UNIT 2

FNP-2-ESP-0.3 5-19-2010 Revision 12

FARLEY NUCLEAR PLANT

EVENT SPECIFIC PROCEDURE

FNP-2-ESP-0.3

NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS)

PROCEDURE USAGE REQUIREMENTS-per FNP-0-AP-6	SECTIONS
Continuous Use	ALL
Reference Use	
Information Use	

SAFETY RELATE

Approved:

David L. Reed(for)

Operations Manager

Date Issued: 01/11/11

NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS)

Revision 12

TABLE OF CONTENTS

<u>Procedure Contains</u> <u>Number of</u>	Pages
Body16	
Figure 11	
Figure 21	
Figure 31	
Attachment 11	
Attachment 21	
Foldout Page1	

NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS)

Revision 12

A. Purpose

This procedure provides actions to continue plant cooldown and depressurization to cold shutdown, with no accident in progress, under conditions that allow for the potential formation of a void in the upper head region with a vessel level system available to monitor void growth.

B. Symptoms or Entry Conditions

- I. This procedure is entered after completing the first ten steps of FNP-2-ESP-0.2 when the limits of FNP-2-ESP-0.2 must be exceeded; from the following:
 - a. FNP-2-ESP-0.2, NATURAL CIRCULATION COOLDOWN TO PREVENT REACTOR VESSEL HEAD STEAM VOIDING, step 11
 - b. FNP-2-ESP-0.2, NATURAL CIRCULATION COOLDOWN TO PREVENT REACTOR VESSEL HEAD STEAM VOIDING, step 14

Page 1 of 16

Enclosure 3 to NL-13-1257 6/14/2013 12:26 NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR FNP-2-ESP-0.3 Revision 12 REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS) Step Action/Expected Response Response NOT Obtained [CA] To ensure proper plant response, FNP-2-EEP-0, REACTOR TRIP OR SAFETY INJECTION, must be entered upon any SI actuation. CAUTION: The first ten steps of FNP-2-ESP-0.2, NATURAL CIRCULATION COOLDOWN TO PREVENT REACTOR VESSEL HEAD STEAM VOIDING, must be performed before continuing with this procedure. CAUTION: If RCP seal cooling had previously been lost, the affected RCP should not be started prior to a status evaluation. NOTE: • FOLDOUT PAGE should be monitored continuously. • To ensure adequate pressurizer spray, the priority for establishing RCP support conditions is 2B, 2A and then 2C. 1 [CA] Establish RCP support conditions.

Step 1 continued on next page.

NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS)

Revision 12

Step Action/Expected Response Response NOT Obtained

<u>CAUTION</u>: To prevent heat exchanger damage, do not attempt restoration of RCP seal return flow unless the CCW miscellaneous header is aligned to an operating CCW loop.

1.1 Verify CCW cooling - ESTABLISHED.

1.1 Proceed to step 1.3.

1.1.1 Verify miscellaneous header aligned.

CCW TO SECONDARY HXS [] Q2P17MOV3047 open

- 23 4------
- 1.1.2 Verify flow indicated in the On-Service train.

HX 2A(2B,2C) CCW FLOW

- [] FI 3043AA
- [] FI 3043BA
- [] FI 3043CA
- 1.2 Verify seal return flow ESTABLISHED.

RCP SEAL WTR RTN ISO

- [] Q2E21MOV8100 open
- [] Q2E21MOV8112 open
- 1.3 Verify No. 1 seal support conditions established.
- 1.3.1 Maintain seal injection flow GREATER THAN 6 gpm.
- 1.3.2 Verify No. 1 seal leakoff flow WITHIN FIGURE 1 LIMITS.
- 1.3.3 Verify No. 1 seal differential pressure GREATER THAN 200 psid.

Step 1 continued on next page.

NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS)

Revision 12

Action/Expected Response Response NOT Obtained Step 1.4 Verify CCW aligned. CCW FROM RCP THRM BARR [] Q2P17HV3045 open [] Q2P17HV3184 open 1.5 Check RCP thermal barrier -1.5 Verify CCW flow isolated. INTACT. CCW FROM **RCP** RCP THRM BARR THRM BARR [] Q2P17HV3045 closed CCW FLOW [] Q2P17HV3184 closed HI[] Annunciator DD2 clear 1.6 Verify at least one RCP bus -1.6 Proceed to step 1.11. ENERGIZED. [] 2A 4160 V bus [] 2B 4160 V bus [] 2C 4160 V bus 1.7 Check CCW to RCP oil coolers -1.7 Perform the following. SUFFICIENT. 1.7.1 Verify CCW - ALIGNED. CCW FLOW FROM RCP CCW TO RCP CLRS OIL CLRS [] Q2P17MOV3052 open T₁O [] Annunciator DD3 clear CCW FROM RCP OIL CLRS [] Q2P17MOV3046 open [] Q2P17MOV3182 open 1.7.2 <u>IF</u> annunciator DD3 clear, THEN proceed to step 1.8, IF NOT proceed to step 1.11. Step 1 continued on next page.

NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS)

Revision 12

Step Action/Expected Response Response NOT Obtained

1.8 Check at least one RCP oil level - SUFFICIENT.

1.8 Proceed to step 1.11.

RCP 2A(2B,2C) BRG UPPER/LOWER OIL RES LO LVL

- [] Annunciator HH1 clear
- [] Annunciator HH2 clear
- [] Annunciator HH3 clear
- 1.9 Check RCS pressure GREATER THAN 1800 psig.

2C(2A) LOOP RCS WR PRESS

- [] PI 402A
- [] PI-403A

1.9 <u>IF</u> RCS within FIGURE 2 limits, <u>THEN</u> proceed to step 1.10, <u>IF NOT</u> proceed to step 1.11.

Step 1 continued on next page.

NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS)

Revision 12

Step Action/Expected Response

Response NOT Obtained

1.10 Check REACTOR VESSEL LEVEL indication - 100% UPPER HEAD.

- 1.10 Establish conditions to accommodate void collapse upon RCP start.
 - 1.10.1 Raise pressurizer level to greater than 67% using charging and letdown.
 - Raise charging flow. CHG FLOW
 - [] FK 122 adjusted
 - Reduce letdown flow.
 - 1.10.2 Raise SUB COOLED MARGIN MONITOR indication to greater than 40°F subcooled in CETC mode.
 - 1.10.2.1 Dump steam at a faster rate.
 - 1.10.3 Use PRZR heaters, as necessary to saturate the pressurizer water.

PRZR HTR GROUP VARIABLE

[] 2C

PRZR HTR GROUP BACKUP

- [] 2A
- [] 2B
- [] 2D
- [] 2E

Step 1 continued on next page.

NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS)

Revision 12

Step Action/Expected Response Response NOT Obtained

CAUTION: Step 1.10 must be complete before starting any RCP.

NOTE: Changes in RCP configuration may affect pressurizer spray flow.

1.11 [CA] IF support conditions 1.11 Perform the following.

- 1.11 [CA] <u>IF</u> support conditions exist to start an RCP <u>THEN</u> start at least one RCP.
- 1.11.1 Start bearing oil lift pump.

RCP OIL LIFT PUMP

- [] 2B(2A, 2C)
- 1.11.2 Check oil lift pressure indicating light LIT.
- 1.11.3 Start RCP.

RCP

- [] 2B(2A, 2C)
- 1.11.4 $\underline{\text{WHEN}}$ RCP has operated for one minute, $\underline{\text{THEN}}$ stop bearing oil lift pump.

RCP OIL LIFT PUMP [] 2B(2A,2C)

1.12 [CA] <u>IF</u> at least one RCP started,

<u>THEN</u> go to FNP-2-UOP-2.1,

SHUTDOWN OF UNIT FROM MINIMUM LOAD TO HOT STANDBY.

- a) Continue efforts to establish RCP support conditions.
- b) <u>WHEN</u> support conditions exist to start an RCP, <u>THEN</u> return to step 1.
- c) Proceed to step 2.
 OBSERVE NOTE PRIOR TO
 STEP 2.

Revision 12

6/14/2013 12:26 NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR FNP-2-ESP-0.3 REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS) Step Action/Expected Response NOTE: To prevent excessive pressure variations, saturated conditions should be established in the pressurizer prior to lowering pressurizer level. Establish pressurizer level to 2 accommodate void growth. 2.1 Check pressurizer level -25%-35%. 2.2 Place charging flow control in manual. CHG FLOW [] FK 122 [CA] Continue RCS cooldown. 3.1 [CA] Maintain RCS cold legs cooldown rate - LESS THAN 100°F IN ANY 60 MINUTE PERIOD. RCS COLD LEG TEMP [] TR 410 3.2 [CA] Maintain SUB COOLED MARGIN MONITOR indication -GREATER THAN 36°F SUBCOOLED IN CETC MODE. 3.3 [CA] Maintain RCS cold leg temperature and pressure -WITHIN FIGURE 3 LIMITS.

