Standard Technical SpecificationsWestinghouse Plants Bases (Sections 3.4–3.9) Issued by the U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation **April 1995** ## **Standard Technical Specifications**Westinghouse Plants Bases (Sections 3.4–3.9) Issued by the U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation **April 1995** #### **AVAILABILITY NOTICE** Availability of Reference Materials Cited in NRC Publications Most documents cited in NRC publications will be available from one of the following sources: - 1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001 - 2. The Superintendent of Documents, U.S. Government Printing Office, P. O. Box 37082, Washington, DC 20402–9328 - 3. The National Technical Information Service, Springfield, VA 22161-0002 Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive. Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence. The following documents in the NUREG series are available for purchase from the Government Printing Office: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, international agreement reports, grantee reports, and NRC booklets and brochures. Also available are regulatory guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances. Documents available from the National Technical Information Service include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission. Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions. *Federal Register* notices, Federal and State legislation, and congressional reports can usually be obtained from these libraries. Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited. Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Administration, Distribution and Mail Services Section, U.S. Nuclear Regulatory Commission, Washington DC 20555-0001. Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, Two White Flint North,11545 Rockville Pike, Rockville, MD 20852–2738, for use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018–3308. #### **PREFACE** This NUREG contains the improved Standard Technical Specifications (STS) for Westinghouse plants. Revision 1 incorporates the cumulative changes to Revision 0, which was published in September 1992. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, specifically the Westinghouse Owners Group (WOG), NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993 (58 FR 39132). Licensees are encouraged to upgrade their technical specifications consistent with those criteria and conforming, to the extent practical and consistent with the licensing basis for the facility, to Revision 1 to the improved STS. The Commission continues to place the highest priority on requests for complete conversions to the improved STS. Licensees adopting portions of the improved STS to existing technical specifications should adopt all related requirements, as applicable, to achieve a high degree of standardization and consistency. | B 3.4 | REACTOR COOLANT SYSTEM (RCS) | | | B 3.4-1 | |----------|---|-----|---|-------------| | B 3.4.1 | RCS Pressure, Temperature, and Flow Departure | | | | | | from Nucleate Boiling (DNB) Limits | | • | B 3.4-1 | | B 3.4.2 | RCS Minimum Temperature for Criticality | • • | • | B 3.4-6 | | B 3.4.3 | RCS Pressure and Temperature (P/T) Limits . | | | B 3.4-9 | | B 3.4.4 | RCS Loops—MODES 1 and 2 | | | B 3.4-17 | | B 3.4.5 | RCS Loops—MODE 3 | | | B 3.4-21 | | B 3.4.6 | RCS Loops—MODE 4 | | | B 3.4-27 | | B 3.4.7 | RCS Loops—MODE 5, Loops Filled | | | B 3.4-32 | | B 3.4.8 | RCS Loops—MODE 5, Loops Not Filled | | | | | B 3.4.9 | Proceurizor | • • | • | R 3 4-40 | | B 3.4.10 | Pressurizer | • • | • | B 3 1_15 | | B 3.4.11 | Draceunizan Dawan Openated Balief | | | | | B 3.4.11 | Values (DODVA) | | | D 2 4 E0 | | D 0 4 10 | Valves (PORVs) | • • | • | B 3.4-50 | | B 3.4.12 | Low lemperature Overpressure Protection (LIOP |) | | | | | System | • • | • | B 3.4-58 | | B 3.4.13 | RCS Operational LEAKAGE | | • | B 3.4-73 | | B 3.4.14 | RCS Pressure Isolation Valve (PIV) Leakage . | | | | | B 3.4.15 | RCS Leakage Detection Instrumentation | | | B 3.4-86 | | B 3.4.16 | RCS Specific Activity | | | B 3.4-93 | | B 3.4.17 | RCS Loop Isolation Valves | | | B 3.4-99 | | B 3.4.18 | RCS Isolated Loop Startup | | | B 3.4-103 | | B 3.4.19 | RCS Loops—Test Exceptions | | • | B 3 4-106 | | D 3.4.13 | nes coops—rest exceptions | • • | • | D 3.4 100 | | B 3.5 | EMERGENCY CORE COOLING SYSTEMS (ECCS) | | | B 3.5-1 | | B 3.5.1 | Accumulators | | • | B 3.5-1 | | B 3.5.2 | ECCS—Operating | | | B 3.5-10 | | B 3.5.3 | ECCS—Shutdown | | | B 3.5-21 | | B 3.5.4 | Refueling Water Storage Tank (RWST) | | _ | B 3.5-25 | | B 3.5.5 | Seal Injection Flow | | _ | B 3.5-32 | | B 3.5.6 | Boron Injection Tank (BIT) | • • | • | B 3 5-36 | | D 3.3.0 | boton injection tank (bit) | • • | • | b 3.3 30 | | B 3.6 | | | | B 3.6-1 | | B 3.6.1 | Containment (Ice Condenser) | | • | B 3.6-1 | | B 3.6.1 | Containment (Atmospheric) | | | B 3.6-6 | | B 3.6.1 | Containment (Subatmospheric) | | | B 3.6-11 | | B 3.6.1 | Containment (Dual) | | | B 3.6-16 | | B 3.6.2 | Containment Air Locks (Atmospheric, | • • | • | | | D 3.0.2 | | | | B 3.6-21 | | D 2 6 2 | | • • | • | D 3.0-21 | | B 3.6.3 | Containment Isolation Valves (Atmospheric, | | | D 2 C 20 | | | , | • • | • | B 3.6-29 | | B 3.6.4A | Containment Pressure (Atmospheric, Dual, and | | | | | | Ice Condenser) | | • | B 3.6-45 | | B 3.6.4B | Containment Pressure (Subatmospheric) | | • | B 3.6-48 | | B 3.6.5A | Containment Air Temperature (Atmospheric | | | | | • | and Dual) | | | B 3.6-52 | | B 3.6.5B | Containment Air Temperature (Ice Condenser) | | | B 3.6-56 | | B 3.6.5C | Containment Air Temperature (Subatmospheric) | | | | | | (33233377777777777777777777777777777777 | . • | - | | | | | | , | | | | | | (| continued) | WOG STS v Rev 1, 04/07/95 | | 3.6
3.6.6A | CONTAINMENT SYSTEMS (continued) Containment Spray and Cooling Systems (Atmospheric and Dual) (Credit taken for iodine removal by the Containment | | | |---|---------------|--|------|--------------------| | В | 3.6.6B | Spray System) | | 3.6-64 | | D | 3.6.6C | Spray System) | . B | 3.6-/5 | | |
3.6.6D | Quench Spray (QS) System (Subatmospheric) | . D | 3.0-80 | | | 3.6.6E | Recirculation Spray (RS) System | . в | 3.0-34 | | Ū | 0.0.02 | (Subatmospheric) | . R | 3.6-100 | | В | 3.6.7 | Spray Additive System (Atmospheric,
Subatmospheric, Ice Condenser, | | | | _ | | and Dual) | . B | 3.6-109 | | В | 3.6.8 | Hydrogen Recombiners (Atmospheric, | | | | | | Subatmospheric, Ice Condenser, and Dual) (if | _ | | | D | 3.6.9 | permanently installed) | . в | 3.6-115 | | D | 3.0.9 | Hydrogen Mixing System (HMS) (Atmospheric, | D | 2 6 121 | | R | 3.6.10 | Ice Condenser, and Dual) | . D | 3.0-121 | | | 3.6.11 | Iodine Cleanup System (ICS) (Atmospheric and | . , | 3.0-127 | | _ | | Subatmospheric) | . В | 3.6-133 | | В | 3.6.12 | Vacuum Relief Valves (Atmospheric and | | | | | | Ice Condenser) | . B | 3.6-138 | | В | 3.6.13 | Shield Building Air Cleanup System (SBACS) | _ | | | D | 3.6.14 | (Dual and Ice Condenser) | . B | 3.6-141 | | | 3.6.15 | Ice Bed (Ice Condenser) | . B | 3.6-146 | | | 3.6.16 | Ice Condenser Doors (Ice Condenser) | . D | 3.6-151
3.6-160 | | | 3.6.17 | Divider Barrier Integrity (Ice Condenser) | . D | | | | 3.6.18 | Containment Recirculation Drains (Ice Condenser) | . R | 3.6-175 | | | 3.6.19 | Shield Building (Dual and Ice Condenser) | | 3.6-180 | | | | the second contract of | | | | | 3.7 | PLANT SYSTEMS | . B | 3.7-1 | | | 3.7.1 | Main Steam Safety Valves (MSSVs) | . B | 3.7-1 | | | 3.7.2 | Main Steam Isolation Valves (MSIVs) | . В | 3.7-7 | | R | 3.7.3 | Main Feedwater Isolation Valves (MFIVs) | | | | | | and Main Feedwater Regulation Valves (MFRVs) | D | 2 7 12 | | R | 3.7.4 | [and Associated Bypass Valves] | | | | | 3.7.5 | Auxiliary Feedwater (AFW) System | | | | | 3.7.6 | Condensate Storage Tank (CST) | . B | 3.7-23 | | | 3.7.7 | Component Cooling Water (CCW) System | . B | 3.7-36 | | | 3.7.8 | Service Water System (SWS) | . B | 3.7-41 | | | 3.7.9 | Ultimate Heat Sink (UHS) | . B | 3.7-46 | | В | 3.7.10 | Control Room Emergency Filtration System (CREFS) | . В | 3.7-50 | | | | | | | | | | | (cor | ntinued) | #### TABLE OF CONTENTS | | 3.7 | PLANT SYSTEMS (continued) | | |---|---------|--|-----------| | R | 3.7.11 | Control Room Emergency Air Temperature | | | _ | | Control System (CREATCS) | B 3.7-57 | | В | 3.7.12 | Emergency Core Cooling System (ECCS) Pump Room | | | | | Exhaust Air Cleanup System (PREACS) | B 3.7-61 | | | 3.7.13 | Fuel Building Air Cleanup Systèm (FBAĆS) | B 3.7-66 | | В | 3.7.14 | Penetration Room Exhaust Air Cleanup System | | | _ | | (PREACS) | B 3.7-72 | | | 3.7.15 | Fuel Storage Pool Water Level | B 3.7-78 | | | 3.7.16 | Fuel Storage Pool Boron Concentration | B 3.7-811 | | | 3.7.17 | Spent Fuel Assembly Storage | B 3.7-851 | | В | 3.7.18 | Secondary Specific Activity | B 3.7-88 | | D | 3.8 | ELECTRICAL DOUED EVETEME | D 0 0 1 | | | 3.8.1 | ELECTRICAL POWER SYSTEMS | B 3.8-1 | | | | AC Sources—Operating | B 3.8-1 | | | 3.8.2 | AC Sources—Shutdown | B 3.8-35 | | | 3.8.3 | AC Sources—Shutdown | B 3.8-41 | | | 3.8.4 | DL Sources—Operating | B 3.8-50 | | | 3.8.5 | DC Sources—Shutdown | B 3.8-60 | | | 3.8.6 | Battery Cell Parameters | B 3.8-64 | | | 3.8.7 | Inverters—Operating | B 3.8-71 | | - | 3.8.8 | Inverters—Shutdown | B 3.8-75 | | | 3.8.9 | Distribution Systems—Operating | B 3.8-79 | | В | 3.8.10 | Distribution Systems—Shutdown | B 3.8-89 | | R | 3.9 | REFUELING OPERATIONS | B 3.9-1 | | | 3.9.1 | Boron Concentration | B 3.9-1 | | | 3.9.2 | Unborated Water Source Isolation Valves | B 3.9-5 | | | 3.9.3 | Nuclear Instrumentation | B 3.9-8 | | | 3.9.4 | Containment Penetrations | B 3.9-0 | | | 3.9.5 | | D 3.9-11 | | ט | J. J. J | Residual Heat Removal (RHR) and Coolant Circulation—High Water Level | R 3 Q_17 | | В | 3.9.6 | Residual Heat Removal (RHR) and Coolant | 5 5.5-17 | | _ | | Circulation—Low Water Level | R 3 Q_21 | | В | 3.9.7 | Refueling Cavity Water Level | B 3.9-25 | | - | J.J., | normating outley nater level | D 3.5-23 | vii #### B 3.4 REACTOR COOLANT SYSTEM (RCS) B 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits #### BASES #### **BACKGROUND** These Bases address requirements for maintaining RCS pressure, temperature, and flow rate within limits assumed in the safety analyses. The safety analyses (Ref. 1) of normal operating conditions and anticipated operational occurrences assume initial conditions within the normal steady state envelope. The limits placed on RCS pressure, temperature, and flow rate ensure that the minimum departure from nucleate boiling ratio (DNBR) will be met for each of the transients analyzed. The RCS pressure limit is consistent with operation within the nominal operational envelope. Pressurizer pressure indications are averaged to come up with a value for comparison to the limit. A lower pressure will cause the reactor core to approach DNB limits. The RCS coolant average temperature limit is consistent with full power operation within the nominal operational envelope. Indications of temperature are averaged to determine a value for comparison to the limit. A higher average temperature will cause the core to approach DNB limits. The RCS flow rate normally remains constant during an operational fuel cycle with all pumps running. The minimum RCS flow limit corresponds to that assumed for DNB analyses. Flow rate indications are averaged to come up with a value for comparison to the limit. A lower RCS flow will cause the core to approach DNB limits. Operation for significant periods of time outside these DNB limits increases the likelihood of a fuel cladding failure in a DNB limited event. #### APPLICABLE SAFETY ANALYSES The requirements of this LCO represent the initial conditions for DNB limited transients analyzed in the plant safety analyses (Ref. 1). The safety analyses have shown that transients initiated from the limits of this LCO will #### APPLICABLE SAFETY ANALYSES (continued) result in meeting the DNBR criterion of \geq [1.3]. This is the acceptance limit for the RCS DNB parameters. Changes to the unit that could impact these parameters must be assessed for their impact on the DNBR criteria. The transients analyzed for include loss of coolant flow events and dropped or stuck rod events. A key assumption for the analysis of these events is that the core power distribution is within the limits of LCO 3.1.7, "Control Bank Insertion Limits"; LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)"; and LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)." The pressurizer pressure limit of [2200] psig and the RCS average temperature limit of [581]°F correspond to analytical limits of [2205] psig and [595]°F used in the safety analyses, with allowance for measurement uncertainty. The RCS DNB parameters satisfy Criterion 2 of the NRC Policy Statement. LC₀ This LCO specifies limits on the monitored process variables—pressurizer pressure, RCS average temperature, and RCS total flow rate—to ensure the core operates within the limits assumed in the safety analyses. Operating within these limits will result in meeting the DNBR criterion in the event of a DNB limited transient. RCS total flow rate contains a measurement error of [2.0]% based on performing a precision heat balance and using the result to calibrate the RCS flow rate indicators. Potentia fouling of the feedwater venturi, which might not be detected, could bias the result from the precision heat balance in a nonconservative manner. Therefore, a penalty of [0.1]% for undetected fouling of the feedwater venturi raises the nominal flow measurement allowance to [2.1]% for no fouling. Any fouling that might bias the flow rate measurement greater than [0.1]% can be detected by monitoring and trending various plant performance parameters. If detected, either the effect of the fouling shall be quantified and compensated for in the RCS flow rate measurement or the venturi shall be cleaned to eliminate the fouling. #### BASES ### LCO (continued) The LCO numerical values for pressure, temperature, and flow rate are given for the measurement location but have not been adjusted for instrument error. #### **APPLICABILITY** In MODE 1, the limits on pressurizer pressure, RCS coolant average temperature, and RCS flow rate must be maintained during steady state operation in order to ensure DNBR criteria will be met in the event of an unplanned loss of forced coolant flow or other DNB limited transient. In all other MODES, the power level is low enough that DNB is not a concern. A Note has been added to indicate the limit on pressurizer pressure is not applicable during short term operational transients such as a THERMAL POWER ramp increase > 5% RTP per minute or a THERMAL POWER step increase > 10% RTP. These conditions represent short term perturbations where actions to control pressure variations might be counterproductive. Also, since they represent transients initiated from power levels < 100% RTP, an increased DNBR margin exists to offset the temporary pressure variations. Another set of limits on DNB related parameters is provided in SL 2.1.1, "Reactor Core SLs." Those limits are less restrictive than the limits of this LCO, but violation of a Safety Limit (SL) merits a stricter, more severe Required Action. Should a violation of this LCO occur, the operator must check whether or not an SL may have been exceeded. #### ACTIONS #### A.1 RCS pressure and RCS average temperature are controllable and measurable parameters. With one or both of these parameters not within LCO limits, action must be taken to restore parameter(s). RCS total flow rate is not a controllable parameter and is not expected to vary during steady state operation. If the indicated RCS total flow rate is below the LCO limit, power must be reduced, as required by Required Action B.1, to restore DNB margin and eliminate the potential for violation of the accident analysis bounds. #### A.1 (continued) The 2 hour Completion Time
for restoration of the parameters provides sufficient time to adjust plant parameters, to determine the cause for the off normal condition, and to restore the readings within limits, and is based on plant operating experience. #### B.1 If Required Action A.1 is not met within the associated Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 2 within 6 hours. In MODE 2, the reduced power condition eliminates the potential for violation of the accident analysis bounds. The Completion Time of 6 hours is reasonable to reach the required plant conditions in an orderly manner. ## SURVEILLANCE REQUIREMENTS #### SR 3.4.1.1 Since Required Action A.1 allows a Completion Time of 2 hours to restore parameters that are not within limits, the 12 hour Surveillance Frequency for pressurizer pressure is sufficient to ensure the pressure can be restored to a normal operation, steady state condition following load changes and other expected transient operations. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess for potential degradation and to verify operation is within safety analysis assumptions. #### SR 3.4.1.2 Since Required Action A.1 allows a Completion Time of 2 hours to restore parameters that are not within limits, the 12 hour Surveillance Frequency for RCS average temperature is sufficient to ensure the temperature can be restored to a normal operation, steady state condition #### SURVEILLANCE REQUIREMENTS #### <u>SR 3.4.1.2</u> (continued) following load changes and other expected transient operations. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess for potential degradation and to verify operation is within safety analysis assumptions. #### SR 3.4.1.3 The 12 hour Surveillance Frequency for RCS total flow rate is performed using the installed flow instrumentation. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess potential degradation and to verify operation within safety analysis assumptions. #### SR 3.4.1.4 Measurement of RCS total flow rate by performance of a precision calorimetric heat balance once every [18] months allows the installed RCS flow instrumentation to be calibrated and verifies the actual RCS flow rate is greater than or equal to the minimum required RCS flow rate. The Frequency of [18] months reflects the importance of verifying flow after a refueling outage when the core has been altered, which may have caused an alteration of flow resistance. This SR is modified by a Note that allows entry into MODE 1, without having performed the SR, and placement of the unit in the best condition for performing the SR. The Note states that the SR is not required to be performed until 24 hours after \geq [90%] RTP. This exception is appropriate since the heat balance requires the plant to be at a minimum of [90%] RTP to obtain the stated RCS flow accuracies. The Surveillance shall be performed within 24 hours after reaching [90%] RTP. #### REFERENCES 1. FSAR, Section [15]. #### B 3.4 REACTOR COOLANT SYSTEM (RCS) #### B 3.4.2 RCS Minimum Temperature for Criticality #### **BASES** #### **BACKGROUND** This LCO is based upon meeting several major considerations before the reactor can be made critical and while the reactor is critical. The first consideration is moderator temperature coefficient (MTC), LCO 3.1.4, "Moderator Temperature Coefficient (MTC)." In the transient and accident analyses, the MTC is assumed to be in a range from slightly positive to negative and the operating temperature is assumed to be within the nominal operating envelope while the reactor is critical. The LCO on minimum temperature for criticality helps ensure the plant is operated consistent with these assumptions. The second consideration is the protective instrumentation. Because certain protective instrumentation (e.g., excore neutron detectors) can be affected by moderator temperature, a temperature value within the nominal operating envelope is chosen to ensure proper indication and response while the reactor is critical. The third consideration is the pressurizer operating characteristics. The transient and accident analyses assume that the pressurizer is within its normal startup and operating range (i.e., saturated conditions and steam bubble present). It is also assumed that the RCS temperature is within its normal expected range for startup and power operation. Since the density of the water, and hence the response of the pressurizer to transients, depends upon the initial temperature of the moderator, a minimum value for moderator temperature within the nominal operating envelope is chosen. The fourth consideration is that the reactor vessel is above its minimum nil ductility reference temperature when the reactor is critical. ## APPLICABLE SAFETY ANALYSES Although the RCS minimum temperature for criticality is not itself an initial condition assumed in Design Basis Accidents (DBAs), the closely aligned temperature for hot #### APPLICABLE SAFETY ANALYSES (continued) zero power (HZP) is a process variable that is an initial condition of DBAs, such as the rod cluster control assembly (RCCA) withdrawal, RCCA ejection, and main steam line break accidents performed at zero power that either assumes the failure of, or presents a challenge to, the integrity of a fission product barrier. All low power safety analyses assume initial RCS loop temperatures ≥ the HZP temperature of 547°F (Ref. 1). The minimum temperature for criticality limitation provides a small band, 6°F, for critical operation below HZP. This band allows critical operation below HZP during plant startup and does not adversely affect any safety analyses since the MTC is not significantly affected by the small temperature difference between HZP and the minimum temperature for criticality. The RCS minimum temperature for criticality satisfies Criterion 2 of the NRC Policy Statement. #### LC0 Compliance with the LCO ensures that the reactor will not be made or maintained critical ($k_{\text{eff}} \geq 1.0$) at a temperature less than a small band below the HZP temperature, which is assumed in the safety analysis. Failure to meet the requirements of this LCO may produce initial conditions inconsistent with the initial conditions assumed in the safety analysis. #### APPLICABILITY In MODE 1 and MODE 2 with $k_{eff} \ge 1.0$, LCO 3.4.2 is applicable since the reactor can only be critical ($k_{eff} \ge 1.0$) in these MODES. The special test exception of LCO 3.1.10, "MODE 2 PHYSICS TESTS Exceptions," permits PHYSICS TESTS to be performed at $\leq 5\%$ RTP with RCS loop average temperatures slightly lower than normally allowed so that fundamental nuclear characteristics of the core can be verified. In order for nuclear characteristics to be accurately measured, it may be necessary to operate outside the normal restrictions of this LCO. For example, to measure the MTC at beginning of cycle, it is necessary to allow RCS loop average temperatures to fall below $T_{\rm no\ load}$, which may cause RCS loop average #### **BASES** ## APPLICABILITY (continued) temperatures to fall below the temperature limit of this LCO. #### **ACTIONS** #### A.1 If the parameters that are outside the limit cannot be restored, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 30 minutes. Rapid reactor shutdown can be readily and practically achieved within a 30 minute period. The allowed time is reasonable, based on operating experience, to reach MODE 3 in an orderly manner and without challenging plant systems. #### SURVEILLANCE REQUIREMENTS #### SR 3.4.2.1 RCS loop average temperature is required to be verified at or above [541]°F every 30 minutes when $[T_{avg}-T_{ref}]$ deviation, low low T_{avg} alarm not reset and any RCS loop $T_{avg} < [547]$ °F. The Note modifies the SR. When any RCS loop average temperature is < [547]°F and the $[T_{avg} - T_{ref}$ deviation, low low $T_{avg}]$ alarm is alarming, RCS loop average temperatures could fall below the LCO requirement without additional warning. The SR to verify RCS loop average temperatures every 30 minutes is frequent enough to prevent the inadvertent violation of the LCO. #### REFERENCES 1. FSAR, Section [15.0.3]. #### B 3.4 REACTOR COOLANT SYSTEM (RCS) B 3.4.3 RCS Pressure and Temperature (P/T) Limits #### **BASES** #### **BACKGROUND** All components of the RCS are designed to withstand effects of cyclic loads due to system pressure and temperature changes. These loads are introduced by startup (heatup) and shutdown (cooldown) operations, power transients, and reactor trips. This LCO limits the pressure and temperature changes during RCS heatup and cooldown, within the design assumptions and the stress limits for cyclic operation. The PTLR contains P/T limit curves for heatup, cooldown, inservice leak and hydrostatic (ISLH) testing, and data for the maximum rate of change of reactor coolant temperature (Ref. 1). Each P/T limit curve defines an acceptable region for normal operation. The usual use of the curves is operational guidance during heatup or cooldown maneuvering, when pressure and temperature indications are monitored and compared to the applicable curve to determine that operation is within the allowable region. The LCO establishes operating limits that provide a margin to brittle failure of the reactor vessel and piping of the reactor coolant pressure boundary (RCPB). The vessel is the component most subject to brittle failure, and the LCO limits apply mainly to the vessel. The limits do not apply to the pressurizer, which has different design characteristics and operating functions. 10 CFR 50, Appendix G (Ref. 2), requires the establishment of P/T limits for specific material fracture toughness
requirements of the RCPB materials. Reference 2 requires an adequate margin to brittle failure during normal operation, anticipated operational occurrences, and system hydrostatic tests. It mandates the use of the American Society of Mechanical Engineers (ASME) Code, Section III, Appendix G (Ref. 3). The neutron embrittlement effect on the material toughness is reflected by increasing the nil ductility reference temperature (RT_{NDT}) as exposure to neutron fluence increases. ## BACKGROUND (continued) The actual shift in the RT_{NDT} of the vessel material will be established periodically by removing and evaluating the irradiated reactor vessel material specimens, in accordance with ASTM E 185 (Ref. 4) and Appendix H of 10 CFR 50 (Ref. 5). The operating P/T limit curves will be adjusted, as necessary, based on the evaluation findings and the recommendations of Regulatory Guide 1.99 (Ref. 6). The P/T limit curves are composite curves established by superimposing limits derived from stress analyses of those portions of the reactor vessel and head that are the most restrictive. At any specific pressure, temperature, and temperature rate of change, one location within the reactor vessel will dictate the most restrictive limit. Across the span of the P/T limit curves, different locations are more restrictive, and, thus, the curves are composites of the most restrictive regions. The heatup curve represents a different set of restrictions than the cooldown curve because the directions of the thermal gradients through the vessel wall are reversed. The thermal gradient reversal alters the location of the tensile stress between the outer and inner walls. The criticality limit curve includes the Reference 2 requirement that it be $\geq 40^{\circ}F$ above the heatup curve or the cooldown curve, and not less than the minimum permissible temperature for ISLH testing. However, the criticality curve is not operationally limiting; a more restrictive limit exists in LCO 3.4.2, "RCS Minimum Temperature for Criticality." The consequence of violating the LCO limits is that the RCS has been operated under conditions that can result in brittle failure of the RCPB, possibly leading to a nonisolable leak or loss of coolant accident. In the event these limits are exceeded, an evaluation must be performed to determine the effect on the structural integrity of the RCPB components. The ASME Code, Section XI, Appendix E (Ref. 7), provides a recommended methodology for evaluating an operating event that causes an excursion outside the limits. #### APPLICABLE SAFETY ANALYSES The P/T limits are not derived from Design Basis Accident (DBA) analyses. They are prescribed during normal operation to avoid encountering pressure, temperature, and temperature rate of change conditions that might cause undetected flaws to propagate and cause nonductile failure of the RCPB, an unanalyzed condition. Reference 1 establishes the methodology for determining the P/T limits. Although the P/T limits are not derived from any DBA, the P/T limits are acceptance limits since they preclude operation in an unanalyzed condition. RCS P/T limits satisfy Criterion 2 of the NRC Policy Statement. #### LCO The two elements of this LCO are: - a. The limit curves for heatup, cooldown, and ISLH testing; and - b. Limits on the rate of change of temperature. The LCO limits apply to all components of the RCS, except the pressurizer. These limits define allowable operating regions and permit a large number of operating cycles while providing a wide margin to nonductile failure. The limits for the rate of change of temperature control the thermal gradient through the vessel wall and are used as inputs for calculating the heatup, cooldown, and ISLH testing P/T limit curves. Thus, the LCO for the rate of change of temperature restricts stresses caused by thermal gradients and also ensures the validity of the P/T limit curves. Violating the LCO limits places the reactor vessel outside of the bounds of the stress analyses and can increase stresses in other RCPB components. The consequences depend on several factors, as follow: a. The severity of the departure from the allowable operating P/T regime or the severity of the rate of change of temperature; ## LCO (continued) - b. The length of time the limits were violated (longer violations allow the temperature gradient in the thick vessel walls to become more pronounced); and - c. The existences, sizes, and orientations of flaws in the vessel material. #### **APPLICABILITY** The RCS P/T limits LCO provides a definition of acceptable operation for prevention of nonductile failure in accordance with 10 CFR 50, Appendix G (Ref. 2). Although the P/T limits were developed to provide guidance for operation during heatup or cooldown (MODES 3, 4, and 5) or ISLH testing, their Applicability is at all times in keeping with the concern for nonductile failure. The limits do not apply to the pressurizer. During MODES 1 and 2, other Technical Specifications provide limits for operation that can be more restrictive than or can supplement these P/T limits. LCO 3.4.1, "RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits"; LCO 3.4.2, "RCS Minimum Temperature for Criticality"; and Safety Limit 2.1, "Safety Limits," also provide operational restrictions for pressure and temperature and maximum pressure. Furthermore, MODES 1 and 2 are above the temperature range of concern for nonductile failure, and stress analyses have been performed for normal maneuvering profiles, such as power ascension or descent. #### **ACTIONS** #### A.1 and A.2 Operation outside the P/T limits during MODE 1, 2, 3, or 4 must be corrected so that the RCPB is returned to a condition that has been verified by stress analyses. The 30 minute Completion Time reflects the urgency of restoring the parameters to within the analyzed range. Most violations will not be severe, and the activity can be accomplished in this time in a controlled manner. Besides restoring operation within limits, an evaluation is required to determine if RCS operation can continue. The #### A.1 and A.2 (continued) evaluation must verify the RCPB integrity remains acceptable and must be completed before continuing operation. Several methods may be used, including comparison with pre-analyzed transients in the stress analyses, new analyses, or inspection of the components. ASME Code, Section XI, Appendix E (Ref. 7), may be used to support the evaluation. However, its use is restricted to evaluation of the vessel beltline. The 72 hour Completion Time is reasonable to accomplish the evaluation. The evaluation for a mild violation is possible within this time, but more severe violations may require special, event specific stress analyses or inspections. A favorable evaluation must be completed before continuing to operate. Condition A is modified by a Note requiring Required Action A.2 to be completed whenever the Condition is entered. The Note emphasizes the need to perform the evaluation of the effects of the excursion outside the allowable limits. Restoration alone per Required Action A.1 is insufficient because higher than analyzed stresses may have occurred and may have affected the RCPB integrity. #### B.1 and B.2 If a Required Action and associated Completion Time of Condition A are not met, the plant must be placed in a lower MODE because either the RCS remained in an unacceptable P/T region for an extended period of increased stress or a sufficiently severe event caused entry into an unacceptable region. Either possibility indicates a need for more careful examination of the event, best accomplished with the RCS at reduced pressure and temperature. In reduced pressure and temperature conditions, the possibility of propagation with undetected flaws is decreased. If the required restoration activity cannot be accomplished within 30 minutes, Required Action B.1 and Required Action B.2 must be implemented to reduce pressure and temperature. #### B.1 and B.2 (continued) If the required evaluation for continued operation cannot be accomplished within 72 hours or the results are indeterminate or unfavorable, action must proceed to reduce pressure and temperature as specified in Required Action B.1 and Required Action B.2. A favorable evaluation must be completed and documented before returning to operating pressure and temperature conditions. Pressure and temperature are reduced by bringing the plant to MODE 3 within 6 hours and to MODE 5 with RCS pressure < [500] psig within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. #### C.1 and C.2 Actions must be initiated immediately to correct operation outside of the P/T limits at times other than when in MODE 1, 2, 3, or 4, so that the RCPB is returned to a condition that has been verified by stress analysis. The immediate Completion Time reflects the urgency of initiating action to restore the parameters to within the analyzed range. Most violations will not be severe, and the activity can be accomplished in this time in a controlled manner. Besides restoring operation within limits, an evaluation is required to determine if RCS operation can continue. The evaluation must verify that the RCPB integrity remains acceptable and must be completed prior to entry into MODE 4. Several methods may be used, including comparison with pre-analyzed transients in the stress analyses, or inspection of the components. ASME Code, Section XI, Appendix E (Ref. 7), may be used to support the evaluation. However, its use is restricted to evaluation of the vessel beltline. #### <u>C.1 and C.2</u> (continued) Condition C is modified by a Note requiring Required Action C.2 to be completed whenever the Condition is entered. The Note emphasizes the need to perform the evaluation of the effects of the
excursion outside the allowable limits. Restoration alone per Required Action C.1 is insufficient because higher than analyzed stresses may have occurred and may have affected the RCPB integrity. #### SURVEILLANCE REQUIREMENTS #### SR 3.4.3.1 Verification that operation is within the PTLR limits is required every 30 minutes when RCS pressure and temperature conditions are undergoing planned changes. This Frequency is considered reasonable in view of the control room indication available to monitor RCS status. Also, since temperature rate of change limits are specified in hourly increments, 30 minutes permits assessment and correction for minor deviations within a reasonable time. Surveillance for heatup, cooldown, or ISLH testing may be discontinued when the definition given in the relevant plant procedure for ending the activity is satisfied. This SR is modified by a Note that only requires this SR to be performed during system heatup, cooldown, and ISLH testing. No SR is given for criticality operations because LCO 3.4.2 contains a more restrictive requirement. #### REFERENCES - 1. WCAP-7924-A, April 1975. - 2. 10 CFR 50, Appendix G. - 3. ASME, Boiler and Pressure Vessel Code, Section III, Appendix G. - 4. ASTM E 185-82, July 1982. - 5. 10 CFR 50, Appendix H. #### **BASES** ## REFERENCES (continued) - 6. Regulatory Guide 1.99, Revision 2, May 1988. - 7. ASME, Boiler and Pressure Vessel Code, Section XI, Appendix E. #### B 3.4 REACTOR COOLANT SYSTEM (RCS) #### B 3.4.4 RCS Loops-MODES 1 and 2 #### **BASES** #### **BACKGROUND** The primary function of the RCS is removal of the heat generated in the fuel due to the fission process, and transfer of this heat, via the steam generators (SGs), to the secondary plant. The secondary functions of the RCS include: - a. Moderating the neutron energy level to the thermal state, to increase the probability of fission; - b. Improving the neutron economy by acting as a reflector; - Carrying the soluble neutron poison, boric acid; - d. Providing a second barrier against fission product release to the environment; and - e. Removing the heat generated in the fuel due to fission product decay following a unit shutdown. The reactor coolant is circulated through [four] loops connected in parallel to the reactor vessel, each containing an SG, a reactor coolant pump (RCP), and appropriate flow and temperature instrumentation for both control and protection. The reactor vessel contains the clad fuel. The SGs provide the heat sink to the isolated secondary coolant. The RCPs circulate the coolant through the reactor vessel and SGs at a sufficient rate to ensure proper heat transfer and prevent fuel damage. This forced circulation of the reactor coolant ensures mixing of the coolant for proper boration and chemistry control. #### APPLICABLE SAFETY ANALYSES Safety analyses contain various assumptions for the design bases accident initial conditions including RCS pressure, RCS temperature, reactor power level, core parameters, and safety system setpoints. The important aspect for this LCO is the reactor coolant forced flow rate, which is represented by the number of RCS loops in service. #### APPLICABLE SAFETY ANALYSES (continued) Both transient and steady state analyses have been performed to establish the effect of flow on the departure from nucleate boiling (DNB). The transient and accident analyses for the plant have been performed assuming [four] RCS loops are in operation. The majority of the plant safety analyses are based on initial conditions at high core power or zero power. The accident analyses that are most important to RCP operation are the [four] pump coastdown, single pump locked rotor, single pump (broken shaft or coastdown), and rod withdrawal events (Ref. 1). Steady state DNB analysis has been performed for the [four] RCS loop operation. For [four] RCS loop operation, the steady state DNB analysis, which generates the pressure and temperature Safety Limit (SL) (i.e., the departure from nucleate boiling ratio (DNBR) limit) assumes a maximum power level of 109% RTP. This is the design overpower condition for [four] RCS loop operation. The value for the accident analysis setpoint of the nuclear overpower (high flux) trip is 107% and is based on an analysis assumption that bounds possible instrumentation errors. The DNBR limit defines a locus of pressure and temperature points that result in a minimum DNBR greater than or equal to the critical heat flux correlation limit. The plant is designed to operate with all RCS loops in operation to maintain DNBR above the SL, during all normal operations and anticipated transients. By ensuring heat transfer in the nucleate boiling region, adequate heat transfer is provided between the fuel cladding and the reactor coolant. RCS Loops—MODES 1 and 2 satisfy Criterion 2 of the NRC Policy Statement. #### LCO The purpose of this LCO is to require an adequate forced flow rate for core heat removal. Flow is represented by the number of RCPs in operation for removal of heat by the SGs. To meet safety analysis acceptance criteria for DNB, [four] pumps are required at rated power. An OPERABLE RCS loop consists of an OPERABLE RCP in operation providing forced flow for heat transport and an #### BASES #### LCO (continued) OPERABLE SG in accordance with the Steam Generator Tube Surveillance Program. #### APPLICABILITY In MODES 1 and 2, the reactor is critical and thus has the potential to produce maximum THERMAL POWER. Thus, to ensure that the assumptions of the accident analyses remain valid, all RCS loops are required to be OPERABLE and in operation in these MODES to prevent DNB and core damage. The decay heat production rate is much lower than the full power heat rate. As such, the forced circulation flow and heat sink requirements are reduced for lower, noncritical MODES as indicated by the LCOs for MODES 3, 4, and 5. Operation in other MODES is covered by: LCO 3.4.5, "RCS Loops—MODE 3"; LCO 3.4.6, "RCS Loops—MODE 4"; LCO 3.4.7, "RCS Loops—MODE 5, Loops Filled"; LCO 3.4.8, "RCS Loops—MODE 5, Loops Not Filled"; LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation-High Water Level" (MODE 6); and LCO 3.9.6, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level" (MODE 6). #### ACTIONS #### A.1 If the requirements of the LCO are not met, the Required Action is to reduce power and bring the plant to MODE 3. This lowers power level and thus reduces the core heat removal needs and minimizes the possibility of violating DNB limits. The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging safety systems. #### BASES (continued) #### SURVEILLANCE REQUIREMENTS #### SR 3.4.4.1 This SR requires verification every 12 hours that each RCS loop is in operation. Verification includes flow rate, temperature, or pump status monitoring, which help ensure that forced flow is providing heat removal while maintaining the margin to DNB. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RCS loop performance. #### REFERENCES 1. FSAR, Section []. B 3.4 REACTOR COOLANT SYSTEM (RCS) B 3.4.5 RCS Loops—MODE 3 #### **BASES** #### **BACKGROUND** In MODE 3, the primary function of the reactor coolant is removal of decay heat and transfer of this heat, via the steam generator (SG), to the secondary plant fluid. The secondary function of the reactor coolant is to act as a carrier for soluble neutron poison, boric acid. The reactor coolant is circulated through [four] RCS loops, connected in parallel to the reactor vessel, each containing an SG, a reactor coolant pump (RCP), and appropriate flow, pressure, level, and temperature instrumentation for control, protection, and indication. The reactor vessel contains the clad fuel. The SGs provide the heat sink. The RCPs circulate the water through the reactor vessel and SGs at a sufficient rate to ensure proper heat transfer and prevent fuel damage. In MODE 3, RCPs are used to provide forced circulation for heat removal during heatup and cooldown. The MODE 3 decay heat removal requirements are low enough that a single RCS loop with one RCP running is sufficient to remove core decay heat. However, [two] RCS loops are required to be OPERABLE to ensure redundant capability for decay heat removal. #### APPLICABLE SAFETY ANALYSES Whenever the reactor trip breakers (RTBs) are in the closed position and the control rod drive mechanisms (CRDMs) are energized, an inadvertent rod withdrawal from subcritical, resulting in a power excursion, is possible. Such a transient could be caused by a malfunction of the rod control system. In addition, the possibility of a power excursion due to the ejection of an inserted control rod is possible with the breakers closed or open. Such a transient could be caused by the mechanical failure of a CRDM. Therefore, in MODE 3 with RTBs in the closed position and Rod Control System capable of rod withdrawal, accidental control rod withdrawal from subcritical is postulated and requires at least [two] RCS loops to be OPERABLE and in operation to ensure that the accident analyses limits are #### APPLICABLE SAFETY ANALYSES (continued) met. For those conditions when the Rod Control System is not capable of rod withdrawal, two RCS loops are required to be OPERABLE, but only one RCS loop is required to be in operation to be consistent with MODE 3 accident analyses. Failure to provide decay heat removal may result in challenges to a fission product barrier. The RCS loops are part of the primary success path that functions or actuates to prevent or mitigate a Design Basis Accident or transient that either assumes the failure of, or presents a challenge to, the integrity of a fission product barrier. RCS Loops—MODE 3 satisfy Criterion 3 of the NRC Policy Statement. #### LC0 The purpose of this LCO is to
require that at least [two] RCS loops be OPERABLE. In MODE 3 with the RTBs in the closed position and Rod Control System capable of rod withdrawal, [two] RCS loops must be in operation. [Two] RCS loops are required to be in operation in MODE 3 with RTBs closed and Rod Control System capable of rod withdrawal due to the postulation of a power excursion because of an inadvertent control rod withdrawal. The required number of RCS loops in operation ensures that the Safety Limit criteria will be met for all of the postulated accidents. With the RTBs in the open position, or the CRDMs de-energized, the Rod Control System is not capable of rod withdrawal; therefore, only one RCS loop in operation is necessary to ensure removal of decay heat from the core and homogenous boron concentration throughout the RCS. An additional RCS loop is required to be OPERABLE to ensure that safety analyses limits are met. The Note permits all RCPs to be de-energized for ≤ 1 hour per 8 hour period. The purpose of the Note is to perform tests that are designed to validate various accident analyses values. One of these tests is validation of the pump coastdown curve used as input to a number of accident analyses including a loss of flow accident. This test is generally performed in MODE 3 during the initial startup testing program, and as such should only be performed once. If, however, changes are made to the RCS that would cause a change to the flow characteristics of the RCS, the input ## LCO (continued) values of the coastdown curve must be revalidated by conducting the test again. Another test performed during the startup testing program is the validation of rod drop times during cold conditions, both with and without flow. The no flow test may be performed in MODE 3, 4, or 5 and requires that the pumps be stopped for a short period of time. The Note permits the de-energizing of the pumps in order to perform this test and validate the assumed analysis values. As with the validation of the pump coastdown curve, this test should be performed only once unless the flow characteristics of the RCS are changed. The 1 hour time period specified is adequate to perform the desired tests, and operating experience has shown that boron stratification is not a problem during this short period with no forced flow. Utilization of the Note is permitted provided the following conditions are met, along with any other conditions imposed by initial startup test procedures: - a. No operations are permitted that would dilute the RCS boron concentration, thereby maintaining the margin to criticality. Boron reduction is prohibited because a uniform concentration distribution throughout the RCS cannot be ensured when in natural circulation; and - b. Core outlet temperature is maintained at least 10°F below saturation temperature, so that no vapor bubble may form and possibly cause a natural circulation flow obstruction. An OPERABLE RCS loop consists of one OPERABLE RCP and one OPERABLE SG in accordance with the Steam Generator Tube Surveillance Program, which has the minimum water level specified in SR 3.4.5.2. An RCP is OPERABLE if it is capable of being powered and is able to provide forced flow if required. #### APPLICABILITY In MODE 3, this LCO ensures forced circulation of the reactor coolant to remove decay heat from the core and to provide proper boron mixing. The most stringent condition of the LCO, that is, two RCS loops OPERABLE and two RCS loops in operation, applies to MODE 3 with RTBs in the #### APPLICABILITY (continued) closed position. The least stringent condition, that is, two RCS loops OPERABLE and one RCS loop in operation, applies to MODE 3 with the RTBs open. Operation in other MODES is covered by: LCO 3.4.4, "RCS Loops—MODES 1 and 2"; LCO 3.4.6, "RCS Loops—MODE 4"; LCO 3.4.7, "RCS Loops—MODE 5, Loops Filled"; LCO 3.4.8, "RCS Loops—MODE 5, Loops Not Filled"; LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation—High Water Level" (MODE 6); and LCO 3.9.6, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level" (MODE 6). #### ACTIONS #### A.1 If one required RCS loop is inoperable, redundancy for heat removal is lost. The Required Action is restoration of the required RCS loop to OPERABLE status within the Completion Time of 72 hours. This time allowance is a justified period to be without the redundant, nonoperating loop because a single loop in operation has a heat transfer capability greater than that needed to remove the decay heat produced in the reactor core and because of the low probability of a failure in the remaining loop occurring during this period. #### <u>B.1</u> If restoration is not possible within 72 hours, the unit must be brought to MODE 4. In MODE 4, the unit may be placed on the Residual Heat Removal System. The additional Completion Time of 12 hours is compatible with required operations to achieve cooldown and depressurization from the existing plant conditions in an orderly manner and without challenging plant systems. #### C.1 and C.2 If the required RCS loop is not in operation, and the RTBs are closed and Rod Control System capable of rod withdrawal. #### C.1 and C.2 (continued) the Required Action is either to restore the required RCS loop to operation or to de-energize all CRDMs by opening the RTBs or de-energizing the motor generator (MG) sets. When the RTBs are in the closed position and Rod Control System capable of rod withdrawal, it is postulated that a power excursion could occur in the event of an inadvertent control rod withdrawal. This mandates having the heat transfer capacity of two RCS loops in operation. If only one loop is in operation, the RTBs must be opened. The Completion Times of 1 hour to restore the required RCS loop to operation or de-energize all CRDMs is adequate to perform these operations in an orderly manner without exposing the unit to risk for an undue time period. #### D.1, D.2, and D.3 If [two] RCS loops are inoperable or no RCS loop is in operation, except as during conditions permitted by the Note in the LCO section, all CRDMs must be de-energized by opening the RTBs or de-energizing the MG sets. All operations involving a reduction of RCS boron concentration must be suspended, and action to restore one of the RCS loops to OPERABLE status and operation must be initiated. Boron dilution requires forced circulation for proper mixing, and opening the RTBs or de-energizing the MG sets removes the possibility of an inadvertent rod withdrawal. The immediate Completion Time reflects the importance of maintaining operation for heat removal. The action to restore must be continued until one loop is restored to OPERABLE status and operation. ## SURVEILLANCE REQUIREMENTS #### SR 3.4.5.1 This SR requires verification every 12 hours that the required loops are in operation. Verification includes flow rate, temperature, and pump status monitoring, which help ensure that forced flow is providing heat removal. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RCS loop performance. #### SURVEILLANCE REQUIREMENTS (continued) #### SR 3.4.5.2 SR 3.4.5.2 requires verification of SG OPERABILITY. SG OPERABILITY is verified by ensuring that the secondary side narrow range water level is \geq [17]% for required RCS loops. If the SG secondary side narrow range water level is < [17]%, the tubes may become uncovered and the associated loop may not be capable of providing the heat sink for removal of the decay heat. The 12 hour Frequency is considered adequate in view of other indications available in the control room to alert the operator to a loss of SG level. #### SR 3.4.5.3 Verification that the required RCPs are OPERABLE ensures that safety analyses limits are met. The requirement also ensures that an additional RCP can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power availability to the required RCPs. | R | C. | F | Ε | D | Ľ | N | r | ᆮ | c | |-----|----|---|---|---|---|----|---|---|---| | 1/1 | ᆫ | | ᆫ | n | L | 11 | u | ᆫ | J | None. ## B 3.4 REACTOR COOLANT SYSTEM (RCS) ### B 3.4.6 RCS Loops—MODE 4 ### **BASES** ### **BACKGROUND** In MODE 4, the primary function of the reactor coolant is the removal of decay heat and the transfer of this heat to either the steam generator (SG) secondary side coolant or the component cooling water via the residual heat removal (RHR) heat exchangers. The secondary function of the reactor coolant is to act as a carrier for soluble neutron poison, boric acid. The reactor coolant is circulated through [four] RCS loops connected in parallel to the reactor vessel, each loop containing an SG, a reactor coolant pump (RCP), and appropriate flow, pressure, level, and temperature instrumentation for control, protection, and indication. The RCPs circulate the coolant through the reactor vessel and SGs at a sufficient rate to ensure proper heat transfer and to prevent boric acid stratification. In MODE 4, either RCPs or RHR loops can be used to provide forced circulation. The intent of this LCO is to provide forced flow from at least one RCP or one RHR loop for decay heat removal and transport. The flow provided by one RCP loop or RHR loop is adequate for decay heat removal. The other intent of this LCO is to require that two paths be available to provide redundancy for decay heat removal. ### APPLICABLE SAFETY ANALYSES In MODE 4, RCS circulation is considered in the determination of the time available for mitigation of the accidental boron dilution event. The RCS and RHR loops provide this circulation. RCS Loops—MODE 4 have been identified in the NRC Policy Statement as important contributors to risk reduction. LCO The purpose of this LCO is to require that at least two loops be OPERABLE in MODE 4 and that one of these loops be in
operation. The LCO allows the two loops that are required to be OPERABLE to consist of any combination of RCS # (continued) loops and RHR loops. Any one loop in operation provides enough flow to remove the decay heat from the core with forced circulation. An additional loop is required to be OPERABLE to provide redundancy for heat removal. Note 1 permits all RCPs or RHR pumps to be de-energized for \leq 1 hour per 8 hour period. The purpose of the Note is to permit tests that are designed to validate various accident analyses values. One of the tests performed during the startup testing program is the validation of rod drop times during cold conditions, both with and without flow. The no flow test may be performed in MODE 3, 4, or 5 and requires that the pumps be stopped for a short period of time. The Note permits the de-energizing of the pumps in order to perform this test and validate the assumed analysis values. If changes are made to the RCS that would cause a change to the flow characteristics of the RCS, the input values must be revalidated by conducting the test again. The 1 hour time period is adequate to perform the test, and operating experience has shown that boron stratification is not a problem during this short period with no forced flow. Utilization of Note 1 is permitted provided the following conditions are met along with any other conditions imposed by initial startup test procedures: - a. No operations are permitted that would dilute the RCS boron concentration, therefore maintaining the margin to criticality. Boron reduction is prohibited because a uniform concentration distribution throughout the RCS cannot be ensured when in natural circulation; and - b. Core outlet temperature is maintained at least 10°F below saturation temperature, so that no vapor bubble may form and possibly cause a natural circulation flow obstruction. Note 2 requires that the secondary side water temperature of each SG be \leq [50]°F above each of the RCS cold leg temperatures before the start of an RCP with any RCS cold leg temperature \leq 275°F. This restraint is to prevent a low temperature overpressure event due to a thermal transient when an RCP is started. An OPERABLE RCS loop comprises an OPERABLE RCP and an OPERABLE SG in accordance with the Steam Generator Tube #### BASES ### LCO (continued) Surveillance Program, which has the minimum water level specified in SR 3.4.6.2. Similarly for the RHR System, an OPERABLE RHR loop comprises an OPERABLE RHR pump capable of providing forced flow to an OPERABLE RHR heat exchanger. RCPs and RHR pumps are OPERABLE if they are capable of being powered and are able to provide forced flow if required. ### APPLICABILITY In MODE 4, this LCO ensures forced circulation of the reactor coolant to remove decay heat from the core and to provide proper boron mixing. One loop of either RCS or RHR provides sufficient circulation for these purposes. However, two loops consisting of any combination of RCS and RHR loops are required to be OPERABLE to meet single failure considerations. Operation in other MODES is covered by: ``` LCO 3.4.4, "RCS Loops—MODES 1 and 2"; LCO 3.4.5, "RCS Loops—MODE 3"; ``` LCO 3.4.7. "RCS Loops—MODE 5, Loops Filled"; LCO 3.4.8, "RCS Loops—MODE 5, Loops Not Filled"; LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation-High Water Level" (MODE 6); and LCO 3.9.6, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level" (MODE 6). #### **ACTIONS** ### A.1 If one required RCS loop is inoperable and two RHR loops are inoperable, redundancy for heat removal is lost. Action must be initiated to restore a second RCS or RHR loop to OPERABLE status. The immediate Completion Time reflects the importance of maintaining the availability of two paths for heat removal. ### B.1 If one required RHR loop is OPERABLE and in operation and there are no RCS loops OPERABLE, an inoperable RCS or RHR ## <u>B.1</u> (continued) loop must be restored to OPERABLE status to provide a redundant means for decay heat removal. If the parameters that are outside the limits cannot be restored, the unit must be brought to MODE 5 within 24 hours. Bringing the unit to MODE 5 is a conservative action with regard to decay heat removal. With only one RHR loop OPERABLE, redundancy for decay heat removal is lost and, in the event of a loss of the remaining RHR loop, it would be safer to initiate that loss from MODE 5 (\leq 200°F) rather than MODE 4 (200 to 300°F). The Completion Time of 24 hours is a reasonable time, based on operating experience, to reach MODE 5 from MODE 4 in an orderly manner and without challenging plant systems. ## C.1 and C.2 If no loop is OPERABLE or in operation, except during conditions permitted by Note 1 in the LCO section, all operations involving a reduction of RCS boron concentration must be suspended and action to restore one RCS or RHR loop to OPERABLE status and operation must be initiated. Boron dilution requires forced circulation for proper mixing, and the margin to criticality must not be reduced in this type of operation. The immediate Completion Times reflect the importance of maintaining operation for decay heat removal. The action to restore must be continued until one loop is restored to OPERABLE status and operation. # SURVEILLANCE REQUIREMENTS ### SR 3.4.6.1 This SR requires verification every 12 hours that one RCS or RHR loop is in operation. Verification includes flow rate, temperature, or pump status monitoring, which help ensure that forced flow is providing heat removal. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RCS and RHR loop performance. ## SURVEILLANCE REQUIREMENTS (continued) ### SR 3.4.6.2 SR 3.4.6.2 requires verification of SG OPERABILITY. SG OPERABILITY is verified by ensuring that the secondary side narrow range water level is \geq [17]%. If the SG secondary side narrow range water level is < [17]%, the tubes may become uncovered and the associated loop may not be capable of providing the heat sink necessary for removal of decay heat. The 12 hour Frequency is considered adequate in view of other indications available in the control room to alert the operator to the loss of SG level. ### SR 3.4.6.3 Verification that the required pump is OPERABLE ensures that an additional RCS or RHR pump can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power available to the required pump. The Frequency of 7 days is considered reasonable in view of other administrative controls available and has been shown to be acceptable by operating experience. | n | _ | • | ~ | n | _ | ħ١ | ^ | r | c | |---|---|---|---|---|---|----|----|---|---| | R | • | - | r | к | r | N | ł. | • | | | | | | | | | | | | | None. - B 3.4 REACTOR COOLANT SYSTEM (RCS) - B 3.4.7 RCS Loops—MODE 5, Loops Filled #### BASES ### **BACKGROUND** In MODE 5 with the RCS loops filled, the primary function of the reactor coolant is the removal of decay heat and transfer this heat either to the steam generator (SG) secondary side coolant or the component cooling water via the residual heat removal (RHR) heat exchangers. While the principal means for decay heat removal is via the RHR System, the SGs are specified as a backup means for redundancy. Even though the SGs cannot produce steam in this MODE, they are capable of being a heat sink due to their large contained volume of secondary water. As long as the SG secondary side water is at a lower temperature than the reactor coolant, heat transfer will occur. The rate of heat transfer is directly proportional to the temperature difference. The secondary function of the reactor coolant is to act as a carrier for soluble neutron poison, boric acid. In MODE 5 with RCS loops filled, the reactor coolant is circulated by means of two RHR loops connected to the RCS, each loop containing an RHR heat exchanger, an RHR pump, and appropriate flow and temperature instrumentation for control, protection, and indication. One RHR pump circulates the water through the RCS at a sufficient rate to prevent boric acid stratification. The number of loops in operation can vary to suit the operational needs. The intent of this LCO is to provide forced flow from at least one RHR loop for decay heat removal and transport. The flow provided by one RHR loop is adequate for decay heat removal. The other intent of this LCO is to require that a second path be available to provide redundancy for heat removal. The LCO provides for redundant paths of decay heat removal capability. The first path can be an RHR loop that must be OPERABLE and in operation. The second path can be another OPERABLE RHR loop or maintaining two SGs with secondary side water levels above [17]% to provide an alternate method for decay heat removal. ## BASES (continued) ### APPLICABLE SAFETY ANALYSES In MODE 5, RCS circulation is considered in the determination of the time available for mitigation of the accidental boron dilution event. The RHR loops provide this circulation. RCS Loops—MODE 5 (Loops Filled) have been identified in the NRC Policy Statement as important contributors to risk reduction. LCO The purpose of this LCO is to require that at least one of the RHR loops be OPERABLE and in operation with an additional RHR loop OPERABLE or two SGs with secondary side water level ≥ [17]%. One RHR loop provides sufficient forced circulation to perform the safety functions of the reactor coolant under these conditions. An additional RHR loop is required to be OPERABLE to meet single failure considerations. However, if the standby RHR loop is not OPERABLE, an acceptable alternate method is two SGs with their secondary side water levels ≥ [17]%. Should the operating RHR loop fail, the SGs could be used to remove the decay heat. Note 1 permits all RHR pumps to be
