

August 30, 2013

L-2013-261 10 CFR 50.4 10 CFR 50.55a

U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

Re: St. Lucie Unit I Docket No. 50-335 Inservice Inspection Plan <u>RAI Response to Fourth Ten-Year Interval Unit 1</u> <u>Relief Request No. 7, Revision 0</u>

References:

- 1. FPL Letter L-2013-240 dated August 5, 2013, "Inservice Inspection Plan Fourth Ten-Year Interval Unit I Relief Request No. 7, Revision 0," (ML Accession No. ML13220A029).
- NRC e-mail from Siva Lingham to Ken Frehafer dated August 16, 2013," St Lucie Unit 1--Relief Request 7 Regarding Alternate Repair of Intake Cooling Water Piping (TAC No. MF2529) - Request for Additional Information (RAI)."

In Reference 1, Florida Power & Light Company (FPL) requested relief from certain requirements of American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code), Section XI, IWA-4000 regarding the repair of intake cooling water piping at St Lucie Unit 1. FPL proposed an alternative repair for the intake cooling water piping as documented in Relief Request Number 7, Revision 0. In Reference 2, the Nuclear Regulatory Commission (NRC) submitted a request for additional information (RAI) to complete its review.

The three (3) attachments to this letter forward the subject RAI response. There are no new regulatory commitments contained in this letter. If there are any questions, or if additional information is required, please contact Eric S. Katzman, Licensing Manager, at (772) 467-7734.

Sincerely,

Eric S. Katzman Licensing Manager St. Lucie Plant

A047 MRR

Florida Power & Light Company

Attachments (3)

- 1. Request for Additional Information Relief Request Number 7 Alternate Repair of Intake Cooling Water Pipe St. Lucie Unit 1 Florida Power and Light Company Docket Number 50-335.
- 2. Typical Bolted Patch Plate Sketch (PSL CADD File ENG 08168-001 R1.DWG).
- 3. FPL Calculation PSL-1FSM-05-031, Rev. 1, "Evaluation of I-30" CW-30 Patch Plate Repairs.

ESK/LRB

L-2013-261 Attachment 1 Page 1 of 10

REQUEST FOR ADDITIONAL INFORMATION <u>RELIEF REQUEST NUMBER 7</u> <u>ALTERNATE REPAIR OF INTAKE COOLING WATER PIPE</u> <u>ST LUCIE UNIT 1</u> <u>FLORIDA POWER & LIGHT COMPANY</u> <u>DOCKET NUMBER 50-335</u>

By letter dated August 5, 2013 (Agencywide Documents and Access Management System Accession No. ML13220A029), Florida Power & Light Company (the licensee) requested relief from certain requirements of American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code), Section XI, IWA-4000 regarding the repair of intake cooling water piping at St Lucie Unit 1. The licensee proposed an alternative repair for the intake cooling water piping as documented in Relief Request Number 7, Revision 0. To complete its review, the Nuclear Regulatory Commission (NRC) staff requests the following additional information.

1. The proposed repair includes the use of a gasket and epoxy.

(a) Discuss the gasket and epoxy material, how many years are the gasket and epoxy qualified for in the seawater environment, and the industry standards to which the gasket and epoxy are qualified.

Response:

The gasket is cut from a sheet of 1/16" red rubber, which is Styrene Butadiene Rubber (SBR). EPRI Report NP-6608, May 1994, "Shelf Life of Elastomer Components" [10] provides a shelf life of 32 years for SBR. Based on the design, the gasket is encapsulated between the carbon steel pipe, plate and epoxy material. The gasket is not exposed to the seawater, air, sunlight, high temperatures or the pipe external environment and has a long shelf life. Based on this, the gasket is not expected to degrade.

The epoxy coatings used on the carbon steel surfaces of the internal piping and repair plate in accordance with SPEC-M-023 are Carboline Splash Zone A-788 and Duromar SAR-UW. See "Typical Bolted Patch Plate Sketch" for depiction of epoxy coatings. These are solvent free repair compounds that are formulated for both wet and underwater applications and will cure in either environment. Carboline A-788 and Duromar SAR-UW were used to separate the plate from the salt water environment of the ICW piping and to fill the degraded pipe cavity. The coatings were smoothed by hand to provide an optimized surface for fluid flow resulting in a total coating thickness over the patch plate in excess of 3/8 inch. These barrier coatings have service histories of over 25 years installed as immersion repair compounds protecting steel surfaces from corrosion.

The Epoxy repair compounds that were specified for this repair are subject to the internal seawater environment of the ICW system which is with in normal operating conditions for both epoxies. No elevated temperatures above 140 F [14] or sunlight/UV radiation are present. Both repair compounds cure chemically by crosslinking and are

L-2013-261 Attachment 1 Page 2 of 10

inert or non-reactive when maintained in seawater at normal ICW operating conditions. Epoxy compounds when properly installed degrade locally and do not fail catastrophically. The most likely cause of coating failure for properly installed coatings in this application would be due to scissorization or the breaking of the cross linked bonds which cause embrittlement. This reaction is driven by elevated temperatures and time which are outside the operating conditions for the ICW system and the effects would be detected by visual inspection. The coating industry has established that the most effective way to detect coating degradation is through visual inspection. Visual inspection of localized coating defects caused by scissorization will reveal cracking at which time physical examinations for embrittlement can be performed. This is not considered a credible cause of coating failure in the operating seawater environment of the ICW system.

(b) Section 4 of the relief request states that the inside of the subject pipe is lined with 1/8-inch thick epoxy or cement. Provide the thickness of epoxy covering the bolted plate.

Response:

As stated in the response above, in accordance with SPEC-M-023 the epoxy coatings used for the bolted patch plate are Carboline Splash Zone A-788 and Duromar SAR-UW. The Product Data Sheet for Carboline Splash Zone A-788 [12] provides allowable thickness range of 125 mils to 2" (0.125" to 2"). Product Data Sheet for Duromar SAR-UW [13] provides allowable thickness range of 40 mils to 1000 mils (0.040" to 1"). See "Typical Bolted Patch Plate Sketch" for depiction of epoxy coatings. Based on the minimum epoxy thickness and the configuration, the epoxy coating would exceed the 1/8" thickness of the original epoxy or cement.

(c) Confirm that the epoxy applied on the bolted plate will cover the studs, nuts, plate edges and gasket.

Response:

The epoxy coating completely covers the bolted plate, studs, nuts, plate edges and gaskets and is blended with surrounding coatings to provide smooth transitions to minimize ICW flow turbulence. See attached "Typical Bolted Patch Plate Sketch" for depiction of epoxy coatings.

2. Discuss the design life of the bolted plate assembly and how the design life is derived. Discuss the criteria or conditions that would require the in-service bolted plate to be removed.

Response:

The design life of the bolted plate is the same as the pipe based on inspection. The inspection methodology consists of draining the pipe and removing a section to allow internal access, cleaning the pipe surface, and performing a visual examination of the cement or epoxy liner. The inspector observes for signs of corrosion deposits, staining, cracks, missing lining, area blisters, peeling/delamination, surface irregularities, or discoloration. UT inspection of degraded pipe metal or plate would be performed where there is degradation. The inspection of the pipe and bolted patch plates during internal inspections of the pipe are performed every other refueling outage. The inspection

L-2013-261 Attachment 1 Page 3 of 10

frequency is a commitment per L-2013-005, dated January 10, 2013, "Clarification of NRC Commitment Regarding Generic Letter 89-13" [15] and is instituted by Model Work Orders as part of the Preventive Maintenance Program. The inspections determine the condition of the internal coatings on the pipe and patch plate.

3. On page 4 of the relief request, the licensee states that a typical corrosion rate for the carbon steel in the seawater environment is 30 mils per year. The licensee further states that should the epoxy coating and gasket be breached to allow access to the original defect area the maximum extent of corrosion would be 0.09 inches, assuming a 3-year inspection interval. Based on this discussion, it appears that the licensee did not apply any safety factor to the corrosion rate of 30 mils to cover uncertainties in the corrosion rate. ASME Code Cases (e.g., Code Case N-821) require a factor of 2 to 4 applying to the corrosion rate to consider uncertainties. (a) Discuss whether the corrosion rate of 30 mils is used in the design of the repair. If yes, discuss whether a factor is used on the corrosion rate in the bolted plate repair method. If a safety factor is not used, provide justification.

Response:

The 30 mils per year (mpy) was not used in the design of the repair, however, the repair is adequate for this corrosion rate without a safety factor as discussed herein.

A review of the literature has been performed illustrating that the limiting corrosion rate of carbon steel in oxygen saturated flowing seawater is approximately 30 mils per year. This rate decreases with increasing exposure time in the environment. The supporting data and discussion are presented below.

As demonstrated in Figure 1, the general corrosion rate of carbon steel exposed to flowing oxygen saturated seawater at approximately 7 ft/s is less than 30 mpy [1].

in Fresh Water and Seawater [1]

L-2013-261 Attachment 1 Page 4 of 10

Since the general corrosion rate of carbon steel in aqueous solutions follows parabolic kinetics as shown in Figure 1 and as a sketched in Figure 2, i.e., the amount of corrosion is proportional to the square root of time (\sqrt{t}), the use of a linear general corrosion rate such as 30 mpy is conservative and there is no need for an additional "safety factor" for the corrosion rate, Figure 3 (theoretical calculated curve) [2].

Figure 2. Theoretical Calculated Example of General Corrosion vs. Arbitrary Time for Carbon Steel

Actual general corrosion rate data for carbon steel exposed to seawater is presented in Figure 4 [3], confirming the rate information presented in Figure 3. It can be seen that the corrosion rates decrease with exposure time and the long-term corrosion rates in this environment are very low.

Figure 4. Average General Corrosion of Steel Continuously Immersed in Seawater [3]

Figure 4 reveals a long-term exposure general corrosion rate of less than approximately 0.1 mm/y or approximately 4 mpy, which provides significantly more than a safety factor of 4 conservatism in the suggested corrosion rate.

