Auxiliary Systems Chapter 9

Barry Reichelderfer, P.E. Mechanical Engineering Supervisor

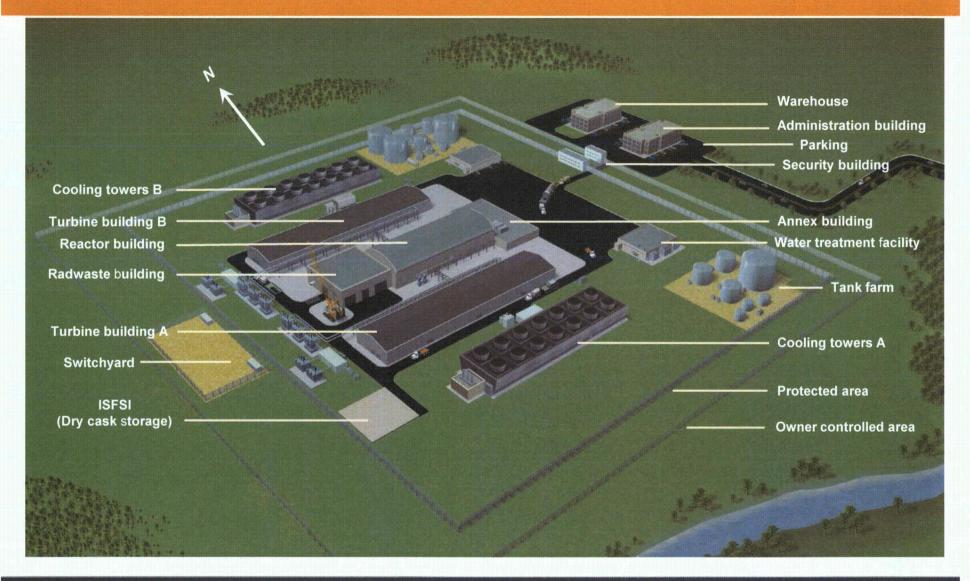
August 22, 2013

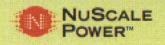
Nonproprietary

NP-PM-0713-4191-NP

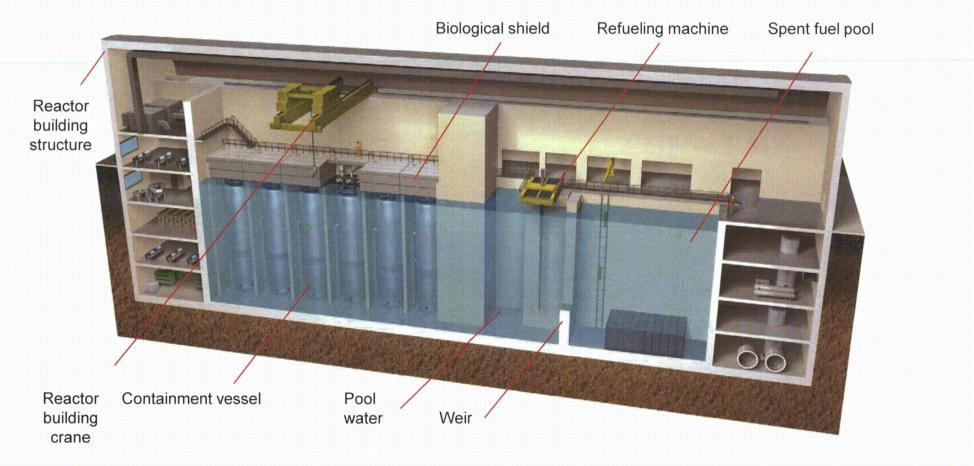
Agenda

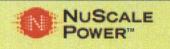
- Purpose
- Plant overview
- Background
- Auxiliary systems (except ventilation systems)
 - Design information
 - SRP/DSRS information
- Results achieved and path forward


Purpose


- Provide sufficient information, section-by-section, for development of NuScale DSRS for Chapter 9
 - Design information—auxiliary systems
 - SRP/DSRS information—NRC review guidance for NuScale
- Identify need for future DSRS Chapter 9 engagements