de-energized ≤ 1 hour per 8 hour period. The purpose of the Note is to permit tests designed to validate various accident analyses values. One of the tests performed during the startup testing program is the validation of rod drop times during cold conditions. both with and without flow. The no flow test may be performed in MODE 3, 4, or 5 and requires that the pumps be stopped for a short period of time. The Note permits de-energizing of the pumps in order to perform this test and validate the assumed analysis values. If changes are made to the RCS that would cause a change to the flow characteristics of the RCS, the input values must be revalidated by conducting the test again. The 1 hour time period is adequate to perform the test, and operating experience has shown that boron stratification is not likely during this short period with no forced flow. Utilization of Note 1 is permitted provided the following conditions are met, along with any other conditions imposed by initial startup test procedures: ## (continued) - a. No operations are permitted that would dilute the RCS boron concentration, therefore maintaining the margin to criticality. Boron reduction is prohibited because a uniform concentration distribution throughout the RCS cannot be ensured when in natural circulation; and - b. Core outlet temperature is maintained at least 10°F below saturation temperature, so that no vapor bubble may form and possibly cause a natural circulation flow obstruction. Note 2 allows one RHR loop to be inoperable for a period of up to 2 hours, provided that the other RHR loop is OPERABLE and in operation. This permits periodic surveillance tests to be performed on the inoperable loop during the only time when such testing is safe and possible. Note 3 requires that the secondary side water temperature of each SG be \leq [50]°F above each of the RCS cold leg temperatures before the start of a reactor coolant pump (RCP) with an RCS cold leg temperature \leq [275]°F. This restriction is to prevent a low temperature overpressure event due to a thermal transient when an RCP is started. Note 4 provides for an orderly transition from MODE 5 to MODE 4 during a planned heatup by permitting removal of RHR loops from operation when at least one RCS loop is in operation. This Note provides for the transition to MODE 4 where an RCS loop is permitted to be in operation and replaces the RCS circulation function provided by the RHR loops. RHR pumps are OPERABLE if they are capable of being powered and are able to provide flow if required. An OPERABLE SG can perform as a heat sink when it has an adequate water level and is OPERABLE in accordance with the Steam Generator Tube Surveillance Program. #### APPLICABILITY In MODE 5 with RCS loops filled, this LCO requires forced circulation of the reactor coolant to remove decay heat from the core and to provide proper boron mixing. One loop of RHR provides sufficient circulation for these purposes. However, one additional RHR loop is required to be OPERABLE, ## APPLICABILITY (continued) or the secondary side water level of at least [two] SGs is required to be \geq [17]%. Operation in other MODES is covered by: ``` LCO 3.4.4, "RCS Loops—MODES 1 and 2"; ``` LCO 3.4.5, "RCS Loops—MODE 3"; LCO 3.4.6, "RCS Loops—MODE 4"; LCO 3.4.8, "RCS Loops—MODE 5, Loops Not Filled"; LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation—High Water Level" (MODE 6); and LCO 3.9.6, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level" (MODE 6). ### **ACTIONS** ### A.1 and A.2 If one RHR loop is inoperable and the required SGs have secondary side water levels < [17]%, redundancy for heat removal is lost. Action must be initiated immediately to restore a second RHR loop to OPERABLE status or to restore the required SG secondary side water levels. Either Required Action A.1 or Required Action A.2 will restore redundant heat removal paths. The immediate Completion Time reflects the importance of maintaining the availability of two paths for heat removal. ### B.1 and B.2 If no RHR loop is in operation, except during conditions permitted by Note 1, or if no loop is OPERABLE, all operations involving a reduction of RCS boron concentration must be suspended and action to restore one RHR loop to OPERABLE status and operation must be initiated. To prevent boron dilution, forced circulation is required to provide proper mixing and preserve the margin to criticality in this type of operation. The immediate Completion Times reflect the importance of maintaining operation for heat removal. ## BASES (continued) ## SURVEILLANCE REQUIREMENTS ## SR 3.4.7.1 This SR requires verification every 12 hours that the required loop is in operation. Verification includes flow rate, temperature, or pump status monitoring, which help ensure that forced flow is providing heat removal. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RHR loop performance. ### SR 3.4.7.2 Verifying that at least two SGs are OPERABLE by ensuring their secondary side narrow range water levels are \geq [17]% ensures an alternate decay heat removal method in the event that the second RHR loop is not OPERABLE. If both RHR loops are OPERABLE, this Surveillance is not needed. The 12 hour Frequency is considered adequate in view of other indications available in the control room to alert the operator to the loss of SG level. ### SR 3.4.7.3 Verification that a second RHR pump is OPERABLE ensures that an additional pump can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power available to the RHR pump. If secondary side water level is \geq [17]% in at least two SGs, this Surveillance is not needed. The Frequency of 7 days is considered reasonable in view of other administrative controls available and has been shown to be acceptable by operating experience. | 1 | | _ | _ | _ | - | ~ | 8 1 | • | | |---|---|---|---|---|---|---|-----|---|-----| | 1 | _ | - | - | | v | - | N | 1 | - \ | | ľ | | _ | | ட | 1 | _ | u | • | ES | | | | | | | | | | | | None. - B 3.4 REACTOR COOLANT SYSTEM (RCS) - B 3.4.8 RCS Loops—MODE 5, Loops Not Filled #### **BASES** ### **BACKGROUND** In MODE 5 with the RCS loops not filled, the primary function of the reactor coolant is the removal of decay heat generated in the fuel, and the transfer of this heat to the component cooling water via the residual heat removal (RHR) heat exchangers. The steam generators (SGs) are not available as a heat sink when the loops are not filled. The secondary function of the reactor coolant is to act as a carrier for the soluble neutron poison, boric acid. In MODE 5 with loops not filled, only RHR pumps can be used for coolant circulation. The number of pumps in operation can vary to suit the operational needs. The intent of this LCO is to provide forced flow from at least one RHR pump for decay heat removal and transport and to require that two paths be available to provide redundancy for heat removal. ## APPLICABLE SAFETY ANALYSES In MODE 5, RCS circulation is considered in the determination of the time available for mitigation of the accidental boron dilution event. The RHR loops provide this circulation. The flow provided by one RHR loop is adequate for heat removal and for boron mixing. RCS loops in MODE 5 (loops not filled) have been identified in the NRC Policy Statement as important contributors to risk reduction. ### LCO The purpose of this LCO is to require that at least two RHR loops be OPERABLE and one of these loops be in operation. An OPERABLE loop is one that has the capability of transferring heat from the reactor coolant at a controlled rate. Heat cannot be removed via the RHR System unless forced flow is used. A minimum of one running RHR pump meets the LCO requirement for one loop in operation. An additional RHR loop is required to be OPERABLE to meet single failure considerations. ### **BASES** # LCO (continued) Note 1 permits all RHR pumps to be de-energized for ≤ 15 minutes when switching from one loop to another. The circumstances for stopping both RHR pumps are to be limited to situations when the outage time is short [and core outlet temperature is maintained > 10° F below saturation temperature]. The Note prohibits boron dilution or draining operations when RHR forced flow is stopped. Note 2 allows one RHR loop to be inoperable for a period of \leq 2 hours, provided that the other loop is OPERABLE and in operation. This permits periodic surveillance tests to be performed on the inoperable loop during the only time when these tests are safe and possible. An OPERABLE RHR loop is comprised of an OPERABLE RHR pump capable of providing forced flow to an OPERABLE RHR heat exchanger. RHR pumps are OPERABLE if they are capable of being powered and are able to provide flow if required. ## APPLICABILITY In MODE 5 with loops not filled, this LCO requires core heat removal and coolant circulation by the RHR System. Operation in other MODES is covered by: LCO 3.4.4, "RCS Loops—MODES 1 and 2"; LCO 3.4.5, "RCS Loops—MODE 3"; LCO 3.4.6, "RCS Loops—MODE 4"; LCO 3.4.7, "RCS Loops—MODE 5, Loops Filled"; LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation—High Water Level" (MODE 6); and LCO 3.9.6, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level" (MODE 6). ### **ACTIONS** ### <u>A.1</u> If only one RHR loop is OPERABLE and in operation, redundancy for RHR is lost. Action must be initiated to restore a second loop to OPERABLE status. The immediate Completion Time reflects the importance of maintaining the availability of two paths for heat removal. # ACTIONS (continued) ### **B.1** and **B.2** If no required RHR loops are OPERABLE or in operation, except during conditions permitted by Note 1, all operations involving a
reduction of RCS boron concentration must be suspended and action must be initiated immediately to restore an RHR loop to OPERABLE status and operation. Boron dilution requires forced circulation for uniform dilution, and the margin to criticality must not be reduced in this type of operation. The immediate Completion Time reflects the importance of maintaining operation for heat removal. The action to restore must continue until one loop is restored to OPERABLE status and operation. # SURVEILLANCE REQUIREMENTS ## SR 3.4.8.1 This SR requires verification every 12 hours that one loop is in operation. Verification includes flow rate, temperature, or pump status monitoring, which help ensure that forced flow is providing heat removal. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RHR loop performance. ### SR 3.4.8.2 Verification that the required number of pumps are OPERABLE ensures that additional pumps can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power available to the required pumps. The Frequency of 7 days is considered reasonable in view of other administrative controls available and has been shown to be acceptable by operating experience. #### REFERENCES None. ## B 3.4 REACTOR COOLANT SYSTEM (RCS) ### B 3.4.9 Pressurizer ### **BASES** #### BACKGROUND The pressurizer provides a point in the RCS where liquid and vapor are maintained in equilibrium under saturated conditions for pressure control purposes to prevent bulk boiling in the remainder of the RCS. Key functions include maintaining required primary system pressure during steady state operation, and limiting the pressure changes caused by reactor coolant thermal expansion and contraction during normal load transients. The pressure control components addressed by this LCO include the pressurizer water level, the required heaters, and their controls and emergency power supplies. Pressurizer safety valves and pressurizer power operated relief valves are addressed by LCO 3.4.10, "Pressurizer Safety Valves," and LCO 3.4.11, "Pressurizer Power Operated Relief Valves (PORVs)," respectively. The intent of the LCO is to ensure that a steam bubble exists in the pressurizer prior to power operation to minimize the consequences of potential overpressure transients. The presence of a steam bubble is consistent with analytical assumptions. Relatively small amounts of noncondensible gases can inhibit the condensation heat transfer between the pressurizer spray and the steam, and diminish the spray effectiveness for pressure control. Electrical immersion heaters, located in the lower section of the pressurizer vessel, keep the water in the pressurizer at saturation temperature and maintain a constant operating pressure. A minimum required available capacity of pressurizer heaters ensures that the RCS pressure can be maintained. The capability to maintain and control system pressure is important for maintaining subcooled conditions in the RCS and ensuring the capability to remove core decay heat by either forced or natural circulation of reactor coolant. Unless adequate heater capacity is available, the hot, high pressure condition cannot be maintained indefinitely and still provide the required subcooling margin in the primary system. Inability to control the system pressure and maintain subcooling under conditions of natural circulation flow in the primary system could lead to # BACKGROUND (continued) a loss of single phase natural circulation and decreased capability to remove core decay heat. ## APPLICABLE SAFETY ANALYSES In MODES 1, 2, and 3, the LCO requirement for a steam bubble is reflected implicitly in the accident analyses. Safety analyses performed for lower MODES are not limiting. All analyses performed from a critical reactor condition assume the existence of a steam bubble and saturated conditions in the pressurizer. In making this assumption, the analyses neglect the small fraction of noncondensible gases normally present. Safety analyses presented in the FSAR (Ref. 1) do not take credit for pressurizer heater operation; however, an implicit initial condition assumption of the safety analyses is that the RCS is operating at normal pressure. The maximum pressurizer water level limit satisfies Criterion 2 of the NRC Policy Statement. Although the heaters are not specifically used in accident analysis, the need to maintain subcooling in the long term during loss of offsite power, as indicated in NUREG-0737 (Ref. 2), is the reason for providing an LCO. LCO The LCO requirement for the pressurizer to be OPERABLE with a water volume ≤ [1240] cubic feet, which is equivalent to [92]%, ensures that a steam bubble exists. Limiting the LCO maximum operating water level preserves the steam space for pressure control. The LCO has been established to ensure the capability to establish and maintain pressure control for steady state operation and to minimize the consequences of potential overpressure transients. Requiring the presence of a steam bubble is also consistent with analytical assumptions. The LCO requires two groups of OPERABLE pressurizer heaters, each with a capacity \geq [125] kW, capable of being powered from either the offsite power source or the emergency power supply. The minimum heater capacity required is sufficient to maintain the RCS near normal operating pressure when accounting for heat losses through the pressurizer insulation. By maintaining the pressure near the operating ## LCO (continued) conditions, a wide margin to subcooling can be obtained in the loops. The exact design value of [125 kW is derived from the use of seven heaters rated at 17.9 kW each]. The amount needed to maintain pressure is dependent on the heat losses. ### **APPLICABILITY** The need for pressure control is most pertinent when core heat can cause the greatest effect on RCS temperature, resulting in the greatest effect on pressurizer level and RCS pressure control. Thus, applicability has been designated for MODES 1 and 2. The applicability is also provided for MODE 3. The purpose is to prevent solid water RCS operation during heatup and cooldown to avoid rapid pressure rises caused by normal operational perturbation, such as reactor coolant pump startup. In MODES 1, 2, and 3, there is need to maintain the availability of pressurizer heaters, capable of being powered from an emergency power supply. In the event of a loss of offsite power, the initial conditions of these MODES give the greatest demand for maintaining the RCS in a hot pressurized condition with loop subcooling for an extended period. For MODE 4, 5, or 6, it is not necessary to control pressure (by heaters) to ensure loop subcooling for heat transfer when the Residual Heat Removal (RHR) System is in service, and therefore, the LCO is not applicable. #### ACTIONS ### A.1 and A.2 Pressurizer water level control malfunctions or other plant evolutions may result in a pressurizer water level above the nominal upper limit, even with the plant at steady state conditions. Normally the plant will trip in this event since the upper limit of this LCO is the same as the Pressurizer Water Level—High Trip. If the pressurizer water level is not within the limit, action must be taken to restore the plant to operation within the bounds of the safety analyses. To achieve this status, the unit must be brought to MODE 3, with the reactor trip breakers open, within 6 hours and to MODE 4 within 12 hours. This takes the unit out of the applicable MODES ## A.1 and A.2 (continued) and restores the unit to operation within the bounds of the safety analyses. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ### B.1 If one required group of pressurizer heaters is inoperable, restoration is required within 72 hours. The Completion Time of 72 hours is reasonable considering the anticipation that a demand caused by loss of offsite power would be unlikely in this period. Pressure control may be maintained during this time using normal station powered heaters. ## C.1 and C.2 If one group of pressurizer heaters are inoperable and cannot be restored in the allowed Completion Time of Required Action B.1, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.4.9.1 This SR requires that during steady state operation, pressurizer level is maintained below the nominal upper limit to provide a minimum space for a steam bubble. The Surveillance is performed by observing the indicated level. The Frequency of 12 hours corresponds to verifying the parameter each shift. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess level for any deviation and verify that operation is within ## SURVEILLANCE REQUIREMENTS ## <u>SR 3.4.9.1</u> (continued) safety analyses assumptions. Alarms are also available for early detection of abnormal level indications. ### SR 3.4.9.2 The SR is satisfied when the power supplies are demonstrated to be capable of producing the minimum power and the associated pressurizer heaters are verified to be at their design rating. This may be done by testing the power supply output and by performing an electrical check on heater element continuity and resistance. The Frequency of 92 days is considered adequate to detect heater degradation and has been shown by operating
experience to be acceptable. ### SR 3.4.9.3 This SR is not applicable if the heaters are permanently powered by Class 1E power supplies. This Surveillance demonstrates that the heaters can be manually transferred from the normal to the emergency power supply and energized. The Frequency of 18 months is based on a typical fuel cycle and is consistent with similar verifications of emergency power supplies. ### REFERENCES - 1. FSAR, Section []. - 2. NUREG-0737, November 1980. - B 3.4 REACTOR COOLANT SYSTEM (RCS) - B 3.4.10 Pressurizer Safety Valves #### BASES #### **BACKGROUND** The pressurizer safety valves provide, in conjunction with the Reactor Protection System, overpressure protection for the RCS. The pressurizer safety valves are totally enclosed pop type, spring loaded, self actuated valves with backpressure compensation. The safety valves are designed to prevent the system pressure from exceeding the system Safety Limit (SL), [2735] psig, which is 110% of the design pressure. Because the safety valves are totally enclosed and self actuating, they are considered independent components. The relief capacity for each valve, [380,000] lb/hr, is based on postulated overpressure transient conditions resulting from a complete loss of steam flow to the turbine. This event results in the maximum surge rate into the pressurizer, which specifies the minimum relief capacity for the safety valves. The discharge flow from the pressurizer safety valves is directed to the pressurizer relief tank. This discharge flow is indicated by an increase in temperature downstream of the pressurizer safety valves or increase in the pressurizer relief tank temperature or level. Overpressure protection is required in MODES 1, 2, 3, 4, and 5; however, in MODE 4, with one or more RCS cold leg temperatures \leq [275]°F, and MODE 5 and MODE 6 with the reactor vessel head on, overpressure protection is provided by operating procedures and by meeting the requirements of LCO 3.4.12, "Low Temperature Overpressure Protection (LTOP) System." The upper and lower pressure limits are based on the \pm 1% tolerance requirement (Ref. 1) for lifting pressures above 1000 psig. The lift setting is for the ambient conditions associated with MODES 1, 2, and 3. This requires either that the valves be set hot or that a correlation between hot and cold settings be established. The pressurizer safety valves are part of the primary success path and mitigate the effects of postulated accidents. OPERABILITY of the safety valves ensures that the RCS pressure will be limited to 110% of design pressure. # BACKGROUND (continued) The consequences of exceeding the American Society of Mechanical Engineers (ASME) pressure limit (Ref. 1) could include damage to RCS components, increased leakage, or a requirement to perform additional stress analyses prior to resumption of reactor operation. ## APPLICABLE SAFETY ANALYSES All accident and safety analyses in the FSAR (Ref. 2) that require safety valve actuation assume operation of three pressurizer safety valves to limit increases in RCS pressure. The overpressure protection analysis (Ref. 3) is also based on operation of [three] safety valves. Accidents that could result in overpressurization if not properly terminated include: - a. Uncontrolled rod withdrawal from full power; - b. Loss of reactor coolant flow; - c. Loss of external electrical load; - d. Loss of normal feedwater; - e. Loss of all AC power to station auxiliaries; and - f. Locked rotor. Detailed analyses of the above transients are contained in Reference 2. Safety valve actuation is required in events c, d, and e (above) to limit the pressure increase. Compliance with this LCO is consistent with the design bases and accident analyses assumptions. Pressurizer safety valves satisfy Criterion 3 of the NRC Policy Statement. LC0 The [three] pressurizer safety valves are set to open at the RCS design pressure (2500 psia), and within the ASME specified tolerance, to avoid exceeding the maximum design pressure SL, to maintain accident analyses assumptions, and to comply with ASME requirements. The upper and lower pressure tolerance limits are based on the \pm 1% tolerance requirements (Ref. 1) for lifting pressures above 1000 psig. # LCO (continued) The limit protected by this Specification is the reactor coolant pressure boundary (RCPB) SL of 110% of design pressure. Inoperability of one or more valves could result in exceeding the SL if a transient were to occur. The consequences of exceeding the ASME pressure limit could include damage to one or more RCS components, increased leakage, or additional stress analysis being required prior to resumption of reactor operation. ### APPLICABILITY In MODES 1, 2, and 3, and portions of MODE 4 above the LTOP arming temperature, OPERABILITY of [three] valves is required because the combined capacity is required to keep reactor coolant pressure below 110% of its design value during certain accidents. MODE 3 and portions of MODE 4 are conservatively included, although the listed accidents may not require the safety valves for protection. The LCO is not applicable in MODE 4 when all RCS cold leg temperatures are ≤ [275]°F or in MODE 5 because LTOP is provided. Overpressure protection is not required in MODE 6 with reactor vessel head detensioned. The Note allows entry into MODES 3 and 4 with the lift settings outside the LCO limits. This permits testing and examination of the safety valves at high pressure and temperature near their normal operating range, but only after the valves have had a preliminary cold setting. The cold setting gives assurance that the valves are OPERABLE near their design condition. Only one valve at a time will be removed from service for testing. The [54] hour exception is based on 18 hour outage time for each of the [three] valves. The 18 hour period is derived from operating experience that hot testing can be performed in this timeframe. ### ACTIONS ### <u>A.1</u> With one pressurizer safety valve inoperable, restoration must take place within 15 minutes. The Completion Time of 15 minutes reflects the importance of maintaining the RCS Overpressure Protection System. An inoperable safety valve ## A.1 (continued) coincident with an RCS overpressure event could challenge the integrity of the pressure boundary. ### **B.1** and **B.2** If the Required Action of A.1 cannot be met within the required Completion Time or if two or more pressurizer safety valves are inoperable, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 with any RCS cold leg temperatures ≤ [275]°F within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. With any RCS cold leg temperatures at or below [275]°F, overpressure protection is provided by the LTOP System. The change from MODE 1, 2, or 3 to MODE 4 reduces the RCS energy (core power and pressure), lowers the potential for large pressurizer insurges, and thereby removes the need for overpressure protection by [three] pressurizer safety valves. # SURVEILLANCE REQUIREMENTS ### SR 3.4.10.1 SRs are specified in the Inservice Testing Program. Pressurizer safety valves are to be tested in accordance with the requirements of Section XI of the ASME Code (Ref. 4), which provides the activities and Frequencies necessary to satisfy the SRs. No additional requirements are specified. The pressurizer safety valve setpoint is \pm [3]% for OPERABILITY; however, the valves are reset to \pm 1% during the Surveillance to allow for drift. #### REFERENCES - 1. ASME, Boiler and Pressure Vessel Code, Section III. - 2. FSAR, Chapter [15]. ## BASES # REFERENCES (continued) - 3. WCAP-7769, Rev. 1, June 1972. - 4. ASME, Boiler and Pressure Vessel Code, Section XI. ## B 3.4 REACTOR COOLANT SYSTEM (RCS) ## B 3.4.11 Pressurizer Power Operated Relief Valves (PORVs) #### **BASES** #### **BACKGROUND** The pressurizer is equipped with two types of devices for pressure relief: pressurizer safety valves and PORVs. The PORVs are air operated valves that are controlled to open at a specific set pressure when the pressurizer pressure increases and close when the pressurizer pressure decreases. The PORVs may also be manually operated from the control room. Block valves, which are normally open, are located between the pressurizer and the PORVs. The block valves are used to isolate the PORVs in case of excessive leakage or a stuck open PORV. Block valve closure is accomplished manually using controls in the control room. A stuck open PORV is, in effect, a small break loss of coolant accident (LOCA). As such, block valve closure terminates the RCS depressurization and coolant inventory loss. The PORVs and their associated block valves may be used by plant operators to depressurize the RCS to recover from certain transients if normal pressurizer spray is not available. Additionally, the series arrangement of the PORVs and their block valves permit performance of surveillances on the valves during power operation. The PORVs may also be used for feed and bleed core cooling in the case of multiple equipment failure events that are not within the design basis, such as a total loss of feedwater. The PORVs, their block valves, and their controls are powered from the vital buses that normally receive power from offsite power sources, but are also capable of being powered from emergency power sources in the event of a loss of offsite power. Two PORVs and their associated block valves are powered from two separate safety trains (Ref. 1). The plant has two PORVs, each having a relief capacity of 210,000 lb/hr at 2335 psig. The functional design of the PORVs is based on maintaining pressure below the Pressurizer Pressure—High reactor trip
setpoint following a step reduction of 50% of full load with steam dump. In addition, ### **BASES** # BACKGROUND (continued) the PORVs minimize challenges to the pressurizer safety valves and also may be used for low temperature overpressure protection (LTOP). See LCO 3.4.12, "Low Temperature Overpressure Protection (LTOP) System." ## APPLICABLE SAFETY ANALYSES Plant operators employ the PORVs to depressurize the RCS in response to certain plant transients if normal pressurizer spray is not available. For the Steam Generator Tube Rupture (SGTR) event, the safety analysis assumes that manual operator actions are required to mitigate the event. A loss of offsite power is assumed to accompany the event, and thus, normal pressurizer spray is unavailable to reduce RCS pressure. The PORVs are assumed to be used for RCS depressurization, which is one of the steps performed to equalize the primary and secondary pressures in order to terminate the primary to secondary break flow and the radioactive releases from the affected steam generator. The PORVs are used in safety analyses for events that result in increasing RCS pressure for which departure from nucleate boiling ratio (DNBR) criteria are critical. By assuming PORV manual actuation, the primary pressure remains below the high pressurizer pressure trip setpoint; thus, the DNBR calculation is more conservative. Events that assume this condition include a turbine trip and the loss of normal feedwater (Ref. 2). Pressurizer PORVs satisfy Criterion 3 of the NRC Policy Statement. ### LC0 The LCO requires the PORVs and their associated block valves to be OPERABLE for manual operation to mitigate the effects associated with an SGTR. By maintaining two PORVs and their associated block valves OPERABLE, the single failure criterion is satisfied. The block valves are available to isolate the flow path through either a failed open PORV or a PORV with excessive leakage. Satisfying the LCO helps minimize challenges to fission product barriers. ### APPLICABILITY In MODES 1, 2, and 3, the PORV and its block valve are required to be OPERABLE to limit the potential for a small break LOCA through the flow path. The most likely cause for a PORV small break LOCA is a result of a pressure increase transient that causes the PORV to open. Imbalances in the energy output of the core and heat removal by the secondary system can cause the RCS pressure to increase to the PORV opening setpoint. The most rapid increases will occur at the higher operating power and pressure conditions of MODES 1 and 2. The PORVs are also required to be OPERABLE in MODES 1, 2, and 3 to minimize challenges to the pressurizer safety valves. Pressure increases are less prominent in MODE 3 because the core input energy is reduced, but the RCS pressure is high. Therefore, the LCO is applicable in MODES 1, 2, and 3. The LCO is not applicable in MODE 4 when both pressure and core energy are decreased and the pressure surges become much less significant. The PORV setpoint is reduced for LTOP in MODES 4, 5, and 6 with the reactor vessel head in place. LCO 3.4.12 addresses the PORV requirements in these MODES. #### ACTIONS Note 1 has been added to clarify that all pressurizer PORVs are treated as separate entities, each with separate Completion Times (i.e., the Completion Time is on a component basis). The exception for LCO 3.0.4, Note 2, permits entry into MODES 1, 2, and 3 to perform cycling of the PORVs or block valves to verify their OPERABLE status. Testing is not performed in lower MODES. #### A.1 With the PORVs inoperable and capable of being manually cycled, either the PORVs must be restored or the flow path isolated within 1 hour. The block valves should be closed but power must be maintained to the associated block valves, since removal of power would render the block valve inoperable. Although a PORV may be designated inoperable, it may be able to be manually opened and closed, and therefore, able to perform its function. PORV inoperability may be due to seat leakage, instrumentation problems, automatic control problems, or other causes that do not prevent manual use and do not create a possibility for a ## A.1 (continued) small break LOCA. For these reasons, the block valve may be closed but the Action requires power be maintained to the valve. This Condition is only intended to permit operation of the plant for a limited period of time not to exceed the next refueling outage (MODE 6) so that maintenance can be performed on the PORVs to eliminate the problem condition. Normally, the PORVs should be available for automatic mitigation of overpressure events and should be returned to OPERABLE status prior to entering startup (MODE 2). Quick access to the PORV for pressure control can be made when power remains on the closed block valve. The Completion Time of 1 hour is based on plant operating experience that has shown that minor problems can be corrected or closure accomplished in this time period. ## B.1, B.2, and B.3 If one [or two] PORV[s] is inoperable and not capable of being manually cycled, it must be either restored or isolated by closing the associated block valve and removing the power to the associated block valve. The Completion Times of 1 hour are reasonable, based on challenges to the PORVs during this time period, and provide the operator adequate time to correct the situation. If the inoperable valve cannot be restored to OPERABLE status, it must be isolated within the specified time. Because there is at least one PORV that remains OPERABLE, an additional 72 hours is provided to restore the inoperable PORV to OPERABLE status. If the PORV cannot be restored within this additional time, the plant must be brought to a MODE in which the LCO does not apply, as required by Condition D. ## C.1 and C.2 If one block valve is inoperable, then it is necessary to either restore the block valve to OPERABLE status within the Completion Time of 1 hour or place the associated PORV in manual control. The prime importance for the capability to close the block valve is to isolate a stuck open PORV. Therefore, if the block valve cannot be restored to OPERABLE ## C.1 and C.2 (continued) status within 1 hour, the Required Action is to place the PORV in manual control to preclude its automatic opening for an overpressure event and to avoid the potential for a stuck open PORV at a time that the block valve is inoperable. The Completion Time of 1 hour is reasonable, based on the small potential for challenges to the system during this time period, and provides the operator time to correct the situation. Because at least one PORV remains OPERABLE, the operator is permitted a Completion Time of 72 hours to restore the inoperable block valve to OPERABLE status. time allowed to restore the block valve is based upon the Completion Time for restoring an inoperable PORV in Condition B, since the PORVs are not capable of mitigating an overpressure event when placed in manual control. If the block valve is restored within the Completion Time of 72 hours, the power will be restored and the PORV restored to OPERABLE status. If it cannot be restored within this additional time, the plant must be brought to a MODE in which the LCO does not apply, as required by Condition D. ## D.1 and D.2 If the Required Action of Condition A, B, or C is not met, then the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODES 4 and 5, maintaining PORV OPERABILITY may be required. See LCO 3.4.12. ## E.1, E.2, E.3, and E.4 If more than one PORV is inoperable and not capable of being manually cycled, it is necessary to either restore at least one valve within the Completion Time of 1 hour or isolate the flow path by closing and removing the power to the associated block valves. The Completion Time of 1 hour is reasonable, based on the small potential for challenges to the system during this time and provides the operator time ## E.1, E.2, E.3, and E.4 (continued) to correct the situation. If one PORV is restored and one PORV remains inoperable, then the plant will be in Condition B with the time clock started at the original declaration of having two [or three] PORVs inoperable. If no PORVs are restored within the Completion Time, then the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODES 4 and 5, maintaining PORV OPERABILITY may be required. See LCO 3.4.12. ## F.1, F.2, and F.3 If more than one block valve is inoperable, it is necessary to either restore the block valves within the Completion Time of 1 hour, or place the associated PORVs in manual control and restore at least one block valve within 2 hours [and restore the remaining block valve within 72 hours]. The Completion Times are reasonable, based on the small potential for challenges to the system during this time and provide the operator time to correct the situation. #### G.1 and G.2 If the Required Actions of Condition F are not met, then the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODES
4 and 5, maintaining PORV OPERABILITY may be required. See LCO 3.4.12. ## SURVEILLANCE REQUIREMENTS ## SR 3.4.11.1 Block valve cycling verifies that the valve(s) can be closed if needed. The basis for the Frequency of 92 days is the ASME Code, Section XI (Ref. 3). If the block valve is closed to isolate a PORV that is capable of being manually cycled, the OPERABILITY of the block valve is of importance, because opening the block valve is necessary to permit the PORV to be used for manual control of reactor pressure. If the block valve is closed to isolate an otherwise inoperable PORV, the maximum Completion Time to restore the PORV and open the block valve is 72 hours, which is well within the allowable limits (25%) to extend the block valve Frequency of 92 days. Furthermore, these test requirements would be completed by the reopening of a recently closed block valve upon restoration of the PORV to OPERABLE status (i.e., completion of the Required Actions fulfills the SR). The Note modifies this SR by stating that it is not required to be met with the block valve closed, in accordance with the Required Action of this LCO. ### SR 3.4.11.2 SR 3.4.11.2 requires a complete cycle of each PORV. Operating a PORV through one complete cycle ensures that the PORV can be manually actuated for mitigation of an SGTR. The Frequency of [18] months is based on a typical refueling cycle and industry accepted practice. #### SR 3.4.11.3 Operating the solenoid air control valves and check valves on the air accumulators ensures the PORV control system actuates properly when called upon. The Frequency of [18] months is based on a typical refueling cycle and the Frequency of the other Surveillances used to demonstrate PORV OPERABILITY. ### SR 3.4.11.4 This Surveillance is not required for plants with permanent 1E power supplies to the valves. # SURVEILLANCE REQUIREMENTS ## <u>SR 3.4.11.4</u> (continued) The Surveillance demonstrates that emergency power can be provided and is performed by transferring power from normal to emergency supply and cycling the valves. The Frequency of [18] months is based on a typical refueling cycle and industry accepted practice. ### REFERENCES - 1. Regulatory Guide 1.32, February 1977. - 2. FSAR, Section [15.2]. - 3. ASME, Boiler and Pressure Vessel Code, Section XI. ## B 3.4 REACTOR COOLANT SYSTEM (RCS) ## B 3.4.12 Low Temperature Overpressure Protection (LTOP) System ### BASES #### **BACKGROUND** The LTOP System controls RCS pressure at low temperatures so the integrity of the reactor coolant pressure boundary (RCPB) is not compromised by violating the pressure and temperature (P/T) limits of 10 CFR 50, Appendix G (Ref. 1). The reactor vessel is the limiting RCPB component for demonstrating such protection. The PTLR provides the maximum allowable actuation logic setpoints for the power operated relief valves (PORVs) and the maximum RCS pressure for the existing RCS cold leg temperature during cooldown, shutdown, and heatup to meet the Reference 1 requirements during the LTOP MODES. The reactor vessel material is less tough at low temperatures than at normal operating temperature. As the vessel neutron exposure accumulates, the material toughness decreases and becomes less resistant to pressure stress at low temperatures (Ref. 2). RCS pressure, therefore, is maintained low at low temperatures and is increased only as temperature is increased. The potential for vessel overpressurization is most acute when the RCS is water solid, occurring only while shutdown; a pressure fluctuation can occur more quickly than an operator can react to relieve the condition. Exceeding the RCS P/T limits by a significant amount could cause brittle cracking of the reactor vessel. LCO 3.4.3, "RCS Pressure and Temperature (P/T) Limits," requires administrative control of RCS pressure and temperature during heatup and cooldown to prevent exceeding the PTLR limits. This LCO provides RCS overpressure protection by having a minimum coolant input capability and having adequate pressure relief capacity. Limiting coolant input capability requires all but [one] [high pressure injection (HPI)] pump [and one charging pump] incapable of injection into the RCS and isolating the accumulators. The pressure relief capacity requires either two redundant RCS relief valves or a depressurized RCS and an RCS vent of sufficient size. One RCS relief valve or the open RCS vent is the overpressure protection device that acts to terminate an increasing pressure event. # BACKGROUND (continued) With minimum coolant input capability, the ability to provide core coolant addition is restricted. The LCO does not require the makeup control system deactivated or the safety injection (SI) actuation circuits blocked. Due to the lower pressures in the LTOP MODES and the expected core decay heat levels, the makeup system can provide adequate flow via the makeup control valve. If conditions require the use of more than one [HPI or] charging pump for makeup in the event of loss of inventory, then pumps can be made available through manual actions. The LTOP System for pressure relief consists of two PORVs with reduced lift settings, or two residual heat removal (RHR) suction relief valves, or one PORV and one RHR suction relief valve, or a depressurized RCS and an RCS vent of sufficient size. Two RCS relief valves are required for redundancy. One RCS relief valve has adequate relieving capability to keep from overpressurization for the required coolant input capability. ## PORV Requirements As designed for the LTOP System, each PORV is signaled to open if the RCS pressure approaches a limit determined by the LTOP actuation logic. The LTOP actuation logic monitors both RCS temperature and RCS pressure and determines when a condition not acceptable in the PTLR limits is approached. The wide range RCS temperature indications are auctioneered to select the lowest temperature signal. The lowest temperature signal is processed through a function generator that calculates a pressure limit for that temperature. The calculated pressure limit is then compared with the indicated RCS pressure from a wide range pressure channel. If the indicated pressure meets or exceeds the calculated value, a PORV is signaled to open. The PTLR presents the PORV setpoints for LTOP. The setpoints are normally staggered so only one valve opens during a low temperature overpressure transient. Having the setpoints of both valves within the limits in the PTLR ensures that the Reference 1 limits will not be exceeded in any analyzed event. ### **BACKGROUND** ## <u>PORV Requirements</u> (continued) When a PORV is opened in an increasing pressure transient, the release of coolant will cause the pressure increase to slow and reverse. As the PORV releases coolant, the RCS pressure decreases until a reset pressure is reached and the valve is signaled to close. The pressure continues to decrease below the reset pressure as the valve closes. ### RHR Suction Relief Valve Requirements During LTOP MODES, the RHR System is operated for decay heat removal and low pressure letdown control. Therefore, the RHR suction isolation valves are open in the piping from the RCS hot legs to the inlets of the RHR pumps. While these valves are open and the RHR suction valves are open, the RHR suction relief valves are exposed to the RCS and are able to relieve pressure transients in the RCS. The RHR suction isolation valves and the RHR suction valves must be open to make the RHR suction relief valves OPERABLE for RCS overpressure mitigation. Autoclosure interlocks are not permitted to cause the RHR suction isolation valves to close. The RHR suction relief valves are spring loaded, bellows type water relief valves with pressure tolerances and accumulation limits established by Section III of the American Society of Mechanical Engineers (ASME) Code (Ref. 3) for Class 2 relief valves. ### RCS Vent Requirements Once the RCS is depressurized, a vent exposed to the containment atmosphere will maintain the RCS at containment ambient pressure in an RCS overpressure transient, if the relieving requirements of the transient do not exceed the capabilities of the vent. Thus, the vent path must be capable of relieving the flow resulting from the limiting LTOP mass or heat input transient, and maintaining pressure below the P/T limits. The required vent capacity may be provided by one or more vent paths. For an RCS vent to meet the flow capacity requirement, it requires removing a pressurizer safety valve, removing a PORV's internals, and disabling its block valve in the open #### BACKGROUND ## RCS Vent Requirements (continued) position, or similarly establishing a vent by opening an RCS vent valve. The vent path(s) must be above the level of reactor coolant, so as not to drain the RCS when open. ### APPLICABLE SAFETY ANALYSES Safety analyses (Ref. 4) demonstrate that the reactor vessel is adequately protected against exceeding the Reference 1 P/T limits. In MODES 1, 2, and 3, and in MODE 4 with RCS cold leg temperature exceeding [275]°F, the pressurizer safety valves will prevent RCS pressure from exceeding the Reference 1 limits. At about [275]°F and below, overpressure prevention falls to two OPERABLE RCS relief valves or to a depressurized RCS and a sufficient sized RCS vent. Each of these means has a limited overpressure relief capability. The actual temperature at which the pressure in the P/T limit curve falls below the pressurizer safety valve setpoint increases as the reactor vessel material toughness decreases due to neutron embrittlement. Each time the PTLR curves are revised, the LTOP System must be re-evaluated to ensure its functional requirements can still be met using the RCS relief valve method or the depressurized and vented RCS condition. The PTLR contains the acceptance limits that define the LTOP requirements. Any change to the RCS must be evaluated against the Reference 4 analyses to determine the impact of the
change on the LTOP acceptance limits. Transients that are capable of overpressurizing the RCS are categorized as either mass or heat input transients, examples of which follow: ### Mass Input Type Transients - a. Inadvertent safety injection; or - b. Charging/letdown flow mismatch. ## APPLICABLE SAFETY ANALYSES (continued) ### Heat Input Type Transients - Inadvertent actuation of pressurizer heaters; - b. Loss of RHR cooling; or - c. Reactor coolant pump (RCP) startup with temperature asymmetry within the RCS or between the RCS and steam generators. The following are required during the LTOP MODES to ensure that mass and heat input transients do not occur, which either of the LTOP overpressure protection means cannot handle: - a. Rendering all but [one] [HPI] pump [and one charging pump] incapable of injection; - b. Deactivating the accumulator discharge isolation valves in their closed positions; and - c. Disallowing start of an RCP if secondary temperature is more than [50]°F above primary temperature in any one loop. LCO 3.4.6, "RCS Loops—MODE 4," and LCO 3.4.7, "RCS Loops—MODE 5, Loops Filled," provide this protection. The Reference 4 analyses demonstrate that either one RCS relief valve or the depressurized RCS and RCS vent can maintain RCS pressure below limits when only one [HPI] pump [and one charging pump are] is [are] actuated. Thus, the LCO allows only [one] [HPI] pump [and one charging pump] OPERABLE during the LTOP MODES. Since neither one RCS relief valve nor the RCS vent can handle the pressure transient need from accumulator injection, when RCS temperature is low, the LCO also requires the accumulators isolation when accumulator pressure is greater than or equal to the maximum RCS pressure for the existing RCS cold leg temperature allowed in the PTLR. The isolated accumulators must have their discharge valves closed and the valve power supply breakers fixed in their open positions. The analyses show the effect of accumulator discharge is over a narrower RCS temperature range ([175]°F and below) than that of the LCO ([275]°F and below). #### APPLICABLE SAFETY ANALYSES # <u>Heat Input Type Transients</u> (continued) Fracture mechanics analyses established the temperature of LTOP Applicability at [275]°F. The consequences of a small break loss of coolant accident (LOCA) in LTOP MODE 4 conform to 10 CFR 50.46 and 10 CFR 50, Appendix K (Refs. 5 and 6), requirements by having a maximum of [one] [HPI] pump [and one charging pump] OPERABLE and SI actuation enabled. ### PORV Performance The fracture mechanics analyses show that the vessel is protected when the PORVs are set to open at or below the limit shown in the PTLR. The setpoints are derived by analyses that model the performance of the LTOP System, assuming the limiting LTOP transient of [one] [HPI] pump [and one charging pump] injecting into the RCS. These analyses consider pressure overshoot and undershoot beyond the PORV opening and closing, resulting from signal processing and valve stroke times. The PORV setpoints at or below the derived limit ensures the Reference 1 P/T limits will be met. The PORV setpoints in the PTLR will be updated when the revised P/T limits conflict with the LTOP analysis limits. The P/T limits are periodically modified as the reactor vessel material toughness decreases due to neutron embrittlement caused by neutron irradiation. Revised limits are determined using neutron fluence projections and the results of examinations of the reactor vessel material irradiation surveillance specimens. The Bases for LCO 3.4.3, "RCS Pressure and Temperature (P/T) Limits," discuss these examinations. The PORVs are considered active components. Thus, the failure of one PORV is assumed to represent the worst case, single active failure. ## APPLICABLE SAFETY ANALYSES (continued) ## [RHR Suction Relief Valve Performance] The RHR suction relief valves do not have variable pressure and temperature lift setpoints like the PORVs. Analyses must show that one RHR suction relief valve with a setpoint at or between [436.5] psig and [463.5] psig will pass flow greater than that required for the limiting LTOP transient while maintaining RCS pressure less than the P/T limit curve. Assuming all relief flow requirements during the limiting LTOP event, an RHR suction relief valve will maintain RCS pressure to within the valve rated lift setpoint, plus an accumulation \leq 10% of the rated lift setpoint. Although each RHR suction relief valve may itself meet single failure criteria, its inclusion and location within the RHR System does not allow it to meet single failure criteria when spurious RHR suction isolation valve closure is postulated. Also, as the RCS P/T limits are decreased to reflect the loss of toughness in the reactor vessel materials due to neutron embrittlement, the RHR suction relief valves must be analyzed to still accommodate the design basis transients for LTOP. The RHR suction relief valves are considered active components. Thus, the failure of one valve is assumed to represent the worst case single active failure. #### RCS Vent Performance With the RCS depressurized, analyses show a vent size of 2.07 square inches is capable of mitigating the allowed LTOP overpressure transient. The capacity of a vent this size is greater than the flow of the limiting transient for the LTOP configuration, [one] HPI pump [and one charging pump] OPERABLE, maintaining RCS pressure less than the maximum pressure on the P/T limit curve. The RCS vent size will be re-evaluated for compliance each time the P/T limit curves are revised based on the results of the vessel material surveillance. The RCS vent is passive and is not subject to active failure. # APPLICABLE SAFETY ANALYSES # RCS Vent Performance (continued) The LTOP System satisfies Criterion 2 of the NRC Policy Statement. LC0 This LCO requires that the LTOP System is OPERABLE. The LTOP System is OPERABLE when the minimum coolant input and pressure relief capabilities are OPERABLE. Violation of this LCO could lead to the loss of low temperature overpressure mitigation and violation of the Reference 1 limits as a result of an operational transient. To limit the coolant input capability, the LCO requires [one] [HPI] pump [and one charging pump] capable of injecting into the RCS and all accumulator discharge isolation valves closed and immobilized. When accumulator pressure is greater than or equal to the maximum RCS pressure for the existing RCS cold leg temperature allowed in the PTLR. The elements of the LCO that provide low temperature overpressure mitigation through pressure relief are: - a. Two RCS relief valves, as follows: - 1. Two OPERABLE PORVs; or A PORV is OPERABLE for LTOP when its block valve is open, its lift setpoint is set to the limit required by the PTLR and testing proves its ability to open at this setpoint, and motive power is available to the two valves and their control circuits. [2. Two OPERABLE RHR suction relief valves; or] An RHR suction relief valve is OPERABLE for LTOP when its RHR suction isolation valve and its RHR suction valve are open, its setpoint is at or between [436.5] psig and [463.5] psig, and testing has proven its ability to open at this setpoint. LCO (continued) - One OPERABLE PORV and one OPERABLE RHR suction relief valve; or - A depressurized RCS and an RCS vent. An RCS vent is OPERABLE when open with an area of \geq [2.07] square inches. Each of these methods of overpressure prevention is capable of mitigating the limiting LTOP transient. ### APPLICABILITY WOG STS This LCO is applicable in MODE 4 when any RCS cold leg temperature is ≤ [275]°F, in MODE 5, and in MODE 6 when the reactor vessel head is on. The pressurizer safety valves provide overpressure protection that meets the Reference 1 P/T limits above [275]°F. When the reactor vessel head is off, overpressurization cannot occur. LCO 3.4.3 provides the operational P/T limits for all MODES. LCO 3.4.10, "Pressurizer Safety Valves," requires the OPERABILITY of the pressurizer safety valves that provide overpressure protection during MODES 1, 2, and 3, and MODE 4 above [275]°F. Low temperature overpressure prevention is most critical during shutdown when the RCS is water solid, and a mass or heat input transient can cause a very rapid increase in RCS pressure when little or no time allows operator action to mitigate the event. The Applicability is modified by a Note stating that accumulator isolation is only required when the accumulator pressure is more than or at the maximum RCS pressure for the existing temperature, as allowed by the P/T limit curves. This Note permits the accumulator discharge isolation valve Surveillance to be performed only under these pressure and temperature conditions. #### A.1 [and B.1] With two or more HPI pumps capable of injecting into the RCS, RCS overpressurization is possible. To immediately initiate action to restore restricted coolant input capability to the RCS reflects the urgency of removing the RCS from this condition. Required Action B.1 is modified by a Note that permits two charging pumps capable of RCS injection for \leq 15 minutes to allow for pump swaps. #### C.1, D.1, and D.2 An unisolated accumulator requires isolation within 1 hour. This is only required when the accumulator pressure is at or more than the maximum RCS pressure for the existing temperature allowed by the P/T limit curves. If isolation is needed and cannot be accomplished in 1 hour, Required Action D.1 and Required Action D.2 provide two options, either of which must be performed in the next 12 hours. By increasing the RCS temperature to > [275]°F, an accumulator pressure of [600] psig cannot exceed the LTOP limits if the accumulators are fully injected. Depressurizing the accumulators below the LTOP limit from the PTLR also gives this protection. The Completion Times are based on operating experience that these activities can be accomplished in these time periods and on engineering
evaluations indicating that an event requiring LTOP is not likely in the allowed times. #### E.1 In MODE 4 when any RCS cold leg temperature is \leq [275]°F, with one required RCS relief valve inoperable, the RCS relief valve must be restored to OPERABLE status within a Completion Time of 7 days. Two RCS relief valves [in any combination of the PORVS and the RHR suction relief valves] are required to provide low temperature overpressure mitigation while withstanding a single failure of an active component. # E.1 (continued) The Completion Time considers the facts that only one of the RCS relief valves is required to mitigate an overpressure transient and that the likelihood of an active failure of the remaining valve path during this time period is very low. # <u>F.1</u> The consequences of operational events that will overpressurize the RCS are more severe at lower temperature (Ref. 7). Thus, with one of the two RCS relief valves inoperable in MODE 5 or in MODE 6 with the head on, the Completion Time to restore two valves to OPERABLE status is 24 hours. The Completion Time represents a reasonable time to investigate and repair several types of relief valve failures without exposure to a lengthy period with only one OPERABLE RCS relief valve to protect against overpressure events. ## <u>G.1</u> The RCS must be depressurized and a vent must be established within 8 hours when: - a. Both required RCS relief valves are inoperable; or - b. A Required Action and associated Completion Time of Condition A, [B,] D, E, or F is not met; or - c. The LTOP System is inoperable for any reason other than Condition A, [B,] C, D, E, or F. The vent must be sized \geq [2.07] square inches to ensure that the flow capacity is greater than that required for the worst case mass input transient reasonable during the applicable MODES. This action is needed to protect the RCPB from a low temperature overpressure event and a possible brittle failure of the reactor vessel. ## <u>G.1</u> (continued) The Completion Time considers the time required to place the plant in this Condition and the relatively low probability of an overpressure event during this time period due to increased operator awareness of administrative control requirements. # SURVEILLANCE REQUIREMENTS # SR 3.4.12.1, [SR 3.4.12.2,] and SR 3.4.12.3 To minimize the potential for a low temperature overpressure event by limiting the mass input capability, a maximum of [one] [HPI] pump [and a maximum of one charging pump] are verified incapable of injecting into the RCS and the accumulator discharge isolation valves are verified closed and locked out. The [HPI] pump[s] and charging pump[s] are rendered incapable of injecting into the RCS through removing the power from the pumps by racking the breakers out under administrative control. An alternate method of LTOP control may be employed using at least two independent means to prevent a pump start such that a single failure or single action will not result in an injection into the RCS. This may be accomplished through the pump control switch being placed in [pull to lock] and at least one valve in the discharge flow path being closed. The Frequency of 12 hours is sufficient, considering other indications and alarms available to the operator in the control room, to verify the required status of the equipment. #### SR 3.4.12.4 Each required RHR suction relief valve shall be demonstrated OPERABLE by verifying its RHR suction valve and RHR suction isolation valves are open and by testing it in accordance with the Inservice Testing Program. (Refer to SR 3.4.12.7 for the RHR suction isolation valve Surveillance.) This Surveillance is only required to be performed if the RHR suction relief valve is being used to meet this LCO. # SURVEILLANCE REQUIREMENTS # <u>SR 3.4.12.4</u> (continued) The RHR suction valve is verified to be opened every 12 hours. The Frequency is considered adequate in view of other administrative controls such as valve status indications available to the operator in the control room that verify the RHR suction valve remains open. The ASME Code, Section XI (Ref. 8), test per Inservice Testing Program verifies OPERABILITY by proving proper relief valve mechanical motion and by measuring and, if required, adjusting the lift setpoint. ### SR 3.4.12.5 The RCS vent of \geq [2.07] square inches is proven OPERABLE by verifying its open condition either: - a. Once every 12 hours for a valve that cannot be locked. - b. Once every 31 days for a valve that is locked, sealed, or secured in position. A removed pressurizer safety valve fits this category. The passive vent arrangement must only be open to be OPERABLE. This Surveillance is required to be performed if the vent is being used to satisfy the pressure relief requirements of the LCO 3.4.12b. #### SR 3.4.12.6 The PORV block valve must be verified open every 72 hours to provide the flow path for each required PORV to perform its function when actuated. The valve must be remotely verified open in the main control room. [This Surveillance is performed if the PORV satisfies the LCO.] The block valve is a remotely controlled, motor operated valve. The power to the valve operator is not required removed, and the manual operator is not required locked in the inactive position. Thus, the block valve can be closed in the event the PORV develops excessive leakage or does not close (sticks open) after relieving an overpressure situation. ### SURVEILLANCE REQUIREMENTS ## <u>SR 3.4.12.6</u> (continued) The 72 hour Frequency is considered adequate in view of other administrative controls available to the operator in the control room, such as valve position indication, that verify that the PORV block valve remains open. #### SR 3.4.12.7 Each required RHR suction relief valve shall be demonstrated OPERABLE by verifying its RHR suction valve and RHR suction isolation valve are open and by testing it in accordance with the Inservice Testing Program. (Refer to SR 3.4.12.4 for the RHR suction valve Surveillance and for a description of the requirements of the Inservice Testing Program.) This Surveillance is only performed if the RHR suction relief valve is being used to satisfy this LCO. Every 31 days the RHR suction isolation valve is verified locked open, with power to the valve operator removed, to ensure that accidental closure will not occur. The "locked open" valve must be locally verified in its open position with the manual actuator locked in its inactive position. The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve position. #### SR 3.4.12.8 Performance of a COT is required within 12 hours after decreasing RCS temperature to \leq [275]°F and every 31 days on each required PORV to verify and, as necessary, adjust its lift setpoint. The COT will verify the setpoint is within the PTLR allowed maximum limits in the PTLR. PORV actuation could depressurize the RCS and is not required. The 12 hour Frequency considers the unlikelihood of a low temperature overpressure event during this time. A Note has been added indicating that this SR is required to be met 12 hours after decreasing RCS cold leg temperature to ≤ [275]°F. The COT cannot be performed until in the LTOP MODES when the PORV lift setpoint can be reduced to the LTOP # SURVEILLANCE REQUIREMENTS # <u>SR 3.4.12.8</u> (continued) setting. The test must be performed within 12 hours after entering the LTOP MODES. ## SR 3.4.12.9 Performance of a CHANNEL CALIBRATION on each required PORV actuation channel is required every [18] months to adjust the whole channel so that it responds and the valve opens within the required range and accuracy to known input. ## REFERENCES - 1. 10 CFR 50, Appendix G. - 2. Generic Letter 88-11. - 3. ASME, Boiler and Pressure Vessel Code, Section III. - 4. FSAR, Chapter [15] - 5. 10 CFR 50, Section 50.46. - 6. 10 CFR 50, Appendix K. - 7. Generic Letter 90-06. - 8. ASME, Boiler and Pressure Vessel Code, Section XI. # B 3.4 REACTOR COOLANT SYSTEM (RCS) ## B 3.4.13 RCS Operational LEAKAGE #### **BASES** #### BACKGROUND Components that contain or transport the coolant to or from the reactor core make up the RCS. Component joints are made by welding, bolting, rolling, or pressure loading, and valves isolate connecting systems from the RCS. During plant life, the joint and valve interfaces can produce varying amounts of reactor coolant LEAKAGE, through either normal operational wear or mechanical deterioration. The purpose of the RCS Operational LEAKAGE LCO is to limit system operation in the presence of LEAKAGE from these sources to amounts that do not compromise safety. This LCO specifies the types and amounts of LEAKAGE. 10 CFR 50, Appendix A, GDC 30 (Ref. 1), requires means for detecting and, to the extent practical, identifying the source of reactor coolant LEAKAGE. Regulatory Guide 1.45 (Ref. 2) describes acceptable methods for selecting leakage detection systems. The safety significance of RCS LEAKAGE varies widely depending on its source, rate, and duration. Therefore, detecting and monitoring reactor coolant LEAKAGE into the containment area is necessary. Quickly separating the identified LEAKAGE from the unidentified LEAKAGE is necessary to provide quantitative information to the operators, allowing them to take corrective action should a leak occur that is detrimental to the safety of the facility and the public. A limited amount of leakage inside containment is expected from auxiliary systems that cannot be made 100% leaktight. Leakage from these systems should be detected, located, and isolated from the containment atmosphere, if possible, to not interfere with RCS leakage detection. This LCO deals with protection of the reactor coolant pressure boundary (RCPB) from degradation and the core from inadequate cooling, in addition to preventing the accident analyses radiation release assumptions from
