NextEra Energy Seabrook, LLC (Seabrook Station, Unit 1) License Renewal Application

NRC Staff Answer to Motion for Summary Disposition of Contention 4B

ATTACHMENT 4B-N

RANDALL OWEN GAUNTT

55 Eastridge Rd | Edgewood, NM 87015 | +1 (505) 2860619 | rogauntt@gmail.com

EMPLOYMENT HISTORY

Manager Severe Accident Analysis Department

Sandia National Laboratories

- Perform diverse research activities for DOE and NRC including analyses of severe accident progression in commercial power plants
- Manage a team of researchers and code developers who develop and apply the MELCOR severe accident analysis code and the MACCS atmospheric transport and consequence assessment code

Temporary Assignment in U.S. Embassy in Tokyo supporting DOE Fukushima Support and Response

Sandia National Laboratories

- Provided in-country technical support and consultation to numerous stakeholders following the accidents at the Fukushima power plants, including support to the U.S. Military, U.S. NRC, DOS and DOE as well at Japanese organizations including TEPCO and the JNES.
- Supervised initial source term estimations for use in ongoing estimation of what releases from the accidents could have been
- Performed MELCOR analyses evaluating the potential damage states of each of the Fukushima reactors
- Performed MELCOR analyses focused on assessing potential for subsequent damage to the already crippled Fukushima cores in the event of strong seismic aftershocks to evaluate potential consequences of continued core damages

Distinguished Member of Technical Staff

Technical Leader of the MELCOR Code development project

- Led a team of engineers in the development of the MELCOR severe accident computer code for the U.S. Nuclear **Regulatory Commission**
- Performed expert analyses of severe accident behavior using MELCOR aimed at characterizing anticipated fission product releases from accidents from nuclear power plants
- Performed numerous code validation and assessment efforts aimed at developing and improving physical models of core melt progression and fission product release and transport behavior

Technical Leader of the Ex-Reactor Severe Accident Experiments Team

Sandia National Laboratories

- Led the design and construction of a test facility for performing high temperature melt progression experiments on **BWR** core structures
- Developed a novel and unique wire-fed melt furnace to provide high temperature core melt materials for simulating meltdown on Zircaloy cladding, channel box materials and BWR control blade materials
- Directed analysis support in the development of the MERIS porous media code for predicting BWR core degradation and melt progression behavior.

2004 — Present

3/23/2011 - 4/27/2011

2003 — 2004

1995 — 2004

1991 — 1996

Technical Leader of the ACRR In-Pile "MP" Late Phase LWR Fuel Damage Experiments

Sandia National Laboratories

- Based on observations form the TMI-2 core examinations, developed a test program for characterizing "Late Phase" core melt progression behavior where fuel debris subsequently melts and thermally attacks underlying core blockages that formed earlier in the severe accident
- Performed in-pile experiments MP-1 and MP-2 producing phenomenological test data for modeling late phases of core degradation beginning with a degraded fuel debris bed overlying lower intact fuel rods and pre-formed core blockages using prototypic materials (enriched UO2, ZrO2 and control materials).
- Supervised neutronic analyses on MP experiments coupling with the neutron flux of the ACRR central irradiation cavity to ensure proper fission heating of the test package
- Tests were performed in the ACRR reactor using fission heating methods to simulate decay heat
- Prepared Safety Analysis Reports for the MP Experiments and presented to the ACRR Safety Review Board to assure QA and safe conduct of experiments capable of producing radiological releases
- Directed analysis support in the development of the DEBRIS porous media code for predicting late phase melt progression behavior.