Plant Overview

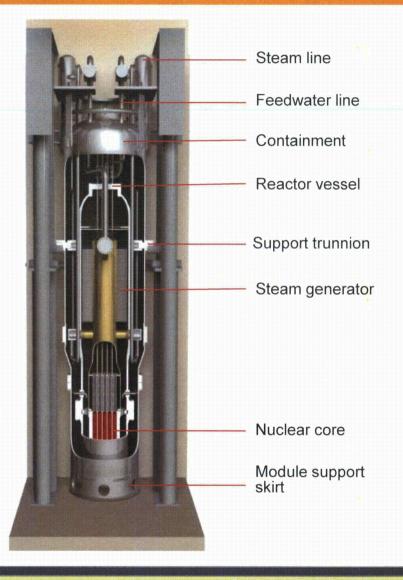

Site Aerial View

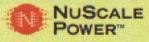


Reactor Building Cross-Section

Reactor building houses reactor modules, spent fuel pool, and reactor pool

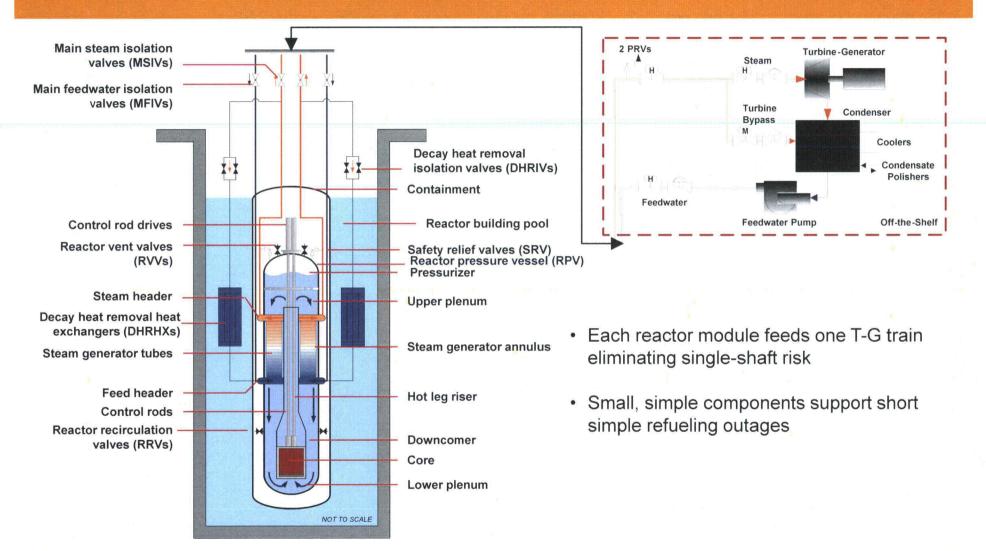
Reactor Module Overview


Natural convection for cooling


- passively safe, driven by gravity, natural circulation of water over the fuel
- no pumps, no need for emergency generators

Simple and small

- reactor is 1/20th the size of large reactors
- integrated reactor design, no large-break loss-of-coolant accidents



NP-PM-0713-4191-NP

7

NuScale Power Train

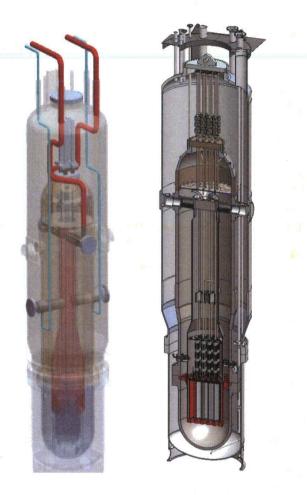
NP-PM-0713-4191-NP

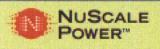
8

© 2013 NuScale Power, LLC

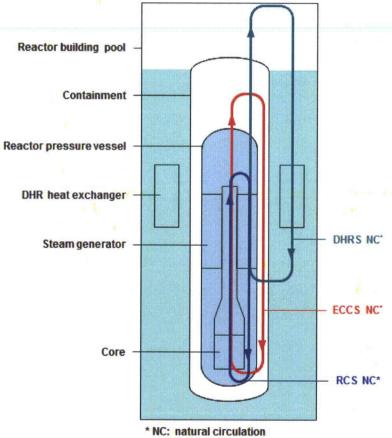
NUSCALE POWER

Basic Plant Parameters


Overall Plant	
Net electrical output	Up to 540 MW(e)
Plant thermal efficiency	> 28%
 Number of power generation units 	Up to 12
 Nominal plant capacity factor 	> 90%
Power Generation Unit	
Number of reactors	One
Net electrical output	45 MWe
Steam generator number	Two independent tube bundles
Steam generator type	Vertical helical tube
• Steam cycle	Superheated
Turbine throttle conditions	3.3 MPa (475 psia)
Steam flow	67.5 kg/s (536,200 lb/hr)
Feedwater temperature	149° C (300° F)
Reactor Core	
Thermal power rating	160 MVVt
Operating pressure	12.7 MPa (1850 psia)
Fuel	UO ₂ (< 4.95% U ²³⁵ enrichment)
 Refueling interval 	24 months