being exceeded. The consequences of violating this LCO include the possibility of a loss of coolant accident (LOCA). ## APPLICABLE SAFETY ANALYSES Except for primary to secondary LEAKAGE, the safety analyses do not address operational LEAKAGE. However, other operational LEAKAGE is related to the safety analyses for LOCA; the amount of leakage can affect the probability of such an event. The safety analysis for an event resulting in steam discharge to the atmosphere assumes a 1 gpm primary to secondary LEAKAGE as the initial condition. Primary to secondary LEAKAGE is a factor in the dose releases outside containment resulting from a steam line break (SLB) accident. To a lesser extent, other accidents or transients involve secondary steam release to the atmosphere, such as a steam generator tube rupture (SGTR). The leakage contaminates the secondary fluid. The FSAR (Ref. 3) analysis for SGTR assumes the contaminated secondary fluid is only briefly released via safety valves and the majority is steamed to the condenser. The 1 gpm primary to secondary LEAKAGE is relatively inconsequential. The SLB is more limiting for site radiation releases. The safety analysis for the SLB accident assumes 1 gpm primary to secondary LEAKAGE in one generator as an initial condition. The dose consequences resulting from the SLB accident are well within the limits defined in 10 CFR 100 or the staff approved licensing basis (i.e., a small fraction of these limits). The RCS operational LEAKAGE satisfies Criterion 2 of the NRC Policy Statement. #### LCO RCS operational LEAKAGE shall be limited to: ## a. Pressure Boundary LEAKAGE No pressure boundary LEAKAGE is allowed, being indicative of material deterioration. LEAKAGE of this type is unacceptable as the leak itself could cause further deterioration, resulting in higher LEAKAGE. Violation of this LCO could result in continued degradation of the RCPB. LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE. # LCO (continued) # b. <u>Unidentified LEAKAGE</u> One gallon per minute (gpm) of unidentified LEAKAGE is allowed as a reasonable minimum detectable amount that the containment air monitoring and containment sump level monitoring equipment can detect within a reasonable time period. Violation of this LCO could result in continued degradation of the RCPB, if the LEAKAGE is from the pressure boundary. ## c. <u>Identified LEAKAGE</u> Up to 10 gpm of identified LEAKAGE is considered allowable because LEAKAGE is from known sources that do not interfere with detection of identified LEAKAGE and is well within the capability of the RCS Makeup System. Identified LEAKAGE includes LEAKAGE to the containment from specifically known and located sources, but does not include pressure boundary LEAKAGE or controlled reactor coolant pump (RCP) seal leakoff (a normal function not considered LEAKAGE). Violation of this LCO could result in continued degradation of a component or system. ## d. <u>Primary to Secondary LEAKAGE through All Steam</u> <u>Generators (SGs)</u> Total primary to secondary LEAKAGE amounting to 1 gpm through all SGs produces acceptable offsite doses in the SLB accident analysis. Violation of this LCO could exceed the offsite dose limits for this accident. Primary to secondary LEAKAGE must be included in the total allowable limit for identified LEAKAGE. # e. Primary to Secondary LEAKAGE through Any One SG The [500] gallons per day limit on one SG is based on the assumption that a single crack leaking this amount would not propagate to a SGTR under the stress conditions of a LOCA or a main steam line rupture. If leaked through many cracks, the cracks are very small, and the above assumption is conservative. # BASES (continued) ### APPLICABILITY In MODES 1, 2, 3, and 4, the potential for RCPB LEAKAGE is greatest when the RCS is pressurized. In MODES 5 and 6, LEAKAGE limits are not required because the reactor coolant pressure is far lower, resulting in lower stresses and reduced potentials for LEAKAGE. LCO 3.4.14, "RCS Pressure Isolation Valve (PIV) Leakage," measures leakage through each individual PIV and can impact this LCO. Of the two PIVs in series in each isolated line, leakage measured through one PIV does not result in RCS LEAKAGE when the other is leak tight. If both valves leak and result in a loss of mass from the RCS, the loss must be included in the allowable identified LEAKAGE. #### **ACTIONS** ### A.1 Unidentified LEAKAGE, identified LEAKAGE, or primary to secondary LEAKAGE in excess of the LCO limits must be reduced to within limits within 4 hours. This Completion Time allows time to verify leakage rates and either identify unidentified LEAKAGE or reduce LEAKAGE to within limits before the reactor must be shut down. This action is necessary to prevent further deterioration of the RCPB. #### B.1 and B.2 If any pressure boundary LEAKAGE exists, or if unidentified LEAKAGE, identified LEAKAGE, or primary to secondary LEAKAGE cannot be reduced to within limits within 4 hours, the reactor must be brought to lower pressure conditions to reduce the severity of the LEAKAGE and its potential consequences. It should be noted that LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE. The reactor must be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. This action reduces the LEAKAGE and also reduces the factors that tend to degrade the pressure boundary. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODE 5, the pressure stresses ## B.1 and B.2 (continued) acting on the RCPB are much lower, and further deterioration is much less likely. ## SURVEILLANCE REQUIREMENTS # SR 3.4.13.1 Verifying RCS LEAKAGE to be within the LCO limits ensures the integrity of the RCPB is maintained. Pressure boundary LEAKAGE would at first appear as unidentified LEAKAGE and can only be positively identified by inspection. It should be noted that LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE. Unidentified LEAKAGE and identified LEAKAGE are determined by performance of an RCS water inventory balance. Primary to secondary LEAKAGE is also measured by performance of an RCS water inventory balance in conjunction with effluent monitoring within the secondary steam and feedwater systems. The RCS water inventory balance must be met with the reactor at steady state operating conditions and near operating pressure. Therefore, this SR is not required to be performed in MODES 3 and 4 until 12 hours of steady state operation near operating pressure have been established. Steady state operation is required to perform a proper inventory balance; calculations during maneuvering are not useful and a Note requires the Surveillance to be met when steady state is established. For RCS operational LEAKAGE determination by water inventory balance, steady state is defined as stable RCS pressure, temperature, power level, pressurizer and makeup tank levels, makeup and letdown, and RCP seal injection and return flows. An early warning of pressure boundary LEAKAGE or unidentified LEAKAGE is provided by the automatic systems that monitor the containment atmosphere radioactivity and the containment sump level. It should be noted that LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE. These leakage detection systems are specified in LCO 3.4.15, "RCS Leakage Detection Instrumentation." The 72 hour Frequency is a reasonable interval to trend LEAKAGE and recognizes the importance of early leakage # SURVEILLANCE REQUIREMENTS # <u>SR 3.4.13.1</u> (continued) detection in the prevention of accidents. A Note under the Frequency column states that this SR is required to be performed during steady state operation. ## SR 3.4.13.2 This SR provides the means necessary to determine SG OPERABILITY in an operational MODE. The requirement to demonstrate SG tube integrity in accordance with the Steam Generator Tube Surveillance Program emphasizes the importance of SG tube integrity, even though this Surveillance cannot be performed at normal operating conditions. #### REFERENCES - 1. 10 CFR 50, Appendix A, GDC 30. - 2. Regulatory Guide 1.45, May 1973. - 3. FSAR, Section [15]. - B 3.4 REACTOR COOLANT SYSTEM (RCS) - B 3.4.14 RCS Pressure Isolation Valve (PIV) Leakage BASES #### BACKGROUND 10 CFR 50.2, 10 CFR 50.55a(c), and GDC 55 of 10 CFR 50, Appendix A (Refs. 1, 2, and 3), define RCS PIVs as any two normally closed valves in series within the reactor coolant pressure boundary (RCPB), which separate the high pressure RCS from an attached low pressure system. During their lives, these valves can produce varying amounts of reactor coolant leakage through either normal operational wear or mechanical deterioration. The RCS PIV Leakage LCO allows RCS high pressure operation when leakage through these valves exists in amounts that do not compromise safety. The PIV leakage limit applies to each individual valve. Leakage through both series PIVs in a line must be included as part of the identified LEAKAGE, governed by LCO 3.4.13, "RCS Operational LEAKAGE." This is true during operation only when the loss of RCS mass through two series valves is determined by a water inventory balance (SR 3.4.13.1). A known component of the identified LEAKAGE before operation begins is the least of the two individual leak rates determined for leaking series PIVs during the required surveillance testing; leakage measured through one PIV in a line is not RCS operational LEAKAGE if the other is leaktight. Although this specification provides a limit on allowable PIV leakage rate, its main purpose is to prevent overpressure failure of the low pressure portions of connecting systems. The leakage limit is an indication that the PIVs between the RCS and the connecting systems are degraded or degrading. PIV leakage could lead to overpressure of the low pressure
piping or components. Failure consequences could be a loss of coolant accident (LOCA) outside of containment, an unanalyzed accident, that could degrade the ability for low pressure injection. The basis for this LCO is the 1975 NRC "Reactor Safety Study" (Ref. 4) that identified potential intersystem LOCAs as a significant contributor to the risk of core melt. A subsequent study (Ref. 5) evaluated various PIV configurations to determine the probability of intersystem LOCAs. # BACKGROUND (continued) PIVs are provided to isolate the RCS from the following typically connected systems: - a. Residual Heat Removal (RHR) System; - b. Safety Injection System; and - c. Chemical and Volume Control System. The PIVs are listed in the FSAR, Section [] (Ref. 6). Violation of this LCO could result in continued degradation of a PIV, which could lead to overpressurization of a low pressure system and the loss of the integrity of a fission product barrier. #### APPLICABLE SAFETY ANALYSES Reference 4 identified potential intersystem LOCAs as a significant contributor to the risk of core melt. The dominant accident sequence in the intersystem LOCA category is the failure of the low pressure portion of the RHR System outside of containment. The accident is the result of a postulated failure of the PIVs, which are part of the RCPB, and the subsequent pressurization of the RHR System downstream of the PIVs from the RCS. Because the low pressure portion of the RHR System is typically designed for 600 psig, overpressurization failure of the RHR low pressure line would result in a LOCA outside containment and subsequent risk of core melt. Reference 5 evaluated various PIV configurations, leakage testing of the valves, and operational changes to determine the effect on the probability of intersystem LOCAs. This study concluded that periodic leakage testing of the PIVs can substantially reduce the probability of an intersystem LOCA. RCS PIV leakage satisfies Criterion 2 of the NRC Policy Statement. LC0 RCS PIV leakage is identified LEAKAGE into closed systems connected to the RCS. Isolation valve leakage is usually on the order of drops per minute. Leakage that increases # LCO (continued) significantly suggests that something is operationally wrong and corrective action must be taken. The LCO PIV leakage limit is 0.5 gpm per nominal inch of valve size with a maximum limit of 5 gpm. The previous criterion of 1 gpm for all valve sizes imposed an unjustified penalty on the larger valves without providing information on potential valve degradation and resulted in higher personnel radiation exposures. A study concluded a leakage rate limit based on valve size was superior to a single allowable value. Reference 7 permits leakage testing at a lower pressure differential than between the specified maximum RCS pressure and the normal pressure of the connected system during RCS operation (the maximum pressure differential) in those types of valves in which the higher service pressure will tend to diminish the overall leakage channel opening. In such cases, the observed rate may be adjusted to the maximum pressure differential by assuming leakage is directly proportional to the pressure differential to the one half power. ### APPLICABILITY In MODES 1, 2, 3, and 4, this LCO applies because the PIV leakage potential is greatest when the RCS is pressurized. In MODE 4, valves in the RHR flow path are not required to meet the requirements of this LCO when in, or during the transition to or from, the RHR mode of operation. In MODES 5 and 6, leakage limits are not provided because the lower reactor coolant pressure results in a reduced potential for leakage and for a LOCA outside the containment. #### **ACTIONS** The Actions are modified by two Notes. Note 1 provides clarification that each flow path allows separate entry into a Condition. This is allowed based upon the functional independence of the flow path. Note 2 requires an evaluation of affected systems if a PIV is inoperable. The leakage may have affected system operability, or isolation of a leaking flow path with an alternate valve may have # ACTIONS (continued) degraded the ability of the interconnected system to perform its safety function. #### A.1 and A.2 The flow path must be isolated by two valves. Required Actions A.1 and A.2 are modified by a Note that the valves used for isolation must meet the same leakage requirements as the PIVs and must be within the RCPB [or the high pressure portion of the system]. Required Action A.1 requires that the isolation with one valve must be performed within 4 hours. Four hours provides time to reduce leakage in excess of the allowable limit and to isolate the affected system if leakage cannot be reduced. The 4 hour Completion Time allows the actions and restricts the operation with leaking isolation valves. Required Action A.2 specifies that the double isolation barrier of two valves be restored by closing some other valve qualified for isolation or restoring one leaking PIV. The 72 hour Completion Time after exceeding the limit considers the time required to complete the Action and the low probability of a second valve failing during this time period. or The 72 hour Completion Time after exceeding the limit allows for the restoration of the leaking PIV to OPERABLE status. This timeframe considers the time required to complete this Action and the low probability of a second valve failing during this period. (Reviewer Note: Two options are provided for Required Action A.2. The second option (72 hour restoration) is appropriate if isolation of a second valve would place the unit in an unanalyzed condition.) #### B.1 and B.2 If leakage cannot be reduced, [the system isolated,] or the other Required Actions accomplished, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to MODE 3 ## B.1 and B.2 (continued) within 6 hours and MODE 5 within 36 hours. This Action may reduce the leakage and also reduces the potential for a LOCA outside the containment. The allowed Completion Times are reasonable based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. #### <u>C.1</u> The inoperability of the RHR autoclosure interlock renders the RHR suction isolation valves incapable of isolating in response to a high pressure condition and preventing inadvertent opening of the valves at RCS pressures in excess of the RHR systems design pressure. If the RHR autoclosure interlock is inoperable, operation may continue as long as the affected RHR suction penetration is closed by at least one closed manual or deactivated automatic valve within 4 hours. This Action accomplishes the purpose of the autoclosure function. # SURVEILLANCE REQUIREMENTS ### SR 3.4.14.1 Performance of leakage testing on each RCS PIV or isolation valve used to satisfy Required Action A.1 and Required Action A.2 is required to verify that leakage is below the specified limit and to identify each leaking valve. The leakage limit of 0.5 gpm per inch of nominal valve diameter up to 5 gpm maximum applies to each valve. Leakage testing requires a stable pressure condition. For the two PIVs in series, the leakage requirement applies to each valve individually and not to the combined leakage across both valves. If the PIVs are not individually leakage tested, one valve may have failed completely and not be detected if the other valve in series meets the leakage requirement. In this situation, the protection provided by redundant valves would be lost. Testing is to be performed every [18] months, a typical refueling cycle, if the plant does not go into MODE 5 for at least 7 days. The [18 month] Frequency is consistent with ### SURVEILLANCE REQUIREMENTS # <u>SR 3.4.14.1</u> (continued) 10 CFR 50.55a(g) (Ref. 8) as contained in the Inservice Testing Program, is within frequency allowed by the American Society of Mechanical Engineers (ASME) Code, Section XI (Ref. 7), and is based on the need to perform such surveillances under the conditions that apply during an outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. In addition, testing must be performed once after the valve has been opened by flow or exercised to ensure tight reseating. PIVs disturbed in the performance of this Surveillance should also be tested unless documentation shows that an infinite testing loop cannot practically be avoided. Testing must be performed within 24 hours after the valve has been reseated. Within 24 hours is a reasonable and practical time limit for performing this test after opening or reseating a valve. The leakage limit is to be met at the RCS pressure associated with MODES 1 and 2. This permits leakage testing at high differential pressures with stable conditions not possible in the MODES with lower pressures. Entry into MODES 3 and 4 is allowed to establish the necessary differential pressures and stable conditions to allow for performance of this Surveillance. The Note that allows this provision is complementary to the Frequency of prior to entry into MODE 2 whenever the unit has been in MODE 5 for 7 days or more, if leakage testing has not been performed in the previous 9 months. In addition, this Surveillance is not required to be performed on the RHR System when the RHR System is aligned to the RCS in the shutdown cooling mode of operation. PIVs contained in the RHR shutdown cooling flow path must be leakage rate tested after RHR is secured and stable unit conditions and the necessary differential pressures are established. # SR 3.4.14.2 and SR 3.4.14.3 Verifying that the RHR autoclosure interlocks are OPERABLE ensures that RCS pressure will not pressurize the RHR system beyond 125% of its design pressure of [600] psig. The interlock setpoint that prevents the valves from being # SURVEILLANCE
REQUIREMENTS # <u>SR 3.4.14.2 and SR 3.4.14.3</u> (continued) opened is set so the actual RCS pressure must be < [425] psig to open the valves. This setpoint ensures the RHR design pressure will not be exceeded and the RHR relief valves will not lift. The [18] month Frequency is based on the need to perform the Surveillance under conditions that apply during a plant outage. The [18] month Frequency is also acceptable based on consideration of the design reliability (and confirming operating experience) of the equipment. These SRs are modified by Notes allowing the RHR autoclosure function to be disabled when using the RHR System suction relief valves for cold overpressure protection in accordance with SR 3.4.12.7. #### REFERENCES - 1. 10 CFR 50.2. - 2. 10 CFR 50.55a(c). - 3. 10 CFR 50, Appendix A, Section V, GDC 55. - 4. WASH-1400 (NUREG-75/014), Appendix V, October 1975. - 5. NUREG-0677, May 1980. - 6. [Document containing list of PIVs.] - 7. ASME, Boiler and Pressure Vessel Code, Section XI. - 8. 10 CFR 50.55a(g). ### B 3.4 REACTOR COOLANT SYSTEM (RCS) ### B 3.4.15 RCS Leakage Detection Instrumentation #### **BASES** #### BACKGROUND GDC 30 of Appendix A to 10 CFR 50 (Ref. 1) requires means for detecting and, to the extent practical, identifying the location of the source of RCS LEAKAGE. Regulatory Guide 1.45 (Ref. 2) describes acceptable methods for selecting leakage detection systems. Leakage detection systems must have the capability to detect significant reactor coolant pressure boundary (RCPB) degradation as soon after occurrence as practical to minimize the potential for propagation to a gross failure. Thus, an early indication or warning signal is necessary to permit proper evaluation of all unidentified LEAKAGE. Industry practice has shown that water flow changes of 0.5 to 1.0 gpm can be readily detected in contained volumes by monitoring changes in water level, in flow rate, or in the operating frequency of a pump. The containment sump used to collect unidentified LEAKAGE [is] [(or) and air cooler condensate flow rate monitor] [are] instrumented to alarm for increases of 0.5 to 1.0 gpm in the normal flow rates. This sensitivity is acceptable for detecting increases in unidentified LEAKAGE. The reactor coolant contains radioactivity that, when released to the containment, can be detected by radiation monitoring instrumentation. Reactor coolant radioactivity levels will be low during initial reactor startup and for a few weeks thereafter, until activated corrosion products have been formed and fission products appear from fuel element cladding contamination or cladding defects. Instrument sensitivities of $10^{-9}~\mu\text{Ci/cc}$ radioactivity for particulate monitoring and of $10^{-6}~\mu\text{Ci/cc}$ radioactivity for gaseous monitoring are practical for these leakage detection systems. Radioactivity detection systems are included for monitoring both particulate and gaseous activities because of their sensitivities and rapid responses to RCS LEAKAGE. An increase in humidity of the containment atmosphere would indicate release of water vapor to the containment. Dew point temperature measurements can thus be used to monitor humidity levels of the containment atmosphere as an # BACKGROUND (continued) indicator of potential RCS LEAKAGE. A 1°F increase in dew point is well within the sensitivity range of available instruments. Since the humidity level is influenced by several factors, a quantitative evaluation of an indicated leakage rate by this means may be questionable and should be compared to observed increases in liquid flow into or from the containment sump [and condensate flow from air coolers]. Humidity level monitoring is considered most useful as an indirect alarm or indication to alert the operator to a potential problem. Humidity monitors are not required by this LCO. Air temperature and pressure monitoring methods may also be used to infer unidentified LEAKAGE to the containment. Containment temperature and pressure fluctuate slightly during plant operation, but a rise above the normally indicated range of values may indicate RCS leakage into the containment. The relevance of temperature and pressure measurements are affected by containment free volume and, for temperature, detector location. Alarm signals from these instruments can be valuable in recognizing rapid and sizable leakage to the containment. Temperature and pressure monitors are not required by this LCO. ## APPLICABLE SAFETY ANALYSES The need to evaluate the severity of an alarm or an indication is important to the operators, and the ability to compare and verify with indications from other systems is necessary. The system response times and sensitivities are described in the FSAR (Ref. 3). Multiple instrument locations are utilized, if needed, to ensure that the transport delay time of the leakage from its source to an instrument location yields an acceptable overall response time. The safety significance of RCS LEAKAGE varies widely depending on its source, rate, and duration. Therefore, detecting and monitoring RCS LEAKAGE into the containment area is necessary. Quickly separating the identified LEAKAGE from the unidentified LEAKAGE provides quantitative information to the operators, allowing them to take corrective action should a leakage occur detrimental to the safety of the unit and the public. #### BASES # APPLICABLE SAFETY ANALYSES (continued) RCS leakage detection instrumentation satisfies Criterion 1 of the NRC Policy Statement. ### LCO One method of protecting against large RCS leakage derives from the ability of instruments to rapidly detect extremely small leaks. This LCO requires instruments of diverse monitoring principles to be OPERABLE to provide a high degree of confidence that extremely small leaks are detected in time to allow actions to place the plant in a safe condition, when RCS LEAKAGE indicates possible RCPB degradation. The LCO is satisfied when monitors of diverse measurement means are available. Thus, the containment sump monitor, in combination with a gaseous or particulate radioactivity monitor [and a containment air cooler condensate flow rate monitor], provides an acceptable minimum. ## **APPLICABILITY** Because of elevated RCS temperature and pressure in MODES 1, 2, 3, and 4, RCS leakage detection instrumentation is required to be OPERABLE. In MODE 5 or 6, the temperature is to be \leq 200°F and pressure is maintained low or at atmospheric pressure. Since the temperatures and pressures are far lower than those for MODES 1, 2, 3, and 4, the likelihood of leakage and crack propagation are much smaller. Therefore, the requirements of this LCO are not applicable in MODES 5 and 6. #### **ACTIONS** #### A.1 and A.2 With the required containment sump monitor inoperable, no other form of sampling can provide the equivalent information; however, the containment atmosphere radioactivity monitor will provide indications of changes in leakage. Together with the atmosphere monitor, the periodic surveillance for RCS water inventory balance, SR 3.4.13.1, # A.1 and A.2 (continued) must be performed at an increased frequency of 24 hours to provide information that is adequate to detect leakage. Restoration of the required sump monitor to OPERABLE status within a Completion Time of 30 days is required to regain the function after the monitor's failure. This time is acceptable, considering the Frequency and adequacy of the RCS water inventory balance required by Required Action A.1. Required Action A.1 is modified by a Note that indicates that the provisions of LCO 3.0.4 are not applicable. As a result, a MODE change is allowed when the containment sump monitor is inoperable. This allowance is provided because other instrumentation is available to monitor RCS leakage. # B.1.1, B.1.2, B.2.1, and B.2.2 With both gaseous and particulate containment atmosphere radioactivity monitoring instrumentation channels inoperable, alternative action is required. Either grab samples of the containment atmosphere must be taken and analyzed or water inventory balances, in accordance with SR 3.4.13.1, must be performed to provide alternate periodic information. With a sample obtained and analyzed or water inventory balance performed every 24 hours, the reactor may be operated for up to 30 days to allow restoration of the required containment atmosphere radioactivity monitors. Alternatively, continued operation is allowed if the air cooler condensate flow rate monitoring system is OPERABLE, provided grab samples are taken every 24 hours. The 24 hour interval provides periodic information that is adequate to detect leakage. The 30 day Completion Time recognizes at least one other form of leakage detection is available. Required Action B.1 and Required Action B.2 are modified by a Note that indicates that the provisions of LCO 3.0.4 are not applicable. As a result, a MODE change is allowed when the gaseous and particulate containment atmosphere radioactivity monitor channel is inoperable. This allowance # B.1.1, B.1.2, B.2.1, and B.2.2 (continued) is provided because other instrumentation is available to monitor for RCS LEAKAGE. ## C.1 and C.2 With the required containment air cooler condensate flow rate monitor inoperable, alternative action is again required. Either SR 3.4.15.1 must be performed or water inventory balances, in accordance with SR 3.4.13.1, must be performed to provide alternate periodic information. Provided a CHANNEL CHECK is performed every 8 hours or a water inventory balance is performed every 24 hours, reactor operation may continue while awaiting restoration of the containment air cooler condensate flow rate monitor to OPERABLE status. The 24 hour interval provides periodic information that is adequate to detect RCS LEAKAGE. ## D.1 and D.2 With the required containment atmosphere radioactivity monitor and the required containment air cooler condensate flow rate monitor inoperable, the only means of
detecting leakage is the containment sump monitor. This Condition does not provide the required diverse means of leakage detection. The Required Action is to restore either of the inoperable required monitors to OPERABLE status within 30 days to regain the intended leakage detection diversity. The 30 day Completion Time ensures that the plant will not be operated in a reduced configuration for a lengthy time period. #### E.1 and E.2 If a Required Action of Condition A, B, [C], or [D] cannot be met, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the # E.1 and E.2 (continued) required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ## F.1 With all required monitors inoperable, no automatic means of monitoring leakage are available, and immediate plant shutdown in accordance with LCO 3.0.3 is required. # SURVEILLANCE REQUIREMENTS # SR 3.4.15.1 SR 3.4.15.1 requires the performance of a CHANNEL CHECK of the required containment atmosphere radioactivity monitor. The check gives reasonable confidence that the channel is operating properly. The Frequency of 12 hours is based on instrument reliability and is reasonable for detecting off normal conditions. ### SR 3.4.15.2 SR 3.4.15.2 requires the performance of a COT on the required containment atmosphere radioactivity monitor. The test ensures that the monitor can perform its function in the desired manner. The test verifies the alarm setpoint and relative accuracy of the instrument string. The Frequency of 92 days considers instrument reliability, and operating experience has shown that it is proper for detecting degradation. # SR 3.4.15.3, [SR 3.4.15.4, and SR 3.4.15.5] These SRs require the performance of a CHANNEL CALIBRATION for each of the RCS leakage detection instrumentation channels. The calibration verifies the accuracy of the instrument string, including the instruments located inside containment. The Frequency of [18] months is a typical refueling cycle and considers channel reliability. Again, operating experience has proven that this Frequency is acceptable. # BASES (continued) # REFERENCES - 1. 10 CFR 50, Appendix A, Section IV, GDC 30. - 2. Regulatory Guide 1.45. - FSAR, Section []. ### B 3.4 REACTOR COOLANT SYSTEM (RCS) ### B 3.4.16 RCS Specific Activity #### BASES #### BACKGROUND The maximum dose to the whole body and the thyroid that an individual at the site boundary can receive for 2 hours during an accident is specified in 10 CFR 100 (Ref. 1). The limits on specific activity ensure that the doses are held to a small fraction of the 10 CFR 100 limits during analyzed transients and accidents. The RCS specific activity LCO limits the allowable concentration level of radionuclides in the reactor coolant. The LCO limits are established to minimize the offsite radioactivity dose consequences in the event of a steam generator tube rupture (SGTR) accident. The LCO contains specific activity limits for both DOSE EQUIVALENT I-131 and gross specific activity. The allowable levels are intended to limit the 2 hour dose at the site boundary to a small fraction of the 10 CFR 100 dose guideline limits. The limits in the LCO are standardized, based on parametric evaluations of offsite radioactivity dose consequences for typical site locations. The parametric evaluations showed the potential offsite dose levels for a SGTR accident were an appropriately small fraction of the 10 CFR 100 dose guideline limits. Each evaluation assumes a broad range of site applicable atmospheric dispersion factors in a parametric evaluation. # APPLICABLE SAFETY ANALYSES The LCO limits on the specific activity of the reactor coolant ensures that the resulting 2 hour doses at the site boundary will not exceed a small fraction of the 10 CFR 100 dose guideline limits following a SGTR accident. The SGTR safety analysis (Ref. 2) assumes the specific activity of the reactor coolant at the LCO limit and an existing reactor coolant steam generator (SG) tube leakage rate of 1 gpm. The safety analysis assumes the specific activity of the secondary coolant at its limit of 0.1 μ Ci/gm DOSE EQUIVALENT I-131 from LCO 3.7.6, "Secondary Specific Activity." ## APPLICABLE SAFETY ANALYSES (continued) The analysis for the SGTR accident establishes the acceptance limits for RCS specific activity. Reference to this analysis is used to assess changes to the unit that could affect RCS specific activity, as they relate to the acceptance limits. The analysis is for two cases of reactor coolant specific activity. One case assumes specific activity at 1.0 $\mu\text{Ci/gm}$ DOSE EQUIVALENT I-131 with a concurrent large iodine spike that increases the I-131 activity in the reactor coolant by a factor of about 50 immediately after the accident. The second case assumes the initial reactor coolant iodine activity at 60.0 $\mu\text{Ci/gm}$ DOSE EQUIVALENT I-131 due to a pre-accident iodine spike caused by an RCS transient. In both cases, the noble gas activity in the reactor coolant assumes 1% failed fuel, which closely equals the LCO limit of $100/\bar{\text{E}}$ $\mu\text{Ci/gm}$ for gross specific activity. The analysis also assumes a loss of offsite power at the same time as the SGTR event. The SGTR causes a reduction in reactor coolant inventory. The reduction initiates a reactor trip from a low pressurizer pressure signal or an RCS overtemperature ΔT signal. The coincident loss of offsite power causes the steam dump valves to close to protect the condenser. The rise in pressure in the ruptured SG discharges radioactively contaminated steam to the atmosphere through the SG power operated relief valves and the main steam safety valves. The unaffected SGs remove core decay heat by venting steam to the atmosphere until the cooldown ends. The safety analysis shows the radiological consequences of an SGTR accident are within a small fraction of the Reference 1 dose guideline limits. Operation with iodine specific activity levels greater than the LCO limit is permissible, if the activity levels do not exceed the limits shown in Figure 3.4.16-1, in the applicable specification, for more than 48 hours. The safety analysis has concurrent and pre-accident iodine spiking levels up to 60.0 μ Ci/gm DOSE EQUIVALENT I-131. The remainder of the above limit permissible iodine levels shown in Figure 3.4.16-1 are acceptable because of the low probability of a SGTR accident occurring during the established 48 hour time limit. The occurrence of an SGTR ## APPLICABLE SAFETY ANALYSES (continued) accident at these permissible levels could increase the site boundary dose levels, but still be within 10 CFR 100 dose quideline limits. The limits on RCS specific activity are also used for establishing standardization in radiation shielding and plant personnel radiation protection practices. RCS specific activity satisfies Criterion 2 of the NRC Policy Statement. #### LC0 The specific iodine activity is limited to 1.0 μ Ci/gm DOSE EQUIVALENT I-131, and the gross specific activity in the reactor coolant is limited to the number of μ Ci/gm equal to 100 divided by E (average disintegration energy of the sum of the average beta and gamma energies of the coolant nuclides). The limit on DOSE EQUIVALENT I-131 ensures the 2 hour thyroid dose to an individual at the site boundary during the Design Basis Accident (DBA) will be a small fraction of the allowed thyroid dose. The limit on gross specific activity ensures the 2 hour whole body dose to an individual at the site boundary during the DBA will be a small fraction of the allowed whole body dose. The SGTR accident analysis (Ref. 2) shows that the 2 hour site boundary dose levels are within acceptable limits. Violation of the LCO may result in reactor coolant radioactivity levels that could, in the event of an SGTR, lead to site boundary doses that exceed the 10 CFR 100 dose guideline limits. #### APPLICABILITY In MODES 1 and 2, and in MODE 3 with RCS average temperature $\geq 500^{\circ}\text{F}$, operation within the LCO limits for DOSE EQUIVALENT I-131 and gross specific activity are necessary to contain the potential consequences of an SGTR to within the acceptable site boundary dose values. For operation in MODE 3 with RCS average temperature < 500°F, and in MODES 4 and 5, the release of radioactivity in the event of a SGTR is unlikely since the saturation pressure of the reactor coolant is below the lift pressure settings of the main steam safety valves. A Note to the ACTIONS excludes the MODE change restriction of LCO 3.0.4. This exception allows entry into the applicable MODE(S) while relying on the ACTIONS even though the ACTIONS may eventually require plant shutdown. This exception is acceptable due to the significant conservatism incorporated into the specific activity limit, the low probability of an event which is limiting due to exceeding this limit, and the ability to restore transient specific activity excursions while the plant remains at, or proceeds to power operation. #### A.1 and A.2 With the DOSE EQUIVALENT I-131 greater than the LCO limit, samples at intervals of 4 hours must be taken to demonstrate that the limits of Figure 3.4.16-1 are not exceeded. The Completion Time of 4 hours is required to obtain and analyze a sample. Sampling is done to continue to provide a trend. The DOSE EQUIVALENT I-131 must be restored to within limits within 48 hours. The Completion Time of 48 hours is required, if the limit violation resulted from normal iodine spiking. #### **B.1** and **B.2** With the gross specific activity in excess of the allowed limit, an analysis must be performed within 4 hours to determine DOSE EQUIVALENT I-131. The Completion Time of 4 hours is required to obtain
and analyze a sample. The change within 6 hours to MODE 3 and RCS average temperature < 500°F lowers the saturation pressure of the reactor coolant below the setpoints of the main steam safety valves and prevents venting the SG to the environment in an SGTR event. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 below 500°F from full power conditions in an orderly manner and without challenging plant systems. # ACTIONS (continued) ## <u>C.1</u> If a Required Action and the associated Completion Time of Condition A is not met or if the DOSE EQUIVALENT I-131 is in the unacceptable region of Figure 3.4.16-1, the reactor must be brought to MODE 3 with RCS average temperature $<500^{\circ}F$ within 6 hours. The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 below $500^{\circ}F$ from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS #### SR 3.4.16.1 SR 3.4.16.1 requires performing a gamma isotopic analysis as a measure of the gross specific activity of the reactor coolant at least once every 7 days. While basically a quantitative measure of radionuclides with half lives longer than 15 minutes, excluding iodines, this measurement is the sum of the degassed gamma activities and the gaseous gamma activities in the sample taken. This Surveillance provides an indication of any increase in gross specific activity. Trending the results of this Surveillance allows proper remedial action to be taken before reaching the LCO limit under normal operating conditions. The Surveillance is applicable in MODES 1 and 2, and in MODE 3 with $T_{\rm avg}$ at least 500°F. The 7 day Frequency considers the unlikelihood of a gross fuel failure during the time. ### SR 3.4.16.2 This Surveillance is performed in MODE 1 only to ensure iodine remains within limit during normal operation and following fast power changes when fuel failure is more apt to occur. The 14 day Frequency is adequate to trend changes in the iodine activity level, considering gross activity is monitored every 7 days. The Frequency, between 2 and 6 hours after a power change $\geq 15\%$ RTP within a 1 hour period, is established because the iodine levels peak during this time following fuel failure; samples at other times would provide inaccurate results. ## SURVEILLANCE REQUIREMENTS (continued) #### SR 3.4.16.3 A radiochemical analysis for $\overline{\mathbb{E}}$ determination is required every 184 days (6 months) with the plant operating in MODE 1 equilibrium conditions. The $\overline{\mathbb{E}}$ determination directly relates to the LCO and is required to verify plant operation within the specified gross activity LCO limit. The analysis for $\overline{\mathbb{E}}$ is a measurement of the average energies per disintegration for isotopes with half lives longer than 15 minutes, excluding iodines. The Frequency of 184 days recognizes $\overline{\mathbb{E}}$ does not change rapidly. This SR has been modified by a Note that indicates sampling is required to be performed within 31 days after a minimum of 2 effective full power days and 20 days of MODE 1 operation have elapsed since the reactor was last subcritical for at least 48 hours. This ensures that the radioactive materials are at equilibrium so the analysis for \bar{E} is representative and not skewed by a crud burst or other similar abnormal event. #### REFERENCES - 1. 10 CFR 100.11, 1973. - 2. FSAR, Section [15.6.3]. - B 3.4 REACTOR COOLANT SYSTEM (RCS) - B 3.4.17 RCS Loop Isolation Valves #### **BASES** #### BACKGROUND The RCS may be operated with loops isolated in order to perform maintenance. While operating with a loop isolated, there is potential for inadvertently opening the isolation valves in the isolated loop. In this event, the coolant in the isolated loop would suddenly begin to mix with the coolant in the operating loops. This situation has the potential of causing a positive reactivity addition with a corresponding reduction of SDM if: - The temperature in the isolated loop is lower than the temperature in the operating loops (cold water incident); or - b. The boron concentration in the isolated loop is lower than the boron concentration in the operating loops (boron dilution incident). As discussed in the FSAR (Ref. 1), the startup of an isolated loop is performed in a controlled manner that virtually eliminates any sudden positive reactivity addition from cold water and/or boron dilution because: - a. LCO 3.4.18, "RCS Isolated Loop Startup," and plant operating procedures require that the boron concentration in the isolated loop be maintained higher than the boron concentration of the operating loops, thus eliminating the potential for introducing coolant from the isolated loop that could dilute the boron concentration in the operating loops: - b. The cold leg loop isolation valve cannot be opened unless the temperatures of both the hot and cold legs of the isolated loop are within 20°F of the temperatures of the hot and cold legs of the operating loops (compliance is ensured by operating procedures and automatic interlocks); and - c. Other automatic interlocks, all of which are part of the Reactor Protection System (RPS), prevent opening the hot leg loop isolation valve unless the cold leg loop isolation valve is fully closed. ## APPLICABLE SAFETY ANALYSES During startup of an isolated loop in accordance with LCO 3.4.18, the cold leg loop isolation valve interlocks and operating procedures prevent opening of the valve until the isolated loop and operating loop boron concentrations and temperatures are equalized. This ensures that any undesirable reactivity effect from the isolated loop does not occur. The safety analyses assume a minimum SDM as an initial condition for Design Basis Accidents (DBAs) (Ref. 1). Violation of the LCO, combined with mixing of the isolated loop coolant into the operating loops, could result in the SDM being less than that assumed in the safety analyses. The above analyses are for DBAs that establish the acceptance limits for the RCS loop isolation valves. Reference to the analyses for these DBAs is used to assess changes to the RCS loop isolation valves as they relate to the acceptance limits. The boron concentration of an isolated loop may affect SDM and therefore RCS loop isolation valves satisfy Criterion 2 of the NRC Policy Statement. #### LC0 This LCO ensures that a loop isolation valve that becomes closed in MODES 1 through 4 is fully isolated and the plant placed in MODE 5. Loop isolation valves are used for performing maintenance when the plant is in MODE 5 or 6, and startup of an isolated loop is covered by LCO 3.4.18. #### APPLICABILITY In MODES 1 through 4, this LCO is applicable when unisolating an isolated loop with a boron concentration less than that of the operating loops may cause an inadvertent criticality. In MODES 5 and 6, the SDM of the operating loops is large enough to permit operation with isolated loops. In these MODES, controlled startup of isolated loops is possible without significant risk of inadvertent criticality. #### ACTIONS The Actions have been provided with a Note to clarify that all RCS loop isolation valves for this LCO are treated as separate entities, each with separate Completion Times, i.e., the Completion Time is on a component basis. ### A.1 If power is inadvertently restored to one or more loop isolation valve operators, the potential exists for accidental isolation of a loop with a subsequent inadvertent startup of the isolated loop. The loop isolation valves have motor operators. Therefore, these valves will maintain their last position when power is removed from the valve operator. With power applied to the valve operators, only the interlocks prevent the valve from being operated. Although operating procedures and interlocks make the occurrence of this event unlikely, the prudent action is to remove power from the loop isolation valve operators. The Completion Time of 30 minutes to remove power from the loop isolation valve operators is sufficient considering the complexity of the task. ## B.1, B.2, and B.3 Should a loop isolation valve be closed in MODES 1 through 4, the affected loop must be fully isolated immediately and the plant placed in MODE 5 to preclude inadvertent startup of the loop and the potential inadvertent criticality. The Completion Time of Required Action B.1 allows time for borating the operating loops to a shutdown boration level such that the plant can be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS #### SR 3.4.17.1 The Surveillance is performed at least once per 31 days to ensure that the RCS loop isolation valves are open, with power removed from the loop isolation valve operators. The #### **BASES** ## SURVEILLANCE REQUIREMENTS ## <u>SR 3.4.17.1</u> (continued) primary function of this Surveillance is to ensure that power is removed from the valve operators, since SR 3.4.4.1 of LCO 3.4.4, "RCS Loops—MODES 1 and 2," ensures that the loop isolation valves are open by verifying every 12 hours that all loops are operating and circulating reactor coolant. The Frequency of 31 days ensures that the required flow can be made available, is based on engineering judgment, and has proven to be acceptable. Operating experience has shown that the failure rate is so low that the 31 day Frequency is justified. #### REFERENCES 1. FSAR, Section [15.2.6]. - B 3.4 REACTOR COOLANT SYSTEM (RCS) - B 3.4.18 RCS Isolated Loop Startup #### BASES #### **BACKGROUND** The RCS may be operated with loops isolated in MODES 5 and 6 in order to perform maintenance. While operating with a loop isolated, there is potential for
inadvertently opening the isolation valves in the isolated loop. In this event, the coolant in the isolated loop would suddenly begin to mix with the coolant in the operating loops. This situation has the potential of causing a positive reactivity addition with a corresponding reduction of SDM if - The temperature in the isolated loop is lower than the temperature in the operating loops (cold water incident); or - b. The boron concentration in the isolated loop is lower than the boron concentration in the operating loops (boron dilution incident). As discussed in the FSAR (Ref. 1), the startup of an isolated loop is done in a controlled manner that virtually eliminates any sudden reactivity addition from cold water or boron dilution because: - a. This LCO and plant operating procedures require that the boron concentration in the isolated loop be maintained higher than the boron concentration of the operating loops, thus eliminating the potential for introducing coolant from the isolated loop that could dilute the boron concentration in the operating loops. - b. The cold leg loop isolation valve cannot be opened unless the temperatures of both the hot leg and cold leg of the isolated loop are within 20°F of the operating loops. Compliance with the temperature requirement is ensured by operating procedures and automatic interlocks. - c. Other automatic interlocks prevent opening the hot leg loop isolation valve unless the cold leg loop isolation valve is fully closed. All of the interlocks are part of the Reactor Protection System. ### APPLICABLE SAFETY ANALYSES During startup of an isolated loop, the cold leg loop isolation valve interlocks and operating procedures prevent opening the valve until the isolated loop and operating loop boron concentrations and temperatures are equalized. This ensures that any undesirable reactivity effect from the isolated loop does not occur. The safety analyses assume a minimum SDM as an initial condition for Design Basis Accidents. Violation of this LCO could result in the SDM being reduced in the operating loops to less than that assumed in the safety analyses. The boron concentration of an isolated loop may affect SDM and therefore RCS isolated loop startup satisfies Criterion 2 of the NRC Policy Statement. #### LCO Loop isolation valves are used for performing maintenance when the plant is in MODE 5 or 6. This LCO ensures that the loop isolation valves remain closed until the differentials of temperature and boron concentration between the operating loops and the isolated loops are within acceptable limits. #### APPLICABILITY In MODES 5 and 6, the SDM of the operating loops is large enough to permit operation with isolated loops. Controlled startup of isolated loops is possible without significant risk of inadvertent criticality. This LCO is applicable under these conditions. #### ACTIONS #### A.1 and A.2 Required Action A.1 and Required Action A.2 assume that the prerequisites of the LCO are not met and a loop isolation valve has been inadvertently opened. Therefore, the Actions require immediate closure of isolation valves to preclude a boron dilution event or a cold water event. However, each Required Action is preceded by a Note that states that Action is required only when a specific concentration or temperature requirement is not met. ## SURVEILLANCE REQUIREMENTS ## SR 3.4.18.1 This Surveillance is performed to ensure that the temperature differential between the isolated loop and the operating loops is \leq [20]°F. Performing the Surveillance 30 minutes prior to opening the cold leg isolation valve in the isolated loop provides reasonable assurance, based on engineering judgment, that the temperature differential will stay within limits until the cold leg isolation valve is opened. This Frequency has been shown to be acceptable through operating experience. #### SR 3.4.18.2 To ensure that the boron concentration of the isolated loop is greater than or equal to the boron concentration of the operating loops, a Surveillance is performed 2 hours prior to opening either the hot or cold leg isolation valve. Performing the Surveillance 2 hours prior to opening either the hot or cold leg isolation valve provides reasonable assurance the boron concentration difference will stay within acceptable limits until the loop is unisolated. This Frequency has been shown to be acceptable through operating experience. #### REFERENCES 1. FSAR, Section [15.2.6]. - B 3.4 REACTOR COOLANT SYSTEM (RCS) - B 3.4.19 RCS Loops—Test Exceptions #### **BASES** #### BACKGROUND The primary purpose of this test exception is to provide an exception to LCO 3.4.4, "RCS Loops—MODES 1 and 2," to permit reactor criticality under no flow conditions during certain PHYSICS TESTS (natural circulation demonstration, station blackout, and loss of offsite power) to be performed while at low THERMAL POWER levels. Section XI of 10 CFR 50, Appendix B (Ref. 1), requires that a test program be established to ensure that structures, systems, and components will perform satisfactorily in service. All functions necessary to ensure that the specified design conditions are not exceeded during normal operation and anticipated operational occurrences must be tested. This testing is an integral part of the design, construction, and operation of the power plant as specified in GDC 1, "Quality Standards and Records" (Ref. 2). The key objectives of a test program are to provide assurance that the facility has been adequately designed to validate the analytical models used in the design and analysis, to verify the assumptions used to predict plant response, to provide assurance that installation of equipment at the unit has been accomplished in accordance with the design, and to verify that the operating and emergency procedures are adequate. Testing is performed prior to initial criticality, during startup, and following low power operations. The tests will include verifying the ability to establish and maintain natural circulation following a plant trip between 10% and 20% RTP, performing natural circulation cooldown on emergency power, and during the cooldown, showing that adequate boron mixture occurs and that pressure can be controlled using auxiliary spray and pressurizer heaters powered from the emergency power sources. ## APPLICABLE SAFETY ANALYSES The tests described above require operating the plant without forced convection flow and as such are not bounded by any safety analyses. However, operating experience has ## APPLICABLE SAFETY ANALYSES (continued) demonstrated this exception to be safe under the present applicability. RCS loops—test exceptions satisfy Criterion 3 of the NRC Policy Statement. #### LC0 This LCO provides an exemption to the requirements of LCO 3.4.4. The LCO is provided to allow for the performance of PHYSICS TESTS in MODE 2 (after a refueling), where the core cooling requirements are significantly different than after the core has been operating. Without the LCO, plant operations would be held bound to the normal operating LCOs for reactor coolant loops and circulation (MODES 1 and 2), and the appropriate tests could not be performed. In MODE 2, where core power level is considerably lower and the associated PHYSICS TESTS must be performed, operation is allowed under no flow conditions provided THERMAL POWER is \leq P-7 and the reactor trip setpoints of the OPERABLE power level channels are set \leq 25% RTP. This ensures, if some problem caused the plant to enter MODE 1 and start increasing plant power, the Reactor Trip System (RTS) would automatically shut it down before power became too high, and thereby prevent violation of fuel design limits. The exemption is allowed even though there are no bounding safety analyses. However, these tests are performed under close supervision during the test program and provide valuable information on the plant's capability to cool down without offsite power available to the reactor coolant pumps. #### APPLICABILITY This LCO is applicable when performing low power PHYSICS TESTS without any forced convection flow. This testing is performed to establish that heat input from nuclear heat does not exceed the natural circulation heat removal capabilities. Therefore, no safety or fuel design limits will be violated as a result of the associated tests. #### ACTIONS · ## A.1 When THERMAL POWER is \geq the P-7 interlock setpoint 10%, the only acceptable action is to ensure the reactor trip breakers (RTBs) are opened immediately in accordance with Required Action A.1 to prevent operation of the fuel beyond its design limits. Opening the RTBs will shut down the reactor and prevent operation of the fuel outside of its design limits. ## SURVEILLANCE REQUIREMENTS ## SR 3.4.19.1 Verification that the power level is < the P-7 interlock setpoint (10%) will ensure that the fuel design criteria are not violated during the performance of the PHYSICS TESTS. The Frequency of once per hour is adequate to ensure that the power level does not exceed the limit. Plant operations are conducted slowly during the performance of PHYSICS TESTS and monitoring the power level once per hour is sufficient to ensure that the power level does not exceed the limit. #### SR 3.4.19.2 The power range and intermediate range neutron detectors and the P-7 interlock setpoint must be verified to be OPERABLE and adjusted to the proper value. A COT is performed within 12 hours prior to initiation of the PHYSICS TESTS. This will ensure that the RTS is properly aligned to provide the required degree of core protection during the performance of the PHYSICS TESTS. The time limit of 12 hours is sufficient to ensure that the instrumentation is OPERABLE shortly before initiating PHYSICS TESTS. #### REFERENCES - 1. 10 CFR 50, Appendix B, Section XI. - 2. 10 CFR 50, Appendix A, GDC 1, 1988. ## B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) #### B 3.5.1 Accumulators #### **BASES** #### **BACKGROUND** The functions
