

Web Address: www.dom.com

June 27, 2013

U. S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555

Serial No.	13-227A
NSSL/MLC	R0
Docket No.	50-336
License No.	DPR-65

DOMINION NUCLEAR CONNECTICUT, INC. MILLSTONE POWER STATION UNIT 2 SUPPLEMENT TO LICENSE AMENDMENT REQUEST FOR CHANGES TO TECHNICAL SPECIFICATION 3/4.7.11, "ULTIMATE HEAT SINK"

By letter dated May 3, 2013, Dominion Nuclear Connecticut, Inc. (DNC) submitted a license amendment request (LAR) for Millstone Power Station Unit 2 (MPS2). The proposed amendment would modify Technical Specification (TS) 3/4.7.11, "Ultimate Heat Sink," to increase the current ultimate heat sink (UHS) water temperature limit from 75°F to 80°F and change the TS Action to state, "With the ultimate heat sink water temperature greater than 80°F, be in HOT STANDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours." DNC requested approval of the LAR by May 5, 2014 with implementation within 60 days of issuance.

In a letter dated June 26, 2013, the NRC provided DNC an opportunity to supplement the LAR identified above. During a clarification call between the NRC and DNC on June 20, 2013, DNC agreed to provide the information to the NRC by July 3, 2013.

Enclosure 1 provides DNC's response to the NRC's request. The associated detailed information requested by the NRC is provided in Enclosure 2 and 3.

If you have any questions or require additional information, please contact Wanda Craft at (804) 273-4687.

Sincerely,

Eugene S. Grecheck Vice President – Nuclear Engineering and Development

COMMONWEALTH OF VIRGINIA

COUNTY OF HENRICO

The foregoing document was acknowledged before me, in and for the County and Commonwealth aforesaid, today by Eugene S. Grecheck, who is Vice President – Nuclear Engineering and Development of Dominion Nuclear Connecticut, Inc. He has affirmed before me that he is duly authorized to execute and file the foregoing document in behalf of that Company, and that the statements in the document are true to the best of his knowledge and belief.

Acknowledged before me this 27th day of June	, 2013.	
My Commission Expires: 12 31 2016	Crange 1	
	Notary Public	Co

CRAIG D SLY **Notary Public** mmonwealth of Virginia Reg. # 7518653 My Commission Expires December 31. 20

Serial No. 13-227A Docket No. 50-336 Page 2 of 2

Commitments made in this letter: None

Enclosures:

- 1. Supplement to License Amendment Request for Changes to Technical Specifications 3/4.7.11, "Ultimate Heat Sink."
- 2. DNC Response for Items A1 through A10
 - Attachment 1 Calculated Heat Removal Capability
 - Attachment 2 Description of Generic Letter 89-13 Testing/Cleaning Program
- 3. Service Water System, Piping and Instrumentation Drawing
- cc: U.S. Nuclear Regulatory Commission Region I 2100 Renaissance Blvd Suite 100 King of Prussia, PA 19406-2713

James S. Kim Project Manager U.S. Nuclear Regulatory Commission One White Flint North, Mail Stop 08 C2A 11555 Rockville Pike Rockville, MD 20852-2738

NRC Senior Resident Inspector Millstone Power Station

Director, Radiation Division Department of Energy and Environmental Protection 79 Elm Street Hartford, CT 06106-5127

ENCLOSURE 1

Supplement to License Amendment Request for Changes to Technical Specifications 3/4.7.11, "Ultimate Heat Sink"

Dominion Nuclear Connecticut, Inc. Millstone Power Station Unit 2 By letter dated May 3, 2013, Dominion Nuclear Connecticut, Inc. (DNC) submitted a license amendment request (LAR) for Millstone Power Station Unit 2 (MPS2). The proposed amendment would modify Technical Specification (TS) 3/4.7.11, "Ultimate Heat Sink," to increase the current ultimate heat sink (UHS) water temperature limit from 75°F to 80°F and change the TS Action to state, "With the ultimate heat sink water temperature greater than 80°F, be in HOT STANDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours."

In a letter dated June 26, 2013, the NRC provided DNC an opportunity to supplement the LAR identified above. The NRC requested;

A) information needed for each safety related heat exchanger cooled by service water:

- 1) Design heat load
- 2) Design fouling factor
- 3) As-tested fouling factor
- 4) Tube plug allowance
- 5) Actual number of plugged tubes
- 6) Calculated heat removal capability
- 7) Design minimum flow rate
- 8) Actual flow rate
- 9) Vendor supplied heat exchanger specification sheet
- 10) Description of Generic Letter 89-13 testing/cleaning program for each heat exchanger, and
- B) an 18 x 24 size piping and instrumentation diagram of service water system
- C) a statement as to whether or not the increase in service water temperature from 75 °F to 80 °F will result in a derating of the emergency diesel generators.

DNC Response (Items A1 through A10)

The requested information for items A1 through A10 identified above, are provided in Enclosure 2 for the following service water cooled, safety-related, heat exchangers:

- Reactor Building Closed Cooling Water (RBCCW) X-18A/B/C
- Emergency Diesel Generators (EDG) X-83A/B, X-53A/B, X-45A/B
- Vital AC Switchgear Room Ventilation Coolers X-181A/B, X-182, X-183
- Vital DC Switchgear Room Ventilation Chillers X-169A/B

DNC Response (Item B)

A 17 x 22 size piping and instrumentation diagram of the MPS2 service water system is provided in Enclosure 3 as Drawing No. 25203-26008.

DNC Response (Item C)

The increase in service water temperature from 75°F to 80°F does not require derating of the MPS2 emergency diesel generators.

ENCLOSURE 2

DNC Response for Items A1 through A10

(Includes Attachments 1 and 2)

Dominion Nuclear Connecticut, Inc. Millstone Power Station Unit 2

	Reactor Building Closed Cooling Water Heat Exchangers						
	item	X-18A (Facility 1)	X-18B	X-18C (Facility 2)			
A1)	Design heat load	2.044 x10 ⁸ BTU/hr	2.044 x10 ⁸ BTU/hr	2.044 x10 ⁸ BTU/hr			
A2)	Design fouling factor ⁽¹⁾	0.001075 (hr·ft²·°F/BTU)	0.001075 (hr⋅ft².°F/BTU)	0.001075 (hr·ft²·°F/BTU)			
A3)	As-tested fouling factor	See Attachment 2, Item 5	See Attachment 2, Item 5	See Attachment 2, Item 5			
A4)	Tube plug allowance	1637 total tubes; Tube plugs allowed – 163 (10%)	1637 total tubes; Tube plugs allowed – 163 (10%)	1637 total tubes; Tube plugs allowed – 163 (10%)			
A5)	Actual number of plugged tubes	15	0	65			
A6)	Calculated heat removal capability	See Attachment 1	See Attachment 1	See Attachment 1			
A7)	Design minimum flow rate (gpm)	7570 (LOCA) 7500 (Normal Operation)	7570 (LOCA)	7570 (LOCA) 7650 (Normal Operation)			
A8)	Actual flow rate (gpm)	7655 (LOCA) 7529 (Normal Operation)	7721 (LOCA)	7735 (LOCA) 7689 (Normal Operation)			
A9)	Vendor supplied specification sheet	See Figure 1	See Figure 1	See Figure 1			
A10)	Description of Generic Letter 89-13 testing/cleaning program	See Attachment 2	See Attachment 2	See Attachment 2			

(1) This is the total fouling factor used in the analysis of record to determine required service water flow rate.