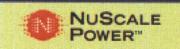


Containment Design


High pressure containment—enhanced safety

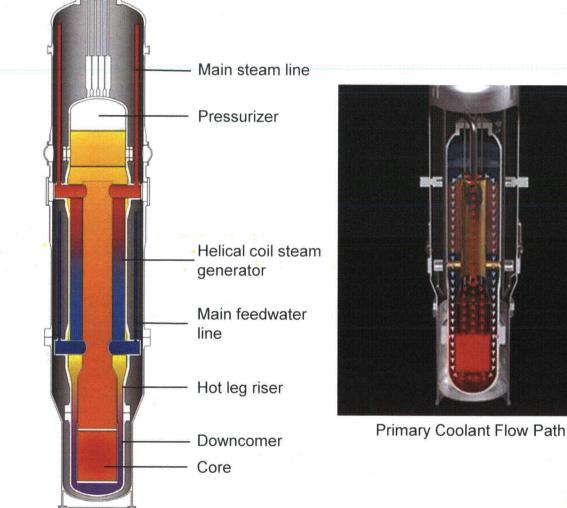
- Containment volume sized so that core does not uncover following a LOCA (prevents fuel heat-up)
- Large water pool keeps containment shell cool and promotes efficient post-LOCA steam condensation
- Insulating vacuum
 - significantly reduces conduction and convection heat transfer during normal operation
 - requires no insulation on reactor vessel. Eliminates sump screen blockage issue (GSI-191)
 - improves LOCA steam condensation rates by eliminating air
 - prevents combustible hydrogen mixture in the unlikely event of a severe accident (i.e., little or no oxygen)
 - reduces corrosion and humidity problems inside containment

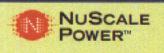
Plant Overview—Natural Circulation


- Natural circulation in the decay heat removal system (DHRS)
- Natural circulation in the emergency core cooling system (ECCS)
- Natural circulation in the reactor coolant system (RCS)

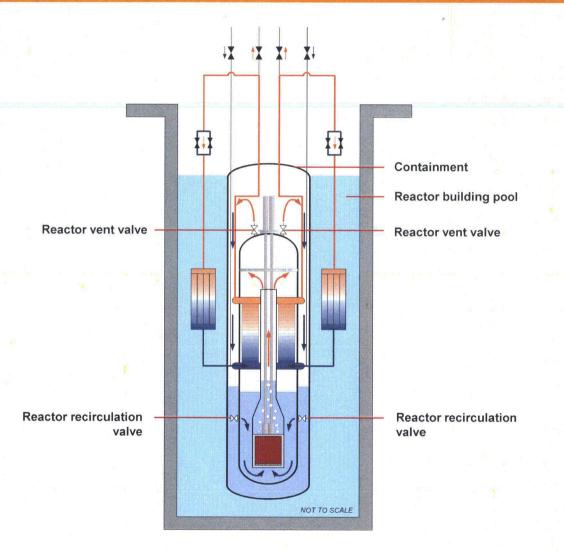
Transient operation

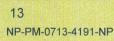
Accident operation

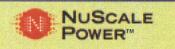

Normal operation


н н у н у н

Module Normal Operation

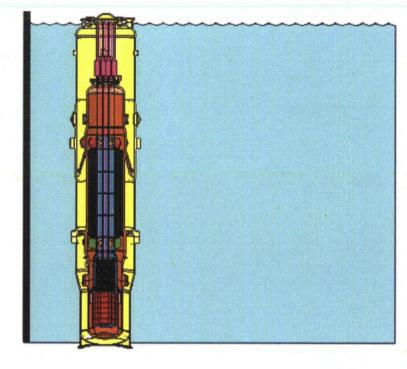

- Primary side
 - natural circulation
 - integral pressurizer
- Secondary side
 - feedwater plenums
 - helical steam generator
 - steam plenums

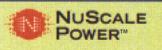




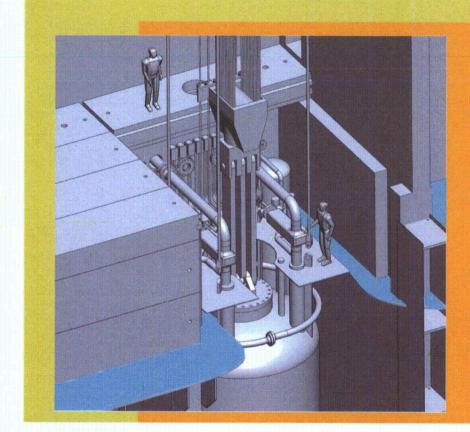
Emergency Core Cooling and Containment Heat Removal

- Reactor vent valves opened on safety signal
- When containment liquid level is high enough, reactor recirculation valves open
- Decay heat removed
 - condensing steam on inside surface of containment vessel
 - convection and conduction through liquid and both vessel walls

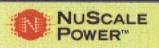




Provide Refueling Access


Provide access for refueling

- move module to refueling bay
- unbolt CNV flange
- remove lower CNV head
- unbolt RPV flange
- move upper RXM to dry dock
- unlatch upper core plate
- remove lower riser assembly
- access fuel