4. (a) Discuss whether the bolted plate provides structural support to the pipe wall underneath or it simply isolates the defect area from seawater without performing any structural support.

Response:

As shown in the calculations no reinforcement of the pipe is required due to the hole, the patch plate acts as a closure plate to isolate the defect area from seawater and provides a pressure boundary for the location. No structural support of the pipe from the patch plate is credited.

(b) On page 4 of the relief request, the licensee stated that the bolt hole drilled into the pipe wall will not exceed 1/4 inch deep to preserve the pipe minimum wall thickness requirement. Discuss the tolerance on the bolt hole depth.

Response:

The depth of the bolt holes is controlled in the Engineering Change Package implementation instructions as follows:

- Notify Engineering if any excess degradation is observed during cleaning, drilling or pipe thickness at bolt hole locations is <0.350".
- Drill and tap ¼"-20 UNC holes, ¼" deep on plate bolt pattern. Do NOT allow holes to exceed ¼" depth to maintain minimum wall thickness. (Note due to a field installation problem, 5/16"-18 UNC holes were used at one plate location and shown acceptable in calculation PSL-1FSM-05-031)

These instructions were transferred into the Work Order instructions. The wall thickness readings at the bolt hole locations were documented on inspection reports.

The calculated minimum wall thickness using the design pressure and temperature is 0.090° . Using the above limitations provides $0.350^{\circ}-0.250^{\circ} = 0.100^{\circ}$ which provides a margin of 0.01° . However, based on review of the inspection reports, the wall thickness readings at the bolt hole locations range from 0.362° up to maximum of 0.435° . Based on this, sufficient margin is provided to ensure that the minimum wall thickness is maintained.

(c) On page 2 of the relief request, the licensee stated that the repair performed in 2012 for intake cooling water pipe 1-30"-CW-29 (Train B) includes three plate sizes--3.5" x 3.5", 7.5" x 11.5" and 10" x 11". The licensee previously installed on intake cooling water pipe 1-30"-CW-30 (Train A) plate sizes of 3.5" x 3.5", 8" x 8", 10" x 11" and 11" x 11". The licensee previously installed on intake cooling water pipe 1-30"-CW-30 (Train A) plate sizes of 3.5" x 3.5", 8" x 8", 10" x 11" and 11" x 11". The licensee presented stress analyses for plate sizes 3.5" x 3.5", 7.5" x 11.5", and 10" x 11" as shown in Attachment 2 to the August 5, 2013 submittal. Discuss whether plate sizes, 8" x 8" and 11" x 11" were analyzed. If yes, submit the analysis. If not, provide justification.

Response:

The 8"x 8" and 11" x 11" plates were analyzed in an earlier calculation, PSL-1FSM-05-031 Rev. 1. A copy is attached.

(d) Discuss the maximum plate size that is qualified to be used in the repair. The NRC staff notes that the plate size should maintain a certain margin with respect to the defect area that it covers. See the following question.

Response:

At present, the largest qualified plate by area is the 11" X 11" plate on an approximately 9" corroded area. See discussion in response to question 5, below.

5. Attachment 2 (pages 5 to 8) to the August 5, 2013 submittal provides calculations to demonstrate that reinforcement is not needed if the repair is applied from a minimum assumed hole size of 0.25 inch to a maximum assumed hole size of 30 inches. The NRC staff would have reservations if the repair would apply to a 30-inch hole. The NRC staff notes that the plate size should exceed the hole size by some minimum margin with respect to the hole size to allow for potential corrosion growth.

(a) Discuss the maximum hole size and defect area that is allowed by the relief request.

Response:

The reinforcement calculation for holes of 0.25" to 30" inches was performed to provide a bounding calculation so as not to have to re-calculate for each individual hole. It is not the intent to cover a 30" hole with a patch plate. From review of the calculations, if the plate thickness is maintained the same as the pipe wall thickness of .375", then the size of the hole is limited. At present, the largest plate sizes included in the calculations are 7.5" x 11.5" and 11" x 11", with a required plate thickness of 0.360" and 0.341", respectively. Based on the plate thickness limitation, the maximum dimensions of the plate and hole would be limited to slightly larger than the current calculation allows.

(b) Discuss the minimum margin between the plate size and the defect area and/or holes size that is permitted by the relief request. The minimum margin would be the minimum plate size divided by the maximum allowable defect area or hole size (use the larger of the defect area or the hole size). The NRC staff notes that in general corrosion the defect area is usually larger than the hole size.

Response:

Calculations performed for hole size were conservative and not based on the through wall hole dimension (i.e., the 9" hole was actually approximately 5" by 7"). The existing analysis maximum allowable plate versus hole/degradation is based on an 11" X 11" plate (area 121 sq inches) on a 9" diameter hole (63.6 sq inches), 121/63.6 = 1.9 margin. Review of the Engineering Change Packages and Inspection Reports indicates than the margin is typically higher than this value due to the presence of localized pitting instead of wide scale degradation.

6. Section 5 of the relief request appears to state that the bolted plate design will be used to repair a 100 percent through wall defect. Pages 26 and 28 in Attachment 2 to the August 5, 2013 letter identify two holes at two locations on pipe 1-30"-CW-29 and they appear to be part of the repair performed in 2012. After a hole is filled with epoxy and the bolted plate is installed on the inside surface of the pipe, the corrosion could continue to grow laterally from the outside diameter surface if the pipe is in contact with ground water.

(a) Discuss how the bolted plate repair can eliminate corrosion from the outside diameter surface if the repair is performed on a 100 percent through wall defect.

Response:

The bolted patch plate by the use of studs and nuts instead of welding does not impact or destroy the external coatings on the pipe. The corrosion hole is cleaned and filled with epoxy material to the profile of the pipe ID. The application of epoxy to the through wall hole provides protection for the pipe and patch plate. The corrosion cell would need to extend a relative large distance past the gasket seating surface to be visible during internal inspection. Based on UT reading around repair areas, external corrosion has not been observed.

(b) Discuss the defects (e.g., planar cracks) and/or degradation mechanisms (e.g., stress corrosion cracking) for which the bolted plate repair will not be applicable.

Response:

The bolted plate repair is only applicable to wall loss defects resulting from general corrosion and flow erosion. The bolted plate repair is not applicable for any other types of defects (e.g., planar cracks) or any other local degradation mechanisms (e.g., stress corrosion cracking).

7. Discuss pressure and temperature during normal operation, considering seasonal changes.

Response:

Based on the location of this open ended discharge piping downstream of an orifice, during normal operation pressure varies down the pipe from being under a slight vacuum at the orifice [9] to the elevation difference in the piping, which is ~12 feet [5 & 6]. There is no instrumentation in this section of piping but an estimation of the pressure range would be slightly less than 0 psig to 5.2 psig. Temperatures in the subject piping during normal operation vary a few degrees above seawater temperatures [7] because there is little heat load on the Component Cooling Water Heat Exchangers during normal operation. DBD-ICW-1 [8] provides the recorded minimum and maximum ocean water temperatures as 52° to 87° F.

8. The relief request stated that the subject pipe is fabricated with A-155 KC-65 (equivalent to SA-106 Grade B carbon steel) and the plate is made of SA-106. The bolt is made of alloy steel, SA-193 Grade B7 and the nut is made of SA-194 Grade 2H. Confirm that galvanic corrosion is not a concern for the bolted plate assembly and it has not been observed in the repaired locations since 2005.

Response:

The most straight forward way to determine whether there is a potential galvanic couple between the SA-106 Grade B carbon steel plate, the SA-193 Grade B7 low alloy steel bolt and the SA-194 Grade 2H carbon steel nut is to evaluate the measured standard electrode potential of the two steel alloys in seawater. Figure 5 presents the galvanic or electromotive series for various metals and alloys exposed to seawater [4]. It is observed that since electrode potentials for carbon steel and low alloy steel in seawater are approximately the same, there would be minimal electrochemical driving force between them to facilitate measurable accelerated corrosion of the carbon steel.

L-2013-261 Attachment 1 Page 9 of 10

Figure 5. Galvanic Series in Seawater [4]

A second and equally important factor for galvanic corrosion is the relative areas of the two materials. In this St. Lucie case, a small area cathode (e.g., low alloy steel bolts) is coupled to a large area anode (e.g., carbon steel bolted plate repair), which is the most favorable condition when galvanic couples cannot be electrically isolated. The reverse combination, i.e., small anode/large cathode is the combination for utmost corrosion concern (e.g., steel nails attaching copper plates to a wooden ship hull or aluminum bolts secured to stainless steel in seawater). In addition the plate and bolting is encapsulated in epoxy. Therefore, galvanic corrosion is not a concern for the St. Lucie bolted plate assembly.