Vendor Specification Sheet for Reactor Building Closed Cooling Water Heat Exchangers X-18A/B/C

, •			•	n gan a sa kati sa katu 1997 Nationala			· · · ·				
<u>,</u>	5.1	Ú	(25203- ER-	97-002 A	TTACAMENT C		5 of 25)	TE: STRESS	-PELIEVED PARTS	ARE - "SE"
	11	Į	L.,	Case VII - Los	s of Coolant				RAVIVE		• - 36
-1-		Ť		SERVICE: REACTO	DR BUILDING	G CLOSED C	OOLING	CONSIST	NT NO. XI	<u>8A. XI8B. X</u> 3 MP	18C
	1			PERFORMANCE:	I SHOLL	542			<u>,</u>	TUNE SIDE	
1				1010		Chemically	treated	water	Sea	Water	
		Ĩ		FLUID QUANT, ENTERIN	G	3, 500, 0	000	L 8/14	6,0	00,000	LEVH
		APPRON	8							·	
Τ		H.	•	SPECIFIC HEAT	BTU/LB/°F	· · · · · · · · · · · · · · · · · · ·				035	
		Ì	11	VISCOSITY		0.7 CP	AT C	5 •	1.1	CP AT 6	0 .
لنجليا	3	2	12				AT	•*		TA	
ЯĶ	ĮΨ	12	13	GRAVITY		<u> </u>	AT 6	0 •	1.0	27 AT 6	0 •
ঠান		F	14	NUMBER OF PASSES				A		<u> </u>	
X		Q	13	VELOCITY	FT/SEC.	3.7	<u>AT 6</u>		Ma	x, 7, UAT 6	0 -(
				PRESSURE DROP.	P51	6	<u>v</u>		h	4	·····
1	ł		1.	FOULING FACTOR			0003		. 0	005	
┿	-	ō	10	TEMPERATURE IN .			8			75	
ðŀ!	þ		\mathbf{n}	TEMPERATURE OUT .	°r	11	2,3		1	03.5	
4	2	E N	11	HEAT EXCHANGED - BTL	J/HP: 160.00	0,000	LOG. NTD	<u>45.4</u>	001	RECTED MTD F	5.4 1
1	T	\mathbf{T}	11	TRANSFER PATEL SER	11CE+ 425		CLEM.	600	FOUL ING	FACTOR-OVERALLT	,0008
				TRANSFER AREAL GROST	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		50,71.1 EP	VECTIVE 8	1300	SQ.FT.:	
ł	ł				·······						
			.,	DESIGN PRESSURE .	PSIG.	, 150)		r	125	
•	1		2.0	TEST PRESSURE .	PSIG.	225		·		ennels 250/T	uber 150
			20	DESIGN TEMPERATURE .	. °F	250				120	
	F		30	CORROSION ALLOWANCE	<u> </u>				l		
	1		31	TUBES - QUANT, 163	17. <u>0.0</u>	<u>, 3/4" "</u>	518 min	LDIGT	26' - 7"	PITCH 1" T	riang.
				SHELL - 47	(1.0.)(0.)		,				
	ł		34	(SIZE & RATING) +OHA	WHELT INLET + 2	41125 ASA	च च च	1~ 001	ET · 2411	DID. B.W.	F F1~
	1	:	35		f4	And Charles	<u></u>	1¥+	<u> </u>	Lada Alla Sala	tinten de la
	L	; ;	38								
	1	·	37								
		ŧ	10	CODES AND STANDARDS	APPLIED TEM	A - Class R:	ASME	Sections	<u>VIII & IX</u>		
	' s	3		PART PART	FLOOD		OPER	PART		BUNDLE UNLT	
ايو	1 3			TUBES	ATTINIT	IN BDASS	FLOA	T. TUBE SHEET		MAILHIAG	
145		ž	41	SHELL	ASTM-A	285. C	FIXE	O TUBE SHEET	ASTM	-B-171 (ALU	BRONZ
n L	2 8	2	13	SHELL COVER			TUBE	SUPPORTS	ASTM	-A-285C	
212	1 3	ğ	44	CHANNEL	ASTM - A2	78 C140, Ni	CROS	S BAFFLE *	ASTM	A-285C	
ЫН	1		43	CHANNEL COVER	. <u>ASTM-</u> A-	278 C140, NI	LONG	BAFFLE	-		
뛰읍		₿Z	44	FLOAT HEAD COVER	- <u> </u>		GASK	ETS	BUNA-N		
2 2	n I	βĒ	47	MANUFACTURER	Strucher	S NUCLEAT		FOREIGN PR	INT NO.		
300				VENDOR	Struther	R Nuclear		LOCATION D	WG. NOI	····	
I S I S	1	ä	10	PURCHASE ORDER NO.	7604-M-2	10		P.4 1. DIA	GRAM NOI		
-	+	م		REMARK S:							
-1-		°₹°	51	OVERALL LEN	NGTH: Inclu	uding tube	pulling	space 64	-0" max	•	
	<u>'</u>	Ē	33	* Modified cro	ss baffles S	F-3					
			c0	RECHTEL	R.B.C.C.W	, HEAT EXCHAN	GER		JOB No	7604	
					MIT I CTON		- DOW77	n			REV.
ωe			ŀ		MILLSION	IS NUCLEAR	POWE:	n	76	04-M 20	6
1.00	POWER AND STATION UNIT 2						6				1
									-		I .
22			1	NOUSTRIAL						<i>a</i>	

	Emergency Diesel Generator Heat Exchangers							
		Jacket Wat	er Coolers	Lube Oil	Coolers	Air Coolers		
		X-45A	X-45B	X-53A	X-53B	X-83A	Х-83В	
A1)	Design heat load ⁽¹⁾	2.823 x10 ⁶ BTU/hr at 2750 kW	2.823 x10 ⁶ BTU/hr at 2750 kW	2.279 x10 ⁶ BTU/hr at 2750 kW	2.279 x10 ⁶ BTU/hr at 2750 kW	2.067x10 ⁶ BTU/hr at 2750 kW	2.067x10 ⁶ BTU/hr at 2750 kW	
A2)	Design fouling factor ⁽²⁾	0.001575 (hr·ft²·°F/BTU)	0.001575 (hr·ft²·°F/BTU)	0.001575 (hr⋅ft².°F/BTU)	0.001575 (hr·ft².°F/BTU)	0.001575 (hr·ft²·°F/BTU)	0.001575 (hr·ft².°F/BTU)	
A3)	As-tested fouling factor	See Attachment 2, Item 5						
A4)	Tube plug allowance	110 total tubes; Tube Plugs Allowed - 5 (or 5%)	110 total tubes; Tube Plugs Allowed – 5 (or 5%)	188 total tubes; Tube Plugs Allowed – 9 (or 5%)	188 total tubes; Tube Plugs Allowed – 9 (or 5%)	110 total tubes; Tube Plugs Allowed – 5 (or 5%)	110 total tubes; Tube Plugs Allowed – 5 (or 5%)	
A5)	Actual number of plugged tubes	0	0	1	0	0	0	
A6)	Calculated heat removal capability	See Attachment 1						
A7)	Design minimum flow rate (gpm)	637	637	637	637	637	637	
A8)	Actual flow rate (gpm)	672	678	672	678	672	678	
A9)	Vendor supplied specification sheet	See Figure 2	See Figure 2	See Figure 3	See Figure 3	See Figure 4	See Figure 4	
A10)	Generic Letter 89- 13 testing/ cleaning program	See Attachment 2						

(1) X-83A/B are the limiting heat exchangers, so if the required heat load is achieved for X-83A/B, then it will also be achieved for X-53A/B and X-45A/B.