Refueling Cranes and Module Assembly

Module assembly

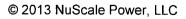
- Modules are transported into the reactor bay and lowered into place
- Service equipment is located above the reactor pool
- Single failure-proof cranes
 - Allow for refueling
 - Facilitate module installation

15 NP-PM-0713-4191-NP

Background

- May 2012 meeting: Regulatory Gap Analysis
- July 2012 submittal: Gap Analysis Summary Report
- December 2012 meeting: Regulatory Gap Analysis Results: Regulations Requiring Further Consideration
- May 2013 Federal Register Notice (FRN): mPower DSRS issued for public comment
- June 2013 meeting: NuScale Design-Specific Review Standard Development

DSRS Overview


}}^{3(a)-(c)}

17 NP-PM-0713-4191-NP

{{

DSRS Overview

DSRS Overview

{{

}}^{3(a)-(c)}

19 NP-PM-0713-4191-NP

Auxiliary Systems

{{

}}^{3(a)-(c)}

20 NP-PM-0713-4191-NP

9.1.2 New and Spent Fuel Storage

- Design information
 - System function and classification

{{

}}^{3(a)-(c)}

9.1.2 New and Spent Fuel Storage

- Design information
 - Design overview
 - Shared by all modules (one system)
 - Design is similar in material respects to that of typical reactors
 - » spent fuel pool
 - » spent fuel storage racks
 - » new fuel storage racks
 - » new fuel inspection stand
 - » spent fuel pool liner and leakage detection system
 - New fuel storage and inspection is located adjacent to the spent fuel pool in the reactor building
 - Additional information on fuel handling equipment was provided in the October 4, 2012 presentation slides
 - Documents available for audit

}}^{3(a)-(c)}

9.1.2 New and Spent Fuel Storage

- SRP/DSRS information
 - Current NuScale assessment
 - Use SRP Section 9.1.2 with modification
 - See "Additional Comments" for Section 9.1.2 to accommodate single spent fuel pool shared by more than one unit

http://www.nrc.gov/reactors/advanced/mpower/dsrs/ch9.html

- NuScale Gap Analysis use as-is
- Information for NRC development of NuScale DSRS
 - New and spent fuel storage design information
 - Accommodation for single spent fuel pool shared by more than one unit
 - NuScale Gap Analysis results

{{

}}^{3(a)-(c)}

- Design information
 - System function and classification

}}3(a)-(c)

- Design information
 - Design overview
 - Shared by all modules (one set of systems)

}}^{3(a)-(c)}

}}^{3(a)-(c)}

{{

}}^{3(a)-(c)}

{{

}}^{3(a)-(c)}

{{

}}^{3(a)-(c)}

30 NP-PM-0713-4191-NP

{{

}}^{3(a)-(c)}

NUSCALE DWER"

31 NP-PM-0713-4191-NP

{{

}}^{3(a)-(c)}

32 NP-PM-0713-4191-NP

- SRP/DSRS information
 - Current NuScale assessment
 - Use mPower DSRS Section 9.1.3 with modification
 - NuScale Gap Analysis remains partially applicable, but is being revised to reflect additional pool support systems
 - Information for NRC development of NuScale DSRS
 - Pool support system design information
 - NuScale comments on mPower DSRS Section 9.1.3
 - NuScale Gap Analysis updates

