

	Agenda		
Time	Subject	Presenter	
8:30 am	Welcome, Introductions and Meeting Purpose	Kris Cummings, NEI	
9:00 am	Design Basis Fuel Assembly	Kris Cummings, NEI	
9:45 am	Fuel Assembly Manufacturing Tolerances	Dan Thomas, AREVA	
10:30 am	BREAK		
10:45 am	Depletion Parameters	Dale Lancaster, NuclearConsultants.com	
12:15 pm	Lunch		
1:15 pm	Fuel Assembly Changes with Depletion	Andrew Blanco, Westinghouse	
2:15 pm	Axial Burnup Distribution	Kris Cummings, NEI	
4:00 pm	BREAK		
4:15 pm	Closeout Activities	Kris Cummings, NEI	
1 PI		2	

Tolerances in NEI 12-16

Section 2.2 K_{EFF} Equation, p.5

NEI

"... Uncertainties should be determined for the proposed storage facilities and fuel assemblies to account for <u>tolerances in the mechanical and material specifications</u>. An acceptable method for determining the maximum reactivity may be either (1) a worst-case combination with mechanical and material conditions set to maximize k_{eff} , or (2) a sensitivity study of the reactivity effects of variations of parameters within the <u>tolerance limits</u>. ... Combinations of the two methods may also be used. "

3

6

3

Background

- During depletion within the core, there are physical changes to the fuel rods and pellets which may impact fuel assembly reactivity
- Westinghouse has performed an analysis to quantify different physical fuel changes associated with fuel depletion

NEI

- Depletions performed in PARAGON based on PAD data to determine isotopic inventory:
 - Fuel data was modified to reflect PAD results
 - Assume changed parameter over full depletion
 - Uniform moderator temperature profile assumed
 - Fuel temperature a function of burnup & power
 - Limiting plant-specific axial profile used

Fuel Pellet Density	Change Res	ults	
non-IFBA Fuel Results			
Case Name	Δk		
maximum pellet density	0.00223		
minimum pellet density	-0.00375		
		1	
IFBA Fuel Results	δ Δ k		
IFBA Fuel Results Case Name maximum pellet density	s Δ k 0.00165		
IFBA Fuel Results Case Name maximum pellet density minimum pellet density	Δ k 0.00165 -0.00321		
IFBA Fuel Results Case Name maximum pellet density minimum pellet density	S Δ k 0.001 -0.003	65 321	65 321

aa Nama	A.L.
Name	ΔΚ
num ciad thickness	0.00032
IFBA Fuel Results	
e Name	Δk
imum clad thickness	0.00021

Case Name	Δκ	
maximum clad OD	0.00129	
minimum clad OD	-0.00506	
	Δk	
maximum clad OD	0.00124	
minimum ciad OD	-0.00554	

