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I. SUMMARY OF MAJOR FIND!NGS AND

RECOMMENDATIONS

A. SCOPE

The major objectives of the studies described in this repor. were to analyse

and evaluate a numhbr of significant earthquake records and to utilize the re-

sults to develop "standardized" design snectrum shapes to be used in the seis-

mic design of nuclear power plant facilities. Because earthquak-s are complex

phenomena, and since it is not possible to exactly predict the nature of seis-

mic ground motions, statistical analyses of recorded ground motions must be

used. The major findings and recommendations from the studies based on such

statistical analyses, along with brief discussions of the data and the ana-

lytical approaches used, are discussed in this chapter.

B. DATA USED

Response spectrum shapes for thirty-three significant and different accelero-

grams generated by twelve major earthquakes were developed for damping ratios

of 0.005, 0.01, 0.02, 0.05, 0.07, and 0.10. The California Institute of Tech-

nology prepared most of the accelerogram digitizations, which are consistent

and reliable reproductions of the actual qround motions. The remaining digit-

izations were obtained from the State of California Office of Architecture and

Construction, Los Angeles, and the Seismological Field Survey, NOAA, San fran-

cisco. The thirty-three accelerograms for purposes of this study are termed

the ensemble.

The response spectrum shapes were studied as an ensemble and as groups cate-

gorized according to peak gro-nd accelerations, site soil characteristics,

epicentral distances, and geographical locale of the recording stations.

These studies were made to determine the influence of the various character-

istics on the shape of the response spectra. Pertinent literature was

searched to collect the most reliable available data concerning these earth-

quakes and their recording stations.

C. ANALYTICAL ADPROACH

The following approach was used for the statistical analyýes:
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" Spectrum shape statistics, such as mean, median, and standard de-

viation were developed for the ensemble of all accelerograms and

for each of the groups to provide indications of the central ten-

dencies and uncertainties associated with the corresponding groups.

" A statistically acceptable probability model suitable for the com-

plete ensemble of spectrum shapes was determined. Smooth "stan-

dardized" design spectrum shapes were derived on the basis of this

probability model.

" Comparisons were made between the recommended spectrum shapes and

the current Atom!c Energy Commission (AEC) regulatory criteria,

Newmark, Housner, and Blume F-factor spectrum shapes.

" Period-time amplitude plot studies of eight accelerogranis generated

by four important earthquakes were made to investigate the effects

of earthquake duration.

The probabilistic approach was used because it was considered to be most

rational, realistic, and appropriate for seismic design, especially of crit-

ical installations such as nuclear power plants. Previous studies end pre-

dictions of the frequency characteristics of seismic ground motions have usu-

ally been based on the analysis of only a few records. The results of the

present studies are particularly significant for the following reasonis:

" The studies are based on the analyses of thirty-three different

accelerorrams, a larger number than used in other studies.

" The accelerogram digitizations are the most reliable ones available.

" The studies are comprehensive because they include the effects of a

number of parameters, detailed statistical analyses, and effects of

earthquake duration.

0. MAJOR FINDINGS AND OBSERVATIONS

The following major findings resulted from the studies:
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o Statistical predictions of spectral characteristics of future-seis-

mic ground motions are plausible and desirable.

* Smooth "standardized" design spectrum shapes can be used to represent

probable severity of seismic motions. Recommended spectrum shapes de-

veloped from these studies are presented in Figures 4 through 6 for

large, small, and negligible probabilities of being exceeded.

* The approach of using spectrum shapes derived from analyses of the

ground motion with peak acceleration normalized to unity was vali-

dated because there was low correlation between the peak ground ac-

celerations and the spectrum shape values. Separate treatment of

these two as independent variables in these studies was therefore

appropriate.

The followitig significant observations can be made from the results of group

analyses:

* Various seismic parameters appear to influence response spectrum

shape.

o Larger spectral amplifications can be expected to occur at a softer

site. The predominance of long period motion for softer sites and

of short period motion for firmer sites was not confirmed or rejected.

* Distance from epicenter did not appear tc irnfluence spectrum shape.

Predominance of long period motion at longer epicentral distances did

nfrt seem conclusive. Neither, however, was there sufficier,t basis to

reject this possibility.

* The studies by geographic grouping revealed minor variations in the

central tendencies as indicated by the means and medians, although

there were significant variations in the standard deviations or un-

certainties. The ensemble represented a wide-range of frequency con-

tent much better than any other group and thus, it was adopted as the

basis for the recommended spectrum shapes.
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The followring observationý can be made from the comparisons between the rec-

ommended spectrum shapes and the AEC. Newmark, Housner, and Blume F-factor

shapes for a 2% damping ratio:

" The current AEC design spectrum shape is below the small probability

of exceedance shape for periods shorter than 0.5 sec, and those

longer than 0.9 sec.

" Tla Newmark spectrum shape is consistently above the small probabil-

ity of exceed.ince shape, except for a short interval in the vicinity

of zero perioo.

" The Housner spectrum shape is below the large probability of exceed-

once shape for periods shorter than 0.4 sec, and it is above the

latter for longer periods.

" The Blume F-factor spectrum shape for a standardized normal variable

value of 1.0 is consistently higher than the small probability of ex-

ceedance shape.

From the period-ampiltude-time studies, the following observations can be

made:

e The earthquake duration effect on the response spectrum shape is

small for periods shorter than 0.5 sec, the period ringe significant

for the nuclear power plant structures. The dynamic amplification fac-

tor (OAF) at longer periods, however, would generally tend to bc iigher

for long duration motions than for those of short duration.

E. RECOMMENDATIONS

Because risk. minimization is Zhe basic rationale for the seismic design of

critical installations such as nuclear power plants, the seismic load criteria

should consider risk variability with such factors as regional seismicity,

geotectonics, etc.. Thus, design spectrum shapes representing variable -.evvr-

ity of seismic loadings should be specified to achieve appropriate minimiza-

tion of the cotal risk.
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'hfe follor..ing rLcommendations.pert nent tu the design spectrum sha,.cs are con-

skstent witO this seisr'ic design objective. Other ground motion character-

istics, surh is peak grournd acceleration .-:sd strong r.i-tion duratior (in the

case of time-history analyse! should oe thoroughly considered to fully satisfy

the seismic desion objective. The curves in Figures 4 through 6 are soectrum

shapes, not responst: speLtra theimselves. To derive pseudo absolute accelera-

tion response spectra, it is necessary to evaluate the joint probabilities for

peak ground accelerations and the sdectrum shape va!ues.

" The large probability of exceedance spectrum shapes shown in Fig-

ure 4 should be considered as lower bo'jnd spectrum :hapes.

" For sites associated withrelatively low risk!, e.g., located in

lowi seismic 'y areas, the design spectru',i shapes for different

damoing ratios should not he !o>.ier than the s,:iali probab;lity of

exceedance spectrum shapes shc.4n in Figure 5.

" For sites associated with relatively high risks, e.g., located in

high seismicity areas, the design spectrum ,hapes for different

damping ratios should not be lo.ver than the neg'iqible protability

of exceedance spectrum shapes shown in Figure 6.

It must be noted, howe-'er, that the negligible exceedance prob-

ability spectrum shapes represent extreme ground motion amplific.-

tion. An inappropriate use of these shapes could result in an ex-

tremely low probability seismic exposure and the corresponding de-

sign could be ultraconservative. For example, if a very high peak

ground acceleration estimated deterministically c,:, the basis of an

extreme earthquake expected to occur at a very short distance (say,

at a point on the nearby fault) from the site were to be combined

with the neS;igible probability shape, ar extremely low orobability

seismic exposure wcjld result. The corresponding design would be

ultraconservative because the risk considerations would then be un-

necessarily duplicated by first assuming a highly improbable earth-

.quake occurrence (because the probability of Pn extreme earthquake

occurring i a given Doint is extremely small) and then. determ nis-

tically combining the estimated peak ground acceleration with the



spectrum 5hape. ]h,1refore, it is rec ti:tl.,nded that for the sites

associ atvd with rc I at •,e 1 y hii h risk!., lý'c above rc•;ortmcndatiof

for tht neyl 9i b Ic probability shape b. applied in LIonjunct i cn

wlith an appropriate procedure for probabilistically estimating

the total seismicexposure.

* For sites judged to be significantly responsive to ground motion

compcmno:,ts with periods longer than 0.5 seconds, the above shapes

should riot be used without appropriate mudifications for the par-

ticular it:,. conridhiurns.
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II. INTRODUCTION

A. GENERAL

Earth.quakes are complex phenomena that impose severe loadings on engineered

structures. The earthquake phenomena primarily consisL of large energy

releases in limited volumes of the earth's crust and propagation of signif-

icant parts of these released energies as seismic body and surface waves.

Engineered structures located in the propagation path of these waves re-

spond with vibratory motions. These vibrations generate forces in the struc-

tures which have to be safely resisted. Instances of inadequate structural

resi3tance to seismic loadings with disastrous consequences occur frequently.

Some of the major earthquakes that caused considerable damage are: San Fer-

nando (1971), Tokachi-Oki (1968), Lima (1966), Alaska (1964), Kern County

(1952), El Centro (1940), Long Beach (1933), San Francisco (1906), Charles-

ton (1885), and New Madrid (1811-12).