Response NOT Obtained

2.1 Control charging and letdown as necessary.

[] PI 402A

2C(2A) LOOP RCS WR PRESS

RCS COLD LEG TEMP

[] PI 403A

[] TR 410

Enclosure 3 to NL-13-1257 6/14/2013 12:26 NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR FNP-2-ESP-0.3 Revision 12 REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS) Action/Expected Response Response NOT Obtained Step NOTE: Reactor vessel steam voiding may occur during RCS pressure reduction. This will cause a rapid rise in pressurizer level. 4 Begin RCS pressure reduction. 4.1 <u>IF</u> normal letdown in service, 4.1 Open only one PRZR PORV to THEN control auxiliary spray reduce RCS pressure. to reduce RCS pressure. 4.2 Maintain RCS cold leg temperature and pressure -WITHIN FIGURE 3 LIMITS. RCS COLD LEG TEMP [] TR 410 2C(2A) LOOP RCS WR PRESS [] PI 402A [] PI 403A [CA] Maintain pressurizer level 25%-90%. 5.1 Check pressurizer level -5.1 Raise pressurizer level using GREATER THAN 25%. one or both of the following. • Raise charging flow. CHG FLOW [] FK 122 manually adjusted • Reduce letdown flow.

Step 5 continued on next page.

6/14/2013 12:26 NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR FNP-2-ESP-0.3 Revision 12 REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS) Action/Expected Response Step Response NOT Obtained 5.2 Check pressurizer level - LESS 5.2 Perform the following. THAN 90%. NOTE: The intent of step 5.2.1 is to maintain the pressurizer liquid at saturation temperature. 5.2.1 Turn on additional pressurizer heaters. PRZR HTR GROUP VARIABLE [] 2C PRZR HTR GROUP BACKUP [] 2A [] 2B [] 2D [] 2E 5.2.2 Reduce pressurizer level to less than 90% by one of the following. • Control charging and letdown flow as necessary. Reduce charging flow CHG FLOW [] FK 122 manually adjusted Raise letdown flow. OR • Continue RCS cooldown to shrink inventory.

Enclosure 3 to NL-13-1257 6/14/2013 12:26 NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR FNP-2-ESP-0.3 Revision 12 REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS) Step Action/Expected Response Response NOT Obtained [CA] Check REACTOR VESSEL LEVEL 6 Perform the following. indication - GREATER THAN 44% UPPER PLENUM. 6.1 Raise RCS pressure. 6.1.1 Turn on additional pressurizer heaters. PRZR HTR GROUP VARIABLE [] 2C PRZR HTR GROUP BACKUP [] 2A [] 2B [] 2D [] 2E 6.2 Return to step 3. Check when to isolate SI accumulators. 7.1 Check power to discharge 7.1 Close accumulator discharge valves - AVAILABLE. valve disconnects using ATTACHMENT 1. 2A(2B,2C) ACCUM DISCH ISO [] Q2E21MOV8808A [] Q2E21MOV8808B [] Q2E21MOV8808C 7.2 [CA] WHEN RCS pressure less 7.2 Vent any SI accumulator that than 1000 psig, cannot be isolated. THEN close all SI accumulator discharge valves. ACCUM N2 VENT 2A(2B,2C) ACCUM [] HIK 936 open DISCH ISO [] Q2E21MOV8808A [] Q2E21MOV8808B SI ACCUM 2C 2A 2B[] Q2E21MOV8808C 2A(2B,2C) ACCUM N2 SUPP/VT ISO Q2E21HV [] 8875A [] 8875B [] 8875C open open open

Step 7 continued on next page.

NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS)

Revision 12

Step Action/Expected Response

Response NOT Obtained

7.3 [CA] <u>WHEN</u> SI accumulator discharge valves closed, <u>THEN</u> open and lock accumulator discharge valve disconnects using ATTACHMENT 2.

8 [CA] Maintain letdown flow.

8.1 <u>WHEN</u> letdown flow less than required,

<u>THEN</u> open additional letdown orifice isolation valves.