(2) This is the total fouling factor used in the analysis of record to determine required service water flow rate.

Vendor Specification Sheet for Emergency Diesel Generator Heat Exchangers X-45A/B, Jacket Water Coolers

٦.

١,

.

P.O. BOX 218 / 2777 WALDEN AVENUE / BUFFALD, NEW YORK 14225 / 716-684-6700 / TELEX: 91-395

		······					
:1	CHETOMER Colt Induction	Painhauka Manaa	JOB NO	0. PO #B-260641-0			
- fr	anonest No. Boose 92 71005						
at a							
ŀ							
5	SERVICE OF UNIT Jacket Water	Cooler		ITEM NO. 03 Rev	. #2		
6	size 12096	TYPE 7 Removable E	lundle	VERT CONNECTED IN St	acked/Top 0		
7[SO. FT. SURF./UNIT [GROSS] 172 Sq.f	tshELLS/UNIT One		SQ. FT. SURF./SHELL	25172 sq.f.		
	Total	PERFORMANCE OF	ONE UNIT		Total		
9		SHELL SIDE	1	TUBE SIDE			
10	FLUID CIRCULATED	Jacket Water		Sea Water			
11	TOTAL FLUID ENTERING	400 GPM		700 GPM			
12	VAPOR			·			
13	LIQUID	400 GPM		700 GPM			
14	STEAM						
15	NON-CONDENSABLES						
16	FLUID VAPORIZED OR CONDENSED			«· •			
17	STEAM.CUNDENSED			· · · · · · · · · · · · · · · · · · ·			
18	SPECIFIC GRAVITY/DENSITY				{		
19	VISCOSITY	, 	·				
20				·····			
211	SPECIFIC REAL		BIU/LB-0F		BTU/LB.OF		
- 22]	I ATENT NEAT	8	0/HH-F1-0F		BTU/HR-FI-UF		
	TEMPEDATIOE IN	185		91.6			
	TEMPERATURE OUT	167	05	101.5	OF		
26	OPERATING PRESSURE		129	,,,,,,,			
27	ND PASSES PER SHELL	One		One			
28	VELOCITY		FT/SEC	6.1	FT/SEC		
29	PRESSURE DROP	4	PSI	2	PSI		
30	FOULING RESISTANCE (Min.)	.001		.0005			
31	HEAT EXCHANGED-BTU/HR 3,522	,000	MTO COP	RECTED OF 79.3 deg	. F		
32	TRANSFER RATE - SERVICE 25	8	CLEAN	········			
_		CONSTRUCTION OF C	NE SHELL		· · · •		
33	OFSTEN PRESSURE	150	DCI	150	961		
35	TEST PRESSURE	225	PSI	300	PSI		
36	DESIGN TEMPERATURE	250>	oF	200	0F		
37	TUBES Aluminum Brass NO	. 110 0.0. 3/4 BW	G 18 LE	NGTH 8 ft. PITCH	15/16 TRI		
38	SHELL Shell A53 GR B 1.0	. 0.0.12" Nom.	SHELL COVE	R (IN	TEG) (REMOV)		
39	BENNET/CHANNEL CL. 40 ASTM	A 278	CHANNEL CO	VER CL. 40 ASTM A	278		
40	TUBESHEET - STATIONARY A1. Bro	nze aSTM B 171	TUBESHEET -	FLOATING AL. Bronze	ASTM B171		
41	BAFFLES - CROSS Steel A285 GR	СТУРЕ	FLOATING H	EAD COVER			
42	BAFFLES - LONG	TYPE Seg.	IMPINGEMEN	TPROTECTION			
43	TUBE SUPPORTS Steel A 285 GR	<u>C</u>					
44	TUBE TO TOBESHEET JUINT HOTTER	Expanded	DACKING T				
45	GASKETS NON-ASDESTOS FIDE		PACKING C	RATING Studded De			
40	RONNEW/CHANNEL SIDE IN B"	<u>ки он</u> т	<u>x o"</u>	RATING STUDDED DO	mes rr		
	COBROSION ALLOWANCE - SHELL SIDE	1/8" on C Steel	TURESINE	1/8 on C Steel	UT		
49	CODE REQUIREMENTS: COMMER	ICIAL STANDARD	ASME SECTION VI		MA CLASS P		
50	OTHER:						
51	REMARKS Stacking assembly	consisting of Items	01, 02 ar	nd 03.			
52							
53		15		<u>F</u>	ZEV. I		
54	l'						

Vendor Specification Sheet for Emergency Diesel Generator Heat Exchangers X-53A/B, Lube Oil Coolers