The severity of vibratory structural response to seismic motion largely de-

pends on the seismic ground motion characteristics and the structure's dy-

namic cuaracteristics. Some of the important grt)und motion characteristics

are the ptak motion parameters, such as acceleration, velocity, and displace-

ment, and the frequency content of the ground motion. The ground motion fre-

quency content can be generally described as a measure of relative predomi-

nance o` different fr..quencies present in the ground motion. Spectrum shapes

are one of the measures of the ground motion frequency content and are im-

portant in estimating seismic structural response.

Nuclear powJer plants are critically important structures, and as such must

be designed for appropriate seismic conditions. Because earthquakes are

complex phenomena and exact predictions of seismic ground motions are not

possible, it is appropriate to base the seismic design criteria on statis-

tical predictions of these motions. Various ground shaking intensity

levels and the probabilities of their being exceeded should be established.

and the seismic levels associated with appropriate probabilities of exceed-

ance should be used in the design.

-7-



One approach to developing statistical predcctiuns of seismic loadings is

to determine probabilities of occurrence of ground motion frequercy char-

acteristics.

The study described herein analysed the frequency ditribution of ground mo-

tions.generated by a number of major %arthquakes. The results were then used

to develop "standardized" design spectrum shape-.

B. SCOPE

The studies in this report were oriented ioward the delineation of appro-

priate shapes of earthquake response spectra to be recommended for seismic

design purposes, based on the rationale described above. The project was

authorized in the USAEC Division of Reactor Standards letter dpted August

18, 1971. The major steps in the studies were as follows:

* Develop response spectrum shapes for !he hr, izontal ground motion

components of a number of selected major earthquakes.

e Study the effect of earthquake duration on spectrum shape by de-

termining the relationship between the spectrum shape and nu.iber of

cycles at predominant periods.

* Perform statistical studies of the spectrum shapes, including group-

ing of the spectra according to various earthquake and site charac-

teristics.

" Recoinmend spectrum shapes appropriate for seismic design and evalua-

tion of nuclear paer plant facilities.

" Compare the results of the above analyses with the current AEC seis-

mic design review procedures.

Studies of each of the above items and the results are discussed in the follow-

ing text.
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Ill. RESPONSE SPECTRUM SHAPES

A. IUT 7%CULIO1It

A number of important and reliable earthquake records of horizontal ground

motion components were selected, response spectrum shapes developed, and sta-

tistical studies made of the ensemble of response spectrum Fhapes. A fairly

large ensemble was used to derive significant results from the studies. The

development or the spectra shapes and the statistical studies are discussed

in this chapter. A number of important and reliable earthquake records of

horizontal ground motion components were selected and response spectrum shape

were developed. The ensemble of response spectrum shapes developed from the

selected earthquake accelerograms and the corresponding statistical studies

are presented in this chapter. To derive significant results from the sta-

tistical studies, a fairly large ensembie of important ground motions was

analysed.

8. SELECTION OF HISTORIC EARTHQUAKES

A total of thirty-three accelerograms generated by twelve different major

earthquakes with peak ground accelerations exceeding O.g were selected

for the analysis (Table 1). Oifferent magnitude ratings for an earthquake

are sometimes reported in the literature because the values reported are usu-

ally averages cf the values estimated at several recording stations. The mag-

nitudes given in Table I were selected because they have been quoted most fre-

quently. The rationale for selecting the earthquake records was as follows:

0 The accelerograms were considered to be reliable records of the

ground motions because most were recorded recently. Those not

recorded recently, such as El Centro and Helena. have been ex-

tensively and reliably documented.

* The accelerograms were associated with fairly intense ground shaking.

* A wide-range of response spectra characteristics was represented by

the selected accelerograms. The Linia and Hachinohe records were in-

cluded because the Lima records contain a predominant high-frequency

Q9



content and the Hachinohe records a predominant low-frequency con-

tent. Inclusion of these records Lhus increased the range of dif-

ferent spectrum shape characteristics.

" The accelerograms included eight different and important records

from the 1971 San Fernando earthquake.

" The accelerograms comprise a reasonably large ensemble, thus yield-

ing a higher degree of confidence and reliability to the studies.

" The effect3 of geographical variations were included because the

accelerograms were recorded at a number of different geographical

locales.

C. ANALYTICAL ASPECTS OF A RESPONSE SPECTRUM

A response spectrum is defined as a plot of the maximurn values of a response

parameter of a family of linearly elastic single-degree-of-freedom systems

with different frequency characteristics and with a given ratio of system

dai•ping to critical damping wher, subjectcd to a ground motion time-history

versus the frequency characteristics (such as natural periods or frequencies)

of the systems.

For the purposes of this report, the pseudo absolute acceleration response

spectrum shapes for damping ratios of 0.005, 0.01, 0.02, 0.05, 0.07, and 0.10

were developed for the selected accelerograms.

Figure I shows a model of a single-degree-of-freedom system. The spring is

linearly elastic with stiffness k and the dashpot indicates a viscous damper

with a damping coefficient c.
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FIGURE 1. SINGLE-DEGREE-OF-FREEDOM SYSTEM

The equation of motion of this system is:

m)n +c; + kx -i (1)

in which

m = mass

x = displacement relative to the ground [L]

d_ velocity relative to the ground [LT- 1 ]
it

- d x• acceleration relative to the ground [Lf iI
d t

c = damping constant [;.IT- ]

k = spring constant [ MT- 2 ]

x = ground motion acceleration [LT" 2 ]
g

. [!] indicates the dimension of the quantity. The basic dimensions

are mass, M; length, L; time, T.



Equation (I) can be rewritten as:

+ "+ - . (2)

in which

4-k = circular frequency Tm[t]
C -

-2rr= damping ratio

The solution of Equation (2) is given by

tX(tI, - - f h(t-r) T () J

in which

h(T) = impulse rusponse function [T]

and

w damped circular frequency ( T-' ]

==

For a moderate amount of damping, w nearly equi-Is w. As example, for

a relatively high damping value of 20%, w is equal to 0.98;. Because

the damping values for most of the dynamic analyses of nuclear power

plant elements are considerably less then 20%, the difference between

w and w is negligible. Thus, w will be u3ed in place of w. The

system spring force, F, at an instant, t, is given by

F(t) = K.(t) _ mw2 (t) (5)

Let z (t) = W2X(t) (6)
p

Then F(t) = m i (L) (7)

'"has the dimensions of acceleration, (LT-], and is termed pseudo

absolute acceleration. Comparison of Equation (6) with Equation (2)

indicates the reason for this quantity being termed "pseudo", namely,
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the magnitude of P differs from that of the real absolute acceleration by

a quantity, 2cwý. The pseudo relative velocity, p, is defined by

x 2 [L11  (8)

pp
Then, accepting •••

P ( t• = t (• .:t) (9 )

In accordance with the definition of a response spectrum, the pseudo absolute

acceleration response spectrum, S z is given by

0) I .0)

in which

n= atural period [:3

depends on the system period, , the system damping ratio, ,, and the in-

put ground motion, . Equation (1l) is derived from theoretical considera-

tions and Equation

Thus, for a rigid system =, 0), the pseudo absolute acceleration spectrum

value equals the maximum ground acceleration, a. This is one reason why nor-

malization of ground motion by peak ground acceleration is convenient. The

spectrum value generated from the ground motion normalized by the peak accel-

eration is actually the dimensionless ratio of the pseudo absolute acceleration

spectrum value to the peak ground acceleratior anJ is termed dynamic amplifica-

tion factor (DAF) for pseudo absolute acceleration.
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Let D(T,,,) = dynamic amplification factor (OAF) for pseudo

absolute acceleration

(T •.- )

Then 1)(1 "") r_ (12)

and C)((;,.. ) = 1., (131

Thus, for zero period, equals 1.'].

0. RESPONSE SPECTRUM SHAPES FROM HISTORIC EARTHOUAKES

IThe obj~'ctive of the studies was to analyze the shapes of the respon.•e s.pec-

tra, not the response spectra themselves. To facilitate the c'amp'arison of

the spectrum shapes, the accelerograms w!re riormalized to a peak gruund a.:cel-

eration of 1.0g. i'hus, the spectral vaiues obtained are dimensiconless ratios

o'f spectral acceleration to peak 4"rouod acceleration, or dynamic'amplification

factors (DAF). The response spectra generated from such normalized ground

motions are term.td response spectrum shapes, or OAF. The response spectrom

shapes are useful for comparing the relative predominance of different fre-

quencies in an individual arcelerogram and for different accelerograr.s. Accel-

erograms can be normalIzed by several different methods. For t'ýe purposes of

his study, normalization by peak ground acceleration was co:widered most use-

ful and convenient, especially for the stotistical predictions of response

spectrum shapes.

A recursive algorithm' was used to compute the response spectrum shapes of

the selected historic earthquakes for damping ratios of 0.005, 0.01, 0.02,

0.05, 0.07, and 0.10. Because the method of digitizLiion of accelererjrams

significantly affects the response spectra,' the nwst receat and most reli-

able accelerogram digitizations were used in ihe in-jly-ses.

The spectrum shapes were computed for a period range: of 0.04 sec to 2.5 sec,

or a freqLency range of 0.4 cps to 25 cps. which was considere."- sufficient

to encompass the frequency characteristics of nuclear power plant components.