9.2.5 Ultimate Heat Sink

}}^{3(a)-(c)}

34 NP-PM-0713-4191-NP

{{

9.2.5 Ultimate Heat Sink

NP-PM-0713-4191-NP

35

{{

© 2013 NuScale Power, LLC

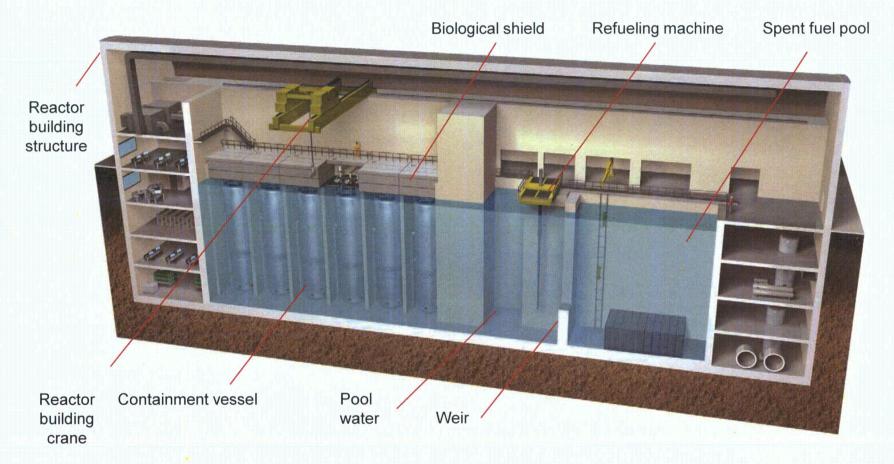
}}^{3(a)-(c)}

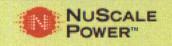
9.2.5 Ultimate Heat Sink

}}^{3(a)-(c)}

9.2.5 Ultimate Heat Sink

·




37 NP-PM-0713-4191-NP

{{

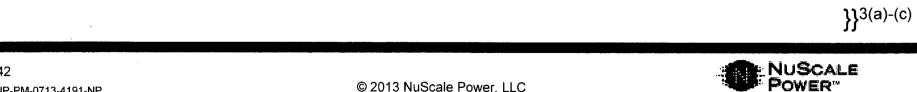
9.2.5 Ultimate Heat Sink

Reactor building houses reactor modules, spent fuel pool, and reactor pool

9.2.5 Ultimate Heat Sink

- SRP/DSRS information
 - Current NuScale assessment
 - Use mPower DSRS Section 9.2.5 with modification
 - NuScale Gap Analysis is being revised from use as-is to partially applicable
 - Information for NRC development of the NuScale DSRS
 - NuScale ultimate heat sink design information
 - NuScale comments on mPower DSRS Section 9.2.5
 - NuScale Gap Analysis updates

- Design information
 - System function and classification


{{

- **Design** information
 - Design overview
 - One system per module (12 systems)
 - Functions of the CVC system are to
 - » purify reactor coolant
 - » increase or decrease the boron concentration in the coolant
 - » provide makeup and discharge capabilities to account for changes in the coolant volume
 - » supply spray flow to the pressurizer to reduce the reactor coolant system (RCS) pressure
 - » allows for chemical addition to the coolant

}}^{3(a)-(c)}

Documents available for audit

{{

{{

·

- SRP/DSRS information
 - Current NuScale assessment
 - Use SRP Section 9.3.4 with modification
 - NuScale Gap Analysis remains "use with modification"
 - Information for NRC development of the NuScale DSRS
 - NuScale chemical and volume control system design information
 - NuScale Gap Analysis results

{{

·

}}^{3(a)-(c)}

45 NP-PM-0713-4191-NP

- Design information
 - System function and classification

}}^{3(a)-(c)}

- Design overview
 - One system per module (12 systems)
 - The containment evacuation system is designed to affect and monitor the conditions in the containment vessel space. Functions include

}}^{3(a)-(c)}

46 NP-PM-0713-4191-NP

{{

{{

• Documents available for audit

{{

}}^{3(a)-(c)}

{{

- SRP/DSRS information
 - Current NuScale assessment
 - New Section 9.3.6 for NuScale DSRS
 - NuScale Gap Analysis
 - No assessment, since no SRP section exists specific to this system
 - Updated to indicate new NuScale DSRS Section 9.3.6
 - Information for NRC development of the NuScale DSRS
 - NuScale containment evacuation system design information

DSRS Overview

Jverview

-

.

}}^{3(a)-(c)}

49 NP-PM-0713-4191-NP

{{ :

DSRS Overview

}}^{3(a)-(c)}

50 NP-PM-0713-4191-NP

{{

DSRS Overview

}}^{3(a)-(c)}

{{

9.2.1 Station Service Water System

- Design information
 - System function and classification
 - See site cooling water system design information for Section 9.2.7
 - Design overview
 - NuScale site cooling water system analogous to the non-essential portion of a typical service water system
 - See site cooling water system design information for Section 9.2.7
 - Documents available for audit
 - See site cooling water system design information for Section 9.2.7

9.2.1 Station Service Water System

- SRP/DSRS information
 - Current NuScale assessment
 - Use mPower DSRS Section 9.2.1 with modification
 - NuScale Gap Analysis changing from not applicable to partially applicable
 - Information for NRC development of the NuScale DSRS
 - NuScale site cooling water system design information
 - At NRC request, design information for any other systems the NRC plans to review using Section 9.2.1
 - NuScale comments on mPower DSRS Section 9.2.1
 - NuScale Gap Analysis updates

- Design information
 - System function and classification

}}^{3(a)-(c)}

{{

- Design information
 - Design overview
 - Shared by all modules (one system)
 - Components include

{{

- Design information
 - Documents available for audit

{{

}}^{3(a)-(c)}

}}^{3(a)-(c)}

56 NP-PM-0713-4191-NP

{{

- SRP/DSRS information
 - Current NuScale assessment
 - Use mPower DSRS Section 9.2.2 with modification
 - NuScale Gap Analysis remains partially applicable
 - Information for NRC development of NuScale DSRS
 - NuScale design information for reactor component cooling water system
 - At NRC request, design information for any other systems the NRC plans to review using Section 9.2.2
 - NuScale comments on mPower DSRS Section 9.2.2
 - NuScale Gap Analysis updates

