model validated.  The benchmarking can be undertaken at 
the system level and the level of the node probability tables.  However, based on recent 
experience with HRA [NRC 2011], it may require the completion of many such studies 
before confidence is developed in applying the BBN method to estimate probability 
distributions for software failure. 
 
The difficulties in carrying out benchmark studies should not be underestimated: (1) the lack 
of supporting data to characterize the relationship between the qualitative features of the 
development work and the quantities (e.g., the number of remaining faults or operational 
data for on-demand failures) that are suitable for quantifying software reliability, and (2) the 
applicability of the data available if it was not carefully collected and classified to reflect the 
differences (mainly in quality) between software projects.  To overcome the first difficulty, 
statistical testing data (discussed in Section 5) can serve as supporting data, in addition to 
any operating experience.  Furthermore, the quality of the software must be assessed 
rigorously and documented, thereby linking the quality information to the quantities needed 
for calculating software reliability.  A planned case study on the example system, using 
statistical testing, will provide the information needed to determine whether the BBN’s 
prediction is consistent with the statistical testing results.  Establishing the applicability of the 
available data necessitates systematically and consistently evaluating different software 
projects (mainly in terms of software quality) and categorizing their collected data 
accordingly. 
 
Any mathematical model (for example, a fault tree or event tree) can be considered a 
mathematical representation of the underlying physical, logical, and causal 
relationship/phenomena.  The BBN method is a mathematical method that uses a BBN to 
represent or model the causal relationships of random variables, such as how the quality in 
carrying out the software development activities affects the number of faults inserted.  
Similarly, a probabilistic risk assessment (PRA) uses a logic model to represent the logical 
relationships among basic events and top events, and the validity of the logical relationships 
and the associated data are based on engineering knowledge of the nuclear power plant 
and failure data of similar equipment, respectively.  The usefulness of the BBN method also 
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depends upon the availability of an underlying model on the causal relationships among the 
variables and associated data.  As such, employing a BBN for estimating software reliability 
differs from those BBN applications in other areas discussed earlier in this section.  For 
estimating software reliability, both the underlying model and data are lacking, so they need 
to be developed as part of the BBN.  For the other applications discussed earlier, each had 
at least an underlying model or data, so their BBNs were used only as a mathematical 
representation of the model and/or data. 
 

2. As was discussed in Section 4.2.3, Neufelder’s correlation method [2002] uses proprietary 
data on past software projects in a regression analysis to estimate the number of faults 
remaining in a software program and the software failure rate.  Regression analysis is 
another mathematical representation relating qualitative to quantitative information.  It 
represents a more general approach of using past software development practices, and the 
associated operational experience.  However, the regression analysis used by Neufelder 
[2002] was limited to estimating the number of faults remaining in the software program and 
did not include software failure rates and probabilities, and her use of fault exposure ratio 
suffers from the limitations previously discussed.  Also, the information she used regarding 
past software development projects is proprietary, the projects may be outdated, and the 
nuclear operation data is lacking.  Regression analysis, in general, is a potential method that 
relates software development practices and software failure probability.  It may suffer from 
the same limitations as Neufelder’s method. 

 
BBN Structure 
 
1. To capture the quality in carrying out software development activities, it is desirable to 

develop a BBN using the structure of a software development standard, such as BTP 7-14 
[NRC 2007] for U.S. nuclear power plants.  The existing BBNs by Gran [2002a] and Eom 
[2009] use the standard DO-178B [RTCA 1999] and the KNICS procedure, respectively; 
they convert the guidance/requirements in the standards into nodes of the BBNs.  
Consequently, the BBNs are very complex, with many NPTs having to be estimated.  In 
general, the possible states of the nodes and the relationships between them should be 
defined precisely, and guidance given on how to estimate the node probability tables to 
maintain consistency.  Bloomfield [2002] offered a critique of detailed models, suggesting 
that they require detailed assessments where potentially little data are available.  However, 
since the standards are used to decide whether a software program is acceptable, people 
involved in approving the system (i.e., the staff of the plant, vendor, and regulator) should 
know how the software being evaluated meets the guidance/requirements of the standard, 
even though they will not necessarily know its reliability. 
 
Alternatively, it would be simpler to develop a higher-level model, representing, for example, 
each stage of the software development cycle by only one or two nodes.  Further 
exploration is needed to demonstrate how to establish the relationship between the 
simplified model and the associated standard, and to determine the feasibility of quantifying 
such a model. 

 
2. A BBN can be built based on the causal relationship between the relevant events in a 

specific application; the directions of the arrows represent the influence of the parent nodes 
on the child nodes.  If a single child node has multiple parent nodes, a high-dimensional 
NPT or conditional probability density function must be formulated to characterize the 
impacts of the many parent nodes on the child node.  While it is generally not easy to 
formulate any NPTs, it is even more difficult to build high-dimension NPTs or distributions, 
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due to the need to carefully consider the subtle interplays between the parent nodes on their 
impacts on the child nodes.  A typical case in a software development cycle can be to 
evaluate the quality of inspection (a high-level node) [Eom 2009], which may be affected by 
factors such as the completeness, correctness, and traceability of inspections (the low-level 
nodes).  In all of the studies mentioned above, the arrows pointed from the high-level node 
to the low-level nodes in the BBN: that is, a one-dimensional NPT table is used for each 
lower-level node to represent the influence that the higher-level node has on it.  This makes 
building the BBN NPTs easier, compared with the case in which arrows are pointing from 
the lower-level nodes to the higher-level node, which requires the use of a multi-dimensional 
NPT that has to consider all combinations of lower-level states in assessing the NPT.  
However, the causality can be more naturally represented by the latter, and it would provide 
a more detailed model.  Therefore, the two types of modeling should be compared using 
simple examples to further evaluate their differences. 

 
Other Potential Limitations 
 
1. Unexpected or controversial results may surface in applying the collected software 

evidences to a BBN [Littlewood 2007]: that is, the parameters and structure of a BBN may 
require revisiting and possibly revising when counterintuitive findings emerge. 
 

2. Two types of evidence might be collected for a BBN: hard evidence representing a 
realization of a particular state of a node, and soft evidence representing the discrete 
probability distribution of a node.  Jenson [2002] terms soft evidence likelihood evidence, 
and indicates that it is not clear what the evidence means.  Soft evidence is likely to 
contradict the BBN (i.e., it is very unlikely that an expert will provide a distribution for a node 
that exactly matches the one obtained by exercising the BBN).  On the other hand, some 
analysts [Pan 2006] use the Jeffreys rule, which essentially uses the discrete probability 
distribution (soft evidence) as the weight in calculating a weighted average of the 
probabilities of the nodes of the BBN, which may be a reasonable approach.  Additional 
research is needed to understand the meaningfulness and value of using soft evidence. 

 
4.2.5 Treatment of Uncertainty 
 
Parameter uncertainties are intrinsic to the distributions representing the nodes and node 
probability tables; this can be considered an advantage of the BBN method.  However, 
assessing the distributions requires the availability of data or of knowledgeable experts, which 
may be an inherent limitation in applying BBN methods to quantifying software reliability.  This is 
exemplified by the issue of converting qualitative information on software development activities 
into software failure rates/probabilities.  Regarding the node probability distributions that assess 
the quality in carrying out software development activities, it is desirable to use software 
engineering experts to develop evidence based on engineering considerations.  Regarding the 
node probability table that converts the qualitative information into software failure probabilities, 
collecting the experience from applicable software development projects would be useful but 
very difficult. 
 
Drouin [2009] states that, in general, modeling uncertainties are addressed by determining the 
sensitivity of the PRA results to different assumptions or models.  For a BBN, modeling 
uncertainties can be addressed in a similar manner: for example, different expert teams can 
work independently in expert elicitation on node probability tables.  To consider the effect of 
BBN complexity on the results, two BBNs can be developed, a simpler one and a more complex 
one.  As was discussed earlier, benchmark studies can validate or invalidate the BBN: that is, 
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for this purpose, information on software development activities and the available relevant 
operational data from past software development projects can be incorporated in applying the 
BBN.  The benchmark exercises can be completed at different levels of detail of the BBN, such 
as at the overall level and the level of the node probability tables.  Alternative methods can also 
be developed to allow for comparisons with the BBN method.  For example, it might be 
worthwhile to try an extension of the failure likelihood method from HRA to assess software 
reliability because it uses similar information to that in the BBN method, and may be understood 
more easily by the PRA community.  Neufelder’s correlation method can be extended to 
estimating software failure probability if there are data from earlier projects developing 
protection system software. 
 
Implementing any of the above approaches to addressing model uncertainty may entail 
significant difficulties, particularly in terms of level of effort and availability of information.  
Consideration will be given to which, if any, of these approaches are practical for the planned 
case studies. 
 

4.3 Procedure for Developing the BBN Approach to an Example 
System 

 
In general, the steps involved in building a BBN include (1) identifying the nodes of interest, 
(2) constructing the topology of the arcs connecting (some of) these nodes (this is where strong 
assumptions on conditional independence are made), and (3) constructing the NPTs.  In this 
section, a process is proposed for applying the BBN approach to an example system to 
estimate its probability of failure on demand.  The basic structure of the BBN, if developed 
appropriately, should be applicable to current NPP digital protection systems.  To apply the BBN 
to a specific piece of software, the evidence needs to be collected for that software to specialize 
the BBN.  The proposed process for developing the BBN for the example system involves the 
following steps: 
 
1. System familiarization 

 
In addition to gaining an in-depth understanding of the design of the example system, its 
functions, and the systems with which it interacts, it is very important to understand the 
software development work and the associated guidance.  The necessary 
documentation includes information on system design and operation, test and 
operational data, and a description of software development activities, such as 
debugging records and verification and validation reports.  In addition to reviewing the 
documents, it is desirable to visit the plant site to observe the system in operation, and to 
meet the software developers and plant personnel to resolve questions.  To facilitate 
later tasks on expert elicitation, experts should be identified who are familiar with the 
software development of the example system.  It is preferable to use a system that was 
developed following NRC guidance (i.e., BTP 7-14 [NRC 2007]), so that the model is 
more applicable to systems at U.S. NPPs.  The major issue associated with this step is 
the potential unavailability of detailed information/documents of the example system, and 
of its software and the associated development records.  A significant effort may be 
needed to collect all relevant information. 
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2. Resolution of high-level issues 

 
The most important issue to resolve is how to convert qualitative information on software 
development work into the software’s probability of failure on demand.  This is probably 
also the most difficult task in applying BBN to software reliability assessments.  Software 
is the product of a software development life cycle.  Each of the activities related to this 
cycle, which are generally characterized and evaluated qualitatively, has a certain 
impact on the software’s reliability.  While there is a general trend in the impacts of these 
activities on the software reliability or on the number of remaining faults in the software, 
quantifying the impact is very difficult.  More importantly, the subtle interplays between 
different activities also directly affect the software reliability, but are probably even more 
difficult to capture.  As discussed in Sections 5.2.2 and 5.2.3, the state-of-the-art in this 
area is very weak, mainly due to the lack of operational experience in similar software 
development projects; there is a need for additional research, such as a benchmarking 
study of BBN applications to software reliability or data collection. 

 
3. Development of high-level BBN 

 
The high-level structure depends on the resolution of the issue of converting qualitative 
information to software failure-on-demand.  If a direct conversion is used, the high-level 
structure used by Gran [2002a] might be considered a starting point.  If an indirect 
conversion is used, the high-level BBN discussed by Eom [2009] can be adopted first to 
convert the qualitative information to the number of remaining faults, after which the 
high-level structure used by Delic [1997] can be employed to obtain the software’s 
reliability.  In either case, the high-level issues indicated previously need to be resolved 
first. 

 
4. Development of expert elicitation approaches 

 
Two types of expert elicitation application should be used.  The first type employs 
generic experts (Type I experts) familiar with software development activities and 
associated guidance and requirements.  The second type (Type II experts) requires 
people familiar with the development of the specific system under evaluation.  The Type 
I experts will participate in developing the BBN, including its structure, and quantifying 
the node probability tables.  Since the products of the Type I experts are based on 
generic information, the BBN is a generic one in the sense that this BBN is applicable to 
any software developed from the guidance.  The Type II experts are responsible for 
providing system-specific answers associated with the observable nodes of the BBN.  
Two kinds of NPTs must be quantified: those that convert the quality or the number of 
faults into software failure probabilities (Type I experts), and those that evaluate the 
quality in carrying out development activities (Type II experts). 

 
There are a number of aspects that need to be considered in performing an expert 
elicitation.  Tregoning [2008] gives an example of implementing such an elicitation.  The 
issues for experts to consider should be carefully selected and clearly identified.  The 
technical issues to be addressed dictate the identification and selection of the experts.  
Those chosen need to be trained to make sure they understand the specific issues and 
questions they are asked to address, which cover the expert opinion elicitation process, 
the software development life cycle under study, the system under study, the BBN 
fundamentals, etc.  Background information and material on the issues need to be 
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prepared for the experts.  Specific questions need to be developed, based on the 
technical issues.  To better formulate elicitation questions, breaking down or refining the 
issues may be necessary and helpful.  Individual responses that are highly uncertain or 
significantly different are allowed in the elicitation, but significant systematic biases must 
be identified and avoided.  The responses from individual experts are analyzed, 
aggregated, and documented.  Conflicts between experts’ responses may need 
reconciliation. 