of the ECCS accumulators are to supply water to the reactor vessel during the blowdown phase of a loss of coolant accident (LOCA), to provide inventory to help accomplish the refill phase that follows thereafter, and to provide Reactor Coolant System (RCS) makeup for a small break LOCA. The blowdown phase of a large break LOCA is the initial period of the transient during which the RCS departs from equilibrium conditions, and heat from fission product decay, hot internals, and the vessel continues to be transferred to the reactor coolant. The blowdown phase of the transient ends when the RCS pressure falls to a value approaching that of the containment atmosphere. In the refill phase of a LOCA, which immediately follows the blowdown phase, reactor coolant inventory has vacated the core through steam flashing and ejection out through the break. The core is essentially in adiabatic heatup. The balance of accumulator inventory is then available to help fill voids in the lower plenum and reactor vessel downcomer so as to establish a recovery level at the bottom of the core and ongoing reflood of the core with the addition of safety injection (SI) water. The accumulators are pressure vessels partially filled with borated water and pressurized with nitrogen gas. The accumulators are passive components, since no operator or control actions are required in order for them to perform their function. Internal accumulator tank pressure is sufficient to discharge the accumulator contents to the RCS, if RCS pressure decreases below the accumulator pressure. Each accumulator is piped into an RCS cold leg via an accumulator line and is isolated from the RCS by a motor operated isolation valve and two check valves in series. The motor operated isolation valves are interlocked by P-11 with the pressurizer pressure measurement channels to ensure that the valves will automatically open as RCS pressure increases to above the permissive circuit P-11 setpoint. # BACKGROUND (continued) This interlock also prevents inadvertent closure of the valves during normal operation prior to an accident. The valves will automatically open, however, as a result of an SI signal. These features ensure that the valves meet the requirements of the Institute of Electrical and Electronic Engineers (IEEE) Standard 279-1971 (Ref. 1) for "operating bypasses" and that the accumulators will be available for injection without reliance on operator action. The accumulator size, water volume, and nitrogen cover pressure are selected so that three of the four accumulators are sufficient to partially cover the core before significant clad melting or zirconium water reaction can occur following a LOCA. The need to ensure that three accumulators are adequate for this function is consistent with the LOCA assumption that the entire contents of one accumulator will be lost via the RCS pipe break during the blowdown phase of the LOCA. ## APPLICABLE SAFETY ANALYSES The accumulators are assumed OPERABLE in both the large and small break LOCA analyses at full power (Ref. 2). These are the Design Basis Accidents (DBAs) that establish the acceptance limits for the accumulators. Reference to the analyses for these DBAs is used to assess changes in the accumulators as they relate to the acceptance limits. In performing the LOCA calculations, conservative assumptions are made concerning the availability of ECCS flow. In the early stages of a LOCA, with or without a loss of offsite power, the accumulators provide the sole source of makeup water to the RCS. The assumption of loss of offsite power is required by regulations and conservatively imposes a delay wherein the ECCS pumps cannot deliver flow until the emergency diesel generators start, come to rated speed, and go through their timed loading sequence. In cold leg break scenarios, the entire contents of one accumulator are assumed to be lost through the break. The limiting large break LOCA is a double ended guillotine break at the discharge of the reactor coolant pump. During this event, the accumulators discharge to the RCS as soon as RCS pressure decreases to below accumulator pressure. ## APPLICABLE SAFETY ANALYSES (continued) As a conservative estimate, no credit is taken for ECCS pump flow until an effective delay has elapsed. This delay accounts for the diesels starting and the pumps being loaded and delivering full flow. The delay time is conservatively set with an additional 2 seconds to account for SI signal generation. During this time, the accumulators are analyzed as providing the sole source of emergency core cooling. No operator action is assumed during the blowdown stage of a large break LOCA. The worst case small break LOCA analyses also assume a time delay before pumped flow reaches the core. For the larger range of small breaks, the rate of blowdown is such that the increase in fuel clad temperature is terminated solely by the accumulators, with pumped flow then providing continued cooling. As break size decreases, the accumulators and centrifugal charging pumps both play a part in terminating the rise in clad temperature. As break size continues to decrease, the role of the accumulators continues to decrease until they are not required and the centrifugal charging pumps become solely responsible for terminating the temperature increase. This LCO helps to ensure that the following acceptance criteria established for the ECCS by 10 CFR 50.46 (Ref. 3) will be met following a LOCA: - a. Maximum fuel element cladding temperature is ≤ 2200°F; - b. Maximum cladding oxidation is ≤ 0.17 times the total cladding thickness before oxidation; - c. Maximum hydrogen generation from a zirconium water reaction is ≤ 0.01 times the hypothetical amount that would be generated if all of the metal in the cladding cylinders surrounding the fuel, excluding the cladding surrounding the plenum volume, were to react; and - d. Core is maintained in a coolable geometry. Since the accumulators discharge during the blowdown phase of a LOCA, they do not contribute to the long term cooling requirements of 10 CFR 50.46. For both the large and small break LOCA analyses, a nominal contained accumulator water volume is used. The contained ## APPLICABLE SAFETY ANALYSES (continued) water volume is the same as the deliverable volume for the accumulators, since the accumulators are emptied, once discharged. For small breaks, an increase in water volume is a peak clad temperature penalty. For large breaks, an increase in water volume can be either a peak clad temperature penalty or benefit, depending on downcomer filling and subsequent spill through the break during the core reflooding portion of the transient. The analysis makes a conservative assumption with respect to ignoring or taking credit for line water volume from the accumulator to the check valve. The safety analysis assumes values of [6468] gallons and [6879] gallons. To allow for instrument inaccuracy, values of [6520] gallons and [6820] gallons are specified. The minimum boron concentration setpoint is used in the post LOCA boron concentration calculation. The calculation is performed to assure reactor subcriticality in a post LOCA environment. Of particular interest is the large break LOCA, since no credit is taken for control rod assembly insertion. A reduction in the accumulator minimum boron concentration would produce a subsequent reduction in the available containment sump concentration for post LOCA shutdown and an increase in the maximum sump pH. The maximum boron concentration is used in determining the cold leg to hot leg recirculation injection switchover time and minimum sump pH. The large and small break LOCA analyses are performed at the minimum nitrogen cover pressure, since sensitivity analyses have demonstrated that higher nitrogen cover pressure results in a computed peak clad temperature benefit. The maximum nitrogen cover pressure limit prevents accumulator relief valve actuation, and ultimately preserves accumulator integrity. The effects on containment mass and energy releases from the accumulators are accounted for in the appropriate analyses (Refs. 2 and 4). The accumulators satisfy Criterion 3 of the NRC Policy Statement. LCO The LCO establishes the minimum conditions required to ensure that the accumulators are available to accomplish their core cooling safety function following a LOCA. Four accumulators are required to ensure that 100% of the contents of three of the accumulators will reach the core during a LOCA. This is consistent with the assumption that the contents of one accumulator spill through the break. If less than three accumulators are injected during the blowdown phase of a LOCA, the ECCS acceptance criteria of 10 CFR 50.46 (Ref. 3) could be violated. For an accumulator to be considered OPERABLE, the isolation valve must be fully open, power removed above [2000] psig, and the limits established in the SRs for contained volume, boron concentration, and nitrogen cover pressure must be met. #### **APPLICABILITY** In MODES 1 and 2, and in MODE 3 with RCS pressure > 1000 psig, the accumulator OPERABILITY requirements are based on full power operation. Although cooling requirements decrease as power decreases, the accumulators are still required to provide core cooling as long as elevated RCS pressures and temperatures exist. This LCO is only applicable at pressures > 1000 psig. At pressures \leq 1000 psig, the rate of RCS blowdown is such that the ECCS pumps can provide adequate injection to ensure that peak clad temperature remains below the 10 CFR 50.46 (Ref. 3) limit of 2200°F. In MODE 3, with RCS pressure \leq 1000 psig, and in MODES 4, 5, and 6, the accumulator motor operated isolation valves are closed to isolate the accumulators from the RCS. This allows RCS cooldown and depressurization without discharging the accumulators into the RCS or requiring depressurization of the accumulators. #### **ACTIONS** #### A.I If the
boron concentration of one accumulator is not within limits, it must be returned to within the limits within 72 hours. In this Condition, ability to maintain subcriticality or minimum boron precipitation time may be #### **ACTIONS** ## A.1 (continued) reduced. The boron in the accumulators contributes to the assumption that the combined ECCS water in the partially recovered core during the early reflooding phase of a large break LOCA is sufficient to keep that portion of the core subcritical. One accumulator below the minimum boron concentration limit, however, will have no effect on available ECCS water and an insignificant effect on core subcriticality during reflood. Boiling of ECCS water in the core during reflood concentrates boron in the saturated liquid that remains in the core. In addition, current analysis techniques demonstrate that the accumulators do not discharge following a large main steam line break for the majority of plants. Even if they do discharge, their impact is minor and not a design limiting event. Thus, 72 hours is allowed to return the boron concentration to within limits. #### B.1 If one accumulator is inoperable for a reason other than boron concentration, the accumulator must be returned to OPERABLE status within 1 hour. In this Condition, the required contents of three accumulators cannot be assumed to reach the core during a LOCA. Due to the severity of the consequences should a LOCA occur in these conditions, the 1 hour Completion Time to open the valve, remove power to the valve, or restore the proper water volume or nitrogen cover pressure ensures that prompt action will be taken to return the inoperable accumulator to OPERABLE status. The Completion Time minimizes the potential for exposure of the plant to a LOCA under these conditions. #### C.1 and C.2 If the accumulator cannot be returned to OPERABLE status within the associated Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 6 hours and pressurizer pressure reduced to #### ACTIONS ## C.1 and C.2 (continued) ≤ 1000 psig within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. #### D.1 If more than one accumulator is inoperable, the plant is in a condition outside the accident analyses; therefore, LCO 3.0.3 must be entered immediately. ## SURVEILLANCE REQUIREMENTS ### SR 3.5.1.1 Each accumulator valve should be verified to be fully open every 12 hours. This verification ensures that the accumulators are available for injection and ensures timely discovery if a valve should be less than fully open. If an isolation valve is not fully open, the rate of injection to the RCS would be reduced. Although a motor operated valve position should not change with power removed, a closed valve could result in not meeting accident analyses assumptions. This Frequency is considered reasonable in view of other administrative controls that ensure a mispositioned isolation valve is unlikely. ## SR 3.5.1.2 and SR 3.5.1.3 Every 12 hours, borated water volume and nitrogen cover pressure are verified for each accumulator. This Frequency is sufficient to ensure adequate injection during a LOCA. Because of the static design of the accumulator, a 12 hour Frequency usually allows the operator to identify changes before limits are reached. Operating experience has shown this Frequency to be appropriate for early detection and correction of off normal trends. ## SURVEILLANCE REQUIREMENTS (continued) #### SR 3.5.1.4 The boron concentration should be verified to be within required limits for each accumulator every 31 days since the static design of the accumulators limits the ways in which the concentration can be changed. The 31 day Frequency is adequate to identify changes that could occur from mechanisms such as stratification or inleakage. Sampling the affected accumulator within 6 hours after a 1% volume increase will identify whether inleakage has caused a reduction in boron concentration to below the required limit. It is not necessary to verify boron concentration if the added water inventory is from the refueling water storage tank (RWST), because the water contained in the RWST is within the accumulator boron concentration requirements. This is consistent with the recommendation of NUREG-1366 (Ref. 5). ## SR 3.5.1.5 Verification every 31 days that power is removed from each accumulator isolation valve operator when the pressurizer pressure is ≥ 2000 psig ensures that an active failure could not result in the undetected closure of an accumulator motor operated isolation valve. If this were to occur, only two accumulators would be available for injection given a single failure coincident with a LOCA. Since power is removed under administrative control, the 31 day Frequency will provide adequate assurance that power is removed. This SR allows power to be supplied to the motor operated isolation valves when pressurizer pressure is < 2000 psig, thus allowing operational flexibility by avoiding unnecessary delays to manipulate the breakers during plant startups or shutdowns. Even with power supplied to the valves, inadvertent closure is prevented by the RCS pressure interlock associated with the valves. Should closure of a valve occur in spite of the interlock, the SI signal provided to the valves would open a closed valve in the event of a LOCA. ## REFERENCES - 1. IEEE Standard 279-1971. - 2. FSAR, Chapter [6]. - 3. 10 CFR 50.46. - 4. FSAR, Chapter [15]. - 5. NUREG-1366, February 1990. ## B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) #### B 3.5.2 ECCS—Operating #### **BASES** #### BACKGROUND The function of the ECCS is to provide core cooling and negative reactivity to ensure that the reactor core is protected after any of the following accidents: - a. Loss of coolant accident (LOCA), coolant leakage greater than the capability of the normal charging system; - b. Rod ejection accident; - c. Loss of secondary coolant accident, including uncontrolled steam release or loss of feedwater; and - d. Steam generator tube rupture (SGTR). The addition of negative reactivity is designed primarily for the loss of secondary coolant accident where primary cooldown could add enough positive reactivity to achieve criticality and return to significant power. There are three phases of ECCS operation: injection, cold leg recirculation, and hot leg recirculation. In the injection phase, water is taken from the refueling water storage tank (RWST) and injected into the Reactor Coolant System (RCS) through the cold legs. When sufficient water is removed from the RWST to ensure that enough boron has been added to maintain the reactor subcritical and the containment sumps have enough water to supply the required net positive suction head to the ECCS pumps, suction is switched to the containment sump for cold leg recirculation. After approximately 24 hours, the ECCS flow is shifted to the hot leg recirculation phase to provide a backflush, which would reduce the boiling in the top of the core and any resulting boron precipitation. The ECCS consists of three separate subsystems: centrifugal charging (high head), safety injection (SI) (intermediate head), and residual heat removal (RHR) (low head). Each subsystem consists of two redundant, 100% capacity trains. The ECCS accumulators and the RWST are also part of the # BACKGROUND (continued) ECCS, but are not considered part of an ECCS flow path as described by this LCO. The ECCS flow paths consist of piping, valves, heat exchangers, and pumps such that water from the RWST can be injected into the RCS following the accidents described in this LCO. The major components of each subsystem are the centrifugal charging pumps, the RHR pumps, heat exchangers, and the SI pumps. Each of the three subsystems consists of two 100% capacity trains that are interconnected and redundant such that either train is capable of supplying 100% of the flow required to mitigate the accident consequences. This interconnecting and redundant subsystem design provides the operators with the ability to utilize components from opposite trains to achieve the required 100% flow to the core. During the injection phase of LOCA recovery, a suction header supplies water from the RWST to the ECCS pumps. Separate piping supplies each subsystem and each train within the subsystem. The discharge from the centrifugal charging pumps combines prior to entering the boron injection tank (BIT) (if the plant utilizes a BIT) and then divides again into four supply lines, each of which feeds the injection line to one RCS cold leg. The discharge from the SI and RHR pumps divides and feeds an injection line to each of the RCS cold legs. Control valves are set to balance the flow to the RCS. This balance ensures sufficient flow to the core to meet the analysis assumptions following a LOCA in one of the RCS cold legs. For LOCAs that are too small to depressurize the RCS below the shutoff head of the SI pumps, the centrifugal charging pumps supply water until the RCS pressure decreases below the SI pump shutoff head. During this period, the steam generators are used to provide part of the core cooling function. During the recirculation phase of LOCA recovery, RHR pump suction is transferred to the containment sump. The RHR pumps then supply the other ECCS pumps. Initially, recirculation is through the same paths as the injection phase. Subsequently, recirculation alternates injection between the hot and cold legs. # BACKGROUND (continued) The centrifugal charging subsystem of the ECCS also functions to supply borated water to the reactor core following increased heat removal events, such as a main steam line break (MSLB). The limiting design conditions occur when the negative moderator temperature coefficient is
highly negative, such as at the end of each cycle. During low temperature conditions in the RCS, limitations are placed on the maximum number of ECCS pumps that may be OPERABLE. Refer to the Bases for LCO 3.4.12, "Low Temperature Overpressure Protection (LTOP) System," for the basis of these requirements. The ECCS subsystems are actuated upon receipt of an SI signal. The actuation of safeguard loads is accomplished in a programmed time sequence. If offsite power is available, the safeguard loads start immediately in the programmed sequence. If offsite power is not available, the Engineered Safety Feature (ESF) buses shed normal operating loads and are connected to the emergency diesel generators (EDGs). Safeguard loads are then actuated in the programmed time sequence. The time delay associated with diesel starting, sequenced loading, and pump starting determines the time required before pumped flow is available to the core following a LOCA. The active ECCS components, along with the passive accumulators and the RWST covered in LCO 3.5.1, "Accumulators," and LCO 3.5.4, "Refueling Water Storage Tank (RWST)," provide the cooling water necessary to meet GDC 35 (Ref. 1). #### APPLICABLE SAFETY ANALYSES The LCO helps to ensure that the following acceptance criteria for the ECCS, established by 10 CFR 50.46 (Ref. 2), will be met following a LOCA: - a. Maximum fuel element cladding temperature is ≤ 2200°F; - b. Maximum cladding oxidation is \leq 0.17 times the total cladding thickness before oxidation; ## APPLICABLE SAFETY ANALYSES (continued) - c. Maximum hydrogen generation from a zirconium water reaction is ≤ 0.01 times the hypothetical amount generated if all of the metal in the cladding cylinders surrounding the fuel, excluding the cladding surrounding the plenum volume, were to react; - d. Core is maintained in a coolable geometry; and - e. Adequate long term core cooling capability is maintained. The LCO also limits the potential for a post trip return to power following an MSLB event and ensures that containment temperature limits are met. Each ECCS subsystem is taken credit for in a large break LOCA event at full power (Refs. 3 and 4). This event establishes the requirement for runout flow for the ECCS pumps, as well as the maximum response time for their actuation. The centrifugal charging pumps and SI pumps are credited in a small break LOCA event. This event establishes the flow and discharge head at the design point for the centrifugal charging pumps. The SGTR and MSLB events also credit the centrifugal charging pumps. The OPERABILITY requirements for the ECCS are based on the following LOCA analysis assumptions: - a. A large break LOCA event, with loss of offsite power and a single failure disabling one RHR pump (both EDG trains are assumed to operate due to requirements for modeling full active containment heat removal system operation); and - b. A small break LOCA event, with a loss of offsite power and a single failure disabling one ECCS train. During the blowdown stage of a LOCA, the RCS depressurizes as primary coolant is ejected through the break into the containment. The nuclear reaction is terminated either by moderator voiding during large breaks or control rod insertion for small breaks. Following depressurization, emergency cooling water is injected into the cold legs, flows into the downcomer, fills the lower plenum, and refloods the core. ## APPLICABLE SAFETY ANALYSES (continued) The effects on containment mass and energy releases are accounted for in appropriate analyses (Refs. 3 and 4). The LCO ensures that an ECCS train will deliver sufficient water to match boiloff rates soon enough to minimize the consequences of the core being uncovered following a large LOCA. It also ensures that the centrifugal charging and SI pumps will deliver sufficient water and boron during a small LOCA to maintain core subcriticality. For smaller LOCAs, the centrifugal charging pump delivers sufficient fluid to maintain RCS inventory. For a small break LOCA, the steam generators continue to serve as the heat sink, providing part of the required core cooling. The ECCS trains satisfy Criterion 3 of the NRC Policy Statement. ## LC0 In MODES 1, 2, and 3, two independent (and redundant) ECCS trains are required to ensure that sufficient ECCS flow is available, assuming a single failure affecting either train. Additionally, individual components within the ECCS trains may be called upon to mitigate the consequences of other transients and accidents. In MODES 1, 2, and 3, an ECCS train consists of a centrifugal charging subsystem, an SI subsystem, and an RHR subsystem. Each train includes the piping, instruments, and controls to ensure an OPERABLE flow path capable of taking suction from the RWST upon an SI signal and automatically transferring suction to the containment sump. During an event requiring ECCS actuation, a flow path is required to provide an abundant supply of water from the RWST to the RCS via the ECCS pumps and their respective supply headers to each of the four cold leg injection nozzles. In the long term, this flow path may be switched to take its supply from the containment sump and to supply its flow to the RCS hot and cold legs. The flow path for each train must maintain its designed independence to ensure that no single failure can disable both ECCS trains. #### APPLICABILITY In MODES 1, 2, and 3, the ECCS OPERABILITY requirements for the limiting Design Basis Accident, a large break LOCA, are based on full power operation. Although reduced power would not require the same level of performance, the accident analysis does not provide for reduced cooling requirements in the lower MODES. The centrifugal charging pump performance is based on a small break LOCA, which establishes the pump performance curve and has less dependence on power. The SI pump performance requirements are based on a small break LOCA. MODE 2 and MODE 3 requirements are bounded by the MODE 1 analysis. This LCO is only applicable in MODE 3 and above. Below MODE 3, the SI signal setpoint is manually bypassed by operator control, and system functional requirements are relaxed as described in LCO 3.5.3, "ECCS—Shutdown." As indicated in Note 1, the flow path may be isolated for 2 hours in MODE 3, under controlled conditions, to perform pressure isolation valve testing per SR 3.4.14.1. The flow path is readily restorable from the control room. As indicated in Note 2, operation in MODE 3 with ECCS trains declared inoperable pursuant to LCO 3.4.12, "Low Temperature Overpressure Protection (LTOP) System," is necessary for plants with an LTOP arming temperature at or near the MODE 3 boundary temperature of 350°F. LCO 3.4.12 requires that certain pumps be rendered inoperable at and below the LTOP arming temperature. When this temperature is at or near the MODE 3 boundary temperature, time is needed to restore the inoperable pumps to OPERABLE status. In MODES 5 and 6, plant conditions are such that the probability of an event requiring ECCS injection is extremely low. Core cooling requirements in MODE 5 are addressed by LCO 3.4.7, "RCS Loops—MODE 5, Loops Filled," and LCO 3.4.8, "RCS Loops—MODE 5, Loops Not Filled." MODE 6 core cooling requirements are addressed by LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation—High Water Level," and LCO 3.9.6, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level." #### **ACTIONS** ## <u>A.1</u> With one or more trains inoperable and at least 100% of the ECCS flow equivalent to a single OPERABLE ECCS train available, the inoperable components must be returned to OPERABLE status within 72 hours. The 72 hour Completion Time is based on an NRC reliability evaluation (Ref. 5) and is a reasonable time for repair of many ECCS components. An ECCS train is inoperable if it is not capable of delivering design flow to the RCS. Individual components are inoperable if they are not capable of performing their design function or supporting systems are not available. The LCO requires the OPERABILITY of a number of independent subsystems. Due to the redundancy of trains and the diversity of subsystems, the inoperability of one component in a train does not render the ECCS incapable of performing its function. Neither does the inoperability of two different components, each in a different train, necessarily result in a loss of function for the ECCS. The intent of this Condition is to maintain a combination of equipment such that 100% of the ECCS flow equivalent to a single OPERABLE ECCS train remains available. This allows increased flexibility in plant operations under circumstances when components in opposite trains are inoperable. An event accompanied by a loss of offsite power and the failure of an EDG can disable one ECCS train until power is restored. A reliability analysis (Ref. 5) has shown that the impact of having one full ECCS train inoperable is sufficiently small to justify continued operation for 72 hours. Reference 6 describes situations in which one component, such as an RHR crossover valve, can disable both ECCS trains. With one or more component(s) inoperable such that 100% of the flow equivalent to a single OPERABLE ECCS train is not available, the facility is in a condition outside the accident analysis. Therefore, LCO 3.0.3 must be immediately entered. # ACTIONS (continued) ## **B.1** and **B.2** If the inoperable trains cannot be returned to OPERABLE status within the associated Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 6 hours and MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ### SR 3.5.2.1 Verification of proper valve position ensures that the flow
path from the ECCS pumps to the RCS is maintained. Misalignment of these valves could render both ECCS trains inoperable. Securing these valves in position by removal of power or by key locking the control in the correct position ensures that they cannot change position as a result of an active failure or be inadvertently misaligned. These valves are of the type, described in Reference 6, that can disable the function of both ECCS trains and invalidate the accident analyses. A 12 hour Frequency is considered reasonable in view of other administrative controls that will ensure a mispositioned valve is unlikely. #### SR 3.5.2.2 Verifying the correct alignment for manual, power operated, and automatic valves in the ECCS flow paths provides assurance that the proper flow paths will exist for ECCS operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since these were verified to be in the correct position prior to locking, sealing, or securing. A valve that receives an actuation signal is allowed to be in a nonaccident position provided the valve will automatically reposition within the proper stroke time. This Surveillance does not require any testing or valve manipulation. Rather, it involves verification that those valves capable of being mispositioned are in the correct position. The 31 day Frequency is appropriate because the valves are operated ## SURVEILLANCE REQUIREMENTS ## <u>SR 3.5.2.2</u> (continued) under administrative control, and an improper valve position would only affect a single train. This Frequency has been shown to be acceptable through operating experience. ## SR 3.5.2.3 With the exception of the operating centrifugal charging pump, the ECCS pumps are normally in a standby, nonoperating mode. As such, flow path piping has the potential to develop voids and pockets of entrained gases. Maintaining the piping from the ECCS pumps to the RCS full of water ensures that the system will perform properly, injecting its full capacity into the RCS upon demand. This will also prevent water hammer, pump cavitation, and pumping of noncondensible gas (e.g., air, nitrogen, or hydrogen) into the reactor vessel following an SI signal or during shutdown cooling. The 31 day Frequency takes into consideration the gradual nature of gas accumulation in the ECCS piping and the procedural controls governing system operation. #### SR 3.5.2.4 Periodic surveillance testing of ECCS pumps to detect gross degradation caused by impeller structural damage or other hydraulic component problems is required by Section XI of the ASME Code. This type of testing may be accomplished by measuring the pump developed head at only one point of the pump characteristic curve. This verifies both that the measured performance is within an acceptable tolerance of the original pump baseline performance and that the performance at the test flow is greater than or equal to the performance assumed in the plant safety analysis. SRs are specified in the Inservice Testing Program, which encompasses Section XI of the ASME Code. Section XI of the ASME Code provides the activities and Frequencies necessary to satisfy the requirements. #### SR 3.5.2.5 and SR 3.5.2.6 These Surveillances demonstrate that each automatic ECCS valve actuates to the required position on an actual or ## SURVEILLANCE REQUIREMENTS ## <u>SR 3.5.2.5 and SR 3.5.2.6</u> (continued) simulated SI signal and that each ECCS pump starts on receipt of an actual or simulated SI signal. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The 18 month Frequency is based on the need to perform these Surveillances under the conditions that apply during a plant outage and the potential for unplanned plant transients if the Surveillances were performed with the reactor at power. The 18 month Frequency is also acceptable based on consideration of the design reliability (and confirming operating experience) of the equipment. The actuation logic is tested as part of ESF Actuation System testing, and equipment performance is monitored as part of the Inservice Testing Program. #### SR 3.5.2.7 Realignment of valves in the flow path on an SI signal is necessary for proper ECCS performance. These valves have stops to allow proper positioning for restricted flow to a ruptured cold leg, ensuring that the other cold legs receive at least the required minimum flow. This Surveillance is not required for plants with flow limiting orifices. The 18 month Frequency is based on the same reasons as those stated in SR 3.5.2.5 and SR 3.5.2.6. #### SR 3.5.2.8 Periodic inspections of the containment sump suction inlet ensure that it is unrestricted and stays in proper operating condition. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage, on the need to have access to the location, and because of the potential for an unplanned transient if the Surveillance were performed with the reactor at power. This Frequency has been found to be sufficient to detect abnormal degradation and is confirmed by operating experience. ## REFERENCES - 1. 10 CFR 50, Appendix A, GDC 35. - 2. 10 CFR 50.46. - 3. FSAR, Section []. - 4. FSAR, Chapter [15], "Accident Analysis." - 5. NRC Memorandum to V. Stello, Jr., from R.L. Baer, "Recommended Interim Revisions to LCOs for ECCS Components," December 1, 1975. - 6. IE Information Notice No. 87-01. ## B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) #### B 3.5.3 ECCS—Shutdown #### **BASES** #### **BACKGROUND** The Background section for Bases 3.5.2, "ECCS—Operating," is applicable to these Bases, with the following modifications. In MODE 4, the required ECCS train consists of two separate subsystems: centrifugal charging (high head) and residual heat removal (RHR) (low head). The ECCS flow paths consist of piping, valves, heat exchangers, and pumps such that water from the refueling water storage tank (RWST) can be injected into the Reactor Coolant System (RCS) following the accidents described in Bases 3.5.2. #### APPLICABLE SAFETY ANALYSES The Applicable Safety Analyses section of Bases 3.5.2 also applies to this Bases section. Due to the stable conditions associated with operation in MODE 4 and the reduced probability of occurrence of a Design Basis Accident (DBA), the ECCS operational requirements are reduced. It is understood in these reductions that certain automatic safety injection (SI) actuation is not available. In this MODE, sufficient time exists for manual actuation of the required ECCS to mitigate the consequences of a DBA. Only one train of ECCS is required for MODE 4. This requirement dictates that single failures are not considered during this MODE of operation. The ECCS trains satisfy Criterion 3 of the NRC Policy Statement. #### CO In MODE 4, one of the two independent (and redundant) ECCS trains is required to be OPERABLE to ensure that sufficient ECCS flow is available to the core following a DBA. In MODE 4, an ECCS train consists of a centrifugal charging subsystem and an RHR subsystem. Each train includes the piping, instruments, and controls to ensure an OPERABLE flow ## (continued) path capable of taking suction from the RWST and transferring suction to the containment sump. During an event requiring ECCS actuation, a flow path is required to provide an abundant supply of water from the RWST to the RCS via the ECCS pumps and their respective supply headers to each of the four cold leg injection nozzles. In the long term, this flow path may be switched to take its supply from the containment sump and to deliver its flow to the RCS hot and cold legs. ## **APPLICABILITY** In MODES 1, 2, and 3, the OPERABILITY requirements for ECCS are covered by LCO 3.5.2. In MODE 4 with RCS temperature below 350°F, one OPERABLE ECCS train is acceptable without single failure consideration, on the basis of the stable reactivity of the reactor and the limited core cooling requirements. In MODES 5 and 6, plant conditions are such that the probability of an event requiring ECCS injection is extremely low. Core cooling requirements in MODE 5 are addressed by LCO 3.4.7, "RCS Loops—MODE 5, Loops Filled," and LCO 3.4.8, "RCS Loops—MODE 5, Loops Not Filled." MODE 6 core cooling requirements are addressed by LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation—High Water Level," and LCO 3.9.6, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level." #### ACTIONS #### <u>A.1</u> With no ECCS RHR subsystem OPERABLE, the plant is not prepared to respond to a loss of coolant accident or to continue a cooldown using the RHR pumps and heat exchangers. The Completion Time of immediately to initiate actions that would restore at least one ECCS RHR subsystem to OPERABLE status ensures that prompt action is taken to restore the required cooling capacity. Normally, in MODE 4, reactor decay heat is removed from the RCS by an RHR loop. If no RHR loop is OPERABLE for this function, reactor decay heat must be removed by some alternate method, such as use of the steam generators. The alternate means of heat removal must #### **ACTIONS** ## <u>A.1</u> (continued) continue until the inoperable RHR loop components can be restored to operation so that decay heat removal is continuous. With both RHR pumps and heat exchangers inoperable, it would be unwise to require the plant to go to MODE 5, where the only available heat removal system is the RHR. Therefore, the appropriate action is to initiate measures to restore one ECCS RHR subsystem and to continue the actions until the subsystem is restored to OPERABLE status. #### B.1 With no ECCS high head subsystem OPERABLE, due to the inoperability of the centrifugal charging pump or flow path from the RWST, the plant is not prepared to provide high pressure response to Design Basis Events requiring SI. The 1 hour Completion Time to
restore at least one ECCS high head subsystem to OPERABLE status ensures that prompt action is taken to provide the required cooling capacity or to initiate actions to place the plant in MODE 5, where an ECCS train is not required. ## C.1 When the Required Actions of Condition B cannot be completed within the required Completion Time, a controlled shutdown should be initiated. Twenty-four hours is a reasonable time, based on operating experience, to reach MODE 5 in an orderly manner and without challenging plant systems or operators. ## SURVEILLANCE REQUIREMENTS #### SR 3.5.3.1 The applicable Surveillance descriptions from Bases 3.5.2 apply. This SR is modified by a Note that allows an RHR train to be considered OPERABLE during alignment and operation for decay heat removal, if capable of being manually realigned (remote or local) to the ECCS mode of | BASES | | |------------------------------|--| | SURVEILLANCE
REQUIREMENTS | <pre>SR 3.5.3.1 (continued) operation and not otherwise inoperable. This allows operation in the RHR mode during MODE 4, if necessary.</pre> | | REFERENCES | The applicable references from Bases 3.5.2 apply. | - B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) - B 3.5.4 Refueling Water Storage Tank (RWST) #### BASES #### BACKGROUND The RWST supplies borated water to the Chemical and Volume Control System (CVCS) during abnormal operating conditions, to the refueling pool during refueling, and to the ECCS and the Containment Spray System during accident conditions. The RWST supplies both trains of the ECCS and the Containment Spray System through separate, redundant supply headers during the injection phase of a loss of coolant accident (LOCA) recovery. A motor operated isolation valve is provided in each header to isolate the RWST from the ECCS once the system has been transferred to the recirculation mode. The recirculation mode is entered when pump suction is transferred to the containment sump following receipt of the RWST—Low Low (Level 1) signal. Use of a single RWST to supply both trains of the ECCS and Containment Spray System is acceptable since the RWST is a passive component, and passive failures are not required to be assumed to occur coincidentally with Design Basis Events. The switchover from normal operation to the injection phase of ECCS operation requires changing centrifugal charging pump suction from the CVCS volume control tank (VCT) to the RWST through the use of isolation valves. Each set of isolation valves is interlocked so that the VCT isolation valves will begin to close once the RWST isolation valves are fully open. Since the VCT is under pressure, the preferred pump suction will be from the VCT until the tank is isolated. This will result in a delay in obtaining the RWST borated water. The effects of this delay are discussed in the Applicable Safety Analyses section of these Bases. During normal operation in MODES 1, 2, and 3, the safety injection (SI) and residual heat removal (RHR) pumps are aligned to take suction from the RWST. The ECCS and Containment Spray System pumps are provided with recirculation lines that ensure each pump can maintain minimum flow requirements when operating at or near shutoff head conditions. ## BACKGROUND (continued) When the suction for the ECCS and Containment Spray System pumps is transferred to the containment sump, the RWST flow paths must be isolated to prevent a release of the containment sump contents to the RWST, which could result in a release of contaminants to the atmosphere and the eventual loss of suction head for the ECCS pumps. #### This LCO ensures that: - a. The RWST contains sufficient borated water to support the ECCS during the injection phase; - b. Sufficient water volume exists in the containment sump to support continued operation of the ECCS and Containment Spray System pumps at the time of transfer to the recirculation mode of cooling; and - c. The reactor remains subcritical following a LOCA. Insufficient water in the RWST could result in insufficient cooling capacity when the transfer to the recirculation mode occurs. Improper boron concentrations could result in a reduction of SDM or excessive boric acid precipitation in the core following the LOCA, as well as excessive caustic stress corrosion of mechanical components and systems inside the containment. ## APPLICABLE SAFETY ANALYSES During accident conditions, the RWST provides a source of borated water to the ECCS and Containment Spray System pumps. As such, it provides containment cooling and depressurization, core cooling, and replacement inventory and is a source of negative reactivity for reactor shutdown (Ref. 1). The design basis transients and applicable safety analyses concerning each of these systems are discussed in the Applicable Safety Analyses section of B 3.5.2, "ECCS—Operating"; B 3.5.3, "ECCS—Shutdown"; and B 3.6.6, "Containment Spray and Cooling Systems." These analyses are used to assess changes to the RWST in order to evaluate their effects in relation to the acceptance limits in the analyses. The RWST must also meet volume, boron concentration, and temperature requirements for non-LOCA events. The volume is not an explicit assumption in non-LOCA events since the APPLICABLE SAFETY ANALYSES (continued) required volume is a small fraction of the available volume. The deliverable volume limit is set by the LOCA and containment analyses. For the RWST, the deliverable volume is different from the total volume contained since, due to the design of the tank, more water can be contained than can be delivered. The minimum boron concentration is an explicit assumption in the main steam line break (MSLB) analysis to ensure the required shutdown capability. The importance of its value is small for units with a boron injection tank (BIT) with a high boron concentration. For units with no BIT or reduced BIT boron requirements, the minimum boron concentration limit is an important assumption in ensuring the required shutdown capability. The maximum boron concentration is an explicit assumption in the inadvertent ECCS actuation analysis, although it is typically a nonlimiting event and the results are very insensitive to boron concentrations. The maximum temperature ensures that the amount of cooling provided from the RWST during the heatup phase of a feedline break is consistent with safety analysis assumptions; the minimum is an assumption in both the MSLB and inadvertent ECCS actuation analyses, although the inadvertent ECCS actuation event is typically nonlimiting. The MSLB analysis has considered a delay associated with the interlock between the VCT and RWST isolation valves, and the results show that the departure from nucleate boiling design basis is met. The delay has been established as [27] seconds, with offsite power available, or [37] seconds without offsite power. This response time includes [2] seconds for electronics delay, a [15] second stroke time for the RWST valves, and a [10] second stroke time for the VCT valves. Plants with a BIT need not be concerned with the delay since the BIT will supply highly borated water prior to RWST switchover, provided the BIT is between the pumps and the core. For a large break LOCA analysis, the minimum water volume limit of [466,200] gallons and the lower boron concentration limit of [2000] ppm are used to compute the post LOCA sump boron concentration necessary to assure subcriticality. The large break LOCA is the limiting case since the safety analysis assumes that all control rods are out of the core. The upper limit on boron concentration of [2200] ppm is used to determine the maximum allowable time to switch to hot leg # APPLICABLE SAFETY ANALYSES (continued) recirculation following a LOCA. The purpose of switching from cold leg to hot leg injection is to avoid boron precipitation in the core following the accident. In the ECCS analysis, the containment spray temperature is assumed to be equal to the RWST lower temperature limit of [35]°F. If the lower temperature limit is violated, the containment spray further reduces containment pressure. which decreases the rate at which steam can be vented out the break and increases peak clad temperature. The upper temperature limit of [100]°F is used in the small break LOCA analysis and containment OPERABILITY analysis. Exceeding this temperature will result in a higher peak clad temperature, because there is less heat transfer from the core to the injected water for the small break LOCA and higher containment pressures due to reduced containment spray cooling capacity. For the containment response following an MSLB, the lower limit on boron concentration and the upper limit on RWST water temperature are used to maximize the total energy release to containment. The RWST satisfies Criterion 3 of the NRC Policy Statement. #### LC0 The RWST ensures that an adequate supply of borated water is available to cool and depressurize the containment in the event of a Design Basis Accident (DBA), to cool and cover the core in the event of a LOCA, to maintain the reactor subcritical following a DBA, and to ensure adequate level in the containment sump to support ECCS and Containment Spray System pump operation in the recirculation mode. To be considered OPERABLE, the RWST must meet the water volume, boron concentration, and temperature limits established in the SRs. #### **APPLICABILITY** In MODES 1, 2, 3, and 4, RWST OPERABILITY requirements are dictated by ECCS and Containment Spray System OPERABILITY requirements. Since both the ECCS and the Containment Spray System must be OPERABLE in MODES 1, 2, 3, and 4, the RWST must also be OPERABLE to support their operation. Core cooling requirements in MODE 5 are addressed by LCO 3.4.7, "RCS Loops—MODE 5, Loops Filled," and LCO 3.4.8, "RCS # APPLICABILITY (continued) Loops—MODE 5,
Loops Not Filled." MODE 6 core cooling requirements are addressed by LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation—High Water Level," and LCO 3.9.6, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level." #### **ACTIONS** #### A.1 With RWST boron concentration or borated water temperature not within limits, they must be returned to within limits within 8 hours. Under these conditions neither the ECCS nor the Containment Spray System can perform its design function. Therefore, prompt action must be taken to restore the tank to OPERABLE condition. The 8 hour limit to restore the RWST temperature or boron concentration to within limits was developed considering the time required to change either the boron concentration or temperature and the fact that the contents of the tank are still available for injection. # <u>B.1</u> With the RWST inoperable for reasons other than Condition A (e.g., water volume), it must be restored to OPERABLE status within 1 hour. In this Condition, neither the ECCS nor the Containment Spray System can perform its design function. Therefore, prompt action must be taken to restore the tank to OPERABLE status or to place the plant in a MODE in which the RWST is not required. The short time limit of 1 hour to restore the RWST to OPERABLE status is based on this condition simultaneously affecting redundant trains. #### C.1 and C.2 If the RWST cannot be returned to OPERABLE status within the associated Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full ## **ACTIONS** # C.1 and C.2 (continued) power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS ## SR 3.5.4.1 The RWST borated water temperature should be verified every 24 hours to be within the limits assumed in the accident analyses band. This Frequency is sufficient to identify a temperature change that would approach either limit and has been shown to be acceptable through operating experience. The SR is modified by a Note that eliminates the requirement to perform this Surveillance when ambient air temperatures are within the operating limits of the RWST. With ambient air temperatures within the band, the RWST temperature should not exceed the limits. # SR 3.5.4.2 The RWST water volume should be verified every 7 days to be above the required minimum level in order to ensure that a sufficient initial supply is available for injection and to support continued ECCS and Containment Spray System pump operation on recirculation. Since the RWST volume is normally stable and is protected by an alarm, a 7 day Frequency is appropriate and has been shown to be acceptable through operating experience. #### SR 3.5.4.3 The boron concentration of the RWST should be verified every 7 days to be within the required limits. This SR ensures that the reactor will remain subcritical following a LOCA. Further, it assures that the resulting sump pH will be maintained in an acceptable range so that boron precipitation in the core will not occur and the effect of chloride and caustic stress corrosion on mechanical systems and components will be minimized. Since the RWST volume is normally stable, a 7 day sampling Frequency to verify boron | B | Α | S | F | 2 | |---|---|---|---|---| | | | | | | # SURVEILLANCE REQUIREMENTS <u>SR 3.5.4.3</u> (continued) concentration is appropriate and has been shown to be acceptable through operating experience. REFERENCES 1. FSAR, Chapter [6] and Chapter [15]. # B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) B 3.5.5 Seal Injection Flow #### BASES #### **BACKGROUND** This LCO is applicable only to those units that utilize the centrifugal charging pumps for safety injection (SI). The function of the seal injection throttle valves during an accident is similar to the function of the ECCS throttle valves in that each restricts flow from the centrifugal charging pump header to the Reactor Coolant System (RCS). The restriction on reactor coolant pump (RCP) seal injection flow limits the amount of ECCS flow that would be diverted from the injection path following an accident. This limit is based on safety analysis assumptions that are required because RCP seal injection flow is not isolated during SI. # APPLICABLE SAFETY ANALYSES All ECCS subsystems are taken credit for in the large break loss of coolant accident (LOCA) at full power (Ref. 1). The LOCA analysis establishes the minimum flow for the ECCS pumps. The centrifugal charging pumps are also credited in the small break LOCA analysis. This analysis establishes the flow and discharge head at the design point for the centrifugal charging pumps. The steam generator tube rupture and main steam line break event analyses also credit the centrifugal charging pumps, but are not limiting in their design. Reference to these analyses is made in assessing changes to the Seal Injection System for evaluation of their effects in relation to the acceptance limits in these analyses. This LCO ensures that seal injection flow of ≤ [40] gpm, with centrifugal charging pump discharge header pressure ≥ [2480] psig and charging flow control valve full open, will be sufficient for RCP seal integrity but limited so that the ECCS trains will be capable of delivering sufficient water to match boiloff rates soon enough to minimize uncovering of the core following a large LOCA. It also ensures that the centrifugal charging pumps will deliver sufficient water for a small LOCA and sufficient boron to maintain the core subcritical. For smaller LOCAs, the charging pumps alone deliver sufficient fluid to overcome the loss and maintain RCS inventory. Seal APPLICABLE SAFETY ANALYSES (continued) injection flow satisfies Criterion 2 of the NRC Policy Statement. LC0 The intent of the LCO limit on seal injection flow is to make sure that flow through the RCP seal water injection line is low enough to ensure that sufficient centrifugal charging pump injection flow is directed to the RCS via the injection points (Ref. 2). The LCO is not strictly a flow limit, but rather a flow limit based on a flow line resistance. In order to establish the proper flow line resistance, a pressure and flow must be known. The flow line resistance is determined by assuming that the RCS pressure is at normal operating pressure and that the centrifugal charging pump discharge pressure is greater than or equal to the value specified in this LCO. The centrifugal charging pump discharge header pressure remains essentially constant through all the applicable MODES of this LCO. A reduction in RCS pressure would result in more flow being diverted to the RCP seal injection line than at normal operating pressure. The valve settings established at the prescribed centrifugal charging pump discharge header pressure result in a conservative valve position should RCS pressure decrease. The additional modifier of this LCO, the control valve (charging flow for four loop units and air operated seal injection for three loop units) being full open, is required since the valve is designed to fail open for the accident condition. With the discharge pressure and control valve position as specified by the LCO, a flow limit is established. It is this flow limit that is used in the accident analyses. The limit on seal injection flow, combined with the centrifugal charging pump discharge header pressure limit and an open wide condition of the charging flow control valve, must be met to render the ECCS OPERABLE. If these conditions are not met, the ECCS flow will not be as assumed in the accident analyses. **APPLICABILITY** In MODES I, 2, and 3, the seal injection flow limit is dictated by ECCS flow requirements, which are specified for # APPLICABILITY (continued) MODES 1, 2, 3, and 4. The seal injection flow limit is not applicable for MODE 4 and lower, however, because high seal injection flow is less critical as a result of the lower initial RCS pressure and decay heat removal requirements in these MODES. Therefore, RCP seal injection flow must be limited in MODES 1, 2, and 3 to ensure adequate ECCS performance. #### **ACTIONS** #### A.1 With the seal injection flow exceeding its limit, the amount of charging flow available to the RCS may be reduced. Under this Condition, action must be taken to restore the flow to below its limit. The operator has 4 hours from the time the flow is known to be above the limit to correctly position the manual valves and thus be in compliance with the accident analysis. The Completion Time minimizes the potential exposure of the plant to a LOCA with insufficient injection flow and provides a reasonable time to restore seal injection flow within limits. This time is conservative with respect to the Completion Times of other ECCS LCOs; it is based on operating experience and is sufficient for taking corrective actions by operations personnel. # B.1 and B.2 When the Required Actions cannot be completed within the required Completion Time, a controlled shutdown must be initiated. The Completion Time of 6 hours for reaching MODE 3 from MODE 1 is a reasonable time for a controlled shutdown, based on operating experience and normal cooldown rates, and does not challenge plant safety systems or operators. Continuing the plant shutdown begun in Required Action B.1, an additional 6 hours is a reasonable time, based on operating experience and normal cooldown rates, to reach MODE 4, where this LCO is no longer applicable. # BASES (continued) # SURVEILLANCE REQUIREMENTS # SR 3.5.5.1 Verification every 31 days that the manual seal injection throttle valves are adjusted to give a flow within the limit ensures that proper manual seal injection throttle valve position, and hence, proper seal injection
flow, is maintained. The Frequency of 31 days is based on engineering judgment and is consistent with other ECCS valve Surveillance Frequencies. The Frequency has proven to be acceptable through operating experience. As noted, the Surveillance is not required to be performed until 4 hours after the RCS pressure has stabilized within a ± 20 psig range of normal operating pressure. The RCS pressure requirement is specified since this configuration will produce the required pressure conditions necessary to assure that the manual valves are set correctly. The exception is limited to 4 hours to ensure that the Surveillance is timely. #### REFERENCES - 1. FSAR, Chapter [6] and Chapter [15]. - 2. 10 CFR 50.46. # B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) B 3.5.6 Boron Injection Tank (BIT) #### BASES #### **BACKGROUND** The BIT is part of the Boron Injection System, which is the primary means of quickly introducing negative reactivity into the Reactor Coolant System (RCS) on a safety injection (SI) signal. The main flow path through the Boron Injection System is from the discharge of the centrifugal charging pumps through lines equipped with a flow element and two valves in parallel that open on an SI signal. The valves can be operated from the main control board. The valves and flow elements have main control board indications. Downstream of these valves, the flow enters the BIT (Ref. 1). The BIT is a stainless steel tank containing concentrated boric acid. Two trains of strip heaters are mounted on the tank to keep the temperature of the boric acid solution above the precipitation point. The strip heaters are controlled by temperature elements located near the bottom of the BIT. The temperature elements also activate High and Low alarms on the main control board. In addition to the strip heaters on the BIT, there is a recirculation system with a heat tracing system, including the piping section between the motor operated isolation valves, which further ensures that the boric acid stays in solution. The BIT is also equipped with a High Pressure alarm on the main control board. The entire contents of the BIT are injected when required; thus, the contained and deliverable volumes are the same. During normal operation, one of the two BIT recirculation pumps takes suction from the boron injection surge tank (BIST) and discharges to the BIT. The solution then returns to the BIST. Normally, one pump is running and one is shut off. On receipt of an SI signal, the running pump shuts off and the air operated valves close. Flow to the BIT is then supplied from the centrifugal charging pumps. The solution of the BIT is injected into the RCS through the RCS cold legs. # APPLICABLE SAFETY ANALYSES During a main steam line break (MSLB) or loss of coolant accident (LOCA), the BIT provides an immediate source of concentrated boric acid that quickly introduces negative reactivity into the RCS. The contents of the BIT are not credited for core cooling or immediate boration in the LOCA analysis, but for post LOCA recovery. The BIT maximum boron concentration of [22,500] ppm is used to determine the minimum time for hot leg recirculation switchover. The minimum boron concentration of [20,000] ppm is used to determine the minimum mixed mean sump boron concentration for post LOCA shutdown requirements. For the MSLB analysis, the BIT is the primary mechanism for injecting boron into the core to counteract any positive increases in reactivity caused by an RCS cooldown. The analysis uses the minimum boron concentration of the BIT, which also affects both the departure from nucleate boiling and containment design analyses. Reference to the LOCA and MSLB analyses is used to assess changes to the BIT to evaluate their effect on the acceptance limits contained in these analyses. The minimum temperature limit of [145]°F for the BIT ensures that the solution does not reach the boric acid precipitation point. The temperature of the solution is monitored and alarmed on the main control board. The BIT boron concentration limits are established to ensure that the core remains subcritical during post LOCA recovery. The BIT will counteract any positive increases in reactivity caused by an RCS cooldown. The BIT minimum water volume limit of [1100] gallons is used to ensure that the appropriate quantity of highly borated water with sufficient negative reactivity is injected into the RCS to shut down the core following an MSLB, to determine the hot leg recirculation switchover time, and to safeguard against boron precipitation. The BIT satisfies Criteria 2 and 3 of the NRC Policy Statement. # BASES (continued) #### LC0 This LCO establishes the minimum requirements for contained volume, boron concentration, and temperature of the BIT inventory (Ref. 2). This ensures that an adequate supply of borated water is available in the event of a LOCA or MSLB to maintain the reactor subcritical following these accidents. To be considered OPERABLE, the limits established in the SR for water volume, boron concentration, and temperature must be met. If the equipment used to verify BIT parameters (temperature, volume, and boron concentration) is determined to be inoperable, then the BIT is also inoperable. ## **APPLICABILITY** In MODES 1, 2, and 3, the BIT OPERABILITY requirements are consistent with those of LCO 3.5.2, "ECCS—Operating." In MODES 4, 5, and 6, the respective accidents are less severe, so the BIT is not required in these lower MODES. #### **ACTIONS** #### A.1 If the required volume is not present in the BIT, both the hot leg recirculation switchover time analysis and the boron precipitation analysis would not be met. Under these conditions, prompt action must be taken to restore the volume to above its required limit to declare the tank OPERABLE, or the plant must be placed in a MODE in which the BIT is not required. The BIT boron concentration is considered in the hot leg recirculation switchover time analysis, the boron precipitation analysis, and the reactivity analysis for an MSLB. If the concentration were not within the required limits, these analyses could not be relied on. Under these conditions, prompt action must be taken to restore the concentration to within its required limits, or the plant must be placed in a MODE in which the BIT is not required. The BIT temperature limit is established to ensure that the solution does not reach the boric acid crystallization point. If the temperature of the solution drops below the #### ACTIONS # A.1 (continued) minimum, prompt action must be taken to raise the temperature and declare the tank OPERABLE, or the plant must be placed in a MODE in which the BIT is not required. The 1 hour Completion Time to restore the BIT to OPERABLE status is consistent with other Completion Times established for loss of a safety function and ensures that the plant will not operate for long periods outside of the safety analyses. # B.1, B.2, and B.3 When Required Action A.1 cannot be completed within the required Completion Time, a controlled shutdown should be initiated. Six hours is a reasonable time, based on operating experience, to reach MODE 3 from full power conditions and to be borated to the required SDM without challenging plant systems or operators. Borating to the required SDM assures that the plant is in a safe condition, without need for any additional boration. After determining that the BIT is inoperable and the Required Actions of B.1 and B.2 have been completed, the tank must be returned to OPERABLE status within 7 days. These actions ensure that the plant will not be operated with an inoperable BIT for a lengthy period of time. It should be noted, however, that changes to applicable MODES cannot be made until the BIT is restored to OPERABLE status pursuant to the provisions of LCO 3.0.4. #### C.1 Even though the RCS has been borated to a safe and stable condition as a result of Required Action B.2, either the BIT must be restored to OPERABLE status (Required Action C.1) or the plant must be placed in a condition in which the BIT is not required (MODE 4). The 12 hour Completion Time to reach MODE 4 is reasonable, based on operating experience and normal cooldown rates, and does not challenge plant safety systems or operators. # SURVEILLANCE REQUIREMENTS # SR 3.5.6.1 Verification every 24 hours that the BIT water temperature is at or above the specified minimum temperature is frequent enough to identify a temperature change that would approach the acceptable limit. The solution temperature is also monitored by an alarm that provides further assurance of protection against low temperature. This Frequency has been shown to be acceptable through operating experience. #### SR 3.5.6.2 Verification every 7 days that the BIT contained volume is above the required limit is frequent enough to assure that this volume will be available for quick injection into the RCS. If the volume is too low, the BIT would not provide enough borated water to ensure subcriticality during recirculation or to shut down the core following an MSLB. Since the BIT volume is normally stable, a 7 day Frequency is appropriate and has been shown to be acceptable through operating experience. # SR 3.5.6.3 Verification every 7 days that the boron concentration of the BIT is within the required band ensures that the reactor remains subcritical following a LOCA; it limits return to power following an MSLB, and maintains the resulting sump pH in an acceptable range so that boron precipitation will not occur in the core. In addition, the effect of chloride and caustic stress corrosion on mechanical systems and components will be minimized. The BIT is in a recirculation loop that provides continuous circulation of the boric acid solution through the BIT and the boric acid tank (BAT). There are a number of points along the recirculation loop where local samples can be taken. The actual location used to take a sample of the solution is specified in