LTDN ORIF ISO 45 GPM

[] Q2E21HV8149A

LTDN ORIF ISO 60 GPM

- [] Q2E21HV8149B
- [] Q2E21HV8149C

OR

8.2 <u>WHEN</u> letdown flow less than required,

<u>THEN</u> adjust low pressure letdown control valve.

LP LTDN PRESS

- [] PK 145
- 9 [CA] Maintain seal injection flow to each RCP 6-13 gpm.

SEAL WTR INJECTION

[] HIK 186 adjusted

Enclosure 3 to NL-13-1257 6/14/2013 12:26 NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR FNP-2-ESP-0.3 Revision 12 REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS) Step Action/Expected Response Response NOT Obtained Check if RHR system can be _10 placed in service. 10.1 Check RCS hot leg temperatures 10.1 Return to step 3. - LESS THAN 350°F. RCS HOT LEG TEMP [] TR 413 10.2 Check RCS narrow range 10.2 Return to step 3. pressure - LESS THAN 350 psig. 2C(2A) LOOP RCS NR PRESS [] PI 402B [] PI 403B 10.3 Place RHR system in service using FNP-2-SOP-7.0, RESIDUAL HEAT REMOVAL SYSTEM. [CA] Continue RCS cooldown to 11 cold shutdown with RHR. ****************** CAUTION: Reactor vessel steam voiding may occur if the RCS is depressurized before the entire RCS is cooled to less than 200°F. 12 [CA] Continue cooldown of inactive portion of RCS. 12.1 Maintain RCS pressure -350-400 psig. 2C(2A) LOOP RCS NR PRESS [] PI 402B [] PI 403B

- 12.2 Verify both CRDM FANs STARTED.
- 12.3 Continue dumping steam from all SGs.
- 12.4 Check REACTOR VESSEL LEVEL indication 100% UPPER HEAD.

12.4 Return to step 11.

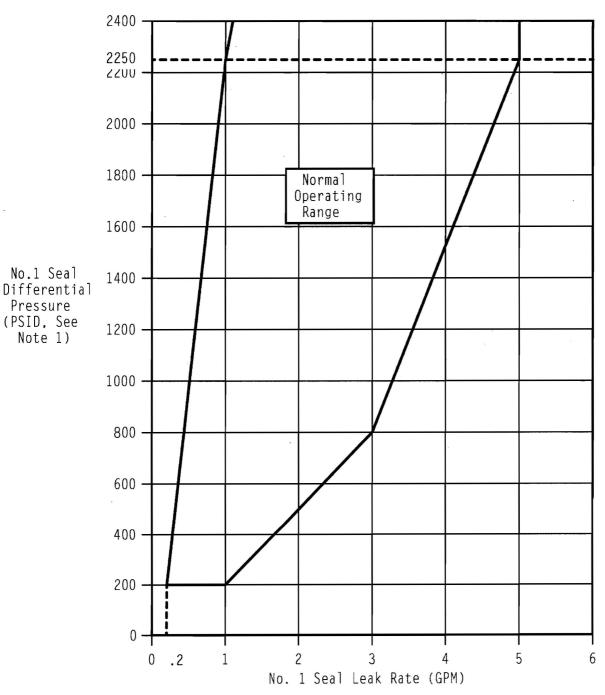
6/14/2013 12:26 NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR FNP-2-ESP-0.3 Revision 12 REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS) Step Action/Expected Response Response NOT Obtained Check if RCS depressurization _13 is permitted. FNP-2-SOP-68.0, INADEQUATE CORE COOLING MONITORING SYSTEM provides NOTE: detailed operating instructions for the core exit T/C monitor. 13.1 Check reactor vessel upper 13.1 Return to step 11. head temperature - LESS THAN 200°F. CORE EXIT THERMOCOUPLE MONITOR [] TRAIN A (Points 22,23) [] TRAIN B (Points 16,20) 13.2 Check all atmospheric relief 13.2 Perform the following. valves - OPEN. 13.2.1 Direct counting room to perform FNP-0-CCP-645, MAIN 2A(2B,2C) MS ATMOS REL VLV STEAM ABNORMAL [] PC 3371A ENVIRONMENTAL RELEASE. [] PC 3371B [] PC 3371C 13.2.2 Open all atmospheric relief valves. 2A(2B,2C) MS ATMOS REL VLV [] PC 3371A [] PC 3371B [] PC 3371C 13.3 Locally check SGs - NOT 13.3 Return to step 11. STEAMING. 13.4 Go to FNP-2-UOP-2.2, SHUTDOWN OF UNIT FROM HOT STANDBY TO COLD SHUTDOWN. -END-