 
The next three steps describe the activities that will be supported by experts, possibly through 
expert elicitations. 

 
5. Development of the complete BBN 

 
The low-level BBN should cover the software reliability-relevant attributes specified in 
the guidance for developing software (i.e., BTP 7-14) for U.S. NPPs and provide a 
means of evaluating the quality in carrying out software development activities.  Such 
attributes are abstracted from various software standards, such as Capability Maturity 
Model Integration, the International Organization for Standardization’s standards, the 
International Electrotechnical Commission’s standards, the Institute of Electrical and 
Electronics Engineers’ standards, etc.  The PRA experts responsible for developing the 
model should undertake this task to ensure that the lower-level model is consistent with 
the higher-level model.  They will be assisted by experts in developing software and the 
associated guidance. 

 
It is desirable to keep the overall BBN structure as simple as possible because, even if a 
complicated BBN is built that adequately reflects the causal relationship between 
different nodes, not much can be gained from the model without sufficient supporting 
data.  Obtaining supporting data could be easier for a simpler BBN structure.  Each node 
of the BBN should be defined clearly, including its possible states.  Causal relationships 
between connected nodes should be described precisely.  The conditional 
independence assumptions of the BBN should be verified. 

 
In addition to a detailed BBN, it is desirable to develop a simplified one, building upon 
the experience of developing the former.  While the simplified model may not be based 
on a specific set of guidance, it should cover the general recommendations of the 
guidance or standards, such that it might be used to evaluate software developed using 
different standards. 

 
6. Expert elicitation to quantify node–probability tables 

 
This part of the study would quantify the generic part of the BBN formulated in the 
preceding step with system-specific nodes and questions to be quantified in the next 
step.  PRA experts should undertake this task by eliciting the Type I experts with 
experience and knowledge in software development and its associated guidance.  In this 
step, the entire BBN should be structured completely via a pre-selected approach, such 
as a “top-down” approach that builds subnets starting from a high-level BBN after 
properly determining the level of detail of the BBN (e.g., the number of BBN nodes and 
the number of states for a node).  A critical aspect of this step is eliciting experts to 
populate the NPTs for individual nodes. 
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7. Collection of evidence on observable nodes 

 
This step assesses the quality in carrying out software development activities for the 
specific software system under evaluation by collecting evidence associated with the 
observable nodes of the BBN, using available documentation on the system 
(e.g., debugging data).  It also involves eliciting Type II experts for answers to questions 
about the observable nodes of the BBN (e.g., is the software specification verifiable and 
its implementation traceable?).  Such knowledge can be provided by developers of the 
software, or by a third party familiar with the software, after they are given the relevant 
information. 

 
8. Performing BBN analyses and generating results 

 
Standard software tools, such as AgenaRisk® [Agena 2008] and HUGIN [Hugin 2010], 
can be used in developing the BBN and performing the needed analyses, such as by 
generating a probability distribution for the probability of failure on demand. 

 
9. Performing sensitivity calculations to address modeling assumptions and issues 

 
The BBN can be used to perform the sensitivity calculations discussed in Section 4.2.5 
to determine the importance of different assumptions and issues.  In addition, sensitivity 
calculations can be used in assessing the importance of specific guidance/requirements 
for developing software and their implementation.  Generating alternative 
models/methods, as discussed in Section 4.2.5, would require significant additional 
resources, and is considered beyond the scope of the current plan for the case studies. 

 
10. Performing benchmark studies to evaluate the BBN 

 
As discussed in Section 4.2.4, the statistical testing results of the example system can 
determine whether the prediction of the BBN is consistent with the test results: that is, 
the test results do not contradict the BBN prediction (e.g., test results show that the 
failure probability is in the tails of the distribution obtained from the BBN model).  This 
will be done in the planned case study.  Furthermore, benchmarking studies are better 
able to validate and calibrate the BBN.  The benchmarking studies could be applications 
of the BBN to other software projects, and would evaluate whether the BBN produces 
reasonable results.  However, the extensive benchmark studies are not within the scope 
of the case study. 
 

4.4 Evaluation of the BNL BBN Approach 
 
The BBN method was initially evaluated in Section 2 against the 10 desirable characteristics for 
a quantitative software reliability method.  An evaluation of the new BNL-proposed BBN 
approach is provided below.  The use of the BBN results with statistical testing, as suggested in 
Section 2, makes it possible to account for the contexts specified in a PRA (Characteristic 3).  
The benchmark studies suggested in this section can potentially be used to verify a BBN model 
and support any improvements that may be identified (Characteristic 7). 
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1. The description of the method and its application is comprehensive and understandable. 

 
The BBN method has been used successfully in non-nuclear applications, and is well-
documented in the literature.  A “Yes” is assigned. 
 

2. The assumptions of the method have reasonable bases. 
 
The conditional independence assumption of a BBN needs to be verified when the BBN 
structure is developed, and is an issue to consider in applying the BBN method.  In some 
cases, unexpected results might reflect incorrect assumptions on conditional 
independence when the model is exercised.  A “Maybe” is assigned. 
 

3. The method considers the specific operating conditions of the software. 
 
An inherent weakness of the proposed BBN (though not necessarily of the BBN 
approach in general) is that it does not account for different operational conditions.  One 
potential way of addressing this characteristic is to use context-specific statistical testing 
in a Bayesian updating process, as discussed in Section 4.2.4.  A rating of “Yes” is 
assigned. 
 

4. The method considers the quality of life cycle activities. 
 
The BBN method uses conditional probability tables to represent interdependency 
among disparate events, and, in PRA applications, can potentially combine qualitative 
information, such as quality in carrying out software life cycle activities.  A “Yes” is 
assigned. 
 

5. The method uses available test results and operational experience. 
 
The BBN method uses test and operational data in a Bayesian analysis, thereby meeting 
this characteristic.  A “Yes” is assigned. 
 

6. The method addresses uncertainty. 
 
With a BBN approach, uncertainties associated with the events/nodes are represented 
explicitly in their probabilities.  A “Yes” is assigned. 
 

7. The method has been verified and validated. 
 
Since the existing models reviewed are explorative ones, they are not considered 
validated models.  A few experts have stated that the method is promising [Littlewood 
2000], earning a “Maybe” for this characteristic.  The performance of benchmark studies 
recommended in this study would serve as a validity check for the BBN.  After some 
benchmark studies are done, the BBN can potentially be validated or improved.  This 
would change the rating to “Yes.” 
 

8. The method is capable of demonstrating the high reliability of a safety-critical system. 
 
While previous applications of the BBN approach have not produced estimates of very 
high reliability, it is possible that, for nuclear protection system software, a panel of 
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experts could agree upon a very high reliability, as the BBN model by Gran [2002b] for a 
non-nuclear system has been used to demonstrate a failure probability range of lower 
than 10-4.  A “Maybe” is assigned.  Since the objective of this study is only to use a BBN 
to estimate a prior distribution that will be Bayesian-updated with statistical test data, this 
characteristic is of lesser importance (because the results of the BBN are expected to 
have large uncertainties). 
 

9. The method is capable of estimating parameters that can be used to account for 
software common-cause failures (CCFs) of diverse protection systems or channels. 
 
It would be very difficult to use the BBN method to estimate CCF parameters.  
Therefore, the issue of CCFs would probably need to be addressed externally to the 
BBN, as discussed in Section 2.1.  A “No” is assigned. 
 

10. The data and necessary information exist and can be collected. 
 
Applications of the BBN method often use discretized probability distributions to 
represent the nodes of the models and subjective expert elicitation in estimating the 
conditional probability tables representing the impacts that parent nodes have on child 
nodes.  In particular, it is difficult to develop conditional probability tables that convert 
qualitative information, such as quality in carrying out software development activities, 
into failure probabilities and rates.  It is unclear whether this is a task that can be 
appropriately resolved through expert elicitation, and whether the necessary experts 
exist, resulting in a “Maybe” rating for this characteristic.  In addition, as was discussed 
previously, data from past software development projects are not available or are 
proprietary, but statistical testing may provide some data for benchmarking. 
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5 DEVELOPMENT OF A CONTEXT-BASED STATISTICAL TESTING 
METHOD 

 

5.1 Introduction 
 
Software is usually tested to detect and remove bugs, and also to demonstrate that the software 
can perform its intended functions, possibly for licensing purposes.  Different test strategies 
have been developed, such as black-box and white-box testing.  However, they are not 
designed for quantifying software reliability (i.e., the probability of failure on demand), and thus 
cannot be used for that purpose [May 1995, Hamlet 1994, and Kuball 2004].  The main reason 
is that the inputs to the software in these tests are not random samples from the operational 
profile.  Therefore, separate operationally representative tests must be undertaken.  Testing 
performed to quantify software reliability (i.e., the probability of failure on demand) is called 
statistical testing [IEC 1986]. 
 
Statistical black-box testing can be done by random sampling, according to the operational 
profile.  Some researchers also developed statistical methods based on white-box testing 
[May 199519, Zhang 2004, and Yang 2010] to evaluate the overall probability of system failure, 
taking into consideration the internal structure of the software.  The white-box test-based 
methods offer additional reliability information on the internal structure of the software, but 
require more resources for the analyses.  In addition, as discussed in Section 2, the number of 
tests needed using white-box testing may be much larger than that needed for black-box testing 
in order to demonstrate the same software failure probability.  Equivalently, using the same 
number of tests (without failure), the white-box method developed by May [1995] would 
generate a higher (i.e., unnecessarily conservative) estimated mean failure probability than 
would the black-box method [Chu 2010].  As indicated by Zhang [2004], a white-box method 
that attempts to encompass all possible paths may be impractical.  The method requires that 
“instruments” (modifications to the software) be added to the software being tested, making the 
test less realistic.  In addition, white-box testing may have to choose some inputs in order to 
cover some paths, thus violating the use of the operational profile in sampling and invalidating 
the reliability result.  For these reasons, only black-box testing is considered in this study. 
 
In a probabilistic risk assessment (PRA) of a nuclear power plant, different accident scenarios 
represent different challenges to the safety systems actuated by digital protection systems, such 
as the reactor protection system (RPS) and the engineered safety features actuation system 
(ESFAS).  Therefore, each challenge represents a unique condition/context for the protection 
system as part of the RPS’s operational profile.  The existing statistical methods for quantifying 
the probability of failure on demand need to be applied in a way that accounts for the accident 
scenarios defined in a PRA. 
 
In this section, an approach is proposed for statistical testing of digital protection systems, such 
that the results can be directly used in supporting PRA modeling of these systems.  In particular, 
the testing considers the contexts or boundary conditions defined in a PRA, that is, the accident 
sequences and cutsets of a PRA specify the conditions of the plant in which a protection’s 
function is needed and should be tested.  Statistical testing can be combined with the BBN 
method discussed in Section 4, which considers earlier phases of software development and 

                                                            

19 The method, strictly speaking, is a “white-box-flavored” black-box method, because it only partitions the input space and the 
partitions map to different internal structures of the software.  In this report, it is described as a white-box method. 



 

5-2 

estimates a generic prior distribution for the probability of failure on demand.  The context-based 
idea is similar to that used in a National Aeronautics and Space Administration (NASA) study 
[ASCA 2007], except that the context-based method makes use of the contexts defined in 
existing PRA models and uses a thermal-hydraulic model of the plant in simulating the contexts.  
Appendix A describes different types of tests for licensing purposes, and the configurations 
used in testing some NPP systems.  Statistical testing would ideally be employed for a system 
once it is in its operational configuration, but it may not be feasible to test the system after its 
installation at the NPP.  Alternatively, the testing should be performed after or as a part of the 
factory acceptance test.  Section 5.2 describes the strategy for undertaking the black-box 
testing, including configuring the test, defining the operational profiles of the accident scenarios, 
generating test cases by sampling from the profile, and determining the correctness of the test 
results.  In general, the operational profile of the software should include everything that can 
affect the inputs to the software, including the physical processes with which the system 
interacts and any equipment failures, as defined in PRA scenarios, that indirectly affect the 
physical processes, or even digital system hardware failures that directly or indirectly affect the 
input signals to the software.  Section 5.2 provides the mathematical expressions for calculating 
the system’s failure probabilities on demand and discusses assumptions and issues associated 
with such testing, including treatment of uncertainty.  The statistical testing involves testing the 
software over many possible inputs by sampling from the operational profiles of the PRA 
accident scenarios.  Since the number of test cases can be very large with the consequent 
costs in resources, that is, time, money, and effort, this poses one of the most difficult problems 
in assessing the failure probability of a software program.  Section 5.3 proposes a risk-informed 
application of statistical testing to demonstrate that the overall risk from software failure is below 
an established level, and an approach for determining the feasibility of the application.  It first 
provides some simplified examples to illustrate the concept, then describes the application and 
how to estimate the total number of test cases needed.  Section 5.4 discusses the benefits of 
the proposed statistical testing approach in terms of the desirable characteristics of Section 2. 
 

