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ABSTRACT

Nowadays, the increasing computing speed realizes the quantification of propagation of input
uncertainties to output data with Monte Carlo simulation or modified simulation methods. The
best estimate plus uncertainty (BEPU) methods have been proposed to be used instead of
typical conservative methodologies. Based on the CAMP activity, this project demonstrates the
capability of SNAP-TRACE-DAKOTA for 2 % small break LOCA (SBLOCA) of IIST experiment.
The number of samples was determined by Wilks’ formula to generate the upper bound of peak
cladding temperature (PCT) with 95/95 confidence level and probability. The PCTs by IIST
experiment and best-estimate calculation are 804 K and 861 K respectively. The mean value and
standard deviation of the 59 trial by SNAP-TRACE-DAKOTA are 938.7 K and 63.6 K respectively,
and the maximum value of PCT is 1054 K.






FOREWORD

The US NRC (United States Nuclear Regulatory Commission) is developing an advanced
thermal hydraulic code named TRACE for nuclear power plant safety analysis. The development
of TRACE is based on TRAC, integrating RELAP5 and other programs. NRC has determined
that in the future, TRACE will be the main code used in thermal hydraulic safety analysis, and no
further development of other thermal hydraulic codes such as RELAP5 and TRAC will be
continued. A graphic user interface program, SNAP (Symbolic Nuclear Analysis Program) which
processes inputs and outputs for TRACE is also under development. One of the features of
TRACE is its capacity to model the reactor vessel with 3-D geometry. It can support a more
accurate and detailed safety analysis of nuclear power plants. TRACE has a greater simulation
capability than the other old codes, especially for events like LOCA.

Taiwan and the United States have signed an agreement on CAMP (Code Applications and
Maintenance Program) which includes the development and maintenance of TRACE. INER
(Institute of Nuclear Energy Research, Atomic Energy Council, R.O.C.) is the organization in
Taiwan responsible for the application of TRACE in thermal hydraulic safety analysis, for
recording user’s experiences of it, and providing suggestions for its development. In this report,
the GRS method is applied to perform the uncertainty analysis for [IST 2 % SBLOCA transient.
All steps of analysis procedure including random sampling, data communication, TRACE
execution, and DAKOTA post-analysis are integrated via SNAP.
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EXECUTIVE SUMMARY

A RHRP IIST facility has been established for safety studies of the Westinghouse three loops
PWR. The scaling factors of the IIST facility for height and volume in the RCS are approximately
1/4 and 1/400, respectively. The maximum operating pressure of the IIST facility is 2.1 MPa. The
IIST facility has three loops as well as all the systems which are about studying Westinghouse
PWR plant system transients. An experiment of the IIST facility was finished which simulated a
2% cold-leg-break LOCA with total HPI failure. This break was located in loop 2 of lIST facility,
which is one of the two loops that do not have a pressurizer.

The TRACE model of IIST facility has been developed which described in the NUREG report
(IA-0252). Besides, comparing the results of TRACE and IIST data, it indicates that they are in
reasonable consistency. In this report, the GRS method is applied to perform the uncertainty
analysis for lIST 2 % SBLOCA transient.

The GRS method was used to investigate the propagation of input uncertainties to output data.
The input parameters with uncertainties of TRACE IIST model were generated randomly based
on specified PDFs. The number of samples was determined by Wilks’ formula to generate the
upper bound of PCT with 95/95 confidence level and probability. All TRACE runs were defined
and executed through SNAP job streams, and TRACE calculation results were read by AptPlot
script. The data interactions and communications between TRACE and DAKOTA were
controlled by SNAP.

The analysis results indicate that the upper bound of PCT is 1054 K by GRS method. The
ranking coefficients indicate that the break area is the most sensitive among 5 selected input
parameters (thermal power, U-tube heat transfer area, heater heat transfer area, feedwater
temperature, break area). However, users are not able to define all considered input parameters
as SNAP UDN variables under SNAP 2.0.6 environment due to the limitation of SNAP numerics
module; several important parameters such as initial water level and pressure, and cell volume
are not able to be involved in uncertainty analysis via SNAP.
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1. INTRODUCTION

Recently, the trend of nuclear reactor safety analysis reveals an increasing interest to substitute
best estimate plus uncertainty (BEPU) for conservative methodologies which may apply
conservative codes or the combination of best-estimate codes and conservative initial and
boundary conditions to achieve the safety margins and regulate the licensing and operations of
nuclear reactors.