6/14/2013 12:26 NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR FNP-2-ESP-0.3 Revision 12 REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS) CONTINUOUS ACTION START STEP CAUTION [CA] To ensure proper plant response, FNP-2-EEP-0, REACTOR TRIP OR SAFETY INJECTION, must be entered upon any SI actuation. 1 [CA] Establish RCP support conditions. 1.11 [CA] IF support conditions exist to start an RCP THEN start at least one RCP. 1.12 [CA] IF at least one RCP started, THEN go to FNP-2-UOP-2.1, SHUTDOWN OF UNIT FROM MINIMUM LOAD TO HOT STANDBY. [CA] Continue RCS cooldown. 3 3.1 [CA] Maintain RCS cold legs cooldown rate - LESS THAN 100F IN ANY 60 MINUTE PERIOD. 3.2 [CA] Maintain SUB COOLED MARGIN MONITOR indication -GREATER THAN 36F SUBCOOLED IN CETC MODE. 3.3 [CA] Maintain RCS cold leg temperature and pressure -WITHIN FIGURE 3 LIMITS. [CA] Maintain pressurizer level 25%-90%. [CA] Check REACTOR VESSEL LEVEL indication - GREATER THAN 44% UPPER PLENUM. 7.2 [CA] WHEN RCS pressure less than 1000 psig, THEN close all SI accumulator discharge valves. 7.3 [CA] WHEN SI accumulator discharge valves closed, THEN open and lock accumulator discharge valve disconnects using ATTACHMENT 2. [CA] Maintain letdown flow. [CA] Maintain seal injection flow to each RCP - 6-13 gpm. [CA] Continue RCS cooldown to cold shutdown with RHR.

Enclosure 3 to NL-13-1257

	Enclos	sure 3 to NL-13-1257
6/14/2013 12:26 FNP-2-ESP-0.3	NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS)	Revision 12
START STEP	CONTINUOUS ACTION	
12	[CA] Continue cooldown of inactive portion of RCS.	

Pressure

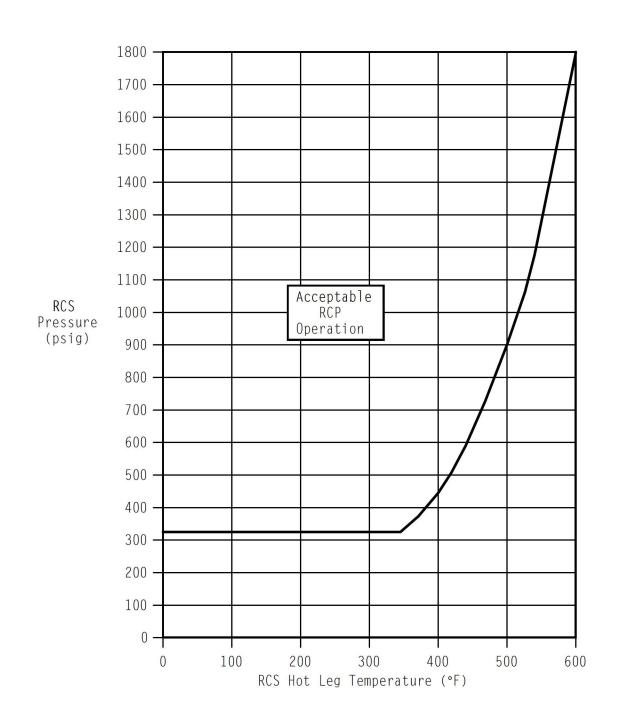

Note 1)

NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS)