9.2.4 Potable and Sanitary Water Systems

- Design information
 - System function and classification

{{

{{

}}^{3(a)-(c)}

- Design overview
 - Site system
 - Design scope limited for DC application (i.e., conceptual design information)
- Documents available for audit

9.2.4 Potable and Sanitary Water Systems

- SRP/DSRS information
 - Current NuScale assessment
 - Use mPower DSRS Section 9.2.4 with modification
 - NuScale Gap Analysis is being revised from use as-is to partially applicable
 - Information for NRC development of the NuScale DSRS
 - NuScale potable and sanitary water systems design information
 - NuScale comments on mPower DSRS Section 9.2.4
 - NuScale Gap Analysis updates

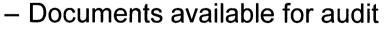
59 NP-PM-0713-4191-NP

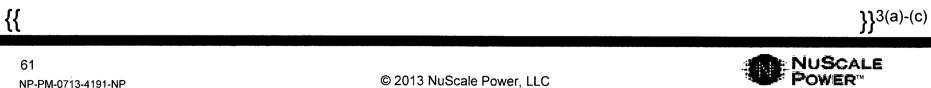
9.2.6 Condensate Storage Facilities

{{

60 NP-PM-0713-4191-NP

9.2.6 Condensate Storage Facilities


Design information


{{

{{

- System function and classification

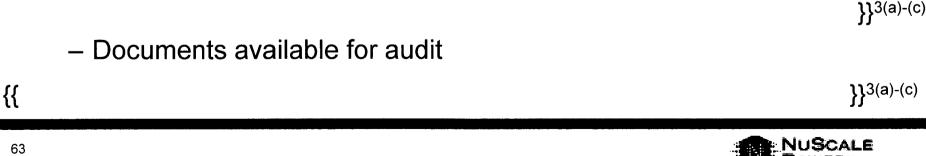
- Design overview
 - One system per module (12 systems)

}}^{3(a)-(c)}

9.2.6 Condensate Storage Facilities

- SRP/DSRS information
 - Current NuScale assessment
 - Use mPower DSRS Section 9.2.6 with modification
 - NuScale Gap Analysis remains "partially applicable"
 - Information for NRC development of the NuScale DSRS
 - NuScale condensate storage facility design information
 - NuScale comments on mPower DSRS Section 9.2.6
 - NuScale Gap Analysis updates

9.2.7 Site Cooling Water System


- Design information
 - System function and classification

- Design overview

• Site system

{{

{{

9.2.7 Site Cooling Water System

- SRP/DSRS information
 - Current NuScale assessment
 - Use NuScale DSRS Section 9.2.1
 - NuScale Gap Analysis
 - No assessment, since no SRP Section 9.2.7 exists specific to this system
 - To be revised to indicate that NuScale DSRS Section 9.2.1 to be applied to site cooling water system
 - Information for NRC development of the NuScale DSRS
 - See slides for Section 9.2.1

9.2.8 Chilled Water System

- Design information
 - System function and classification

- Design overview
 - Site system

{{

{{

- Documents available for audit
- {{

65 NP-PM-0713-4191-NP

}}^{3(a)-(c)}

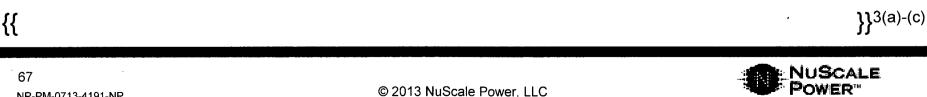
9.2.8 Chilled Water System

- SRP/DSRS information
 - Current NuScale assessment
 - Use NuScale DSRS Section 9.2.1 and/or 9.2.2
 - NuScale Gap Analysis
 - No assessment, since no SRP Section 9.2.8 exists specific to this system
 - Updated to indicate that NuScale DSRS Section 9.2.1 and/or 9.2.2 to be applied to chilled water system
 - Information for NRC development of the NuScale DSRS
 - See slides for Sections 9.2.1 and 9.2.2

9.2.9 Balance of Plant Component Cooling Water **System**

Design information

{{

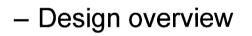

{{

NP-PM-0713-4191-NP

- System function and classification

- Design overview
 - Shared by six modules (two systems)

9.2.9 Balance of Plant Component Cooling Water System


- SRP/DSRS information
 - Current NuScale assessment
 - Use NuScale DSRS Section 9.2.1 and/or 9.2.2
 - NuScale Gap Analysis
 - No assessment, since no SRP Section 9.2.9 exists specific to this system
 - Information for NRC development of the NuScale DSRS
 - See slides for Sections 9.2.1 and 9.2.2

