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1.0 BACKGROUND/PURPOSE 

 Farley uses a vortex correlation developed by Harleman (1959) for a vertically downward 

configuration that differs from the 45 degree upward flow pipe used at Farley.  This correlation 

is shown to over-predict the submergence by a factor of three when compared to Catawba and 

McGuire test data at the Froude number that corresponds to the maximum flow rate from the 

CST.  This would be a sufficient margin to justify using the Harleman correlation to support the 

LAR if the test data were established to be applicable.  Achieving this requires an acceptable 

description of the plant configurations, the test configurations, and the test data.  Thus, it is 

necessary to provide a complete description of the tests and test results for each test used to 

substantiate determination of critical submergence that includes the following: 

1. Drawing of the plant tank and the plant suction pipe within the tank that provides all 

relevant dimensions, 

2. Drawing of the corresponding test configuration that provides all relevant 

dimensions, 

3. Description of how quantitative air entrainment is determined during testing, 

4. Description of conduct of the test that includes any observations, and 

5. Summary of the test data such as a plot of critical submergence as a function of 

Froude number. 
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2.0 RESPONSES TO RAIs FOR FARLEY CST TS VOLUME LAR 

1. Drawings of the plant tank and the plant suction pipe within the tank that provide all 

relevant dimensions are the following applicable Farley CST drawings: 

U-161693 Version 2.0; Unit 1 CST General Plan, 

U-213481 Version 3.0; Unit 2 CST General Plan, 

U-161703 Version B; Unit 1 CST 8 inch Auxiliary Feed Pump Suction Nozzle, 

and 

U-213493 Version A; Unit 2 CST 8 inch Auxiliary Feed Pump Suction Nozzle. 

2. Drawings of the corresponding test configuration that provide all relevant 

dimensions are as follows: 

 D.C. Cook simulation, RWST dimensions:  

48 feet diameter, 

32 feet high with a 24 inch diameter suction pipe. 

 The model was a 12 foot diameter and 6 feet high tank with a 5.73 inch horizontal suction 

pipe that was approximately 5.5 inches above the tank floor and approximately 1.75 feet of 

suction piping inside the tank.  See Figure 2-1 that is re-drawn from the figure in the referenced 

paper which is difficult to read in the original reference (Sanders et al., 2001).  

 The scaled tests for D.C. Cook provide insights into whether important rotational flow 

conditions are generated as a result of the tank geometry, the drain down transient, etc.  These 

results are compared to the Harleman correlation, on page 12 of the report (FAI, 2009), where 

the submergence is increased by one-half of the suction pipe diameter.  The submergence in the 

D.C. Cook experiments was defined with respect to the inside bottom surface of the suction pipe, 

as noted in Figure 5b of (FAI, 2009).  The chart in Figure 3 of (FAI, 2009) shows that the 

Harleman correlation agrees well with the results of the D.C. Cook tests.  Based on the D.C. 

Cook tests, the FAI report states that the Harleman correlation provides good agreement with the 

D.C. Cook data for critical submergence characterizing the onset of air entrainment for radial 

inflow process. 
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 Figure 9 (Johansson et al., 2006) of the Catawba FWST scaled tank configuration is the 

type of configuration used for the CST at Farley.  It has a suction port with a 45 degrees angled 

downward configuration that requires the suction flow to enter the pipe from below.  Figure 4 

(Johansson et al., 2006) provides the test configuration, as well as some of the essential tank and 

nozzle dimensions.  (The tank diameter is not shown, but estimated to be approximately 40 feet 

in diameter based on the drawing scale of Figure 4).  This downward oriented suction 

configuration acts to considerably suppress the potential for air intrusion as demonstrated in the 

main body of the FAI report (FAI, 2009) for a downward facing elbow which is part of a FAI 

investigation for Cooper’s CST (FAI, 2007).  This information for the downward facing elbow in 

the Cooper tests demonstrated that the water level had to be very close to the bottom of the 

elbow before gas intrusion would occur. 