Revision 12

FIGURE 1

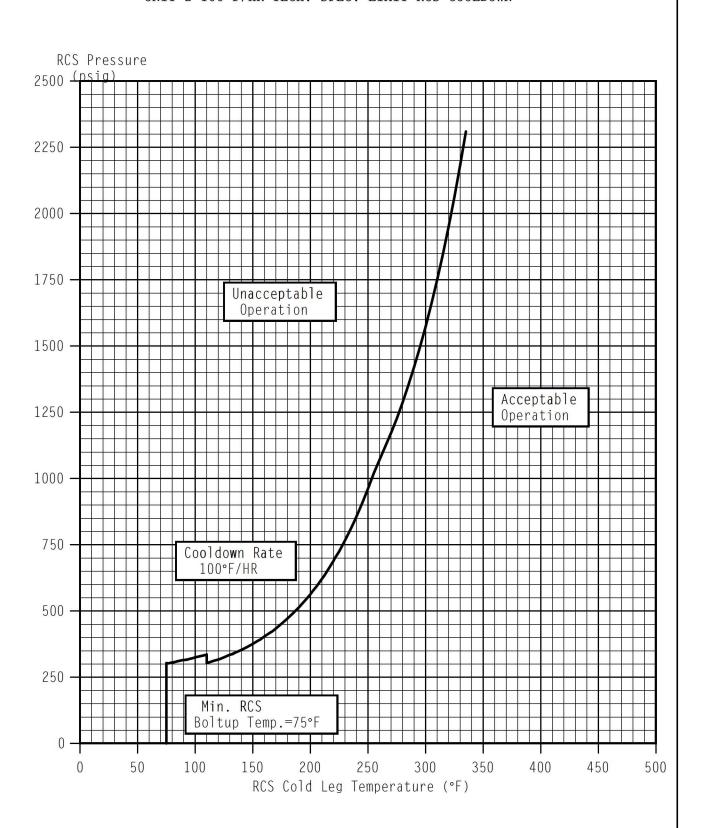
NO. 1 SEAL NORMAL OPERATING RANGE


Note 1: For No. 1 Seal Differential Pressures greater than 400 psid, use RCS pressure in psig.

NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS)

Revision 12

FIGURE 2


RCP PRESSURE-TEMPERATURE OPERATING LIMITS

Revision 12

FIGURE 3

UNIT 2 100°F/HR TECH. SPEC. LIMIT RCS COOLDOWN

NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS)

Revision 12

Step

Action/Expected Response

Response NOT Obtained

ATTACHMENT 1

1 Close the following disconnects.

'B' Train Disconnects					
Disconnect TPNS No.	Description	Position	Key	Location	
Q2R18B035-B	Disconnect FV-S2 MOV 8808B-B	ON	V - 5	139' hall way- outside elec. penetration room	

'A' Train Disconnects						
Disconnect TPNS No.	Description	Position	Key	Location		
Q2R18B031-A	Disconnect FU-Z3 MOV 8808C-A	ON	V - 6	139' hall way- outside		
Q2R18B032-A	Disconnect FU-Z2 MOV 8888A-A	ON	V - 4	counting room		

Verify accumulator discharge valves MCB indication - POWER AVAILABLE.

> 2A(2B,2C) ACCUM DISCH ISO

- [] Q2E21MOV8808A
- [] Q2E21MOV8808B
- [] Q2E21MOV8808C
- Notify control room of accumulator discharge valve disconnect status.

-END-

NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS)

Revision 12

Step Action/Expected Response Response NOT Obtained

ATTACHMENT 2

1 Open and lock the following disconnects.

'A' Train Disconnects					
Disconnect TPNS No.	Description	Position	Key	Location	
Q2R18B031-A	Disconnect FU-Z3 MOV 8808C-A	LOCKED OPEN	V-6	139' hallway- outside counting	
Q2R18B032-A	Disconnect FU-Z2 MOV 8808A-A	LOCKED OPEN	V - 4	10011	

'B' Train Disconnects					
Disconnect TPNS No.	Description	Position	Key	Location	
Q2R18B035-B	Disconnect FV-S2 MOV 8808B-B	LOCKED OPEN	V - 5	139' hallway- outside elec. penetration room	

Notify control room of accumulator discharge valve disconnect status.

-END-

Enclosure 3 to NL-13-1257

6/14/2013 12:26 FNP-2-ESP-0.3

NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS)

Revision 12

FNP - 2 -	пог.	REACTOR VESSEL HEAD STEAM	VOIDING (WITH RVLIS)	Revision 12
Step		Action/Expected Response		Response NOT C	Obtained
2					
1		Monitor SI criteria.			
	1.1	Greater than 16°F subcooled in CETC mode and PRZR level above 4%.	1.1	Verify SI actuato FNP-2-EEP-0	ated <u>AND</u> go
2		Monitor switchover criteria.			
	2.1	CST level greater than 5.3 ft.	2.1	Align AFW pumps using FNP-2-SO	s suction to SW 2-22.0.