References

- 1. R. Moss, "Effect of Flow Rate on Carbon Steel Corrosion," paper presented at the NACE Western Region Meeting, 1966.
- 2. H. H. Uhlig and R. W. Revie, <u>Corrosion and Corrosion Control</u>, Third Edition, J. Wiley & Sons, Inc., New York, NY, 1985.
- I. Matsushima, "Carbon Steel Corrosion by Seawater," Chapter 32, <u>Uhlig's</u> <u>Corrosion Handbook</u>, Second Edition, R. W. Revie, Editor, J. Wiley & Sons, Inc., New York, NY, 2000, p. 545.
- 4. H. P. Hack, "Evaluation of Galvanic Corrosion," <u>Metals Handbook Ninth Edition</u> <u>Volume 13 Corrosion</u>, ASM International, Metals Park, OH, 1987, p. 234.
- 5. Drawing 8770-G-125 Sh. CW-F-3 Rev. 23
- 6. Drawing 8770-G-125 Sh. CW-F-10 Rev. 5
- 7. PI Process Book EWIS St. Lucie Unit 1 TCW/CCW Temps Trend 8/28/13
- 8. DBD-ICW-1 Rev. 4, Intake Cooling Water System
- 9. Calculation 129154-M-0014 Rev. 2, Hydraulic Analysis of Plant St. Lucie ICW System
- 10. EPRI Report NP-6608 dated May 1994, Shelf Life of Elastomeric Components
- 11. SPEC-M-023 Rev. 7, St. Lucie Units 1 and 2 ICW & CW System Inspection and Repair
- 12. Splash Zone A-788 Carboline Product Data dated March 2013
- 13. Duromar SAR-UW Product Data Sheet Rev. 05/13
- 14. Letter from Jerry Arnold of Carboline to Garth Dolderer of FPL dated August 28, 2013
- 15. St. Lucie Letter No. L-2013-005 10 CFR 50.4, dated January 10, 2013 to the USNRC Re: St. Lucie Units 1 and 2, Docket Nos. 50-335 and 50-389, "Clarification of NRC Commitment Regarding Generic Letter 89-13"
- SIA Report No. 1300894.403.R0, St. Lucie Unit 1 Relief Request No. 7, Alternate Repair of Intake Cooling Water Pipe – SI Responses to Request for Additional Information Nos. 3, 6.(b), and 8

THICKE DULILUTATURILATE ONE

BILL OF MATERIALS

- 1 STUDS 1/4"-20-UNC × 1 1/8" LONG, SA-193 GRB7, QL-1 (QTY=8)
- 2 NUTS 1/4" × 20, SA-194-2H, QL-1 (QTY=8)
- 3 FLAT WASHER 1/4" STD, STEEL, ZINC PLATED, QL-3 (QTY=8)
- 4 CLOSURE PLATE 8"x8"X3/8" THICK, CUT FROM 30" SA-672 GR C65/70 PIPE DR CUT FROM SA-155 GR 65/70 PLATE AND ROLL TO SUIT, QL-1.
- 5 GASKET, RED RUBBER, 1/16" THICK, QL-3

CADD FILE ENG 08168-001 R1.DWG

Calc # PSL-1FSM-05-031 Page 1 of 18, Rev 1

CALCULATION COVER SHEET

Calculation No: PSL-1FSM-05-031

Title:

Evaluation of I-30"-CW-30 Patch Plate Repairs

This calculation addresses application of bolted repair plates on line I-30"-CW-30. The subject line has no isolation valves to the discharge canal and operates at near atmospheric pressure. The calculation reviews a repair methodology that blanks off the corrosion holes with bolted plates on the ID of the pipe. Bounding hole sizes are assumed for the analysis.

		Ву			1
		Check			
		Apr			
		By			
		Check			
		Apr			
1	Add plates for	Ву	Goodon MCKENZIE	Goston Mylayse	12.15.11
	PCM 08168, EC 274859	Check	Caul M. Wallace	Carol Minallou	12-15-11
		Apr	S.RAMANI	Sh 12	12.15.11
0	Issued For Use	Ву	Gordon McKenzie	On File	10/30/05
		Check	W.B. Neff	On File	10/30/05
		Apr	P.G. Barnes	On File	11/03/05
No.	Description	By	Printed Name	Signature	Date
			REVISIONS		

Equivalent of Form 82A, rev. 1

Calc # PSL-1FSM-05-031 Page 2 of 18, Rev 1

Calculation No:

PSL-1FSM-05-031

Title:

Evaluation of I-30"-CW-30 Patch Plate Repairs

LIST	OF	EFFE	CTIVE	PAGES

Page	<u>Section</u>		<u>Rev</u>
1	Cover Sheet		1
2	List of Effecti	ive Pages and Table of Contents	1
3	Sec 1.0, 2.0	Purpose / Scope, Methodology	1
4	Section 3.0	Assumptions, References	1
5	Section 4.0	Data Input	1
6	Section 5.0	Part 1 - Minimum Wall Calculation (ASME NC-3641.1)	1
7	Section 5.0	Part 2A - Reinforcement for 5.5" Hole	1
8	Section 5.0	Part 2A - Reinforcement for 5.5" Hole	1
9	Section 5.0	Part 3A - Plate Thickness for 5.5" Hole	1
10	Section 5.0	Part 4A - Bolt/Gasket Loading for 5.5" Hole	1
11	Section 5.0	Part 5A - Bolting for 5.5" Hole	1
12	Section 5.0	Part 2B - Reinforcement for 9" Hole	1
13	Section 5.0	Part 2B - Reinforcement for 9" Hole	1
14	Section 5.0	Part 3B - Plate Thickness for 9" Hole	1
15	Section 5.0	Part 4B - Bolt/Gasket Loading for 9" Hole	1
16	Section 5.0	Part 5B - Bolting for 9" Hole	1
17	Section 5.0	Part 6 - Reinforcement Zone Interaction Review	1
18	Section 6.0	Results	1

1	٢A	B	LE	OF	CO	N'	TEI	NTS

Section	Title	Page
	Cover Sheet	1
	List of Effective Pages	2
	Table of Contents	2
1.0	Purpose/Scope	3
2.0	Methodology	3
3.0	References	4
4.0	Assumptions	4
5.0	Data Input	5
6.0	Calculation	6
7.0	Results	18

	ATTACHMENTS		
<u>No.</u>	Attachment Title	Pages	Rev
1	Stress Intensification Review for Unreinforced Tee	1	1
2	Drawing Plate 1: ENG-05192-001, Sheets 1-3	3	1
3	Drawing Plate 1: CRN 05192-12929	6	1
4	Drawing Plate 2: ENG-08168-001, Sheets 1-3	3	1
5	Drawing Plate 3: EC274859-M-001, Sheets 1-3	3	1

Equivalent of Form 82B, Rev 6/94, Form 82C, Rev 6/94

Calc # PSL-1FSM-05-031 Page 3 of 18, Rev 1

St. Lucie Unit 1 Evaluation of I-30"-CW-30 Patch Plate Repairs

1.0 <u>Purpose / Scope</u>

Calculation addresses application of bolted repair plates on line I-30"-CW-30. The subject line has no isolation valves to the discharge canal and operates at near atmospheric pressure. The calculation reviews a repair methodology that blanks off the corrosion holes with bolted plates.

Calculation determines the minimum pipe wall thickness using design formulas of ASME Section III and the criteria presented within FSAR Table 3.9-3 for reviewing interactions of pressure stress and longitudinal bending stresses. Calculation evaluates the required reinforcement versus the actual reinforcement available around the corrosion holes and reviews bolting requirements for the patch plate which is analyzed as a blind flange. Reinforcement interaction is reviewed for the multiple holes to ensure additional reinforcement is not required.

Design concept was used on Unit 1 per NCR 1-380, PSL-1-S-M-90-0002 and JPN-PSL-SEMS-90-012. Design concept was used on Unit 2 per CR 2005-710, MSP 05010, PSL-2FSM-05-001.

Revision 0 was developed to support EC 235503 (MSP 05192). Revision 0 was subsequently used to support EC 235964 (08168).

Revision 1 provides a general update to address multiple openings and formally encompasses EC 235503 (MSP 05192), EC 235964 (08168), EC 206588 (CRN-08168-12929), and EC 274859. Due to the general revision, revision bars are not utilized.

2.0 <u>Methodology</u>

<u>Part</u>

- 1 Develop a minimum pipe wall thickness based on hoop stress and longitudinal bending stress.
- 2 Determine required and actual reinforcement areas and zones per ASME Section III, Subsection ND.
- 3 Determine patch plate thickness requirements per ASME Section III, Subsection ND.
- 4 Determine gasket loading and bolt requirements per ASME Section III Appendix E.
- 5 Review thread engagement using machinery principles.
- 6 Address interaction of reinforcement zones per ASME Section III, Subsection ND.

Calc # PSL-1FSM-05-031 Page 4 of 18, Rev 1

3.0 References

- 1 St. Lucie Unit 1 FSAR Amendment 24
- 2 St. Lucie NAMS DataBase
- 3 Navco Piping Catalog, Edition 11, 1984
- 4 Code of Record (COR): ASME Section III, Class 3, 1971 Edition With Addenda through Summer 1973
- 5 COR NC-3641.1(a)
- 6 Roark's Formulas for Stress & Strain, 6 Edition, page 67
- 7 EBASCO Backfit Stress Analysis Design Criteria, Rev 3, 12/7/87
- 8 Piping Isometric 8770-G-125 Sh CW-F-3 Rev 22
- 9 St. Lucie Unit 1 Stress Calculation 1001 Rev 5, DP 19 & 181
- 10 St. Lucie Unit 1 Stress Isometric: CW-172-12 Rev 5
- 11 Spool Detail I-30-CW-30-1
- 12 EPRI Good Bolting Practices Volume 1, NP-5067
- 13 Machinery's Handbook, 26 Edition, Industrial Press, Inc., Pages 1490, 1491
- 14 Fastener Standards, 6th Edition, Industrial Fasteners Institute
- 15 Drawing ENG-05192-001, Sheets 1-3, Rev 0
- 16 Drawing ENG-08168-001, Sheets 1-3, Rev 0
- 17 Drawing EC274859-M-001, Sheets 1-3, Rev 0

4.0 Assumptions

- Plate material will be a low carbon steel, such as SA/A-106 Grade B (Allowable 15,000 psi) Equivalent materials are acceptable. For specific materials used, see EC.
- ² Fastener material will be SA/A-193 Grade B7 and SA/A-194-2H. Equivalent materials are acceptable. For specific materials used, see EC.
- ³ Plate is on ID of Pipe. An arbitrary external pressure of 15 psig will be used to calculate gasket loading assuming zero pressure within the piping.