11 906 267

P.O. BOX 218 / 2777 WALDEN AVENUE / BUFFALD. NEW YORK 14225 / 716-584-6700 / TELEX: 91-395

- • (B DO AD SCOLLA D	1	
	CUCTOMED Colt Industrias	Peinhaulie Manaa	JUBN	0. FU #B-200641-0		
4	COSTOMER COTT INDUSTRIES - FAIrbanks Morse nerecente no. 1190820/					
1	AUGRESS		PRUP	11/11/71	20005	
۹	PLANT LUCATION		UALE	171771		
	SERVICE OF HEIT Lubo Oil Co.	al an		ITELL NO. OO D.		
2	SERVICE OF UNIT LUDE UIT CO	TYPE 7 Bananabla	D	HORIZ CONNECTED IN SU	v. #2	
2	SIZE TOUGO	THE / REMOVADLE	bundle	(VERT.) CONNELLED IN SE	acked/Top 01	
- 'l	SU. FT. SURF./UNIT 'JEFF.] 295 SQ.1	C SHELLS/UNIT One		SU. FI. SURP./SHELL '	<u>FI 295 sq.</u> ft	
	Iotal	PERFORMANCE OF	ONE UNIT		Total	
8		CULL CLOP		1110 P		
		SHELL SIDE	DAR 40	TUBE SIDE		
	PLUID LIKCULATED		L SRE 40	Sea water		
	IUIAL FLUID ENTERING	500 GFM		100 GPM		
12	VAPUR					
		500 GIM		700 GPM		
14	SIEAM					
12	NUN-LUNUENSABLES			······		
10	FLUID VAPURIZED UK LUNDENSED					
			·····	······································		
	SPECIFIC GRAVITY/DENSIT					
19	VISCOSTI Y					
20	SPECIEIC VEAT					
21 77		P	81U/L8-0F		BTU/LB.OF	
72	I ATENT USAT		10/nn-r.1-%.r	6	U/HR-FIDF	
	TEMPEDATINE IN	215	BIU/LB	87	8TU/L8	
24		190 3 Min		016		
26	OPERATING PRESSURE			91.0	0,0	
27	NO PASSES DED SUELL	070	<u></u>	Onio	<u>PS16</u>	
28	VELOCITY		FT/SEC	2.6	FT/SFC	
29	PRESSURE DROP	12 Max	PSI	0ne	PSI	
30	FOULING RESISTANCE (Min.)	.001		0005		
31	HEAT EXCHANGED BTU/HR 2.89	7,000	MTD COP	RECTED OF 114 6		
32	TRANSFER RATE - SERVICE	35.5	CLEAN			
1						
33		CONSTRUCTION OF C	NE SHELL		1	
34	DESIGN PRESSURE	150	PSI	150	PSI	
35	TEST PRESSURE	225	PSI	300	PSI	
36	DESIGN TEMPERATURE	250	of	200	oF	
37	TUBES Aluminum Brass NO	. 188 O.D. 3/4 BW	G18 Ave.LE	NGTH <u>B ft</u> . PITCH '	15/16 TRI	
38	SHELL Shell A53 GR. B I.D	. 0.0.16" Nom.	SHELL COVE	1 (INT	EG) (REMOV)	
39	XXXXXX/CHANNEL CL 40 ASTM A	278	CHANNEL CO	VER CL 40 ASTM A 2	78	
40	TUBESHEET - STATIONARY AL. B	ronze ASTM B171	TUBESHEET -	FLOATING AL. Bronze	ASTM 8171	
1	BAFFLES - CHOSS Steel A285GR	CTYPE Ser.	FLOATING HE	AD COVER		
2	BAFFLES - LONG	Түре	IMPINGEMEN	TPROTECTION		
6.3	TUBE SUPPORTS Steel A 285 (<u>GR C</u>				
94	TUBE TO TUBESHEET JOINT Roller	Expanded			·····	
15	CASACIS Non-Asbestos Fiber	A117	PACKING	BUNA "N", O-Rings		
10	COMMERCIANNEL COP	<u>x 6" 001</u>	<u>3" x 6"</u>	HAING Studded	Domes	
1	REMARKICHANNEL SIDE IN	<u>6"</u> 0UT	6"	HATING 150# ANS	I_FF	
. 1	CODE OFDITIVE ALLOWANCE - SHELL SIDE	1/8" on C. Steel	TUBE SIDE	1/8" on C. Steel		
•3 60	LUVE REDUIREMENTS: EOMMER	LIAL STANDARD	ASME SECTION VI	TEN	A CLASS R	
	DEMARKS OF STREET					
31 67	BERNARKS SEACKING ASSEMDLY CO	onsisting of Items	J1, 02 and	03.		
<u>,</u>				111 661 2171	DEVI	
54		25		- fit the the	KEV. I	

- 22

\$

ŧ

Vendor Specification Sheet for Emergency Diesel Generator Heat Exchangers X-83A/B, Air Coolers

ì

) *{:

P. O. BOX 218 / 2777 WALDEN AVENUE / BUFFALD, NEW YORK 14225 / 718-684-6700 / TELEX: 91-395

1	·	•	<u> JOB N</u>	0. PO #B-260641-0	
2	CUSTOMER Colt Industries	- Fairbanks Morse	REFE	RENCE NO. 11906267	
3	ADDRESS		PROP	OSALNO. Basco 82-7	10085
4	PLANT LOCATION		DATE	11/11/71	
1					
5	SERVICE OF UNIT Air Cooler	Heat Exchanger		ITEM NO. 01	Rev. #2
6	SIZE 12096	TYPE 7 Removable	Bundle	WERT CONNECTED IN	stacked on Rtm
7	SO. FT. SURF /UNIT ICROSSI 172 SQ. f	tshells/unit One		SO. FT. SURF./SHELL 19	10351 172 80. ft.
	Total			<u>.</u>	Total
8		PERFORMANCE OF	ONE UNIT		
9		SHELL SIDE		TUBE SIDE	
10	FLUID CIRCULATED	Water		Sea Water	
11	TOTAL FLUID ENTERING	400 GPM		700 GPM	
12	VAPOR				
13	LIQUID .	400 GPM		· 700 GPM	
14	STEAM			· · · · · · · · · · · · · · · · · · ·	
15	NON-CONDENSABLES	Γ			
16	FLUID VAPORIZED OR CONDENSED	F		······································	
17	STEAM CONDENSED	Γ			
18	SPECIFIC GRAVITY/DENSITY	Г		-	
19	VISCOSITY				
20	MOLECULAR WEIGHT	<u> </u>			
21	SPECIFIC HEAT		BTU/LB.OF		BTU/LB-OF
Z Z	THERMAL CONDUCTIVITY	B	TU/HR-FT-OF		BTU/HR.FT.OF
:3	LATENT HEAT		BTU/L8		BTU/LB
24	TEMPERATURE IN	134	_0F	75	OF
25	TEMPERATURE OUT	120	OF	83	OF
26	OPERATING PRESSURE		PSIG		PSIG
27	NO. PASSES PER SHELL	One		One	
28	VELOCITY		FT/SEC	6,1	FT/SEC
.29	PRESSURE DROP	5.1	PSI	2	PSI
30	FOULING RESISTANCE (Min.)	.001		.0005	
31	HEAT EXCHANGED-BTU/HR 2,769,	.000	MTO COP	RECTED OF 48 deg	<u>. F</u>
32	TRANSFER BATE – SERVICE 3.	15.4	CLEAN		
		CONSTRUCTION OF C	NE SHELL	•	
33		150		150	
34	DESIGN PRESSURE	335	PSI	200	PSI
35	DESIGN TEMPERATURE	250	PS1	200	PSI
30	THREE Aluminum Brass MA	110 00 3/6 94	C 18 ANO 15		15/16 TOT
38	SHELL Shell A 53 GR B IN	00 12"	SHELL COVE	R (II	TEG) (REMOV)
39	BONNEY CHANNEL CL. 40 ASTM	278	CHANNEL CO	VER CL 40 ASTM A	278
40	TUBESHEET - STATIONARY AL Bro	DIZE ASTM B171	TUBESHEET	FLOATING AL Bron	ze ASTM B171
41	BAFFLES - CROSS Steel A285 GR	CTYPE Seg.	FLOATING H	EÀD COVER	
42	BAFFLES - LONG	TYPE	IMPINGEMEN	T PROTECTION	
43	TUBE SUPPORTS Steel A285 GF	ł C	<u> </u>		
44	TUBE TO TUBESHEET JOINT Roller	Expanded		·	
45	GASKETS Non-Asbestos Fiber		PACKING	BUNA "N", O-Rings	
46	CONNECTIONS SHELL SIDE IN 8"	x 6" OUT 8'	x 6"	RATING Studded	Domes
17	BONNET/CHANNEL SIDE IN	6" OUT	6"	RATING 150# AN	SI FF
.8	CORROSION ALLOWANCE - SHELL SIDE	1/8" on C. Steel	TUBE SIDE	1/8" on C. Steel	
49	CODE REQUIREMENTS: COMMER	ICIAL STANDARD 🗀	ASME SECTION VI	11. DIV. IXX T	MA CLASS R
50.	OTHER:				
51	REMARKS Stacking assembly of	consisting of Item ()1, 02 and	03]
52					
53		&		REV. I	
2.4	•	v v			