Compared with conservative methodologies, the methodologies of BEPU adopt best estimate
codes and realistic input data with uncertainties to quantify the limiting values i.e., peak cladding
temperature (PCT) for loss of coolant accidents (LOCAS). According to the key report of IAEA
[1], the methodologies of BEPU are divided into two approaches which evaluate the problems
based on either (a) propagation of input uncertainties or (b) extrapolation of output uncertainties.
For the propagation of input uncertainties (Fig. 1.1), i.e., GRS method [2], the uncertainty effects
are involved by identifying the uncertain input parameters with specified probability distribution
functions (PDFs) followed by sample runs. For the extrapolation of output uncertainties (Fig. 1.2),
i.e., CIAU [3], uncertainty is determined by the comparison between numerical results and
experimental data. The review of accident analysis and BEPU approaches are referred to
Pourgol-Mohammad [4], Glaeser [5], and D’Auria, et al [6]. So far, BEPU approaches have been
noticeably adopted by venders. Westinghouse proposed a methodology named Automated
Statistical Treatment of Uncertainty Method (ASTRUM) [7,8] for realistic large break LOCA
(LBLOCA) analysis. AREVA implemented the GRS method to evaluate the convolution of
LBLOCA uncertainty contributors to PCT [9].

Not only the vender's codes but several best estimate codes have been involved in BEPU
methodologies. One of the best estimate thermal-hydraulic codes, TRACE, has been applied for
BEPU evaluation. Jaeger, et al. [10] established the combined usage of TRACE and the
uncertainty and sensitivity (U+S) analysis tool SUSA to investigate the applicability of TRACE to
supercritical water related thermal-hydraulic properties. The tool SUSA is a stand-alone code,
providing the capabilities of random sampling of input parameters, determination of output
bounds with 95/95 confidence level and probability, and measurement of sensitivity of code
results to input uncertainties. SUSA is also an interface to exchange data with TRACE. On the
CAMP 2011 spring meeting, it was announced that modified SNAP is integrated with the toolkit
DAKOTA to perform input parameter sampling, statistical analysis and reporting [11]. Jaeger
[12], et al., assessed the performance of SNAP-TRACE-DAKOTA against the results of
TRACE-SUSA. The comparison shows the agreement between SNAP-TRACE-DAKOTA and
TRACE-SUSA results. Now, the uncertainty analysis user's manual is available [13].

Based on the previous CAMP activity, the current framework of this project is to demonstrate the
capability of SNAP-TRACE-DAKOTA for 2 % small break LOCA (SBLOCA) of IIST experiment.
The GRS method was used to investigate the propagation of input uncertainties to output data.
The input parameters with uncertainties of TRACE IIST model were generated randomly based
on specified PDFs. The number of samples was determined by Wilks’ formula [14] to generate
the upper bound of PCT with 95/95 confidence level and probability. All TRACE runs were
defined and executed through SNAP job streams, and TRACE calculation results were read by
AptPlot script. The data interactions and communications between TRACE and DAKOTA were
controlled by SNAP.

11
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2. NIST FACILITY AND SBLOCA EXPERIMENT

The IIST facility is a reduced-high and reduced-pressure (RHRP) test facility to simulate the
thermal hydraulics of a Westinghouse 3-loop pressurized water reactor (PWR) at Maanshan
nuclear power plant (NPP) since 1992 [15]. The comparisons of key parameters between
Maanshan NPP and IIST facility are listed in Table 2.1. The research purposes of the IIST
facility are: (a) to enhance the understanding of thermal hydraulics during transients [16,17] as
well as SBLOCAs [18], (b) to contribute to the evaluations and developments of safety computer
codes [19,20], (c) to validate the emergency operation procedures during the transients [21].