Calc # PSL-1FSM-05-031 Page 5 of 18, Rev 1

5.0 Data Input

Piping System Inputs:				REF
Pipe Size:		30		 2
Schedule:	*	0.37	75	2
Material:	*	A-155 KC65 (Class 1	11
t-nominal: tnom	*	0.375	in	3
Outside Diameter : Do		30	in	3
Corrosion Allowance : (generally 0	for this analysis)	0	in	-
Design P:		90	psig	2
Design T:	•	125	deg F	2

Stress Analysis Inputs:	ASME Section II	I, Class 3		REF
Piping Isometric 8770-G-125 SI	n CW-F-3 Rev 22			8
Stress Calculation 1001 Rev 5,	DP 19 & 181			9
Stress Isometric: CW-172-12 R	ev 5			10
Code of Record: ASME \$	Section III, Class 3, 1971 Ed. With Add	l. through Summer 197	'3	9
Piping designed and fabricated	per USAS B31.7 Class 3, 1969 Editio	n		1, 7, 8
		Max Stress		
Long Press. Stress (tnom) (Do	NOT include in below Eq's)	1733	psi	9
Eq 8 (P)+(Dead Weight)**		600	psi**	9
Eq 9 Upset Conditions (P)+(DV	/t+OBE Inertia)**	846	psi**	9
Eq 9 Emergency (P)+(DWt+DB	E Inertia)**	1092	psi**	9
Eq 11 (P)+(DWt +Thermal + Se	ismic Anchor Moments OBE)**	2142	psi**	9
Stress Allowable Hot: Sh		15000	psi	9
Allowable Stress Range for Exp	ansion Stresses: Sa	22500	psi	9
y coefficient	(0.4 if less than 900F)	0.4		5
Stress Analysis Data Input Veri Prepared:	fication: 12 14 11 Verified: <u>-</u>	Dan !2	15[11	

* For information only. Data not used by the analysis.

**Equations Show General Form with Pressure Stress Included

The 4 Boxed Max Stress Values Provide the Moment Stress Only (Pressure Stress subtracted out)

Calc # PSL-1FSM-05-031 Page 6 of 18, Rev 1

Calculation 6.0

Part 1 - Minimum Wall Calculation (ASME NC-3641.1)

|--|

tmin based on Hoop Stress	(P Do)/(2 (Sh + P y)) + A	0.090	in
Original Section Modulus:	Z = 3.14/32 (Do^4 - Di^4)/Do	255.167	cu in
Nominal Wall	tnom	0.375	in
Mill Tolerance (tnom +/- 12.5%)	0.328 to	0.422	in

	REF
Γ	5
	6
	2
	3

Determine if tmin based on Hoop Stress bounds Longitudinal Stress:

		the second s		
From above	calculation		0.090	in
Di'=Do-2tmin	l .		29.820	in
Z' = 3.14/32	(Do^4 - Di'^4)/Do	62.866	cu in
SM Ratio = Z	. / Z'		4.06	-
(P Do)/(4 tr	min)		7518	psi
	May Not	Exceed	L Stress	IR <u><</u> 1.0
	Sh	15000	9953	0.66
tia)	1.2 Sh	18000	10952	0.61
Eq 9 = P + SM Ratio (Dwt + DBE Inertia)		27000	11950	0.44
Eq 11 = P + SM Ratio (Th + Dwt + SAM OBE)		07500	10010	A (A
	From above Di'=Do-2tmin Z' = 3.14/32 SM Ratio = Z (P Do)/(4 tr tia)	From above calculation Di'=Do-2tmin Z' = 3.14/32 (Do^4 - Di'^4 SM Ratio = Z / Z' (P Do)/(4 tmin) May Not Sh 1.2 Sh 1.2 Sh 1.8 Sh	May Not Exceed Sh 15000 1:4000 1.2 Sh 18000 1:8 Sh 27000 27000	From above calculation 0.090 Di'=Do-2tmin 29.820 Z' = 3.14/32 (Do^4 - Di'^4)/Do 62.866 SM Ratio = Z / Z' 4.06 (P Do)/(4 tmin) 7518 May Not Exceed L Stress Sh 15000 9953 tia) 1.2 Sh 18000 10952 tia) 1.8 Sh 27000 11950

5
-
6
-
6
1
1
1
1

L

Minimum Wall Based On Hoop Stress is Sufficient for Longitudinal Stresses. The Analysis Table Above Controls. Ignore the Analysis Table Below

Determine tmin Based on Longitudinal Stresses:

The minimum wall criteria is controlled by the hoop stresses.

tmin based on Longitudinal Stress (Guess)		0.060	in	
Diameter Inside Di' Di'	=Do-2tmin			29.881	in
New Section Modulus Z' :	= 3.14/32	(Do^4 - Di'^4)/Do	41.787	cu in
Section Modulus Ratio SN	1 Ratio = Z	/ Z'		6.106	-
Longitudinal Pressure Stress (P	Do)/(4 tr	nin)	-	11345	psi
		May Not	Exceed	L Stress	IR <u>≤</u> 1.0
Eq 8 = P + SM Ratio (DWt)		Sh	15000	15008	1.00
Eq 9 = P + SM Ratio (Dwt + OBE Inertia)		1.2 Sh	18000	16510	0.92
Eq 9 = P + SM Ratio (Dwt + DBE Inertia)	1.8 Sh	27000	18013	0.67	
Eq 11 = P + SM Ratio (Th + Dwt + SAM C)BE)	Sa + Sh	37500	24424	0.65

The Minimum Wall Criteria is

0.090 Inches.

Calc # PSL-1FSM-05-031 Page 7 of 18, Rev 1

Part 2A - Reinforcement for 5.5" Hole

Branch Connection Reinforcement Calculation per ASME Section III, NC-3643.3

Symbol	<u>Units</u>	Description				
Dob	in	outside diameter of branch connection				
Doh	in	outside diameter of header				
d1	in	inside diameter of branch connection				
d2	in	half width of reinforcing zone, greater of d1 orTb+Th+(d1/2) but not > Dob				
L	in	height of reinforcement zone outside of run or reinforcement = 2.5Tb				
te	in	thickness of attached reinforcing pad				
Tb	in	thickness of the branch, use minimum				
Th	in	thickness of the run, use minimum				
tmb	in	required minimum wall thickness branch				
tmh	in	equired minimum wall thickness header / run				
Р	psi	internal Design Pressure				
Т	deg F	internal Design Temperature				
S	psi	maximum allowable stress for the material at design temperature				
у		coefficient				
А	in	additional thickness				
а	deg	angle between axes of branch and run				
tc	in	weld throat, smaller of 1/4" or 0.7Tb(ave) Fig NB-3352.4-2				
w	in	weld leg, =1.41 tc				

5.5" Branch Connection (assumed size bounds the two throughwall holes) Leave 5.5" hole in main line I-30"-CW-30, std. wall Pipe Code CS-1, Material ASME SA-155, KC65 Class 1

								Ref
l	Dob	5.5				Assumed, Bounding	1[15, 16
Į	Doh	30				Design	H	2
l	d1	5.5				Assumed, Bounding	H	15, 16
İ			d1	Tb+Th+(d1/2)	Dob	NC-3643.3		4
I	d2	5.5	5.5	3.125	5.5	NC-3643.3		4
ļ	L	0.000				NC-3643.3		4
	te	0				Assume no reinforcing pad	11	-
	Tb (ave)	0				Assume no wall thickness	11	-
۱	Tb (min)	0.000				87.50%		3
	Th (ave)	0.375				NAMS		2
	Th (min)	0.328				87.50%	11	3
I	tmb	N/A	tmb=(P*D	ob)/ 2 (S+Py) + A		NC-3641.1(a)	11	5
	tmh	0.090				See Part 1	11	-
I	Р	90				NAMS	11	2
l	T	125				NAMS	11	2
l	S	15,000				See Part 1		9
	У	0.4				See Part 1		5
l	А	0				See Part 1		5
1	а	90				Design	11	15, 16
	a radians	1.571				360 degrees = 2 π radians		-
			1/4"	0.7Tb		NC-3643.3		4
	tc	0	0	0		Not Used		-
	w	0				Not Used	11	- 1

Calc # PSL-1FSM-05-031 Page 8 of 18, Rev 1

Area required = 1.07(tmh)(d1) 0.528 sq. in.
0.528 sq. in.
Calculate area available (see ASME Section III, ND-3643.3 for clarification):
Area A1 = (2*d2-d1)*(Th min-tmh)
1.311 sq. in.
Area A2 = 2L*(Tb min-tmb)/sina
0 sq. in.
Area A3= area provided by deposited weld metal beyond OD of run & branch
2 (0.5 * w*w)
0 sq. in.
Area A4= area provided by a reinforcing ring, pad or integral reinforcement
0 sq. in.
Area A5= area provided by a saddle on right angle connections
0 sq. in.
Aavail≂ A1 + A2 + A3 + A4 + A5
1.311 sq. in.

Compare area available to required area:

.

Avail		Required area	
1.311 sq. in.	>	0.528 sq. in.	

No additional reinforcement of the assumed 5.5" hole is required.

Calc # PSL-1FSM-05-031 Page 9 of 18, Rev 1

Part 3A - Plate Thickness for 5.5" Hole

Data used in the 5.5" hole plate and bolting analysis is summarized in this section.

Patch Plate Inputs:	n	Value	Units		REF
Design Temperature	125	F		2	
Design Pressure		90	psiq		2
Base Metal Information					1
Pipe Nominal Wall		0.375	in		2
Material		SA/A-155 KC65 CL1			11
Allowable Stress Table I-7.1 Ass	ume SA/A-106 Gr. B	15000	psi		4, 9
Patch Information					
Height		8	in		15, 16
Width		8	in		15, 16
Material		SAVA-106 Gr B			15, 16
Allowable Stress Table I-7.1 SA/	A-106 Gr. B or equiv	15000	psi		4
Opening Dimensions				1	ł
Gasket Width		0.75	in		15, 16
Height 8" -	2(1/8" + 3/4")	6.25	in		15, 16
Width 8" -	2(1/8" + 3/4")	6.25	in	}	15, 16
Bolting Information					
Diameter		0.25	in	l.	15, 16
Material		SA/A193 Gr. B7		1	15, 16
Allowable Stress Table I-7.3		25000	psi		4
Yield Stress Table I-1.3		105000	psi		4
Number of Bolts		8		i i	15, 16
Area of Bolt		0.0318	in^2		14
k for Thread Lubricant N-5000		0.15	-		12
Minimum Required Patch Plate Thickne	ss (ASME Section III, NB-364	17.2)		-	
tm minimum thickness = t + A					
t calculated thickness = d6*(3*P/16	5*S)^.5				
d6 Gasket ID Ass	ume width, increase by 10%,	conservative.			
P Design Pressure Use	e of design pressure is extrem	ely conservative.			