Serial No 13-227A MPS2 Ultimate Heat Sink Supplement Enclosure 2, Page 7 of 17

	Vital AC Switchgear Room Ventilation Cooler Heat Exchangers						
Itom		West 480 Vol	t Load Center	Lower 4160 Volt	Upper 4160 Volt		
		X-181A	X-181B	X-182	X-183		
A1)	Design heat load	249,744 BTU/hr (LC 194,172 BTU/hr (Sei	chgear Room Ventilation Cooler Heat Exchangers /olt Load Center Lower 4160 Volt X-181B X-182 (LOCA) – total for both (Seismic) – total for both 131,253 BTU/hr (LOCA) 131,253 BTU/hr (Seismic) 0.040102 (hr ft².°F/BTU) 0.040102 (hr ft².°F/BTU) 5 See Attachment 2, Item 5 6 See Attachment 2, Item 5 9 0 13.6% (3 of 22 tubes per row, 4 rows) 13.6% (3 of 22 tubes per row, 4 rows) 0 0 0 0 13.6% (3 of 22 tubes per row, 4 rows) 13.6% (3 of 22 tubes per row, 4 rows) 13.6% (3 of 22 tubes per row, 4 rows) 13.6% (3 of 22 tubes per row, 4 rows) 13.6% (3 of 22 tubes per row, 4 rows) 13.6% (3 of 22 tubes per row, 4 rows) 13.6% (3 of 22 tubes per row, 4 rows) 13.6% (3 of 22 tubes per row, 4 rows) 13.6% (3 of 22 tubes per row, 4 rows) 13.6% (3 of 22 tubes per row, 4 rows) 13.6% (3 of 22 tubes per row, 4 rows) 13.6% (3 of 22 tubes per row, 4 rows) 13.6% (3 of 22 tubes per row, 4 rows) 13.6% (3 of 22 tubes per row, 4 rows) 13.6% (3 of 22 tubes per row) 13.6%		121,536 BTU/hr (LOCA) 93,949 BTU/hr (Seismic)		
A2)	Design fouling factor ⁽¹⁾	0.040102 (hr·ft²·°F/BTU)	0.040102 (hr·ft²·°F/BTU)	0.040102 (hr·ft².°F/BTU)	0.040102 (hr·ft².°F/BTU)		
A3)	As-tested fouling factor	See Attachment 2, Item 5	See Attachment 2, Item 5	See Attachment 2, Item 5	See Attachment 2, Item 5		
A4)	Tube plug allowance ⁽²⁾	12.5% (2 of 16 tubes per ro	12.5% (2 of 16 tubes per row, 4 rows per coil, 3 coils)		13.6% (3 of 22 tubes per row, 4 rows)		
A5)	Actual number of plugged tubes	0	0	0	0		
A6)	Calculated heat removal capability	See Attachment 1	See Attachment 1	See Attachment 1	See Attachment 1		
A7)	Design minimum flow rate (gpm)	60 (LOCA) 26 (Seismic)	30 (LOCA) 13 (Seismic)	15 (LOCA) 15 (Seismic)	17 (LOCA) 10 (Seismic)		
A8)	Actual flow rate (gpm)	92 (LOCA) 76 (Seismic)	53 (LOCA) 44 (Seismic)	34 (LOCA) 28 (Seismic)	29 (LOCA) 23 (Seismic)		
A9)	Vendor supplied specification sheet	See Figure 5	See Figure 5	See Figure 6	See Figure 5		
A10) Generic Letter 89-13 testing/cleaning program	See Attachment 2	See Attachment 2	See Attachment 2	See Attachment 2		

(1) This is the total fouling factor used in the analysis of record to determine required service water flow rate.

(2) X-181 consists of three identical coils; two coils comprise X-181A, while one coil comprises X-181B.

Vendor Specification Sheet for Vital AC Switchgear Room Ventilation Cooler Heat Exchangers X-181A/B and X-183

ZNI Document Type: QAPD

4.0 DESIGN INPUTS

4.1 Physical configuration data for coolers X-181 and X-183 are provided in Reference 9.2 as summarized in Table 1.

Table 1:	Physical Configuration Data

Devementer	Co	oler
Farameter	X-181	X-183
Coils per Unit	3 ^(a)	1
Coil Length (in)	60	51
Serpentines	1 ^(b)	1 ^(D)
Fin Pitch (fins per in)	9 ^(c)	9 ^(c)
Parameter Coils per Unit Coil Length (in) Serpentines Fin Pitch (fins per in) Fin Conductivity (Btu/hr-ft-'F) Fin Thickness (In) Tube Rows Tubes per Row Tube Inner Diameter (in) Tube Wall Thickness (in) Tube Outside Diameter Longitudinal Tube Pitch (in) Transverse Tube Pitch (in) Tube Conductivity (Btu/hr-ft-°F)	128.3	128.3
Fin Thickness (in)	0.0085	0.0085
Tube Rows	4	. 4
Tubes per Row	16	22
Tube Inner Diameter (in)	0.55	0.55
Tube Wall Thickness (in)	0.049	0.049
Tube Outside Diameter	0.648 ^(d)	0.648 ^(c)
Longitudinal Tube Pitch (in)	1.5	1.5
Transverse Tube Pitch (In)	1.5	1.5
Tube Conductivity (Btu/hr-ft-°F)	25.8	25.8

Table 1 Notes

(a) Room cooler X-181 consists of three identical coils. The PROTO-HX model is based on data for one coll. Heat transfer rates are multiplied by three to provide an equivalent cooler duty.

(b) The number of serpentines is the number of water circuits (16 for X-181 and 22 for X-183) divided by the number tubes per row (Reference 9 4).

(c) PROTO-HX requires the fin pitch to be specified in fins per inch. The vendor data sheet contained in Reference 9.2 states that the coils have 108 tins per toot which is equivalent to 9 fins per inch.

(n) The vendor data sheet contained in Reference 9.2 provides tube wall thickness and tube inner diameter. PROTO-HX requires tube wall thickness and tube outside diameter. The tube outside diameter is calculated as the tube inner diameter plus two times the tube wall thickness.

4.2 The conditions used to benchmark the models of room coolers X-181 and X-183 are provided in Attachment B of Reference 9.2 and are summarized in Table 2.

Form: N0301F05

Revision: 00-00

Date: 10-28-2011

Page 1 of 1

Serial No 13-227A MPS2 Ultimate Heat Sink Supplement Enclosure 2, Page 9 of 17

ZACHRY NUCLEAR, INC.	CALC NO. 12-280	REV	0	PAGE	12	OF	22
	ORIGINATOR	VERIFIER					
	TITLE PROTO-HX Model Development of MP2 Room Coolers X-181A/B and X-183 and Evaluation of 80 °F Service Water						

ZNI Document Type: QAPD

Table 2: Model Benchmark Conditions

Beremeter	Cod	ler
Falaneter	X-181	X-183
Air Flow (scfm)	6,100 ^(a)	6,000
Air Flow (acfm)	6,299 ^(a)	6,197
Inlet Dry Bulb Temperature (약)	104.0	104.0
Inlet Wet Bulb Temperature (°F)	58.36	58.36
Outlet Dry Bulb Temperature (°F)	86.51	86.57
Outlet Wet Bulb Temperature (°F)	51.29	51.32
Atmospheric Pressure (psia)	14.7	14.7
Coll DP (in WC)	0.6742 ^(b)	0.5010 ^(b)
Tube-Side Fluid	Seawater	Seawater
Tube Flow (gpm)	26.67 ^(a)	25.00
Tube Inlet Temperature (°F)	75	75
Tube Outlet Temperature (°F)	83.86	84.26
Air-Side Fouling (hr-ft ² - °F/Btu)	0.0000	0.0000
Tube-Side Fouling (hr-ft2- F/Btu)	0.0005	0.0005
Coil Heat Duty (Btu/hr)	115,500 ^(c)	113,200
Table 2 Notes		

(a) Room cooler X-181 consists of three identical colls. Flow rates listed are per coll.

