

Protecting People and the Enviornment

Primary Water Stress Corrosion Cracking Tests and Metallurgical Analyses of Davis-Besse Control Rod Drive Mechanism Nozzle #4

D.S. Dunn¹, J. Collins¹, D. Alley¹, B. Alexandreanu², S.M. Bruemmer³, M.B. Toloczko³

¹ United States Nuclear Regulatory Commission, Washington DC
 ² Argonne National Laboratory, Argonne, IL
 ³ Pacific Northwest National Laboratory, Richland, WA

Disclaimer: The work reported in this paper was supported by the Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission. The views expressed in this paper are not necessary those of the U.S. Nuclear Regulatory Commission

Outline

- Background
- Test materials
- Crack growth rate testing
- Metallurgical analyses
- Summary

Background

- 2002 PWSCC indication
 - Through wall PWSCC in Nozzle #3
 - Significant corrosion of the low alloy steel reactor pressure vessel head (RPVH)
 - Replaced with RPVH from the cancelled Midland, MI PWR
 - Operation resumed in 2004
- 2010 PWSCC indication
 - Observed after 5.5 effective full power years of operation
 - Bare metal visual: 13 potential leaking nozzles, Nozzle #4 confirmed leaker
 - Volumetric: 11 axial indications, 1 small circumferential indications, and 2 leak paths Nozzles #4 & #67
 - Surface: 12 indications; 6 were potential leakers

2010 Inspection Results

Continued Operation

- Licensee performed ½ nozzle repairs on 24 nozzles
- Sample of Nozzle #4 provided to the NRC for testing and analyses
- On June 18, 2010, the licensee informed NRC that Davis-Besse would shut down on October 1, 2011 to replace the head

Test Materials

Alloy 600 heat	Ni	Cr	Fe	Mn	С	Р	Cu	Со	Si	S	B^*
											(appm)
SB-167	72.0	14.0-	6.0-	1.0	0.15		0.5 max	N/A	0.5	0.015	N/A
Specification	min	17.0	10.0	max	max	N/A			max	max	
M3935	77.89	15.58	6.25	0.27	0.028	0.004	0.01	0.01	0.37	0.0022	69
M7929	75.28	16.12	7.24	0.26	0.03	N/A	0.01	0.05	0.45	0.003	77
*Boron concentration measured by PNNL											

Alloy 600	Yield Strength,	Tensile Strength,	Elongation,	Hardness, Vickers*				
heat	MPa	MPa	percent	Min	Max	Ave ± SDEV		
SB-167 Specification	205 min	550 min	35 min	N/A	N/A	N/A		
M3935	334	590	60	146.6	190.7	160.2 ± 6.5		
M7929	296	668	53	166.6	209.5	186.5 ± 9.6		
*Hardness in the crack growth plane for M3935-RPVH #1-CRDM #1 and M7929-RPVH #2-CRDM #4								
measured by PNNL								

Nozzle #4 Section

- 90° section of Nozzle #4 cut from below the J-groove weld
- Penetrant test revealed no surface cracking indications
- 5 compact tension (CT) test specimens machined from this section

Test Specimen Machining

- Layout for compact tension specimens
- Sample for metallurgical analyses (next to Specimen DB-3)
- All specimens were free releasable after machining

Test Specimens

- 2 ½ thickness (T)compact tension (CT) specimens
 - Tested at Argonne
 National Laboratory
 (ANL)
- 3 ¼ T-CT specimens
 - 1 tested at ANL
 - 2 tested at Pacific
 Northwest National
 Laboratory (PNNL)

Testing and Analyses

- Machined compact tension test specimens supplied to Argonne National Laboratory (ANL) and Pacific Northwest National Laboratory (PNNL)
- Primary objective was to obtain crack growth rates for the replacement RPVH alloy 600 nozzle material (heat M7929).
- Secondary objective was to characterize Alloy 600 material microstructure and correlate microstructure to crack growth rates

Crack growth rate test systems located at ANL used to obtain accurate crack growth rates Testing in autoclaves under simulated PWR conditions

8/13/2013

• Corrections applied to measured CGR to account for the formation of ligaments

• Formation and breaking of ligaments that affected CGR measurements was also observed at constant K

8/13/2013

• Formation of ligaments that affected CGR measurements was confirmed by examination of the fracture surfaces

8/13/2013

Crack Growth Rates

Temperature Sensitivity

Activation energy typical of alloy 600

Fracture Surfaces

 Predominately intergranular cracking on fracture surface of the CT specimens

8/13/2013

Fracture Surfaces

- Transgranular extension during air precracking at room temperature.
- Rapid intergranular engagement
- High degree of crack branching

Metallurgical Analyses

Replacement Davis-Besse RPVH CRDM Nozzle #4 – Alloy 600 Heat M7929

- Red arrows: grain boundaries
- Blue Arrows: carbides
- Conclusion: carbides located on prior grain boundaries; not an ideal microstructure for PWSCC resistance

Metallurgical Analyses

Original Davis-Besse RPVH CRDM Nozzle #3 – Alloy 600 Heat M3935

- Carbides present at grain boundaries
- Material was susceptible to PWSCC (NUREG/CR-6921, November 2005)

Atomic Probe Tomography

Environmental Degradation of Materials in Nuclear Power Systems - 2013

Davis-Besse Alloy 600

Original RPVH

- 15.78 EFPY
- PWSCC of CRDM nozzles and boric acid corrosion of the low alloy steel RPVH
- Alloy 600 heat M3935
 - Grain boundary carbides with
 500 700 nm spacing
 - 200 400 micron grain size
 - 160.2 ± 6.5 Hv
 - 6 atomic percent boron at grain boundaries with significant chromium depletion

Replacement RPVH

- 5.5 EFPY
- PWSCC of CRDM nozzles
- Alloy 600 heat M7929
 - Transgranular carbides on prior grain boundaries
 - 15 30 micron grain size
 - 186.5 ± 9.6 Hv
 - 2.5 atomic percent boron at grain boundaries

- Laboratory crack growth rates in the replacement Davis-Besse RPVH were typically between the 25% and 95% of the MRP-55 disposition curves
- Fracture surface examinations show a high degree of intergranular engagement consistent with materials susceptible to PWSCC
- Alloy 600 heat M3935 from the original RPVH were found to have significant enrichment of boron on grain boundaries that were depleted in chromium
- Microstructure of the alloy 600 M7929 heat from the replacement RPVH likely contributed to the increased PWSCC susceptibility

Acknowledgements

The authors gratefully acknowledge the work by Mr. Jim Hyres at BWXT to decontaminate some of the samples and helpful suggestions provided by Drs. Mirela Gavrilas and Rob Tregoning