5.2 A Context-Based Statistical Testing Method 
 
5.2.1 PRA Contexts 
 
At any particular time, the software, the device(s) controlled by it, the system wherein the 
software is embedded, and the NPP are in a certain state.  In general, the NPP’s state provides 
the overall context for their operation.  For example, the input to the software depends on the 
plant’s state.  Some inputs to the software resulting from the context (states) of the NPP may 
trigger software faults, leading to a software failure.  Garrett and Apostolakis [Garrett 1999] 
adopted the concept of an “error-forcing context” (EFC) for human reliability analysis [Cooper 
1996] for denoting the context in which a software failure may happen.  Therefore, a software 
failure happens due to the occurrence of an EFC that is unanticipated and is difficult to predict; 
and the impact on the NPP can range from minor to severe. 
 
Given that the PRA context influences the likelihood that a software fault will manifest into a 
software failure, it is important to account for this context when modeling software failures in a 
NPP PRA.  For example, in a typical PRA, the RPS (with software embedded) usually is the first 
heading (also called a “top event”) in the event trees after an initiating event.  Therefore, in this 
case, such an initiating event (IE) defines the PRA context for this system, that is, different 
initiating events represent dissimilar plant conditions that may generate distinct input signals to 
the RPS. 
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Table 5-1 gives some examples of plant conditions requiring the RPS to trip a typical 
pressurized water reactor (PWR) during full-power operation.  The right-hand column of this 
table lists examples of the types of IE generating the condition necessitating reactor trip.  Each 
plant condition requiring a reactor trip, such as each row in Table 5-1, represents the PRA 
context under which the RPS will be operating. 
 
In addition, failure of the software after an IE may be due, at least in part, to inputs to the 
software before the IE in the timeline; for example, the condition of the plant before the IE may 
fluctuate and produce varying inputs to the software.  Hence, the PRA context may not only 
encompass its latest inputs, but may also contain inputs received before the IE, or sometimes 
represented by software internal states.  Accordingly, the context may consist of a trajectory of 
inputs (a series of successive values for the input variables of a program that occur during the 
operation of the software over time); this is further discussed in Section 5.2.4. 
 
Table 5-1 Examples of conditions requiring reactor trip for a typical PWR 
 
Plant condition Trip Example of initiating event 

causing this condition 
2/4 pressurizer pressure 
channels are below the low-
pressure trip setpoint. 

Low 
pressurizer 
pressure 

Loss of coolant accident (LOCA). 

2/4 pressurizer pressure 
channels exceed the high-
pressure trip setpoint. 

High 
pressurizer 
pressure 

Turbine trip. 

2/3 narrow range sensors on any 
steam generator indicate a low-
low level. 

Low-low steam 
generator level 

Loss of main feedwater. 

2/3 loop flow indicators are 
below the low-flow trip setpoint. 

Low reactor 
coolant flow 

Loss of offsite power. 

Trip signal generated by the 
operators. 

Manual Manual trip. 

 
Similarly, for other protection systems, such as a system that generates an actuation signal of a 
safety system (e.g., an ESFAS), the PRA context can be identified by the plant’s condition at the 
time that the system is required to operate.  For instance, the ESFAS of a typical PWR will 
actuate when certain plant conditions occur, such as a “low pressurizer pressure” indicating that 
a LOCA might have happened. 
 
Each sequence differs from the other sequences in a PRA model and represents an accident 
scenario depicting the progression of the accident from the IE to the conditions resulting in an 
undesirable event.  Accordingly, the progression of the accident, from the IE to the point in the 
sequence where the system(s) are initiated by the ESFAS, is used to define the PRA context, at 
a high level, for the actuation of the ESFAS.  In general, different sequences in the same or 
different event trees lead to different PRA contexts for the ESFAS software.  If the software fails 
an earlier function in a sequence, it would be conservative to assume it would fail all later 
functions in the sequence.  If it is successful in performing an early function in a sequence, then 
the testing would still be useful in assessing later functions. 
 
Solving a PRA model qualitatively yields the cutsets of each sequence.  Each cutset represents 
a more detailed way in which the sequence may occur, that is, instead of representing the 
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sequence at the system level, it is represented at the basic event level (generally, individual 
component failure modes, such as a pump failing to start).  Hence, those basic events 
(hardware failures, human errors, and software failures) that occur before the ESFAS-actuated 
systems in a minimal cutset define a more detailed PRA context for the operation of the ESFAS 
software.  Since a sequence can contain both failures and successes of mitigating systems and 
human actions, the successes in the complete cutset also are part of the context.  Similarly, 
cutsets are discussed only in terms of failure events, with success events implied. 
 
The resolution (level of detail) of a PRA should be considered when choosing a modeling and 
quantification approach for software failures because the finer the resolution, the more detailed 
the context for the software of a digital system.  The relationship between the level of resolution 
of a PRA and the level of detail of the software’s context is further illustrated with the following 
example.  It is a common practice in PRAs to gather similar IEs into a single group, thus 
reducing the number of IEs to be addressed from a relatively large to a more manageable 
number.  Assume, hypothetically, that an analyst put LOCAs of all sizes into a single IE group 
(such coarse lumping is unlikely to happen in practice).  The context for the software of a LOCA-
mitigating system probably will be given by an “overall” context that hopefully would represent 
all LOCAs.  On the other hand, grouping the LOCAs in a more detailed way (such as large, 
medium, and small LOCAs) would generate a more detailed context for the software within each 
IE LOCA group; hence, it would reflect more realistically the plant conditions resulting from the 
occurrence of a LOCA of such size.  In addition, each LOCA size leads to different timing in 
terms of the time required for mitigating systems to actuate (including software-driven systems).  
Such timing also can be considered part of the software’s context. 
 
Note that while PRA model-defined contexts may appear to be coarse, there are 
associated/implied details (e.g., timing) that should be taken into consideration when testing 
software, as long as the details could affect the inputs to the software.  The details should be 
captured in defining/characterizing the operational profile used in generating the test cases.  
Section 5.2.2.2 describes how the operational profile can be defined, and test cases generated. 
 
The relationship between a PRA’s level of resolution and a software program’s context not only 
applies to IEs, as illustrated here, but also to the level of resolution of other elements of a PRA 
model, such as the resolution of system-level models.  Typically, a PRA’s level of detail is at the 
cutset level.  Thus, software testing should be organized according to the level of detail within 
the PRA context defined for each case.  This is especially important for ESFAS functions, which 
typically are preceded by other failures in the PRA model.  On the other hand, considering each 
cutset separately would be resource-intensive, and some of the cutsets may impose similar, if 
not identical, contexts, and can probably be treated together.  It may be possible to perform 
tests at the event tree sequence level by grouping the cutsets representing the sequence.  This 
consideration will be further elaborated in the case study by applying the statistical testing 
method to the example system. 
 
5.2.2 Performing Statistical Tests 
 
Statistical testing is used to assess the failure probability of the software of a protection system 
in the different scenarios.  The test cases need to capture the PRA context corresponding to the 
scenarios.  As discussed previously, a PRA context is the accident environment defined by a 
PRA scenario/sequence/cutset.  An operational profile for each of the scenarios, which is 
conditioned by the PRA context, must be defined and used in creating test cases.  The inputs 
representing the test cases are fed to the protection system, and the system’s outputs are 
evaluated and the test cases’ success determined.  Since the test cases are generated for 
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conditions in which a protection system is demanded, whether or not an actuation signal is 
generated in a timely manner determines whether the test result is successful. 
 
Implementing this conceptual approach is described in this subsection as follows: (1) specifying 
the test configuration, (2) generating test cases by sampling from the operational profile, and 
(3) evaluating the findings from each test with an oracle to determine whether the test is 
successful.  As an example, a medium LOCA in which the RPS is needed is used. 
 
5.2.2.1 Specifying Needed Test Configuration 
 
Different test configurations may represent different degrees of realism in simulating the 
operation of a protection system, and may have dissimilar capabilities in capturing potential 
faults in the software.  It is agreed generally that the original application software should be 
used in testing the software.  Some insist on using only the original hardware because its 
performance (e.g., speed) may be critical in determining the interaction between software and 
hardware; a different piece of hardware might change the triggering event of a software fault 
and the software’s responses.  Others even argue for using exactly the same compiler and 
running environment for the software in the tests because different compilations and execution 
environments may affect the software’s behavior.  Employing the original hardware may pose 
extra difficulties and costs in testing and limited accessibility to the internal states of the 
software and hardware is likely because the original hardware may not be designed to 
accommodate this purpose.  With advent of JTAGs20 and in-circuit emulator, this difficulty may 
be alleviated.  Still, generating and feeding test cases automatically need to be further 
developed for our purpose.  In general, it is desirable that a test configuration is able to simulate 
possible internal states of the digital system and use probabilistic models to account for the 
occurrence of the internal states, for example, using the probability distributions of the internal 
hardware failure modes to capture the likelihood of the occurrence of the failure modes.  
Research is needed on how realistic the test configuration must be and on the tradeoff between 
realism and the accessibility of internal information. 
 
A more practical limitation is the availability of the equipment needed for undertaking the tests.  
Vendor developed tools for testing are more readily available, and it may be impractical to 
develop new tools for a specific application.  The vendor’s tools may need modifications to 
facilitate statistical testing.  For the Oconee digital upgrade [NRC 2010b], a test machine, 
ERBUS, developed by AREVA, was employed in the factory acceptance tests.  It is an open-
loop test configuration without physical connections to the NPP’s thermal-hydraulic simulator.  
Appendix B details this test configuration and the automatic test tool of a Japanese ABWR used 
to validate and verify a safety-related digital system software [Fukumoto 1998].  At a high level, 
the two test configurations are the same.  That is, a test computer generates test inputs and 
analyzes outputs that are sent through the interfaces between the computer and the digital 
protection system (including hardware and software) being tested.  The test cases are 
generated offline employing a thermal-hydraulic model of the plant (i.e., without connecting the 

                                                            

20 JTAG was an industry group (Joint Test Action Group) formed in 1985 to develop a method to test populated circuit boards after 
manufacture.  At the time, multi-layer boards and non-lead-frame integrated circuits (ICs) were becoming standard, and connections 
were being made between ICs which were not available to probes.  The majority of manufacturing and field faults in circuit boards 
were due to solder joints on the boards, imperfections in board connections, or the bonds and bond wires from IC pads to pin lead 
frames.  JTAG was meant to provide a pins-out view from one IC pad to another so that all these faults could be discovered.  Today 
JTAG is also widely used for IC debug ports.  In the embedded processor market, essentially all modern processors support JTAG 
when they have enough pins.  Embedded systems development relies on debuggers talking to chips with JTAG to perform 
operations like single stepping and break pointing.  Electronic products, such as cell phones or wireless access points, generally 
have no other debug or test interfaces. 
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thermal-hydraulic model of the plant directly to the system under test).  A test configuration 
consistent with this high-level description is recommended for the statistical testing approach in 
the case study. 
 
Alternatively, a test tool can be designed for software validation in a simulated environment, that 
is, without using the original hardware, such that a class of digital instrumentation and control 
systems can be tested.  Not using the original hardware means that either a software model 
must be created or reconfigurable hardware produced (e.g., a field programmable gate array to 
mimic the original hardware; either way would increase flexibility and lower cost from the view–
point of people performing the tests.  A limitation with this approach is that the software model 
or the hardware reconfiguration would only approximate, and not duplicate, the original 
hardware.  A tool of this kind is the SIVAT (Simulation Validation Test) developed by Areva NP 
[AREVA 2009] for TELEPERM XS systems, wherein the original hardware is represented by 
models.  The SIVAT tool is briefly described below. 
 
In SIVAT, a model actually is a software function written or generated in a higher-level 
programming language (e.g., C or Fortran).  A model represents the central processing unit 
(CPU) of a TELEPERM XS, ensuring that all internal signals and variables of the model are 
stored in the simulator database.  An input or output model also can be formulated and used in 
SIVAT for the measuring and actuating periphery of the TELEPERM XS system.  Linking 
separate models for the physical process to SIVAT enables a partial or complete closed-loop 
simulation of realistic events or disturbances.  In addition, SIVAT models communication 
between individual TELEPERM XS CPUs.  It also encompasses a simulator control system (the 
same as that used in the ERBUS test machine) to support the successive execution of the 
application software code and the visualization and modification of software variables.  In 
summary, SIVAT performs TELEPERM XS system simulation based on the models of CPUs 
and/or input and output models and the original code of the application software.  Clearly, the 
accuracy of the simulation depends on how well the model(s) represent the system or the 
process.  Although SIVAT models the hardware and process as realistically as possible, it is 
preferable to use a test configuration that consists of the actual hardware and software.  Without 
a detailed assessment of the tool, it is difficult to justify whether, or by how much, the 
hardware/software interaction can be captured in a simulated testing environment. 
 