the plant Surveillance procedures. Sampling from the BAT to verify the concentration of the BIT is not recommended, since this sample may not be homogenous and the boron concentration of the two tanks may differ. | BASE | S | |------|---| |------|---| # SURVEILLANCE REQUIREMENTS The sample should be taken from the BIT or from a point in the flow path of the BIT recirculation loop. REFERENCES 1. FSAR, Chapter [6] and Chapter [15]. 2. 10 CFR 50.46. | | | | ٠ | | |--|--|---|---|---| • | | | | | | | | · | | | | | | | | | | | | | # B 3.6 CONTAINMENT SYSTEMS B 3.6.1 Containment (Ice Condenser) #### **BASES** #### BACKGROUND The containment is a free standing steel pressure vessel surrounded by a reinforced concrete shield building. The containment vessel, including all its penetrations, is a low leakage steel shell designed to contain the radioactive material that may be released from the reactor core following a Design Basis Accident (DBA). Additionally, the containment and shield building provide shielding from the fission products that may be present in the containment atmosphere following accident conditions. The containment vessel is a vertical cylindrical steel pressure vessel with hemispherical dome and a concrete base mat with steel membrane. It is completely enclosed by a reinforced concrete shield building. An annular space exists between the walls and domes of the steel containment vessel and the concrete shield building to provide for the collection, mixing, holdup, and controlled release of containment out leakage. Ice condenser containments utilize an outer concrete building for shielding and an inner steel containment for leak tightness. Containment piping penetration assemblies provide for the passage of process, service, sampling, and instrumentation pipelines into the containment vessel while maintaining containment integrity. The shield building provides shielding and allows controlled release of the annulus atmosphere under accident conditions, as well as environmental missile protection for the containment vessel and Nuclear Steam Supply System. The inner steel containment and its penetrations establish the leakage limiting boundary of the containment. Maintaining the containment OPERABLE limits the leakage of fission product radioactivity from the containment to the environment. SR 3.6.1.1 leakage rate requirements comply with 10 CFR 50, Appendix J (Ref. 1), as modified by approved exemptions. The isolation devices for the penetrations in the containment boundary are a part of the containment leak tight barrier. To maintain this leak tight barrier: # BACKGROUND (continued) - a. All penetrations required to be closed during accident conditions are either: - 1. capable of being closed by an OPERABLE automatic containment isolation system, or - closed by manual valves, blind flanges, or de-activated automatic valves secured in their closed positions, except as provided in LCO 3.6.3, "Containment Isolation Valves"; - b. Each air lock is OPERABLE, except as provided in LCO 3.6.2, "Containment Air Locks"; - c. All equipment hatches are closed; and - d. The pressurized sealing mechanism associated with a penetration is operable, except as provided in LCO 3.6.[]. ## APPLICABLE SAFETY ANALYSES The safety design basis for the containment is that the containment must withstand the pressures and temperatures of the limiting DBA without exceeding the design leakage rates. The DBAs that result in a challenge to containment OPERABILITY from high pressures and temperatures are a loss of coolant accident (LOCA), a steam line break, and a rod ejection accident (REA) (Ref. 2). In addition, release of significant fission product radioactivity within containment can occur from a LOCA or REA. In the DBA analyses, it is assumed that the containment is OPERABLE such that, for the DBAs involving release of fission product radioactivity, release to the environment is controlled by the rate of containment leakage. The containment was designed with an allowable leakage rate of [0.1]% of containment air weight per day (Ref. 3). This leakage rate, used in the evaluation of offsite doses resulting from accidents, is defined in 10 CFR 50, Appendix J (Ref. 1), as L: the maximum allowable containment leakage rate at the calculated peak containment internal pressure (P,) resulting from the limiting DBA. The allowable leakage rate represented by $L_{\rm a}$ forms the basis for the acceptance criteria imposed on all containment leakage rate testing. La is assumed to be # APPLICABLE SAFETY ANALYSES (continued) [0.1]% per day in the safety analysis at $P_a = [14.4]$ psig (Ref. 3). Satisfactory leakage rate test results are a requirement for the establishment of containment OPERABILITY. The containment satisfies Criterion 3 of the NRC Policy Statement. #### LC0 Containment OPERABILITY is maintained by limiting leakage to $\leq 1.0~L_{\rm a},$ except prior to the first startup after performing a required 10 CFR 50, Appendix J, leakage test. At this time, the combined Type B and C leakage must be $< 0.6~L_{\rm a},$ and the overall Type A leakage must be $< 0.75~L_{\rm a}.$ Compliance with this LCO will ensure a containment configuration, including equipment hatches, that is structurally sound and that will limit leakage to those leakage rates assumed in the safety analysis. Individual leakage rates specified for the containment air lock (LCO 3.6.2) [, purge valves with resilient seals, and secondary bypass leakage (LCO 3.6.3)] are not specifically part of the acceptance criteria of 10 CFR 50, Appendix J. Therefore, leakage rates exceeding these individual limits only result in the containment being inoperable when the leakage results in exceeding the acceptance criteria of Appendix J. #### **APPLICABILITY** In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material into containment. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, containment is not required to be OPERABLE in MODE 5 to prevent leakage of radioactive material from containment. The requirements for containment during MODE 6 are addressed in LCO 3.9.4, "Containment Penetrations." #### **ACTIONS** ## <u>A.1</u> In the event containment is inoperable, containment must be restored to OPERABLE status within 1 hour. The 1 hour Completion Time provides a period of time to correct the problem commensurate with the importance of maintaining containment OPERABLE during MODES 1, 2, 3, and 4. This time period also ensures that the probability of an accident (requiring containment OPERABILITY) occurring during periods when containment is inoperable is minimal. ## B.1 and B.2 If containment cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS #### SR 3.6.1.1 Maintaining the containment OPERABLE requires compliance with the visual examinations and leakage rate test requirements of 10 CFR 50, Appendix J (Ref. 1), as modified by approved exemptions. Failure to meet air lock [, secondary containment bypass leakage path, and purge valve with resilient seall leakage limits specified in LCO 3.6.2 [and LCO 3.6.3] does not invalidate the acceptability of these overall leakage determinations unless their contribution to overall Type A, B, and C leakage causes that to exceed limits. As left leakage prior to the first startup after performing a required 10 CFR 50, Appendix J, leakage test is required to be < 0.6 L, for combined Type B and C leakage, and < 0.75 L, for overall Type A leakage. At all other times between required leakage rate tests, the acceptance criteria is based on an overall Type A leakage limit of $\leq 1.0 L_a$. At $\leq 1.0 L_a$ the offsite dose consequences are bounded by the assumptions of the safety analysis. SR Frequencies are as required by Appendix J, as # SURVEILLANCE REQUIREMENTS # <u>SR 3.6.1.1</u> (continued) modified by approved exemptions. Thus, SR 3.0.2 (which allows Frequency extensions) does not apply. These periodic testing requirements verify that the containment leakage rate does not exceed the leakage rate assumed in the safety analysis. # SR 3.6.1.2 For ungrouted, post tensioned tendons, this SR ensures that the structural integrity of the containment will be maintained in accordance with the provisions of the Containment Tendon Surveillance Program. Testing and Frequency are consistent with the recommendations of Regulatory Guide 1.35 (Ref. 4). ## **REFERENCES** - 1. 10 CFR 50, Appendix J. - 2. FSAR, Chapter [15]. - 3. FSAR, Section [6.2]. - 4. Regulatory Guide 1.35, Revision [1]. # B 3.6 CONTAINMENT SYSTEMS # B 3.6.1 Containment (Atmospheric) #### **BASES** #### **BACKGROUND** The containment consists of the concrete reactor building, its steel liner, and the penetrations through this structure. The structure is designed to contain radioactive material that may be released from the reactor core following a Design Basis Accident (DBA). Additionally, this structure provides shielding from the fission products that may be present in the containment atmosphere following accident conditions. The containment is a reinforced concrete structure with a cylindrical wall, a flat foundation mat, and a shallow dome roof. The inside surface of the containment is lined with a carbon steel liner to ensure a high degree of leak tightness during operating and accident conditions. For containments with ungrouted tendons, the cylinder wall is prestressed with
a post tensioning system in the vertical and horizontal directions, and the dome roof is prestressed utilizing a three way post tensioning system. The concrete reactor building is required for structural integrity of the containment under DBA conditions. The steel liner and its penetrations establish the leakage limiting boundary of the containment. Maintaining the containment OPERABLE limits the leakage of fission product radioactivity from the containment to the environment. SR 3.6.1.1 leakage rate requirements comply with 10 CFR 50, Appendix J (Ref. 1), as modified by approved exemptions. The isolation devices for the penetrations in the containment boundary are a part of the containment leak tight barrier. To maintain this leak tight barrier: - a. All penetrations required to be closed during accident conditions are either: - 1. capable of being closed by an OPERABLE automatic containment isolation system, or # BACKGROUND (continued) - closed by manual valves, blind flanges, or de-activated automatic valves secured in their closed positions, except as provided in LCO 3.6.3, "Containment Isolation Valves"; - b. Each air lock is OPERABLE, except as provided in LCO 3.6.2, "Containment Air Locks"; - c. All equipment hatches are closed; and - d. The pressurized sealing mechanism associated with a penetration is OPERABLE, except as provided in LCO 3.6.[]. ## APPLICABLE SAFETY ANALYSES The safety design basis for the containment is that the containment must withstand the pressures and temperatures of the limiting DBA without exceeding the design leakage rate. The DBAs that result in a challenge to containment OPERABILITY from high pressures and temperatures are a loss of coolant accident (LOCA), a steam line break, and a rod ejection accident (REA) (Ref. 2). In addition, release of significant fission product radioactivity within containment can occur from a LOCA or REA. In the DBA analyses, it is assumed that the containment is OPERABLE such that, for the DBAs involving release of fission product radioactivity, release to the environment is controlled by the rate of containment leakage. The containment was designed with an allowable leakage rate of [0.1]% of containment air weight per day (Ref. 3). This leakage rate, used to evaluate offsite doses resulting from accidents, is defined in 10 CFR 50, Appendix J (Ref. 1), as L_a: the maximum allowable containment leakage rate at the calculated peak containment internal pressure (P_a) resulting from the limiting DBA. The allowable leakage rate represented by L_a forms the basis for the acceptance criteria imposed on all containment leakage rate testing. Lais assumed to be [0.1]% per day in the safety analysis at P_a = [44.1] psig (Ref. 3). Satisfactory leakage rate test results are a requirement for the establishment of containment OPERABILITY. APPLICABLE SAFETY ANALYSES (continued) The containment satisfies Criterion 3 of the NRC Policy Statement. LC0 Containment OPERABILITY is maintained by limiting leakage to $\leq 1.0~L_a$, except prior to the first startup after performing a required 10 CFR 50, Appendix J, leakage test. At this time, the combined Type B and C leakage must be $< 0.6~L_a$, and the overall Type A leakage must be $< 0.75~L_a$. Compliance with this LCO will ensure a containment configuration, including equipment hatches, that is structurally sound and that will limit leakage to those leakage rates assumed in the safety analysis. Individual leakage rates specified for the containment air lock (LCO 3.6.2) [and purge valves with resilient seals (LCO 3.6.3)] are not specifically part of the acceptance criteria of 10 CFR 50, Appendix J. Therefore, leakage rates exceeding these individual limits only result in the containment being inoperable when the leakage results in exceeding the acceptance criteria of Appendix J. #### APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material into containment. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, containment is not required to be OPERABLE in MODE 5 to prevent leakage of radioactive material from containment. The requirements for containment during MODE 6 are addressed in LCO 3.9.4, "Containment Penetrations." ## ACTIONS #### A.1 In the event containment is inoperable, containment must be restored to OPERABLE status within 1 hour. The 1 hour Completion Time provides a period of time to correct the problem commensurate with the importance of maintaining containment during MODES 1, 2, 3, and 4. This time period #### **ACTIONS** # A.1 (continued) also ensures that the probability of an accident (requiring containment OPERABILITY) occurring during periods when containment is inoperable is minimal. #### **B.1** and **B.2** If containment cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS # SR 3.6.1.1 Maintaining the containment OPERABLE requires compliance with the visual examinations and leakage rate test requirements of 10 CFR 50, Appendix J (Ref. 1), as modified by approved exemptions. Failure to meet air lock [and purge valve with resilient seal] leakage limits specified in LCO 3.6.2 [and LCO 3.6.3] does not invalidate the acceptability of these overall leakage determinations unless their contribution to overall Type A, B, and C leakage causes that to exceed limits. As left leakage prior to the first startup after performing a required 10 CFR 50, Appendix J, leakage test is required to be < 0.6 L, for combined Type B and C leakage, and < 0.75 La for overall Type A leakage. At all other times between required leakage rate tests, the acceptance criteria is based on an overall Type A leakage limit of \leq 1.0 L_a . At \leq 1.0 L_a the offsite dose consequences are bounded by the assumptions of the safety analysis. SR Frequencies are as required by Appendix J, as modified by approved exemptions. Thus, SR 3.0.2 (which allows Frequency extensions) does not apply. These periodic testing requirements verify that the containment leakage rate does not exceed the leakage rate assumed in the safety analysis. # SURVEILLANCE REQUIREMENTS (continued) # SR 3.6.1.2 For ungrouted, post tensioned tendons, this SR ensures that the structural integrity of the containment will be maintained in accordance with the provisions of the Containment Tendon Surveillance Program. Testing and Frequency are consistent with the recommendations of Regulatory Guide 1.35 (Ref. 4). # **REFERENCES** - 1. 10 CFR 50, Appendix J. - 2. FSAR, Chapter [15]. - 3. FSAR, Section [6.2]. - 4. Regulatory Guide 1.35, Revision [1]. #### B 3.6 CONTAINMENT SYSTEMS # B 3.6.1 Containment (Subatmospheric) #### **BASES** #### **BACKGROUND** The containment consists of the concrete reactor building, its steel liner, and the penetrations through this structure. The structure is designed to contain radioactive material that may be released from the reactor core following a Design Basis Accident (DBA). Additionally, this structure provides shielding from the fission products that may be present in the containment atmosphere following accident conditions. The containment is a reinforced concrete structure with a cylindrical wall, a flat foundation mat, and a shallow dome roof. The inside surface of the containment is lined with a carbon steel liner to ensure a high degree of leak tightness during operating and accident conditions. For containments with ungrouted tendons, the cylinder wall is prestressed with a post tensioning system in the vertical and horizontal directions, and the dome roof is prestressed utilizing a three way post tensioning system. The concrete reactor building is required for structural integrity of the containment under DBA conditions. The steel liner and its penetrations establish the leakage limiting boundary of the containment. Maintaining the containment OPERABLE limits the leakage of fission product radioactivity from the containment to the environment. SR 3.6.1.1 leakage rate requirements comply with 10 CFR 50, Appendix J (Ref. 1), as modified by approved exemptions. The isolation devices for the penetrations in the containment boundary are a part of the containment leak tight barrier. To maintain this leak tight barrier: - a. All penetrations required to be closed during accident conditions are either: - 1. capable of being closed by an OPERABLE automatic containment isolation system, or # BACKGROUND (continued) - closed by manual valves, blind flanges, or de-activated automatic valves secured in their closed positions, except as provided in LCO 3.6.3, "Containment Isolation Valves"; - b. Each air lock is OPERABLE, except as provided in LCO 3.6.2, "Containment Air Locks"; - c. All equipment hatches are closed; and - d. The pressurized sealing mechanism associated with a penetration is OPERABLE, except as provided in LCO 3.6.[]. # APPLICABLE SAFETY ANALYSES The safety design basis for the containment is that the containment must withstand the pressures and temperatures of the limiting DBA without exceeding the design leakage rate. The DBAs that result in a challenge to containment OPERABILITY from high pressures and temperatures are a loss of coolant accident (LOCA), a steam line break, and a rod ejection accident (REA) (Ref. 2). In addition, release of significant fission product radioactivity within containment can occur from a LOCA or REA. In the DBA analyses, it is assumed that the containment is OPERABLE such that, for the DBAs involving release of
fission product radioactivity, release to the environment is controlled by the rate of containment leakage. The containment was designed with an allowable leakage rate of [0.1]% of containment air weight per day (Ref. 3). This leakage rate, used to evaluate offsite doses resulting from accidents, is defined in 10 CFR 50, Appendix J (Ref. 1), as La: the maximum allowable containment leakage rate at the calculated peak containment internal pressure (P_a) resulting from the limiting DBA. The allowable leakage rate represented by L_a forms the basis for the acceptance criteria imposed on all containment leakage rate testing. L is assumed to be [0.1]% per day in the safety analyses at $P_n = [40.4]$ psig (Ref. 3). Satisfactory leakage rate test results are a requirement for the establishment of containment OPERABILITY. #### **BASES** # APPLICABLE SAFETY ANALYSES (continued) The containment satisfies Criterion 3 of the NRC Policy Statement. ## **LCO** Containment OPERABILITY is maintained by limiting leakage to $\leq 1.0~L_a$, except prior to the first startup after performing a required 10 CFR 50, Appendix J, leakage test. At this time, the combined Type B and C leakage must be $< 0.6~L_a$, and the overall Type A leakage must be $< 0.75~L_a$. Compliance with this LCO will ensure a containment configuration, including equipment hatches, that is structurally sound and that will limit leakage to those leakage rates assumed in the safety analysis. Individual leakage rates specified for the containment air lock (LCO 3.6.2) [and purge valves with resilient seals (LCO 3.6.3)] are not specifically part of the acceptance criteria of 10 CFR 50, Appendix J. Therefore, leakage rates exceeding these individual limits only result in the containment being inoperable when the leakage results in exceeding the acceptance criteria of Appendix J. # **APPLICABILITY** In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material into containment. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, containment is not required to be OPERABLE in MODE 5 to prevent leakage of radioactive material from containment. The requirements for containment during MODE 6 are addressed in LCO 3.9.4, "Containment Penetrations." #### **ACTIONS** # <u>A.1</u> In the event containment is inoperable, containment must be restored to OPERABLE status within 1 hour. The 1 hour Completion Time provides a period of time to correct the problem commensurate with the importance of maintaining containment during MODES 1, 2, 3, and 4. This time period #### ACTIONS # <u>A.1</u> (continued) also ensures that the probability of an accident (requiring containment OPERABILITY) occurring during periods when containment is inoperable is minimal. # B.1 and B.2 If containment cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS ## SR 3.6.1.1 Maintaining the containment OPERABLE requires compliance with the visual examinations and leakage rate test requirements of 10 CFR 50, Appendix J (Ref. 1), as modified by approved exemptions. Failure to meet air lock [and purge valve with resilient seal] leakage limits specified in LCO 3.6.2 [and LCO 3.6.3] does not invalidate the acceptability of these overall leakage determinations unless their contribution to overall Type A, B, and C leakage causes that to exceed limits. As left leakage prior to the first startup after performing a required 10 CFR 50, Appendix J, leakage test is required to be < 0.6 L for combined Type B and C leakage, and < 0.75 L for overall Type A leakage. At all other times between required leakage rate tests, the acceptance criteria is based on an overall Type A leakage limit of $\leq 1.0 L_a$. At $\leq 1.0 L_a$ the offsite dose consequences are bounded by the assumptions of the safety analysis. SR Frequencies are as required by Appendix J, as modified by approved exemptions. Thus, SR 3.0.2 (which allows Frequency extensions) does not apply. These periodic testing requirements verify that the containment leakage rate does not exceed the leakage rate assumed in the safety analysis. # SURVEILLANCE REQUIREMENTS (continued) # SR 3.6.1.2 For ungrouted post tensioned tendons, this SR ensures that the structural integrity of the containment will be maintained in accordance with the provisions of the Containment Tendon Surveillance Program. Testing and Frequency are consistent with the recommendations of Regulatory Guide 1.35 (Ref. 4). ## REFERENCES - 1. 10 CFR 50, Appendix J. - 2. FSAR, Chapter [15]. - 3. FSAR, Section [6.2]. - 4. Regulatory Guide 1.35, Revision [1]. ## B 3.6 CONTAINMENT SYSTEMS B 3.6.1 Containment (Dual) BASES #### BACKGROUND The containment is a free standing steel pressure vessel surrounded by a reinforced concrete shield building. The containment vessel, including all its penetrations, is a low leakage steel shell designed to contain radioactive material that may be released from the reactor core following a Design Basis Accident (DBA). Additionally, the containment and shield building provide shielding from the fission products that may be present in the containment atmosphere following accident conditions. The containment vessel is a vertical cylindrical steel pressure vessel with a hemispherical dome and ellipsoidal bottom, completely enclosed by a reinforced concrete shield building. A 4 ft wide annular space exists between the walls and domes of the steel containment vessel and the concrete shield building to permit inservice inspection and collection of containment outleakage. Dual containments utilize an outer concrete building for shielding and an inner steel containment for leak tightness. Containment piping penetration assemblies provide for the passage of process, service, sampling and instrumentation pipelines into the containment vessel while maintaining containment OPERABILITY. The shield building provides shielding and allows controlled release of the annulus atmosphere under accident conditions, as well as environmental missile protection for the containment vessel and the Nuclear Steam Supply System. The inner steel containment and its penetrations establish the leakage limiting boundary of the containment. Maintaining the containment OPERABLE limits the leakage of fission product radioactivity from the containment to the environment. SR 3.6.1.1 leakage rate requirements comply with 10 CFR 50, Appendix J (Ref. 1), as modified by approved exemptions. The isolation devices for the penetrations in the containment boundary are a part of the containment leak tight barrier. To maintain this leak tight barrier: # BACKGROUND (continued) - a. All penetrations required to be closed during accident conditions are either: - 1. capable of being closed by an OPERABLE automatic containment isolation system, or - closed by manual valves, blind flanges, or de-activated automatic valves secured in their closed positions, except as provided in LCO 3.6.3, "Containment Isolation Valves"; - Each air lock is OPERABLE, except as provided in LCO 3.6.2, "Containment Air Locks"; - c. All equipment hatches are closed; and - d. The pressurized sealing mechanism associated with a penetration is OPERABLE, except as provided in LCO 3.6.[]. # APPLICABLE SAFETY ANALYSES The safety design basis for the containment is that the containment must withstand the pressures and temperatures of the limiting DBA without exceeding the design leakage rate. The DBAs that result in a challenge to containment OPERABILITY from high pressures and temperatures are a loss of coolant accident (LOCA), a steam line break, and a rod ejection accident (REA) (Ref. 2). In addition, release of significant fission product radioactivity within containment can occur from a LOCA or REA. In the DBA analyses, it is assumed that the containment is OPERABLE such that, for the DBAs involving release of fission product radioactivity, release to the environment is controlled by the rate of containment leakage. The containment was designed with an allowable leakage rate of [0.1]% of containment air weight per day (Ref. 3). This leakage rate, used in the evaluation of offsite doses resulting from accidents, is defined in 10 CFR 50, Appendix J (Ref. 1), as La: the maximum allowable containment leakage rate at the calculated peak containment internal pressure (Pa) resulting from the limiting DBA. The allowable leakage rate represented by $L_{\rm a}$ forms the basis for the acceptance criteria imposed on all containment leakage rate testing. La is assumed to be # APPLICABLE SAFETY ANALYSES (continued) [0.1]% per day in the safety analysis at $P_a = [46.3]$ psig (Ref. 3). Satisfactory leakage rate test results are a requirement for the establishment of containment OPERABILITY. The containment satisfies Criterion 3 of the NRC Policy Statement. #### LC0 Containment OPERABILITY is maintained by limiting leakage to $\leq 1.0~L_{\rm a},$ except prior to the first startup after performing a required 10 CFR 50, Appendix J, leakage test. At this time, the combined Type B and C leakage must be $< 0.6~L_{\rm a},$ and the overall Type A leakage must be $< 0.75~L_{\rm a}.$ Compliance with this LCO will ensure a containment configuration, including equipment hatches, that is structurally sound and that will limit leakage to those leakage rates assumed in the safety analysis. Individual leakage rates specified for the containment air lock (LCO 3.6.2) [, purge valves with resilient seals, and secondary bypass leakage (LCO
3.6.3)] are not specifically part of the acceptance criteria of 10 CFR 50, Appendix J. Therefore, leakage rates exceeding these individual limits only result in the containment being inoperable when the leakage results in exceeding the acceptance criteria of Appendix J. #### APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material into containment. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, containment is not required to be OPERABLE in MODE 5 to prevent leakage of radioactive material from containment. The requirements for containment during MODE 6 are addressed in LCO 3.9.4, "Containment Penetrations." # BASES (continued) #### **ACTIONS** ## <u>A.1</u> In the event containment is inoperable, containment must be restored to OPERABLE status within 1 hour. The 1 hour Completion Time provides a period of time to correct the problem commensurate with the importance of maintaining containment OPERABLE during MODES 1, 2, 3, and 4. This time period also ensures that the probability of an accident (requiring containment OPERABILITY) occurring during periods when containment is inoperable is minimal. ## **B.1** and **B.2** If containment cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS # SR 3.6.1.1 Maintaining the containment OPERABLE requires compliance with the visual examinations and leakage rate test requirements of 10 CFR 50, Appendix J (Ref. 1), as modified by approved exemptions as contained in the containment Leakage Rate Test Program. Failure to meet air lock [, secondary containment bypass leakage path and purge valve with resilient seal] leakage limits specified in LCO 3.6.2 [and LCO 3.6.3] does not invalidate the acceptability of these overall leakage determinations unless their contribution to overall Type A, B, and C leakage causes that to exceed limits. As left leakage prior to the first startup after performing a required 10 CFR 50, Appendix J, leakage test is required to be < 0.6 L, for combined Type B and C leakage, and < 0.75 L for overall Type A leakage. At all other times between required leakage rate tests, the acceptance criteria is based on an overall Type A leakage limit of $\leq 1.0 L_a$. At $\leq 1.0 L_a$ the offsite dose # SURVEILLANCE REQUIREMENTS # <u>SR 3.6.1.1</u> (continued) consequences are bounded by the assumptions of the safety analysis. SR Frequencies are as required by Appendix J, as modified by approved exemptions. Thus, SR 3.0.2 (which allows Frequency extensions) does not apply. These periodic testing requirements verify that the containment leakage rate does not exceed the leakage rate assumed in the safety analysis. # SR 3.6.1.2 For ungrouted, post tensioned tendons, this SR ensures that the structural integrity of the containment will be maintained in accordance with the provisions of the Containment Tendon Surveillance Program. Testing and Frequency are consistent with the recommendations of Regulatory Guide 1.35 (Ref. 4). #### REFERENCES - 1. 10 CFR 50, Appendix J. - 2. FSAR, Chapter [15]. - 3. FSAR, Section [6.2]. - 4. Regulatory Guide 1.35, Revision [1]. ## B 3.6 CONTAINMENT SYSTEMS B 3.6.2 Containment Air Locks (Atmospheric, Subatmospheric, Ice Condenser, and Dual) BASES ### BACKGROUND Containment air locks form part of the containment pressure boundary and provide a means for personnel access during all MODES of operation. Each air lock is nominally a right circular cylinder, 10 ft in diameter, with a door at each end. The doors are interlocked to prevent simultaneous opening. During periods when containment is not required to be OPERABLE, the door interlock mechanism may be disabled, allowing both doors of an air lock to remain open for extended periods when frequent containment entry is necessary. Each air lock door has been designed and tested to certify its ability to withstand a pressure in excess of the maximum expected pressure following a Design Basis Accident (DBA) in containment. As such, closure of a single door supports containment OPERABILITY. Each of the doors contains double gasketed seals and local leakage rate testing capability to ensure pressure integrity. To effect a leak tight seal, the air lock design uses pressure seated doors (i.e., an increase in containment internal pressure results in increased sealing force on each door). Each personnel air lock is provided with limit switches on both doors that provide control room indication of door position. Additionally, control room indication is provided to alert the operator whenever an air lock door interlock mechanism is defeated. The containment air locks form part of the containment pressure boundary. As such, air lock integrity and leak tightness is essential for maintaining the containment leakage rate within limit in the event of a DBA. Not maintaining air lock integrity or leak tightness may result in a leakage rate in excess of that assumed in the unit safety analyses. # APPLICABLE SAFETY ANALYSES The DBAs that result in a release of radioactive material within containment are a loss of coolant accident and a rod ejection accident (Ref. 2). In the analysis of each of these accidents, it is assumed that containment is OPERABLE such that release of fission products to the environment is controlled by the rate of containment leakage. The containment was designed with an allowable leakage rate of [0.1]% of containment air weight per day (Ref. 2). This leakage rate is defined in 10 CFR 50, Appendix J (Ref. 1), as $L_a = [0.1]$ % of containment air weight per day, the maximum allowable containment leakage rate at the calculated peak containment internal pressure $P_a = [14.4]$ psig following a DBA. This allowable leakage rate forms the basis for the acceptance criteria imposed on the SRs associated with the air locks. The containment air locks satisfy Criterion 3 of the NRC Policy Statement. LC0 Each containment air lock forms part of the containment pressure boundary. As part of containment, the air lock safety function is related to control of the containment leakage rate resulting from a DBA. Thus, each air lock's structural integrity and leak tightness are essential to the successful mitigation of such an event. Each air lock is required to be OPERABLE. For the air lock to be considered OPERABLE, the air lock interlock mechanism must be OPERABLE, the air lock must be in compliance with the Type B air lock leakage test, and both air lock doors must be OPERABLE. The interlock allows only one air lock door of an air lock to be opened at one time. This provision ensures that a gross breach of containment does not exist when containment is required to be OPERABLE. Closure of a single door in each air lock is sufficient to provide a leak tight barrier following postulated events. Nevertheless, both doors are kept closed when the air lock is not being used for normal entry into and exit from containment. APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment. In MODES 5 and 6, the ### **BASES** # APPLICABILITY (continued) probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, the containment air locks are not required in MODE 5 to prevent leakage of radioactive material from containment. The requirements for the containment air locks during MODE 6 are addressed in LCO 3.9.3, "Containment Penetrations." ### **ACTIONS** The ACTIONS are modified by a Note that allows entry and exit to perform repairs on the affected air lock component. If the outer door is inoperable, then it may be easily accessed for most repairs. It is preferred that the air lock be accessed from inside primary containment by entering through the other OPERABLE air lock. However, if this is not practicable, or if repairs on either door must be performed from the barrel side of the door then it is permissible to enter the air lock through the OPERABLE door, which means there is a short time during which the containment boundary is not intact (during access through the OPERABLE door). The ability to open the OPERABLE door, even if it means the containment boundary is temporarily not intact, is acceptable due to the low probability of an event that could pressurize the containment during the short time in which the OPERABLE door is expected to be open. After each entry and exit, the OPERABLE door must be immediately closed. If ALARA conditions permit, entry and exit should be via an OPERABLE air lock. A second Note has been added to provide clarification that, for this LCO, separate Condition entry is allowed for each air lock. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable air lock. Complying with the Required Actions may allow for continued operation, and a subsequent inoperable air lock is governed by subsequent Condition entry and application of associated Required Actions. In the event the air lock leakage results in exceeding the overall containment leakage rate, Note 3 directs entry into the applicable Conditions and Required Actions of LCO 3.6.1, "Containment." # ACTIONS (continued) # A.1, A.2, and A.3 With one air lock door in one or more containment air locks inoperable, the OPERABLE door must be verified closed (Required Action A.1) in each affected containment air lock. This ensures that a leak tight containment barrier is maintained by the use
of an OPERABLE air lock door. This action must be completed within 1 hour. This specified time period is consistent with the ACTIONS of LCO 3.6.1, which requires containment be restored to OPERABLE status within 1 hour. In addition, the affected air lock penetration must be isolated by locking closed the OPERABLE air lock door within the 24 hour Completion Time. The 24 hour Completion Time is reasonable for locking the OPERABLE air lock door, considering the OPERABLE door of the affected air lock is being maintained closed. Required Action A.3 verifies that an air lock with an inoperable door has been isolated by the use of a locked and closed OPERABLE air lock door. This ensures that an acceptable containment leakage boundary is maintained. Completion Time of once per 31 days is based on engineering judgment and is considered adequate in view of the low likelihood of a locked door being mispositioned and other administrative controls. Required Action A.3 is modified by a Note that applies to air lock doors located in high radiation areas and allows these doors to be verified locked closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted. Therefore, the probability of misalignment of the door, once it has been verified to be in the proper position, is small. The Required Actions have been modified by two Notes. Note 1 ensures that only the Required Actions and associated Completion Times of Condition C are required if both doors in the same air lock are inoperable. With both doors in the same air lock inoperable, an OPERABLE door is not available to be closed. Required Actions C.1 and C.2 are the appropriate remedial actions. The exception of Note 1 does not affect tracking the Completion Time from the initial entry into Condition A; only the requirement to comply with the Required Actions. Note 2 allows use of the air lock for ## A.1, A.2, and A.3 (continued) entry and exit for 7 days under administrative controls if both air locks have an inoperable door. This 7 day restriction begins when the second air lock is discovered inoperable. Containment entry may be required on a periodic basis to perform Technical Specifications (TS) Surveillances and Required Actions, as well as other activities on equipment inside containment that are required by TS or activities on equipment that support TS-required equipment. This Note is not intended to preclude performing other activities (i.e., non-TS-required activities) if the containment is entered, using the inoperable air lock, to perform an allowed activity listed above. This allowance is acceptable due to the low probability of an event that could pressurize the containment during the short time that the OPERABLE door is expected to be open. ### B.1, B.2, and B.3 With an air lock interlock mechanism inoperable in one or more air locks, the Required Actions and associated Completion Times are consistent with those specified in Condition A. The Required Actions have been modified by two Notes. Note 1 ensures that only the Required Actions and associated Completion Times of Condition C are required if both doors in the same air lock are inoperable. With both doors in the same air lock inoperable, an OPERABLE door is not available to be closed. Required Actions C.1 and C.2 are the appropriate remedial actions. Note 2 allows entry into and exit from containment under the control of a dedicated individual stationed at the air lock to ensure that only one door is opened at a time (i.e., the individual performs the function of the interlock). Required Action B.3 is modified by a Note that applies to air lock doors located in high radiation areas and allows these doors to be verified locked closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted. Therefore, the probability of misalignment of the door, once it has been verified to be in the proper position, is small. # ACTIONS (continued) ## C.1, C.2, and C.3 With one or more air locks inoperable for reasons other than those described in Condition A or B, Required Action C.1 requires action to be initiated immediately to evaluate previous combined leakage rates using current air lock test results. An evaluation is acceptable, since it is overly conservative to immediately declare the containment inoperable if both doors in an air lock have failed a seal test or if the overall air lock leakage is not within limits. In many instances (e.g., only one seal per door has failed), containment remains OPERABLE, yet only I hour (per LCO 3.6.1) would be provided to restore the air lock door to OPERABLE status prior to requiring a plant shutdown. In addition, even with both doors failing the seal test, the overall containment leakage rate can still be within limits. Required Action C.2 requires that one door in the affected containment air lock must be verified to be closed within the 1 hour Completion Time. This specified time period is consistent with the ACTIONS of LCO 3.6.1, which requires that containment be restored to OPERABLE status within 1 hour. Additionally, the affected air lock(s) must be restored to OPERABLE status within the 24 hour Completion Time. The specified time period is considered reasonable for restoring an inoperable air lock to OPERABLE status, assuming that at least one door is maintained closed in each affected air lock. ### D.1 and D.2 If the inoperable containment air lock cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS # SR 3.6.2.1 Maintaining containment air locks OPERABLE requires compliance with the leakage rate test requirements of 10 CFR 50, Appendix J (Ref. 1), as modified by approved exemptions. This SR reflects the leakage rate testing requirements with regard to air lock leakage (Type B leakage tests). The acceptance criteria were established during initial air lock and containment OPERABILITY testing. The periodic testing requirements verify that the air lock leakage does not exceed the allowed fraction of the overall containment leakage rate. The Frequency is required by Appendix J (Ref. 1), as modified by approved exemptions. Thus, SR 3.0.2 (which allows Frequency extensions) does not apply. The SR has been modified by two Notes. Note 1 states that an inoperable air lock door does not invalidate the previous successful performance of the overall air lock leakage test. This is considered reasonable since either air lock door is capable of providing a fission product barrier in the event of a DBA. Note 2 has been added to this SR requiring the results to be evaluated against the acceptance criteria of SR 3.6.1.1. This ensures that air lock leakage is properly accounted for in determining the overall containment leakage rate. ### SR 3.6.2.2 The air lock interlock is designed to prevent simultaneous opening of both doors in a single air lock. Since both the inner and outer doors of an air lock are designed to withstand the maximum expected post accident containment pressure, closure of either door will support containment OPERABILITY. Thus, the door interlock feature supports containment OPERABILITY while the air lock is being used for personnel transit in and out of the containment. Periodic testing of this interlock demonstrates that the interlock will function as designed and that simultaneous opening of the inner and outer doors will not inadvertently occur. Due to the purely mechanical nature of this interlock, and given that the interlock mechanism is only challenged when the containment air lock door is opened, this test is only required to be performed upon entering or exiting a containment air lock but is not required more frequently ## BASES # SURVEILLANCE REQUIREMENTS <u>SR 3.6.2.2</u> (continued) than every 184 days. The 184 day Frequency is based on engineering judgment and is considered adequate in view of other indications of door and interlock mechanism status available to operations personnel. # REFERENCES - 1. 10 CFR 50, Appendix J. - 2. FSAR, Section [6.2]. ### B 3.6 CONTAINMENT SYSTEMS B 3.6.3 Containment Isolation Valves (Atmospheric, Subatmospheric, Ice Condenser, and Dual) **BASES** ### BACKGROUND The containment isolation valves form part of the containment pressure boundary and provide a means for fluid penetrations not serving accident consequence limiting systems to be provided with two isolation barriers that are closed on a containment isolation signal. These isolation devices are either passive or active (automatic). Manual valves, de-activated automatic valves secured in their closed position (including check valves with flow through the valve secured), blind flanges, and closed systems are considered passive devices. Check valves, or other automatic valves designed to close without operator action following an accident, are considered active devices. Two barriers in series are provided for each penetration so that no single credible failure or malfunction of an active component can result in a loss of isolation or leakage that exceeds limits assumed in the safety analyses. One of these barriers may be a closed system. These barriers (typically containment isolation valves) make up the Containment Isolation System. Automatic isolation signals are produced during accident conditions. Containment Phase "A" isolation occurs upon receipt of a safety injection signal. The Phase "A" isolation signal isolates nonessential process
lines in order to minimize leakage of fission product radioactivity. Containment Phase "B" isolation occurs upon receipt of a containment pressure High-High signal and isolates the remaining process lines, except systems required for accident mitigation. In addition to the isolation signals listed above, the purge and exhaust valves receive an isolation signal on a containment high radiation condition. As a result, the containment isolation valves (and blind flanges) help ensure that the containment atmosphere will be isolated from the environment in the event of a release of fission product radioactivity to the containment atmosphere as a result of a Design Basis Accident (DBA). The OPERABILITY requirements for containment isolation valves help ensure that containment is isolated within the # BACKGROUND (continued) time limits assumed in the safety analyses. Therefore, the OPERABILITY requirements provide assurance that the containment function assumed in the safety analyses will be maintained. # Shutdown Purge System ([42] inch purge valves) The Shutdown Purge System operates to supply outside air into the containment for ventilation and cooling or heating and may also be used to reduce the concentration of noble gases within containment prior to and during personnel access. The supply and exhaust lines each contain two isolation valves. Because of their large size, the [42] inch purge valves in some units are not qualified for automatic closure from their open position under DBA conditions. Therefore, the [42] inch purge valves are normally maintained closed in MODES 1, 2, 3, and 4 to ensure the containment boundary is maintained. # Minipurge System ([8] inch purge valves) The Minipurge System operates to: - Reduce the concentration of noble gases within containment prior to and during personnel access, and - Equalize internal and external pressures. Since the valves used in the Minipurge System are designed to meet the requirements for automatic containment isolation valves, these valves may be opened as needed in MODES 1, 2, 3, and 4. # APPLICABLE SAFETY ANALYSES The containment isolation valve LCO was derived from the assumptions related to minimizing the loss of reactor coolant inventory and establishing the containment boundary during major accidents. As part of the containment boundary, containment isolation valve OPERABILITY supports leak tightness of the containment. Therefore, the safety analyses of any event requiring isolation of containment is applicable to this LCO. APPLICABLE SAFETY ANALYSES (continued) The DBAs that result in a release of radioactive material within containment are a loss of coolant accident (LOCA) and a rod ejection accident (Ref. 1). In the analyses for each of these accidents, it is assumed that containment isolation valves are either closed or function to close within the required isolation time following event initiation. This ensures that potential paths to the environment through containment isolation valves (including containment purge valves) are minimized. The safety analyses assume that the [42] inch purge valves are closed at event initiation. The DBA analysis assumes that, within 60 seconds after the accident, isolation of the containment is complete and leakage terminated except for the design leakage rate, La. The containment isolation total response time of 60 seconds includes signal delay, diesel generator startup (for loss of offsite power), and containment isolation valve stroke times. [The single failure criterion required to be imposed in the conduct of plant safety analyses was considered in the original design of the containment purge valves. Two valves in series on each purge line provide assurance that both the supply and exhaust lines could be isolated even if a single failure occurred. The inboard and outboard isolation valves on each line are provided with diverse power sources, motor operated and pneumatically operated spring closed, respectively. This arrangement was designed to preclude common mode failures from disabling both valves on a purge line.] [The purge valves may be unable to close in the environment following a LOCA. Therefore, each of the purge valves is required to remain sealed closed during MODES 1, 2, 3, and 4. In this case, the single failure criterion remains applicable to the containment purge valves due to failure in the control circuit associated with each valve. Again, the purge system valve design precludes a single failure from compromising the containment boundary as long as the system is operated in accordance with the subject LCO.] The containment isolation valves satisfy Criterion 3 of the NRC Policy Statement. LC₀ Containment isolation valves form a part of the containment boundary. The containment isolation valves' safety function is related to minimizing the loss of reactor coolant inventory and establishing the containment boundary during a DBA. The automatic power operated isolation valves are required to have isolation times within limits and to actuate on an automatic isolation signal. The [42] inch purge valves must be maintained sealed closed [or have blocks installed to prevent full opening]. [Blocked purge valves also actuate on an automatic signal.] The valves covered by this LCO are listed along with their associated stroke times in the FSAR (Ref. 2). The normally closed isolation valves are considered OPERABLE when manual valves are closed, automatic valves are de-activated and secured in their closed position, blind flanges are in place, and closed systems are intact. These passive isolation valves/devices are those listed in Reference 1. Purge valves with resilient seals [and secondary containment bypass valves] must meet additional leakage rate requirements. The other containment isolation valve leakage rates are addressed by LCO 3.6.1, "Containment," as Type C testing. This LCO provides assurance that the containment isolation valves and purge valves will perform their designed safety functions to minimize the loss of reactor coolant inventory and establish the containment boundary during accidents. ### APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, the containment isolation valves are not required to be OPERABLE in MODE 5. The requirements for containment isolation valves during MODE 6 are addressed in LCO 3.9.4, "Containment Penetrations." The ACTIONS are modified by a Note allowing penetration flow paths, except for [42] inch purge valve penetration flow paths, to be unisolated intermittently under administrative controls. These administrative controls consist of stationing a dedicated operator at the valve controls, who is in continuous communication with the control room. In this way, the penetration can be rapidly isolated when a need for containment isolation is indicated. Due to the size of the containment purge line penetration and the fact that those penetrations exhaust directly from the containment atmosphere to the environment, the penetration flow path containing these valves may not be opened under administrative controls. A single purge valve in a penetration flow path may be opened to effect repairs to an inoperable valve, as allowed by SR 3.6.3.1. A second Note has been added to provide clarification that, for this LCO, separate Condition entry is allowed for each penetration flow path. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable containment isolation valve. Complying with the Required Actions may allow for continued operation, and subsequent inoperable containment isolation valves are governed by subsequent Condition entry and application of associated Required Actions. The ACTIONS are further modified by a third Note, which ensures appropriate remedial actions are taken, if necessary, if the affected systems are rendered inoperable by an inoperable containment isolation valve. In the event the air lock leakage results in exceeding the overall containment leakage rate, Note 4 directs entry into the applicable Conditions and Required Actions of LCO 3.6.1. ### A.1 and A.2 In the event one containment isolation valve in one or more penetration flow paths is inoperable [except for purge valve or shield building bypass leakage not within limit], the affected penetration flow path must be isolated. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single active # A.1 and A.2 (continued) failure. Isolation barriers that meet this criterion are a closed and de-activated automatic containment isolation valve, a closed manual valve, a blind flange, and a check valve with flow through the valve secured. For a penetration flow path isolated in accordance with Required Action A.1, the device used to isolate the penetration should be the closest available one to containment. Required Action A.1 must be completed within 4 hours. The 4 hour Completion Time is reasonable, considering the time required to isolate the penetration and the relative importance of supporting containment OPERABILITY during MODES 1, 2, 3, and 4. For affected penetration flow paths that cannot be restored to OPERABLE status within the 4 hour Completion Time and that have been isolated in accordance with Required Action A.1, the affected penetration flow paths must be verified to be isolated on a periodic basis. This is necessary to ensure that containment penetrations required to be isolated following an accident and no longer capable of being automatically isolated will be in the isolation position should an event occur. This Required Action does not require any testing or device manipulation. Rather, it involves verification, through a system walkdown, that
those isolation devices outside containment and capable of being mispositioned are in the correct position. The Completion Time of "once per 31 days for isolation devices outside containment" is appropriate considering the fact that the devices are operated under administrative controls and the probability of their misalignment is low. For the isolation devices inside containment, the time period specified as "prior to entering MODE 4 from MODE 5 if not performed within the previous 92 days" is based on engineering judgment and is considered reasonable in view of the inaccessibility of the isolation devices and other administrative controls that will ensure that isolation device misalignment is an unlikely possibility. Condition A has been modified by a Note indicating that this Condition is only applicable to those penetration flow paths with two containment isolation valves. For penetration flow paths with only one containment isolation valve and a closed system, Condition C provides the appropriate actions. ## A.1 and A.2 (continued) Required Action A.2 is modified by a Note that applies to isolation devices located in high radiation areas and allows these devices to be verified closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted. Therefore, the probability of misalignment of these devices once they have been verified to be in the proper position, is small. # <u>B.1</u> With two containment isolation valves in one or more penetration flow paths inoperable, the affected penetration flow path must be isolated within 1 hour. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a closed and de-activated automatic valve, a closed manual valve, and a blind flange. The 1 hour Completion Time is consistent with the ACTIONS of LCO 3.6.1. In the event the affected penetration is isolated in accordance with Required Action B.1, the affected penetration must be verified to be isolated on a periodic basis per Required Action A.2, which remains in effect. This periodic verification is necessary to assure leak tightness of containment and that penetrations requiring isolation following an accident are isolated. The Completion Time of once per 31 days for verifying each affected penetration flow path is isolated is appropriate considering the fact that the valves are operated under administrative control and the probability of their misalignment is low. Condition B is modified by a Note indicating this Condition is only applicable to penetration flow paths with two containment isolation valves. Condition A of this LCO addresses the condition of one containment isolation valve inoperable in this type of penetration flow path. # ACTIONS (continued) # <u>C.1 and C.2</u> With one or more penetration flow paths with one containment isolation valve inoperable, the inoperable valve flow path must be restored to OPERABLE status or the affected penetration flow path must be isolated. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a closed and de-activated automatic valve, a closed manual valve, and a blind flange. A check valve may not be used to isolate the affected penetration flow path. Required Action C.1 must be completed within the [4] hour Completion Time. The specified time period is reasonable considering the relative stability of the closed system (hence, reliability) to act as a penetration isolation boundary and the relative importance of maintaining containment integrity during MODES 1, 2, 3, and 4. In the event the affected penetration flow path is isolated in accordance with Required Action C.1, the affected penetration flow path must be verified to be isolated on a periodic basis. This periodic verification is necessary to assure leak tightness of containment and that containment penetrations requiring isolation following an accident are isolated. The Completion Time of once per 31 days for verifying that each affected penetration flow path is isolated is appropriate because the valves are operated under administrative controls and the probability of their misalignment is low. Condition C is modified by a Note indicating that this Condition is only applicable to those penetration flow paths with only one containment isolation valve and a closed system. This Note is necessary since this Condition is written to specifically address those penetration flow paths in a closed system. Required Action C.2 is modified by a Note that applies to valves and blind flanges located in high radiation areas and allows these devices to be verified closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted. Therefore, the probability of misalignment of these valves, once they have been verified to be in the proper position, is small. # ACTIONS (continued) ### D.1 With the shield building bypass leakage rate not within limit, the assumptions of the safety analyses are not met. Therefore, the leakage must be restored to within limit within 4 hours. Restoration can be accomplished by isolating the penetration(s) that caused the limit to be exceeded by use of one closed and de-activated automatic valve, closed manual valve, or blind flange. When a penetration is isolated the leakage rate for the isolated penetration is assumed to be the actual pathway leakage through the isolation device. If two isolation devices are used to isolate the penetration, the leakage rate is assumed to be the lesser actual pathway leakage of the two devices. The 4 hour Completion Time is reasonable considering the time required to restore the leakage by isolating the penetration(s) and the relative importance of secondary containment bypass leakage to the overall containment function. ## E.1, E.2, and E.3 In the event one or more containment purge valves in one or more penetration flow paths are not within the purge valve leakage limits, purge valve leakage must be restored to within limits, or the affected penetration flow path must be isolated. The method of isolation must be by the use of at least one isolation barrier that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a [closed and de-activated automatic valve, closed manual valve, or blind flange]. A purge valve with resilient seals utilized to satisfy Required Action E.1 must have been demonstrated to meet the leakage requirements of SR 3.6.3.7. The specified Completion Time is reasonable, considering that one containment purge valve remains closed so that a gross breach of containment does not exist. In accordance with Required Action E.2, this penetration flow path must be verified to be isolated on a periodic basis. The periodic verification is necessary to ensure that containment penetrations required to be isolated following an accident, which are no longer capable of being # E.1, E.2, and E.3 (continued) automatically isolated, will be in the isolation position should an event occur. This Required Action does not require any testing or valve manipulation. Rather, it involves verification, through a system walkdown, that those isolation devices outside containment capable of being mispositioned are in the correct position. For the isolation devices inside containment, the time period specified as "prior to entering MODE 4 from MODE 5 if not performed within the previous 92 days" is based on engineering judgment and is considered reasonable in view of the inaccessibility of the isolation devices and other administrative controls that will ensure that isolation device misalignment is an unlikely possibility. For the containment purge valve with resilient seal that is isolated in accordance with Required Action E.1, SR 3.6.3.7 must be performed at least once every [92] days. This assures that degradation of the resilient seal is detected and confirms that the leakage rate of the containment purge valve does not increase during the time the penetration is isolated. The normal Frequency for SR 3.6.3.7, 184 days, is based on an NRC initiative, Generic Issue B-20 (Ref. 3). Since more reliance is placed on a single valve while in this Condition, it is prudent to perform the SR more often. Therefore, a Frequency of once per [92] days was chosen and has been shown to be acceptable based on operating experience. ### F.1 and F.2 If the Required Actions and associated Completion Times are not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS # SR 3.6.3.1 Each [42] inch containment purge valve is required to be verified sealed closed at 31 day intervals. This Surveillance is designed to ensure that a gross breach of containment is not caused by an inadvertent or spurious opening of a containment purge valve. Detailed analysis of the purge valves failed to conclusively demonstrate their ability to close during a LOCA in time to limit offsite doses. Therefore, these valves are required to be in the sealed closed position during MODES 1, 2, 3, and 4. A containment purge valve that is sealed closed must have motive power to the valve operator removed. This can be accomplished by de-energizing the source of electric power or by removing the air supply to the valve operator. In this application, the term "sealed"