S Stress Allowable

A Mechanical Allowances (NB-3613) = 0

tm =	(110% *6.25*((3*90)/(16*15000))^0.5+0 =	0.231	in
	Required plate thickness is	0.375	in

Calc # PSL-1FSM-05-031 Page 10 of 18, Rev 1

Part 4A - Bolt/Gasket Loading for 5.5" Hole

See Att. 3 for evaluation of alternate bolting.

FLANGE JOINT LOADING/GASKET SEATING CALCULATIONS

ASME Section III Appendix E methodology, modified for square patch plate

GAS	(ET AREA	Value	Units		REF
W	Pressure Width Gasket Centerline	7	in		15, 16
н	Pressure Height Gasket Centerline	7	in		15, 16
Land	Gasket Width	0.75	in		15, 16
b	1/2 Gasket Width Land/2	0.375	in		
A	Short Dimension Cover 8 - 2 (0.125)	7.75	in		15, 16
в	Long Dimension Cover 8 - 2 (0.125)	7.75	in		15, 16
C	Short Dimension Gasket ID 8 - 2 (0.125 + .75)	6.25	in		15, 16
D	LongDimension Gasket ID 8 - 2 (0.125 + .75)	6.25	in		15, 16
d	Bolt Diameter	0.25	in		15, 16
N	Number of Bolts	8			15, 16
PRES	SURE AREA				
P Are	a W*H	49	in^2		-
REQ	JIRED SEATING LOAD (Wm2)			1	
у		200	lb/in^2]	4
G Area (A*B)-(C*D)-(N*3.14159/4*(d+0.125)^2)		20.1	in^2		4
Wm2	y* G Area	4023	lb		4
OPE	RATING SEATING LOAD (Wm1)			1	
P ext	Patch is on ID, Assume 15 psi external	15	psig		Ass. 3
P Are	a W*H	49	in^2		
m	Gasket Factor	1			4
Wm1	(P ext*P Area)+(G Area*m*P ext)	1037	lb		4
REQ	JIRED BOLT STRESS/TORQUE				
Load	Greater of Wm1 or Wm2	4023	lb		4
Bolt D	Diameter	0.25	in	1	15, 16
Load/	Bolt Load / N	503	lb		-
Bolt S	Stress Load/Bolt/(3.14/4*Bolt Dia^2)	10245	psi		-
Bolt 1	orque K*d* (Load/Bolt)/12	1.57	ft-lbs		12
		2 ft-lbs specifie	ed	1	

Part 5A - Bolting for 5.5" Hole

See Att. 3 for evaluation of alternate bolting.

The critical areas of stress of mating screw threads are:

1. Effective cross sectional area, or tensile stress area, of the external thread (the bolt)

2. External thread shear area which depends principally on minor diameter of tapped hole

3. Internal thread shear area which depends principally on major diameter of external thread

In general, the design goal is for the bolt to break before either internal or external threads strip.

ICW Pipe - SA/A-155 KC65 Class 1 (Lower properties of SA/A-106 Grade B Used)

Bolts: SA/A-193 Grade B7, 1/4"-20 UNC-2A					
D Bolt Basic	Major Diameter (nominal diameter)	0.250	in	15	
n Threads pe	er inch	20	-	15	
Thread Cla	iss (External)	2A	-	15	
Le' Actual Thre	ead Engagement	0.250	in	15	
Esmin	External Thread Minimum pitch diameter	0.2127	in	14	
Dsmin	External Thread Minimum major diameter	0.2408	in	14	
Yieldbolt	External Thread Yield Strength	105,000	psi	4	
UTSbolt	External Thread Thread Ultimate Tensile Strength	125,000	psi	4	
Enmax	Internal Thread Maximum pitch diameter	0.2223	in	14	
Knmax	Internal Thread Maximum minor diameter	0.207	in	14	
Yieldhole	Internal Thread Yield Strength	35,000	psi	4	
UTShole	Internal Thread Ultimate Tensile Strength	60,000	psi	4	

Calc # PSL-1FSM-05-031 Page 11 of 18, Rev 1

1. Review for Potential Stripping of External Threads (Before Bolt Breaks)				
Tensile Area of Screw Thread		.		
At UTSbolt < 100 ksi: At = .7854 (D9743/n)^2	0.030	sqin		
$0.15bolt \ge 100$ ksi: At = 3.1416 (Esmin/2 - 1.16238/n)*2			13	
Required Length of Engagement for External Threads				
	0.165	in		
[3.14 Knmax (.5 + .57735 n (Esmin- Knmax)]			13	
2. Review for Potential Stripping of Internal Threads (Before Bolt Breaks)	0.004			
As $As = 3.1416$ n Le Knmax $(1/(2n) + .57735$ (Esmin - Knmax))	0.061	sqin	13	
All All $= 3.1410$ if Le Dshill $(1/(21) \pm .37733$ (Dshill \pm Ehmax))	1 42	sqiii	13	
$\begin{array}{c} 3 & 3 & 1actor = (A3 & 0.13botr) / (A1 & 0.13botr) \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1.42	_		
Q to Develop Full Bolt Load	0.234	in	13	
3 Load Required to Break Bolt/Screw	_			
$\begin{array}{c} \textbf{Proof} \\ Pr$				
Governing Bolt/Thread Failure Load				
Component Foilure Deview based on minimum land for helt				
Threaded Joint	3790	lbe		
Failure Load Failure Load = Minimum (1, Le//Le, Le//Q) x (Pbolt)	5/65	105	-	
Torque which will yield undamaged joint with actual				
Bolt Torque engagement	10	ft-lbs	-	
Bolt Torque = (Failure Load/Pbolt) D*Yield bolt*At*K/12				
2 ft-lbs max torque specified				
Developed Percent of Bolt Yield Strength = M	20%	%	- 1	
Nut Factor (Fel-Pro N-5000)	0.15	-	12	
Bolt Torque = M D Yieldbolt At K / 12 2.00 ft-lbs				
Specified Field torque is 2 ft-lbs		%Vietd	%l Iltimate	
Bolt Stress compared to bolt material strength		20%	17%	
External Thread Stress compared to bolt material strength		13%	11%	
Internal Thread Stress compared to hole material strength		27%	16%	

ł

Calc # PSL-1FSM-05-031 Page 12 of 18, Rev 1

Part 2B - Reinforcement for 9" Hole

Branch Connection Reinforcement Calculation per ASME Section III, NC-3643.3

<u>Symbol</u>	<u>Units</u>	Description			
Dob	in	outside diameter of branch connection			
Doh	in	outside diameter of header			
d1	in	inside diameter of branch connection			
d2	in	half width of reinforcing zone, greater of d1 orTb+Th+(d1/2) but not > Dob			
L	in	height of reinforcement zone outside of run or reinforcement = 2.5Tb			
te	in	thickness of attached reinforcing pad			
ТЬ	in	thickness of the branch, use minimum			
Th	in	thickness of the run, use minimum			
tmb	in	equired minimum wall thickness branch			
tmh	in	equired minimum wall thickness header / run			
Р	psi	internal Design Pressure			
Т	deg F	internal Design Temperature			
s	psi	maximum allowable stress for the material at design temperature			
у		coefficient			
A	in	additional thickness			
а	deg	angle between axes of branch and run			
tc	in	weld throat, smaller of 1/4" or 0.7Tb(ave) Fig NB-3352.4-2			
w	in	weld leg, =1.41 tc			

9" Branch Connection (assumed size bounds the throughwall hole) Leave 9" hole in main line I-30"-CW-30, std. wall Pipe Code CS-1, Material ASME SA-155, KC65 Class 1

						Ref
Dob	9				Assumed, Bounding	17
Doh	30				Design	2, 17
d1	9	}			Assumed, Bounding	17
		d1	Tb+Th+(d1/2)	Dob	NC-3643.3	4
d2	9	9	4.875	9	NC-3643.3	4
L	0.000				NC-3643.3	4
te	0				Assume no reinforcing pad	-
Tb (ave)	0				Assume no wall thickness	-
Tb (min)	0.000				87.50%	3
Th (ave)	0.375	1			NAMS	2
Th (min)	0.328				87.50%	3
tmb	N/A	tmb=(P*D	ob)/2 (S+Py) + A		NC-3641.1(a)	5
tmh	0.090				See Part 1	-
Р	90				NAMS	2
T	125				NAMS	2
S	15,000				See Part 1	9
У	0.4				See Part 1	5
A	0				See Part 1	5
a	90				Design	17
a radians	1.571				360 degrees = 2 π radians	-
		1/4"	0.7Tb		NC-3643.3	4
tc	0	0	0		Not Used	-
w	0				Not Used	- 11

Calc # PSL-1FSM-05-031 Page 13 of 18, Rev 1

Area required = 1.07(tmh)(d1)	
0.865 sq. in.	
	1
Calculate area available (see ASME Section III, ND-3643.3 for clarification):	
Area A1 = (2*d2-d1)*(Th min-tmh)	
2.145 sq. in.	ŀ
	ŀ
Area A2 = 2L*(Tb min-tmb)/sina	
0.000 sq. in.	
Area A3= area provided by deposited weld metal beyond OD of run & branch	
2 (0.5 * w*w)	
0.000 sq. in.	
Area A4= area provided by a reinforcing ring, pad or integral reinforcement	
0.000 sq. in.	
Area A5= area provided by a saddle on right angle connections	
0.000 sq. in.	
Aavail= A1 + A2 + A3 + A4 + A5	
2.145 sq. in.	

Compare area available to required area:

.

Avail		Required area	
	2.145 sq. in. >	0.865 sq. in.	

No additional reinforcement of the assumed 9" hole is required.