5.2.2.2 Generating Test Cases by Sampling from the Operational Profile and Evaluation of 

Results 
 
This part of statistical testing describes how to generate the test cases for each of the scenarios 
or PRA contexts detailed in Section 5.2.1 using the test configuration described in 
Section 5.2.2.1. 
 
There are a few publications on estimating the software failure probabilities of safety-critical 
systems using statistical testing [Kuball 2007, Littlewood 1997, May 1995] that provide useful 
theoretical guidance on operational profiles and generating test cases.  An important concept of 
the guidance is that the test cases represent ‘trajectories’ (a series of successive values for the 
input variables of a program that occur during the operation of the software over time) in the 
space of inputs to the software.  That is, a set of single values of the input signals cannot 
represent the input of a test case.  This proviso is related to the possible memory of the 
protection system, that is, its performance may depend on the history of inputs leading to the 
demand on the system.  Other key concepts of the guidance cover the interdependencies of the 
input signals because they may represent related physical parameters and the assumption that 
the test cases are independent, such that the results can be used in statistical analyses.  The 
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following is a proposed approach for generating test cases addressing the above issues.  By 
defining an operational profile for an accident scenario, all possible inputs are theoretically 
captured in terms of the probability distributions that characterize the operational profile.  Since 
the test cases would be sampled from the operational profile, whether or not certain inputs 
would be sampled or the number of samples of certain inputs is determined by the probability 
distributions. 
 
For each PRA context (accident scenario/sequence), such as a medium LOCA requiring a 
reactor trip, a thermal-hydraulic simulation of the plant should be included to simulate the 
context and generate a trajectory of inputs to the protection system under test.  The simulation 
starts from the steady-state operation of an NPP and then simulates the occurrence of the 
accident, in this example a medium LOCA.  The thermal-hydraulic simulator accounts for the 
dependency among the physical parameters, and should be able to calculate the physical 
parameters at the specific locations of the sensors that generate inputs to the software.  Each 
test case is generated by sampling from the probability distributions developed for the 
operational profile of the scenario, and is given in the form of a trajectory on inputs. 
 
Development of the operational profile of an accident scenario is a very important part of the 
statistical testing approach.  The operational profile represents the actual operating condition 
and determines the possible trajectories of inputs.  An approach for defining the operational 
profile of an accident scenario is described below.  It essentially tries to identify all possible 
causes of variations of software inputs and represent them in terms of probability distributions. 
 
The steady-state operation of the NPP that might be characterized by fluctuations in its 
parameters can be represented by probability distributions.  For a medium LOCA, more test 
cases can be simulated by considering the fluctuations in the initial conditions and in different 
medium LOCA sizes and locations, as discussed in Section 5.2.1.  Additionally, consideration 
should be given to noise in the sensor signals and inaccuracies and time delays in the sensors.  
For example, modifying the sensor inputs using the inaccuracy specified by the sensor 
manufacturer can account for the variability of the sensor’s precision.  For the inputs from 
redundant sensors of the same type, one can assume that the inaccuracy of the first sensor 
follows a normal distribution, and the difference between the signal of the second sensor and 
the first one is represented by a second normal distribution, and so on.  Noise in the sensor 
signals and time delays can be treated similarly. 
 
The probability distributions representing the fluctuations in the initial conditions, the frequencies 
of different LOCA sizes and locations, and the sensor’s inaccuracies can be estimated and used 
in a random sampling of the test cases.  They are used in defining the operational profile of the 
accident scenario. 
 
In general, the inputs to a piece of software are determined by the plant’s physical processes, 
and any failures or events that can affect the physical processes should be taken into 
consideration in defining the operational profile of a scenario.  For example, for an accident 
scenario requiring the activation of a safety injection system, some other failures may have 
taken place, leading to the need for safety injection.  These failures may be represented by 
cutsets of the PRA model, and each may impart a different impact on the physical processes 
and their timing.  The impacts have to be accounted for using the thermal-hydraulic model.  
Potentially, a large number of the cutsets need to be considered.  They will have to be grouped 
in terms of their impacts on the physical processes, and test cases have to be sampled based 
on the relative frequencies of the groups of cutsets. 
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It may happen that failures or events not explicitly modeled in a PRA can affect the physical 
processes.  Sensor inaccuracy and variation in initial plant conditions are only examples of 
them.  In addition, the occurrence of non-minimal cutsets may affect the physical condition of 
the plant, and generates inputs that would otherwise not be included.  The identification and 
inclusion of these events in defining the operational profile of an accident scenario are a 
completeness issue within the approach.  In general, each such event can be modeled by its 
probability of occurrence, and, when generating a test case, a probabilistic sampling can be 
done to determine whether any of the events will occur.  A practical limitation is the ability of a 
thermal-hydraulic model of the plant to realistically capture everything that can affect the inputs 
to the software.  For example, a reactor trip is needed upon loss of feedwater, and there may be 
many different ways loss of feedwater can occur (e.g., different failures of pumps and valves).  
Realistic modeling of the different ways loss of feedwater may occur imposes requirements on 
the level of detail of modeling of the thermal-hydraulic model. 
 
A problem with the above approach is the long time that each simulation run of the thermal-
hydraulic model of the plant may take, especially when a particular protection function is not 
needed until late in an accident scenario, for example, automatic actuation of recirculation after 
successful injection.  That is, the simulation may need to cover 24 hours in accident time.  
Section 5.2.4 discusses the possibility of employing a shorter trajectory.  Another issue is that 
the number of needed tests could be very large, considering the many sequences or cutsets 
that must be evaluated.  Section 5.3 proposes an approach to estimating the required number of 
tests for demonstrating that the contribution of software failures to the risks of an NPP is small. 
 
The outcome of each individual test is either that the protection system generates an actuation 
signal when needed, or it does not.  The oracle for determining whether the test results are 
correct can be simply accomplished using the test computer to decide whether the actuation 
signal was generated in a timely manner.  The timeliness is determined by the physical 
condition of the plant, and the necessary information is sometimes available in design-basis 
accident analyses.  For example, for a medium LOCA, the expected time for reactor trip is 
determined by the plant’s thermal-hydraulic model, which generates the test inputs, and this can 
be compared to the latest time by which the reactor must be tripped to prevent damage to the 
plant, as determined by physical constraints, such as the onset of damage to the cladding.  
Since the oracle is determined by the scenarios defined in a PRA, not from the requirement 
specifications of the software, the statistical testing may serve as an independent check of the 
requirement specifications, and has the potential to identify weaknesses of requirement 
specifications if failures are observed during the tests. 
 
5.2.3 Bayesian Reliability Assessment 
 
As mentioned previously, it is proposed for the case study that the statistical testing results be 
used to perform a Bayesian update of a prior distribution for the probability of software failure-
on-demand.  The prior distribution may be derived from either a detailed or a simplified BBN 
approach, as described in Section 4, based on factors such as the quality in carrying out 
software life cycle activities, or it may be non-informative, for example, following existing 
guidance in the handbook of parameter estimation [Atwood 2002]. 
 
The Bayesian approach is a straightforward application of Bayes’ theorem.  Miller et al. [Miller 
1992] derived the Bayesian methodology described here.  The likelihood function is a binomial 
distribution, and a conjugate beta prior distribution is used to obtain a beta posterior distribution. 
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Let Θ be the random variable representing an analyst’s knowledge of the unknown probability θ 
before testing.  The prior distribution of Θ is assumed to follow a Beta(a,b) distribution.  Thus, 
the probability density function (pdf) of Θ is: 
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where 0 ≤ θ ≤ 1, a > 0, b > 0, and the normalizing constant B(a,b) is the complete beta function.  
The expected value of Θ is a/(a+b). 
 
Several authors discussed the choice of the prior distribution and the parameters characterizing 
it in textbooks on Bayesian statistical inference.  The handbook of parameter estimation, 
NUREG/CR-6823 [Atwood 2002], offers general guidance on selecting prior distributions.  Other 
authors broached this subject within the context of the Bayesian estimation of the failure 
probability of a program; for example, Haapanen et al. [Haapanen 2000] and Miller et al. [Miller 
1992].  In particular, Miller et al. suggested using the results of reliability growth methods to 
estimate a prior distribution via the moment-matching method.  In addition, the quality in 
carrying out a software’s life cycle activities can be used to generate a subjective prior 
distribution, as was done in some BBN studies, for example, Gran [2002a] and Helminen 
[2003a]. 
 
In Bayesian terminology, f(θ) is the prior pdf of Θ, and g(x|θ) is the likelihood function of X, 
conditioned on the value of Θ.  The posterior pdf of Θ, conditioned on the observed (after 
testing) value of X, is denoted by f(θ|x).  According to Bayes’ theorem, the posterior pdf of Θ, 
given the observed value x, is: 
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Accordingly: 
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where x = 0, 1, …, n, and 0 ≤ θ ≤ 1. 
 
In other words, the posterior (after testing) distribution of Θ is Beta(x+a, n-x+b), where x is the 
number of failures observed in n tests, and a and b are the parameters of the prior Θ 
distribution.  The posterior distribution has a mean of: 
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Once the posterior distribution of Θ is determined, it is entered into one of the PRA codes that 
implement a method for propagating parameter uncertainty through a PRA model.  In general, a 
different posterior distribution of Θ must be obtained for each PRA context defined for the 
operation of a software program, as discussed in Subsection 5.2.1. 
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The Bayesian approach also can generate an upper bound of the software failure probability θ, 
θu.  To do so, a confidence level γ is specified that implicitly defines the upper bound of θu, such 
that: 
 

Pr{Θ ≤ θu | x} = γ.         (5-5) 
 
Solving this equation for θu determines an interval 0 ≤ Θ ≤ θu, in which Θ lies with confidence γ.  
For example, if γ = 0.95, an analyst is 95% confident that the value of Θ is in the interval 0 ≤ Θ ≤ 
θu. 
 
An interesting application of this upper bound approach is setting the parameters a = b = 1 for 
the prior probability density function because this function becomes the uniform distribution 
(i.e., f(θ) is a constant) that can be interpreted as a non-informative prior distribution [Martz 
1982].  (Another choice of prior distribution is possible; for example, the handbook on parameter 
estimation [Atwood 2002] recommended employing a Jeffreys prior distribution.)  In addition, by 
making x = 0 (i.e., assuming there is no observed failure), as often is the case for testing safety-
critical software, the posterior cumulative distribution function is expressed as: 
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which reduces to: 
 

    1)1(1)0|( n
uuF        (5-7) 

 
Solving this equation for θu: 
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The number of successful tests required to show that the failure probability is bounded by θu at 
confidence level γ is obtained from Equation 5-8 as: 
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The above derivations assume that there is no observable failure during the tests.  It is expected 
that, for a safety-related protection system, if a fault is discovered the software will be revised to 
remove the fault; then the revised software is treated as a new software that will be re-tested 
after discarding the test results of the earlier version.  Littlewood and Wright [Littlewood 1997b] 
contend that this approach may be too optimistic because it ignores the failure of the earlier 
version that is evidence of poor quality.  They feel that it would be more conservative to assume 
that removing the fault does not improve system reliability, and suggested combining the test 
results (including failures) of the earlier version with those of the new version.  Consequently, a 
larger number of tests would be needed to demonstrate that a reliability goal is met if faults are 
detected, compared to the number needed based on the assumption that the results of the 
earlier version are ignored. 
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5.2.4 Inclusion of Software Failures in a PRA Model 
 
This section describes how software failures can be included in a NPP PRA.  It is assumed that 
a PRA model is available, with the failures of the protection functions performed by the software 
(and the digital system) under study included as basic events (designated as SF below) to be 
quantified using statistical testing.  In addition, the PRA model has been solved, such that the 
core damage cutsets are available. 
 
A cutset containing a failure of software can be expressed as: 
 

SC • SF • OF 
 
where the symbol “•” means Boolean “AND,” and SC is the PRA software context for the 
operation of the software, determined by the failure(s) in the cutset that occur before the 
software failure in the accident progression.  For statistical testing purposes, the SC defines all 
software inputs and is characterized as an operational profile, which has been discussed in 
Section 5.2.2.2.  An SC can include one or more failure events; for example, it may be just the 
IE, or it can include additional failure events. 
 
SF is the software failure event appearing in the cutset.  This failure occurs given the PRA 
context SC in the same cutset. 
 
OF is a placeholder for other failure events necessary for the cutset to incur core damage, but 
that occur after the failures represented by SC and SF.  Therefore, the failures within OF, if any, 
are not part of the software’s context in the cutset. 
 
The failure events that occur prior to and after a software failure in a cutset can be identified by 
examining the accident progression defined by the cutset, and the associated sequence.  SC is 
quantified by a frequency since it contains the IE, while each SF and OF is characterized by a 
conditional probability.  In general, SF is conditional on the occurrence of SC, and OF is 
conditional on the occurrence of SC and SF. 
 