This range of frequency characteri,ýtics was discretized by us;g 108 points

to obtain good frequency resoiution of the spectra.
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The Fourier content of digitized accelerogram data may be accurate up to

about 25 cps, 8 and thus the upper bound on the frequency range of the ýpc-

tra was set at 25 cps. Most of the accelerogram data were as described in

Reference I and hence the accelerogram corrections, such as smoothing of the

fixed trace, smoothing of the timing marks, and the root-mean-square minimi-

zation of acceleration were applied to the data. Generally, the accelero-

grams are also corrected by shifting and/or rotating the base line or using

a band-pass filter. Such corrections are necessary only for computing ground

motion velocities and displacements. Because they do not significantly af-

fect the computition of the pseudo absolute acceleration response,•,• these

corrections were not considered necessary.

Linear plots of the spectrum shapes are presented with period as abscissa and

alternatively with frequency as abscissa in Appendix A as Figures Al through

A66. These two way!. of plotting complement each other, representing the spec-

trum details more fully. Frequency-plots were used in determining the spectral

values for the high-frequency elements and period-plots were used for the long

period elements.
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TABLE 1
SALIENT CHARACTERISTICS OF

SELECTED ACCELEROGRAMS
Peak Ground
Acceleration,

Magnitude Component g UnitsEarthquake

El Centro

El Centro

Kern County

Olympia

Helena

San Francisco

Year Recording Station

1940 El Centro,
Californi3

1934 El Centro,
California

1952 Taft,
CalifLrnia

1949 Olympia,
Wasnington

1935 Helena,
Montana

1957 Golden Gate Park,
California

1966 Cholame-Shandon # 2,
California

19%6 Chnlame-Shandon 0 5,
California

Parkfield

Parkfield

Tokachi-Oki 1968 !!.chinohe,
Japan

1966 Lima, Peru

7.0

6.5

7.7

7.1

6.0

5.3

5.6

5.6

7.8

7.5

6.6

6.6

6.6

6.6

6.6

6.5

5.6

N2 P E
S69*E

S860W

UIS

1180 0W

UW5E
S25OW

N5'1 W
14115u 11

NS
EW

EW

0.51
Not Recorded

0.40
0.47

0.33
0.22

0.26
0.18

0.18
0.16

0.19
0.31

C. 13
0.16

0.11
0.13

IUS
EW

Lima

San Fernando

San Fernando

San Fernando

San Fernando

Eureka

Olympia

Parkfield

1971 Castaic, ORR,
California

1971 Bank of Calif.,
California

1971 Universal-
Sheraton, Calif.

1971 V.N. Holiday
Inn, California

1954 Eureka,
California

196ý Olymoia,
Washington

1966 Temblor,
California

N8*°E
N82 0W

N210 E
S69°E

N11 0 E
N79 0W

NS
EW

NS
EW

g790 E

S4 E

S860W

N650W
N250 E

0.19
0.23

0.42
0.27

0.34
0.29

0.23
0.14

0.18
0.13

0.28
0.15

0.26
0.18

0.20
0.16

0.28
0.33

NOTE: Information presented in the above table is compiled from

References 1, 2, 3, 4, and 5.
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IV. STATISTICAL ANALYSES OF SPECTRUM SHAPES

A. INTRODUCTION

The analyses in this chapter were oriented toward statistical predictiors of

the characteristics of future ground motions. Spectrum shape statistics such

as mean, median, and standard deviation were computed for the complete en-

semble of spectrum shapes discussed in Chapter Ill. These statistics were

also computed for the accelerograms grouped irn four differen: ,ýays:

" max;mum ground acceleration.

" so-l characteristics at the recording site,

" epicentral distance, and

* geographical locale of the recording stations.

The median and mean values indicate the central tendency of a sample. The

standard deviation measures uncertainty associated with the sample. In most

of the cases, the combination of either the mean or me-dian and the standard

deviation suffices for statisLical predict;ons.

B. STATISTICAL ANALYSIS TECHNIQUES

In an ensemble of r response spectrum shapes, shown in Figure 2, let i:f(!.,-)

denote the spectral ordinate of the ith spectrum shape for the period. , nd

the damping ratio, %. Then, the mean, -•.(T ,,)0 and standard deviation,

are computed by the following equations:

i( 1

r ,-" , II, ( S
s (T*~ -1- fT ) I!
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The median of the ensemble, ry.)(T-,.), is determined as follows: First, the

spectral values, D.(Lt., i 1, 2 . ,are rearranged in a descending

order. Then, if ni is an even number,

7:) (16a)- J

If n is an odd number,

M, 0 •6b)

The mean spectrum shape, m,'(G'A, the median spectrum shape, , , and the stan-

dard deviation spectrum shape. , are constructed by computing means, me-

dians, and standard deviations for 108 periods in the period range under con-

sideration. The mean and median spectrum shape values For zero period equal

unity and the standard deviation spectrum value fer zero period equals zero be-

cause the DAF value for zero period is constant and equals unity. From Equa-

tions (14) and (16). the actual values of the mean and redian shapcs will not

be equal, if there is a skew in the data.

C. STATISTICS OF SPECTRUM SHAPE ENSEMBLE

The mean. median, and ýtandard dev;ation response spe,:trum shapes for the corn-

plete ensemble of the selected accelerograms and for all damping ratios were

computed as described above and are presented in Appendix B as Figures 81

through BIB. The following observatiuns regarding these spectrum shap o-.are

pertinent:

* Th,: mean and median spectrum shapes, indicators of the central ter;-

dency of the ensemble. are similar for each damping ratio. Th,.

small quantitative difference between these two s5atistics i'dicltes

that the DAF data his ,omv, -,kewnesý. See Chapt-r VI for a detailed

discussion of the DAF distributicon,.

* The mean arid median spectrum shapes are srmooth. As expected, the

smoothness increases with the damping ratios.
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*A's the period approacnes zu-o the rmean ar'd rx!<;ar' jhpe ie

approach unity and thie s~andard deviat oni approaches zerc. as

expt2c ted . The s t.3toddrd Jvv i Is oar, dec rcta;e s a s t~ hep: n-r-j,*,

Tha 5 dec rea S tow * ,- r , ir s much smai I Ier t hav the cor rt~svo-e- .nq cc-

creije in the riwjr. arl:j lc~ ~ hu, *:" 'he it e~ne

in the OA-F increases w~itt t~e periodI. ese~al for ztcricds longer

mhan 0.25 -,cc For ;,v,-c,v,. i(~r'(er thr' 0.C9 sec. * " rvltjlt: .vJ-

certainty is st~s:ar't ialIlv larger t. i~ar for zhe shc~r te r per; wl

a ýa.i ri1- rap i ta~ trend Zk.nt ; nues tý 2 .5 ýt~c per; -;C.

The mo n reanor,~ fr.r '.!t: rc.c in xct.rt a nt,.. t per io

thle cl*,sLeml Ie Con' a ins sev..-,-I! I Lce I crc r.vr'. .,tr va !le~ Sricr t .4r

long s Y rong q -io iin a i&. . de~ .*i -~ r* f jte Ii

C e r tI i thv s ta)r u ura a o t: r r , is > ,ho- pr.* : ý i, ma r ir,C u

short per iods onl If *nrv- ~Ch~ t h Ifanq Jur at or~n 0-c thi. r~rv-

jo~r~i nance of both, short ar~d Ifloq 7a " WS . ts Mt' CV er-tr

dc ncy o tM hfe en bem b s a cc t!r. t u, i vs in th ) S~r IvE erat r arq t

an c unt i e r ab uItv mUe c~t 1 or J ;cfri k r lr.ge c Dus Ut. -I f-

t aI veIy l a r e d v v t i un~ 5f D£AF i i t rti v Inn tr~ r an t:. n j, %

ttv re iat vt uncur aart in tna. rant-e gr (r.'.t4'r *han (or

S h ()r tp t:riod r , jn ge

* The r~eafl and rmed ian spec ,rur, shapes dec reast: -. rL a~t ? ttr .tih

inc~reasing dam~pi ng rat ios . we;c ;nd;Cdte- reliti;vely qrvater dvc

crease fo. the ',hor t 'vtri od. t han for ihe Ir'nq per o(dS . The %tan-

dard deviation spectrum shav'ý,z also decreoae ane boeconeS flat*.?ýr ~..th

increasinq dam-inq ratio. This, dj~rre.se i, ia r hf-wt.~'er.t:K~

in the mea, and median and ;., e.spLuciaily t ruc for t~heŽ Ionq :)eriod!,

w.hich result,~ in great-.-r fIatnes.-. Thu0 5 * t he r-! 1 i vu wncer t a nt y

i n OAF va lues rumia ins PractLi ca I I i nd ifferent to t ho change', i T

d,,mping ratio. Increarer camping tend% to at.Cnuatv retpon-,L. more-

for sh.crt periods thanz fur long period',.
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D. bkiAVSTICS OF GROUPED SPECTRUM SHAPES

I. General

The rationale of the grouping approach will be briefly discussed first

so that the group statistics may be appropriately interpreted.

