Duke Energy Presentation – Brunswick MELLLA+ Methods Applicability, Pre-Application Meeting, August 20, 2013

Brunswick MELLLA+ Methods Applicability

Pre-Application Meeting August 20, 2013

Brunswick MELLLA+ Methods Applicability

- Duke Participants
 - Roger Thomas
 - Jeff Boaz
 - Bill Murray
 - Charles Stroupe (Presenter)

- GEH Participants
 - Jens Andersen
 - Kent Halac
 - JD Kvaall
 - Jim Harrison
 - Bruce Hagemeier

Agenda

- Schedule
- Introduction and Objectives
- Fuel and plant licensing analysis strategy
- GEH Methods Applicability to AREVA fuel
- AREVA Methods Applicability to MELLLA+: Approach
- Summary

Schedule

MELLLA+ LAR submittal (both Units)

Fall 2014

B1C19 sample problem with ATRIUM™ 10XM

B1C21 cycle specific application results to NRC

Fall 2015

First planned MELLLA+ cycle

MELLLA+ requested approval (both Units)

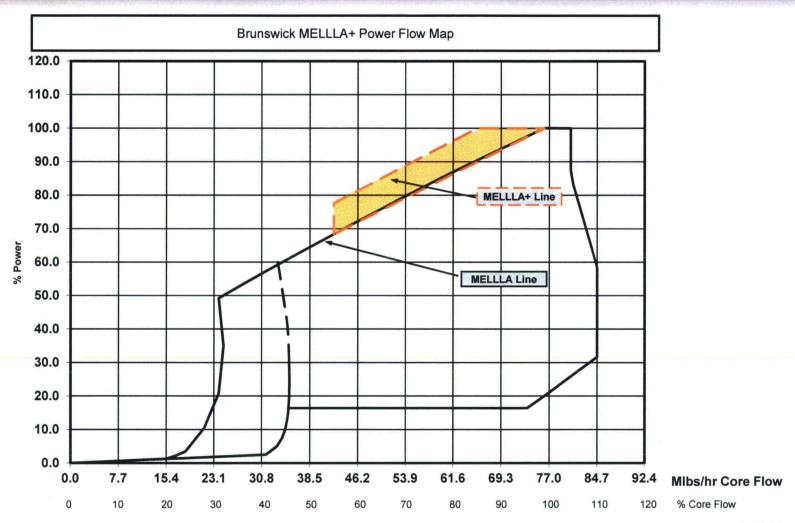
Spring 2016

MELLLA+ implementation

During B1C21 refueling outage

Spring 2016

Introduction and Objectives


- Provide details on GEH methods applicability
 - GEH ability to model ATWS with AREVA fuel
- AREVA methods applicability to MELLLA+: Approach

Introduction and Objectives Background

- On January 8, 2013 Duke energy presented a preapplication meeting with the NRC. (ML13007A373)
 - Benefits of MELLLA+
 - Approach to fuel and licensing analysis strategies
 - Thermal hydraulic stability solution (AREVA's Enhanced Option III)
 - Containment Accident Pressure (CAP)
 - Anticipated Transient Without SCRAM analysis
 - MELLLA+ impacts
- Several follow up pre-application meetings were proposed.
 For today's meeting, methods applicability will be discussed.
 - The NRC requested "The licensee should justify the use and applicability of the GEH generic MELLLA+ LTR to the AREVA approaches and the use of AREVA fuel assemblies." (ML13016A014)

Introduction and Objectives MELLLA+ overview

Fuel and plant licensing analysis strategy Duke

- All topical areas of the MELLLA+ LTR will be addressed in the LAR
- Duke Energy will address:
 - SAR Integration of GEH and AREVA input
 - APRM and Enhanced Option III setpoints and implementation
 - Risk evaluation, procedure updates, operator training
 - Plant changes to mitigate ATWS (SLC B-10 enrichment increase)
 - Selected non-fuel impacts