Figure 5-1 utilizes a simplified small LOCA example to demonstrate the SC, SF, and OF 
concepts. 
 

S2

Small LOCA

K

RPS SW

D1

High Pressure Injection

H3

Lower Pressure 
Injection/Re-circulation

H2

High Pressure Re-circulation # End State
(Phase - PH1)

1 OK

2 CD

3 CD

4 CD

5 CD

 
Figure 5-1 Integrating software into PRA: a small LOCA example 
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In this example, the IE is the Small LOCA event S2.  The top events in order of being exercised 
are RPS software (event K), High-Pressure Injection (event D1), Lower-Pressure Injection/Re-
circulation (event H3), and High-Pressure Re-circulation (event H2).  The end states are OK and 
CD (core damage).  We further assume that the frequency of S2 is known, and that the 
probabilities of D1, H3, and H2 are estimated using the fault tree method.  The estimate of the 
probability of RPS software failure given the small LOCA is of interest to this study. 
 
The PRA context SC of the RPS software is then identified as the IE S2.  It is worth noting, as 
discussed in Section 5.2.1, that such a PRA context includes additional plant conditions that 
serve as inputs to the RPS software given the event S2.  In other words, although the PRA 
context is represented by S2, it includes other parameters, such as the power of the reactor, the 
temperatures of the reactor/hot leg/cold leg, and all other inputs to this software.  In summary, 
the PRA context in this case is a snapshot of all plant parameters relevant to the RPS software, 
including both nominal and off-nominal conditions, given the small LOCA event.  Furthermore, 
the PRA context can be seen as a conditional operational profile, given the small LOCA.  This 
conditional operational profile can be generated from the thermal-hydraulic simulation code by 
setting its parameters to reflect the small LOCA situations.  Section 5.2.2.2 provides more 
discussions on the conditional operational profile. 
 
The concept of SF is now the failure event of the RPS software given the small LOCA situation, 
which is event K in the Figure 5-1 event tree. 
 

Table 5-2 Sequences and cutsets for the example event tree 
 
Sequence # Cutset End State 
2 S2 H2 CD 
3 S2 H3 CD 
4 S2 D1 CD 
5 S2 K CD 
 
Table 5-2 lists all core damage sequences and the corresponding cutsets.  It is clear that only 
sequence #5 (highlighted in Table 5-2) contains software failure contribution.  In this simplified 
example the OF is empty, as the sequence containing the RPS software failure assumes core 
damage without considering further the anticipated transient without scram (ATWS).  In reality, 
the #5 sequence would transfer to an ATWS event tree where mitigation of the ATWS is 
modeled and additional failures are required to result in core damage.  The additional failures 
constitute the events in OF. 
 
The contribution of the ith cutset that includes software failure events to core damage frequency 
(CDF) is expressed as: 
 

CDF(SW)i = [F(SC) * P(SF | SC) * P(OF | SC and SF)]i 
 
where “*” means multiplication, F(SC) is the frequency of the software context, P(SF | SC) is the 
conditional probability of SF given SC, and P(OF | SC and SF) is the conditional probability of 
OF given SC and SF.  For simplicity, P(SF | SC) and P(OF | SC and SF) are shown, 
respectively, as P(SF) and P(OF), even though they are conditional probabilities. 
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The total CDF can be calculated using the rare-event approximation as: 
 

CDF = 
i

CDF(SW) i  + CDF(nonSW) 

where CDF(nonSW) is the contributions from cutsets that do not include software failures. 
 
As discussed in Section 5.2.1, when performing statistical testing, it may be possible to combine 
those cutsets with the same impacts on the plant and thus the same inputs to the software, to 
reduce the number of tests that need to be performed. 
 
5.2.5 Discussion of Assumptions and Issues 
 
Generally, in statistical testing of software, random samples are taken from the operational 
profile.  However, the operational profile may not be well known or accurately represented.  A 
NASA-sponsored study [ASCA 2007] suggested using adjustment factors estimated by experts 
as a means to account for differences between testing and operating conditions.  As noted by 
Chu [2010], this approach appears to be a possible way of addressing this issue, but, due to the 
reliance on expert elicitation, the resulting factors will entail significant subjectivity and 
uncertainty, and may not be conservative. 
 
As discussed in Section 5.2.2.1, different test configurations represent different degrees of 
realism.  Thus, the effectiveness of different test configurations in representing the actual 
operating system should be researched further.  In this study, BNL proposes using a vendor-
developed test configuration consisting of (1) the actual protection system hardware and 
software, (2) a test system, and (3) test inputs generated via a thermal-hydraulic simulator of the 
plant in the form of trajectories in the space of the physical parameters.  This represents the 
most realistic test configuration readily available to an NPP.  A less realistic configuration that 
does not use the actual protection system hardware is not desirable, and may not realistically 
capture the interactions between the application software and platform software.  For example, 
the speed of the hardware may affect the software’s responses. 
 
Often, software failures occur when certain inputs trigger a fault in the system; these inputs can 
be identified and used to reproduce the failure.  However, some experts suggest that failures 
caused by certain software bugs (i.e., Mandelbugs) [Grottke 2007] are difficult to reproduce and 
are considered non-deterministic.  Hence, testing may not be able to identify these bugs.  
Probably, these failures can be explained in terms of the changing internal states of the digital 
system that remain unaccounted for in attempting to reproduce the failures.  How tests can 
ensure the bugs are found is an open question.  One principle of the safety-critical software is to 
keep the design as simple as possible.  For instance, the Teleperm TXS design [NRC 2000] 
does not allow the “dynamic memory allocation.”  This simple-design philosophy minimizes such 
Mandelbugs. 
 
A specific issue associated with the internal states of digital systems is that that their distribution 
may not be stationary (constant in time), such that representative samples of the internal states 
from the starting point of the test cases cannot be taken.  For example, the problem with the 
Patriot missile [GAO 1992] resulted from running the system too long, such that a small 
numerical error grew in time and caused system failure.  Tests with a short duration and without 
consideration of the internal states may never identify the error.  This can be considered an 
issue in the “memory” of the system, that is, how system states depend on the software past 
behaviors.  The case study addresses this “long memory” issue by extending the testing 
duration to its practical maximum range.  The “practical maximum range” will be defined based 



 

5-14 

on engineering judgment, and will be justified in the future case study. 
 
It is desirable that deterministic analysis be performed to determine that the platform software 
and operating system do not have a long memory.  For example, if a platform’s software does 
not use calendar time, then the Y2K issue does not need to be taken into consideration in 
generating test cases.  In the absence of this type of analysis, the issue of input trajectory length 
represents a potential limitation in the statistical testing approach. 
 
Section 5.2.2.2, in defining the operational profile, discusses the need to consider all possible 
events that may directly and indirectly affect the inputs to a software program, including those 
that are not typically modeled in a PRA (e.g., non-minimal cutsets), and proposes that the 
events be represented by their occurrence probability and sampling from the probability 
distributions.  An issue is how far one should search for such events.  One may argue that some 
seemingly unrelated events may indirectly affect the inputs.  This can be considered a 
completeness issue.  An associated issue is how the effects of the events can be captured, that 
is, whether or not the effects can be easily included in the thermal-hydraulic model of the plant. 
 
The generation of test cases described in Section 5.2.2 attempts to account for the operational 
profiles of specific PRA contexts.  It does not represent abnormal conditions caused by failures 
internal to the digital system.  For example, a part of the software may include responses to 
internal hardware failures, such as the detection of a failure of a CPU, implying that internal 
hardware failures are included in statistical testing.  This represents a type of hardware–
software interaction within a digital system, and may be considered the internal state of the 
digital system.  Accounting for internal hardware failures is related to how an overall reliability 
model of both the hardware and software of a digital system should be developed, a recognized 
open issue.  Excluding such failures in statistical testing is a significant omission.  A recent BNL 
study on a digital feedwater control system [Chu 2010] represents a possible way to encompass 
them.  In that study, hardware failures of components internal to the digital system are modeled, 
and define the additional contexts to which the system software would otherwise never be 
subjected.  The way hardware failures are accounted for can be included in the proposed 
statistical approach by including the hardware failures in the definition of the operational profile, 
that is, each such hardware failure is represented by a distribution for its probability of failure, 
and taking samples from this type of distribution to determine whether any of the hardware 
failures actually take place is a particular test case. 
 
The proposed statistical testing has to take into consideration many different conditions/contexts 
defined in a PRA, which may make the approach impractical.  Section 5.3 proposes a feasibility 
study to estimate the number of test cases that need to be performed in order to demonstrate 
that the software’s contribution to core damage frequency is sufficiently small. 
 
5.2.6 Treatment of Uncertainties 
 
The Bayesian approach described in Section 5.2.3 automatically accounts for parameter 
uncertainty.  The prior distribution may be derived from a BBN, as described in Section 4, or by 
using a non-informative prior distribution.  When using a non-informative distribution, guidance 
on selecting a prior distribution detailed in the handbook for parameter estimation [Atwood 2002] 
can be used (i.e., use of a Jeffreys prior).  One key contributor to model uncertainty is the 
assumption in selecting a prior distribution.  This uncertainty can be addressed by performing 
sensitivity calculations using different prior distributions. 
 
Section 5.2.4 discussed the key issues and limitations in statistical testing, which contribute to 
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model uncertainty.  In general, the uncertainties can be treated by performing sensitivity 
calculations by making alternative assumptions.  Presently, quantitative measures of their 
importance are difficult to develop, though their importance can be demonstrated qualitatively by 
examples, as discussed below. 
 
This study recommended utilizing vendor-developed test tools consisting of (1) the actual 
protection system’s hardware and software, (2) a test system supplying inputs to the system 
and evaluating its outputs, and (3) test inputs generated using a thermal-hydraulic simulator of 
the plant.  Based on engineering knowledge, it is easy to conceive of possible failures that 
cannot be identified with less realistic test configurations.  For example, if the system’s actual 
hardware is not part of the software testing, then the interactions between hardware and 
software, including their timing, will not be realistically accounted for.  In general, further 
research is needed to explore the effectiveness of different test configurations in representing 
the actual system in its operational environment. 
 
Another unresolved problem is how to consider internal states to ensure that the operational 
profile is realistically represented.  The Patriot missile failure [GAO 2002] is an example of 
failures related to internal states of digital systems.  The applicability of the issue of the 
“memory” to a specific system possibly might be assessed by reviewing the application software 
and evaluating the design of the software of the platform and operating system.  Verifying an 
assumption of a short memory would allow shorter trajectories to be used in testing. 
 
Failure to account for internal hardware failures would be an obvious error of omission.  The 
issue should be evaluated by developing models of both the hardware and software of digital 
systems (e.g., the BNL model of a digital feedwater control system [Chu 2009]) and using the 
modeled hardware failures to help define the operational profile for testing software. 
 

5.3 A Proposed Risk-Informed Application of Context-Based 
Statistical Testing Approach 

 
This section formulates the integration of testing results into the NPP PRA and estimates the 
number of test cases required to achieve the given level of reliability.  One concern about the 
method for the context-based statistical testing proposed in Section 5.2 is that a very large 
number of tests might be needed.  To investigate this issue, an application of the method to 
demonstrate that, for an RPS or ESFAS, the contribution of the system’s software is limited to 
an acceptable threshold (e.g., is in accordance with the guidelines in Regulatory Guide 1.174 
[RG 1.174] [NRC 2002]) is proposed.  The proposed application essentially consists of 
accounting for the contribution of software failure to the risk of an NPP by estimating the 
software failure probability for each of the accident scenarios in which the system is needed.  A 
PRA model, such as the PRA of one of the NUREG-1150 plants, could be used in the 
application. 
 
Section 5.3.1 provides some simplified examples to illustrate some risk-informed concepts 
associated with software failure’s contribution to overall risk or CDF in an NPP.  In 
Section 5.3.2, a proposed approach is described for demonstrating that the contribution of 
software failure is low enough according to RG 1.174.  It also describes how the total number of 
tests that need to be performed can be estimated to demonstrate the application’s feasibility. 
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5.3.1 Simplified Examples to Illustrate Risk-Informed Concepts for Statistical 
Tests 

 
This subsection presents a few simplified examples to illustrate the concepts associated with a 
risk-informed application of statistical testing that accounts for the contribution of software failure 
to the risk or CDF for the entire NPP.  The examples are discussed in terms of mean values of 
probabilities and frequencies, since mean values commonly are used in RG 1.174.  Due to 
different simplifying assumptions used in the examples, the numerical results should not be 
used in drawing conclusions. 
 
As described in Section 5.2.4, the contribution of the ith cutset, along with software failure, to 
CDF is expressed as: 
 

CDFi = [F(SC) * P(SF | SC) * P(OF | SC and SF)]i 
 
where “*” means multiplication, F(SC) is the frequency of the software context, P(SF | SC) is the 
conditional probability of SF given SC, and P(OF | SC and SF) is the conditional probability of 
OF given SC and SF.  For simplicity, P(SF | SC) and P(OF | SC and SF) are shown, 
respectively, as P(SF) and P(OF), even though they are conditional probabilities. 
 