1 A

Calc # PSL-1FSM-05-031 Page 14 of 18, Rev 1

Part 3B - Plate Thickness for 9" Hole

Data used in the 9" hole plate and bolting analysis is summarized in this section.

Patch Plate Inputs	S:		Value	Units]	REF
Design Temperatu	Design Temperature			F	1	2
Design Pressure			90	psig		2
Base Metal Inform	nation					
Pipe Nominal Wall			0.375	រភ	1	2, 17
Material			SA/A-155 KC65 CL1		1	11
Allowable Stress	Table I-7.1	Assume SA/A-106 Gr. B	15000	psi		4,9
Patch Information	ו					
Height			11	in		17
Width			11	in		17
Material			SA/A-106 Gr B			17
Allowable Stress	Table I-7.1	SA/A-106 Gr. B or equiv	15000	psi		4
Opening Dimensi	ons					
Gasket Width			0.75	in		17
Height		11" - 2(1/8" + 3/4")	9.25	in		17
Width		11" - 2(1/8" + 3/4")	9.25	in		17
Bolting Information	on					
Diameter			0.25	in		17
Material			SA/A193 Gr. B7			17
Allowable Stress	Table I-7.3		25000	psi		4
Yield Stress	Table I-1.3		105000	psi		4
Number of Bolts			8			17
Area of Bolt			0.0318	in^2		14
k for Thread Lubric	ant N-5000		0.15			12

Minimum Required Patch Plate Thickness (ASME Section III, NB-3647.2) tm minimum thickness = t + A calculated thickness = d6*(3*P/16*S)^.5 d6 Gasket ID Assume width, increase by 10%, conservative. Ρ Design Pressure Use of design pressure is extremely conservative. s Stress Allowable Mechanical Allowances (NB-3613) = 0 А tm = (110% * 9.25*((3*90)/(16*15000))^0.5+0 = 0.341 in

 m =
 (110% * 9.25*((3*90)/(16*15000))^0.5+0 =
 0.341
 in

 Required plate thickness is
 0.375
 in

Calc # PSL-1FSM-05-031 Page 15 of 18, Rev 1

Part 4B - Bolt/Gasket Loading for 9" Hole

FLANGE JOINT LOADING/GASKET SEATING CALCULATIONS

ASME Section III Appendix E methodology, modified for square patch plate

GASK	ET AREA	Value	Units	REF
w	Pressure Width Gasket Centerline	10	in	17
н	Pressure Height Gasket Centerline	10	in	17
Land	Gasket Width	0.75	in	17
ь	1/2 Gasket Width Land/2	0.375	in	
A	Short Dimension Cover 11 - 2 (0.125)	10.75	in	17
в	Long Dimension Cover 11 - 2 (0.125)	10.75	in	17
C	Short Dimension Gasket ID 11 - 2 (0.125 + .75)	9.25	in	17
D	LongDimension Gasket ID 11 - 2 (0.125 + .75)	9.25	in	17
d	Bolt Diameter	0.25	in	17
N	Number of Bolts	8		17
PRES	SURE AREA			
P Are	a W*H	100	in^2	1 - 1
REQL	IRED SEATING LOAD (Wm2)			
У		200	lb/in^2	4
G Are	a (A*B)-(C*D)-(N*3.14159/4*(d+0.125)^2)	29.1	in^2	4
Wm2	y* G Area	5823	lb	4
OPEF	ATING SEATING LOAD (Wm1)	1		
P ext	Patch is on ID, Assume 15 psi external	15	psig	Ass. 3
P Are	a W*H	100	in^2	
m	Gasket Factor	1		4
Wm1	(P ext*P Area)+(G Area*m*P ext)	1937	lb	4
REQ	IIRED BOLT STRESS/TORQUE			
Load	Greater of Wm1 or Wm2	5823	lb	4
Bolt D	iameter	0.25	in	17
Load/	Bolt Load / N	728	Ib	-
Bolt S	tress Load/Bolt/(3.14/4*Bolt Dia^2)	14829	psi	-
Bolt T	orque K*d*(Load/Bolt)/12	2.27	ft-lbs	12
		B ft-lbs specifie	ed.	

Part 5B - Bolting for 9" Hole

The critical areas of stress of mating screw threads are:

- 1. Effective cross sectional area, or tensile stress area, of the external thread (the bolt)
- 2. External thread shear area which depends principally on minor diameter of tapped hole
- 3. Internal thread shear area which depends principally on major diameter of external thread

In general, the design goal is for the bolt to break before either internal or external threads strip.

ICW Pipe - SA/A-155 KC65 Class 1 (Lower properties of SA/A-106 Grade B Used)

Bolts: SA/A-193	Grade B7, 1/4"-20 UNC-2A			Ref
D Bolt Basic	Major Diameter (nominal diameter)	0.250	in	17
n Threads pe	er inch	20	-	17
Thread Cla	iss (External)	2A	-	17
Le' Actual Thre	ead Engagement	0.250	in	17
Esmin	External Thread Minimum pitch diameter	0.2127	in	14
Dsmin	External Thread Minimum major diameter	0.2408	in	14
Yieldbolt	External Thread Yield Strength	105,000	psi	4
UTSbolt	External Thread Thread Ultimate Tensile Strength	125,000	psi	4
Enmax	Internal Thread Maximum pitch diameter	0.2223	in	14
Knmax	Internal Thread Maximum minor diameter	0.207	in	14
Yieldhole	Internal Thread Yield Strength	35,000	psi	4
UTShole	Internal Thread Ultimate Tensile Strength	60,000	psi	4

Calc # PSL-1FSM-05-031 Page 16 of 18, Rev 1

1. Review for Po	tential Stripping of External Threads (Before Bolt Breaks)			
Tensile Are	a of Screw Thread			
At UTSbolt	< 100 ksi: At = .7854 (D9743/n)^2	0.030	sq in	13
UTSbolt	<u>≥</u> 100 ksi: At = 3.1416 (Esmin/216238/n)^2		1	
Required L	ength of Engagement for External Threads			
to Develop	Full Bolt Load	0 165	in	12
Le =	(2*At)	0.165		
[3.14]	Knmax (.5 + .57735 n (Esmin- Knmax)]			
2. Review for Po	tential Stripping of Internal Threads (Before Bolt Breaks)			
As As = 3.141	6 n Le Knmax (1/(2n) + .57735 (Esmin - Knmax))	0.061	sa in	13
An An = 3.141	6 n Le Dsmin (1/(2n) + .57735 (Dsmin - Enmax))	0.089	sa in	13
J J factor =	(As UTSbolt) / (An UTShole)	1.42	-	13
Required L	ength of Internal Threads $\hat{Q} = J * Le$.	
Q to Develop	Full Bolt Load	0.234	in	13
3. Load Require	d to Break Bolt/Screw			
Pbolt Pbolt =	At * UTSbolt	3789	lbs	13
Coverning Balt/T			<u></u>	
Governing Boild I			7	
-	Component Failure Review based on minimum load for bolt			
I hreaded Joint	breakage, external thread strippage or internal thread strippage	3789	lbs	
Failure Load	Failure Load = Minimum (1 , Le'/Le, Le'/Q) x (Pbolt)			
	Forque which will yield undamaged joint with actual			
Bolt Torque	engagement	10	ft-lbs	-
	Bolt Torque = (Failure Load/Pbolt) D*Yield bolt*At*K/12			
3 ft-lbs ma	x torque specified.			
Developed	Percent of Bolt Yield Strength =M	30%	%	-
Nut Factor	(Fel-Pro N-5000)	0.15		12
Bolt Torque	e = M D Yieldbolt At K / 12	3.00	ft-lbs	12
Specified	Field torque is 3 ft-lbs		%Viold	%L litimato
Bolt Stress	compared to bolt material strength		30%	25%
External T	pread Stress compared to holt material strength		20%	17%
	read Stress compared to hole material strength		41%	24%
internal fin			14170	2770

Calc # PSL-1FSM-05-031 Page 17 of 18, Rev I

Part 6 - Reinforcement Zone Interaction Review

Based on the size of the individual openings, determine whether additional reinforcement is required per ASME Section NC-3643.3(f) criteria. Additional reinforcement is required if the individual reinforcement zones overlap.

Individual openings are as follows:

•	EC	CR/AR	Location	Orientation	d2	
Plate 1	EC 235503	CR 2005-29217	36" east of flange	5:30	5.5	in
Plate 2	EC 235964	CR 2008-33008	42" east of flange	11, 12:00	5.5	in
Plate 3	EC 274859	AR 1712438	41" east of flange*	3:30	9	in
* Der nicture 38	to edge + 3" to Cl		Plate 1 Orientation pe	CR 2005-2021	7	

Per picture 38" to edge + 3" to CL

Plate 1 Orientation per CR 2005-29217

Section ND-3643.3(e). Reinforcement Zones extend from centerline (CL) of opening d2 = reinforcement zone length, extends from centerline (CL) of opening.

Internal Diameter	30" Pipe	29.25	in
Circumference	30" Pipe	91.89	in

Two closest plates are Plate 1 and Plate 3.

Minimum distance between CL of openings for EC 274859 and EC 235503 (PCM 05192) without imposing Multiple Opening Reinforcement critera:

Minimum CL distance Plate d2 + Plate 3 d2	14.5	in
Actual distance between CLs of Plate 1 and Plate 3	15.3	_in
Angle between CLs of Plate 1 and Plate 3	60	degrees

Conclusion:

The openings for closest holes are spaced sufficiently apart that

additional reinforcement criteria per ASME III, Section ND-3643.3(f) is not required.

			Calc # PSL-1FSM-05-031
<u>7.0</u>	<u>Results</u>		Page 18 of 18, Rev 1
<u>Pipe</u> The Minin The minim	num Wall Criteria is num wall criteria is controlled by the hoop stresses.	0.090	Inches
<u>5.5" Diam</u>	eter Opening		
No addition Required Minimum Note that before stri	onal reinforcement of a 5.5" hole is required. closure plate thickness is Bolt Torque (1/4" -20UNC) is the thread engagement in the ICW piping does not pping the threads. However, field torque limitations	0.375 1.57 meet sta will prev	Inches Ft-Ibs andard design to assure the bolt breaks rent stripping of the hole.
Alternate Minimum Note that before stri	Bolting (Attachment 3) Bolt Torque (5/16"-18UNC) is the thread engagement in the ICW piping does not pping the threads. However, field torque limitations	2.02 meet sta will prev	Ft-Ibs andard design to assure the bolt breaks vent stripping of the hole.
<u>9" Diame</u>	ter Opening		

 No additional reinforcement of an 9" hole is required.