3. Description of how quantitative air entrainment is determined during testing is 

described as follows: 

 The FAI report (FAI, 2009) does not exactly identify the method in which the quantity of 

air entrainment is determined in the experiments.  The following is related information provided 

in addition to the FAI report that best describes or discusses air entrainment:  

Upon reviewing the referenced paper documenting the D.C. Cook experiments 

(Sanders et al., 2001), it was observed that a rectangular Plexiglas box was built 

on the transparent downcomer piping.  This box was filled with water to 

compensate for the pipes’ curvature.  The flow through this region was video 

recorded to capture when a continuous stream of air bubbles was detected in 

each test.  In addition, the point at which the gas flow was estimated to occupy 

2% of the downcomer volume was also noted.  A similar technique was used to 

observe the onset of gas intrusion in the McQuire and Catawaba tests.   

Figure 3 of the FAI report (FAI, 2009) shows the results of air intrusion as 

Critical Submergence versus Froude number.  Results show that there is not 

much difference in the two methods:  visual detection of a continuous stream of 

bubbles and visual estimate that the gas volume fraction in the downcomer pipe 

is equal to 2%. 

A similar technique of constructing a rectangular box around the outlet pipe and 

filling the box with water was used to observe the onset of gas intrusion in the 

McQuire and Catawaba tests. 

  

Enclosure 6 to NL-13-1257



FAI/13-0392  Page 14 of 19 

Rev. 0  June, 2013 

In the Cooper experiments performed at FAI (FAI, 2007), the tests were 

performed in a long rectangular flume with the water added at one end and the 

suction oriented at the other end as illustrated in Figure 2-2.  This transparent 

configuration enabled the vortex behavior to be observed directly.  The tests 

included formation of very tight Type 6 vortices (Figure 2-3) that were so small 

that they did not cause any degradation in the pump performance.  In these 

experiments, it is conservative to assume that the air pulled in by the vortex is 

traveling at the same average velocity as the water.  With this no slip assumption, 

it follows that a vortex transporting a 1% void fraction would have a diameter 

that is 10% of the suction pipe diameter: 

2
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π
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D  0.1 D=  
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For the 4 inch suction pipe used in these tests, the vortex diameter would have to 

be more than about 3/8”.  From the stainless steel scale shown in Figure 2-3, the 

figure, the vortex diameter is much smaller that this which explains why the 

pump discharge flow rate was not degraded by the vortex.      

When air flow intrusion begins at a submergence consistent with radial inflow, 

this shows that the air intrusion is not due to a vortex generated through 

rotational flow.  Air intrusion consistent with radial inflow has nothing to do 

with rotational flows, i.e. vortex behavior.  If rotational flow in the tank 

produced a vortex, then air intrusion would occur at a higher water level than 

that calculated by radial inflow. 

The Harleman et al. correlation (Harleman et al., 1959) and the Lubin-Springer 

correlation (Lubin/Springer, 1967) can be viewed as defining (bounding) the 

Enclosure 6 to NL-13-1257



FAI/13-0392  Page 15 of 19 

Rev. 0  June, 2013 

minimum submergence that would prevent air intrusion in the absence of 

rotational flows that induce vortex formation.  In this regard, the Harleman 

correlation is conservative for defining the minimum submergence level where 

air intrusion would be expected to occur. 

 

 

Figure 2-2 FAI #1 flume test facility (side view) with a downward facing elbow (FAI, 

2007). 
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As noted in Section 3 of (FAI, 2009), the Oconee tests performed by Alden Labs 

for Duke Power (Johansson et al., 2006) were performed in two ways: with and 

without recirculation to the simulated BWST.  This is important for the 

assessment of vortex formation in the transient, because the outflow consumes 

much of the turbulence/swirl that is trying to organize into a vortex.  As noted in 

Section 2 of (Knauss, 1987): “Once a vortex is reduced in strength or dissipated, 

such as by wall friction, it takes some time for the flow to ‘reorganize’ and 

produce enough circulation for the vortex to reform.”  Examining the Oconee 

tests, it is noted that tests with no flow return to the tank have lower 

submergence levels than those with return flow to the tank.  The same behavior 

is observed in numerous FAI tests that have been performed for various tanks for 

different reactor sites.  Specifically, recirculating all of the suction to the tank is a 

very conservative representation of the flow field since it provides a steady-state 

source to eventually organize into a swirl and the level remains constant as this 

happens.  Representing the drain-down behavior results in water levels that are in 

a region bounded by the Harleman and Lubin-Springer radial inflow correlations. 