has no connotation of leak tightness. The Frequency is a result of an NRC initiative, Generic Issue B-24 (Ref. 4), related to containment purge valve use during plant operations. event purge valve leakage requires entry into Condition E. the Surveillance permits opening one purge valve in a penetration flow path to perform repairs. # SR 3.6.3.2 This SR ensures that the minipurge valves are closed as required or, if open, open for an allowable reason. If a purge valve is open in violation of this SR, the valve is considered inoperable. If the inoperable valve is not otherwise known to have excessive leakage when closed, it is not considered to have leakage outside of limits. The SR is not required to be met when the minipurge valves are open for the reasons stated. The valves may be opened for pressure control, ALARA or air quality considerations for personnel entry, or for Surveillances that require the valves to be open. The minipurge valves are capable of closing in the environment following a LOCA. Therefore, these valves are allowed to be open for limited periods of time. The 31 day Frequency is consistent with other containment isolation valve requirements discussed in SR 3.6.3.3. # SURVEILLANCE REQUIREMENTS (continued) ## SR 3.6.3.3 This SR requires verification that each containment isolation manual valve and blind flange located outside containment and required to be closed during accident conditions is closed. The SR helps to ensure that post accident leakage of radioactive fluids or gases outside of the containment boundary is within design limits. This SR does not require any testing or valve manipulation. Rather, it involves verification, through a system walkdown, that those containment isolation valves outside containment and capable of being mispositioned are in the correct position. Since verification of valve position for containment isolation valves outside containment is relatively easy, the 31 day Frequency is based on engineering judgment and was chosen to provide added assurance of the correct positions. The SR specifies that containment isolation valves that are open under administrative controls are not required to meet the SR during the time the valves are open. The Note applies to valves and blind flanges located in high radiation areas and allows these devices to be verified closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted during MODES 1, 2, 3 and 4 for ALARA reasons. Therefore, the probability of misalignment of these containment isolation valves, once they have been verified to be in the proper position, is small. ### SR 3.6.3.4 This SR requires verification that each containment isolation manual valve and blind flange located inside containment and required to be closed during accident conditions is closed. The SR helps to ensure that post accident leakage of radioactive fluids or gases outside of the containment boundary is within design limits. For containment isolation valves inside containment, the Frequency of "prior to entering MODE 4 from MODE 5 if not performed within the previous 92 days" is appropriate since these containment isolation valves are operated under # SURVEILLANCE REQUIREMENTS # <u>SR 3.6.3.4</u> (continued) administrative controls and the probability of their misalignment is low. The SR specifies that containment isolation valves that are open under administrative controls are not required to meet the SR during the time they are open. This Note allows valves and blind flanges located in high radiation areas to be verified closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted during MODES 1, 2, 3, and 4, for ALARA reasons. Therefore, the probability of misalignment of these containment isolation valves, once they have been verified to be in their proper position, is small. ### SR 3.6.3.5 Verifying that the isolation time of each power operated and automatic containment isolation valve is within limits is required to demonstrate OPERABILITY. The isolation time test ensures the valve will isolate in a time period less than or equal to that assumed in the safety analyses. [The isolation time and Frequency of this SR are in accordance with the Inservice Testing Program or 92 days.] ## SR 3.6.3.6 In subatmospheric containments, the check valves that serve a containment isolation function are weight or spring loaded to provide positive closure in the direction of flow. This ensures that these check valves will remain closed when the inside containment atmosphere returns to subatmospheric conditions following a DBA. SR 3.6.3.6 requires verification of the operation of the check valves that are testable during unit operation. The Frequency of 92 days is consistent with the Inservice Testing Program requirement for valve testing on a 92 day Frequency. # SURVEILLANCE REQUIREMENTS (continued) # SR 3.6.3.7 For containment purge valves with resilient seals, additional leakage rate testing beyond the test requirements of 10 CFR 50, Appendix J, is required to ensure OPERABILITY. Operating experience has demonstrated that this type of seal has the potential to degrade in a shorter time period than do other seal types. Based on this observation and the importance of maintaining this penetration leak tight (due to the direct path between containment and the environment), a Frequency of 184 days was established as part of the NRC resolution of Generic Issue B-20, "Containment Leakage Due to Seal Deterioration" (Ref. 3). Additionally, this SR must be performed within 92 days after opening the valve. The 92 day Frequency was chosen recognizing that cycling the valve could introduce additional seal degradation (beyond that occurring to a valve that has not been opened). Thus, decreasing the interval (from 184 days) is a prudent measure after a valve has been opened. ### SR 3.6.3.8 Automatic containment isolation valves close on a containment isolation signal to prevent leakage of radioactive material from containment following a DBA. SR ensures that each automatic containment isolation valve will actuate to its isolation position on a containment isolation signal. This surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass this Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. SURVEILLANCE REQUIREMENTS (continued) # SR 3.6.3.9 In subatmospheric containments, the check valves that serve a containment isolation function are weight or spring loaded to provide positive closure in the direction of flow. This ensures that these check valves will remain closed when the inside containment atmosphere returns to subatmospheric conditions following a DBA. SR 3.6.3.9 verifies the operation of the check valves that are not testable during unit operation. The Frequency of 18 months is based on such factors as the inaccessibility of these valves, the fact that the unit must be shut down to perform the tests, and the successful results of the tests on an 18 month basis during past unit operation. ## SR 3.6.3.10 Reviewer's Note: This SR is only required for those units with resilient seal purge valves allowed to be open during [MODE 1, 2, 3, or 4] and having blocking devices on the valves that are not permanently installed. Verifying that each [42] inch containment purge valve is blocked to restrict opening to \leq [50]% is required to ensure that the valves can close under DBA conditions within the times assumed in the analyses of References 1 and 2. If a LOCA occurs, the purge valves must close to maintain containment leakage within the values assumed in the accident analysis. At other times when purge valves are required to be capable of closing (e.g., during movement of irradiated fuel assemblies), pressurization concerns are not present, thus the purge valves can be fully open. The 18 month Frequency is appropriate because the blocking devices are typically removed only during a refueling outage. ## SR 3.6.3.11 This SR ensures that the combined leakage rate of all shield building bypass leakage paths is less than or equal to the specified leakage rate. This provides assurance that the assumptions in the safety analysis are met. The leakage rate of each bypass leakage path is assumed to be the # SURVEILLANCE REQUIREMENTS # <u>SR 3.6.3.11</u> (continued) maximum pathway leakage (leakage through the worse of the two isolation valves) unless the penetration is isolated by use of one closed and de-activated automatic valve, closed manual valve, or blind flange. In this case, the leakage rate of the isolated bypass leakage path is assumed to be the actual pathway leakage through the isolation device. If both isolation valves in the penetration are closed, the actual leakage rate is the lesser leakage rate of the two valves. This method of quantifying maximum pathway leakage is only to be used for this SR (i.e., Appendix J maximum pathway leakage limits are to be quantified in accordance with Appendix J). The Frequency is required by 10 CFR 50, Appendix J, as modified by approved exemptions (and therefore, the Frequency extensions of SR 3.0.2 may not be applied), since the testing is an Appendix J, Type C test. This SR simply imposes additional acceptance criteria. [By pass leakage is considered part of L_a . [Reviewer's Note: Unless specifically exempted].] ### REFERENCES - 1. FSAR, Section [15]. -
2. FSAR, Section [6.2]. - 3. Generic Issue B-20, "Containment Leakage Due to Seal Deterioration." - 4. Generic Issue B-24. ### B 3.6 CONTAINMENT SYSTEMS B 3.6.4A Containment Pressure (Atmospheric, Dual, and Ice Condenser) ### **BASES** ### BACKGROUND The containment pressure is limited during normal operation to preserve the initial conditions assumed in the accident analyses for a loss of coolant accident (LOCA) or steam line break (SLB). These limits also prevent the containment pressure from exceeding the containment design negative pressure differential with respect to the outside atmosphere in the event of inadvertent actuation of the Containment Spray System. Containment pressure is a process variable that is monitored and controlled. The containment pressure limits are derived from the input conditions used in the containment functional analyses and the containment structure external pressure analysis. Should operation occur outside these limits coincident with a Design Basis Accident (DBA), post accident containment pressures could exceed calculated values. # APPLICABLE SAFETY ANALYSES Containment internal pressure is an initial condition used in the DBA analyses to establish the maximum peak containment internal pressure. The limiting DBAs considered, relative to containment pressure, are the LOCA and SLB, which are analyzed using computer pressure transients. The worst case LOCA generates larger mass and energy release than the worst case SLB. Thus, the LOCA event bounds the SLB event from the containment peak pressure standpoint (Ref. 1). The initial pressure condition used in the containment analysis was [17.7] psia ([3.0] psig). This resulted in a maximum peak pressure from a LOCA of [53.9] psig. The containment analysis (Ref. 1) shows that the maximum peak calculated containment pressure, P_a , results from the limiting LOCA. The maximum containment pressure resulting from the worst case LOCA, [44.1] psig, does not exceed the containment design pressure, [55] psig. The containment was also designed for an external pressure load equivalent to [-2.5] psig. The inadvertent actuation of the Containment Spray System was analyzed to determine ### **BASES** ## APPLICABLE SAFETY ANALYSES (continued) the resulting reduction in containment pressure. The initial pressure condition used in this analysis was [-0.3] psig. This resulted in a minimum pressure inside containment of [-2.0] psig, which is less than the design load. For certain aspects of transient accident analyses, maximizing the calculated containment pressure is not conservative. In particular, the cooling effectiveness of the Emergency Core Cooling System during the core reflood phase of a LOCA analysis increases with increasing containment backpressure. Therefore, for the reflood phase, the containment backpressure is calculated in a manner designed to conservatively minimize, rather than maximize, the containment pressure response in accordance with 10 CFR 50, Appendix K (Ref. 2). Containment pressure satisfies Criterion 2 of the NRC Policy Statement. ## LC0 Maintaining containment pressure at less than or equal to the LCO upper pressure limit ensures that, in the event of a DBA, the resultant peak containment accident pressure will remain below the containment design pressure. Maintaining containment pressure at greater than or equal to the LCO lower pressure limit ensures that the containment will not exceed the design negative differential pressure following the inadvertent actuation of the Containment Spray System. # APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment. Since maintaining containment pressure within limits is essential to ensure initial conditions assumed in the accident analyses are maintained, the LCO is applicable in MODES 1, 2, 3 and 4. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, maintaining containment pressure within the limits of the LCO is not required in MODE 5 or 6. ### ACTIONS ### <u>A.1</u> When containment pressure is not within the limits of the LCO, it must be restored to within these limits within 1 hour. The Required Action is necessary to return operation to within the bounds of the containment analysis. The 1 hour Completion Time is consistent with the ACTIONS of LCO 3.6.1, "Containment," which requires that containment be restored to OPERABLE status within 1 hour. ### B.1 and B.2 If containment pressure cannot be restored to within limits within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS # SR 3.6.4A.1 Verifying that containment pressure is within limits ensures that unit operation remains within the limits assumed in the containment analysis. The 12 hour Frequency of this SR was developed based on operating experience related to trending of containment pressure variations during the applicable MODES. Furthermore, the 12 hour Frequency is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal containment pressure condition. ## REFERENCES - 1. FSAR, Section [6.2]. - 2. 10 CFR 50, Appendix K. ### B 3.6 CONTAINMENT SYSTEMS B 3.6.4B Containment Pressure (Subatmospheric) ### **BASES** ### BACKGROUND Containment air partial pressure is a process variable that is monitored and controlled. The containment air partial pressure is maintained as a function of refueling water storage tank temperature and service water temperature according to Figure 3.6.4B-1 of the LCO, to ensure that, following a Design Basis Accident (DBA), the containment would depressurize in < 60 minutes to subatmospheric conditions. Controlling containment partial pressure within prescribed limits also prevents the containment pressure from exceeding the containment design negative pressure differential with respect to the outside atmosphere in the event of an inadvertent actuation of the Quench Spray (QS) System. The containment internal air partial pressure limits of Figure 3.6.4B-1 are derived from the input conditions used in the containment DBA analyses. Limiting the containment internal air partial pressure and temperature in turn limits the pressure that could be expected following a DBA, thus ensuring containment OPERABILITY. Ensuring containment OPERABILITY limits leakage of fission product radioactivity from containment to the environment. # APPLICABLE SAFETY ANALYSES Containment air partial pressure is an initial condition used in the containment DBA analyses to establish the maximum peak containment internal pressure. The limiting DBAs considered relative to containment pressure are the loss of coolant accident (LOCA) and steam line break (SLB). The LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure transients. DBAs are assumed not to occur simultaneously or consecutively. The postulated DBAs are analyzed assuming degraded containment Engineered Safety Feature (ESF) systems (i.e., assuming the loss of one ESF bus, which is the worst case single active failure, resulting in one train of the QS System and one train of the Recirculation Spray System becoming inoperable). The containment analysis for the DBA (Ref. 1) shows that the maximum peak containment pressure, P_a, results from the limiting design basis LOCA. ## APPLICABLE SAFETY ANALYSES (continued) The maximum design internal pressure for the containment is [45.0] psig. The initial conditions used in the containment design basis analyses were an air partial pressure of [12.2] psia and an air temperature of [120]°F. This resulted in a maximum peak containment internal pressure of [44.9] psig, which is less than the maximum design internal pressure for the containment. The containment was also designed for an external pressure load of [9.2] psid (i.e., a design minimum pressure of [5.5] psia). The inadvertent actuation of the QS System was analyzed to determine the reduction in containment pressure (Ref. 1). The initial conditions used in the analysis were [8.6] psia and [120]°F. This resulted in a minimum pressure inside containment of [7.7] psia, which is considerably above the design minimum of [5.5] psia. For certain aspects of transient accident analyses, maximizing the calculated containment pressure is not conservative. In particular, the cooling effectiveness of the Emergency Core Cooling System during the core reflood phase of a LOCA analysis increases with increasing containment backpressure. For the reflood phase calculations, the containment backpressure is calculated in a manner designed to conservatively minimize, rather than maximize, the containment pressure response in accordance with 10 CFR 50, Appendix K (Ref. 2). Containment pressure satisfies Criterion 2 of the NRC Policy Statement. LCO : Maintaining containment pressure within the limits shown in Figure 3.6.4B-1 of the LCO ensures that in the event of a DBA the resultant peak containment accident pressure will be maintained below the containment design pressure. These limits also prevent the containment pressure from exceeding the containment design negative pressure differential with respect to the outside atmosphere in the event of inadvertent actuation of the QS System. The LCO limits also ensure the return to subatmospheric conditions within 60 minutes following a DBA. ### APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment. Since maintaining containment pressure
within design basis limits is essential to ensure initial conditions assumed in the accident analyses are maintained, the LCO is applicable in MODES 1, 2, 3, and 4. In MODES 5 and 6, the probability and consequences of these events are reduced due to the Reactor Coolant System pressure and temperature limitations of these MODES. Therefore, maintaining containment pressure within the limits of the LCO is not required in MODE 5 or 6. ### ACTIONS ## A.1 When containment air partial pressure is not within the limits of the LCO, containment pressure must be restored to within these limits within 1 hour. The Required Action is necessary to return operation to within the bounds of the containment analysis. The 1 hour Completion Time is consistent with the ACTIONS of LCO 3.6.1, "Containment," which requires that containment be restored to OPERABLE status within 1 hour. ## **B.1** and **B.2** If containment air partial pressure cannot be restored to within limits within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS # SR 3.6.4B.1 Verifying that containment air partial pressure is within limits ensures that operation remains within the limits assumed in the containment analysis. The 12 hour Frequency ## **BASES** # SURVEILLANCE REQUIREMENTS # <u>SR 3.6.4B.1</u> (continued) of this SR was developed considering operating experience related to trending of containment pressure variations and pressure instrument drift during the applicable MODES. Furthermore, the 12 hour Frequency is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal containment pressure condition. ### REFERENCES - 1. FSAR, Section [6.2]. - 2. 10 CFR 50, Appendix K. ### B 3.6 CONTAINMENT SYSTEMS B 3.6.5A Containment Air Temperature (Atmospheric and Dual) #### BASES ## **BACKGROUND** The containment structure serves to contain radioactive material that may be released from the reactor core following a Design Basis Accident (DBA). The containment average air temperature is limited during normal operation to preserve the initial conditions assumed in the accident analyses for a loss of coolant accident (LOCA) or steam line break (SLB). The containment average air temperature limit is derived from the input conditions used in the containment functional analyses and the containment structure external pressure analyses. This LCO ensures that initial conditions assumed in the analysis of containment response to a DBA are not violated during unit operations. The total amount of energy to be removed from containment by the Containment Spray and Cooling systems during post accident conditions is dependent upon the energy released to the containment due to the event, as well as the initial containment temperature and pressure. The higher the initial temperature, the more energy that must be removed, resulting in higher peak containment pressure and temperature. Exceeding containment design pressure may result in leakage greater than that assumed in the accident analysis. Operation with containment temperature in excess of the LCO limit violates an initial condition assumed in the accident analysis. ### APPLICABLE SAFETY ANALYSES Containment average air temperature is an initial condition used in the DBA analyses that establishes the containment environmental qualification operating envelope for both pressure and temperature. The limit for containment average air temperature ensures that operation is maintained within the assumptions used in the DBA analyses for containment (Ref. 1). The limiting DBAs considered relative to containment OPERABILITY are the LOCA and SLB. The DBA LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure transients. No two DBAs are assumed to occur simultaneously or consecutively. The APPLICABLE SAFETY ANALYSES (continued) postulated DBAs are analyzed with regard to Engineered Safety Feature (ESF) systems, assuming the loss of one ESF bus, which is the worst case single active failure, resulting in one train each of the Containment Spray System, Residual Heat Removal System, and Containment Cooling System being rendered inoperable. The limiting DBA for the maximum peak containment air temperature is an SLB. The initial containment average air temperature assumed in the design basis analyses (Ref. 1) is [120]°F. This resulted in a maximum containment air temperature of [384.9]°F. The design temperature is [320]°F. The temperature limit is used to establish the environmental qualification operating envelope for containment. The maximum peak containment air temperature was calculated to exceed the containment design temperature for only a few seconds during the transient. The basis of the containment design temperature, however, is to ensure the performance of safety related equipment inside containment (Ref. 2). Thermal analyses showed that the time interval during which the containment air temperature exceeded the containment design temperature was short enough that the equipment surface temperatures remained below the design temperature. Therefore, it is concluded that the calculated transient containment air temperature is acceptable for the DBA SLB. The temperature limit is also used in the depressurization analyses to ensure that the minimum pressure limit is maintained following an inadvertent actuation of the Containment Spray System (Ref. 1). The containment pressure transient is sensitive to the initial air mass in containment and, therefore, to the initial containment air temperature. The limiting DBA for establishing the maximum peak containment internal pressure is a LOCA. The temperature limit is used in this analysis to ensure that in the event of an accident the maximum containment internal pressure will not be exceeded. Containment average air temperature satisfies Criterion 2 of the NRC Policy Statement. LCO During a DBA, with an initial containment average air temperature less than or equal to the LCO temperature limit, the resultant peak accident temperature is maintained below the containment design temperature. As a result, the ability of containment to perform its design function is ensured. ### **APPLICABILITY** In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, maintaining containment average air temperature within the limit is not required in MODE 5 or 6. #### ACTIONS ## <u>A.1</u> When containment average air temperature is not within the limit of the LCO, it must be restored to within limit within 8 hours. This Required Action is necessary to return operation to within the bounds of the containment analysis. The 8 hour Completion Time is acceptable considering the sensitivity of the analysis to variations in this parameter and provides sufficient time to correct minor problems. ## B.I and B.2 If the containment average air temperature cannot be restored to within its limit within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS ## SR 3.6.5A.1 Verifying that containment average air temperature is within the LCO limit ensures that containment operation remains within the limit assumed for the containment analyses. In order to determine the containment average air temperature, an arithmetic average is calculated using measurements taken at locations within the containment selected to provide a representative sample of the overall containment atmosphere. The 24 hour Frequency of this SR is considered acceptable based on observed slow rates of temperature increase within containment as a result of environmental heat sources (due to the large volume of containment). Furthermore, the 24 hour Frequency is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal containment temperature condition. ### REFERENCES - 1. FSAR, Section [6.2]. - 2. 10 CFR 50.49. ### B 3.6 CONTAINMENT SYSTEMS B 3.6.5B Containment Air Temperature (Ice Condenser) ### **BASES** ### BACKGROUND The containment structure serves to contain radioactive material that may be released from the reactor core following a Design Basis Accident (DBA). The containment average air temperature is limited, during normal operation, to preserve the initial conditions assumed in the accident analyses for a loss of coolant accident (LOCA) or steam line break (SLB). The containment average air temperature limit is derived from the input conditions used in the containment functional analyses and the containment structure external pressure analyses. This LCO ensures that initial conditions assumed in the analysis of containment response to a DBA are not violated during unit operations. The total amount of energy to be removed from containment by the Containment Spray and Cooling systems during post accident conditions is dependent upon the energy released to the containment due to the event, as well as the initial containment temperature and pressure. The higher the initial temperature, the more energy
that must be removed, resulting in a higher peak containment pressure and temperature. Exceeding containment design pressure may result in leakage greater than that assumed in the accident analysis. Operation with containment temperature in excess of the LCO limit violates an initial condition assumed in the accident analysis. ## APPLICABLE SAFETY ANALYSES Containment average air temperature is an initial condition used in the DBA analyses that establishes the containment environmental qualification operating envelope for both pressure and temperature. The limit for containment average air temperature ensures that operation is maintained within the assumptions used in the DBA analyses for containment (Ref. 1). The limiting DBAs considered relative to containment OPERABILITY are the LOCA and SLB. The DBA LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure transients. No two DBAs are assumed to occur simultaneously or consecutively. The APPLICABLE SAFETY ANALYSES (continued) postulated DBAs are analyzed with regard to Engineered Safety Feature (ESF) systems, assuming the loss of one ESF bus, which is the worst case single active failure, resulting in one train each of Containment Spray System, Residual Heat Removal System, and Air Return System being rendered inoperable. The limiting DBA for the maximum peak containment air temperature is an SLB. For the upper compartment, the initial containment average air temperature assumed in the design basis analyses (Ref. 1) is [110]°F. For the lower compartment, the initial average containment air temperature assumed in the design basis analyses is [120]°F. This resulted in a maximum containment air temperature of [326]°F. The design temperature is [250]°F. The temperature upper limits are used to establish the environmental qualification operating envelope for both containment compartments. The maximum peak containment air temperature for both containment compartments was calculated to exceed the containment design temperature for only a few seconds during the transient. The basis of the containment design temperature, however, is to ensure the performance of safety related equipment inside containment (Ref. 2). Thermal analyses showed that the time interval during which the containment air temperature exceeded the containment design temperature was short enough that the equipment surface temperatures remained below the design temperature. Therefore, it is concluded that the calculated transient containment air temperatures are acceptable for the DBA SLB. The temperature upper limits are also used in the depressurization analyses to ensure that the minimum pressure limit is maintained following an inadvertent actuation of the Containment Spray System for both containment compartments. The containment pressure transient is sensitive to the initial air mass in containment and, therefore, to the initial containment air temperature. The limiting DBA for establishing the maximum peak containment internal pressure is a LOCA. The temperature lower limits, [85]°F for the upper compartment and [100]°F for the lower compartment, are used in this analysis to ensure that, in the event of an accident, the maximum containment internal pressure will not be exceeded in either containment compartment. #### **BASES** ## APPLICABLE SAFETY ANALYSES (continued) Containment average air temperature satisfies Criterion 2 of the NRC Policy Statement. #### LCO During a DBA, with an initial containment average air temperature within the LCO temperature limits, the resultant peak accident temperature is maintained below the containment design temperature. As a result, the ability of containment to perform its design function is ensured. In MODES 3 and 4, containment air temperature may be as low as 60°F because the resultant calculated peak containment accident pressure would not exceed the design pressure due to a lesser amount of energy released from the pipe break in these MODES. ### APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, maintaining containment average air temperature within the limit is not required in MODE 5 or 6. #### ACTIONS #### A.1 When containment average air temperature in the upper or lower compartment is not within the limit of the LCO, the average air temperature in the affected compartment must be restored to within limits within 8 hours. This Required Action is necessary to return operation to within the bounds of the containment analysis. The 8 hour Completion Time is acceptable considering the sensitivity of the analysis to variations in this parameter and provides sufficient time to correct minor problems. ### B.1 and B.2 If the containment average air temperature cannot be restored to within its limits within the required Completion Time, the plant must be brought to a MODE in which the LCO #### BASES ## ACTIONS ## B.1 and B.2 (continued) does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS ## SR 3.6.5B.1 and SR 3.6.5B.2 Verifying that containment average air temperature is within the LCO limits ensures that containment operation remains within the limits assumed for the containment analyses. In order to determine the containment average air temperature, a weighted average is calculated using measurements taken at locations within the containment selected to provide a representative sample of the overall containment atmosphere. The 24 hour Frequency of these SRs is considered acceptable based on observed slow rates of temperature increase within containment as a result of environmental heat sources (due to the large volume of containment). Furthermore, the 24 hour Frequency is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal containment temperature condition. ## REFERENCES - 1. FSAR, Section [6.2]. - 2. 10 CFR 50.49. ## B 3.6 CONTAINMENT SYSTEMS B 3.6.5C Containment Air Temperature (Subatmospheric) #### BASES ## **BACKGROUND** The containment structure serves to contain radioactive material that may be released from the reactor core following a Design Basis Accident (DBA). The containment average air temperature is limited during normal operation to preserve the initial conditions assumed in the accident analyses for a loss of coolant accident (LOCA) or steam line break (SLB). The containment average air temperature limit is derived from the input conditions used in the containment functional analyses and the containment structure external pressure analyses. This LCO ensures that initial conditions assumed in the analysis of containment response to a DBA are not violated during unit operations. The total amount of energy to be removed from containment by the Containment Spray and Cooling systems during post accident conditions is dependent upon the energy released to the containment due to the event, as well as the initial containment temperature and pressure. The higher the initial temperature, the more energy which must be removed, resulting in a higher peak containment pressure and temperature. Exceeding containment design pressure may result in leakage greater than that assumed in the accident analysis. Operation with containment temperature in excess of the LCO limit violates an initial condition assumed in the accident analysis. ## APPLICABLE SAFETY ANALYSES Containment average air temperature is an initial condition used in the DBA analyses that establishes the containment environmental qualification operating envelope for both pressure and temperature. The limit for containment average air temperature ensures that operation is maintained within the assumptions used in the DBA analyses for containment (Ref. 1). The limiting DBAs considered relative to containment OPERABILITY are the LOCA and SLB. The DBA LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure transients. No two DBAs are assumed to occur simultaneously or consecutively. The APPLICABLE SAFETY ANALYSES (continued) postulated DBAs are analyzed with regard to containment Engineered Safety Feature (ESF) systems, assuming the loss of one ESF bus, which is the worst case single active failure, resulting in one train of the Quench Spray (QS) System and Recirculation Spray System being rendered inoperable. The limiting DBA for the maximum peak containment air temperature is an SLB. The initial containment average air temperature assumed in the design basis analyses (Ref. 1) is [120]°F. This resulted in a maximum containment air temperature of [357]°F. The design temperature is [347]°F. The temperature upper limit is used to establish the environmental qualification operating envelope for containment. The maximum peak containment air temperature was calculated to exceed the containment design temperature for only a few seconds during the transient. The basis of the containment design temperature, however, is to ensure the performance of safety related equipment inside containment (Ref. 2). Thermal analyses showed that the time interval during which the containment air temperature exceeded the containment design temperature was short enough that the equipment surface temperatures remained below the design temperature. Therefore, it is concluded that the calculated transient containment air temperature is acceptable for the DBA SLB. The temperature upper limit is also used in the depressurization analyses to ensure
that the minimum pressure limit is maintained following an inadvertent actuation of the QS System (Ref. 1). The containment pressure transient is sensitive to the initial air mass in containment and, therefore, to the initial containment air temperature. The limiting DBA for establishing the maximum peak containment internal pressure is a LOCA. The temperature lower limit is used in this analysis to ensure that, in the event of an accident, the maximum containment internal pressure will not be exceeded. Containment average air temperature satisfies Criterion 2 of the NRC Policy Statement. # BASES (continued) LC0 During a DBA, with an initial containment average temperature less than or equal to the LCO temperature limits, the resultant peak accident temperature is maintained below the containment design temperature. As a result, the ability of containment to perform its design function is ensured. ## APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, maintaining containment average air temperature within the limit is not required in MODE 5 or 6. ### **ACTIONS** ## A.1 When containment average air temperature is not within the limits of the LCO, it must be restored to within limits within 8 hours. This Required Action is necessary to return operation to within the bounds of the containment analysis. The 8 hour Completion Time is acceptable considering the sensitivity of the analysis to variations in this parameter and provides sufficient time to correct minor problems. ## **B.1** and **B.2** If the containment average air temperature cannot be restored to within its limits within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ## BASES (continued) # SURVEILLANCE REQUIREMENTS ### SR 3.6.5C.1 Verifying that containment average air temperature is within the LCO limits ensures that containment operation remains within the limits assumed for the containment analyses. In order to determine the containment average air temperature, a weighted average is calculated using measurements taken at locations within containment selected to provide a representative sample of the overall containment atmosphere. The 24 hour Frequency of this SR is considered acceptable based on observed slow rates of temperature increase within containment as a result of environmental heat sources (due to the large volume of containment). Furthermore, the 24 hour Frequency is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal containment temperature condition. ## REFERENCES WOG STS - 1. FSAR, Section [6.2]. - 2. 10 CFR 50.49. ## B 3.6 CONTAINMENT SYSTEMS B 3.6.6A Containment Spray and Cooling Systems (Atmospheric and Dual) (Credit taken for iodine removal by the Containment Spray System) #### BASES #### BACKGROUND The Containment Spray and Containment Cooling systems provide containment atmosphere cooling to limit post accident pressure and temperature in containment to less than the design values. Reduction of containment pressure and the iodine removal capability of the spray reduces the release of fission product radioactivity from containment to the environment, in the event of a Design Basis Accident (DBA), to within limits. The Containment Spray and Containment Cooling systems are designed to meet the requirements of 10 CFR 50, Appendix A, GDC 38, "Containment Heat Removal, GDC 39, "Inspection of Containment Heat Removal Systems," GDC 40, "Testing of Containment Heat Removal Systems," GDC 41, "Containment Atmosphere Cleanup," GDC 42, "Inspection of Containment Atmosphere Cleanup Systems," and GDC 43, "Testing of Containment Atmosphere Cleanup Systems" (Ref. 1), or other documents that were appropriate at the time of licensing (identified on a unit specific basis). The Containment Cooling System and Containment Spray System are Engineered Safety Feature (ESF) systems. They are designed to ensure that the heat removal capability required during the post accident period can be attained. The Containment Spray System and the Containment Cooling System provide redundant methods to limit and maintain post accident conditions to less than the containment design values. # Containment Spray System The Containment Spray System consists of two separate trains of equal capacity, each capable of meeting the design bases. Each train includes a containment spray pump, spray headers, nozzles, valves, and piping. Each train is powered from a separate ESF bus. The refueling water storage tank (RWST) supplies borated water to the Containment Spray System during the injection phase of operation. In the recirculation mode of operation, containment spray pump #### BACKGROUND ## <u>Containment Spray System</u> (continued) suction is transferred from the RWST to the containment sump(s). The Containment Spray System provides a spray of cold borated water mixed with sodium hydroxide (NaOH) from the spray additive tank into the upper regions of containment to reduce the containment pressure and temperature and to reduce fission products from the containment atmosphere during a DBA. The RWST solution temperature is an important factor in determining the heat removal capability of the Containment Spray System during the injection phase. In the recirculation mode of operation, heat is removed from the containment sump water by the residual heat removal coolers. Each train of the Containment Spray System provides adequate spray coverage to meet the system design requirements for containment heat removal. The Spray Additive System injects an NaOH solution into the spray. The resulting alkaline pH of the spray enhances the ability of the spray to scavenge fission products from the containment atmosphere. The NaOH added in the spray also ensures an alkaline pH for the solution recirculated in the containment sump. The alkaline pH of the containment sump water minimizes the evolution of iodine and minimizes the occurrence of chloride and caustic stress corrosion on mechanical systems and components exposed to the fluid. The Containment Spray System is actuated either automatically by a containment High-3 pressure signal or manually. An automatic actuation opens the containment spray pump discharge valves, starts the two containment spray pumps, and begins the injection phase. A manual actuation of the Containment Spray System requires the operator to actuate two separate switches on the main control board to begin the same sequence. The injection phase continues until an RWST level Low-Low alarm is received. The Low-Low level alarm for the RWST actuates valves to align the Containment Spray System pump suction with the containment sump and/or signals the operator to manually align the system to the recirculation mode. The Containment Spray System in the recirculation mode maintains an equilibrium temperature between the containment atmosphere and the recirculated sump water. Operation of the Containment Spray System in the recirculation mode is #### **BACKGROUND** ## Containment Spray System (continued) controlled by the operator in accordance with the emergency operating procedures. ## Containment Cooling System Two trains of containment cooling, each of sufficient capacity to supply 100% of the design cooling requirement, are provided. Each train of two fan units is supplied with cooling water from a separate train of essential service water (ESW). Air is drawn into the coolers through the fan and discharged to the steam generator compartments, pressurizer compartment, and instrument tunnel, and outside the secondary shield in the lower areas of containment. During normal operation, all four fan units are operating. The fans are normally operated at high speed with ESW supplied to the cooling coils. The Containment Cooling System, operating in conjunction with the Containment Ventilation and Air Conditioning systems, is designed to limit the ambient containment air temperature during normal unit operation to less than the limit specified in LCO 3.6.5A, "Containment Air Temperature." This temperature limitation ensures that the containment temperature does not exceed the initial temperature conditions assumed for the DBAs. In post accident operation following an actuation signal, the Containment Cooling System fans are designed to start automatically in slow speed if not already running. If running in high (normal) speed, the fans automatically shift to slow speed. The fans are operated at the lower speed during accident conditions to prevent motor overload from the higher mass atmosphere. The temperature of the ESW is an important factor in the heat removal capability of the fan units. ## APPLICABLE SAFETY ANALYSES The Containment Spray System and Containment Cooling System limit the temperature and pressure that could be experienced following a DBA. The limiting DBAs considered are the loss of coolant accident (LOCA) and the steam line break (SLB). The LOCA and SLB are analyzed using computer codes designed APPLICABLE SAFETY ANALYSES (continued) to predict the resultant containment pressure and temperature transients. No DBAs are assumed to occur simultaneously or consecutively. The postulated DBAs are analyzed with regard to containment ESF systems, assuming the loss of one ESF bus, which is the worst case single active failure and results in one train of the Containment Spray System and Containment Cooling System being
rendered inoperable. The analysis and evaluation show that under the worst case scenario, the highest peak containment pressure is [44.1] psig (experienced during a LOCA). The analysis shows that the peak containment temperature is [384.5]°F (experienced during an SLB). Both results meet the intent of the design basis. (See the Bases for LCO 3.6.4A, "Containment Pressure," and LCO 3.6.5A for a detailed discussion.) The analyses and evaluations assume a unit specific power level of [100]%, one containment spray train and one containment cooling train operating, and initial (pre-accident) containment conditions of [120]°F and [1.5] psig. The analyses also assume a response time delayed initiation to provide conservative peak calculated containment pressure and temperature responses. For certain aspects of transient accident analyses, maximizing the calculated containment pressure is not conservative. In particular, the effectiveness of the Emergency Core Cooling System during the core reflood phase of a LOCA analysis increases with increasing containment backpressure. For these calculations, the containment backpressure is calculated in a manner designed to conservatively minimize, rather than maximize, the calculated transient containment pressures in accordance with 10 CFR 50, Appendix K (Ref. 2). The effect of an inadvertent containment spray actuation has been analyzed. An inadvertent spray actuation results in a [2.0] psig containment pressure and is associated with the sudden cooling effect in the interior of the leak tight containment. Additional discussion is provided in the Bases for LCO 3.6.4A. The modeled Containment Spray System actuation from the containment analysis is based on a response time associated with exceeding the containment High-3 pressure setpoint to achieving full flow through the containment spray nozzles. ## APPLICABLE SAFETY ANALYSES (continued) The Containment Spray System total response time of [60] seconds includes diesel generator (DG) startup (for loss of offsite power), block loading of equipment, containment spray pump startup, and spray line filling (Ref. 3). Containment cooling train performance for post accident conditions is given in Reference 4. The result of the analysis is that each train can provide 100% of the required peak cooling capacity during the post accident condition. The train post accident cooling capacity under varying containment ambient conditions, required to perform the accident analyses, is also shown in Reference 5. The modeled Containment Cooling System actuation from the containment analysis is based upon a response time associated with exceeding the containment High-3 pressure setpoint to achieving full Containment Cooling System air and safety grade cooling water flow. The Containment Cooling System total response time of [60] seconds, includes signal delay, DG startup (for loss of offsite power), and service water pump startup times (Ref. 6). The Containment Spray System and the Containment Cooling System satisfy Criterion 3 of the NRC Policy Statement. #### LCO During a DBA, a minimum of one containment cooling train and one containment spray train are required to maintain the containment peak pressure and temperature below the design limits (Ref. 7). Additionally, one containment spray train is also required to remove iodine from the containment atmosphere and maintain concentrations below those assumed in the safety analysis. To ensure that these requirements are met, two containment spray trains and two containment cooling trains must be OPERABLE. Therefore, in the event of an accident, at least one train in each system operates, assuming the worst case single active failure occurs. Each Containment Spray System typically includes a spray pump, spray headers, nozzles, valves, piping, instruments, and controls to ensure an OPERABLE flow path capable of taking suction from the RWST upon an ESF actuation signal and automatically transferring suction to the containment sump. ### BASES # LCO (continued) Each Containment Cooling System typically includes demisters, cooling coils, dampers, fans, instruments, and controls to ensure an OPERABLE flow path. ## APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment and an increase in containment pressure and temperature requiring the operation of the containment spray trains and containment cooling trains. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Thus, the Containment Spray System and the Containment Cooling System are not required to be OPERABLE in MODES 5 and 6. #### ACTIONS #### A.1 With one containment spray train inoperable, the inoperable containment spray train must be restored to OPERABLE status within 72 hours. In this Condition, the remaining OPERABLE spray and cooling trains are adequate to perform the iodine removal and containment cooling functions. The 72 hour Completion Time takes into account the redundant heat removal capability afforded by the Containment Spray System, reasonable time for repairs, and low probability of a DBA occurring during this period. The 10 day portion of the Completion Time for Required Action A.1 is based upon engineering judgment. It takes into account the low probability of coincident entry into two Conditions in this Specification coupled with the low probability of an accident occurring during this time. Refer to Section 1.3, "Completion Times," for a more detailed discussion of the purpose of the "from discovery of failure to meet the LCO" portion of the Completion Time. # B.1 and B.2 If the inoperable containment spray train cannot be restored to OPERABLE status within the required Completion Time, the #### **ACTIONS** ## **B.1** and **B.2** (continued) plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 84 hours. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems. The extended interval to reach MODE 5 allows additional time for attempting restoration of the containment spray train and is reasonable when considering the driving force for a release of radioactive material from the Reactor Coolant System is reduced in MODE 3. ## <u>C.1</u> With one of the required containment cooling trains inoperable, the inoperable required containment cooling train must be restored to OPERABLE status within 7 days. The components in this degraded condition provide iodine removal capabilities and are capable of providing at least 100% of the heat removal needs. The 7 day Completion Time was developed taking into account the redundant heat removal capabilities afforded by combinations of the Containment Spray System and Containment Cooling System and the low probability of DBA occurring during this period. The 10 day portion of the Completion Time for Required Action C.1 is based upon engineering judgment. It takes into account the low probability of coincident entry into two Conditions in this Specification coupled with the low probability of an accident occurring during this time. Refer to Section 1.3 for a more detailed discussion of the purpose of the "from discovery of failure to meet the LCO" portion of the Completion Time. ## D.1 With two required containment cooling trains inoperable, one of the required containment cooling trains must be restored to OPERABLE status within 72 hours. The components in this degraded condition provide iodine removal capabilities and are capable of providing at least 100% of the heat removal ### **ACTIONS** ## D.1 (continued) needs after an accident. The 72 hour Completion Time was developed taking into account the redundant heat removal capabilities afforded by combinations of the Containment Spray System and Containment Cooling System, the iodine removal function of the Containment Spray System, and the low probability of DBA occurring during this period. ## E.1 and E.2 If the Required Action and associated Completion Time of Condition C or D of this LCO are not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ## F.1 With two containment spray trains or any combination of three or more containment spray and cooling trains inoperable, the unit is in a condition outside the accident analysis. Therefore, LCO 3.0.3 must be entered immediately. # SURVEILLANCE REQUIREMENTS # SR 3.6.6A.1 Verifying the correct alignment for manual, power operated, and automatic valves in the containment spray flow path provides assurance that the proper flow paths will exist for Containment Spray System operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since these were verified to be in the correct position prior to locking, sealing, or securing. This SR does not require any testing or valve manipulation. Rather, it involves verification, through a system walkdown, that those valves outside containment (only check valves are inside containment) and capable of potentially being mispositioned are in the correct position. ## SURVEILLANCE REQUIREMENTS (continued) ## SR 3.6.6A.2 Operating each [required] containment cooling train fan unit for ≥ 15 minutes ensures that all trains are OPERABLE and that all associated controls are functioning properly. It also ensures that blockage, fan or motor failure, or excessive vibration can be detected for corrective action. The 31
day Frequency was developed considering the known reliability of the fan units and controls, the two train redundancy available, and the low probability of significant degradation of the containment cooling train occurring between surveillances. It has also been shown to be acceptable through operating experience. #### SR 3.6.6A.3 Verifying that each [required] containment cooling train ESW cooling flow rate to each cooling unit is \geq [700] gpm provides assurance that the design flow rate assumed in the safety analyses will be achieved (Ref. 3). The Frequency was developed considering the known reliability of the Cooling Water System, the two train redundancy available, and the low probability of a significant degradation of flow occurring between surveillances. #### SR 3.6.6A.4 Verifying each containment spray pump's developed head at the flow test point is greater than or equal to the required developed head ensures that spray pump performance has not degraded during the cycle. Flow and differential pressure are normal tests of centrifugal pump performance required by Section XI of the ASME Code (Ref. 8). Since the containment spray pumps cannot be tested with flow through the spray headers, they are tested on recirculation flow. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice tests confirm component OPERABILITY, trend performance, and detect incipient failures by abnormal performance. The Frequency of the SR is in accordance with the Inservice Testing Program. ## SURVEILLANCE REQUIREMENTS (continued) ## SR 3.6.6A.5 and SR 3.6.6A.6 These SRs require verification that each automatic containment spray valve actuates to its correct position and that each containment spray pump starts upon receipt of an actual or simulated actuation of a containment High-3 pressure signal. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The [18] month Frequency is based on the need to perform these Surveillances under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillances were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillances when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. The surveillance of containment sump isolation valves is also required by SR 3.5.2.5. A single surveillance may be used to satisfy both requirements. ## SR 3.6.6A.7 This SR requires verification that each [required] containment cooling train actuates upon receipt of an actual or simulated safety injection signal. The [18] month Frequency is based on engineering judgment and has been shown to be acceptable through operating experience. See SR 3.6.6A.5 and SR 3.6.6A.6, above, for further discussion of the basis for the [18] month Frequency. # SR 3.6.6A.8 With the containment spray inlet valves closed and the spray header drained of any solution, low pressure air or smoke can be blown through test connections. This SR ensures that each spray nozzle is unobstructed and provides assurance that spray coverage of the containment during an accident is not degraded. Due to the passive design of the nozzle, a test at [the first refueling and at] 10 year intervals is considered adequate to detect obstruction of the nozzles. # BASES (continued) ## REFERENCES - 10 CFR 50, Appendix A, GDC 38, GDC 39, GDC 40, GDC 41, GDC 42, and GDC 43. - 2. 10 CFR 50, Appendix K. - 3. FSAR, Section []. - 4. FSAR, Section []. - 5. FSAR, Section []. - 6. FSAR, Section []. - 7. FSAR, Section []. - 8. ASME, Boiler and Pressure Vessel Code, Section XI. ### B 3.6 CONTAINMENT SYSTEMS B 3.6.6B Containment Spray and Cooling Systems (Atmospheric and Dual) (Credit not taken for iodine removal by the Containment Spray System) #### BASES #### BACKGROUND The Containment Spray and Containment Cooling systems provide containment atmosphere cooling to limit post accident pressure and temperature in containment to less than the design values. Reduction of containment pressure reduces the release of fission product radioactivity from containment to the environment, in the event of a Design Basis Accident (DBA), to within limits. The Containment Spray and Containment Cooling systems are designed to meet the requirements of 10 CFR 50, Appendix A, GDC 38, "Containment Heat Removal," GDC 39, "Inspection of Containment Heat Removal Systems," GDC 40, "Testing of Containment Heat Removal Systems," GDC 41, "Containment Atmosphere Cleanup," GDC 42, "Inspection of Containment Atmosphere Cleanup Systems," and GDC 43, "Testing of Containment Atmosphere Cleanup Systems" (Ref. 1), or other documents that were appropriate at the time of licensing (identified on a unit specific basis). The Containment Cooling System and Containment Spray System are Engineered Safety Feature (ESF) systems. They are designed to ensure that the heat removal capability required during the post accident period can be attained. The Containment Spray System and the Containment Cooling System provide redundant methods to limit and maintain post accident conditions to less than the containment design values. ### Containment Spray System The Containment Spray System consists of two separate trains of equal capacity, each capable of meeting the design bases. Each train includes a containment spray pump, spray headers, nozzles, valves, and piping. Each train is powered from a separate ESF bus. The refueling water storage tank (RWST) supplies borated water to the Containment Spray System during the injection phase of operation. In the recirculation mode of operation, containment spray pump #### BACKGROUND # Containment Spray System (continued) suction is transferred from the RWST to the containment sump(s). The Containment Spray System provides a spray of cold borated water into the upper regions of containment to reduce the containment pressure and temperature during a DBA. The RWST solution temperature is an important factor in determining the heat removal capability of the Containment Spray System during the injection phase. In the recirculation mode of operation, heat is removed from the containment sump water by the residual heat removal coolers. Each train of the Containment Spray System provides adequate spray coverage to meet the system design requirements for containment heat removal. The Containment Spray System is actuated either automatically by a containment High-3 pressure signal or manually. An automatic actuation opens the containment spray pump discharge valves, starts the two containment spray pumps, and begins the injection phase. A manual actuation of the Containment Spray System requires the operator to actuate two separate switches on the main control board to begin the same sequence. The injection phase continues until an RWST level Low-Low alarm is received. The Low-Low level alarm for the RWST actuates valves to align the containment spray pump suction to the containment and/or sump signals the operator to manually align the system to the recirculation mode. The Containment Spray System in the recirculation mode maintains an equilibrium temperature between the containment atmosphere and the recirculated sump water. Operation of the Containment Spray System in the recirculation mode is controlled by the operator in accordance with the emergency operating procedures. ### Containment Cooling System Two trains of containment cooling, each of sufficient capacity to supply 100% of the design cooling requirements, are provided. Each train of two fan units is supplied with cooling water from a separate train of essential service water (ESW). Air is drawn into the coolers through the fan and discharged to the steam generator compartments, #### **BACKGROUND** # Containment Cooling System (continued) pressurizer compartment, instrument tunnel, and outside the secondary shield in the lower areas of containment. During normal operation, all four fan units are operating. The fans are normally operated at high speed, with ESW supplied to the cooling coils. The Containment Cooling System, operating in conjunction with the Containment Ventilation and Air Conditioning systems, is designed to limit the ambient containment air temperature during normal unit operation to less than the limit specified in LCO 3.6.5A, "Containment Air Temperature." This temperature limitation ensures that the containment temperature does not exceed the initial temperature conditions assumed for the DBAs. In post accident operation following an actuation signal, the Containment Cooling System fans are designed to start automatically in slow speed if not already running. If running in high (normal) speed, the fans automatically shift to slow speed. The fans are operated at the lower speed during accident conditions to prevent motor overload from the higher density atmosphere. The temperature of the ESW cooling is an important factor in the heat removal capability of the fan units. ## APPLICABLE SAFETY ANALYSES The Containment Spray System and Containment Cooling System limit the temperature and pressure that could be experienced following a DBA. The limiting DBAs considered relative to Containment integrity are the loss of coolant accident (LOCA) and the steam line break (SLB). The LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure and temperature transients. No DBAs are assumed to occur simultaneously or consecutively. The postulated DBAs are analyzed with regard to containment ESF systems, assuming the loss of one ESF bus, which is the worst case single active failure and results in one train of Containment Spray System and Containment Cooling System being inoperable. The analysis and evaluation show that, under the worst case scenario, the