9.2.10 Demineralized Water System

- Design information
 - System function and classification

{{

- Site system
- Typical system design—demineralized water system provides adequate quality and quantity of demineralized water to plant users
- Documents available for audit

{{

}}^{3(a)-(c)}

4

}}3(a)-(c)

69 NP-PM-0713-4191-NP

9.2.10 Demineralized Water System

- SRP/DSRS information
 - Current NuScale assessment
 - Use NuScale DSRS Section 9.2.1 and/or 9.2.2
 - NuScale Gap Analysis
 - No assessment, since no SRP Section 9.2.10 exists specific to this system
 - To be revised to indicate that NuScale DSRS Section 9.2.1 and/or 9.2.2 to be applied to the demineralized water system
 - Information for NRC development of the NuScale DSRS
 - See slides for Sections 9.2.1 and 9.2.2

9.2.11 Raw Water and Utility Water Systems

Design information

{{

- System function and classification

- Design overview
 - Site system
 - Typical system design—{{
- Documents available for audit
- {{ }}^{3(a)-(c)} CALE

}}^{3(a)-(c)}

9.2.11 Raw Water and Utility Water Systems

- SRP/DSRS information
 - Current NuScale assessment
 - Use NuScale DSRS Section 9.2.1 and/or 9.2.2
 - NuScale Gap Analysis
 - No assessment, since no SRP Section 9.2.11 exists specific to these systems
 - To be revised to indicate that NuScale DSRS Section 9.2.1 and/or 9.2.2 to be applied to the raw water and utility water systems
 - Information for NRC development of the NuScale DSRS
 - See slides for Sections 9.2.1 and 9.2.2

- Design information
 - System function and classification

}}^{3(a)-(c)}

Design information

{{

}}^{3(a)-(c)}

- Design information
 - Design overview
 - One set of site systems
 - Industry standard system designs

}}^{3(a)-(c)}

{{

- SRP/DSRS information
 - Current NuScale assessment
 - Use SRP Sections 9.5.4–9.5.8 with modification
 - NuScale Gap Analysis is being revised from not applicable to partially applicable
 - Portions governing safety-related SSCs are not relevant
 - Modifications to reflect RTNSS Criterion B
 - Information for NRC development of the NuScale DSRS
 - NuScale BDG engine support system design information
 - NuScale Gap Analysis updates

9.1.1 Criticality Safety of Fresh and Spent Fuel Storage and Handling

- Design information
 - System function and classification

- Design overview
 - Shared by all modules (one system)
 - Key analysis parameters include
 - » New fuel racks—K_{eff} < 0.95 at 95 percent probability and confidence levels. Up to 5 percent enriched fuel.</p>
 - » Spent fuel racks—K_{eff} < 0.95 with unborated water, capacity for 15 years of operation plus assemblies for 12 NuScale Power Module cores</p>
- Documents available for audit

}}^{3(a)-(c)}

}}3(a)-(c)

}}3(a)-(c)

77 NP-PM-0713-4191-NP

{{

{{

9.1.1 Criticality Safety of New and Spent Fuel Storage and Handling

- SRP/DSRS information
 - Current NuScale assessment
 - Use SRP Section 9.1.1 as-is
 - NuScale Gap Analysis remains use as-is
 - Information for NRC development of the NuScale DSRS
 - Not applicable

9.1.4 Light Load Handling System

- Design information
 - System function and classification
- {{

– Design overview

- Shared by all modules (one system)
- Additional system information was provided in the October 4, 2012 presentation
- Documents available for audit

}}^{3(a)-(c)}

}}^{3(a)-(c)}

9.1.4 Light Load Handling System

- SRP/DSRS information
 - Current NuScale assessment
 - Use SRP Section 9.1.4 as-is (minor changes)
 - NuScale Gap Analysis remains use as-is
 - Information for NRC development of the NuScale DSRS
 - NuScale light load handling system design information

9.1.5 Heavy Load Handling System

- Design information
 - System function and classification

{{

}}^{3(a)-(c)}

- Design overview
 - Shared by all modules (one system)
 - Additional system information was provided in the October 4, 2012 presentation
- Documents available for audit

}}^{3(a)-(c)}

{{

9.1.5 Heavy Load Handling System

- SRP/DSRS information
 - Current NuScale assessment
 - Use SRP Section 9.1.5 with modifications
 - NuScale Gap Analysis remains use as-is
 - Information for NRC development of the NuScale DSRS
 - NuScale heavy load handling system design information

9.3.1 Compressed Air System

- Design information
 - System function and classification

{{

- Design overview
 - Site system
 - Typical system design
- Documents available for audit