(b) PROTO-HX requires coil pressure drop to be specified in units of psi. The pressure drop specified in Reference 9.2 is converted to psi using the conversion factor given in Design input 4.11.

(c) Cooler heat duty is per coll.

4.3 The conditions used to validate the benchmarked models of room coolers X-181 and X-183 are provided in Attachment C of Reference 9.2 and are summarized in Table 3.

Date: 10-28-2011

Page 1 of 1

.

Figure 6

Vendor Specification Sheet for Vital AC Switchgear Room Ventilation Cooler Heat Exchanger X-182

	·1		· .	Dominion Calculation 11-ENG-X182-04341M2 F Page 11	lev. 0
		<u></u>	<u></u>		
		AE.	on.		
		Heat	iranster i	Sroaucts	
· .	<u>PE</u>	RFORMANC	<u>E VERIFIC</u>	CATION	-
			-for-		
		AEROFIN	FYPE "R" COIL		
		CA-15	505, Rev. 3		
		Novemi	ber 18, 2010		
)L	OB NAME:	Millstone Generating	g Station Unit 2		
Е	QUIPMENT:	X-182 for Lower 410	60V Vital Switchge	ar Emergency Cooling Sys	tem
c	USTOMER:	Dominion Nuclear C	Connecticut, Inc.		
. P	O NUMBER:	45652669			•
А	EROFIN SO#	093814			
P	epared By:		Date: 11	19/10	
v	erified By:		Date: 11/1	3/2010	
А	pproved By:		Date: //-/	2:2010	-

,

Serial No 13-227A MPS2 Ultimate Heat Sink Supplement Enclosure 2, Page 11 of 17

くいろえ **Dominion Calculation** 11-ENG-X182-04341M2 Rev. 0 Page 15 AEROFIN CALCULATION FILE CA-1505 3 Purpose: The purpose of this report is to verify the heat exchanger performance for Millstone Generating Station Unit 2 as specified in Specification SP-M2-ME-1092 Revision 0; for coil X-182 for the Lower 4160V Vital Switchgear Emergency Cooling System (ESV) for Dominion Nuclear Connecticut, Inc, P.O. 45652669. Heat Exchanger Coil Size 34.5" Casing Height 59.0" Fin Length 5 Row 4 Pass 12 FPI Aluminum "L", 0.012" Nominal Thk 5/8" x 0.049" Nominal Wall AL6XN The performance verifications in this report are based on one (1) coil of each size, as above, piped in counter flow of air and water for optimum performance. The thermal resistance values for the plate fin surface are based on test results in accordance with ARI Standard 410, "Forced Circulation Air-Cooling and Air-Heating Colls". Page 5 of 29

.

Serial No 13-227A MPS2 Ultimate Heat Sink Supplement Enclosure 2, Page 12 of 17

· ·	AEROFIN CALCULATION FILE CA	Dominion Ca 11-ENG-X18 Page 39 -1505	Iculation 2-04341M2 Rev. 0	
	· · ·		·	
Perfo Millsto	rmance Verification, continued ne Unit 2, X-182, Case 5	<u>, </u>	<u>م</u>	
Ao = To	otal External Surface, ft ²			
D = Ao/	Fa/Row = 1.8 * fpi + 1.4 (for helical fin configuration provided)			
D =	1.8 * 12 + 1.4	=	23.0	
K=D/	R		, i	
K =	23 / 0.145	=	159 Btu/ft ² -Fa/Row/ ^o F	
Rc = Ro	ws Calculated = Q / (Fa * K * Δ tm)			
Rc =	198,974 / (12.482 * 159 * 22.5)	=	4.46	

Because the rows calculated for the Case 5 heat load of 198,974 Btu/hr (which is based upon coil performance with water as the cooling medium and zero fouling) equals the rows calculated for the Case 1 design condition (which is based upon coil performance with seawater as the cooling medium and the design fouling factor), the heat load calculated for Case 5 (198,974 Btu/hr) is the basis used for expected minimum capacity for coil performance at the design temperatures and flowrates. The performance capacity test conducted at Intertek on 20 September 2010 yielded a cooling capacity (heat load) of 199,217 Btu/hr which validates that the cooling coil will perform as predicted and will satisfy the design performance requirements as specified.

Page 29 of 29

Serial No 13-227A MPS2 Ultimate Heat Sink Supplement Enclosure 2, Page 13 of 17

182

Dominion Calculation 11-ENG-X182-04341M2 Rev. 0 Page 41

Intertek Report No.: 100208395CRT-001

Description of Test Setup

The test sample was installed with interconnecting ducts into a open-loop, air-flow measuring apparatus. The quality of the air entering and leaving the coil was determined by wet and dry-bulb Precision RTD's located in aspirating-type psychrometer samplers, each located at the inlet and outlet of the test coil.

The quality of water entering and leaving the coil was determined by Precision RTD's located in thermometer wells. The quantity of water was measured by Emerson Mass Flowmeters.

Description of Sample, Physical and Nameplate Data

1. General Description of Sample

The sample was a aluminum-finned cooling coil with AL6XN tubing. The coil was installed in a vertical position and air entered horizontally into the inlet side, and discharged from the opposite side. The water entered the coil at approximately the bottom of the inlet header, and exited from approximately the top of the outlet header.

2. Physical Data of Coil

Transfer Fluid	Water
Tubing Characteristics	
Position	Horizontal
Arrangement	Staggered
Nominal diameter, in O.D.	5/8"
Material	AL6XN ·
Spacing (nominal), in	1.39" FC x 1.28" RC
Tubeface	22/23
Circuit	1.25
Total Number of Tubes	113
Coil Depth (in rows of tubes)	5
Fin Characteristics	
Туре	Helical "L"
Material	Aluminum
Fins per Inch	12
Casing Height, in	34.5"
Nominal Tube Length, in	59.0"