Example 1- An individual cutset 
 
This equation can be used to bound the value of the probability of a software failure to keep the 
value of the CDF of each cutset equal to, or less than, a certain value.  For example, if it is 
desirable to limit the contribution to CDF of each individual cutset involving software failure to 
less than or equal to 10-7/year21, then for the ith cutset: 
 

10-7/year ≥ [F(SC) * P(SF) * P(OF)]i 
 
Solving for P(SF)i: 
 

P(SF)i ≤ 10-7/[F(SC) * P(OF)]i 
 
where P(SF)i is dimensionless because both F(SC) and the initiating event frequency are 
expressed in units of per year. 
 
The bound for the probability of software failure [P(SF)] appearing in the cutset then is obtained 
from the last equation, using numerical values for F(SC) and P(OF).  For instance, in the 
internal events PRA of the Surry NPP, completed as part of NUREG-1150 [NRC 1990], there is 
a sequence consisting of a Large LOCA (LL, the IE) and failure of low-pressure injection (LPI).  
Assuming that the ESFAS of this plant employs software, and that a cutset is being evaluated 
wherein the failure of LPI is caused by failure of the software to generate a signal to start this 
system, then SC is the occurrence of the LL, expressed in terms of the input to the ESFAS’ 
software indicating that a LOCA happened.  As discussed above, the software’s context may 
not only consist of the latest inputs to the software (due to the IE itself), but may contain inputs 
received before the IE.  Accordingly, the context may encompass a trajectory of inputs, as 
discussed in Section 5.2.4.  For this example, it can be considered that the context is the 
occurrence of the LL, so F(SC) = F(LL) = 5.0*10-4/year (from NUREG-1150 [NRC 1990]).  Since 

                                                            

21 The value presented here is for the purposes of illustration only, and does not imply a desired threshold. 
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only the occurrence of LL and failure of LPI (due to failure of the hypothetical software) are 
required to cause core damage, OF does not exist in this cutset.  Hence, the last equation 
becomes: 
 
  P(SF)i ≤ 10-7/5.0*10-4 = 2*10-4 
 
Accordingly, for this cutset, as long as the failure probability per demand of the ESFAS’ software 
is no greater than 2*10-4, then the contribution of this sequence to CDF will be no greater than 
10-7/year.  This implies that when testing the software to assess its failure probability per 
demand, it would only be necessary to carry out testing to demonstrate that this probability is no 
greater than 2*10-4.  This approach can be considered risk-informed software testing, and, in 
this case, reduces the required number of tests to 4998 (Equation 5-4, with a and b set to 1).  
Clearly, for different proposed values of a cutset’s CDF contribution (i.e., the term CDFi), 
different values will be obtained for the bound of the software’s failure probability [P(SF)i]. 
 
Example 2 – An example cutset/sequence from a PRA 
 
Cutsets containing other failures that are not a part of the software context (i.e., the term “OF”) 
may lead to larger bounds of software failure probabilities than those associated with cutsets 
that do not contain this term; an instance of the latter is the cutset of the large LOCA mentioned 
above.  This distinction is illustrated using a cutset from the NUREG-1150 Surry PRA [NRC 
1990] involving a small LOCA (SL, the IE), failure of the RPS (i.e., an ATWS event), and failure 
to mitigate the ATWS that consisted of two conditions: (1) failure of the operator to manually trip 
the reactor (R) and (2) the presence of an unfavorable moderator temperature coefficient (Z), 
that is, the fraction of the operating cycle where MTC is not negative enough to prevent 
potentially excessive reactor coolant system over-pressure during an ATWS.  Assuming that the 
RPS is implemented using software, and that the cutset being evaluated includes the failure of 
the RPS to generate a reactor trip (scram) signal due to a software failure, then the sequence 
may be represented as SL • SF • R • Z.  Considering again that it is desirable to keep the 
contribution to CDF of this cutset to less than or equal to 10-7/year, then: 
 

10-7/year ≥ [F(SL) * P(SF) * P(R) * P(Z)] = 10-3/year * P(SF) * 1.7*10-1 * 1.4*10-2 
 
where the numerical values on the right-hand side of the inequality are from NUREG-1150.  In 
this example, SF is only conditional on the initiating event (SL), and the other failures (i.e., “OF”) 
are R and Z.  The event R is deemed to also be conditional on SL, so P(R) is a conditional 
probability, and P(Z) is an unconditional probability. 
 
Solving for P(SF): 
 

P(SF) ≤ 10-7/2.4*10-6 = 4.2*10-2 
 
As described above, using this result should substantially reduce the effort required when 
applying statistical testing because it only would have to show that the software failure 
probability is less than 4.2*10-2, necessitating only 22 tests (Equation 5-4, with a and b set to 1). 
 
Example 3 – A conceptual risk-informed application 
 
The approach described for a single cutset can be extended to an entire sequence.  Since the 
contribution of a sequence j to CDF (CDFS) usually is estimated by summing up the contribution 
from each cutset in the sequence, this contribution can be assessed as: 
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CDFs = 
i

[F(SC)*P(SF)*P(OF)] i  

Then the probabilities of software failure P(SF) for all the cutsets should be such that the right 
term of this equation is equal to a maximum sequence frequency.  For instance, if it is desirable 
to keep the contribution to CDF of a sequence involving software failures to less than or equal to 
10-6/year, then: 
 

10-6/year 
i

[F(SC)*P(SF)*P(OF)] i  

In general, the context for the software’s operation [F(SC)] differs for each cutset of a sequence, 
although in practice the context may be the same for several cutsets.  For example, the PRA 
context for some cutsets of the same sequence may be represented by the IE of the sequence, 
that is, the SC is the IE, with different OFs for different cutsets. 
 
A simplified example illustrates using these guidelines by assuming that (1) the relevant risk 
metric is the CDF; (2) an NPP is replacing an analog system with a digital system, and the 
evaluation is related to the impact on risk of the digital system’s software; (3) the baseline CDF 
of the NPP is 10-5/year; (4) it is desirable that the change in the NPP’s CDF resulting from this 
replacement be very small, such that the ∆CDF is less than 10-6/year; and (5) the NPP’s CDF is 
calculated using a single sequence.  Then the ∆CDF ≥ CDFs - 10-5/year, or: 
 

10-6/year 
i

[F(SC)*P(SF)*P(OF)] i  – 10-5/year 

Solving this inequality for P(SF)i yields the values of these probabilities that result in a small 
change in the NPP’s CDF.  Section 5.3.2 describes a way of using the idea of this inequality in 
an actual application and how to determine the feasibility of the application by estimating the 
number of tests that need to be performed. 
 
Simplifying this inequality further to explain its application, if the sequence only contains the 
single cutset from the NUREG-1150 Surry PRA mentioned above (i.e., F(SC) = F(LL) = 5.0*10-4 
/ year, and OF does not exist) then: 
 

P(SF) ≤ [(10-5 + 10-6)/year]/F(SC) = 1.1*10-5/5.0*10-4 = 2.2*10-2 
 
This result from a simplified analysis means that the software failure probability only needs to be 
demonstrated to be less than 2.2*10-2 in order to meet the quantitative criterion defined in this 
example assumed in this example, thereby requiring only 44 tests (Equation 5-4, with a and b 
set to 1).  In practice, a sequence may have many cutsets containing software failures (as is the 
case if the initiating event is a small LOCA), so the cumulative frequency from all of them must 
meet the quantitative criterion; this implies that some of the software failure probabilities of the 
cutsets would likely have to be significantly smaller than the numeric bound obtained in this 
simplified example (i.e., 2.2*10-2).  In addition, the potentially large number of sequences and 
cutsets in the plant PRA that contain software failures may lead to a prohibitive number of 
contexts that need to be tested.  Section 5.3.2 considers a realistic application and proposes to 
perform a feasibility study to estimate the total number of tests that need to be performed by 
allocating the contribution of software failure to all of the sequences and cutsets with software 
failures. 
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5.3.2 Demonstration of the Feasibility of an Application of Context-Based 
Statistical Testing 

 
One concern about the strategy for the risk-informed statistical testing method proposed in 
Section 5.2 is that a very large number of tests might be needed.  To investigate this issue, a 
realistic application that considers a plant’s replacement of its analog reactor protection system 
with a digital one is considered, using the idea in Section 5.3.1.  A PRA model, such as the PRA 
of one of the NUREG-1150 plants, could serve in determining the number of test cases without 
failure required to demonstrate that, for an RPS or an ESFAS, the contribution of the system’s 
software is limited to an acceptable threshold (e.g., is in accordance with the guidelines in RG 
1.174).  It is assumed that the PRA includes a model of the analog protection system, and that 
the hardware failure probability of the digital system is the same as that of the analog one.  The 
following is a possible approach for determining the total number of test cases that need to be 
performed without failure. 
 
1. Based on the total CDF of a plant’s PRA, determine a generally acceptable increase in total 

CDF due to software failure of the system according to RG 1.174 [NRC 2002] (taking into 
consideration cumulative impacts of previous changes to the licensing basis).  Identify the 
PRA sequences in which the system is failed due to failure of the actuation signal and 
determine their percentage contribution to the total CDF.  Assuming that the generally 
acceptable increase in total CDF is due to these sequences and that each of the sequences 
is allowed the same percentage increase in frequency, determine the acceptable increases 
in the sequence frequencies. 
 

2. For each sequence in which the protection system is failed due to loss of the actuation 
signal, determine an upper bound on the mean software failure probability according to 
Section 5.2.4, such that the sequence frequency is below the acceptable value.  Determine 
the number of tests without failure that would be needed to demonstrate that the estimated 
mean software failure probability is below the upper bound. 

 
It should be noted that it might be plausible to optimize the application of the generally 
acceptable increase in total CDF to the sequences that involve protection system failure, 
such that the total number of tests required is minimized.  The premise would be that in 
sequences of lower frequency, the software failure probability would not have to be 
demonstrated as low as in higher frequency sequences.  This can be explored as part of the 
planned case study. 

 
3. The total number of tests is the sum of the number of tests over all sequences. 
 
The above approach generally is also applicable at the cutset level (i.e., the cutsets in which the 
actuation signal is lost), if the PRA model of the original system is at the component level of the 
system, though the number of cutsets would be much larger than the number of sequences. 
 

5.4 Evaluation of the Statistical Testing Approach 
 
Test-based methods were initially evaluated in Section 2 against the 10 desirable characteristics 
for a quantitative software reliability method (QSRM).  An updated evaluation of the statistical 
testing approach proposed in the preceding subsections is provided below.  The proposed 
approach improves statistical testing methods by considering PRA-specified contexts, thus 
meeting Characteristic 3.  A successful application of the proposed approach would serve as a 
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validation of the approach (Characteristic 7) and possibly demonstrate the high reliability of a 
safety-related software (Characteristic 8).  In addition, the approach, in general, can be 
extended to consider failures of diverse software, giving it a “Maybe” ranking under 
Characteristic 9. 
 
1. The description of the method and its application is comprehensive and understandable. 
 

The black-box statistical testing approach employs standard statistical methods that are 
documented comprehensively.  A “Yes” is assigned. 

 
2. The assumptions of the method have reasonable bases. 

 
In general, the assumptions associated with the statistical testing approach have 
reasonable bases.  However, there are some assumptions that are more difficult to 
justify.  For example, the assumption that the test profile is the same as the operational 
profile is an inherent limitation common to all test-based methods, and cannot be 
demonstrated as easily as otherwise.  Therefore, a “Maybe” is assigned. 

 
3. The method allows for consideration of the specific operating conditions of the software. 

 
The proposed risk-informed testing strategy of this study does take into consideration 
specific contexts/accident scenarios.  Since the approach has not yet been determined 
to be practical, a “Maybe” is assigned.  A successful application of the method would 
change the rating to a “Yes.” 

 
4. The method takes into consideration the quality of life cycle activities. 

 
The test-based methods do not account for the quality in carrying out life cycle activities.  
A “No” is assigned. 

 
5. The method makes use of available test results and operational experience. 

 
The black-box test-based method uses standard statistical methods to quantify software 
reliability, based on test and operational data.  A “Yes” is assigned. 
 

6. The method addresses uncertainty. 
 

The black-box test-based method uses standard statistical methods, including treating 
parameter uncertainty, to quantify software reliability.  A “Yes” is assigned. 

 
7. The method has been verified and validated. 

 
Because the current black-box method is theoretical and the few applications were 
explorative ones, the method is not considered substantiated.  Conceptually, there is no 
reason why this method cannot be verified and validated.  Therefore, a “Maybe” is 
assigned.  The successful application of the proposed statistical testing approach of this 
study to an example system would help demonstrate the method and change the 
ranking to “Yes.” 
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8. The method is capable of demonstrating the high reliability of a safety-critical system. 