highest peak containment pressure is [44.1] psig (experienced during a LOCA). The analysis shows ## APPLICABLE SAFETY ANALYSES (continued) that the peak containment temperature is [384]°F (experienced during an SLB). Both results meet the intent of the design basis. (See the Bases for LCO 3.6.4A, "Containment Pressure," and LCO 3.6.5A for a detailed discussion.) The analyses and evaluations assume a unit specific power level of [100]%, one containment spray train and one containment cooling train operating, and initial (pre-accident) containment conditions of [120]°F and [1.5] psig. The analyses also assume a response time delayed initiation in order to provide conservative peak calculated containment pressure and temperature responses. For certain aspects of transient accident analyses, maximizing the calculated containment pressure is not conservative. In particular, the effectiveness of the Emergency Core Cooling System during the core reflood phase of a LOCA analysis increases with increasing containment backpressure. For these calculations, the containment backpressure is calculated in a manner designed to conservatively minimize, rather than maximize, the calculated transient containment pressures in accordance with 10 CFR 50, Appendix K (Ref. 2). The effect of an inadvertent containment spray actuation has been analyzed. An inadvertent spray actuation results in a [-2.0] psig containment pressure and is associated with the sudden cooling effect in the interior of the leak tight containment. Additional discussion is provided in the Bases for LCO 3.6.4A. The modeled Containment Spray System actuation from the containment analysis is based upon a response time associated with exceeding the containment High-3 pressure setpoint to achieving full flow though the containment spray nozzles. The Containment Spray System total response time of [60] seconds includes diesel generator (DG) startup (for loss of offsite power), block loading of equipment, containment spray pump startup, and spray line filling (Ref. 3). Containment cooling train performance for post accident conditions is given in Reference 4. The result of the analysis is that each train can provide 100% of the required peak cooling capacity during the post accident condition. The train post accident cooling capacity under varying # APPLICABLE SAFETY ANALYSES (continued) containment ambient conditions, required to perform the accident analyses, is also shown in Reference 5. The modeled Containment Cooling System actuation from the containment analysis is based on a response time associated with exceeding the containment High-3 pressure setpoint to achieving full Containment Cooling System air and safety grade cooling water flow. The Containment Cooling System total response time of [60] seconds includes signal delay, DG startup (for loss of offsite power), and Service Water pump startup times (Ref. 6). The Containment Spray System and the Containment Cooling System satisfy Criterion 3 of the NRC Policy Statement. LCO During a DBA, a minimum of one containment cooling train and one containment spray train are required to maintain the containment peak pressure and temperature below the design limits (Ref. 7). To ensure that these requirements are met, two containment spray trains and two containment cooling units must be OPERABLE. Therefore, in the event of an accident, at least one train in each system operates, assuming the worst case single active failure occurs. Each Containment Spray System typically includes a spray pump, spray headers, nozzles, valves, piping, instruments, and controls to ensure an OPERABLE flow path capable of taking suction from the RWST upon an ESF actuation signal and automatically transferring suction to the containment sump. Each Containment Cooling System typically includes demisters, cooling coils, dampers, instruments, and controls to ensure an OPERABLE flow path. ## APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment and an increase in containment pressure and temperature requiring the operation of the containment spray trains and containment cooling trains. # APPLICABILITY (continued) In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Thus, the Containment Spray System and the Containment Cooling System are not required to be OPERABLE in MODES 5 and 6. ## **ACTIONS** ## <u>A.1</u> If one containment spray train is inoperable, it must be restored to OPERABLE status within 7 days. The components in this degraded condition are capable of providing at least 100% of the heat removal needs (for the condition of one containment spray train inoperable) after an accident. The 7 day Completion Time was chosen in light of the redundant heat removal capabilities afforded by combinations of the Containment Spray System and Containment Cooling System and the low probability of DBA occurring during this period. The 14 day portion of the Completion Time for Required Action A.1 is based upon engineering judgment. It takes into account the low probability of coincident entry into two Conditions in this LCO coupled with the low probability of an accident occurring during this time. Refer to Section 1.3, Completion Times, for a more detailed discussion of the purpose of the "from discovery of failure to meet the LCO" portion of the Completion Time. ### B.1 If one of the required containment cooling trains is inoperable, it must be restored to OPERABLE status within 7 days. The components in this degraded condition are capable of providing at least 100% of the heat removal needs (for the Condition of one containment cooling train inoperable) after an accident. The 7 day Completion Time was chosen based on the same reasons as given in Required Action A.1. The 14 day portion of the Completion Time for Required Action B.1 is based upon engineering judgment. It takes into account the low probability of coincident entry into two Conditions in this Specification coupled with the low probability of an accident occurring during this time. #### ACTIONS ## <u>B.1</u> (continued) Refer to Section 1.3 for a more detailed discussion of the purpose of the "from discovery of failure to meet the LCO" portion of the Completion Time. ## <u>C.1</u> With two of the required containment spray trains inoperable, one must be restored to OPERABLE status within 72 hours. The components in this degraded condition are capable of providing at least 100% of the heat removal needs after an accident. The 72 hour Completion Time was chosen in light of the redundant heat removal capabilities afforded by combinations of the Containment Spray System and Containment Cooling System, reasonable time for repairs, and low probability of DBA occurring during this period. #### D.I and D.2 If one required containment spray train is inoperable and one of the required containment cooling trains is inoperable, the inoperable containment spray train or the inoperable containment cooling train must be restored to OPERABLE status within 72 hours. The components in this degraded condition are capable of providing at least 100% of the heat removal needs after an accident. The 72 hour Completion Time was chosen based on the same reasons as those given in Required Action C.1. ### E.1 If two required containment cooling trains are inoperable, one of the required containment cooling trains must be restored to OPERABLE status within 72 hours. The components in this degraded condition are capable of providing at least 100% of the heat removal needs after an accident. The 72 hour Completion Time was chosen based on the same reasons as those given in Required Action C.1. # ACTIONS (continued) # F.1 and F.2 If any of the Required Actions or associated Completion Times for Condition A, B, C, D, or E of this LCO are not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ### G.1 With any combination of three or more containment spray and containment cooling trains inoperable, the unit is in a condition outside the accident analysis. Therefore, LCO 3.0.3 must be entered immediately. # SURVEILLANCE REQUIREMENTS ## SR 3.6.6B.1 Verifying the correct alignment for manual, power operated, and automatic valves, excluding check valves, in the Containment Spray System flow path provides assurance that the proper flow path exists for Containment Spray System operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since these were verified to be in the correct positions prior to being secured. This SR does not require testing or valve manipulation. Rather, it involves verification, through a system walkdown, that those valves outside containment (only check valves are inside containment) and capable of potentially being mispositioned are in the correct position. #### SR 3.6.6B.2 Operating each [required] containment cooling train fan unit for ≥ 15 minutes ensures that all trains are OPERABLE and all associated controls are functioning properly. It also ensures that blockage, fan or motor failure, or excessive vibration can be detected for corrective action. The 31 day Frequency was developed based on the known reliability of ## SURVEILLANCE REQUIREMENTS # SR 3.6.6B.2 (continued) the fan units and controls, the two train redundancy available, and the low probability of significant degradation of the containment cooling train occurring between surveillances. ## SR 3.6.6B.3 Verifying that each [required] containment cooling train ESW cooling flow rate to each cooling unit is ≥ [700]
gpm provides assurance that the design flow rate assumed in the analyses will be achieved (Ref. 3). The Frequency was developed considering the known reliability of the Cooling Water System, the two train redundancy available, and the low probability of a significant degradation of flow occurring between surveillances. #### SR 3.6.6B.4 Verifying that each containment spray pump's developed head at the flow test point is greater than or equal to the required developed head ensures that spray pump performance has not degraded during the cycle. Flow and differential pressure are normal tests of centrifugal pump performance required by Section XI of the ASME Code (Ref. 8). Since the containment spray pumps cannot be tested with flow through the spray headers, they are tested on recirculation flow. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice inspections confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance. The Frequency of this SR is in accordance with the Inservice Testing Program. ### SR 3.6.6B.5 and SR 3.6.6B.6 These SRs require verification that each automatic containment spray valve actuates to its correct position and that each containment spray pump starts upon receipt of an actual or simulated containment High-3 pressure signal. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required # SURVEILLANCE REQUIREMENTS # <u>SR 3.6.6B.5 and SR 3.6.6B.6</u> (continued) position under administrative controls. The [18] month Frequency is based on the need to perform these Surveillances under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillances were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillances when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. The surveillance of containment sump isolation valves is also required by SR 3.5.2.5. A single surveillance may be used to satisfy both requirements. ## SR 3.6.6B.7 This SR ensures that each [required] containment cooling train actuates upon receipt of an actual or simulated safety injection signal. The [18] month Frequency is based on engineering judgment and has been proven acceptable through operating experience. See SR 3.6.6B.5 and SR 3.6.6B.6, above, for further discussion of the basis for the [18] month Frequency. ### SR 3.6.6B.8 With the containment spray inlet valves closed and the spray header drained of any solution, low pressure air or smoke can be blown through test connections. This SR ensures that each spray nozzle is unobstructed and that spray coverage of the containment during an accident is not degraded. Because of the passive design of the nozzle, a test at [the first refueling and at] 10 year intervals is considered adequate to detect obstruction of the spray nozzles. #### REFERENCES - 1. 10 CFR 50, Appendix A, GDC 38, GDC 39, GDC 40, GDC 41, GDC 42, and GDC 43. - 2. 10 CFR 50, Appendix A. # BASES # REFERENCES (continued) - 3. FSAR, Section [15]. - 4. FSAR, Section [6.2]. - 5. FSAR, Section []. - 6. FSAR, Section []. - 7. FSAR, Section []. - 8. ASME, Boiler and Pressure Vessel Code, Section XI. #### B 3.6 CONTAINMENT SYSTEMS B 3.6.6C Containment Spray System (Ice Condenser) #### **BASES** ### **BACKGROUND** The Containment Spray System provides containment atmosphere cooling to limit post accident pressure and temperature in containment to less than the design values. Reduction of containment pressure and the iodine removal capability of the spray reduce the release of fission product radioactivity from containment to the environment, in the event of a Design Basis Accident (DBA). The Containment Spray System is designed to meet the requirements of 10 CFR 50, Appendix A, GDC 38, "Containment Heat Removal," GDC 39, "Inspection of Containment Heat Removal Systems," GDC 40, "Testing of Containment Heat Removal Systems," GDC 41, "Containment Atmosphere Cleanup," GDC 42, "Inspection of Containment Atmosphere Cleanup Systems," and GDC 43, "Testing of Containment Atmosphere Cleanup Systems" (Ref. 1), or other documents that were appropriate at the time of licensing (identified on a unit specific basis). The Containment Spray System consists of two separate trains of equal capacity, each capable of meeting the system design basis spray coverage. Each train includes a containment spray pump, one containment spray heat exchanger, spray headers, nozzles, valves, and piping. Each train is powered from a separate Engineered Safety Feature (ESF) bus. The refueling water storage tank (RWST) supplies borated water to the Containment Spray System during the injection phase of operation. In the recirculation mode of operation, containment spray pump suction is transferred from the RWST to the containment recirculation sump(s). The diversion of a portion of the recirculation flow from each train of the Residual Heat Removal (RHR) System to additional redundant spray headers completes the Containment Spray System heat removal capability. Each RHR train is capable of supplying spray coverage, if required, to supplement the Containment Spray System. The Containment Spray System and RHR System provide a spray of cold or subcooled borated water into the upper and lower regions of containment and in dead ended volumes to limit the containment pressure and temperature during a DBA. The RWST solution temperature is an important factor in # BACKGROUND (continued) determining the heat removal capability of the Containment Spray System during the injection phase. In the recirculation mode of operation, heat is removed from the containment sump water by the Containment Spray System and RHR heat exchangers. Each train of the Containment Spray System, supplemented by a train of RHR spray, provides adequate spray coverage to meet the system design requirements for containment heat removal. The Spray Additive System injects a sodium hydroxide (NaOH) solution into the spray. The resulting alkaline pH of the spray enhances the ability of the spray to scavenge iodine fission products from the containment atmosphere. The NaOH added in the spray also ensures an alkaline pH for the solution recirculated in the containment sump. The alkaline pH of the containment sump water minimizes the evolution of iodine and the occurrence of chloride and caustic stress corrosion on mechanical systems and components exposed to the fluid. The Containment Spray System is actuated either automatically by a containment High-3 pressure signal or manually. An automatic actuation opens the containment spray pump discharge valves, starts the two containment spray pumps, and begins the injection phase. A manual actuation of the Containment Spray System requires the operator to actuate two separate switches on the main control board to begin the same sequence. The injection phase continues until an RWST level Low-Low alarm is received. The Low-Low alarm for the RWST actuates valves to align the containment spray pump suction to the containment sump and/or signals the operator to manually align the system to the recirculation mode. The Containment Spray System in the recirculation mode maintains an equilibrium temperature between the containment atmosphere and the recirculated sump water. Operation of the Containment Spray System in the recirculation mode is controlled by the operator in accordance with the emergency operation procedures. The RHR spray operation is initiated manually, when required by the emergency operating procedures, after the Emergency Core Cooling System (ECCS) is operating in the recirculation mode. The RHR sprays are available to supplement the Containment Spray System, if required, in limiting # BACKGROUND (continued) containment pressure. This additional spray capacity would typically be used after the ice bed has been depleted and in the event that containment pressure rises above a predetermined limit. The Containment Spray System is an ESF system. It is designed to ensure that the heat removal capability required during the post accident period can be attained. The operation of the Containment Spray System, together with the ice condenser, is adequate to assure pressure suppression during the initial blowdown of steam and water from a DBA. During the post blowdown period, the Air Return System (ARS) is automatically started. The ARS returns upper compartment air through the divider barrier to the lower compartment. This serves to equalize pressures in containment and to continue circulating heated air and steam through the ice condenser, where heat is removed by the remaining ice. The Containment Spray System limits the temperature and pressure that could be expected following a DBA. Protection of containment integrity limits leakage of fission product radioactivity from containment to the environment. # APPLICABLE SAFETY ANALYSES The limiting DBAs considered relative to containment OPERABILITY are the loss of coolant accident (LOCA) and the steam line break (SLB). The DBA LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure and temperature transients. No two DBAs are assumed to occur simultaneously or consecutively. The postulated DBAs are analyzed, in regard to containment ESF systems, assuming the loss of one ESF bus, which is the worst case single active failure, resulting in one train of the Containment Spray System, the RHR System, and the ARS being rendered inoperable (Ref. 2). The DBA analyses show that the maximum peak containment pressure of [44.1] psig results from the LOCA analysis, and is calculated to be less than the containment design pressure. The maximum peak containment atmosphere temperature of [385]°F results from the SLB analysis and was
calculated to exceed the containment design temperature [for a few seconds] during the DBA SLB. The basis of the # APPLICABLE SAFETY ANALYSES (continued) containment design temperature, however, is to ensure the OPERABILITY of safety related equipment inside containment (Ref. 3). Thermal analyses showed that the time interval during which the containment atmosphere temperature exceed the containment design temperature was short enough that the equipment surface temperatures remained below the design temperature. Therefore, it is concluded that the calculated transient containment atmosphere temperatures are acceptable for the DBA SLB. The modeled Containment Spray System actuation from the containment analysis is based on a response time associated with exceeding the containment High-3 pressure signal setpoint to achieving full flow through the containment spray nozzles. A delayed response time initiation provides conservative analyses of peak calculated containment temperature and pressure responses. The Containment Spray System total response time of [45] seconds is composed of signal delay, diesel generator startup, and system startup time. For certain aspects of transient accident analyses, maximizing the calculated containment pressure is not conservative. In particular, the ECCS cooling effectiveness during the core reflood phase of a LOCA analysis increases with increasing containment backpressure. For these calculations, the containment backpressure is calculated in a manner designed to conservatively minimize, rather than maximize, the calculated transient containment pressures in accordance with 10 CFR 50, Appendix K (Ref. 4). Inadvertent actuation of the Containment Spray System is evaluated in the analysis, and the resultant reduction in containment pressure is calculated. The maximum calculated reduction in containment pressure resulted in a containment external pressure load of [1.2] psid, which is below the containment design external pressure load. The Containment Spray System satisfies Criterion 3 of the NRC Policy Statement. LCO During a DBA, one train of Containment Spray System is required to provide the heat removal capability assumed in the safety analyses. Additionally, a minimum of one train #### **BASES** # LCO (continued) of the Containment Spray System, with spray pH adjusted by the Spray Additive System, is required to scavenge iodine fission products from the containment atmosphere and ensure their retention in the containment sump water. To ensure that these requirements are met, two containment spray trains must be OPERABLE with power from two safety related, independent power supplies. Therefore, in the event of an accident, at least one train in each system operates. Each Containment Spray System typically includes a spray pump, headers, valves, heat enhancers, nozzles, piping, instruments, and controls to ensure an OPERABLE flow path capable of taking suction from the RWST upon an ESF actuation signal and automatically transferring suction to the containment sump. ## **APPLICABILITY** In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment and an increase in containment pressure and temperature requiring the operation of the Containment Spray System. In MODES 5 and 6, the probability and consequences of these events are reduced because of the pressure and temperature limitations of these MODES. Thus, the Containment Spray System is not required to be OPERABLE in MODE 5 or 6. #### ACTIONS #### A.1 With one containment spray train inoperable, the affected train must be restored to OPERABLE status within 72 hours. The components in this degraded condition are capable of providing 100% of the heat removal and iodine removal needs after an accident. The 72 hour Completion Time was developed taking into account the redundant heat removal and iodine removal capabilities afforded by the OPERABLE train and the low probability of a DBA occurring during this period. # ACTIONS (continued) # B.1 and B.2 If the affected containment spray train cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 84 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. The extended interval to reach MODE 5 allows additional time and is reasonable when considering that the driving force for a release of radioactive material from the Reactor Coolant System is reduced in MODE 3. # SURVEILLANCE REQUIREMENTS ## SR 3.6.6C.1 Verifying the correct alignment of manual, power operated, and automatic valves, excluding check valves, in the Containment Spray System provides assurance that the proper flow path exists for Containment Spray System operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position since they were verified in the correct position prior to being secured. This SR does not require any testing or valve manipulation. Rather, it involves verification, through a system walkdown, that those valves outside containment and capable of potentially being mispositioned, are in the correct position. #### SR 3.6.6C.2 Verifying that each containment spray pump's developed head at the flow test point is greater than or equal to the required developed head ensures that spray pump performance has not degraded during the cycle. Flow and differential head are normal tests of centrifugal pump performance required by Section XI of the ASME Code (Ref. 5). Since the containment spray pumps cannot be tested with flow through the spray headers, they are tested on bypass flow. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice inspections confirm component OPERABILITY, trend # SURVEILLANCE REQUIREMENTS # SR 3.6.6C.2 (continued) performance, and detect incipient failures by indicating abnormal performance. The Frequency of this SR is in accordance with the Inservice Testing Program. ## SR 3.6.6C.3 and SR 3.6.6C.4 These SRs require verification that each automatic containment spray valve actuates to its correct position and each containment spray pump starts upon receipt of an actual or simulated containment spray actuation signal. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The [18] month Frequency is based on the need to perform these Surveillances under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillances were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillances when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. The surveillance of containment sump isolation valves is also required by SR 3.6.6.3. A single surveillance may be used to satisfy both requirements. ### SR 3.6.6C.5 With the containment spray inlet valves closed and the spray header drained of any solution, low pressure air or smoke can be blown through test connections. This SR ensures that each spray nozzle is unobstructed and that spray coverage of the containment during an accident is not degraded. Because of the passive design of the nozzle, a test at [the first refueling and at] 10 year intervals is considered adequate to detect obstruction of the spray nozzles. #### REFERENCES 1. 10 CFR 50, Appendix A, GDC 38, GDC 39, GDC 40, GDC 41, GDC 42, and GDC 43. # REFERENCES (continued) - 2. FSAR, Section [6.2]. - 3. 10 CFR 50.49. - 4. 10 CFR 50, Appendix K. - 5. ASME, Boiler and Pressure Vessel Code, Section XI. #### B 3.6 CONTAINMENT SYSTEMS B 3.6.6D Quench Spray (QS) System (Subatmospheric) #### BASES #### **BACKGROUND** The QS System is designed to provide containment atmosphere cooling to limit post accident pressure and temperature in containment to less than the design values. The QS System, operating in conjunction with the Recirculation Spray (RS) System, is designed to cool and depressurize the containment structure to subatmospheric pressure in less than 60 minutes following a Design Basis Accident (DBA). Reduction of containment pressure and the iodine removal capability of the spray limit the release of fission product radioactivity from containment to the environment in the event of a DBA. The QS System consists of two separate trains of equal capacity, each capable of meeting the design bases. Each train includes a spray pump, spray headers, nozzles, valves, and piping. Each train is powered from a separate Engineered Safety Features (ESF) bus. The refueling water storage tank (RWST) supplies borated water to the QS System. The QS System is actuated either automatically by a containment High-High pressure signal or manually. The QS System provides a spray of cold borated water into the upper regions of containment to reduce the containment pressure and temperature during a DBA. Each train of the QS System provides adequate spray coverage to meet the system design requirements for containment heat and iodine fission product removal. The QS System also provides flow to the containment sump to improve the net positive suction head available to the RS System pumps. The Spray Additive System injects a sodium hydroxide (NaOH) solution into the spray. The resulting alkaline pH of the spray enhances the ability of the spray to scavenge iodine fission products from the containment atmosphere. The NaOH added to the spray also ensures an alkaline pH for the solution recirculated in the containment sump. The alkaline pH of the containment sump water minimizes the evolution of iodine
and minimizes the occurrence of chloride and caustic stress corrosion on mechanical systems and components exposed to the fluid. # BACKGROUND (continued) The QS System is a containment ESF system. It is designed to ensure that the heat removal capability required during the post accident period can be attained. Operation of the QS System and RS System provides the required heat removal capability to limit post accident conditions to less than the containment design values and depressurize the containment structure to subatmospheric pressure in < 60 minutes following a DBA. The QS System limits the temperature and pressure that could be expected following a DBA and ensures that containment leakage is maintained consistent with the accident analysis. ## APPLICABLE SAFETY ANALYSES The limiting DBAs considered are the loss of coolant accident (LOCA) and the steam line break (SLB). The LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure and temperature transients. No DBAs are assumed to occur simultaneously or consecutively. The postulated DBAs are analyzed, with respect to containment ESF Systems, assuming the loss of one ESF bus, which is the worst case single active failure, resulting in one train of the QS System and the RS System inoperable. During normal operation, the containment internal pressure is varied to maintain the capability to depressurize the containment to a subatmospheric pressure in < 60 minutes after a DBA. This capability and the variation of containment pressure are functions of the service water temperature, the RWST water temperature, and the containment air temperature. The DBA analyses (Ref. 1) show that the maximum peak containment pressure of [44.1] psig results from the LOCA analysis and is calculated to be less than the containment design pressure. The maximum peak containment atmosphere temperature of [385]°F results from the SLB analysis and was calculated to exceed the containment design temperature for [a few seconds] during the transient. The basis of the containment design temperature, however, is to ensure OPERABILITY of safety related equipment inside containment (Ref. 2). Thermal analyses show that the time interval during which the containment atmosphere temperature exceeded the containment design temperature was short enough that the APPLICABLE SAFETY ANALYSES (continued) equipment surface temperatures remained below the design temperature. Therefore, it is concluded that the calculated transient containment atmosphere temperatures are acceptable for the SLB. The modeled QS System actuation from the containment analysis is based upon a response time associated with exceeding the containment High-High pressure signal setpoint to achieving full flow through the spray nozzles. A delayed response time initiation provides conservative analyses of peak calculated containment temperature and pressure responses. The QS System total response time of [66] seconds comprises the signal delay, diesel generator startup time, and system startup time. For certain aspects of accident analyses, maximizing the calculated containment pressure is not conservative. In particular, the cooling effectiveness of the Emergency Core Cooling System during the core reflood phase of a LOCA analysis increases with increasing containment backpressure. For these calculations, the containment backpressure is calculated in a manner designed to conservatively minimize, rather than maximize, the calculated transient containment pressures in accordance with 10 CFR 50, Appendix K (Ref. 3). Inadvertent actuation of the QS System is evaluated in the analysis, and the resultant reduction in containment pressure is calculated. The maximum calculated reduction in containment pressure resulted in a containment external pressure load of [unit specific pressure], which is below the containment design external pressure load. The QS System satisfies Criterion 3 of the NRC Policy Statement. LC₀ During a DBA, one train of the QS System is required to provide the heat removal capability assumed in the safety analyses for containment. In addition, one QS System train, with spray pH adjusted by the Spray Additive System, is required to scavenge iodine fission products from the containment atmosphere and ensure their retention in the containment sump water. To ensure that these requirements are met, two QS System trains must be OPERABLE with power from two safety related, independent power supplies. # LCO (continued) Therefore, in the event of an accident, at least one train in each system will operate, assuming that the worst case single active failure occurs. Each QS System includes a spray pump, spray headers, nozzles, valves, piping, instruments, and controls to ensure an OPERABLE flow path capable of taking suction from the RWST. ## APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment and an increase in containment pressure and temperature requiring the operation of the QS System. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Thus, the QS System is not required to be OPERABLE in MODE 5 or 6. #### ACTIONS #### A.1 If one QS train is inoperable, it must be restored to OPERABLE status within 72 hours. The components in this degraded condition are capable of providing 100% of the heat removal and iodine removal needs after an accident. The 72 hour Completion Time was developed taking into account the redundant heat removal and iodine removal capabilities afforded by the OPERABLE train and the low probability of a DBA occurring during this period. ### **B.1** and **B.2** If the Required Action and associated Completion Time are not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ## BASES (continued) ## SURVEILLANCE REQUIREMENTS #### SR 3.6.6D.1 Verifying the correct alignment of manual, power operated, and automatic valves, excluding check valves, in the QS System provides assurance that the proper flow path exists for QS System operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since they were verified to be in the correct position prior to being secured. This SR does not require any testing or valve manipulation. Rather, it involves verification, through a system walkdown, that those valves outside containment and capable of potentially being mispositioned are in the correct position. #### SR 3.6.6D.2 Verifying that each QS pump's developed head at the flow test point is greater than or equal to the required developed head ensures that QS pump performance has not degraded during the cycle. Flow and differential head are normal tests of centrifugal pump performance required by Section XI of the ASME Code (Ref. 4). Since the QS System pumps cannot be tested with flow through the spray headers, they are tested on bypass flow. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice tests confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance. The Frequency of this SR is in accordance with the Inservice Testing Program. #### SR 3.6.6D.3 and SR 3.6.6D.4 These SRs ensure that each QS automatic valve actuates to its correct position and each QS pump starts upon receipt of an actual or simulated containment spray actuation signal. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The [18] month Frequency is based on the need to perform these Surveillances under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillances were performed with the reactor at power. Operating experience has shown that these components usually ## SURVEILLANCE REQUIREMENTS ## <u>SR 3.6.6D.3 and SR 3.6.6D.4</u> (continued) pass the Surveillances when performed at an [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. ## SR 3.6.6D.5 With the containment spray inlet valves closed and the spray header drained of any solution, low pressure air or smoke can be blown through test connections. This SR ensures that each spray nozzle is unobstructed and that spray coverage of the containment during an accident is not degraded. Due to the passive nature of the design of the nozzle, a test at [the first refueling and at] 10 year intervals is considered adequate to detect obstruction of the nozzles. #### REFERENCES - 1. FSAR, Section [6.2]. - 2. 10 CFR 50.49. - 3. 10 CFR 50, Appendix K. - 4. ASME, Boiler and Pressure Vessel Code, Section XI. #### B 3.6 CONTAINMENT SYSTEMS B 3.6.6E Recirculation Spray (RS) System (Subatmospheric) **BASES** #### **BACKGROUND** The RS System, operating in conjunction with the Quench Spray (QS) System, is designed to limit the post accident pressure and temperature in the containment to less than the design values and to depressurize the containment structure to a subatmospheric pressure in less than 60 minutes following a Design Basis Accident (DBA). The reduction of containment pressure and the removal of iodine from the containment atmosphere by the spray limit the release of fission product radioactivity from containment to the environment in the event of a DBA. The RS System consists of two separate trains of equal capacity, each capable of meeting the design and accident analysis bases. Each train includes one RS subsystem outside
containment and one RS subsystem inside containment. Each subsystem consists of one 50% capacity spray pump, one spray cooler, one 180° coverage spray header, nozzles, valves, piping, instrumentation, and controls. Each outside RS subsystem also includes a casing cooling pump with its own valves, piping, instrumentation, and controls. The two outside RS subsystems' spray pumps are located outside containment and the two inside RS subsystems' spray pumps are located inside containment. Each RS train (one inside and one outside RS subsystem) is powered from a separate Engineered Safety Features (ESF) bus. Each train of the RS System provides adequate spray coverage to meet the system design requirements for containment heat and iodine fission product removal. The two casing cooling pumps and common casing cooling tank are designed to increase the net positive suction head (NPSH) available to the outside RS pumps by injecting cold water into the suction of the spray pumps. The casing cooling water tank contains 116,500 gal of chilled and borated water. Each casing cooling pump supplies one outside spray pump with cold borated water from the casing cooling water tank. The casing cooling pumps are considered part of the outside RS subsystems. Each casing cooling pump is powered from a separate ESF bus. # BACKGROUND (continued) The RS provides a spray of subcooled water into the upper regions of containment to reduce the containment pressure and temperature during a DBA. Upon receipt of a High-High containment pressure signal, the two casing cooling pumps start and the RS pump suction and discharge valves receive an open signal to assure the valves are open. After a [195] second time delay, the inside RS pumps start, and after a [210] second time delay, the outside RS pumps start. The RS pumps take suction from the containment sump and discharge through their respective spray coolers to the spray headers and into the containment atmosphere. Heat is transferred from the containment sump water to service water in the spray coolers. The Spray Additive System injects a sodium hydroxide (NaOH) solution into the suction of the QS System pumps. The NaOH added to the QS System spray ensures an alkaline pH for the solution recirculated in the containment sump. The resulting alkaline pH of the RS spray (pumped from the sump) enhances the ability of the spray to scavenge iodine fission products from the containment atmosphere. The alkaline pH of the containment sump water minimizes the evolution of iodine and minimizes the occurrence of chloride and caustic stress corrosion on mechanical systems and components exposed to the fluid. The RS is a containment ESF system. It is designed to ensure that the heat removal capability required during the post accident period can be attained. Operation of the QS and RS systems provides the required heat removal capability to limit post accident conditions to less than the containment design values and depressurize the containment structure to subatmospheric pressure in < 60 minutes following a DBA. The RS limits the temperature and pressure that could be expected following a DBA and ensures that containment leakage is maintained consistent with the accident analysis. ## APPLICABLE SAFETY ANALYSES The limiting DBAs considered are the loss of coolant accident (LOCA) and the steam line break (SLB). The LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure and temperature transients; DBAs are assumed not to occur simultaneously or APPLICABLE SAFETY ANALYSES (continued) consecutively. The postulated DBAs are analyzed assuming the loss of one ESF bus, which is the worst case single active failure, resulting in one train of the QS and RS systems being rendered inoperable (Ref. 1). The peak containment pressure following a high energy line break is affected by the initial total pressure and temperature of the containment atmosphere and the QS System operation. Maximizing the initial containment total pressure and average atmospheric temperature maximizes the calculated peak pressure. The heat removal effectiveness of the QS System spray is dependent on the temperature of the water in the refueling water storage tank (RWST). The time required to depressurize the containment and the capability to maintain it depressurized below atmospheric pressure depend on the functional performance of the QS and RS systems and the service water temperature. When the Service Water temperature is elevated, it is more difficult to depressurize the containment within 60 minutes since the heat removal effectiveness of the RS System is limited. During normal operation, the containment internal pressure is varied to maintain the capability to depressurize the containment to a subatmospheric pressure in < 60 minutes after a DBA. This capability and the variation of containment pressure are functions of service water temperature, RWST water temperature, and the containment air temperature. The DBA analyses show that the maximum peak containment pressure of [44.1] psig results from the LOCA analysis and is calculated to be less than the containment design pressure. The maximum [385]°F peak containment atmosphere temperature results from the SLB analysis and is calculated to exceed the containment design temperature for [a few seconds] during the transient. The basis of the containment design temperature, however, is to ensure OPERABILITY of safety related equipment inside containment (Ref. 2). Thermal analyses show that the time interval during which the containment atmosphere temperature exceeds the containment design temperature is short enough that equipment surface temperatures remain below the design temperature. Therefore, it is concluded that the calculated transient containment atmosphere temperatures are acceptable for the SLB. ## APPLICABLE SAFETY ANALYSES (continued) The RS System actuation model from the containment analysis is based upon a response time associated with exceeding the High-High containment pressure signal setpoint to achieving full flow through the RS System spray nozzles. A delay in response time initiation provides conservative analyses of peak calculated containment temperature and pressure. The RS System's total response time of 300 seconds comprises the signal delay, diesel generator startup time, and system startup time. For certain aspects of accident analyses, maximizing the calculated containment pressure is not conservative. In particular, the cooling effectiveness of the Emergency Core Cooling System during the core reflood phase of a LOCA analysis increases with increasing containment backpressure. For these calculations, the containment backpressure is calculated in a manner designed to conservatively minimize, rather than maximize, the calculated transient containment pressures in accordance with 10 CFR 50, Appendix K (Ref. 3). The RS System satisfies Criterion 3 of the NRC Policy Statement. #### LC0 During a DBA, one train (two subsystems) of the RS System is required to provide the minimum heat removal capability assumed in the safety analysis. To ensure that this requirement is met, four RS subsystems [and a casing cooling tank] must be OPERABLE. This will ensure that at least one train will operate assuming the worst case single failure occurs, which is in the ESF power supply. #### APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause an increase in containment pressure and temperature requiring the operation of the RS System. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Thus, the RS System is not required to be OPERABLE in MODE 5 or 6. #### ACTIONS #### **A.1** With one of the RS subsystems inoperable, the inoperable subsystem must be restored to OPERABLE status within 7 days. The components in this degraded condition are capable of providing at least 100% of the heat removal needs (i.e., 150% when one RS subsystem is inoperable) after an accident. The 7 day Completion Time was developed taking into account the redundant heat removal capabilities afforded by combinations of the RS and QS systems and the low probability of a DBA occurring during this period. ### B.1 With two of the required RS subsystems inoperable in the same train, at least one of the inoperable RS subsystems must be restored to OPERABLE status within 72 hours. The components in this degraded condition are capable of providing 100% of the heat removal needs after an accident. The 72 hour Completion Time was developed taking into account the redundant heat removal capability afforded by the OPERABLE subsystems, a reasonable amount of time for repairs, and the low probability of a DBA occurring during this period. ## C.1 With two inside RS subsystems inoperable, at least one of the inoperable subsystems must be restored to OPERABLE status within 72 hours. The components in this degraded condition are capable of providing 100% of the heat removal needs after an accident. The 72 hour Completion Time was chosen based on the same reasons as given in Required Action B.1. #### D.1 With two outside RS subsystems inoperable, at least one of the inoperable subsystems must be restored to OPERABLE status within 72 hours. The components in this degraded condition are capable of providing 100% of the heat removal needs after an accident. The 72 hour Completion Time was #### ACTIONS ## D.1 (continued) chosen based on the same reasons as given in Required Action B.1. ## E.1 With the casing cooling tank inoperable, the NPSH available to the outside RS subsystem pumps may not be sufficient. The inoperable casing cooling tank must be restored to OPERABLE status within 72 hours. The components in this degraded condition are capable of providing 100% of the heat removal needs after an accident. The 72 hour Completion Time was chosen based on the same reasons as given in Required
Action B.1. #### F.1 and F.2 If the inoperable RS subsystem(s) or the casing cooling tank cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 84 hours. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems. The extended interval to reach MODE 5 allows additional time and is reasonable considering that the driving force for a release of radioactive material from the Reactor Coolant System is reduced in MODE 3. #### G.1 With three or more RS subsystems inoperable, the unit is in a condition outside the accident analysis. Therefore, LCO 3.0.3 must be entered immediately. ## SURVEILLANCE REQUIREMENTS ## SR 3.6.6E.1 Verifying that the casing cooling tank solution temperature is within the specified tolerances provides assurance that the water injected into the suction of the outside RS pumps will increase the NPSH available as per design. The 24 hour Frequency of this SR was developed considering operating experience related to the parameter variations and instrument drift during the applicable MODES. Furthermore, the 24 hour Frequency is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal condition. ## SR 3.6.6E.2 Verifying the casing cooling tank contained borated water volume provides assurance that sufficient water is available to support the outside RS subsystem pumps during the time they are required to operate. The 7 day Frequency of this SR was developed considering operating experience related to the parameter variations and instrument drift during the applicable MODES. Furthermore, the 7 day Frequency is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal condition. #### SR 3.6.6E.3 Verifying the boron concentration of the solution in the casing cooling tank provides assurance that borated water added from the casing cooling tank to RS subsystems will not dilute the solution being recirculated in the containment sump. The 7 day Frequency of this SR was developed considering the known stability of stored borated water and the low probability of any source of diluting pure water. ## SR 3.6.6E.4 Verifying the correct alignment of manual, power operated, and automatic valves, excluding check valves, in the RS System and casing cooling tank provides assurance that the proper flow path exists for operation of the RS System. This SR does not apply to valves that are locked, sealed, or ## SURVEILLANCE REQUIREMENTS ## SR 3.6.6E.4 (continued) otherwise secured in position, since they are verified as being in the correct position prior to being secured. This SR does not require any testing or valve manipulation. Rather, it involves verification, through a system walkdown, that those valves outside containment and capable of potentially being mispositioned are in the correct position. ## SR 3.6.6E.5 Verifying that each RS [and casing cooling] pump's developed head at the flow test point is greater than or equal to the required developed head ensures that these pumps' performance has not degraded during the cycle. Flow and differential head are normal tests of centrifugal pump performance required by Section XI of the ASME Code (Ref. 4). Since the QS System pumps cannot be tested with flow through the spray headers, they are tested on bypass flow. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice tests confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance. The Frequency of this SR is in accordance with the Inservice Testing Program. #### SR 3.6.6E.6 These SRs ensure that each automatic valve actuates and that the RS System and casing cooling pumps start upon receipt of an actual or simulated High-High containment pressure signal. Start delay times are also verified for the RS System pumps. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was considered to be acceptable from a reliability standpoint. ## SURVEILLANCE REQUIREMENTS (continued) ## SR 3.6.6E.7 This SR ensures that each spray nozzle is unobstructed and that spray coverage of the containment will meet its design bases objective. An air or smoke test is performed through each spray header. Due to the passive design of the spray header and its normally dry state, a test at [the first refueling and at] 10 year intervals is considered adequate for detecting obstruction of the nozzles. #### REFERENCES - 1. FSAR, Section [6.2]. - 2. 10 CFR 50.49. - 3. 10 CFR 50, Appendix K. - 4. ASME, Boiler and Pressure Vessel Code, Section XI. #### B 3.6 CONTAINMENT SYSTEMS B 3.6.7 Spray Additive System (Atmospheric, Subatmospheric, Ice Condenser, and Dual) #### BASES #### **BACKGROUND** The Spray Additive System is a subsystem of the Containment Spray System that assists in reducing the iodine fission product inventory in the containment atmosphere resulting from a Design Basis Accident (DBA). Radioiodine in its various forms is the fission product of primary concern in the evaluation of a DBA. It is absorbed by the spray from the containment atmosphere. To enhance the iodine absorption capacity of the spray, the spray solution is adjusted to an alkaline pH that promotes iodine hydrolysis, in which iodine is converted to nonvolatile forms. Because of its stability when exposed to radiation and elevated temperature, sodium hydroxide (NaOH) is the preferred spray additive. The NaOH added to the spray also ensures a pH value of between 8.5 and 11.0 of the solution recirculated from the containment sump. This pH band minimizes the evolution of iodine as well as the occurrence of chloride and caustic stress corrosion on mechanical systems and components. #### Eductor Feed Systems Only The Spray Additive System consists of one spray additive tank that is shared by the two trains of spray additive equipment. Each train of equipment provides a flow path from the spray additive tank to a containment spray pump and consists of an eductor for each containment spray pump, valves, instrumentation, and connecting piping. Each eductor draws the NaOH spray solution from the common tank using a portion of the borated water discharged by the containment spray pump as the motive flow. The eductor mixes the NaOH solution and the borated water and discharges the mixture into the spray pump suction line. The eductors are designed to ensure that the pH of the spray mixture is between 8.5 and 11.0. # BACKGROUND (continued) ## Gravity Feed Systems Only The Spray Additive System consists of one spray additive tank, two parallel redundant motor operated valves in the line between the additive tank and the refueling water storage tank (RWST), instrumentation, and recirculation pumps. The NaOH solution is added to the spray water by a balanced gravity feed from the additive tank through the connecting piping into a weir within the RWST. There, it mixes with the borated water flowing to the spray pump suction. Because of the hydrostatic balance between the two tanks, the flow rate of the NaOH is controlled by the volume per foot of height ratio of the two tanks. This ensures a spray mixture pH that is ≥ 8.5 and ≤ 11.0 . The Containment Spray System actuation signal opens the valves from the spray additive tank to the spray pump suctions or the containment spray pump start signal opens the valves from the spray additive tank after a 5 minute delay. The 28% to 31% NaOH solution is drawn into the spray pump suctions. The spray additive tank capacity provides for the addition of NaOH solution to all of the water sprayed from the RWST into containment. The percent solution and volume of solution sprayed into containment ensures a long term containment sump pH of ≥ 9.0 and ≤ 9.5 . This ensures the continued iodine retention effectiveness of the sump water during the recirculation phase of spray operation and also minimizes the occurrence of chloride induced stress corrosion cracking of the stainless steel recirculation piping. ### APPLICABLE SAFETY ANALYSES The Spray Additive System is essential to the removal of airborne iodine within containment following a DBA. Following the assumed release of radioactive materials into containment, the containment is assumed to leak at its design value volume following the accident. The analysis assumes that 100% of containment is covered by the spray (Ref. 1). The DBA response time assumed for the Spray Additive System is the same as for the Containment Spray System and is discussed in the Bases for LCO 3.6.6, "Containment Spray and Cooling Systems." ## APPLICABLE SAFETY ANALYSES (continued) The DBA analyses assume that one train of the Containment Spray System/Spray Additive System is inoperable and that the entire spray additive tank volume is added to the remaining Containment Spray System flow path. The Spray Additive System satisfies Criterion 3 of the NRC Policy Statement. ## LC0 The Spray Additive System is necessary to reduce the release of radioactive material to the environment in the event of a To be considered OPERABLE, the volume and concentration of the
spray additive solution must be sufficient to provide NaOH injection into the spray flow until the Containment Spray System suction path is switched from the RWST to the containment sump, and to raise the average spray solution pH to a level conducive to iodine removal, namely, to between [7.2 and 11.0]. This pH range maximizes the effectiveness of the iodine removal mechanism without introducing conditions that may induce caustic stress corrosion cracking of mechanical system components. In addition, it is essential that valves in the Spray Additive System flow paths are properly positioned and that automatic valves are capable of activating to their correct positions. #### APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment requiring the operation of the Spray Additive System. The Spray Additive System assists in reducing the iodine fission product inventory prior to release to the environment. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations in these MODES. Thus, the Spray Additive System is not required to be OPERABLE in MODE 5 or 6. #### **ACTIONS** #### A.1 If the Spray Additive System is inoperable, it must be restored to OPERABLE within 72 hours. The pH adjustment of #### **ACTIONS** ## A.1 (continued) the Containment Spray System flow for corrosion protection and iodine removal enhancement is reduced in this condition. The Containment Spray System would still be available and would remove some iodine from the containment atmosphere in the event of a DBA. The 72 hour Completion Time takes into account the redundant flow path capabilities and the low probability of the worst case DBA occurring during this period. ### **B.1** and **B.2** If the Spray Additive System cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 84 hours. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems. The extended interval to reach MODE 5 allows 48 hours for restoration of the Spray Additive System in MODE 3 and 36 hours to reach MODE 5. This is reasonable when considering the reduced pressure and temperature conditions in MODE 3 for the release of radioactive material from the Reactor Coolant System. ## SURVEILLANCE REQUIREMENTS #### SR 3.6.7.1 Verifying the correct alignment of Spray Additive System manual, power operated, and automatic valves in the spray additive flow path provides assurance that the system is able to provide additive to the Containment Spray System in the event of a DBA. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since these valves were verified to be in the correct position prior to locking, sealing, or securing. This SR does not require any testing or valve manipulation. Rather, it involves verification, through a system walkdown, that those valves outside containment and capable of potentially being mispositioned are in the correct position. ## SURVEILLANCE REQUIREMENTS (continued) #### SR 3.6.7.2 To provide effective iodine removal, the containment spray must be an alkaline solution. Since the RWST contents are normally acidic, the volume of the spray additive tank must provide a sufficient volume of spray additive to adjust pH for all water injected. This SR is performed to verify the availability of sufficient NaOH solution in the Spray Additive System. The 184 day Frequency was developed based on the low probability of an undetected change in tank volume occurring during the SR interval (the tank is isolated during normal unit operations). Tank level is also indicated and alarmed in the control room, so that there is high confidence that a substantial change in level would be detected. #### SR 3.6.7.3 This SR provides verification of the NaOH concentration in the spray additive tank and is sufficient to ensure that the spray solution being injected into containment is at the correct pH level. The 184 day Frequency is sufficient to ensure that the concentration level of NaOH in the spray additive tank remains within the established limits. This is based on the low likelihood of an uncontrolled change in concentration (the tank is normally isolated) and the probability that any substantial variance in tank volume will be detected. ### SR 3.6.7.4 This SR provides verification that each automatic valve in the Spray Additive System flow path actuates to its correct position. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. ## SURVEILLANCE REQUIREMENTS (continued) #### SR 3.6.7.5 To ensure that the correct pH level is established in the borated water solution provided by the Containment Spray System, the flow rate in the Spray Additive System is verified once every 5 years. This SR provides assurance that the correct amount of NaOH will be metered into the flow path upon Containment Spray System initiation. Due to the passive nature of the spray additive flow controls, the 5 year Frequency is sufficient to identify component degradation that may affect flow rate. #### REFERENCES 1. FSAR, Chapter [15]. #### B 3.6 CONTAINMENT SYSTEMS B 3.6.8 Hydrogen Recombiners (Atmospheric, Subatmospheric, Ice Condenser, and Dual) (if permanently installed) #### **BASES** #### **BACKGROUND** The function of the hydrogen recombiners is to eliminate the potential breach of containment due to a hydrogen oxygen reaction. Per 10 CFR 50.44, "Standards for Combustible Gas Control Systems in Light-Water-Cooled Reactors" (Ref. 1), and GDC 41, "Containment Atmosphere Cleanup" (Ref. 2), hydrogen recombiners are required to reduce the hydrogen concentration in the containment following a loss of coolant accident (LOCA) or steam line break (SLB). The recombiners accomplish this by recombining hydrogen and oxygen to form water vapor. The vapor remains in containment, thus eliminating any discharge to the environment. The hydrogen recombiners are manually initiated since flammable limits would not be reached until several days after a Design Basis Accident (DBA). Two 100% capacity independent hydrogen recombiner systems are provided. Each consists of controls located in the control room, a power supply and a recombiner. Recombination is accomplished by heating a hydrogen air mixture above 1150°F. The resulting water vapor and discharge gases are cooled prior to discharge from the recombiner. A single recombiner is capable of maintaining the hydrogen concentration in containment below the 4.1 volume percent (v/o) flammability limit. Two recombiners are provided to meet the requirement for redundancy and independence. Each recombiner is powered from a separate Engineered Safety Features bus, and is provided with a separate power panel and control panel. ## APPLICABLE SAFETY ANALYSES The hydrogen recombiners provide for the capability of controlling the bulk hydrogen concentration in containment to less than the lower flammable concentration of 4.1 v/o following a DBA. This control would prevent a containment wide hydrogen burn, thus ensuring the pressure and temperature assumed in the analyses are not exceeded. The limiting DBA relative to hydrogen generation is a LOCA. ### APPLICABLE SAFETY ANALYSES (continued) Hydrogen may accumulate in containment following a LOCA as a result of: - A metal steam reaction between the zirconium fuel rod cladding and the reactor coolant; - Radiolytic decomposition of water in the Reactor Coolant System (RCS) and the containment sump; - c. Hydrogen in the RCS at the time of the LOCA (i.e., hydrogen dissolved in the reactor coolant and hydrogen gas in the pressurizer vapor space); or - d. Corrosion of metals exposed to containment spray and Emergency Core Cooling System solutions. To evaluate the potential for hydrogen accumulation in containment following a LOCA, the hydrogen generation as a function of time following the initiation of the accident is calculated. Conservative assumptions recommended by Reference 3 are used to maximize the amount of hydrogen calculated. Based on the conservative assumptions used to calculate the hydrogen concentration versus time after a LOCA, the hydrogen concentration in the primary containment would reach 3.5 v/o about 6 days after the LOCA and 4.0 v/o about 2 days later if no recombiner was functioning (Ref. 3). Initiating the hydrogen recombiners when the primary containment hydrogen concentration reaches 3.5 v/o will maintain the hydrogen concentration in the primary containment below flammability limits. The hydrogen recombiners are designed such that, with the conservatively calculated hydrogen generation rates discussed above, a single recombiner is capable of limiting the peak hydrogen concentration in containment to less than 4.0 v/o (Ref. 4). The Hydrogen Purge System is similarly designed such that one of two redundant trains is an adequate backup to the redundant hydrogen recombiners. The hydrogen recombiners satisfy Criterion 3 of the NRC Policy Statement. ## BASES (continued) LC0 Two hydrogen recombiners must be OPERABLE. This ensures operation of at least one hydrogen recombiner in the event of a worst case single