Page 2 of 6

AEROFIN CALCULATION FILE CA-1505

Serial No 13-227A MPS2 Ultimate Heat Sink Supplement Enclosure 2, Page 14 of 17

÷

······	· ••. -		۰.	Dominic 11-ENG Page 46	n Calculation -X182-04341M2	Rev. 0
	. 686910					
Date: 10/14/2010 Job Name: Millstone Un System ID: Case 1 (Now	it 2 Design)					•
 Madel No.		Qty. In Face	NTL	<u>.</u>	······	
R-12.0AL-36.1 X 59.	0-5-1.25	1	59.00			
	Totals:	-	· · · · · · · · · · · · · · · · · · ·	·		
Coll Type: R TF: 22 Row: 5 Fin: 12.00 / IN Circuit: 1-1/4 ,.	Tube: Fin Material: Csg Material: Connection: Hdr Material	0.625 inc 3/8" High Standard (1) 2" Fla Standard	h X 0.049 inch Aluminum L' with Gelvanized Casings nged Stainless Stl 150 li Stainless Stl with Rolle	s b RFSO od Joints	Thickness:	0.011 IN.
Rows Calc: 4.46					Dwg: NA	
Performance NV	Floution	Sea Lairal	·			
Airflow: System Face Area: Standard Face Velocity: Entering Dry Bulb Temp:	7,200.0 L 12.5 F 547.6 F 122.0 °	VG ACFM T ² PM ?	Sea Water Flow Rate: Entering Temp: Leaving Temp: Tube Velocity:		22.90 GPM 77.0 °F 93.5 °F 1.2 FPS) क्षेत्र का जगर 1
Outside Surface Fouling: Sensible Heat Load: Total Heat Load:	0,0000 H 182,0 N 182,1 N	R∙FT≁F/BTU 1BH 1BH	J	ouing.		- 6610
Losses Air Friction: Comments:	0.50 IN	1 <u>H2</u> O ·	Pressure Drop:		0.9 FT H2C)
:	. •					
Note	s & Warnings: 96 You have 51 Outside ti 29 Fluid proj 12 Circuit m 11 Special ci 7 Non stand 4 Coil 1 has	selected a con te scope of AF perties: SG: 1. ay not be avail- to, requires fra ard circuit; sp a non standar	nection size smaller than IRI standard 410. 225 VI: 0.88 oP TK: 0.3 able for coil type selecte otional tubes fed. Conta coila pricing/lead time r d tube face; special pric	n the standard. 84 Btu/Hr-Ft ^a °F d. ct Home Office, equired. ing/lead time reco	Cp: 0.94 Btu/ib F uired.	
••••••••••••••••••••••••••••••••••••••		•		· ·		_
). Elles	ne I Init 2- 119	20 2010.afn	Dll Ver:	PriceD	B Ver:

.

Serial No 13-227A MPS2 Ultimate Heat Sink Supplement Enclosure 2, Page 15 of 17

Serial No 13-227A MPS2 Ultimate Heat Sink Supplement Enclosure 2, Page 16 of 17

	Vital D	C Switchgear Room Ventilation Chiller Heat Ex	xchangers
	ltem	X-169A	Х-169В
A1)	Design heat load	244,096 BTU/hr	244,096 BTU/hr
A2)	Design fouling factor ⁽¹⁾	0.002702 (hr·ft².°F/BTU)	0.002702 (hr·ft².°F/BTU)
A3)	As-tested fouling factor	See Attachment 2, Item 5	See Attachment 2, Item 5
A4)	Tube plug allowance	10% (4 tubes)	10% (4 tubes)
A5)	Actual number of plugged tubes	0	0
A6)	Calculated heat removal capability	See Attachment 1	See Attachment 1
A7)	Design minimum flow rate (gpm)	26.9	26.9
A8)	Actual flow rate (gpm)	30.1	30.1
A9)	Vendor supplied specification sheet	See Figure 7	See Figure 7
A10)	Generic Letter 89-13 testing/cleaning program	See Attachment 1	See Attachment 1

(1) This is the total fouling factor used in the analysis of record to determine required service water flow rate.

Figure 7 Vendor Specification Sheet for Vital DC Switchgear Room Ventilation Chiller Heat Exchangers X-169A/B

			X-169
		PAGEN CALCULATION	10. <u>AB\$8</u> 10. <u>99.646-0</u> 2819-M2 A8
	ER INC. INSFER DIVISION (214) 647-2626	2300 W. MARSHALL DR. C P.O. BOX 534004 G	D. Z- BRAND PRAIRIE. TX 75053-400 RAND PRAIRIE. TX 75053-400 CARLE. AMERIC
	TLX /3-0994	CHANGER SPECIFICATION	CADLET ARTER
	CUSTOMER NORTHEAST	JTILITIES R	08 EF WU-67652
4	I PLANT LOC		ATE 15 DEC-1987
51 ((51 (1) (1 (1) (1 () (1 () (1 () (() (() (5 SERVICE R-22 5 SIZE 8-BX-54 7 SURFACE/UNIT 110.5	TYPE AMFC-4-40-CB TOTAL 1 SHELL/UNIT S	TEM NURFACE/SHELL 102.9EFF
8	3	FERFORMANCE OF ONE UNIT * SHELL SIDE	* TUPE SIDE
10	FLUID CIRCULATED	* R-22	* SEA WATEP.
11	TOTAL ENTERING	+ LB/HR	* 41 GPM
13	LIQUID	4	* 41 GPM
14	STEAM	H ¹	
15		₩	*
17	VAPOR CONDENSED	*	A
18	GRAVITY	*	+ 1.0 • 35 CD
20	MOLECULAR WT-VAPORS	₩ ₩	* , 170 UE
21	SPECIFIC HEAT	*	* 1.0 BTU/LB
22	LATENT HEAT VAPORS	* BTU/LB	A BTU/LB
24	TEMPERATURE COND/OUT	* 105.0C.T./102	* 86.6 DEG F
25	OPERATING PRESSURE	* PSIG	A 20 PSIG
26	NUMBER OF PASSES		* 4 * 5.6 FT/SEC
28	PRESSURE DROP	* PSI	* 4.7 FSI
29	FOULING TOTAL	÷ .0005	.001
30	THERMAL CONDUCTIVITY HEAT EXCHANGED-BTU/HR	237600 MTD (COR)	RECTEDI 23.73 DEG F
	THUSER RALF DERVICE		
33		CONSTRUCTION	
35	TEST PRESSURE	* 437 PNU PSI	* 150 PSL
36	DESIGN TEMPERATURE	* 250 DEG F	- 200 DEG F
37	TUBES 90/10 CU-NI.26F SHELL CARBON STEEL	/I NO 40 OD .75 TK 0.044 ID OD 8.625 TKN	9* LEN 54" .9375 TRI
39	CHANNELL COVER	FLOATING HEAD NZ CHANNET, COVER	
41	TU SHSTAT 90/10 CU	-NI FLOATING	
42	BAFCROSS	TYPE SEGMENT TKN	
45	TU SUPPORTS C.S	TYPE TKN TKN	· · · · · · · · · · · · · · · · · · ·
45	GASKETS BLACK RUBBE	R	4
46	CONN-SHELL-IN	OUT SER	IES ODF SWEAT
47 48	CORROSION ALLOW-SHFT.	OUT Z SER SIDE TUBE	E SIDE
49	CODE REQUIREMENTS A	SME CODE SECTION VIII .DIV	1 "U" STAMP
50	WEIGHT-EACH SHELL	LB BUNDLE NA FULI	
- -	DEMINER	ever whit full - STRESS REFTER	AN AN INDIOANTUED

ATTACHMENT 1

.

Calculated Heat Removal Capability

Dominion Nuclear Connecticut, Inc. Millstone Power Station Unit 2

.