A number of earthquake characteristics could influence response spectrum

shapesu Grouping of the records by a selected characteristic helps to

investigate and estimate the influence of such characteristics on re-

sponse spectrum shapes. Such an investigation has maximum sigificance

if performed under the ideal condition that only the characteristic under

consideration is varied wHile others are kept constant. It is apparent

fron. the sparsity of the available ground motion data, however, that this

is not fcs;ble. It is helpful, nevertheless, to understand what infor-

mation could be obtained from the grouping approach under ideal conditions.

Assume that a seismic characteristic, s, in the range, s; S < G, favors

a frequency range, f < f < f,,, over other frequencies. Then, the mean,

median, and standard deviation spectrum shapes for the accelerograms in

the group, s .: <, would be expected to display the following char-

acterisLics:

* In the frequency range, f < f : f the mean and median spectrum

values for this group will be generally higher than those for the

other groups, indicating the preference of this group. The same be-

havior will be expected when the ensemble mean and median are com-

pared with the group mean and median.

0 In the frequency range, f < f < f 2# the standard deviation spectrum

shapes will be generally lower than those for the other groups, in-

dicating a smaller degree.of uncertainty associated with the spectrum

values for the preferred frequencies. The same behavior will be ex-

oected when the standard deviation shapes of the ensemble are compared

with those of the group.

Higher spectrum shape values for the preferred frequency range will be

more probable than for the other frequencies. The reliability of such
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an interpretaticn depends on two factors, nameiy, the number of accel-

erogram samples in the group, and the range of seismic parameter values

defining the group. The reliability will increase with an increase in

the number of samples, and decrease with an increase in the range of

seismic parameter values.

Statistics of the spectrum shapes grouped in four different ways were com-

puted to investigate the influence of different earthquake characteristics

on the response spectra. The accelerograms were grouped according to:

* the maximum recorded ground acceleration (Table 2),

* the soil characteristics at the recording station (Table 3),

* the epicentral distan.e of the recording station

(Tabie 4), and

* the geographical locale of the recording stations (Tables 5, 6, 7,

and 8).

The specific details of the groups and the analytical results are signif-

icant. Different values for a characteristic ef an earthquake are some-

times reported in the literature. In such cases, an apparently reason-

able value of the characteristic was adopted in the analyses without

further investigating the allthenticity of the value. It would be worth-

while, however, to c.)nduct such an investigation to improve the reliabil-

ity of the available information.

2. Maximum Ground Acceleration

Table 2 lists a grouping of accelerograms according to maximum ground ac-

celerations. This grouping of accelerograms described below achieves a

reasonable balance between group size and range of accelerations.

Maximum Number of
Group Ground Acceler4 .. tion, a Accelerograms

Al a > O3g 8

A2 0.2g9 a < 0.g 10

A3 a < 0.29 15
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The frean, median, and standard deviation spectrum shapes for the three

groups of accelerograms for a 0.02 damping ratio are presented in Appen-

dix C as Figures Cl through C9. The following are pertinent observations

regarding these spectrum shapes:

* The Group Al mean and median shapes are generally somewhat lower than

the mean and median shapes of the Groups A2 and A3 (Figures Cl, C2,

C4, C5, C7, and C8). The Group Al standard deviation spectrum shape

for periods longer than 1.0 second is considerably lower than the ones

of the other groups for the same period range (Fiqures C3, C6, and

CC). This means that higher OAF values for Group Al are less probable

than they would be for Groups A2 and A3. This is particularly true

for periods longer than 1.0 second; in other words, higher OAF values

occur for accelerograms with a 0.3,g.

* No cluar trends are apparent for the Groups A2 and A3.

In spite of the first observation above, the maximum ground accelerations

of the accelerograms generally have low correlation with the correspond-

ing OAF values. Thus, probabilities for the DAF values, as discussed in

Chapter VI, may be considered independent of those for the ma.6mum ground

accelerations. This conclusion leads to this important result:

From Equation (12),

Sa(T_~r,;j D U.(,•• (17)

Thus, the probabilities of exceedance for the spectral ordinate, 2 used

for computing response of structures, can be derived by a rather simple

combination of the probabilities for the peak ground acceieration, a, and

the DAF for pseudo absolute acceleration, D. This method of combination

of probabilities is discussed further in Chapter VI.

3. Soil Characteristics

The following site characteristics could influence the response spectrum

shape:
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* Soil density

" Soil layering

" Layer thicknesses

• Depth to firm rock

* Water table elevation at the site

* Soil moisture content

" Shear and compressional wave velocities in the soil

* Nature of soil behavior -- linear or nonlinear

It is apparent from the above list that the influence of the soil char-

acteristics on the response spectrum shape is a complex phenomenon. In-

vestigation of this phenomenon is asid has been treated as an independent

field. 1 1 Thus, the subject can be treated only in an approximate way in

the present analysis.

It was shown 11,12 that the soil impedance, 1, is determined by Equa-

tion (18) is one of the factors of considerable importance in this kind

of analysis.

I (18)

in which

P = specific soil density

V = velocity of shear wave in soils

In the present analysis, soil impedances of the top layrrs at the record-

ing stations were used as the basis for grouping of the accelerograms.

In the case of a site with a number of shallow soil layers, an overall

average value of impedance was used. For the selected accelerograms, in-

formation on the soil characteristics at various recording sites is sparse

and contains a high degree of uncertainty. More detailed soil, geological

and geophysical investigations of various recording station sites are

needed to form a Firm basis for the kind of analysis described in Sub-

section I of this chapter.
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The grouping of accelerograms according to their site impedance in

Table 3 can be condensed as follows:

Number of
Lrm Impedance, I, (ft/sec)xlO Accelerograms

81 4.0 < I < 5.5 13

82 1 < 3.9 16

The accelerograms recorded at Helena and Temblor are not included in

these groups because the estimated impedance values for these sites,

based on the available data, are considerably higher than those of the

other sites and could result in Pn anomalous influence on the analysis.

The mean, median, and standard dev.iation spectrum shapes for the accel-

erograms in these two groups for 0.02 damping ratio value are presented

in Appendix C as Figures CIO through C15.

The following are pertinent observations regarding these spectrum shapes:

" The mean and median shapes for each group are generally similar

to each other.

* The mean shape of the Group BI is generally lov.ier than that of the

Group B2.

" No clear trend is seen in the standard deviation shapes.

It has been foundl 2 that the accelerograms recorded at firmer site5 gen-

erally show lower DAFs than those for the accelerograms recorded at

softer sites. This is indicated by the second observation above. It

would seem reasonable that ground motions recorded at soft sites would

show a predomitance of lower frequencies and those recorded at firm

sites would have higher predominant frequencies. Such a trend was not

strongly indicated by the results of this analysis because of the uncer-

tainty associated with the soil characteristics data, however, these re-

sults should not be considered as a negation of this belief.
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4. Epicentral Distances of Recording Stations

The accelerograms were arranged according to the epicentral distances

of the recording stations as follows (Table 4):

Epicentral Distance, D Number of

Group Miks Arcel erog rams

Cl 15 < D < 45 14

C2 L < 15 15

The accelerograms recorded at Hachinohe and Lima were not included in

the analysis because the reported epicentral distances for these rec-

ording stations are much longer than those for the other stations and

hence could have an anomalous influence on the analysis.

The mean, median, and standard deviation spectrum shapes for the accel-

erograms in the Groups CI and C2 for a 0.02 damping ratio are in Appen-

dix C as Figures C16 through C21. The following are pertinent observa-

tions regarding these spectrum shapes:

* The mean and median shapes for each group are similar to each other.

* The mean shapes for both the groups are approximately equal.

* The standard deviation shape for the Group Cl is considerably lower

than for the Group C2 for periods longer than 0.5 second.

Although the comparisons of the median spectrum shapes do not clearly in-

dicate predominance of lower frequencies for accelerograms recorded 3t

longer epicentral distances or predominance of higher frequencies in

records with shorter epicentral distances, the third observation above

would tend to confirm these effects. As other parameters, such as soil

characteristics, would also influence the response spectrum shapes, the

absence of ciear trends in this grouping are not unexpected. In addition,

epicentral distance per se may not be a significant factor with respect

to the response spcctrum shapes. This may be rarticularly true for earth-

quakes associated with fairly Ior:ng aul breaks. In such cases, the

- 25 -



distance between the station and the nearest point of surface rupture

might be more appropriate. Also, the reported epicentral distances may

not be the actual ones because epicenters cannot be located exactly.

E. GEOGRAPHIC GROUPING OF SPECTRUM SHAPES

The selected accelerograms were recorded at a number of different geographical

locales in seismically active areas of the world. The accelerograms were gen-

erated by earthquakes that originated in different geological settings and per-

haps by different earthquake source mechanisms.

In all, spectrum shapes for five different geographic groups of accelerograms,

including the ensemble, were statistically analyzed as follows:

Number of

Group Geographical Locale Accelerograms

I San Fernando Valley 8
earthquake

II Southern California 19

III California 23

IV Western U.S.A. 29

V Worldwide 33

The salient characteristics of the thirty-three accelerogram ensemble are

listed in Table I (Chapter III); those for the remainder of the above groups

are reproduced in Tables 5 through 8.

Mean, median, and standard deviation spectrum shapes for Groups I through IV

for 0.02 damping ratio are presented in Appendix C as Figures'C22 through

C33. Ensemble spectrum shape statistics for 0.02 damping ratio (Group V) are

in Appendix B as Figures B7 through B9.