Technical Leader of the ACRR In-Pile "DFR"(Damaged Fuel and Relocation) Early Phase LWR Fuel Damage Experiments

Sandia National Laboratories

- Motivated by the accident at TMI-2 and aimed at characterizing the phenomena involved in initial LWR core damage in a severe accident, including cladding oxidation and hydrogen generation, fuel liquefaction and relocation processes and transition from rod-like geometry to degraded core debris geometry
- Performed in-pile experiments DF-3 and DF-4 producing phenomenological test data for modeling early phases of core degradation beginning with a rod geometry in a small 9-rod test bundle. DF-3 included a Ag-In-Cd control rod and DF-4 was the first ever experiment to investigate a SS-B4C BWR control blade element.
- Played supporting engineer role in the conduct of earlier DF-1 and DF-2 experiments and supervised test report and post test analyses.
- Supervised neutronic analyses on DFR experiments coupling with the neutron flux of the ACRR central irradiation cavity to ensure proper fission heating of the test package
- Tests were performed in the ACRR reactor using fission heating methods to simulate decay heat
- Prepared Safety Analysis Reports for the DF-3 and DF-4 Experiments and presented to the ACRR Safety Review Board to assure QA and safe conduct of experiments capable of producing radiological releases
- Directed analysis support in the development of the MELPROG code for predicting fuel heatup, uncover and damage progression phenomena.

Technical Leader of the TRAN-GAP Experiment Project

Sandia National Laboratories

- Motivated by safety issues raised concerning the Liquid Metal Fast Breeder Reactor (LMFBR) project to be built at Clinch River, these experiments were aimed at characterizing the behavior of reactor fuel that has melted during a Hypothetical Core Disruptive Accident (HCDA) and become ejected from the core region to the breeder blanket region. At question was whether the ejected fuel would freeze in the blanket region or if the accident would TRANsition to a renewed critical condition.
- Performed in-pile experiments GAP-1 and Gap-3 wherein more than 2 kg of enriched UO2 was melted in a prompt
 pulse of neutrons from the ARCC central irradiation cavity and ejectd under pressure into prototypic LMFBR blanket
 region structures.
- Played supporting engineer role in the conduct of earlier TRAN 1 4 experiments that explored molten fuel ejection into core fuel pin geometry

1984 — 1988

1982 — 1986

- Supervised neutronic and transient thermal analyses on TRAN experiments coupling with the neutron flux of the ACRR central irradiation cavity to ensure proper fission heating/melting of the fuel materials using neutrons from the ACRR operated in pulse mode at over 30,000 MW per pulse.
- Prepared Safety Analysis Reports for the GAP-1 and GAP-2 Experiments and presented to the ACRR Safety Review Board to assure QA and safe conduct of experiments capable of producing radiological releases
- Directed analysis support in the development of the PLUGM code for predicting fuel fuel motion and freezing in fuel pin geometry.

ACTIVITIESAND AWARDS

- 2011 USDOE Secretarial Honors Award for Japan Earthquake and Tsunami Disaster Response Teams this is the highest honor awarded to DOE Laboratory contractors, awarded for ongoing support of DOE and Japan during the Fukushima post-accident crisis management period.
- 2003 Promoted to the position of "Distinguished Member of Technical Staff," the highest level of recognition open to members of the Sandia Technical Staff
- Maintained Membership in American Nuclear Society (ANS) and American Society of Mechanical Engineers (ASME) and regularly supporting organization and reviews for technical conferences of the ANS and ASME, including ANS, NURETH and ICONE.