Fuel and plant licensing analysis strategy GEH

- GEH MELLLA+ LTR process (NEDC-33006P-A) with GEH methodologies and analyses will address:
 - Non-fuel impacts
 - Long term ATWS and ATWS instability explicitly modeling ATRIUM™ 10XM fuel

Fuel and plant licensing analysis strategy AREVA

- AREVA methodologies and analyses will address:
 - Fuel, core design, COLR fuel limits, LOCA, DBA
 - ATWS and ASME overpressure
 - Enhanced Option III (EO-III) stability solution

GEH Methods Applicability to AREVA fuel

- GEH will present information on methods applicability
 - ATRIUM™ 10 Fuel Experience
 - ATRIUMTM 10XM Fuel for ATWS Methods
 - Uncertainty Identification/Management Process
 - ATRIUMTM 10XM Modeling Approach
 - Methods Application
 - Core Modeling
 - ATWS Analysis
 - Applicable Interim Methods LTR and MELLLA+ LTR Limitations and Conditions

 GEH proprietary presentation will be given at this point in the presenation

Agenda (Recap)

- Schedule
- Introduction and Objectives
- Fuel and plant licensing analysis strategy
- GEH Methods Applicability to AREVA fuel
- AREVA Methods Applicability to MELLLA+: Approach
- Summary

AREVA Methods Applicability to MELLLA+: Approach

- An AREVA methods applicability report has been generated that addresses: Thermal-Hydraulics, Core Neutronics, Transient Analysis, LOCA and Stability.
 - Report will be submitted for information with the LAR
- Methods applicability report shows
 - There are no SER restrictions on AREVA methodology that are impacted by MELLLA+ operation
 - MELLLA+ core and assembly conditions for Brunswick are equivalent to core and assembly conditions of other plants for which the methodology was benchmarked
 - Bundle operating conditions in the MELLLA+ regime are within the envelope of hydraulic test data used for model qualification and operating experience
- The AREVA methodology is applicable for MELLLA+ conditions at Brunswick

Summary

- GEH methods are applicable to ATRIUM[™] 10XM fuel in the MELLLA+ condition
 - ATRIUMTM 10XM explicitly modeled
 - Uncertainties in modeling ATRIUM[™] 10XM fuel with GEH methods addressed
- AREVA methods applicability to MELLLA+
 - Methods applicability report will be submitted with LAR

Brunswick MELLLA+ Fuels Methods Applicability

Questions?

Selected Acronyms

AL – Analytical Limit

AP - Annulus Pressurization

APRM – Average Power Range Monitor

ATWS - Anticipated Transient Without Scram

AV - Allowable Value

BSP – Backup Stability Protection

CAP - Containment Accident Pressure

CIER - Channel Instability Exclusion Region

COLR – Core Operating Limits Report

DBA - Design Basis Accidents

ECCS - Emergency Core Cooling System

EO-III - Enhanced Option III

EPU - Extended Power Uprate

FWHOOS - Feedwater Heater Out Of Service

FWT – Feedwater Temperature

GEH - General Electric Hitachi

HCTL – Heat Capacity Temperature Limit

HSBW - Hot Shutdown Boron Weight

LAR – License Amendment Request

LOCA - Loss of Coolant Analysis

LTR - License Topical Report

MELLLA – Maximum Extended Load Line Limit

Analysis

MELLLA+ - Maximum Extended Load Line Limit

Analysis Plus

NC - Natural Circulation

NPSH - Net Positive Suction Head

NTSP - Nominal Trip Setpoint

PRNM - Power Range Neutron Monitor

SAR - Safety Analysis Report

SBO - Station Black Out

SLC - Standby Liquid Control

SLO - Single Loop Operation

SPT - Stability Protection Trip

STP - Simulated Thermal Power

TLO - Two Loop Operation

2RPT - Two Recirculation Pump Trip DUKE