A number of pertinent observations regarding comparisons of the spectrum shape

statistics for a geographical grouping can be made:

0 The mean and median shapes for each group are similar to each other.

The mean shapes are generally smoother than the median shapes.
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" The Group I mean spectrum shape is generally higher than those for

the other groups, especially for the period ranges of 0.? - 0.4 sec

and 0.7 - 2.5 sec. In the latter period range, this shape is sub-

stantially higher than those for the other groups which indicates

a strong predominance of long period motion. In the short period

range, 0.04 - 0.02 sec, the Group I shape is slightly lower than

the Group V mean shape.

* The Group II mean spectrum shape is somewhat higher than those for

Groups III, IV,.and V. This tendency is more pronounced for the

longer period range (greater than 0.5 sec). This shape is slightly

lower than the Group IV and V shapes in the short period range, 0.04

- 0.2 sec.

* The mean spectrum shapes for Groups Ilt, IV, and V are close to each

other.

* The standard deviation spectrum shapes show more variations than the

mean shapes.

" The Group I standard deviation spectrum shape is higher than those

for the other groups in the period ranges of 0.2 - 0.4 sec and 1.0

- 2.5 sec, with the exception that the Group V shape is substantially
.higher in the range of 1.0 - 1.25 sec but lower than the others in

the remaining period ranges.

* The Group II and IIl standard deviations are similar. Both are sub-

stantially lower than those for Group IV and V in the short period

range, 0.04 - 0.1 sec.

The Group IV standard deviation shape is similar to that for Group

V except it is lower than the latter in the period ranges of 0.04 -

0.1 sec and 0.8 - 1.2 sec.

* The ground motions recorded in Califor•iia are predominant in the

period ranges of 0.2 to 2.5 sec. This is particularly true for

the accelerograms generated by the San Fernane.dA earthquake. Incor-

poration of the spectrum shapes from the other parts of the western

U.S.A. and worldwide results in predominant dynamic amplification

in the short period range, 0.04 - 0.2 sec.

- 27 -



It appears appropriate to develop standardized design spectrum shapes on

the basis of the ensemble spectrum statistics for the following reasons:

0 The ensemble mean and standard deviation spectrum shapes appear to

encompass broader ranges of frequency content than those of any

other group. Thus, the predictions based on the ensemble statistics

would better represent the conditions not yet recorded in local areas

in addition to those recorded.

0 The reliability of the statistical measures and the predictions

based on them Increases with the sample size. The ensemble consists

of more earthquake records than any other group. Therefore, the

ensemble statistics and predictions based on them would be more re-

liable than those for any other group.

F. SUMMARY OF FINDINGS

Statistical analyses of the ensemble of response spectrum shapes and the

grouped spectrum shapes were presented in this chapter. The spectrum shapes

were grouped in four ways; by maximum ground acceleration, by epicentral

distance, by soil characteristics, and by geographical locales. The major

findings were:

& The mean and median spectrum shapes for the groups are smooth In com-

parison with the shapes for individual accelerograms, and they are

similar to each other. The median shape is less smooth than the

mean and shows small quantitative variations from the mean, indica-

ting some skewness in spectrum shape data.

• The mean and median shape values decrease for longer periods and

higher d'mping. The rate of decrease with longer periods, however,

decreases with higher damping, resulting in flatter shapes for

higher damping.

The standard deviation spectrum shapes show greater variations than

the mean and median, indicating greater variability of uncertainty.
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" The standard deviation shapes also generally decrease with longer

period and higher damping. However, tI, rates of decrease are rela-

tively smaller than those for the means and medians, indicating in-

creased relative uncertainty for longer periods and an indifference

of relative uncertainty with respect to .1iping.

" The influences of various seismic parameters on response spectrum

shape were indicated from the grouping approach. The significance

of the results of this part of the study, however, would be enhanced

if the followiing conditions could be met:

I. The uncertainties associated with some of the available data

are investigated and minimized.

2. A large number of reliable accelerograms are available so as to

allow variation of only one parameter while the others are kept

constant.

Because reliable ground motion data are sparse, it is difficult to satisfy the

second condition. The following significant observations, however, can be made

from the results of group analyses:

* The approash of using spectrum shape derived from the ground motion

analysis by normalizing the peak ground motion to u.nity was confirmed

because the peak ground accelerations and the spectrum shape values

had low correlation. Separate treatment of these two as independent

variables was therefore appropriate.

" Spectral amplification at a soft site can be expected to be larger

than at a firm site. The expected long period predominance for soft

sites and short period preaominance for firm sites were not confirmed

or rejected.

N The influence of epicentral distance on spectrum shape diminishes

with the increasing epicentral distances. Tne expected long period

predominance at longer epicentral distances was not indicated; nei-

ther was the rejection of this belief indicated.
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* The results of the geographic grouping revealed that the central ten•-

dencies of the groups, indicated by means and medians, do not vary

significantly with different geographical locales. Although the un-

certainties or standard deviations did show significant variations,

the ensemble represented a wide-range of frequency content much bet-

ter than any other group. Thus, the ensemble was adopted as the

basis for the recommended spectrum shapes.
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TABLE 2

GROUPING OF ACCELEROGRAMS ACCORDING TO MAXIMUM GROUND

ACCELERATIONS

Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Accelerogram

Parkfield #2

Parkfield #5

Lima

Parkfield #5

Castaic ORR

El Centro, 1940

Temblor

Olympia, 1949

Castaic ORR

V.N. Holiday Inn

Temblor

Lima

El Centro, 1934

Eureka

Hachinohe

Bank of California

El Centro, 1940

Olympia, 1965

Olympia, 1949

Hachinohe

El Centro, 1934

Taft

Universal-Sheraton

Eureka

Taft

Helena

Olympia, 1965

V.N. Holiday Inn

Bank of California

Helena

Golden Gate Park

Universal-Sheraton

Golden Gate Park

Component

N65°E

U85°E

118° E

N 50W

N210E

NS

N250 E

S860W

S690E

NS

tN65 0W

N820W

NS

N79 0 E

EW

N110E

EW

S4°E

N4°W

NS

EW

N210E

NS

N11IW

S69 0 E

EW

S86 0 W

EW

N790W

NS

N80OW

EW

NIO0 E

- 31 -

Maxi mum Ground
Acceleration,

g Units

0.51

0.47

0.42
0.40

0.34

0.33

0.33

0.31

0.29

0.28

0.28

0.27

0.26

0.26

0.23

0.23

0.22

0.20

0.19

0.19

0.18

0.18

0.18

0.18

0.16

0.16

0.16

0.15

0.14

0.13

0.13

0.13

0.11

Group AI

Group A2

;roup A3



TABLE 3

GROUPINGOF ACCELEROGRAMS ACCORDING TO T11E

SOIL I1*EDAdCE AT THE RECORDING STATIONS

Numbe

1
2

3

4
r

6

7

8

9

10

11

12

13

14

15

Recording Station Impi
ft

Helena

Temblor

Golden Gate Park

Cholame-Shandon r2

Cholame-Shandon r5

Ilachinohe

Castaic, ORR

Eureka

Lima

Van Nuys Holiday Inn

Olympia

Bank of California

Universal-Sheraton

Taft

El Centro

Note: Information presented in the above
and/or compiled from References 5,
16, 17, 18 and 19.

edance, I

x IO•

19.1

10.3

5.4

4.3
4.3

4.3 Group B1

4.3

4.3

4.2

3.0

2.1

1.6 Group B2

1.6

1.3

1.1

table is deduced
11, 13, 14, 15,
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TABLE 4

GROUPING OF ACCELEROGRAMS ACCURDING TO

EPICENTRAL DISTANCE OF THE RECORDING STATIONS

Number

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17.

Recording Station

Hachi nohe

Li ra

Taft

Olympia, 1965

Olympia, 1949

El Centro, 1934

Castaic ORR

Bank of California

Uni versdl-Sheraton

Eureka

El Centro, 1940

Van Nuys Holiday Inn

Golden Gate Park, S.F.

Helena

Temblor

Cholame-Shandon #5

Cholame-Shandon "2

Epi central
Distance,

M~iles

.100

10G

44

35

31

20 Group Cl

18

18

15

13

13

8
4 Group C2

4
3.3*

O.Ob*

* Shortest distance from the San Andreas fault

Note: Information presented'in the above table
from References 2, 3, 4, 5, 13, and 14.

is compilea
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TABLE 5

GEOGRAPHIC GROUP I:

SAN FERNANDO VALLEY EARTHQUAKE

Peak Ground
Acceleration,

q UnitsEarthquake

San Fernando

San Fernando

San Fernando

San Fernando

Year Recording Station

1971 Castaic, ORR,
California

1971 Bank of California,
California

1971 Universal-
Sheraton, Calif.

1971 V.11. Holiday,
Inn, California

Magnitude Component

6.6

6.6

6.6

6.6

N21°E
S69"E

N179°W

NS
EW

NS
EW

0.34
0.29

0.23
0.14

0.18
0.13

0.28
0.15
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TABLE 6

GEOGRAPHIC GROUP II:

SOUTHERN CALIFORNIA

Peak Ground
Acceleration,

g UnitsEarthquake Year Recording Station Magnitude Component

El Centro

El Centro

Kern County

Parkfield

Parkfield

San Fernando

San Fernando

San Fernando

San Fernando

Parkfield

1940

1934

1952

1966

1966

1971

1971

1971

1971

1966

El Centro,
California

El Centro,
California

Taft,
California

Cholame-Shandon #2
California

Cholame-Shandon #5
California

Castaic, ORR
California

Bank of Califor'da,
California

Universal-
Sheraton, Calif.