 
Automated testing may be a means for undertaking a large number of tests, thereby 
potentially allowing black-box methods to meet this characteristic.  The successful 
application of the method would change the rating from “Maybe” to “Yes.”  Also, the risk-
informed testing strategy proposed in this study might show that high reliability may not 
be necessary in demonstrating that the software’s contribution to the plant’s core 
damage frequency is small enough.  A feasibility study is recommended that estimates 
the total number of tests that must be performed to determine the feasibility of the 
approach.  A successful demonstration of the feasibility would effectively demonstrate 
the usefulness of the method, effectively meeting the objective of the high reliability 
characteristic. 

 
9. The method should be able to estimate parameters that can be used to account for 

software common cause failures (CCFs) of diverse protection systems or channels. 
 

As discussed in Section 2.1, the current QSRMs do not consider CCF of two diverse 
systems.  It is beyond the scope of this study to consider this kind of CCF.  A “No” is 
assigned.  However, in general, the proposed statistical testing approach can be 
extended to test two diverse systems, changing the rating from “No” to “Maybe.” 

 
10. The data and needed information exist and can be collected. 
 

The black-box testing method generates test data that is needed in statistical analysis.  
A “Yes” is assigned. 
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6 CONCLUSIONS AND INSIGHTS 
 
In this study, the quantitative software reliability methods (QSRMs) reviewed in an earlier study 
[Chu 2010] were evaluated against the desirable characteristics, first developed therein and 
enhanced in this study by adding a characteristic on the availability of needed data, to identify 
candidate methods to apply in a case study.  The candidate methods selected were the 
Bayesian Belief Network (BBN) method and the statistical testing method.  Both were developed 
further to evaluate their use in estimating the probability of failure-on-demand of the software of 
a protection system, including examining their issues and limitations. 
 
Based on this extended work, the statistical testing method was deemed the preferred 
approach.  However, given the limitations of the statistical testing method, and to account for the 
quality in carrying out software life cycle activities, it was decided to first develop a prior 
distribution (using the BBN method), and then undertake a Bayesian update to this distribution, 
using the results of statistical testing.  Therefore, the combination of the two methods may have 
the benefits of both methods, that is, being able to capture the quality in carrying out the 
software development activities and to take into consideration the contexts defined by the 
accident scenarios of a probabilistic risk assessment (PRA). 
 
Since development and quantification of a detailed BBN can be very resource-intensive and the 
desired evidence for quantification may be lacking, both a simplified and a detailed BBN will be 
developed.  This exercise will provide valuable insight into the relative costs and benefits of 
developing a detailed model. 
 
Furthermore, as an additional method for comparison, a simple prior distribution will be 
estimated based on the Nuclear Regulatory Commission’s (NRC’s) guidance on parameter 
estimation [Atwood 2002], that is, using a Jeffreys prior as the prior distribution, and then 
employing statistical testing results to perform a Bayesian update of this non-informative prior.  
A disadvantage with this approach is that the model does not account for the quality of software 
development. 
 
The following subsections summarize the findings and insights. 
 

6.1 Selection of Candidate QSRMs and Common Limitations 
 
The evaluation of the QSRMs against the desirable characteristics revealed that none of the 
methods reviewed meets all of the characteristics, and no single method clearly stands out as 
the most appropriate.  Based on the insights from Section 2.2, the BBN method and the test-
based methods were selected as candidates for further assessment, mainly because of the 
former’s ability to account for the quality in carrying out the software life cycle activities and the 
latter’s use of standard statistical methods, including treatment of parameter uncertainties.  In 
addition, these methods appear to have great potential for demonstrating high software 
reliability.  (It should be noted that the Metrics-Mean Time To Failure method, which also 
compares well to the characteristics, is a test-based method.)  This finding is consistent with the 
results of the expert panel meeting on modeling software failures in PRA [Chu 2009b], where 
the panelists specifically identified testing and BBNs as general methods with potential for 
quantifying software failure rates and probabilities. 
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In the evaluation of the QSRMs, some limitations common to all of the reviewed methods were 
identified.  These include: 
 

1. The test data used in the quantification may not truly represent the software’s 
operational profile, thereby questioning the applicability of the estimated software 
reliability. 
 

2. The methods quantify software reliability at the overall system level and neither account 
for the different contexts or boundary conditions in which the software must perform nor 
differentiate between the different failure modes that the software may have. 
 

3. It may be difficult to demonstrate with confidence the expected high reliability of digital 
systems. 
 

4. No methods are available that assess the potential dependencies between redundant 
digital protection systems (i.e., between a primary and a backup system, or between 
redundant channels that use diverse software). 

 
Section 6.3 summarizes how the two candidate methods (BBN and statistical testing) can be 
enhanced and used in developing models for estimating the probability of failure on demand of 
a protection system, covering their associated issues and limitations and suggesting possible 
resolutions.  How the proposed approaches would better address some of the characteristics is 
also discussed. 
 

6.2 Selection of an Example System 
 
Since the objective of the study is to develop methods for quantifying the probability of failure on 
demand of digital protection systems at nuclear power plants (NPPs), it is preferable that the 
example used be such a system.  To account for the quality in carrying out software 
development activities via the BBN method, it is desirable to obtain information about these 
activities, such as verification and validation reports.  In addition, it is desirable that the report 
produced for the case study be available publicly.  Therefore, to the extent practical, it is best to 
base the study on public information (recognizing that the study can be documented, if 
necessary, so as to omit or mask proprietary information). 
 
In searching for an example system satisfying the above characteristics, protection systems at 
NPPs were considered first and then ruled out, mainly due to the expected difficulty of obtaining 
all of the necessary system information from the plant or vendor.  A further hindrance was the 
proprietary nature of the supporting information and data, which also complicated attempts to 
identify a National Aeronautics and Space Administration (NASA) system.  Eventually it became 
evident that it would be very difficult to identify an example system that meets all of the desired 
characteristics.  Therefore, the search focused on systems that serve a protective “on-demand” 
function.  The personnel-access control systems at some Brookhaven National Laboratory 
(BNL) accelerator facilities were investigated, but the documentation was inadequate.  
Eventually, the NRC obtained agreement from Idaho National Laboratory to supply information 
on a control system of a test facility of their Advanced Test Reactor.  While this system is not 
strictly a protection system, part of it performs a protective function.  It is expected that this 
system can be used as the example system in the case studies. 
 
Due to the difficulties in finding an example system for the case studies, the system information 
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did not become available until very late in the project.  As such, the candidate QSRMs were 
illustrated without the benefit of this information. 
 

6.3 Development of QSRMs for PRA Use 
 
The following summarizes the findings and insights of this study on the two candidate methods. 
 
Bayesian Belief Network Method 
 
This study formulated a process for developing a BBN for the case study founded on existing 
BBNs for quantifying software reliability, as in Gran [2002a], Eom [2009], and Delic [1997].  
Important issues and limitations requiring resolution were identified.  Advantageously, the BBN 
method is able to combine disparate information, such as the quality in carrying out software 
development activities and statistical test data.  However, this advantage is muted by the lack of 
an established approach for converting the qualitative information from the quality of software 
development work into software reliability (i.e., probability of failure on demand).  The existing 
methods used for this conversion (e.g., Gran [2002a] and Delic [1997]) have severe limitations, 
essentially due to the lack of data relating the quality of software development and the number 
of faults to reliability.  This difficulty is somewhat similar to that associated with human reliability 
analysis (HRA), in which different performance-shaping factors affect human failure probability 
differently.  Benchmark studies of HRA recently were performed (e.g., NRC [2011]) to validate 
and compare the predictions of different HRA methods.  For the BBN method, benchmark 
studies would involve collecting information on the quality of software development activities of 
past projects, and collecting operational data or the performance of the statistical tests 
described in Section 5.  The benchmark studies can validate or calibrate a BBN used for 
quantifying software failure probability.  The benchmarking can be undertaken both at the 
system level and at the node probability table level.  It is expected that vendors have collected 
operational data for the software they developed; however, most likely the information is 
proprietary, and the benchmarking has to be done by the vendors. 
 
The BBN method of Gran [2002a] is similar to the failure-likelihood-index method of human 
reliability analysis in that both convert qualitative information into probabilities when actual data 
are sparse, though they differ in their mathematical formats.  In addition, Neufelder’s correlation 
method [2002] uses proprietary data on past software projects in a regression analysis to 
assess the number of faults remaining in a software program.  Regression analysis is another 
mathematical representation that relates qualitative to quantitative information.  In principle, if 
operating experience from past software projects is available, the regression analysis can be 
extended to directly estimating software failure probability, instead of stopping at estimating the 
number of remaining faults.  Again, a limitation of this is the paucity of data on past software 
projects (e.g., the information used by Neufelder is proprietary), including operating experience. 
 
To capture the quality in carrying out software development activities, it is desirable to develop 
the BBN using the structure of a standard on software development, such as BTP 7-14 [NRC 
2007] for U.S. NPPs.  Gran’s [2002a] and Eom’s [2009] models use standards DO-178B [RTCA 
1999] and the Korea Nuclear Instrumentation and Control System procedure, respectively, and 
convert the guidance/requirements in the standards into the nodes of their models.  
Consequently, the BBNs are very complex, and many node-probability tables have to be 
populated with estimated values.  In general, the possible states of the nodes and the 
relationships between them must be defined precisely, and, for consistency, guidance should be 
given on how to estimate the values to be input in the node-probability tables.  A criticism of 
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very detailed models is that they require detailed assessment where potentially little data or 
information is available [Bloomfield 2002].  However, since the standards are used in 
determining the acceptability of a piece of software, people involved in approving of the system 
(i.e., the staff of the plant, the vendor, and the regulator) should know how the software being 
evaluated meets the guidance/requirements.  A simpler alternative would be to develop a 
higher-level model, for example, one wherein only one or two nodes represent each stage of the 
software development cycle.  One challenge with this alternative would be establishing the 
relationship between the simplified model and the associated standard.  As discussed 
previously, in the case study a simplified and a detailed BBN will be developed. 
 
The use of the BBN results with statistical testing, as suggested in Section 2, makes it possible 
to account for the contexts specified in a PRA (Characteristic 3).  The benchmark studies 
suggested can potentially be used to verify a BBN model and support any improvements that 
may be identified (Characteristic 7). 
 
Statistical Testing Method 
 
Statistical testing is the most practical approach for quantifying the probability of failure on 
demand of a protection system.  In this study, risk-informed statistical testing is proposed.  It 
employs the contexts/accident scenarios of a PRA model to define the operational/test profile 
from which test cases should be generated.  Basic test inputs should be obtained in the form of 
a trajectory in the input space, that is, a series of successive values for the input variables of a 
program occurring during the operation of the software, via a thermal-hydraulic model of the 
plant that simulates accident conditions.  The variability in the plant’s initial state (e.g., small 
variations in physical conditions, such as power level) should be included.  Additionally, the 
model should encompass the variability due to noise in the signals, and inaccuracies and time 
delays of the sensors.  In general, events that are typically not modeled in a PRA but may affect 
the plant condition, which in turn affects the inputs to the software program, also need to be 
considered (e.g., non-minimal cutset).  It is proposed that each such event be modeled with the 
occurrence probability that is used in defining the operational profile.  The most practical way of 
performing statistical testing is to use vendor-supplied test systems because developing 
separate test equipment is too costly.  A test configuration is recommended that uses the actual 
hardware as well as software (e.g., the ERBUS-based test configuration used in the Oconee 
digital upgrade). 
 
The most significant limitation with statistical testing involves how realistically the tests represent 
the actual operational conditions of the software.  For example, the operational profile of each 
sequence or cutset that requires the protective function may not be well known or characterized; 
furthermore, the test configuration may not truly represent the configuration that may occur 
during operation.  Capturing the internal state of the digital system is another important problem 
relating to how past inputs affect the system’s behavior, and how the system’s internal hardware 
failures are accounted for.  For application software of protection systems at an NPP, one might 
argue that the software’s memory may not be very long, that is, the software may calculate a 
filtered input for each sensor via a few successive readings of input and a rate of change using 
current and preceding inputs.  For platform software and for operating system software, an 
evaluation of the short “memory” assumption may be needed, based on the software’s 
complexity and how often the system is reset.  The proposed statistical testing approach makes 
use of a thermal-hydraulic model of the plant to simulate the test trajectories, starting from an 
initial steady-state condition.  Using this approach, for many scenarios the trajectories may not 
be short, though there is no assurance that they are long enough to fully capture the software 
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memory. 
 
The proposed statistical testing approach does not account for abnormal conditions caused by 
the system’s internal failures, for example, detecting a failure of a central processing unit.  
Considering internal hardware failures relates to how an overall reliability model of both the 
hardware and software of a digital system should be developed, recognizably an open issue.  A 
recent BNL study on a digital feedwater control system [Chu 2009a] presents a possible way to 
model internal hardware failures.  Including such modeling would make the testing more 
complete, though it would add to the resources needed to implement the tests. 
 