2.1 DESCRIPTION OF IIST FACILITY

The scaling factors of the IIST facility for height and volume in the reactor coolant system (RCS)
are approximately 1/4 and 1/400, respectively, and the maximum operating pressure is 2.1 MPa.
The scaling of hot leg is based on the Froude number criterion to simulate the transition of flow
regimes in the horizontal pipes during transients and accidents. The key parameters of IIST
facility are listed in Table 1. As shown in Fig. 2.1 [19], the IIST facility consists of a pressure
vessel and 3 loops. The pressure vessel has 3 inlet and 3 outlet nozzles. Coolant enters the
vessel through the inlet nozzles and flows down through the downcomer, and flows up through
the heater rods to the outlet nozzles. The bypass flow from the upper plenum to the downcomer
is simulated by three external tubes connected with the valves. Each loop has a steam generator
and a coolant pump, and the 3 loops are identical, except that there is a pressurizer in the loop 1.
The pressurizer connected with loop 1 equips an electrical heater, spray nozzle and pressure
relief valves. The capacity of electrical heater is 10 kW, and the penetrations of spray nozzle and
pressure relief valves are located on the top of pressurizer. There are 30 U-tubes in each steam
generator. However, the steam dome of a steam generator doesn’t contain separators and
dryers, because the steam velocity in the steam dome is not strong enough to entrain liquid into
seam line at the low core power during simulation of the decay heat level. The secondary
feedwater flow rate is controlled by flow control valve actuated by the water level controller of
each steam generator. The IIST facility incorporates a data acquisition system which measures
temperature, pressure, flow rate, liquid level, and differential pressure.

2.2 DESCRIPTION OF IIST SBLOCA EXPERIMENT

This experiment was performed to investigate 2 % cold leg break with total failure of high
pressure injection [18]. The horizontal break nozzle was installed in the cold leg of loop 2 which
is not connected with pressurizer. The initial conditions of this experiment are listed in Table 2.2.
The break was occurred at time zero, and the primary pressure dropped until it become only a
little higher than the secondary side pressure. This experiment was terminated at 1734 s
because the uncovering of the core was caused by continuous boil-off of vessel coolant
inventory without the actuation of coolant makeup system.
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Table 2.1 The comparisons of key parameters between Maanshan NPP and || ST facility[19]

Parameters lIST Maanshan [IST/Maanshan
Design pressure (MPa) 2.1 15.6 0.135
Maximum core power (MW) 0.45 2775 1.610
Core

Height (m) 1.0 3.6 0.277

Hydraulic diameter (m) 0.108 1.22107? 8.85

Bypass area (i 7.2}10° 1.54¢10? 4.6%10°
Hot leg

Inner diameter, D (m) 5.25¢102 7.35¢10" 7.13«10%?

Length, L (m) 2.0 7.28 2.75¢10"

L/D%* (m®9) 8.72 8.48 1.03
Cold leg

Inner diameter, D (m) 5.25¢10° 7.8%10" 6.6710?

Length, L (m) 5.0 15.7 3.1810*

L/D°* (m™9) 21.8 17.69 1.22
U-tube in one SG

Number 30 5626 5.3310°

Average length (m) 4.08 16.85 2.2410"

Inner diameter (mm) 15.4 15.4 1.0
Pressurizer

Volume () 9.310? 39.64 2.35¢10°

Surge-line flow area (fn 3.44¢<10* 6.38<10° 5.3%10°
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Table 2.2 Theinitial conditionsof 11ST SBLOCA[19]

Parameter Value
Core power (kW) 126
PZR pressure (MPa) 0.958
PZR water level (mm) 1459

Loop flow rate (kg/s)
Loopl 0.210
Loop2 0.217
Loop3 0.217
Hot leg temp. (K)
Loopl 450
Loop?2 449
Loop3 451
Cold leg temp. (K)
Loopl 409
Loop2 408
Loop3 409
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3. IIST TRACE MODEL AND UNCERTAINTY EVALUATION

3.1 1IST TRACE MODEL

The 1IST TRACE model was developed based on the relevant documents [15,17, 21], and two
generations of IIST facility TRACE model has been assessed against experimental data. The
major difference of these two models is the simulation of reactor pressure vessel (RPV). The
model A simulates the RPV by pipe components (Fig. 3.1), while the model B simulates the RPV
by a 3-D vessel component (Fig. 3.2). The assessment results indicate that the predictions by
model B are better than those by model A in the primary system pressure and break flow [22].