V.N. Holiday.
Inn, California

Temblor,
California

7.0

6.5

7.7

5.6

5.6

6.6

6.6

6.6

6.6

5.6

NS
EW

NS
EW

N21°E
$69°0E

U65 0E
Not Recorded

N5°W
N850E

N21°E
$69°E

NIl 0E
N70°W
US

EW

NS
EW

N650W
N25=E

0.33
0.22

0.26
0.18

0.18
0.16

0.51

0.40
0.47

0.34
0 .29

0.23
0.14

0.18
0.14

0.28
0.15

0.28
0.33
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TABLE 7

GEOGRAPHIC GROUP III:

CALIFORNIA

Earthquake

El Centro

El Centro

Kern County

San Francisco

Parkfield

Parkfield

San Fernando

San Fernando

San Fernando

San Fernando

Eureka

Parkfield

Year Recording Station

1940 El Centro,
California

1934 El Centro
California

1952 Taft,
California

1957 Golden Gate Park,
California

1966 Cholame-Shandon #2,
California

1966 Cholame-Shandon #5,
California

1971 Castaic, ORR,
California

1971 Bank of California,
California

1971 Universal-
Sheraton, Calif.

1971 V.N. Holiday,
Inn, California

1954 Eureka,
California

1966 Temblor,
California

Magnitude

7.0

6.5

7.7

5.3

5.6

5.6

6.6

6.6

6.6

6.6

6.6

5.6

Component

NS
EW

NS
EW

N210E
S69°E

N1O0 E
N90OW

N65°E
Not Recorded

N50W
N85°E

N210E
S69°E

N11 0 E
N79 0W

NS
EW

NS
EW

N79 0 E
N11°W

N65 0W
N25°E

Peak Ground
Acceleration,

gi Units

0.33
0.22

0.26
0.18

0.18
0.16
0.11
0.13

0.51

0.40
0.47

0.34
0.29

0.23
0.14

0.18
0.14

0.28
0.15

0.26
0.18

0.28
0.33
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TABLE 8

GEOGRAPHIC GROUP IV:

WESTERN U.S.A.

Earthquake

El Centro

El Ce',tro

Kern County

Olympia

ielena

San Francisco

Parkfield

Parkfieild

San Fernando

San Fernando

San Fernando

San.Fernando

Eureka

Olympia

Parkfield

Year

1940

1934

1952

1949

1935

1957

1966

1966

1971

1971

1971

1971

1954

1965

1966

Recording Station

El Centro,
California

El Centro,
California

Taft,
California

Olympia,
Washington

Helena,
Montana

Golden Gate Park,
California

Cholame-Shandon 62,
California

Cholame-Shandon #5,
California

Castaic, ORR,
California

Bank of California,
California

Universal-
Sheraton., Calif.

V.N. Holiday,
Inn, California

Eureka,
California

Olympia,
Washington

Temblor,
California

Magni tude

7.0

6.5

?. 1

7.1

6.0

5.3

5.6

5.6

6.6

6.6

6.6

6.6

6.6

6.5

5.6

Component

NS
EW

NS
EW

U21°E
569 0 E

N40 W
S860 W

NS
EW

N 10 0 E
N801 W

N65°E
Not Recorded

N50 W
1485o E

N210E
S690 E

N11 0E
N790W

NS
EW

NW
EW

N79 E
N11°W

S40E
S860W

N650W
N250 E

Peak Ground
Acceleration,

Units

0.33
0.22

0.26
0.18

0.18
0.16

0.19
0.31

0.13
0.16

0.11
0.13

0.51

0.40
0.47

0.34
0.29

0.23
0.14
0.18
0.13
0.28
0.15
0.26
0.18

0.20
0.16

0.28
0.33
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FIGURE 2. ENSEMBLE OF n RESPONSE SPECTRUM SHAPES
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V. EFFECTS OF EARTHQUAKE DURATION

A. GENERAL

It is generally thought that long duration shaking is more damaging to build-

ings than short duration shaking, even though the amplitues may be equal. Al-

though the duration of strong shaking may not directly affect the onset of

damage, damage could be increased by continued strong motion. Thus, it seems

reasonable to postulate that damage potential of an earthquake is directly

dependent on the response levels induced and their duration. For this reason

the effects of- duration of strong seismic motion were included in this study.

The response spectrum, which is normally used to define seismic input motion,

is a plot of the maximum values of a specified response paramLter. The re-

sponse spectrum permits ready evaluation of the frequency content of the

seismic input motion. However, the duration of the maximum responses and

their frequency of occurrence are not discernible from the spectrum curve.

It is therefore possible that response levels smaller than the maximums may

exist, which might induce greater structure damage. The study was structured

so as to investigateresponse levels, in addition to the maximums, that might

be significant from thp-viewpoint of potential damage, and how these levels

and their duration are affected by the earthquake duration.

Detailed information regarding the relationship between building damage and

structural response levels and durations is not available. Attempts, however,

are being made to estimate the influence of structural response level and its

duration on building damage by low-cycle fatigue. 2 0

B. ANALYTICAL APPROACH

A recently developed technique of period-amplitude-time (PAT) contour mapping21

of response time-histories was used in these studies.

The pseudo absolute acceleration response time-histories of a family of single-

degree-of-freedom systems with different natural periods and 2% damping

ratio subjected to a ground motion were generated and the response amplitudes

enveloped to obtain response envelope time-histories. The response envelope
k
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contours corresponding to a number of response levels were then plotted on a

period-elapsed time plane. The PAT plots thus generated were advantageous in

studying the duration of various response levels for each earthquake. The num-

ber of cycles at a given response level were approximately determined by first

obtaining the total time extent of the response level contour for a given per-

iod and then taking the ratio of the time extent to the period.

C. PAT PLOT STUDIES AND RESULTS

Eight different accelerograms generated by four important earthquakes were

selected for the PAT plot studies (Table 9). The PAT plots for these accel-

erograms, normalized to a 1.Og maximum ground acceleration, for a 0.02 damp-

ing ratio are in Appendix 0 as Figures nl through D8. It can be seen from

Table 9 that the El Centro and Taft acc(elerograms have a fairly long strong

motion duration and the Helena and Goldtn Gate Park have relatively short dura-

tions. The PAT plot studies of these accelerograms are indicative of the dura-

tion effects of a range of strong motion durations.

The results of the PAT plot studies of the selected accelerograms are sum-

marized in Tables 10 through 17. The predominant periods for these accel-

erograms are those with fairly large DAFs (see the response spectrum shapes

in Appendix A). The total durations of different response levels for each

period were scaled from the PAT plots. The DAF values corresponding to the

periods are also listed.

D. OBSERVATIONS

* Although Helena and Golden Gate Park records are dominant in the 0.10

to 0.20 sec period range, El Centro (NS) is also strong in this

range.

* All records participate in the 0.10 to 0.50 sec period range.

* El Centro and Taft are dominant for periods longer than 0.5 sec.

* The number of cycles decreases with period, as expected.

* Normalized responses as S-eat as 4.0 or more appear out to 0.5 sec

period.
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The above observations lead to the following interpretation:

* Both the short and long duration motions show significant and compar-

able dynamic amplification for periods shorter than 0.4 sec. Thus,

the duration effect on the response spectrum shape for periods shorter

than 0.5 sec -- a significant period range for nuclear power F:.int

structures -- can be considered relatively small. For longer periods,

however, the short duration records show significantly smaller dyna-

mic amplification than the long duration records. The spectrum shapes

for longer periods would thus generally tend to be higher for long

duration motions than the. short duration motions. This trend is reason-

able because short duration shaking cannot contain significant long

period motion nor permit the longer response build-up times renuired

for major response of long period structures.

o The total durations of various normalized response levels for a given

period are generally longer for the long duration accelerograms than

those for short duration motion. This indicates that the almost-

free vibrations that ensue after the strong shaking are quickly

damped out and thus would not result in a prolonged large-amplitude

response.

The above observations confirm the higher overall damage potential of

long duration earthquakes because they would excite structures over a

much wider range of frequencies. Large-amplitude structural responses

would be more prolonged for long duration earthquakes, and damage once

started, would tend to progress.

SUMMARY OF MAJOR FINDINGS

* The e3rthquake duration effect on the response spectrum shape for

periods shorter than 0.4 sec -- a significant period range fnr nuclear

power plant structures -- is small. The shape for longer periods,

however, would generally tend to be higher for long duration motions

than for short duration motions.
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* Long duration earthquakes could be potentially more damaging than

those of short duration because of the following reasons:

1. Long duration earthquakes would excite structures and structure

components over a much wider range of frequencies.

2. Large-amplitude structural responses would be more prolonged

for long duration earthquakes, and once damage is started, it

would tend to progress.

3. Short duration earthquakes appear to induce significantly fewer

cycles of damaging response for periods less than 0.4 sec, than

do longer duration earthquakes. For the purpose of this compari-

son, response accelerations greater than 0.5g are assumed to be

damaging.