4. Description of conduct of the test that includes any observations, and 

 See the expanded discussion given above in point 3. 

5. Summary of the test data such as a plot of critical submergence as a function of 

Froude number: 

Figure 3 of (FAI, 2009) is a plot of the reported test data for the onset of air 

intrusion and the conditions that resulted in an estimate void fraction of 2%.  

These data points are represented in terms of dimensionless water submergence 

as a function of the Froude Number.  As discussed in point 1, the D.C. Cook tests 

are a representation of air intrusion (open loop) and steady state (closed loop) 

modes in which the water level, at a given flow rate, was decreased until air 

intrusion into the horizontal pipe was observed. 

Figure 3 of (FAI, 2009) also plots the Harleman et al. and Lubin-Springer 

correlations to compare to the experimental data from the D.C. Cook tests.  The 

Lubin-Springer correlation somewhat underestimates the critical submergence 

observed in the D.C. Cook tests.  However, the Harleman et al. correlation is in 

good agreement with the data for the critical submergence characterizing the 

onset of air entrainment.  The Harleman et al. correlation for horizontal suction 

pipe is described in the second equation on Page 13 of 25 of (FAI, 2009).  As 

noted earlier, the 0.5 is added because the submergences reported for the scaled 

D.C. Cook RWST are with respect to the inner bottom surface of the discharge 

pipe.  
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Figure 6 of (FAI, 2009) plots data which represents the test results of the scaled 

Oconee BWST during a drain-down transient.  The figure compares the onset of 

air entrainment test results for the no recirculation configuration with the two 

radial inflow correlations, Harleman et al. and Lubin-Springer.  The Oconee 

BWST is configured with a horizontal suction pipe that is flush mounted onto the 

side of the tank.  The difference between these tests and the D.C. Cook tests is 

that submergence defined as the water depth with respect to the centerline of the 

suction pipe.  The pipe had a smaller inner diameter which resulted in Froude 

numbers from one to four.  Here again, the Harleman et al. correlation applied to 

the horizontal suction pipe for tests in which the drain-down is represented is in 

good agreement with the data and bounds the test results. 

Figure 8 of (FAI, 2009) plots data taken from the McGuire and Catawba scaled 

experiments (Johansson et al., 2006).  This figure compares steady-state and 

transient (drain-down) data taken with downward facing elbow suction nozzles 

as illustrated in Figure 7 of (Johansson et al., 2006).  This is the suction 

configuration used for the Farley CSTs.  In addition to the test results, this figure 

shows a bounding correlation developed for air intrusion into the downward 

facing suction configuration for the CST at Cooper.  This correlation is presented 

on Page 21 of 25 of (FAI, 2009).  It is seen that the test data developed in the 

McGuire and Catawba experiments are in good agreement with that developed in 

the Cooper CST experiments.  Note that, like the test data discussed above for 

the Oconee BWST, the transient (drain-down) test data result in lower 

submergence water levels than the steady-state data.  Also, once the Froude 

number becomes less than 0.5, gas can begin to accumulate in the discharge 

piping as was observed for the D.C. Cook tests.  With this background, the FAI 

report (FAI, 2009) concludes that the McGuire and Catawba scaled experiments 

provide a significant technical basis for assessing both the Farley and Vogtle 

RWST behaviors.  Since the Farley CSTs have the same downward facing 

suction configuration, this conclusion can also be applied to the Farley CSTs. 
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