Therefore, the vessel modeling of model B was adopted for the uncertainty analysis.
Fig. 3.3 shows the nodolization of model B, which consists of 101 hydraulic components, 212

control blocks, 39 heat structures and a power component. The primary loops include hot legs,
steam generator U-tubes, crossover leg, coolant pump and cold legs. These loops are identical
except that the pressurizer is located in loopl. The break area is controlled by a valve
component and located in loop 2. A break component is used to simulate ambient condition.
Each of the 3 identical steam generators consists of downcomer, boiling section and steam
dome. The feedwater flow rates are simulated by time-dependent junctions, and the downstream
condition of each steam line is simulated by a break component with constant boundary
condition.

3.2 UNCERTAINTY EVALUATION
3.2.1 FUNDAMENTAL METHODOLOGY

The GRS method was applied to investigate the uncertainty effect propagating from input
parameters through TRACE to PCT, as shown in Fig. 1.1. Because the required minimum
number of TRACE runs is dependent of the values of confidence level and probability, Wilks’
formula [14] was employed to determinate the minimum number of runs. The correlations
between number of code runs, confidence level, and probability of Wilks’ formula are defined in
Eq. (3-1) and Eq. (3-2) for one-side tolerance limit and two-sided tolerance limit respectively.
The minimum number of code runs is tabulated in Table 3.1.

1-a"=B Eq. 3-1
1-a"-n(1-a)a" =B Eq. 3-2
Where a is probability, B is the confidence level, and n denotes the number of code runs.

Since the value of PCT is the safety criterion to ensure the integrity of fuel assemblies for
LOCAs, the minimum number of 59 was used to generate the maximum bound of PCT which
achieve 95/95 criterion. Finally, correlations between input parameters and PCTs are calculated
for sensitivity study and ranking to investigate what input parameters dominate the contribution
of uncertain distribution of PCT.

3.2.2 DAKOTA TOOLKIT

The DAKOTA [23] toolkit was applied for the sampling of input parameters and the calculation of
correlations and ranking of input parameters. The uncertainty quantification package [24] of
DAKOTA provides Monte Carlo sampling and Latin Hypercube sampling methods combined with
various PDFs including normal, lognormal, uniform, logunifrom, hypergeometric, and
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user-supplied histograms. As for correlations mentioned in the previous section, four types of
correlations including simple and partial raw correlations and simple and partial rank correlations
are returned in DAKOTA output files [24]. The coefficients of first two correlations are obtained
by Pearson’s correlation shown in Eq. 3-3, and the other two are calculated by Spearman’s rank
correlation.

r—= z:]: 1(xi _Si) (Yi _?)
D

Eqg. 3-3
where r is the Pearson’s correlation coefficient, n is the number of samples, and x and y denote
two quantities.

The formula of Spearman’s rank correlation is the same as Pearson’s (Eq. 3-3); however, the
difference is that Spearman’s rank correlation employs the rank data which substitute the ranked
values for raw data.

3.2.3 UNCERTAINTY ANALYSIS PROCEDURE

DAKOTA provides users an interface to couple other codes for uncertainty analysis. Fig. 3.4
illustrates the concept of a loosely-coupled interface [24] between DAKOTA and simulation
codes (i.e., TRACE) by which data can be exchanged between DAKOTA and other simulation
codes. Thanks for the modified SNPA, it is able to integrate TRACE and DAKOTA via SNAP job
stream. The integration of SNAP-TRACE-DAKOTA is shown in Fig. 3.5 where the Extract Data
is a plug-in tool to read TRACE output data.
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Table 3.1 Minimum number of coderunsfor one-side and two-side tolerance limits

One-side tolerance limits Two-side tolerance lmit
3 o 0.90 0.95 0.99 0.90 0.95 0.99
0.90 22 45 230 38 77 388
0.95 29 59 299 46 93 473
0.99 44 90 459 64 130 662
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4. RESULTS AND DISCUSSIONS

The initial conditions of IIST 2% SBLOCA are listed in Table 2.2. As mentioned in section 3.2.3,
the setting of input uncertainties and the execution of uncertainty analysis was performed via
SNAP. The built-in graphical user interface (GUI) of uncertainty configuration shown in Fig. 4.1
provides several tabs to define the number of samples, variables, and PDFs. Table 4.1 lists the
5 key parameters taken into account in the uncertainty analysis, which are defined as the SNAP
user-defined numerics (UDN) variables and linked with uncertainty configuration to generate 59
TRACE input files. Fig. 4.2 shows the overall SNAP job stream for uncertainty analysis.