4. Long duration earthquakes also induce a significant number of

cycles of damaging response in periods greater than 0.4 sec.
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TABLE 9

STRONG MOTION DURATIONS 3 OF THE ACCELEROGRAMS

SELECTED FOR THE PAT PLOT STUDIES

Number Accelerogram Component
Strong Motion
Duration, sec

I

2

3

4

El Centro, 1940

Taft

Helena

Golden Gate Park, S.F.

NS
EW

N21°E
S69 0E

NS
EW

NlO*E
N90gW

24

17

4

3
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TABLE 10

RESULTS FROM1 PAT PLOT STUDIES

OF EL CENTRO, 1940, NS

Number

I

Predominant
Period. sec

0.136

2 0.248

3 0.451

4 0.551

S 0.900

Normalized
Response in

Excess of

1.0
2.0
3.0

1.0
2.0
3.0

1.0
2.0
3.C

1.0
2.0
3.0

1.0

Total Duration.
sec

2.90
0.90
0.15

4.10
0.90
0.20

10.00
5.00
1.10

6.80
4.40
0.70

8.5

No. of
Cycles

21
7

1

17
4
1

22

212

OAF

3.63

3.55

3.49

3.43

2.12

12q

10

TABLE 11
RESULTS FROM PAT PLOT STUDIES

OF EL CENTRO, 1940, EW

Number

1

2

3

4

5

6

Predominant
Period, sec

O.k:48

0.302

0.451

0.551

0.744

1.226

Normalized
Response In
Excess of

1.0
2.0
3.0
4.0

1.0
2.0

1.0

1.0
2.0
3.0

1.0
2.0

1.0
2.0

1.0

Total Duration,
sec

17.4
7.0
2.7
0.8

21.1
3.3

12.4

7.7
6.7
2.5

16.7
5.6

18.1
3.7

8.5

No. of
Cycles

70
28
11
3

70
11

28

14
12
5

22
.8

15

3

4

OAF

4.36

2.90

3.84

3L79

2.27

2.25

1.477 2.10
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TABLE 12

RESULTS FROM PAT PLOT STUDIES

OF TAFT, N210E

Normalized
Predominant Response in

Number Period, sec Excess of

1

2

0.244

0.369

0.499

0.673

0.822

1.0
2.0
3.0

1.0
2.0
3.0
4.0

1.0
2.0

1.0
2.0

1.0
2.0

Total Duration,
sec

9.6
2.2
1.2

10.3
5.0
3.2
0.3

9.0
2.0

11.8
0.8

18.1
2.9

No. of
Cycles

43
10
5

28
14
91

OAF

3.67

4.30

2.87

3.28

2.3

3

4

18
4

18
1

22
4

5

TABLE 13

RESULTS FROM PAT. PLOT STUDIES

OF TAFT, S69 0E

Number

1

2

3

4

S

Predominant
Period, sec

0.203

0.334

0.451

0.609

0.822

Normalized
Response in
Excess of

1.0
2.0
3.0

1.0
2.0
3.0
4.0

1.0
2.0
3.0
4.0

1.0
2.0

1.0
2.0

Total Duration,
sec

12.2
8.8
0.8

18.1
5.3
1.2
0.2

12.4
4.0
2.2
0.6

10.7
0.7

7.2
1.8

No. of
Cycles OAF

60
43

4

54
16
4
1

28
9
5
1

18
1

3.58

4.25

4.58

2.10

2.119
2
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TABLE 14

RESULTS FROM PAT PLOT STUDIES

OF HELENA, NS

Predominant
Number Period, sec

I 0.111

Normal ized
Response in
Excess of

1.0
2.0
3.0

1.0
2.0
3.0
4.0

1.0
2.0

Total Duration,
sec

3.6
1.6
0.1

3.8
1.9
1.1
0.6

5.4
1.7

No. of
Cycles DAF

3.33

2 0.150

32
14
1

25
13
7
4

13
4

5.09

3 0.408 2.45

TABLE 15

RESULTS FROM PAT PLOT STUDIES

OF HELENA, EW

Predominant
Number Period, sec

1 0.183

Normal ized
Response in
Excess of

1.0
2.0
3.0

i.0
2.0
3.0

1.0
2.0
3.0

Total Duration,
sec

3.5
2.5
0.5

3.2
1.3
0.8

5.1
1.9
0.6

No. of
Cycles DAF

2 0.274

19
13
3

12
5
3

14
S
2

3.86

3.64

3.283 0.369
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TV.BLE 16

RESULTS FROM PAT PLOT STUDIES

OF GOLDEN GATE PARK, tIO 0 E

Predominant
Number Period, sec

1 0.111

0.150

Normal ized
Response in
Excess of

1.J
2.0

1.0
2.0
3.0

1.U
2.0
3.0

2

Total Duration,
sec

3.0
1.3

2.6
1.8
0.5

3.8
2.4
1.2

No. of
Cycles

27
11

17
12
3

15
10
5

2.97

3.74

3. 71

OAF

3 0.248

TABLZ 17

RESULTS FROM PAT PLOT STUDIES

OF GOLDEN1 GATE PARK, N80 0 W

Predominant
Number Period, sec

1 0.136

Normal ized
Response in
Excezs of

1.0
2.0
3.0
4.0

1.0
2.0
3.0
4.0

1.0

Total Duration,
ScC

1.6
1.3
1.0
0.6

4.1
2.0
1.1
0.5

2.3

No. of
Cycl es OAF

12
10

7
4

18
9
5
2

4.78

2 0.244 4.32

3 0.408 6 1 .54
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VI. RECOMMENDED SPECTRUM SHAPES

A. INTRODUCTION

Nuclear power plants are structures of ý._fmrnount :iportance because they are

sources of power and because enurmous'potential risks are involved in the

case of partial or total structural failure due to inadequate scismic resis-

tance. Ideally, statistical predictions of seisn.ic forces, structural be-

havior, and potential damage and loss should form a basis for design optimi-

zation to achieve mininum potential risk. 2 2 Designs of nuclear ptwer plant

structures, based on seismic design conditions having sufficiently low prob-

abilities of exceedance considerably reduce or eliminate the risks of struc-

tural failure.

Pseudo atsolutc acceleration respon•e spectra are quite important ir- reprvtent-

ing the severity and Frequency content ..f the seismic ground motions. As rioted

prevt.'usly. they are also useful in determining the seismic forces inc,.ced in

a structure. Statistica' ,'redictions of pseudo absolute acceleratin respont,e

spectra should therefore provide a rational basis for probabilistically esti-

mating the seismic input motion for structural designs.

Selection of spectrum shapes (i.e., pseudo absolute acceleration response'

spectra for ground motions normalized by the peak ground acceleration) is oat

important step in deriving the pseudo absolute acceleration response spectra.

Recommendations for the use of spectrum shapes for damping ratios 0.005, 0.01,

0.02, 0.05, 0.07, and 0.10 are presented at the end of this chapter. The

recommended spectrum shapes are based on the probabiiity distributions consi-

dered suitable for the spectrum shape ensemble data.

B. kuCOHMENDED SPECTRUM SHAPES

In view of the relationship between the pseudo absolute acceleration spectrum

and the DAF, probabilistic estimation of the peak ground accelerations and the

spectrum shape values is necessary for predicting the pseudo absolute accelera-

tion spectra. Such peak ground accelerations and spectrum shapes then shou!d

be combined probabilistically to derive the spectra. It must be noted that

deterministic estimates of very high peak ground accelerations based on a
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postulated extreme earthquake occirrence when directly combined with spectrum

shapes representing fairly '.vei probab;lIties of exceedance could result in ex-

treme seismic conditions 3nd erence unduly conservative designs. Pseudo abso-

lute acceleration response sp-ctra, " for different probabilitriLs of exceed-

ance can be derived by using pribat-ility density functions (:cO) of peak

ground accelerations (0) and £Ais (..:) as discussed herein.

Let random variables ., ., and Y represent a, , and D, respectively. Then,.j

Equation (17) can ve rewritten as:

' = v .(19)

Because of the low correlation between and Y noted in Chapter IV. these

variables can be considered independent and their joint r,,:f can be derived

by Equation (20).

f V y) = ,C.) , (201

in which

f , y) = joint rdf' of X and Y

f x(A) = pOf of ;0 . :

.fy i) -- P f of Y, y 0 ,

tNow, the z.df of ., f,(;:) can be derived by Equation (21).
I-

?2(z) t ' f (rfn) ,i•, d] , C (21)

in which

].',n =dummy variables of integration

The oCf of Z or 3a can be used to derive different probabilities for S..
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Probabilistic estimation of tlhe peak ground accelerations is not within the

scope of the present study. Probability estimation for DAFs are presented

below.

0 Probability Estimation for DAF

As liscussed in Chaoter III, the spectrum shape ensemble statistics, such

as mean, median, and standard deviation were computed for 108 different

periods in the period range under consideration. The coefficient of skew-

ness, or third moment, and the coefficient of kurLosis, or fourth mment,

were also determined for these periods. It is not surprising that the

third and fourth moments varied considerably from period to period in

view of the nature of response spectrum shapes, which tend to have pro-

nounced peaks and valleys, especially at low damping values.