 Required closure plate thickness is
 0.375

 Minimum Bolt Torque (1/4" -20UNC) is
 2.27

 Ft-lbs

 Note that the thread engagement in the ICW piping does not meet standard design to assure the bolt breaks before stripping the threads. However, field torque limitations will prevent stripping of the hole.

Interaction Between Multiple Openings

The openings for closest holes are spaced sufficiently apart that : additional reinforcement criteria per ASME III, Section ND-3643.3(f) is not required.

Calc # PSL-1FSM-05-031, Attachment 1, Rev 1 Page 1 of 1

Stress Intensifiction Factor Review

The bolted patch plate repair methodology provides a branch connection but does not impose any moment inducing loads from branch piping. ASME Section III Edition 1971 through Summer 1973 Addenda provides stress intensification factors (SIFs) for various configurations which impose moment loading of piping components but does not address a branch hole with or without a bolted covering.

Stress indices and stress intensification factors (SIFs) are used in the design of piping systems that must meet Code requirements. SIFs are fatigue correlation factors that compare the fatigue life of piping components (for example, tees and branch connections) to that of girth butt welds in straight pipe subjected to bending moments.

As the subject opening with a bolted cover is not subjected to increased bending moments or externally applied loads, a SIF does not need to be applied to the configuration. Code criteria regarding reinforcement zones for a branch penetration apply.

Similarly, a SIF is not required for multiple openings. Code criteria regarding overlap of reinforcement zones for adjacent penetrations apply.

Prepared By:

les

Date:

Date:

Verified By:

Approved By:

12.15.11 Date:

12.15.11

12-15-11

PSL-1FSM-05-031, Rev. 1, Att. 2, Page 1 of 3

Attachment 3 Page 21 of 34

PSL-1FSM-05-031, Rev. 1, Att. 2, Page 2 of 3

PSL-1FSM-05-031, Rev. 1, Att. 2, Page 3 of 3

Same and

PSL-1FSM-05-031, Rev. 1, Att. 3, Page 1 of 6

	REV	ISION NO.	PROCEDURE TITLE:		PAGE:
		14A	D	ESIGN CONTROL	
	PROCEDURE NO. QI-3-PSL-1		S	ST. LUCIE PLANT	29 of 33
	F		CHANCE		······
36			CHANGE	(Page 1 of 1)	
pe1-	F	PC/M or MSP NO. 05192	SUPPLEMENT UNIT 0 1	CRN No. 12929 Page 1 of	K6 11/8/05
5 193		Reason for Change:	Wrong sized drill bit used to	N SR QR NNS drtil for %"-20 tap, Drill bit used was %"	
ų L		THIS CRN SUPERCED	ES CRN-05192-12926		
MEN	ļ	Provide Change Desc the holes (8) for 5/16 - nuts, 5/16* flat washer	ription / Before and After 18 bolting. Change Bill 3/8" diameter holes in ite	(as required): Drill out existing holes with an "F Df Materials to reflect 5/16- 18 studs 1-1/8" long m 4 may be enlarged to 7/16" if required.	sized drill bit and tap all A354 GR BD, 5/16 * 2H
20	g	Affected Documents:		This CRN Affects Work Order(s):	
QШ	ĮĂ	ENG-05192-001 SH	3RevO	WO(s): <u>35026597-02</u> Steps(s	a):
S S S	۲,	WIB IN SH	Rev	WO(s):Steps(s):
	ž	<u> </u>	Rev	Prepared By: BOB GIBBENSDate:	11/7/05
SA	0		Rev	WO(s) scheduled completion dateSI 1-20	.:
ID			Rev.	IMPLEMENTING DEPARTMENT SUPV. API	PROVAL:
E S			Rev	(Approval signifies the CFOF will/be processed	l in accordance
•		Source of Change:		Date:	1108/05
		Required)	Prelim. Eng. Disp. Not	ENGINEERING PRELIMINARY DISPOSITIO	N:
		Material Substitutio	n _.		D AT RISK
		Evisting Condition	nience	This CRN has been discussed (X) by phone	in person) with:
		Implementor Error		<u>Gordon Mckenzie</u> Dept. ENG Date (N/A If prepared by Engineering or for Doc. U	9 <u>11/7/05</u> pdate Only)
		Design Evolution		IMPACT OF CHANGE	YES NO
		Design / Drafting Err	or	1. Design Basis / Analysis Affected * 2. 60.59 Applic / Scrn / Eval Affected *	
		Physical Field Discre	spancy	3. PODs Functionally Affected	
	ĺ	Other		4. PMT, OPS or Maint Reqmits Affected	
		Scope of Work		6. TEDB Affected	
			ase Lo Unchanged	* If Yes Do Not Use CRN	
	Űz	FINAL DISPOSITION:		PCM / MSP Expiration Date 12/31/06	- 1
	Ř			Prepared: UM 94Cers) is	Date: Date:
	ij	Cognizant Design Orga	pization (CDC)	Verified:	Date: ///8/05
	Q	Cognizani Design Diga		Approved: T-Q-5-00	Date:11-9-05
Í	ធ	Additional Affected Dec		Listed on Denvi	
		ENG-05/92-00/5/		Rev	Rev
		R	əv,	Rev	Rev
1		Re	3V	Rev	Rev
		Remarks/Basis for Disp	<u>See Paj</u>	<i>e</i> 2	
ŀ			EN	ID OF APPENDIX E	
1					

PSL-1FSM-05-031, Rev. 1, Att. 3, Page 2 of 6

CRN 05192-12929, Page 2 of 6

BASIS FOR DISPOSITION

CRN 05192-12929 concerns substitution of 5/16" bolting material due to a field drilling error. Per discussion with Planning, some of the subject holes were drilled with a χ'' drill bit which is oversize for tapping the design $\chi'' -20$ stud hole. Engineering's direction was to substitute 5/16" fasteners in lieu of the design fasteners at all holes. Substitute materials for WO 35026597 are addressed below.

Material	Design	CRN Substitution
Stud	1/4"-20UNC-2A , SA- 193 Gr B7	5/16"-18UNC-2A , A-354, Gr BD SC 237879-1
Nut	1/4"-20UNC-2B , SA- 194 Gr 2H	5/16"-18UNC-2B, Heavy Hex, SA-194, Gr 2H SC 27945-1
Washer	1/4", Std Steel, zinc plated	5/16", Std Steel, zinc plated, SC 27698-3

Fastener materials remain in accordance with SPEC-M-004. Material strength remains in accordance with design assumptions and material type is standard pressure boundary material in ASME Section III design. The use of ASTM stud material in place of ASME stud material (due to availability) is acceptable for use within Unit 1.

The 5/16" size and number of fasteners is adequate to develop the required gasket seating load and the %" depth of stud engagement of the studs is adequate to achieve the required fastener load. Fastener Torque remains unchanged at 2 ft/lbs per attached calculation reviewing fastener substitution.

The slightly coarser thread for the 5/16" bolt will provide marginally fewer number of engaged threads. This reduction is acceptable given the low loads, conservative design (pressure stress provides additional clamping force) and the offsetting increase in stud diameter.

Based on the above, this CRN change is acceptable for use.

PSL-1FSM-05-031, Rev. 1, Att. 3, Page 3 of 6

Review of Fastener Substitution

Reference: Calc PSL-1FSM-05-031 Rev 0

CRN 05192-12929, Page 3 of 6

Part 4: Bolt/Gasket Loading Review

Note that although the patch plate is on the inside of the piping, the bolted connection is designed as if it were on the OD. Water pressure actually decreases bolt load requirements.

FLANGE JOINT LOADING/GASKET SEATING CALCULATIONS Per ASME Section III Appendix E, modified for square patch plate

Per ASME Sectio	n III Appenaix E, moailiea t	or square paten plate			
			1/4" stud	5/16" stud	
GASKET AREA			Value	Value	Units
H		Bolt Centerline	7	7 in	1
w		Bolt Centerline	7	7 i	ן נ
Land			0.75	0.75 in	1
b 1/2 Gasket	Width	Land/2	0.375	0.375 i	1
A Short Dime	ision Cover		7.75	7.75 ii	ı İ
B Long Dimer	sion Cover		7.75	7.75 ii	1
C Short Dimer	ision Hole		6.25	6.25 ii	1
D Long Dimer	sion Hole		6.25	6.25 in	1
d Bolt Diamet	er		0.25	0.3125 in	n
N Number of I	Bolts		8	8	
Gasket Area	(A*B)-(C*D)-(N*3.14159/4	l*(d+0.125)^2)	20.1164278	19.79736 iu	ı^2
PRESSURE ARE	A				(
AREA' (of Openin	g)	W*H	49	49 it	n^2
REQUIRED SEA	TING LOAD (Wm2)				1
1			200	200 lt	/in^2
Gasket Area	(A*B)-(C*D)-(N*3.14159/4	*(d+0.125)^2)	20.12	19.80 ii	1^2 }
₩m2	y* Gasket Area		4023.29	3959.47 1	
OPERATING SE	ATING LOAD (Wm1)				
PRESS	Use of operating is conserva-	ative as patch is on ID	60	60 p	sig
AREA'		w*H	49	49 ir	1^2
n gasket factor			1	1	
Wml	(PRESS*AREA')+(AREA*)	n*PRESS)	4146.99	4127.84 it	>
REQUIRED BOL	T STRESS/TOROUE				}
LOAD	Greater of	Wm1 or Wm2	4146.99	4127.84 1	
BOLT DIA			0.25	0.3125 ir	۱ (
LOAD/BOLT	Fp= LOAD/N		518.37	515.98 It	, (
BOLT STRESS	LOAD/BOLT/(3.14159*BC	UT DIA^2/4)	10560.22	6727.34 p	SI
BOLTTORQUE	K*d*Fp/12		1.62	2.02 ft	-lbs

PSL-1FSM-05-031, Rev. 1, Att. 3, Page 4 of 6

CRN 05192-12929, Page 4 of 6

Part 5: Bolt Strength and Thread Engagement Review

The critical areas of stress of mating screw threads are.