Fig. 4.3 shows the histograms of the 5 input parameters and 59 resultant PCTs. Fig. 4.4 displays
the 59 PCTs as a function of time. According to Wilks’ formula, the maximum value (1054 K at
1734 s) from the 59 trials represents the upper-side tolerance limit with a confidence level of 95
% and probability of 95 %. The PCTs by IIST experiment and best-estimate calculation are 804
K and 861 K respectively. The mean value and standard deviation of the 59 trial are 938.7 K and
63.6 K respectively. The partial rank correlation coefficients between input parameters and PCT
shown in Fig. 4.5 indicate that break area is the most sensitive parameter.

Assuming the PDF of PCT is a normal distribution, two approaches were applied to confirm the
upper bound of PCT derived by the GRS method. The first approach used the mean value and
standard deviation of the 59 trial to calculate the PCT which cover 95 % area of the PCT
distribution (Fig. 4.6), which is calculated by Eq. 4-1.

PCT95 = PCTmean + 1.6450 Eq, 4-1

where PCTean IS the mean value of PCT, o is the standard deviation of PCT

The second approach applies the t distribution and chi-squared distribution to estimate the
population mean and population standard deviation of PCT from 59 sample PCT data.
Consequently, the upper bound of PCT covers 95 % probability is estimated by the above
population mean and population standard deviation.

The ratio t defined in Eq. 4-2 follows the t distribution, which estimates the population mean with
a specific confidence level by the number of samples, sample mean, and sample standard
deviation.

il
|
=

t=

¢

Eq. 4-2
where X is sample mean, y is population mean, Sz is standard deviation of sample mean by
sample mean defined in Eq. 4-3.

e =

2w

Eq. 4-3
where S is sample standard deviation, N is the number of samples.

Similarly, the ratio X defined in Eq. 4-4 follows the Chi-squared distribution, which estimates the
population standard deviation in terms of sample standard deviation and number of samples.
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o* Eq. 4-4
where N is the number of samples, S is sample standard deviation, o is population standard
deviation.

Table 4.2 lists the different upper bounds with 95/95 criterion estimated by GRS method and the
other two approaches mentioned above. The comparison shows that the GRS method provides
a reasonable estimation to quantify the propagation of input uncertainties on output results.

Although the uncertainty analysis procedure is integrated via SNAP job stream, there is a major
limitation. All input parameters associated with uncertainties are defined as UDN variables to
generate the values with specified uncertainties. Fig. 4.7 illustrate that the initial thermal power
is defined as a UDN variable. However, not all input parameters are able to be UDN variables;
only five input parameters listed in Table 4.1 were used in IIST uncertainty analysis because of
this limitation.
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Table 4.1 The key parametersfor the uncertainty analysis

Input parameters Nominal  Uncertainty PDFs
values range
Thermal power 126 (kW) [-8, +8] (%)
U-tube heat transfer area 100 (%) [-15, +15] (%)
Heater heat transfer area 100 (%) [-15, +15] (%dYniform distribution
Feedwater temperature 399.4 (K) [-10, +10] (%)
Break area 2 (%) [2, 2.1] (%)
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Table 4.2 The upper bounds of PCT by different methods

Methods Upper bound (K) Confidence level/probapilit
GRS 1054 95/95

Eq. 4-1 1159

Eq. 4-1 + t distribution + 1136

Chi-squared distribution
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5. CONCLUSIONS

The GRS method is applied to perform the uncertainty analysis for IIST 2 % SBLOCA. All steps
of analysis procedure including random sampling, data communication, TRACE execution, and
DAKOTA post-analysis are integrated via SNAP. The upper bound of PCT is 1054 K by GRS
method. The ranking coefficients indicate that the break area is the most sensitive among 5
selected input parameters. However, users are not able to define all considered input
parameters as SNAP UDN variables under SNAP 2.0.6 environment due to the limitation of
SNAP numerics module; several important parameters such as initial water level and pressure,
and cell volume are not able to be involved in uncertainty analysis via SNAP.
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