The skewness coefficients are positive, which indicates a distribution

with a pronounced tail to the right, in this case away from the zero

value. This is acceptable because response spectra are constructed with

absolute peak values. The values of s':ewness vary widely between the

general limits of 0 and 4. However, the middle period range of, say

0.02 to 0.75 seconds, has skewness values much less than either the shorter

or longer periods, indicating for this range that the distribution is

closer to the normal distribution symmetry. Over a range of damping val-

ues, the skewness coefficient averages about 0.3 to 0.4 for periods from

0.10 to 0.75 seconds and about 1.00 to 1.40 for other periods. The co-

efficient of Ljrtosis or flatness also is less in the middle period range

with average values of about 2.3. This indicates more peaked'distribu-

tion than normal. At the other periods, however, the kurtosis coefficient

averages greater than 3, indicating flatter than the normal peaks.

These data, plus comparisons of mean and median values, indicate that

there is more variation in the short and Ionq period ranges than between

0.20 and 0.75 seconds. In general, a skewed distribution, with a 'ero

lower limit, occurs over the whole period range of interest.

It is apparent from these observations that any one of several distri-

butions would be effective. Three of these distributions, namely normal

or Gaussian with appropriate truncation in view of the postulated abso-
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lute value for OAF, log normal, and extreme type II, were tried on the

OAF ensemble for 0.02 damping ratio. All of these distributions are

statistically acceptable within the range of the data.

The log normal distribution, given by Equation (22), was considered the

most desirable because it is convenient to use and has been found effec-

tive for ground motions generated by underground explosions.23

D (T., C; y) = 'M (T.,i.) (T., Y (22)

in which

y = standardized normal variable

p(Ti., r,) = geometric deviation for period, Ti., and damp-

ing ratio, C

r'D(Tj, 4) = median OAF for period, T., and damping ratio,

4, computed by using the mean and standard

deviation of OAF (as shown below). It differs

only slightly from the median described in

Chapter III

D (T., C; y) -OAF for period, T., and damping ratio, ., asso-J J'

ciated with the standardized normal variable, y.

The parameters, i"'M zd B are computed by using the ensemble mean and stan-

dard deviation as shown in Equations (23) and (24).

5T0 , T mD (Tj,r,) exp [- ½sD(T.,)] (23)

= exp n ( -. ,L)) 2 + i (24)

in which

rr D(T ,) = mean OAF for period, TV, and damping ratio, r,
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SD(TJi) standard deviation DAF for period, Ti., and damping
ratio, C

n= natural logarithm

exp = exponentiation

The parameters, mffD and 6 were computed for all 108 different periods to

derive the spectrum shapes for different y values of 0.0, 1.0, 1.645,

and 2.0 corresponding to probabilities of exceedance of 50%, 15.8%, 5%

and 2.3%, and for all damping ratios. These spectrum shapes are pre-

sented In Appendix E as Figures El through E6. Equation (22) shows

that the y = 0 curve is the median shape.

These spectrum shapes are smooth when compared with spectrum shapes of

individual accelerograms and form the basis for the recommended spec-

trum shapes.

The spectrum shapes in Appendix E for the above y values consistently

follow a basic shape shown in Figure 3.

DAF, D b

1"0

Period, T sec

FIGURE 3. BASIC SPECTRUM SHAPE
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A moderate amount of smoothing was required to derive smooth spectrum

shapes from those in Appendix E. The amount of smoothing decreased rap-

idly with smaller y values, longer periods, and higher damping ratios.

It is noted that these spectrum shapes were not obtained by enveloping

b-tt by appropriate visual fitting to the different ,-value curves.

Three spectrum shapes, defined as large (50%), small (15.81), and neg-

ligible (2.39) probabilities of being exceeded, were developed corre-

sponding to y-values of 0.0, 1.0, and 2.0 and are presented in Figures

4 through 6. Four-way log plots of the shapes are presented in Fig-

ure 7. In addition, numerical data for the shapes, including the con-

trol points, A, 8, and C, and parameters b and -3 are listed in Table

18 to facilitate the reconstruction of these curves. The curves in the

vicinity of point A are extrapolaticns of the ..- curves in Appendix E

because the original shapes, due to limitation of the input data, were

computed to 25 cps frequency or 0.04 sec period. These extrapolations,

however, do not result in any significant errors.

Comparisons of the recoinmended spectrum shapes for a 0.02 damping ratio

with the current AEC criteria and other shapes proposed by Newmark."',

Housner2 5 , and Blume are presented in Figure 8.

The usefulness of the recommended spectrum shapes is demonstrated"F by

the fact that a time-history generated to match a spectrum curve for one

damping-ratio shape matches quite well with the curves for other damping

ratios. Such matching of spectrum shapes for different damping ratios

by a single time-history has not been satisfactorily obtained so far

and indicates the appropriateness of the recommended shapes with respect

to damping ratio relationships.

C. MAJOR FINDINGS

The major findings from these analyses are:

0 The log normal, truncated normal, and extreme type II probability

distributions were found statistically acceptable for the spectrum

shape ensemble data. The log normal distribution was adopted for

the further analyses because it is the most convenient to use.
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0 The current AEC design spectrum shape for a 2% damping ratio is

below the small probability of exceedance shape for periods shorter

than 0.4 sec and for periods longer than 0.9 sec.

* The Newmark spectrum shape is consistently above the small probabil-

ity of exceedance shape, except for a short interval in the vicinity

of zero period.

a The Housner spectrum shape is below the large probability of exceed-

ance shape for periods shorter than 0.4 sec, and it is above the latter

for longer periods.

* The Blume F-factor spectrum shape for a 2% damping ratio and stan-

dardized normal variable value of 1.0 is consistently higher than

the small probability of exceedance shape.

D. RECOMMENDATIONS

To minimize risk in the seismic design of important installatiuns, such as

nuclear power plants, the seismic load criteria should incorporate such fac-

tors as regional seismicity, geotectonics, etc. The following recommenda-

tions, pertinent to the spectrum shapes described herein, are intended to

partly achieve the seismic design objective. Other ground motion charac-

teristics, such as peak ground acceleration and strong motion duration, in

the case of time-history analyses, should be given thorough consideration

to fully satisfy the design objective. The following are recommended:

* The curves shown in Figure 4 should be considered as lower bound

spectrum shapes for any site.

* For sit-s associated with relatively low risks, e.g., sites lo-

cated in low seismicity areas, the design spectrum shapes for

different damping ratios should not be lower than the small

probability of exceedance spectrum shapes shown in Figure 5.

* For sites associated with relatively high risks, e.g., sites lo-

cated in high seismicity areas, the design spectrum shapes for
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differcnt damping ratios should not be,lcr.-er than the negligible

probability of cxceedancc spectrum shoaps -.hown In Figure 6. Be-

cause these curves represent extreme ground motion amplification,

their use should be carefully coordinated with the selection of

the peak ground acceleration. Care must be exercised to ensure

that the total seismic exposure for a site is compatible with the

risk exposure involved and not unduly conservative.

* For sites judged to be significantly responsive to ground motion

components with periods longer than 0.5 seconds, the above shapes

should not be used without appropriate modifications for the par-

ticular site conditions.
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TABLE 18

NUMERICAL DATA FOR RECOMMENDED SPECTPUM SHAPES

Probability
of Being
Exceeded

Large

(50•;")

Smal 1

(15. 8;)

Damping
Ratio

0.005

0.01

0.02
0.05

0.07

0.10

0.005

0.01

0.02

0.05

0.07

0.10

Point A

T OAF

Point B

T DAF

Poi nt C

T DAF

0.03

0.032

0.034

0.036

0.038

0.040

0.028

0.029

0.030

0.031

0.032

0.033

0.025

0.026

0.027

0.028

0.029

0.030

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.12

0.12

0.12

0.12

0.12

0.12

0.11

0.11

0.11

0.11

0.11

0.11

0.09

0.09

0.09

0.09

0.09

0.09

3.2
2.8

2.5

2.0

1.85
1.7

5.1

4.1

3.5

2.6

2.2

2.0

0.35
0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

4.0
3.5

2.9

2.3

2.0

1.75

6.2

5.0

4.2

3.1

2.6

2.3

Parameters for,
the curve, bT

b o

1.20 1.46

1.08 1.16

0.93 1.075

0.76 1.053

0.67 1.038

0.59 1.032

2.34
2.00

1.73

1.35

1.13

1.02

4.32

13.68

3.12

2.40

2.03

1.77

0.928

0.872

0.843

0.794

0.790

0.776

0.761

0.692

0.604

0.511

0.489

0.470

Negligible

(2.3-4)

0.005
0.01

0.02

0.05

0.07

0.10

1.0

1.0

1.0

1.0

1.0

1.0

8.1
6.2

4.8

3.2

2.6

2.3

9.6
7.6

5.9

4.1

3.4

2.9
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APPENDIX A

Response Spectrum Shapes

Figures Al through A66
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APPENDIX B

Ensemble Spectrum Statistics

Figures B1 through B18
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APPENDIX C

Group Spectrum Statistics

Figures Cl through C33
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APPENDIX D

Period-Ampli tude-Timne (PAT) Plots
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APPENDIX E

Spectrum Shapes Based on Log NJormal:Distribution

Figures El through E6
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