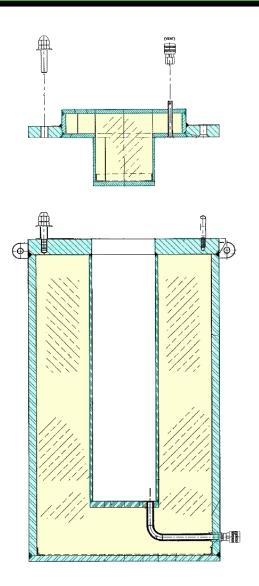


10-160B License Amendment Request Pre-submittal Meeting

NRC Headquarters, Rockville MD June 26th, 2013 Steve Sisley, Brandon Thomas

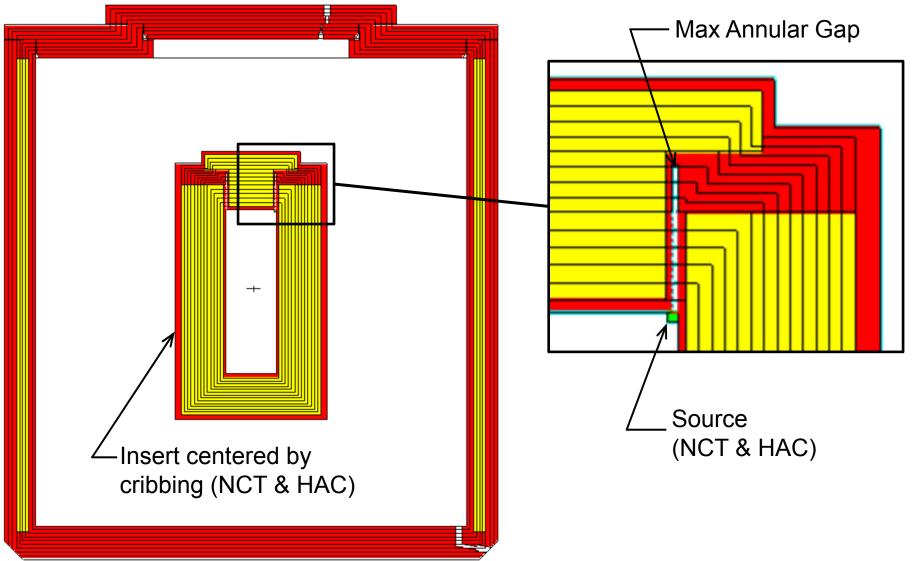
- Purpose for License Amendment Request
- Proposed changes
 - Add a new addendum for a variant of the existing 10-160B
 ⁶⁰Co shield insert
 - New insert designated "Shield Insert B"
 - To be used for dry loaded sources (same, but no drain)
 - Intended for source recovery (OSRP program)
 - Handled as a new SAR addendum, since radiological qualification and operational procedures are different.
 - Various revisions to existing ⁶⁰Co shield insert addendum
 - Changes to the SAR
 - Requested changes to the CoC
- Proposed schedule

Purpose


- Initial end-user is the Off-site Source Recovery Project (OSRP)
 - U.S. Government activity sponsored by the National Nuclear Security Administration's (NNSA) Office of Global Threat Reduction
 - Mission is to remove excess, unwanted, abandoned, or orphan radioactive sealed sources that pose a potential risk to health, safety, and national security.
- OSRP will require 10-160B shipments for
 - wet-loaded ⁶⁰Co sources (using the existing 10-160B shield insert, currently qualified for pencil-type ⁶⁰Co sources),
 - other sources of varying sizes and isotopes (hence the need for the new insert).

Background

- CoC revision 20 (August 2012) added a shielded insert for a 10,000 Ci ⁶⁰Co payload and engineered steel cribbing designed to support the insert for NCT & HAC.
- Insert was intended for a Sandia disposal shipment of cobalt pencils (single-use application).
 - OSRP planned to expand the qualification of this insert for different source isotopes and sizes.
 - Decision was made to instead add a drainless model for physically smaller sources.


- Add a new "Shield Insert B" SAR addendum.
 - Physically the same as existing insert, but <u>without</u> a drain line, and with some minor fabricability and user enhancements (discussed later).
 - Eliminating drain line minimizes streaming impact for small sources.
 - Same steel cribbing design (drawings revised- discussed later).
 - New addendum generally cloned from existing addendum
 - Chapter 1 descriptions changed, and new insert drawings included (same cribbing).
 - Chapter 5 has new shielding analyses for more general form sources.
 - Chapter 7 changed to remove wet loading operations.
 - Chapter 8 changed to allow reuse.

- Standalone from base SAR. Compliant with RIS 2013-04.
- Specific source isotope is not specified in SAR
 - Suites of MCNP runs done for common nuclides (⁶⁰Co, ¹³⁷Cs) and various energies (0.5 MeV to 4.0 MeV) like the 8-120B.
 - Significant beta emitters (e.g.,⁹⁰Sr) handled using equivalent gamma approach like the 8-120B.
 - Results used in sum-of-parts fashion like the 8-120B.
- No credit taken for source self-shielding
- MCNP source modeled as a 1cm x1cm cylinder.
 - Sources that fit within the envelope of a 1 cm high by 1 cm diameter cylinder must be encapsulated in a sealed metallic enclosure with no external dimension less than 1 cm in length.