Statistical testing of software typically involves testing the software over many possible inputs to 
it, defined by the software’s operational profile.  Since the number of inputs can be very large to 
meet the requirement for high reliability of, for instance, a protection system, testing the 
software in this way entails undertaking an extremely large number of tests, with consequent 
costs in time, money, and effort.  This is among the most difficult problems in assessing the 
probability of failure of a software program.  The difficulty is exacerbated by a possible need to 
consider the impact of auxiliary function failures on software reliability, as discussed at the end 
of Section 4.2.2.  This study proposes a risk-informed strategy for statistical tests that is 
expected to resolve this issue.  The strategy is similar to that used in a NASA study [ASCA 
2007], that is, essentially bounding the contribution of software failure to the risk of an NPP.  
The objective is to bound the maximum value of the probability of a software failure so that a 
risk or reliability goal can be met.  If it can be shown that the maximum value is, say, 10-3, to 
reach the goal, then software testing would only have to demonstrate this number, thus 
reducing (possibly substantially) the number of tests needing to be carried out.  Accordingly, 
applying this strategy will demonstrate whether the software reliability meets a certain goal.  
Better estimates of software failure probability can be obtained by performing more tests.  A 
procedure is offered in Section 5.3 for determining the total number of tests required to 
demonstrate the feasibility of risk-informed statistical testing. 
 
The proposed approach improves statistical testing methods by considering PRA-specified 
contexts, thus meeting Characteristic 3.  A successful application of the proposed approach 
would serve as a validation of the approach (Characteristic 7) and possibly demonstrate the 
high reliability of a safety-related software program (Characteristic 8).  In addition, the approach, 
in general, can be extended to consider failures of diverse software, giving it a “Maybe” ranking 
under Characteristic 9. 
 

6.4 Key Limitations to Estimating Software Failure Rates and 
Probabilities for Use in an NPP PRA 

 
This study proposed the approach for developing the BBN and statistical testing models for 
quantifying the software failure probability of a protection system.  Its application to an example 
system has yet to be performed.  The key limitations of the approach are summarized below: 
 

 Modeling of software failures at different levels of detail 
 
In this study, it is assumed that the software failure of a protection system is modeled at 
the system level, that is, the software on all microprocessors of the digital system is 
treated as a single system.  In general, it may be necessary to consider software failures 
at a more detailed level, for example, at the microprocessor level, where hardware-
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software interactions take place.  The limitation is related to how an overall model of the 
protections system, including both hardware and software, is modeled, for which there is 
no consensus method. 
 

 Separately modeling different types of software (e.g., application-specific software and 
operating system software) 
 
In this study, different types of software, that is, application, platform, and operating 
system software, are not considered separately.  If statistical testing is done with actual 
software and hardware, then the different types of software are tested together, 
including their interactions.  In the case of the BBN model, only application software is 
considered.  One may argue that platform and operating system software may have 
been widely used in other applications with a significant amount of operating experience 
that can be used in quantifying their reliability.  Such information is not used in the 
proposed approach. 

 
 Modeling software context 

 
The proposed statistical testing method allows PRA contexts to be explicitly accounted 
for, and requires that the operational profile for each PRA context be developed.  How 
realistic the operational profiles are is a potential limitation of the proposed approach.  In 
particular, how internal states of the protection system can be captured is an unresolved 
issue.  For example, the potential exists that the inputs to the software prior to the need 
for the protection system may contribute to a software failure, and it is not obvious how 
far back in time the testing needs to consider.  Hardware component failures internal to 
the protection system also represent an internal state issue that requires much more 
elaborate test methods to be developed.  In addition, thermal-hydraulic models that are 
used to generate the test cases are a rough approximation of the physical processes of 
an NPP, and their ability to model all events that may affect the inputs to the software 
(e.g., a pump failure) may be limited. 
 
An associated issue is the potentially large number of tests that need to be performed in 
order to demonstrate the desired reliability.  A feasibility study is proposed in Section 5.3 
to estimate the total number of tests needed, using a PRA model of an NPP. 
 

 Software CCF 
 
Many protection systems are designed with identical redundant channels that run the 
same software.  As such, it is assumed that these channels would fail together, due to 
common software faults.  Therefore, this type of common-cause failure (CCF) can be 
quantified using the methods discussed in this study.  This assumption may be too 
conservative, since some digital protection systems may be designed with two or more 
diverse channels [Wood 2009].  An NPP may add a second, diverse digital shutdown 
system with a different software program, and it would be overly conservative to assume 
that the alternative shutdown system and the primary shutdown system would fail 
simultaneously.  The potential for CCF between diverse channels of the same system or 
due to dependencies between two digital protection systems performing similar functions 
in the same accident scenarios was considered beyond the scope of this study.  
Similarly, any CCFs that can affect other plant systems modeled in the PRA are beyond 
the scope of the study.  However, due to the potential importance of software CCF to 
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plant risk, this is an area that is recommended for further research. 
 

 Expert Elicitation 
 
The proposed BBN approach depends heavily on the availability of experts familiar with 
the software development activities, particularly verification and validation, of the 
specific software being evaluated, as well as similar software for other protection 
systems.  There is no cookbook type of guidance on expert opinion elicitation.  An 
expert opinion elicitation process has to be developed specifically for the proposed BBN 
approach. 
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Appendix A TESTS PERFORMED FOR LICENSING 
 
This appendix describes/defines the different kinds of tests undertaken to satisfy regulatory 
requirements.  In addition, there are brief descriptions of the test configurations used in the 
factory acceptance test (FAT) of the Oconee digital upgrade [NRC 2010] and the verification 
and validation (V&V) of the digital-safety systems of an Advanced Boiling Water Reactor 
(ABWR) [Fukumoto 1998]. 
 
Typically, software used for protection systems of nuclear power plants includes both platform 
software and application software.  In general, different types of tests are applicable to these 
two kinds of software.  For example, there were separate processes for qualifying the 
TELEPERM platform software [NRC 2000] and approving the application-specific software for 
the Oconee digital upgrade [NRC 2010].  In this appendix, only the tests on application software 
are described. 
 

A.1 Descriptions of Different Types of Tests 
 
The following briefly describes the tests carried out as a part of the development of a protection 
system at a nuclear power plant [IEEE 1998]. 
 
1. Unit testing – Unit testing also is called module- or component-testing.  A unit is a set of 

one or more computer program modules [IEEE 1008 1987], and represents the smallest 
piece(s) being tested.  Testing verifies the correct implementation of the design and 
compliance with program requirements for one software element (e.g., a unit or module) 
or a collection of them.  Software development tools often aid in the tests. 

 
2. Integration testing – Integration testing is an orderly progression of testing incremental 

pieces of the software program, wherein software elements, hardware elements, or both 
are tested and modified if needed until the entire integrated system demonstrably 
complies with the program design, capabilities, and requirements of the system.  The 
test often is done on the interfaces between the components and on the integrated 
system. 

 
3. System testing – This testing is on the end-to-end of the entire integrated (protection) 

system, including hardware and software.  The purpose of testing the entire system is to 
verify and validate whether it meets its original objectives.  Testing often is based on the 
system’s functional/requirement specifications. 

 
4. Factory acceptance test – The vendor performs this test before handing over the system 

to the customer.  The purpose is to ensure that the system is working correctly. 
 
5. Site acceptance test – This testing is conducted in the system’s operational environment 

to determine whether the system satisfies its acceptance criteria (i.e., the initial 
requirements and current needs of its user), and to enable the customer to decide 
whether to accept the system.  The test takes place after the system is installed at the 
plant site; its purpose is to verify that the installation was done correctly, that is, that all 
connections are connected properly. 
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Since the aim of statistical testing is to verify the system during its operation, but it might not be 
feasible to do so after it is installed at the plant, such testing should be undertaken after or as a 
part of the factory-acceptance test. 
 

A.2 Factory Acceptance Tests Performed to Support Oconee Digital 
Upgrade 

 
The Oconee digital upgrade [NRC 2010] replaces the reactor protection system (RPS) and the 
engineered safeguard protection system (ESPS) with TELEPERM-based digital systems.  In 
addition, the plant will install two diverse actuation systems, that is, the diverse low-pressure 
actuation system and the diverse high-pressure injection system.  The NRC reviewed the 
TELEPERM system in two stages.  First, the TELEPERM platform was certified in 2000 [NRC 
2000], and the specific application to Oconee was approved in 2010 [NRC 2010].  The following 
summary description of the software testing is taken from information in publicly available 
documents. 
 
The TELEPERM platform software includes both the operating system and the platform 
software [NRC 2000].  The latter encompasses the Run Time Environment and its modules, the 
input/output (I/O) drivers for the input/output module interface, the exception handler, and the 
self-test software.  To control and facilitate the development of application software, the 
TELEPERM system includes a specification and coding environment (SPACE) tool for 
designing and assembling safety-related applications.  Software specifications are prepared as 
functional diagrams using a graphical user interface, the TELEPERM XS editor.  Using the 
SPACE tool, the application software for the safety I&C system is completely specified in 
graphical form.  It consists of diagrams of interconnected hardware blocks representing the 
hardware architecture of the safety system and diagrams of interconnected function blocks 
representing the software-implemented safety functions.  From these specifications, the SPACE 
tool automatically generates the configuration data for the system software and application 
software as a composition of interconnected pre-existing and type-tested software components.  
In addition, the SPACE system produces the documents required for manufacturing the 
hardware. 
 
The Oconee digital RPS/ESPS application software is implemented using function blocks that 
are entered into the SPACE tool [NRC 2010].  Application developers follow procedures that 
direct the usage of approved and validated library components to build Function 
Diagrams (FDs).  After their completion and verification by an independent V&V engineer, the 
approved FDs are converted into a C-code-based object file using the SPACE tool.  This file 
then is compiled and converted into a platform-compatible executable file to be downloaded into 
the digital RPS/ESPS.  Once installed in the TELEPERM XS (TXS) hardware, the integrated 
hardware/software system is exercised via a test platform named ERBUS for FAT or 
troubleshooting.  The ERBUS system generates analog and digital signals, which are wired 
directly into the TXS hardware during factory testing.  In addition, the system’s output analog 
and digital signals are wired to input channels of the ERBUS for monitoring the system’s outputs 
during tests.  Figure A-1, which is based on the documentation by AREVA [2009], shows the 
test configuration. 
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Figure A-1  ERBUS TELEPERM XS concept 
 
After the TXS system is manufactured, it is set up in the test field to commission and test the 
overall system.  To do this, the TXS Application Software is loaded onto the CPU modules in the 
TXS system, and the TXS inputs and outputs are linked with those of the ERBUS TXS test 
machines.  A Simulation Validation Test (SIVAT) is used in validating the functional 
requirements of the software [AREVA 2009], generates an I/O interface file saved in the 
simulator database (SimDB) running on the computer where SIVAT is being executed, and 
serves as an oracle for the tests using the test machines.  All test machines are connected to a 
central computer, the Simulator Control Unit (SCU).  The SCU is the main component of the 
test-field simulator.  The test-field simulator uses the list of I/O signals, which contains an 
assignment of the TXS signals to the ERBUS TXS channels.  There is one communications 
model for each connected test machine and Service Unit in the simulator.  These models send 
or receive their respective assigned signals. 
 
With the simulator operating, the TXS inputs are cyclically stimulated by the values in the 
SimDB via the ERBUS outputs, and the values at the TXS outputs are cyclically entered into the 
SimDB. 
 
Furthermore, the TXS Service Unit (SU) and the SCU can be linked.  Then the TXS inputs and 
outputs also can be triggered at the SU.  The main task of the test field simulator is to stimulate 
and measure all inputs and outputs of a TXS system.  Depending on the system’s size, this can 
involve several hundred or even several thousand signals. 
 

A.3 Test Configuration of a Japanese ABWR 
 
Fukumoto [1998] describes the usage of an automated tool in testing the reactor protection 
system and the engineered safety feature system of an ABWR, that is, Kashiwazaki-Kariwa Unit 
6 of the Tokyo Electric Power Company.  Figure A-2 shows the test configuration.  It includes a 
personal-computer-based supervisory test control (STC) unit and four signal simulators (SSs), 
each with a process input/output module connected to a channel of the digital safety system 
being tested.  Test signals are simulated sensor signals.  A test procedure defines the names of 
the input signals of the digital safety system, their values, their time tags, and the names of the 
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output signals from the digital safety system being monitored.  The STC controls the SSs via the 
Ethernet, based on data defined in the test procedure.  Each SS generates and feeds test 
signals to its respective division of the digital safety system, monitors the corresponding output 
signals of its division, and sends their values to the STC.  A series of tests can be run 
automatically.  Test personnel make the final judgment on the results by checking them on a 
cathode ray tube display.  This tool was used in system-logic tests and dynamic-transient tests.  
The transient tests confirm system response against simulated transient data for 665 test 
scenarios for RPS, and 232 test scenarios for engineered safety features are chosen, covering 
the design-based transients and the experienced transients in existing plants.  The ability to run 
dynamic tests indicates that the test configuration is suitable for the statistical testing proposed 
in this report.  It is desirable to automate the execution of the test cases and the verification of 
the accuracy of the results. 

 
Figure A-2 Test configuration of an ABWR 
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