PUBLICATIONS

- See Attached List

Title	Reference	Author	Year
	ANS Winter Meeting,	Jeff Cardoni, Don	
MELCOR Simulations of the Severe	Fukushima Embedded	Kalinich, Jeff Cardoni	
Accident at the Fukushima 1F3 Reactor	Topical, San Diego	and Randall Gauntt	2012
	ANS Winter Meeting,	Jesse Phillips, Don	
MELCOR Simulations of the Severe	Fukushima Embedded	Kalinich, Jeff Cardoni	
Accident at the Fukushima 1F2 Reactor	Topical, San Diego	and Randall Gauntt	2012
	ANS Winter Meeting,	Randall O. Gauntt, Don	
MELCOR Simulations of the Severe	Fukushima Embedded	Kalinich, Jeff Cardoni	
Accident at the Fukushima 1F1 Reactor	Topical, San Diego	and Jesse Phillips	2012
Fukushima Daiichi Accident Study			
(Status as of April 2012)	SAND2012-6173	Randall Gauntt, et al.	2012
State of the Art Reactor Consequence			_
Project, Volume 2, Surry Integrated			
Analyses	NUREG/CR 7110 Vol 2	Randall O. Gauntt, et al	2012
State of the Art Reactor Consequence			2012
Project, Volume 1, Peach Bottom			
Integrated Analyses	NUREG/CR 7110 Vol 1	Randall O. Gauntt, et al	2012
Accident Source Terms for Light-Water	NOREGYER /110 VOIT	D.A. Powers, M.T.	2012
Nuclear Power Plants Using High-		Leonard, R.O. Gauntt,	
Burnup or MOX Fuel	SAND2011-0128	R.Y. Lee, and M. Salay	2011
Burnup of MOX Fuel	SAND2011-0128		2011
Assessment of Severe Accident Source		Scott G. Ashbaugh,	
Terms in Pressurized-Water Reactors		Kenneth C. Wagner,	
		Pamela Longmire,	
with a 40% Mixed-Oxide and 60% Low-		Randall O. Gauntt,	
Enriched Uranium Core Using MELCOR		Andrew S. Goldmann,	2010
1.8.5	SAND2008-6665	and Dana A. Powers	2010
Synthesis of VERCORS and Phebus Data			
in Severe Accident Codes and			
Applications	SAND2010-1633	Randall O. Gauntt	2010
MELCOR 1.8.5 Modeling Aspects of			
Fission Product Release, Transport and			
Deposition	SAND2010-1635	Randall O. Gauntt	2010
		Randall O. Gauntt,	
Analysis of Main Steam Isolation Valve		Tracy Radel, Michael A.	
Leakage in Design Basis Accidents Using		Salay, and Donald A.	
MELCOR 1.8.6 and RADTRAD	SAND2008-6601	Kalinich	2008
		K. C. Wagner, R. O.	
A New Air Oxidation Model for Safety		Gauntt, E. R. Lindgren,	
Analysis	SAND2007-0597P	and S. Durbin	2007
Accident Source Terms for Boiling		Mark T. Leonard,	
Water Reactors with High Burnup Cores		Randall O. Gauntt and	
Calculated Using MELCOR 1.8.5	SAND2007-7697	Dana A. Powers	2007
NEW MODEL IMPROVEMENTS IN	The 11th International	Larry L. Humphries,	
MELCOR 1.8.6 TO SIMULATE THE	Topical Meeting on Nuclear	Randall O. Gauntt,	
FORMATION AND BEHAVIOR OF	Reactor Thermal-Hydraulics	Randall K. Cole, Jamie	
MOLTEN POOLS IN SEVERE ACCIDENTS	(NURETH-11) Popes' Palace	E. Cash	2005