Calculated Heat Removal Capability

Service water cooled heat exchanger calculations (using Proto-HX[™]) use the design heat load (or an assumed heat load greater than the design) and fouling factor, the heat exchanger characteristics (geometry, tube plugging limits, materials, etc.), process side parameters, and temperature of the sea water to determine the required seawater flow rate. The service water system flow calculation (using Proto-flo[™]) then determines the available flow. Therefore, there is no separate calculated heat removal capability – it's the same as the design heat load. The difference between the required flow and the available flow demonstrates the margin. Additional margin exists in the difference between the actual number of tubes plugged and the plugging allowance and the difference between the actual service water pump performance and the assumed degraded pump in the flow analysis. While these numbers can change over time, they are monitored to ensure that equipment is repaired or replaced before the margin is significantly challenged.

.

ATTACHMENT 2

Description of Generic Letter 89-13 Testing/Cleaning Program

Dominion Nuclear Connecticut, Inc. Millstone Power Station Unit 2

Description of Generic Letter 89-13 Testing/Cleaning Program

Generic Letter (GL) 89-13 Elements

Five elements/items were required by GL 89-13. They are summarized below:

- 1) Implement and maintain an ongoing program of surveillance and control techniques to significantly reduce the incidence of flow blockage problems as a result of biofouling. This program includes:
 - a. Inspect the intake structure for macrofouling due to organisms, sediment and corrosion. Remove fouling accumulations.
 - b. Continuously chlorinate the service water system.
 - c. Flush and flow test infrequently used cooling loops and fill stagnant loops with chlorinated water prior to layup.
- 2) Conduct thermal performance testing of safety related heat exchangers to verify design heat transfer capability.
- 3) Perform routine inspection and maintenance on piping and components to ensure that corrosion, erosion, protective coating failure, silting and biofouling cannot degrade the performance of safety related systems cooled by service water. This program should include:
 - a. Remove excessive accumulations of biofouling agents, corrosion products and silt.
 - b. Repair defective coatings and corroded service water system piping and components that could adversely affect a safety related function.
- 4) Confirm the service water system will perform its intended function per the licensing basis for the plant.
- 5) Confirm that maintenance practices, operating and emergency procedures and training that involve the service water system are adequate to ensure that safety related equipment cooled by the service water system will function as intended and that operators of this equipment will perform effectively.

DNC Response

Millstone Power Station Unit 2 (MPS2) complies with GL 89-13 as follows. Note that item numbers below correspond to the requirements of GL 89-13 listed above.

Item 1:

- a. The intake structure is inspected annually using divers and videotape during the annual intake bay outages in the winter.
- b. The service water system is continually chlorinated by injecting hypochlorite through individual pumps to the service water pump suction bells. Automatic hypochlorite isolation is provided on strainer blowdown. Operations is procedurally driven to notify System Engineering if hypochlorite is suspended for more than 24 hours. Regularly scheduled heat exchanger flow (e.g., differential pressure across a flow orifice) versus differential pressure (d/p) surveillances (i.e., difference between the pressure upstream and downstream of the heat exchanger) ensures that system components are not clogged.
- c. The service water system at MPS2 has two loops which are continually in service to all safety related heat exchangers, except for the emergency diesel generator (EDG) and vital chiller heat exchangers. Spare heat exchangers are provided in both the reactor building closed cooling water (RBCCW) system and the turbine building closed cooling water system. The spare heat exchangers are maintained in fresh water layup. Layup of heat exchangers require components to be placed in fresh water layup if they are idle for greater than 48 hours. Removing the salt water significantly reduces the possibility of fouling and thus additional chlorination is not needed. Trickle flow is provided to the EDG and vital chiller heat exchangers at times when they are not in service, and not in fresh water layup, to prevent fouling.

Item 2:

Heat exchanger capability at MPS2 is verified through frequent regular maintenance of the heat exchangers in lieu of testing. Heat exchangers are cleaned in accordance with the preventative maintenance program at regular intervals. In addition, periodic flow versus d/p surveillances for each heat exchanger, are performed. Results are trended and adverse trends can lead to increased cleaning frequencies.

Service water-cooled, safety-related heat exchangers were tested per commitments made in Northeast Utilities (NU) letter B15696, dated June 21, 1996 (Reference 1). Thermal performance tests were completed before and after cleaning on the RBCCW heat exchangers, EDG heat exchangers, switchgear coolers, and vital chillers. These tests validated that existing cleaning frequencies for the service water-cooled, safety-related heat exchangers maintain the capability to remove the design heat load under design limiting conditions.

Item 3:

Inspection and maintenance of service water system components includes direct visual examination of accessible piping and heat exchangers, inspection by remote camera of piping, components and heat exchangers (as needed), and cleaning and eddy current testing of heat exchangers. The results of the inspections determine the necessary maintenance on the affected components so that the safety-related function of the service water system is maintained. Safety-related piping is inspected on a one loop per outage frequency. Heat

Serial No 13-227A MPS2 Ultimate Heat Sink Supplement Attachment 2, Page 3 of 3 exchangers are inspected on varying frequencies in accordance with the preventative maintenance program as discussed in Item 2.

Item 4:

The ability of the service water system to perform as licensed has been confirmed and reported in NU letter B14389, dated June 18, 1993 (Reference 2). Frequent regular maintenance of heat exchangers, as well as control over design changes (including analyses and tests to verify the design), ensure the system will continue to perform, as licensed.

Item 5:

Maintenance practices, procedures, and training all have been confirmed to adequately ensure that service water cooled equipment will perform as designed and that operators will operate the equipment effectively to maintain the safety-related function of the system.

The thermal performance tests described above in item 2 were used to determine a rate of change of fouling factor with respect to time to determine the adequacy of the cleaning frequency. There is, therefore, no direct correlation between the tested and the design fouling factors.

References

- Northeast Utilities Letter B15696 to NRC, "Millstone Nuclear Power Station, Unit No. 2, Service Water System - Generic Letter GL 89-13, Update to the GL 89-13 Response (TAC No 74026)," dated June 21, 1996
- Northeast Utilities Letter B14389 to NRC, "Millstone Nuclear Power Station, Unit No. 2, Service Water System - Response to Generic Letter 89-13 (TAC No. 74026)," dated June 18, 1993.

ENCLOSURE 3

Service Water System Piping and Instrumentation Drawing

Dominion Nuclear Connecticut, Inc. Millstone Power Station Unit 2

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE,

THAT CAN BE VIEWED AT THE RECORD TITLED: DOMINION NUCLEAR CONNECTICUT INC. MILLSTONE POWER STATION, PIPING & INSTRUMENT DIAGRAM CIRCULATING WATER DRAWING NO. 25203-26008

WITHIN THIS PACKAGE...

D-01

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE,

THAT CAN BE VIEWED AT THE RECORD TITLED: DOMINION NUCLEAR CONNECTICUT INC. MILLSTONE POWER STATION, PIPING & INSTRUMENT DIAGRAM SERVICE WATER DRAWING NO. 25203-26008

WITHIN THIS PACKAGE...

D-02

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE,

THAT CAN BE VIEWED AT THE RECORD TITLED: DOMINION NUCLEAR CONNECTICUT INC. MILLSTONE POWER STATION 2, PIPING & INSTRUMENTAL DIAGRAM SERVICE WATER TO VITAL AC SWITCHGEAR COOLING COIL AND AC CHILLERS DRAWING NO. 25203-26008 SH.3

WITHIN THIS PACKAGE...