1. Effective cross sectional area, or tensile stress area, of the external thread (the bolt)

2. External thread shear area which depends principally on minor diameter of tapped hole

3. Internal thread shear area which depends principally on major diameter of external thread

In general, the design goal is for the bolt to break before either internal or external threads strip.

ICW Pipe - A-	155 KC65	1/4" stud	5/16" stud	
Bolts: SA-193	Gr B7, 1/4"-20 UNC vs., A-354 Gr BD, 5/16"-18-2A UNC	Value	Value	
D Bolt Basi	c Major Diameter (nominal diameter)	0.250	0.3125	in
n Threads	perinch	20	18	#/in
Thread C	Class (External)	2A	2A	-
Le' Actual Th	nread Engagement	0.250	0.250	In
Esmin	External Thread Minimum pitch diameter	0.2127	0.2712	in
Dsmin	External Thread Minimum major diameter	0.2408	0.3026	in
Yieldbolt	External Thread Yield Strength	105,000	130,000	psi
UTSbolt	External Thread Thread Ultimate Tensile Strength	125,000	150,000	psi
Enmax	Internal Thread Maximum pitch diameter	0.2224	0.2817	in
Knmax	Internal Thread Maximum minor diameter	0.207	0.265	in
Yieldhole	Internal Thread Yield Strength	30,000	30,000	psi
UTShole	Internal Thread Ultimate Tensile Strength	55,000	55,000	psi
	Calc #	PSL-IFSM-	05-031	

Page 10 of 10 Rev 0

1. F	Review for Potential Stripping of External Threads (Before Bolt Breaks)	_			
At	Tensile Area of Screw Thread UTSbolt < 180 ksi: At = .7854 (D9743/n)^2	0.032	0.052	sq in i	
	UTSbolt \geq 180 ksi: At = 3.1416 (Esmin/215238/n) ² Required Length of Engagement for External Threads			{	(17,18)
Le	to Develop Full Bolt Load Le =(2*At)	0.173	0.223	ìn	
	[3.14 Knmax (.5 + .57735 n (Esmin- Knmax)]				

2. F	Review for Potential Stripping of Internal Threads (Before Bolt Break	s)			
As	As = 3.1416 n Le Knmax (1/(2n) + .57735(Esmin - Knmax))	0.064	0.105	sq in	(18)
An	An = 3.1416 n Le Dsmin (1/(2n) + .57735 (Dsmin - Enmax))	0.093	0.152	sqin	
J	J factor = (As UTSbolt) / (An UTShole)	1.55	1.88		
Q	Required Length of Internal Threads Q = J * Le to Develop Full Bolt Load	0.268	0.420	in	
3. L	CAUTION: Full thread engagement is not provided by internal oad Required to Break Bolt/Screw	threads			

Pbolt Pbolt = At * UTSbolt 3978 7865 lbs

Governing Bolt/Thread Failure Load

Threaded Joint Failure Load	Component Failure Review based on minimum load for bolt breakage, external thread strippage or internal thread strippage	3704	4685	lbs
Bolt Torque	Torque which will fail undamaged joint with actual engagement (D*Yield bolt*At*K/12)	10	16	ft-lbs

The Minimum Bolt Torque is

1.62 2.02

2 Ft-lbs

Note that the thread engagement in the ICW piping does not meet standard design to assure the bolt breaks before stripping the threads. However, the torque is limited to 2 ft-lbs which will prevent stripping of the hole.

PSL-1FSM-05-031, Rev. 1, Att. 3, Page 6 of 6

	-		CRN 05192 PAGE_6_ [-12929 F_ <u>6_</u>
Implemen	tation Instruct	ions (ADD FILE: CRN 0	5192-12929.DWG
1. Perform all e SPEC-C-004 an 2. Fabricate cla	poxy and coating appli nd the instructions of sure plate in accordan	cations in accor the Coating Sp	dance with ecialist, and apply	
3. Fabricate cas	ating. ket in accordance with	n drawing. Cut a	ut of onsket	
center is rec 4. Avoiding damag prep surface to the profile	uired. ge to any coatings or of corrosion holes ar of the pipe ID. Under	Ethafoam on th od fill with epoxy fill is acceptab	e pipe OD, y material le, do NOT	
5. Remove an 8°	x 8" section of the p	ipe (ining center	ed on the	
6. Clean and smo	oth interior of pipe t	o support closu	re plate	
 Fit-up. Layout bolt h Notify Engines cleaning, drillig Drill and tap(Do NDT allow i thickness. Install the st Trial fit plate Grind off any Apply epoxy t area. Caution push out on 13. Before epoxy nuts (lightly li Before epoxy crisscross pa Trim studs flu Avoid excessiv Degrease and Cover entire blended to pr 	ole locations on pipe of ring if any excess deg to or pipe thickness a 5/16'-18-UNC holes, K' oles to exceed K' deg uds wrench tight without and enlarge bolt hole cavity overfill that w o pipe beneath closure Excessive epoxy may p ightening. hardens, install gaske ubricated). hardens, torque nuts ttern. Retighten if epor ish with the tops of t e heating. surface prep the exp repair area with epoxy poide smooth transition	vall and UT for gradation is obs t bolt hole loca deep on plate for out lubrication. The sas required for could prevent go plate area incorrevent proper t, closure plate to 2 ft-lbs (24 boxy creep relax) the nuts using so osed area. couting. Ensure	thickness erved during itions is (0.350 oolt pattern. minimum wall for fit-up. asket crush. luding gasket gasket crush during gasket gasket crush washers and finch-lbs) in c es fastener t suitable means. couting is W flow turbula	or Jorque
BILL OF MATERIALS			~~ CR	N
1 STUDS 5/16'-1	B-UNC × 1 1/8" LONG, A	-354 GRBD, PC-1	(QTY=8)	
2 NUTS 5/16" ×	18, SA-194-2H, PC-1 (Q	TY=8)	}	
3 FLAT VASHER	5/16" STD, STEEL, ZINC	PLATED, PC-3 (0TY=8)	
4 CLOSURE PLATE DR CUT FROM S	8'×8'X3/8' THICK, CU A-155 GR 65/70 PLATE	T FROM 30' SA-6 AND ROLL TO SU	572 GR C65/70	PIPE
5 GASKET, RED RI	JBBER, 1/16" THICK, PC-	3		
inal Facinas				
DIV: Mech DR: PDB AP	PROVAL	ST. LUCIE PLANT	ENG	-05192-001
CH: GWYL WEN 1934/15 Spicks	BAA fa Brines Bill Of	lited Plate Repair Moterials And Na	sheet 3	of 3 Q
L	A		·····	ENG 05192-001086

PSL-1FSM-05-031, Rev. 1, Att. 4, Page 3 of 3

. . .

	Implementation Instructions	
1.	Perform all epoxy and coating applications in accordance with SPEC-C-004 and the instructions of the Coating Specialist.	n
2.	Fabricate closure plate in accordance with drawing and apply protective coating.	
З,	Fabricate gasket in accordance with drawing. Cut out of gas	ket
4,	Avoiding damage to any coatings or Ethafoam on the pipe ID, prep surface of corrosion holes and fill with epoxy material to the profile of the pipe ID. Underfill is acceptable, do NOT overfill.	
5.	Remove a 12' x 12' section of the pipe lining centered on the	e
6,	Clean and smooth interior of pipe to support closure plate flt-up.	
7. g	Layout bolt hole locations on pipe wall and UT for thickness Notify Engineering if any excess dependention is observed due	rino
- -	cleaning, drilling or pipe thickness at bolt hole locations is <	0.350'
9,	Drill and tap #1-20-UNU holes, #1 deep on plate bolt pattern Do NDT allow holes to exceed #1 depth.	n.
10.	Install the study wrench tight without lubrication.	、
11.	Grind off any cavity overfill that would prevent gasket cru	sh.
12.	Apply epoxy to pipe beneath closure plate area including gas area, Caution: Excessive epoxy may prevent proper casket c	sket rush or
10	push out on tightening.	and
13,	nuts (lightly lubricated).	s und
14.	Before epoxy hardens, torque nuts to 3 ft-lbs (36 Inch-lbs crisscross pattern, Retighten if epoxy creep relaxes faster) in a her torque,
15,	Trim studs flush with the tops of the nuts using suitable m	eans.
16.	Degrease and surface prep the exposed area.	, I
17.	Cover entire repair area with epoxy coating. Ensure coating blended to provide smooth transitions to minimize ICW flow to	IS urbulence.
BIL	L OF MATERIALS	
1	STUDS 1/4'-20-UNC-2A × 1 1/8' LONG, SA-193 GRB7, QL-1 (QTY=8)	
2	NUTS 1/4" × 20-UNC-2B, SA-194-2H, QL-1 (QTY=8)	
3	FLAT WASHER 1/4" STD, STEEL, ZINC PLATED, QL-4 (QTY=8)	
4	CLOSURE PLATE $11' \times 11' \times 3/8'$ THICK, CUT FROM 30' SA-672 GR C65/7 CLASS 22 DR 42 PIPE DR CUT FROM SA-155 GR 65/70 PLATE AND ROLL 1	70 10 SUIT, QL-1.
5	GASKET, RED RUBBER, 1/16' THICK, QL-3	
	Aechanical, Engineering FLORIDA POWER & LIGHT COMPANY	EC274859-M-001
Mech		
1 10 2	1/1 / NO DOMA (A) W/ / / / / / / / / D. Had Dista Damate	