}}^{3(a)-(c)}

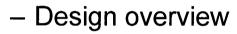
}}^{3(a)-(c)}

83 NP-PM-0713-4191-NP

{{

9.3.1 Compressed Air System

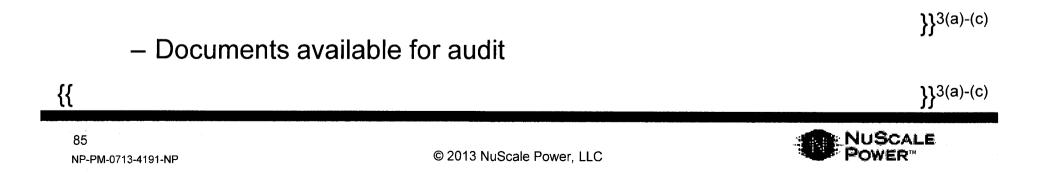
- SRP/DSRS information
 - Current NuScale assessment
 - Use SRP Section 9.3.1 as-is (minor changes)
 - NuScale Gap Analysis remains use as-is
 - Information for NRC development of the NuScale DSRS
 - NuScale compressed air system design information
 - NuScale Gap Analysis results


9.3.2 Process and Post-Accident Sampling Systems

Design information

{{

{{


- System function and classification

- One system per module (12 systems)
- Typical system design—process and post-accident sampling systems

}}3(a)-(c)

» Obtain liquid and gas samples from primary systems for monitoring and analysis of chemical and radiochemical conditions

9.3.2 Process and Post-Accident Sampling Systems

- SRP/DSRS information
 - Current NuScale assessment
 - Use mPower DSRS Section 9.3.2 with modification
 - NuScale Gap Analysis is being revised from use-as-is to use with modification
 - Information for NRC development of the NuScale DSRS
 - NuScale sampling system design information
 - NuScale comments on mPower DSRS Section 9.3.2
 - NuScale Gap Analysis updates

9.3.3 Equipment and Floor Drainage System

- Design information
 - System function and classification

- Design overview
 - Site system
 - Typical system design—equipment and floor drainage systems comprise the {{

}}^{3(a)-(c)}

}}^{3(a)-(c)}

Documents available for audit

{{

9.3.3 Equipment and Floor Drainage System

- SRP/DSRS information
 - Current NuScale assessment
 - Use mPower DSRS Section 9.3.3 with modification
 - NuScale Gap Analysis remains use as-is
 - Information for NRC development of the NuScale DSRS
 - NuScale equipment and floor drainage system design information
 - NuScale Gap Analysis results

9.5.1.1 Fire Protection Program

- Design information
 - System function and classification

{{

- Design overview
 - Site system
- Documents available for audit

}}^{3(a)-(c)}

}}^{3(a)-(c)}

89 NP-PM-0713-4191-NP

{{

9.5.1.1 Fire Protection Program

- SRP/DSRS information
 - Current NuScale assessment
 - Use SRP Section 9.5.1.1 with modification
 - SRP Section 9.5.1.2 (risk-informed fire protection) not applicable
 - NuScale Gap Analysis remains "use with modification"
 - Information for NRC development of the NuScale DSRS
 - NuScale fire protection design information
 - NuScale Gap Analysis results

9.5.2 Communication Systems

- Design information
 - System function and classification

- Design overview

- Site system
- Documents available for audit

}}^{3(a)-(c)}

}}^{3(a)-(c)}

{{

{{

9.5.2 Communication Systems

- SRP/DSRS information
 - Current NuScale assessment
 - Use mPower DSRS Section 9.5.2 (minor changes)
 - NuScale Gap Analysis remains "use with modification"
 - Information for NRC development of the NuScale DSRS
 - NuScale communication system design information
 - NuScale comments on mPower DSRS Section 9.5.2
 - NuScale Gap Analysis results

92 NP-PM-0713-4191-NP

9.5.3 Lighting Systems

- Design information
 - System function and classification
- {{

- Design overview
 - Site system
 - No design at this time
- Documents available for audit

{{

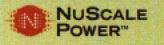
}}^{3(a)-(c)}

9.5.3 Lighting Systems

- SRP/DSRS information
 - Current NuScale assessment
 - Use mPower DSRS Section 9.5.3 (minor changes)
 - NuScale Gap Analysis is being revised from use as-is to use with modification
 - Information for NRC development of the NuScale DSRS
 - NuScale lighting system design information
 - NuScale Gap Analysis results

Results Achieved and Path Forward

- Provided information for development of NuScale DSRS for Chapter 9
 - design information-auxiliary systems
 - <u>SRP/DSRS information</u>—NRC review guidance for NuScale
- Plan for future auxiliary systems interactions



1100 NE Circle Blvd., Suite 200 Corvallis , OR 97330 541-207-3931

http://www.nuscalepower.com

© 2013 NuScale Power, LLC

96 NP-PM-0713-4191-NP