Shielding Model

• NCT Preliminary Results

Isotope/	Limiting	Peak Surface Gamma Dose Rate (mrem/hr)						
Gamma	Gamma	Package	Package	Package	Plane 2m			
Energy	Source	Side	Тор	Bottom	from 8'			
(MeV)	(gammas/s)	Surface	Surface	Surface	Trailer Side			
Co-60	9.99E+14	2.8	200.0	4.7	0.13			
Cs-137	6.49E+17	2.5	200.0	0.03	0.11			
0.5	9.69E+19	2.9	200.0	0.0	0.14			
0.7	3.01E+17	2.4	200.0	0.1	0.11			
0.9	1.74E+16	2.2	200.0	0.7	0.09			
1.17	1.77E+15	2.0	200.0	3.2	0.10			
1.5	3.45E+14	5.4	200.0	7.5	0.27			
1.83	1.26E+14	9.0	200.0	11.1	0.47			
2.25	5.47E+13	11.7	200.0	13.8	0.66			
2.75	2.89E+13	13.2	200.0	15.8	0.75			
3.5	1.59E+13	11.8	200.0	15.5	0.72			
4.0	1.27E+13	11.4	200.0	14.9	0.70			
10CFR71	I Dose Limit	200	200	200	10			
Very low since limits a								

Very low since limits are driven by conservative source placement.

• HAC Preliminary Results

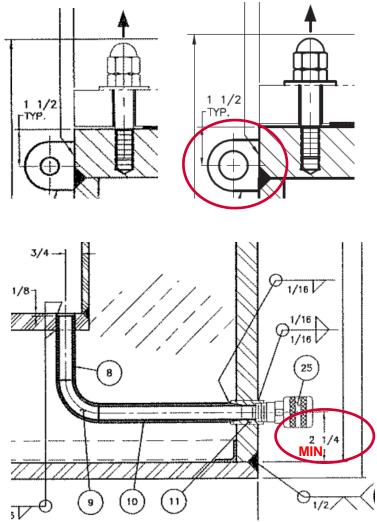
Isotope/ Gamma	Limiting	Peak Surface Gamma Dose Rate (mrem/hr)				
Energy (MeV)	Gamma Source (gammas/s)	Side One Meter Surface	Top One Meter Surface	Bottom One Meter Surface		
Co-60	9.99E+14	0.4	93.0	2.2		
Cs-137	6.49E+17	0.5	86.9	0.02		
0.5	9.69E+19	0.6	84.0	0.0		
0.7	3.01E+17	0.5	88.1	0.0		
0.9	1.74E+16	0.4	89.0	0.3		
1.17	1.77E+15	0.4	91.7	1.4		
1.5	3.45E+14	0.8	93.6	3.5		
1.83	1.26E+14	1.4	94.8	5.4		
2.25	5.47E+13	1.9	96.3	6.7		
2.75	2.89E+13	2.2	95.9	7.7		
3.5	1.59E+13	2.1	96.5	7.8		
4.0	1.27E+13	2.0	95.4	7.5		
10CFR71 Dose Limit		1000 🖊	1000	1000		

 \sim All 1/10th of limit or less.

 This list of the 5 most common OSRP radionuclide sources shows that <u>heat or A₂ governs</u>, not shielding.

Isotope	Maximum Allowable Activity (Ci)	Peak Dose Rate Fraction	Heat Generation (watts)	Total A ₂	Max NCT Dose Rate (mrem/hr)	Max HAC Dose Rate (mrem/hr)
Co-60	12,970	0.961	200	1179	192.2	89
Cs-137	40,568	0.002	200	2536	0.4	small
lr-192	32,626	0.001	200	2039	small	small
Se-75	82,988	0.000	200	1025	small	small
Sr-90	24,300	0.389	163	3000	77.8	37
Maximum A	llowable Value =	1.000	200	3000	200	1000

Changes to the Existing Insert Addendum



- Change name to "Shield Insert A" since we are adding another insert.
- Revise SAR drawings (insert and cribbing) for fabricability and user issues- no changes to safety bases.
- Allow insert reuse.
- ES corrective action- revise shielding analysis
 - Existing analysis was done for a slightly different drain line geometry - no change to safety bases.
- General editorial and housekeeping corrections.

Proposed Changes – Existing Insert Addendum

- Insert SAR drawing changes:
 - Change lifting lug to allow standard shackle size.
 - Change drain height spec.
 - Modify acorn nut for improved underwater handling.
 - Modify gasket (non-containment).
 - Change lid closure weld backing ring details for fabricability.
 - Revise stenciling.
 - Delete notes 14 & 15
 - 14. UNLESS OTHERWISE NOTED ALL DIMENSIONS ARE NOMINAL WITH MAXIMUM TOLERANCES OF \pm 1/4", ANGLES ARE $\pm 5^\circ,$
 - 15. ALL LISTED MATERIAL AS SHOWN OR AN ENERGYSOLUTIONS APPROVED EQUAL.

- Cribbing SAR drawing changes:
 - Remove unnecessary tolerances as appropriate for SAR drawings.
 - No change to safety basis.

- Addendum changes:
 - General changes
 - Change name to "Source Insert A"
 - Editorial cleanup
 - Chapter 1
 - Revise SAR drawings for insert and cribbing
 - Chapter 5
 - Replace with revised shielding analysis for "L" shaped drain line.
 - Chapter 8
 - Add maintenance requirements (reusable insert now).
 - Add permission to use threaded inserts for thread repairs (like 8.3.5.1 of the 8-120B SAR).

Changes to the 10-160B Base SAR

- Editorial cleanups
 - Add permission to use threaded inserts for thread repairs (like 8.3.5.1 of the 8-120B SAR).
 - Section cross references
 - Clarify in Chapter 7 that the vent port leak test is required whether or not seal is broken.

Requested Changes to the CoC

 Correct maximum payload weight in 5(b)(2)(vi) 14,500 lbs should read 14,250 lbs

- Desired CoC issuance date is on or before December 13, 2013 (5 months).
- Proposed milestone dates:
 - Submit license amendment request July 11, 2013
 - CoC Revision 21 effective December 13, 2013