	Conference Center, Avignon,		
	France, October 2-6, 2005.		
	The 11th International		
	Topical Meeting on Nuclear		
AN UNCERTAINTY ANALYSIS FOR	Reactor Thermal-Hydraulics		
HYDROGEN GENERATION IN STATION	(NURETH-11) Popes' Palace		
BLACKOUT ACCIDENTS USING MELCOR	Conference Center, Avignon,		
1.8.5	France, October 2-6, 2005.	Randall O. Gauntt	2005
Severe accident analysis of a PWR		K. Vierow, Y. Liao, J.	2005
station blackout with the MELCOR,	Science Direct, Nuclear	Johnson, M. Kenton, R.	
MAAP4 and SCDAP/RELAP5 codes	Engineering and Design	Gauntt	2004
		R. O. Gauntt, R. K. Cole,	2001
		C. M. Erickson, R. G.	
		Gido, R. D. Gasser, S. B.	
		Rodriguez, and M. F.	
MELCOR Computer Code Manuals, Vol.		Young, Scott	
3: Demonstration Problems, Version	NUREG/CR-6119, Vol. 3,	Ashbaugh, Mark	
1.8.5 May 2001	Rev. 0; SAND2001-0929P	Leonard, and Adam Hill	2001
		N. E. Bixler, R K. Cole,	
Recent MELCOR and VICTORIA Fission		M. F. Young, R. O.	
Product Research at the NRC	SAND99-0179C	Gauntt, J.H. Schaperow	1999
		R.O. Gauntt, R.K Cole,	
		S.A. Hedge, S.B.	
		Rodriguez, RL. Sanders,	
MELCOR Computer Code Manuals,		RC. Smith, D.S. Stuart,	
Primer and Users' Guides, Version 1.8.4	NUREG/CR-6119, VoL 1, Rev.	RM. Summers, M.F.	
July 1997	1; SAND97-2398	Young	1997
·		R.O. Gauntt, R.K. Cole,	
		S.A Hedge, S.B.	
		Rodriguez, R.L.	
MELCOR Computer Code Manuals,		Sanders, RC. Smith,	
Reference Manuals, Version 1.8.4 July	NUREG/CR-6119, Vol. 2,	D.S. Stuart, RM.	
1997	Rev. 1; SAND97-2398	Summers, MF. Young	1997
NEW MODEL IMPROVEMENTS IN			
MELCOR 1.8.6 TO SIMULATE THE			
FORMATION AND BEHAVIOR OF	NUREG/CR-6527; SAND97-	R. O. Gauntt, L. L.	
MOLTEN POOLS IN SEVERE ACCIDENTS	1039	Humphries	1997
		Stephen A. Slutz,	
		Randall O. Gauntt, and	
	JOURNAL OF PROPULSION	Gary A. Harms, Thomas	
Thermal Radiation in Gas Core Nuclear	AND POWER, Vol. 10, No. 3,	Latham, Ward Roman,	
Reactors for Space Propulsion	May-June 1994	and Richard J. Rodgers	1994
		Randall 0. Gauntt,	
		Stephen A. Slutz, and	
IN-REACTOR TESTING OF THE CLOSED		Gary A. Harms, Thomas	
CYCLE GAS CORE REACTOR -THE		S. Latham, Ward C.	
NUCLEAR LIGHT BULB CONCEPT-	SAND92-1462C	Roman, and Richard J.	1992

		Rodgers	
		Stephen. A. Slutz,	
		Randall. 0. Gauntt, and	
		Gary. A. Harms,	
Thermal Radiative Transport in Gas		Thomas Latham, Ward	
Core Nuclear Reactors for Space		Roman, and Richard J.	
Propulsion	SAND92-2193J	Rodgers	1992
THE DEBRIS MODULE: AN EFFECTIVE			
TOOL FOR THE ANALYSIS OF MELT		R.D. Gasser, S.S.	
PROGRESSION IN LWRs	SAND90-2712C	Dosanjh, R.O. Gauntt	1990
RESULTSOF THE DF-4BWR		R. O. Gauntt and R.D.	
CONTROLBLADE-CHANNELBOXTEST	SAND90-2716C	Gasser	1990
MELPPROG Debris Meltdown Model		S.S. Dosanjh and R.O.	
and Validation Experiments	SAND88-0263C	Gauntt	1988
MELPROG Analysis of the Debris		T.J. Heames and R.O.	
Formation Experiment DF-1	SAND87-2330C	Gauntt	1987
CONTRIBUTIONS FROM THE ACRR IN-			
PILE EXPERIMENTS TO THE		P. ROYL, W. BREITUNG,	
UNDERSTANDING OF KEY PHENOMENA		E.A. FISCHER, G.	
INFLUENCING UNPROTECTED LOSS OF	Nuclear Engineering and	SCHUMACHER, R.O.	
FLOW ACCIDENT SIMULATIONS IN	Design 100 (1987) 387-408,	GAUNTT and S.A.	
LMFBRs	North Holland, Amsterdam	WRIGHT	1986
		R.D. Gasser, C.P. Fryer,	
		R.O. Gauntt, A.C.	
Damaged Fuel Experiment DF-1, Results	NUREG/CR-4668; SAND86-	Marshall, K.O. Reil, K.T.	
and Analyses	1030	Stalker	1986
The DF-4 Fuel Damage Experiment in			
ACRR with a BWR Control Blade and	NUREG/CR-4671; SAND86-	R.O. Gauntt, R.D.	
Channel Box	1443	Gasser, L.J. Ott	1986