active failure. Operation with at least one hydrogen recombiner ensures that the post LOCA hydrogen concentration can be prevented from exceeding the flammability limit. ## **APPLICABILITY** In MODES 1 and 2, two hydrogen recombiners are required to control the hydrogen concentration within containment below its flammability limit of 4.1 v/o following a LOCA, assuming a worst case single failure. In MODES 3 and 4, both the hydrogen production rate and the total hydrogen produced after a LOCA would be less than that calculated for the DBA LOCA. Also, because of the limited time in these MODES, the probability of an accident requiring the hydrogen recombiners is low. Therefore, the hydrogen recombiners are not required in MODE 3 or 4. In MODES 5 and 6, the probability and consequences of a LOCA are low, due to the pressure and temperature limitations in these MODES. Therefore, hydrogen recombiners are not required in these MODES. #### **ACTIONS** #### A.1 With one containment hydrogen recombiner inoperable, the inoperable recombiner must be restored to OPERABLE status within 30 days. In this condition, the remaining OPERABLE hydrogen recombiner is adequate to perform the hydrogen control function. However, the overall reliability is reduced because a single failure in the OPERABLE recombiner could result in reduced hydrogen control capability. The 30 day Completion Time is based on the availability of the other hydrogen recombiner, the small probability of a LOCA or SLB occurring (that would generate an amount of hydrogen that exceeds the flammability limit), and the amount of time available after a LOCA or SLB (should one occur) for operator action to prevent hydrogen accumulation from exceeding the flammability limit. **ACTIONS** ## A.1 (continued) Required Action A.1 has been modified by a Note that states the provisions of LCO 3.0.4 are not applicable. As a result, a MODE change is allowed when one recombiner is inoperable. This allowance is based on the availability of the other hydrogen recombiner, the small probability of a LOCA or SLB occurring (that would generate an amount of hydrogen that exceeds the flammability limit), and the amount of time available after a LOCA or SLB (should one occur) for operator action to prevent hydrogen accumulation from exceeding the flammability limit. #### B.1 and B.2 Reviewer's Note: This Condition is only allowed for units with an alternate hydrogen control system acceptable to the technical staff. With two hydrogen recombiners inoperable, the ability to perform the hydrogen control function via alternate capabilities must be verified by administrative means within 1 hour. The alternate hydrogen control capabilities are provided by [the containment Hydrogen Purge System/hydrogen recombiner/Hydrogen Ignitor System/Hydrogen Mixing System/Containment Air Dilution System/Containment Inerting System]. The 1 hour Completion Time allows a reasonable period of time to verify that a loss of hydrogen control function does not exist. [Reviewer's Note: The following is to be used if a non-Technical Specification alternate hydrogen control function is used to justify this Condition: In addition, the alternate hydrogen control system capability must be verified once per 12 hours thereafter to ensure its continued availability.] [Both] the [initial] verification [and all subsequent verifications] may be performed as an administrative check by examining logs or other information to determine the availability of the alternate hydrogen control system. It does not mean to perform the Surveillances needed to demonstrate OPERABILITY of the alternate hydrogen control system. If the ability to perform the hydrogen control function is maintained, continued operation is permitted with two hydrogen recombiners inoperable for up to 7 days. Seven days is a reasonable time to allow two hydrogen recombiners to be inoperable because the hydrogen control function is #### **ACTIONS** ## B.1 and B.2 (continued) maintained and because of the low probability of the occurrence of a LOCA that would generate hydrogen in the amounts capable of exceeding the flammability limit. ## <u>C.1</u> If the inoperable hydrogen recombiner(s) cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours. The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.6.8.1 Performance of a system functional test for each hydrogen recombiner ensures the recombiners are operational and can attain and sustain the temperature necessary for hydrogen recombination. In particular, this SR verifies that the minimum heater sheath temperature increases to $\geq 700\,^{\circ}\text{F}$ in ≤ 90 minutes. After reaching $700\,^{\circ}\text{F}$, the power is increased to maximum power for approximately 2 minutes and power is verified to be $\geq 60\,$ kW. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. ### SR 3.6.8.2 This SR ensures there are no physical problems that could affect recombiner operation. Since the recombiners are mechanically passive, they are not subject to mechanical failure. The only credible failure involves loss of power, blockage of the internal flow, missile impact, etc. ## SURVEILLANCE REQUIREMENTS ## <u>SR 3.6.8.2</u> (continued) A visual inspection is sufficient to determine abnormal conditions that could cause such failures. The [18] month Frequency for this SR was developed considering the incidence of hydrogen recombiners failing the SR in the past is low. ### SR 3.6.8.3 This SR requires performance of a resistance to ground test for each heater phase to ensure that there are no detectable grounds in any heater phase. This is accomplished by verifying that the resistance to ground for any heater phase is $\geq 10,000$ ohms. The [18] month Frequency for this Surveillance was developed considering the incidence of hydrogen recombiners failing the SR in the past is low. #### REFERENCES - 1. 10 CFR 50.44. - 2. 10 CFR 50, Appendix A, GDC 41. - 3. Regulatory Guide 1.7, Revision [1]. - 4. FSAR Section 15. #### B 3.6 CONTAINMENT SYSTEMS B 3.6.9 Hydrogen Mixing System (HMS) (Atmospheric, Ice Condenser, and Dual) #### BASES #### BACKGROUND The HMS reduces the potential for breach of containment due to a hydrogen oxygen reaction by providing a uniformly mixed post accident containment atmosphere, thereby minimizing the potential for local hydrogen burns due to a pocket of hydrogen above the flammable concentration. Maintaining a uniformly mixed containment atmosphere also ensures that the hydrogen monitors will give an accurate measure of the bulk hydrogen concentration and give the operator the capability of preventing the occurrence of a bulk hydrogen burn inside containment per 10 CFR 50.44, "Standards for Combustible Gas Control Systems in Light-Water-Cooled Reactors" (Ref. 1), and 10 CFR 50, GDC 41, "Containment Atmosphere Cleanup" (Ref. 2). The post accident HMS is an Engineered Safety Feature (ESF) and is designed to withstand a loss of coolant accident (LOCA) without loss of function. The System has two independent trains, each consisting of two fans with their own motors and controls. Each train is sized for [4000] cfm. The two trains are initiated automatically on a Phase A containment isolation signal. The automatic action is to start the nonoperating hydrogen mixing fans on slow speed and shift the operating hydrogen mixing fans (if any) to slow speed. Each train is powered from a separate emergency power supply. Since each train fan can provide 100% of the mixing requirements, the System will provide its design function with a limiting single active failure. Air is drawn from the steam generator compartments by the locally mounted mixing fans and is discharged toward the upper regions of the containment. This complements the air patterns established by the containment air coolers, which take suction from the operating floor level and discharge to the lower regions of the containment, and the containment spray, which cools the air and causes it to drop to lower elevations. The systems work together such that potentially stagnant areas where hydrogen pockets could develop are eliminated. When performing their post accident hydrogen mixing function, the hydrogen mixing fans operate on slow speed to # BACKGROUND (continued) prevent motor overload in a post accident high pressure environment. The design flow rate on slow speed is based on the minimum air distribution requirements to eliminate stagnant hydrogen pockets. Each train is redundant (full capacity) and is powered from an independent ESF bus. The hydrogen mixing fans may be operated on fast speed during normal operation when a containment air cooler is taken out of service. As such, the design flow rate of the hydrogen mixing fans for high speed operation is based on air distribution requirements during such normal operation. ## APPLICABLE SAFETY ANALYSES The HMS provides the capability for reducing the local hydrogen concentration to approximately the bulk average concentration. The limiting DBA relative to hydrogen concentration is a LOCA. Hydrogen may accumulate in containment following a LOCA as a result of: - a. A metal steam reaction between the zirconium fuel rod cladding and the reactor coolant; - Radiolytic decomposition of water in the Reactor Coolant System (RCS) and the containment sump; - c. Hydrogen in the RCS at the time of the LOCA (i.e., hydrogen dissolved in the reactor coolant and hydrogen gas in the pressurizer vapor space); or - d. Corrosion of
metals exposed to containment spray and Emergency Core Cooling System solutions. To evaluate the potential for hydrogen accumulation in containment following a LOCA, the hydrogen generation as a function of time following the initiation of the accident is calculated. Conservative assumptions recommended by Reference 3 are used to maximize the amount of hydrogen calculated. The HMS satisfies Criterion 3 of the NRC Policy Statement. ### BASES (continued) #### LC0 Two HMS trains must be OPERABLE, with power to each from an independent, safety related power supply. Each train typically consists of two fans with their own motors and controls and is automatically initiated by a Phase A containment isolation signal. Operation with at least one HMS train provides the mixing necessary to ensure uniform hydrogen concentration throughout containment. #### APPLICABILITY In MODES 1 and 2, the two HMS trains ensure the capability to prevent localized hydrogen concentrations above the flammability limit of 4.1 volume percent in containment assuming a worst case single active failure. In MODE 3 or 4, both the hydrogen production rate and the total hydrogen produced after a LOCA would be less than that calculated for the DBA LOCA. Also, because of the limited time in these MODES, the probability of an accident requiring the HMS is low. Therefore, the HMS is not required in MODE 3 or 4. In MODES 5 and 6, the probability and consequences of a LOCA or steam line break (SLB) are reduced due to the pressure and temperature limitations in these MODES. Therefore, the HMS is not required in these MODES. #### ACTIONS ### <u>A.1</u> With one HMS train inoperable, the inoperable train must be restored to OPERABLE status within 30 days. In this Condition, the remaining OPERABLE HMS train is adequate to perform the hydrogen mixing function. However, the overall reliability is reduced because a single failure in the OPERABLE train could result in reduced hydrogen mixing capability. The 30 day Completion Time is based on the availability of the other HMS train, the small probability of a LOCA or SLB occurring (that would generate an amount of hydrogen that exceeds the flammability limit), the amount of time available after a LOCA or SLB (should one occur) for operator action to prevent hydrogen accumulation from exceeding the flammability limit, and the availability of #### **ACTIONS** ## A.1 (continued) the hydrogen recombiners, Containment Spray System, Hydrogen Purge System, and hydrogen monitors. Required Action A.1 has been modified by a Note that states the provisions of LCO 3.0.4 are not applicable. As a result, a MODE change is allowed when one HMS train is inoperable. This allowance is based on the availability of the other HMS train, the small probability of a LOCA or SLB occurring (that would generate an amount of hydrogen that exceeds the flammability limit), and the amount of time available after a LOCA or SLB (should one occur) for operator action to prevent hydrogen accumulation from exceeding the flammability limit. #### **B.1** and **B.2** Reviewer's Note: This Condition is only allowed for units with an alternate hydrogen control system acceptable to the technical staff. With two HMS trains inoperable, the ability to perform the hydrogen control function via alternate capabilities must be verified by administrative means within 1 hour. The alternate hydrogen control capabilities are provided by [the containment Hydrogen Purge System/hydrogen recombiner/ Hydrogen Ignitor System/HMS/Containment Air Dilution System/ Containment Inerting System]. The 1 hour Completion Time allows a reasonable period of time to verify that a loss of hydrogen control function does not exist. [Reviewer's Note: The following is to be used if a non-Technical Specification alternate hydrogen control function is used to justify this Condition: In addition, the alternate hydrogen control system capability must be verified once per 12 hours thereafter to ensure its continued availability.] [Both] the [initial] verification [and all subsequent verifications] may be performed as an administrative check. by examining logs or other information to determine the availability of the alternate hydrogen control system. It does not mean to perform the Surveillances needed to demonstrate OPERABILITY of the alternate hydrogen control system. If the ability to perform the hydrogen control function is maintained, continued operation is permitted with two HMS trains inoperable for up to 7 days. Seven days #### **ACTIONS** ## B.1 and B.2 (continued) is a reasonable time to allow two HMS trains to be inoperable because the hydrogen control function is maintained and because of the low probability of the occurrence of a LOCA that would generate hydrogen in the amounts capable of exceeding the flammability limit. #### C.1 If an inoperable HMS train cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.6.9.1 Operating each HMS train for ≥ 15 minutes ensures that each train is OPERABLE and that all associated controls are functioning properly. It also ensures that blockage, fan and/or motor failure, or excessive vibration can be detected for corrective action. The 92 day Frequency is consistent with Inservice Testing Program Surveillance Frequencies, operating experience, the known reliability of the fan motors and controls, and the two train redundancy available. #### SR 3.6.9.2 Verifying that each HMS train flow rate on slow speed is ≥ [4000] cfm ensures that each train is capable of maintaining localized hydrogen concentrations below the flammability limit. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when ## SURVEILLANCE REQUIREMENTS ## SR 3.6.9.2 (continued) performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. #### SR 3.6.9.3 This SR ensures that each HMS train responds properly to a containment cooling actuation signal. The Surveillance verifies that each fan starts on slow speed from the nonoperating condition and that each fan shifts to slow speed from fast operating condition. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. ### REFERENCES - 1. 10 CFR 50.44. - 2. 10 CFR 50, Appendix A, GDC 41. - 3. Regulatory Guide 1.7, Revision [1]. #### B 3.6 CONTAINMENT SYSTEMS B 3.6.10 Hydrogen Ignition System (HIS) (Ice Condenser) #### **BASES** #### BACKGROUND The HIS reduces the potential for breach of primary containment due to a hydrogen oxygen reaction in post accident environments. The HIS is required by 10 CFR 50.44, "Standards for Combustible Gas Control Systems in Light-Water-Cooled Reactors" (Ref. 1), and Appendix A, GDC 41, "Containment Atmosphere Cleanup" (Ref. 2), to reduce the hydrogen concentration in the primary containment following a degraded core accident. The HIS must be capable of handling an amount of hydrogen equivalent to that generated from a metal water reaction involving 75% of the fuel cladding surrounding the active fuel region (excluding the plenum volume). 10 CFR 50.44 (Ref. 1) requires units with ice condenser containments to install suitable hydrogen control systems that would accommodate an amount of hydrogen equivalent to that generated from the reaction of 75% of the fuel cladding with water. The HIS provides this required capability. This requirement was placed on ice condenser units because of their small containment volume and low design pressure (compared with pressurized water reactor dry containments). Calculations indicate that if hydrogen equivalent to that generated from the reaction of 75% of the fuel cladding with water were to collect in the primary containment, the resulting hydrogen concentration would be far above the lower flammability limit such that, if ignited from a random ignition source, the resulting hydrogen burn would seriously challenge the containment and safety systems in the containment. The HIS is based on the concept of controlled ignition using thermal ignitors, designed to be capable of functioning in a post accident environment, seismically supported, and capable of actuation from the control room. A total of [64] ignitors are distributed throughout the various regions of containment in which hydrogen could be released or to which it could flow in significant quantities. The ignitors are arranged in two independent trains such that each containment region has at least two ignitors, one from each train, controlled and powered redundantly so that ignition # BACKGROUND (continued) would occur in each region even if one train failed to energize. When the HIS is initiated, the ignitor elements are energized and heat up to a surface temperature \geq [1700]°F. At this temperature, they ignite the hydrogen gas that is present in the airspace in the vicinity of the ignitor. The HIS depends on the dispersed location of the ignitors so that local pockets of hydrogen at increased concentrations
would burn before reaching a hydrogen concentration significantly higher than the lower flammability limit. Hydrogen ignition in the vicinity of the ignitors is assumed to occur when the local hydrogen concentration reaches [8.0] volume percent (v/o) and results in [85]% of the hydrogen present being consumed. ## APPLICABLE SAFETY ANALYSES The HIS causes hydrogen in containment to burn in a controlled manner as it accumulates following a degraded core accident (Ref. 3). Burning occurs at the lower flammability concentration, where the resulting temperatures and pressures are relatively benign. Without the system, hydrogen could build up to higher concentrations that could result in a violent reaction if ignited by a random ignition source after such a buildup. The hydrogen ignitors are not included for mitigation of a Design Basis Accident (DBA) because an amount of hydrogen equivalent to that generated from the reaction of 75% of the fuel cladding with water is far in excess of the hydrogen calculated for the limiting DBA loss of coolant accident (LOCA). The hydrogen concentration resulting from a DBA can be maintained less than the flammability limit using the hydrogen recombiners. The hydrogen ignitors, however, have been shown by probabilistic risk analysis to be a significant contributor to limiting the severity of accident sequences that are commonly found to dominate risk for units with ice condenser containments. As such, the hydrogen ignitors are considered to be risk significant in accordance with the NRC Policy Statement. LC₀ Two HIS trains must be OPERABLE with power from two independent, safety related power supplies. # LCO (continued) For this unit, an OPERABLE HIS train consists of 32 of 33 ignitors energized on the train. Operation with at least one HIS train ensures that the hydrogen in containment can be burned in a controlled manner. Unavailability of both HIS trains could lead to hydrogen buildup to higher concentrations, which could result in a violent reaction if ignited. The reaction could take place fast enough to lead to high temperatures and overpressurization of containment and, as a result, breach containment or cause containment leakage rates above those assumed in the safety analyses. Damage to safety related equipment located in containment could also occur. #### APPLICABILITY Requiring OPERABILITY in MODES 1 and 2 for the HIS ensures its immediate availability after safety injection and scram actuated on a LOCA initiation. In the post accident environment, the two HIS subsystems are required to control the hydrogen concentration within containment to near its flammability limit of 4.1 v/o assuming a worst case single failure. This prevents overpressurization of containment and damage to safety related equipment and instruments located within containment. In MODES 3 and 4, both the hydrogen production rate and the total hydrogen production after a LOCA would be significantly less than that calculated for the DBA LOCA. Also, because of the limited time in these MODES, the probability of an accident requiring the HIS is low. Therefore, the HIS is not required in MODES 3 and 4. In MODES 5 and 6, the probability and consequences of a LOCA are reduced due to the pressure and temperature limitations of these MODES. Therefore, the HIS is not required to be OPERABLE in MODES 5 and 6. #### **ACTIONS** ## A.1 and A.2 With one HIS train inoperable, the inoperable train must be restored to OPERABLE status within 7 days or the OPERABLE train must be verified OPERABLE frequently by performance of SR 3.6.10.1. The 7 day Completion Time is based on the low #### **ACTIONS** # A.1 and A.2 (continued) probability of the occurrence of a degraded core event that would generate hydrogen in amounts equivalent to a metal water reaction of 75% of the core cladding, the length of time after the event that operator action would be required to prevent hydrogen accumulation from exceeding this limit, and the low probability of failure of the OPERABLE HIS train. Alternative Required Action A.2, by frequent surveillances, provides assurance that the OPERABLE train continues to be OPERABLE. #### B.1 Condition B is one containment region with no OPERABLE hydrogen ignitor. Thus, while in Condition B, or in Conditions A and B simultaneously, there would always be ignition capability in the adjacent containment regions that would provide redundant capability by flame propagation to the region with no OPERABLE ignitors. Required Action B.1 calls for the restoration of one hydrogen ignitor in each region to OPERABLE status within 7 days. The 7 day Completion Time is based on the same reasons given under Required Action A.1. #### <u>C.1</u> The unit must be placed in a MODE in which the LCO does not apply if the HIS subsystem(s) cannot be restored to OPERABLE status within the associated Completion Time. This is done by placing the unit in at least MODE 3 within 6 hours. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS ## SR 3.6.10.1 This SR confirms that \geq [32] of 33 hydrogen ignitors can be successfully energized in each train. The ignitors are simple resistance elements. Therefore, energizing provides ## SURVEILLANCE REQUIREMENTS # <u>SR 3.6.10.1</u> (continued) assurance of OPERABILITY. The allowance of one inoperable hydrogen ignitor is acceptable because, although one inoperable hydrogen ignitor in a region would compromise redundancy in that region, the containment regions are interconnected so that ignition in one region would cause burning to progress to the others (i.e., there is overlap in each hydrogen ignitor's effectiveness between regions). The Frequency of 92 days has been shown to be acceptable through operating experience. #### SR 3.6.10.2 This SR confirms that the two inoperable hydrogen ignitors allowed by SR 3.6.10.1 (i.e., one in each train) are not in the same containment region. The Frequency of 92 days is acceptable based on the Frequency of SR 3.6.10.1, which provides the information for performing this SR. ### SR 3.6.10.3 A more detailed functional test is performed every 18 months to verify system OPERABILITY. Each glow plug is visually examined to ensure that it is clean and that the electrical circuitry is energized. All ignitors (glow plugs), including normally inaccessible ignitors, are visually checked for a glow to verify that they are energized. Additionally, the surface temperature of each glow plug is measured to be \geq [1700]°F to demonstrate that a temperature sufficient for ignition is achieved. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the SR when performed at the [18] month Frequency, which is based on the refueling cycle. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. # BASES (continued) # **REFERENCES** - 1. 10 CFR 50.44. - 2. 10 CFR 50, Appendix A, GDC 41. - 3. FSAR, Section [6.2]. #### B 3.6 CONTAINMENT SYSTEMS B 3.6.11 Iodine Cleanup System (ICS) (Atmospheric and Subatmospheric) #### **BASES** #### BACKGROUND The ICS is provided per GDC 41, "Containment Atmosphere Cleanup," GDC 42, "Inspection of Containment Atmosphere Cleanup Systems," and GDC 43, "Testing of Containment Atmosphere Cleanup Systems" (Ref. 1), to reduce the concentration of fission products released to the containment atmosphere following a postulated accident. The ICS would function together with the Containment Spray and Cooling systems following a Design Basis Accident (DBA) to reduce the potential release of radioactive material, principally iodine, from the containment to the environment. The ICS consists of two 100% capacity, separate, independent, and redundant trains. Each train includes a heater, [cooling coils,] a prefilter, a demister, a high efficiency particulate air (HEPA) filter, an activated charcoal adsorber section for removal of radioiodines, and a fan. Ductwork, valves and/or dampers, and instrumentation also form part of the system. The demisters function to reduce the moisture content of the airstream. A second bank of HEPA filters follows the adsorber section to collect carbon fines and provide backup in case of failure in sections of the main HEPA filter bank. The upstream HEPA filter and the charcoal adsorber section are credited in the analysis. The system initiates filtered recirculation of the containment atmosphere following receipt of a safety injection signal. The system design is described in Reference 2. The demister is included for moisture (free water) removal from the gas stream. Heaters are used to heat the gas stream, which lowers the relative humidity. Continuous operation of each train for at least 10 hours per month with the heaters on reduces moisture buildup on the HEPA filters and adsorbers. Both the demister and heater are important to the effectiveness of the charcoal adsorbers. The primary purpose of the heaters is to ensure that the relative humidity of the airstream entering the charcoal adsorbers is maintained below 70%, which is consistent with the assigned iodine and iodide removal efficiencies as per Regulatory Guide 1.52 (Ref. 3). # BACKGROUND (continued) Two ICS trains are provided to meet the requirement for separation, independence, and redundancy. Each ICS train is powered from a separate Engineered Safety Features bus and is provided with a separate power panel and control panel. [Essential service water is required to supply cooling water to the cooling coils.] During normal operation, the Containment Cooling System is aligned to bypass the ICS HEPA filters and charcoal
adsorbers. For ICS operation following a DBA, however, the bypass dampers automatically reposition to draw the air through the filters and adsorbers. ### APPLICABLE SAFETY ANALYSES The DBAs that result in a release of radioactive iodine within containment are a loss of coolant accident (LOCA) or a rod ejection accident (REA). In the analysis for each of these accidents, it is assumed that adequate containment leak tightness is intact at event initiation to limit potential leakage to the environment. Additionally, it is assumed that the amount of radioactive iodine released is limited by reducing the iodine concentration present in the containment atmosphere. The ICS design basis is established by the consequences of the limiting DBA, which is a LOCA. The accident analysis (Ref. 4) assume that only one train of the ICS is functional due to a single failure that disables the other train. The accident analysis accounts for the reduction in airborne radioactive iodine provided by the remaining one train of this filtration system. The ICS satisfies Criterion 3 of the NRC Policy Statement. LCO Two separate, independent, and redundant trains of the ICS are required to ensure that at least one is available, assuming a single failure coincident with a loss of offsite power. ## APPLICABILITY In MODES 1, 2, 3, and 4, iodine is a fission product that can be released from the fuel to the reactor coolant as a # APPLICABILITY (continued) result of a DBA. The DBAs that can cause a failure of the fuel cladding are a LOCA, SLB, and REA. Because these accidents are considered credible accidents in MODES 1, 2, 3, and 4, the ICS must be operable to ensure the reduction in iodine concentration assumed in the accident analyses. In MODES 5 and 6, the probability and consequences of a LOCA are low due to the pressure and temperature limitations of these MODES. The ICS is not required in these MODES to remove iodine from the containment atmosphere. #### ACTIONS ## <u>A.1</u> With one ICS train inoperable, the inoperable train must be restored to OPERABLE status within 7 days. The components in this degraded condition are capable of providing 100% of the iodine removal needs after a DBA. The 7 day Completion Time is based on consideration of such factors as: - a. The availability of the OPERABLE redundant ICS train; - b. The fact that, even with no ICS train in operation, almost the same amount of iodine would be removed from the containment atmosphere through absorption by the Containment Spray System; and - c. The fact that the Completion Time is adequate to make most repairs. #### **B.1** and **B.2** If the ICS train cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner without challenging plant systems. # SURVEILLANCE REQUIREMENTS # SR 3.6.11.1 Operating each ICS train for ≥ 15 minutes ensures that all trains are OPERABLE and that all associated controls are functioning properly. It also ensures that blockage, fan or motor failure, or excessive vibration can be detected for corrective action. For systems with heaters, operation with the heaters on (automatic heater cycling to maintain temperature) for ≥ 10 continuous hours eliminates moisture on the adsorbers and HEPA filters. Experience from filter testing at operating units indicates that the 10 hour period is adequate for moisture elimination on the adsorbers and HEPA filters. The 31 day Frequency was developed considering the known reliability of fan motors and controls, the two train redundancy available, and the iodine removal capability of the Containment Spray System independent of the ICS. ### SR 3.6.11.2 This SR verifies that the required ICS filter testing is performed in accordance with the Ventilation Filter Testing Program (VFTP). The ICS filter tests are in accordance with Regulatory Guide 1.52 (Ref. 3). The VFTP includes testing HEPA filter performance, charcoal adsorber efficiency, minimum system flow rate, and the physical properties of the activated charcoal (general use and following specific operations). Specific test frequencies and additional information are discussed in detail in the VFTP. ## SR 3.6.11.3 The automatic startup test verifies that both trains of equipment start upon receipt of an actual or simulated test signal. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. Furthermore, the Frequency was developed considering that # SURVEILLANCE REQUIREMENTS # <u>SR 3.6.11.3</u> (continued) the system equipment OPERABILITY is demonstrated at a 31 day Frequency by SR 3.6.11.1. #### SR 3.6.11.4 The ICS filter bypass dampers are tested to verify OPERABILITY. The dampers are in the bypass position during normal operation and must reposition for accident operation to draw air through the filters. The [18] month Frequency is considered to be acceptable based on the damper reliability and design, the mild environmental conditions in the vicinity of the dampers, and the fact that operating experience has shown that the dampers usually pass the Surveillance when performed at the [18] month Frequency. ## REFERENCES - 1. 10 CFR 50, Appendix A, GDC 41, GDC 42, and GDC 43. - 2. FSAR, Section [6.5]. - 3. Regulatory Guide 1.52, Revision [1]. - 4. FSAR, Chapter [15]. #### B 3.6 CONTAINMENT SYSTEMS B 3.6.12 Vacuum Relief Valves (Atmospheric and Ice Condenser) #### **BASES** #### **BACKGROUND** The purpose of the vacuum relief lines is to protect the containment vessel against negative pressure (i.e., a lower pressure inside than outside). Excessive negative pressure inside containment can occur if there is an inadvertent actuation of containment cooling features, such as the Containment Spray System. Multiple equipment failures or human errors are necessary to cause inadvertent actuation of these systems. The containment pressure vessel contains two 100% vacuum relief lines that protect the containment from excessive external loading. For this facility, the characteristics of the vacuum relief valves and their locations in the containment pressure vessel are as follows: # APPLICABLE SAFETY ANALYSES Design of the vacuum relief lines involves calculating the effect of inadvertent actuation of containment cooling features, which can reduce the atmospheric temperature (and hence pressure) inside containment (Ref. 1). Conservative assumptions are used for all the relevant parameters in the calculation; for example, for the Containment Spray System, the minimum spray water temperature, maximum initial containment temperature, maximum spray flow, all spray trains operating, etc. The resulting containment pressure versus time is calculated, including the effect of the opening of the vacuum relief lines when their negative pressure setpoint is reached. It is also assumed that one valve fails to open. The containment was designed for an external pressure load equivalent to [-2.5] psig. The inadvertent actuation of the containment cooling features was analyzed to determine the resulting reduction in containment pressure. The initial pressure condition used in this analysis was [-0.3] psig. This resulted in a minimum pressure inside containment of [-2.0] psig, which is less than the design load. ## APPLICABLE SAFETY ANALYSES (continued) The vacuum relief valves must also perform the containment isolation function in a containment high pressure event. For this reason, the system is designed to take the full containment positive design pressure and the environmental conditions (temperature, pressure, humidity, radiation, chemical attack, etc.) associated with the containment DBA. The vacuum relief valves satisfy Criterion 3 of the NRC Policy Statement. #### LCO The LCO establishes the minimum equipment required to accomplish the vacuum relief function following the inadvertent actuation of containment cooling features. Two 100% vacuum relief lines are required to be OPERABLE to ensure that at least one is available, assuming one or both valves in the other line fail to open. #### APPLICABILITY In MODES 1, 2, 3, and 4, the containment cooling features, such as the Containment Spray System, are required to be OPERABLE to mitigate the effects of a DBA. Excessive negative pressure inside containment could occur whenever these systems are required to be OPERABLE due to inadvertent actuation of these systems. Therefore, the vacuum relief lines are required to be OPERABLE in MODES 1, 2, 3, and 4 to mitigate the effects of inadvertent actuation of the Containment Spray System, Quench Spray (QS) System, or Containment Cooling System. In MODES 5 and 6, the probability and consequences of a DBA are reduced due to the pressure and temperature limitations of these MODES. The Containment Spray System, QS System, and Containment Cooling System are not required to be OPERABLE in MODES 5 and 6. Therefore, maintaining OPERABLE vacuum relief valves is not required in MODE 5 or 6. #### **ACTIONS** #### A.1 When one of the required vacuum relief lines is inoperable, the inoperable line must be restored to OPERABLE status within 72 hours. The specified time period is consistent #### BASES #### **ACTIONS** # A.1 (continued) with other LCOs for the loss of one train of a system required to mitigate the consequences of a LOCA or other DBA. #### B.1
and B.2 If the vacuum relief line cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS # SR 3.6.12.1 This SR cites the Inservice Testing Program, which establishes the requirement that inservice testing of the ASME Code Class 1, 2, and 3 pumps and valves shall be performed in accordance with Section XI of the ASME, Boiler and Pressure Vessel Code and applicable Addenda (Ref. 2). Therefore, SR Frequency is governed by the Inservice Testing Program. #### **REFERENCES** - 1. FSAR, Section [6.2]. - 2. ASME, Boiler and Pressure Vessel Code, Section XI. #### B 3.6 CONTAINMENT SYSTEMS B 3.6.13 Shield Building Air Cleanup System (SBACS) (Dual and Ice Condenser) #### BASES ## **BACKGROUND** The SBACS is required by 10 CFR 50, Appendix A, GDC 41, "Containment Atmosphere Cleanup" (Ref. 1), to ensure that radioactive materials that leak from the primary containment into the shield building (secondary containment) following a Design Basis Accident (DBA) are filtered and adsorbed prior to exhausting to the environment. The containment has a secondary containment called the shield building, which is a concrete structure that surrounds the steel primary containment vessel. Between the containment vessel and the shield building inner wall is an annular space that collects any containment leakage that may occur following a loss of coolant accident (LOCA). This space also allows for periodic inspection of the outer surface of the steel containment vessel. The SBACS establishes a negative pressure in the annulus between the shield building and the steel containment vessel. Filters in the system then control the release of radioactive contaminants to the environment. Shield building OPERABILITY is required to ensure retention of primary containment leakage and proper operation of the SBACS. The SBACS consists of two separate and redundant trains. Each train includes a heater, [cooling coils,] a prefilter, moisture separators, a high efficiency particulate air (HEPA) filter, an activated charcoal adsorber section for removal of radioiodines, and a fan. Ductwork, valves and/or dampers, and instrumentation also form part of the system. The moisture separators function to reduce the moisture content of the airstream. A second bank of HEPA filters follows the adsorber section to collect carbon fines and provide backup in case of failure of the main HEPA filter bank. Only the upstream HEPA filter and the charcoal adsorber section are credited in the analysis. The system initiates and maintains a negative air pressure in the shield building by means of filtered exhaust ventilation of the shield building following receipt of a safety injection (SI) signal. The system is described in Reference 2. # BACKGROUND (continued) The prefilters remove large particles in the air, and the moisture separators remove entrained water droplets present, to prevent excessive loading of the HEPA filters and charcoal absorbers. Heaters may be included to reduce the relative humidity of the airstream on systems that operate in high humidity. Continuous operation of each train, for at least 10 hours per month, with heaters on, reduces moisture buildup on their HEPA filters and adsorbers. [The cooling coils cool the air to keep the charcoal beds from becoming too hot due to absorption of fission product.] During normal operation, the Shield Building Cooling System is aligned to bypass the SBACS's HEPA filters and charcoal adsorbers. For SBACS operation following a DBA, however, the bypass dampers automatically reposition to draw the air through the filters and adsorbers. The SBACS reduces the radioactive content in the shield building atmosphere following a DBA. Loss of the SBACS could cause site boundary doses, in the event of a DBA, to exceed the values given in the licensing basis. ### APPLICABLE SAFETY ANALYSES The SBACS design basis is established by the consequences of the limiting DBA, which is a LOCA. The accident analysis (Ref. 3) assumes that only one train of the SBACS is functional due to a single failure that disables the other train. The accident analysis accounts for the reduction in airborne radioactive material provided by the remaining one train of this filtration system. The amount of fission products available for release from containment is determined for a LOCA. The modeled SBACS actuation in the safety analyses is based upon a worst case response time following an SI initiated at the limiting setpoint. The total response time, from exceeding the signal setpoint to attaining the negative pressure of [0.5] inch water gauge in the shield building, is [22 seconds]. This response time is composed of signal delay, diesel generator startup and sequencing time, system startup time, and time for the system to attain the required pressure after starting. The SBACS satisfies Criterion 3 of the NRC Policy Statement. ## BASES (continued) LC0 In the event of a DBA, one SBACS train is required to provide the minimum particulate iodine removal assumed in the safety analysis. Two trains of the SBACS must be OPERABLE to ensure that at least one train will operate, assuming that the other train is disabled by a single active failure. ### APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could lead to fission product release to containment that leaks to the shield building. The large break LOCA, on which this system's design is based, is a full power event. Less severe LOCAs and leakage still require the system to be OPERABLE throughout these MODES. The probability and severity of a LOCA decrease as core power and Reactor Coolant System pressure decrease. With the reactor shut down, the probability of release of radioactivity resulting from such an accident is low. In MODES 5 and 6, the probability and consequences of a DBA are low due to the pressure and temperature limitations in these MODES. Under these conditions, the Filtration System is not required to be OPERABLE (although one or more trains may be operating for other reasons, such as habitability during maintenance in the shield building annulus). ## **ACTIONS** #### A.1 With one SBACS train inoperable, the inoperable train must be restored to OPERABLE status within 7 days. The components in this degraded condition are capable of providing 100% of the iodine removal needs after a DBA. The 7 day Completion Time is based on consideration of such factors as the availability of the OPERABLE redundant SBACS train and the low probability of a DBA occurring during this period. The Completion Time is adequate to make most repairs. ### B.1 and B.2 If the SBACS train cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To ## **ACTIONS** # **B.1** and **B.2** (continued) achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.6.13.1 Operating each SBACS train for ≥ 15 minutes ensures that all trains are OPERABLE and that all associated controls are functioning properly. It also ensures that blockage, fan or motor failure, or excessive vibration can be detected for corrective action. For systems with heaters, operation with the heaters on (automatic heater cycling to maintain temperature) for ≥ 10 continuous hours eliminates moisture on the adsorbers and HEPA filters. Experience from filter testing at operating units indicates that the 10 hour period is adequate for moisture elimination on the adsorbers and HEPA filters. The 31 day Frequency was developed in consideration of the known reliability of fan motors and controls, the two train redundancy available, and the iodine removal capability of the Containment Spray System. #### SR 3.6.13.2 This SR verifies that the required SBACS filter testing is performed in accordance with the Ventilation Filter Testing Program (VFTP). The SBACS filter tests are in accordance with Regulatory Guide 1.52 (Ref. 4). The VFTP includes testing HEPA filter performance, charcoal adsorber efficiency, minimum system flow rate, and the physical properties of the activated charcoal (general use and following specific operations). Specific test frequencies and additional information are discussed in detail in the VFTP. ## SURVEILLANCE REQUIREMENTS (continued) ## SR 3.6.13.3 The automatic startup ensures that each SBACS train responds properly. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore the Frequency was concluded to be acceptable from a reliability standpoint. Furthermore, the SR interval was developed considering that the SBACS equipment OPERABILITY is demonstrated at a 31 day Frequency by SR 3.6.13.1. #### SR 3.6.13.4 The SBACS filter bypass dampers are tested to verify OPERABILITY. The dampers are in the bypass position during normal operation and must reposition for accident operation to draw air through the filters. The [18] month Frequency is considered to be acceptable based on damper reliability and design, mild environmental conditions in
the vicinity of the dampers, and the fact that operating experience has shown that the dampers usually pass the Surveillance when performed at the [18] month Frequency. #### SR 3.6.13.5 The proper functioning of the fans, dampers, filters, adsorbers, etc., as a system is verified by the ability of each train to produce the required system flow rate. The [18] month Frequency on a STAGGERED TEST BASIS is consistent with Regulatory Guide 1.52 (Ref. 4) guidance for functional testing. #### REFERENCES - 1. 10 CFR 50, Appendix A, GDC 41. - 2. FSAR, Section [6.5]. - FSAR, Chapter [15]. - 4. Regulatory Guide 1.52, Revision [1]. #### B 3.6 CONTAINMENT SYSTEMS B 3.6.14 Air Return System (ARS) (Ice Condenser) #### **BASES** #### **BACKGROUND** The ARS is designed to assure the rapid return of air from the upper to the lower containment compartment after the initial blowdown following a Design Basis Accident (DBA). The return of this air to the lower compartment and subsequent recirculation back up through the ice condenser assists in cooling the containment atmosphere and limiting post accident pressure and temperature in containment to less than design values. Limiting pressure and temperature reduces the release of fission product radioactivity from containment to the environment in the event of a DBA. The ARS provides post accident hydrogen mixing in selected areas of containment. The associated Hydrogen Skimmer System consists of hydrogen collection headers routed to potential hydrogen pockets in containment, terminating on the suction side of either of the two ARS fans at the header isolation valves. The minimum design flow from each potential hydrogen pocket is sufficient to limit the local concentration of hydrogen. The ARS consists of two separate trains of equal capacity, each capable of meeting the design bases. Each train includes a 100% capacity air return fan, associated damper, and hydrogen collection headers with isolation valves. Each train is powered from a separate Engineered Safety Features (ESF) bus. The ARS fans are automatically started and the hydrogen collection header isolation valves are opened by the containment pressure High-High signal 10 minutes after the containment pressure reaches the pressure setpoint. The time delay ensures that no energy released during the initial phase of a DBA will bypass the ice bed through the ARS fans or Hydrogen Skimmer System. After starting, the fans displace air from the upper compartment to the lower compartment, thereby returning the air that was displaced by the high energy line break blowdown from the lower compartment and equalizing pressures throughout containment. After discharge into the lower compartment, air flows with steam produced by residual heat # BACKGROUND (continued) through the ice condenser doors into the ice condenser compartment where the steam portion of the flow is condensed. The air flow returns to the upper compartment through the top deck doors in the upper portion of the ice condenser compartment. The ARS fans operate continuously after actuation, circulating air through the containment volume and purging all potential hydrogen pockets in containment. When the containment pressure falls below a predetermined value, the ARS fans are automatically de-energized. Thereafter, the fans are automatically cycled on and off if necessary to control any additional containment pressure transients. The ARS also functions, after all the ice has melted, to circulate any steam still entering the lower compartment to the upper compartment where the Containment Spray System can cool it. The ARS is an ESF system. It is designed to ensure that the heat removal capability required during the post accident period can be attained. The operation of the ARS, in conjunction with the ice bed, the Containment Spray System, and the Residual Heat Removal (RHR) System spray, provides the required heat removal capability to limit post accident conditions to less than the containment design values. # APPLICABLE SAFETY ANALYSES The limiting DBAs considered relative to containment temperature and pressure are the loss of coolant accident (LOCA) and the steam line break (SLB). The LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure and temperature transients. DBAs are assumed not to occur simultaneously or consecutively. The postulated DBAs are analyzed, in regard to ESF systems, assuming the loss of one ESF bus, which is the worst case single active failure and results in one train each of the Containment Spray System, RHR System, and ARS being inoperable (Ref. 1). The DBA analyses show that the maximum peak containment pressure results from the LOCA analysis and is calculated to be less than the containment design pressure. For certain aspects of transient accident analyses, maximizing the calculated containment pressure is not conservative. In particular, the cooling effectiveness of ## APPLICABLE SAFETY ANALYSES (continued) the Emergency Core Cooling System during the core reflood phase of a LOCA analysis increases with increasing containment backpressure. For these calculations, the containment backpressure is calculated in a manner designed to conservatively minimize, rather than maximize, the calculated transient containment pressures, in accordance with 10 CFR 50, Appendix K (Ref. 2). The analysis for minimum internal containment pressure (i.e., maximum external differential containment pressure) assumes inadvertent simultaneous actuation of both the ARS and the Containment Spray System. The containment vacuum relief valves are designed to accommodate inadvertent actuation of either or both systems. The modeled ARS actuation from the containment analysis is based upon a response time associated with exceeding the containment pressure High-High signal setpoint to achieving full ARS air flow. A delayed response time initiation provides conservative analyses of peak calculated containment temperature and pressure responses. The ARS total response time of 600 seconds consists of the built in signal delay. The ARS satisfies Criterion 3 of the NRC Policy Statement. ## LC0 In the event of a DBA, one train of the ARS with the Hydrogen Skimmer System is required to provide the minimum air recirculation for heat removal and hydrogen mixing assumed in the safety analyses. To ensure this requirement is met, two trains of the ARS with the Hydrogen Skimmer System must be OPERABLE. This will ensure that at least one train will operate, assuming the worst case single failure occurs, which is in the ESF power supply. #### APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause an increase in containment pressure and temperature requiring the operation of the ARS. Therefore, the LCO is applicable in MODES 1, 2, 3, and 4. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature # APPLICABILITY (continued) limitations of these MODES. Therefore, the ARS is not required to be OPERABLE in these MODES. #### **ACTIONS** #### <u>A.1</u> If one of the required trains of the ARS is inoperable, it must be restored to OPERABLE status within 72 hours. The components in this degraded condition are capable of providing 100% of the flow and hydrogen skimming needs after an accident. The 72 hour Completion Time was developed taking into account the redundant flow and hydrogen skimming capability of the OPERABLE ARS train and the low probability of a DBA occurring in this period. ## **B.1** and **B.2** If the ARS train cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS ## SR 3.6.14.1 Verifying that each ARS fan starts on an actual or simulated actuation signal, after a delay \geq [9.0] minutes and \leq [11.0] minutes, and operates for \geq 15 minutes is sufficient to ensure that all fans are OPERABLE and that all associated controls and time delays are functioning properly. It also ensures that blockage, fan and/or motor failure, or excessive vibration can be detected for corrective action. The [92] day Frequency was developed considering the known reliability of fan motors and controls and the two train redundancy available. ## SURVEILLANCE REQUIREMENTS (continued) ## SR 3.6.14.2 Verifying ARS fan motor current to be at rated speed with the return air dampers closed confirms one operating condition of the fan. This test is indicative of overall fan motor performance. Such inservice tests confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance. The Frequency of 92 days conforms with the testing requirements for similar ESF equipment and considers the known reliability of fan motors and controls and the two train redundancy available. #### SR 3.6.14.3 Verifying the OPERABILITY of the return air damper provides assurance that the proper flow path will exist when the fan is started. By applying the correct counterweight, the damper operation can be confirmed. The Frequency of 92 days was developed considering the importance of the dampers, their location, physical environment, and probability of failure. Operating experience has also shown this Frequency to be acceptable. #### SR 3.6.14.4 Verifying the OPERABILITY of the motor operated valve in the Hydrogen Skimmer System hydrogen collection header to the lower containment compartment provides assurance that the proper flow path will exist when the valve receives an actuation signal. This Surveillance is not required for valves that are locked,
sealed, or otherwise secured in the required position under administrative controls. This Surveillance also confirms that the time delay to open is within specified tolerances. The 92 day Frequency was developed considering the known reliability of the motor operated valves and controls and the two train redundancy available. Operating experience has also shown this Frequency to be acceptable. #### REFERENCES - 1. FSAR, Section [6.2]. - 2. 10 CFR 50, Appendix K. #### B 3.6 CONTAINMENT SYSTEMS B 3.6.15 Ice Bed (Ice Condenser) #### BASES #### BACKGROUND The ice bed consists of over 2,721,600 lb of ice stored in baskets within the ice condenser. Its primary purpose is to provide a large heat sink in the event of a release of energy from a Design Basis Accident (DBA) in containment. The ice would absorb energy and limit containment peak pressure and temperature during the accident transient. Limiting the pressure and temperature reduces the release of fission product radioactivity from containment to the environment in the event of a DBA. The ice condenser is an annular compartment enclosing approximately 300° of the perimeter of the upper containment compartment, but penetrating the operating deck so that a portion extends into the lower containment compartment. The lower portion has a series of hinged doors exposed to the atmosphere of the lower containment compartment, which, for normal unit operation, are designed to remain closed. At the top of the ice condenser is another set of doors exposed to the atmosphere of the upper compartment, which also remain closed during normal unit operation. Intermediate deck doors, located below the top deck doors, form the floor of a plenum at the upper part of the ice condenser. These doors also remain closed during normal unit operation. The upper plenum area is used to facilitate surveillance and maintenance of the ice bed. The ice baskets held in the ice bed within the ice condenser are arranged to promote heat transfer from steam to ice. This arrangement enhances the ice condenser's primary function of condensing steam and absorbing heat energy released to the containment during a DBA. In the event of a DBA, the ice condenser inlet doors (located below the operating deck) open due to the pressure rise in the lower compartment. This allows air and steam to flow from the lower compartment into the ice condenser. The resulting pressure increase within the ice condenser causes the intermediate deck doors and the top deck doors to open, which allows the air to flow out of the ice condenser into the upper compartment. Steam condensation within the ice condenser limits the pressure and temperature buildup in # BACKGROUND (continued) containment. A divider barrier separates the upper and lower compartments and ensures that the steam is directed into the ice condenser. The ice, together with the containment spray, is adequate to absorb the initial blowdown of steam and water from a DBA and the additional heat loads that would enter containment during several hours following the initial blowdown. The additional heat loads would come from the residual heat in the reactor core, the hot piping and components, and the secondary system, including the steam generators. During the post blowdown period, the Air Return System (ARS) returns upper compartment air through the divider barrier to the lower compartment. This serves to equalize pressures in containment and to continue circulating heated air and steam from the lower compartment through the ice condenser where the heat is removed by the remaining ice. As ice melts, the water passes through the ice condenser floor drains into the lower compartment. Thus, a second function of the ice bed is to be a large source of borated water (via the containment sump) for long term Emergency Core Cooling System (ECCS) and Containment Spray System heat removal functions in the recirculation mode. A third function of the ice bed and melted ice is to remove fission product iodine that may be released from the core during a DBA. Iodine removal occurs during the ice melt phase of the accident and continues as the melted ice is sprayed into the containment atmosphere by the Containment Spray System. The ice is adjusted to an alkaline pH that facilitates removal of radioactive iodine from the containment atmosphere. The alkaline pH also minimizes the occurrence of the chloride and caustic stress corrosion on mechanical systems and components exposed to ECCS and Containment Spray System fluids in the recirculation mode of operation. It is important for the ice to be uniformly distributed around the 24 ice condenser bays and for open flow paths to exist around ice baskets. This is especially important during the initial blowdown so that the steam and water mixture entering the lower compartment do not pass through only part of the ice condenser, depleting the ice there while bypassing the ice in other bays. # BACKGROUND (continued) Two phenomena that can degrade the ice bed during the long service period are: - a. Loss of ice by melting or sublimation; and - b. Obstruction of flow passages through the ice bed due to buildup of frost or ice. Both of these degrading phenomena are reduced by minimizing air leakage into and out of the ice condenser. The ice bed limits the temperature and pressure that could be expected following a DBA, thus limiting leakage of fission product radioactivity from containment to the environment. ### APPLICABLE SAFETY ANALYSES The limiting DBAs considered relative to containment temperature and pressure are the loss of coolant accident (LOCA) and the steam line break (SLB). The LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure and temperature transients. DBAs are not assumed to occur simultaneously or consecutively. Although the ice condenser is a passive system that requires no electrical power to perform its function, the Containment Spray System and the ARS also function to assist the ice bed in limiting pressures and temperatures. Therefore, the postulated DBAs are analyzed in regards to containment Engineered Safety Feature (ESF) systems, assuming the loss of one ESF bus, which is the worst case single active failure and results in one train each of the Containment Spray System and ARS being inoperable. The limiting DBA analyses (Ref. 1) show that the maximum peak containment pressure results from the LOCA analysis and is calculated to be less than the containment design pressure. For certain aspects of the transient accident analyses, maximizing the calculated containment pressure is not conservative. In particular, the cooling effectiveness of the ECCS during the core reflood phase of a LOCA analysis increases with increasing containment backpressure. For these calculations, the containment backpressure is calculated in a manner designed to conservatively minimize, rather than maximize, the calculated transient containment ## APPLICABLE SAFETY ANALYSES (continued) pressures, in accordance with 10 CFR 50, Appendix K (Ref. 2). The maximum peak containment atmosphere temperature results from the SLB analysis and is discussed in the Bases for LCO 3.6.5, "Containment Air Temperature." In addition to calculating the overall peak containment pressures, the DBA analyses include calculation of the transient differential pressures that occur across subcompartment walls during the initial blowdown phase of the accident transient. The internal containment walls and structures are designed to withstand these local transient pressure differentials for the limiting DBAs. The ice bed satisfies Criterion 3 of the NRC Policy Statement. #### LC0 The ice bed LCO requires the existence of the required quantity of stored ice, appropriate distribution of the ice and the ice bed, open flow paths through the ice bed, and appropriate chemical content and pH of the stored ice. The stored ice functions to absorb heat during a DBA, thereby limiting containment air temperature and pressure. The chemical content and pH of the ice provide core SDM (boron content) and remove radioactive iodine from the containment atmosphere when the melted ice is recirculated through the ECCS and the Containment Spray System, respectively. ### APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause an increase in containment pressure and temperature requiring the operation of the ice bed. Therefore, the LCO is applicable in MODES 1, 2, 3, and 4. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, the ice bed is not required to be OPERABLE in these MODES. #### **ACTIONS** #### A.1 If the ice bed is inoperable, it must be restored to OPERABLE status within 48 hours. The Completion Time was developed based on operating experience, which confirms that due to the very large mass of stored ice, the parameters comprising OPERABILITY do not change appreciably in this time period. Because of this fact, the Surveillance Frequencies are long (months), except for the ice bed temperature, which is checked every 12 hours. If a degraded condition is identified, even for temperature, with such a large mass of ice it is not possible for the degraded condition to significantly degrade further in a 48 hour period. Therefore, 48 hours is a reasonable amount of time to correct a degraded condition before initiating a shutdown. ### B.1 and B.2 If the ice bed cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS
SR 3.6.15.1 Verifying that the maximum temperature of the ice bed is ≤ [27]°F ensures that the ice is kept well below the melting point. The 12 hour Frequency was based on operating experience, which confirmed that, due to the large mass of stored ice, it is not possible for the ice bed temperature to degrade significantly within a 12 hour period and was also based on assessing the proximity of the LCO limit to the melting temperature. Furthermore, the 12 hour Frequency is considered adequate in view of indications in the control room, including the alarm, to alert the operator to an abnormal ice bed ## SURVEILLANCE REQUIREMENTS # <u>SR 3.6.15.1</u> (continued) temperature condition. This SR may be satisfied by use of the Ice Bed Temperature Monitoring System. #### SR 3.6.15.2 The weighing program is designed to obtain a representative sample of the ice baskets. The representative sample shall include 6 baskets from each of the 24 ice condenser bays and shall consist of one basket from radial rows 1, 2, 4, 6, 8, and 9. If no basket from a designated row can be obtained for weighing, a basket from the same row of an adjacent bay shall be weighed. The rows chosen include the rows nearest the inside and outside walls of the ice condenser (rows 1 and 2, and 8 and 9, respectively), where heat transfer into the ice condenser is most likely to influence melting or sublimation. Verifying the total weight of ice ensures that there is adequate ice to absorb the required amount of energy to mitigate the DBAs. If a basket is found to contain < [1400] lb of ice, a representative sample of 20 additional baskets from the same bay shall be weighed. The average weight of ice in these 21 baskets (the discrepant basket and the 20 additional baskets) shall be \ge [1400] lb at a 95% confidence level. Weighing 20 additional baskets from the same bay in the event a Surveillance reveals that a single basket contains < [1400] Ib ensures that no local zone exists that is grossly deficient in ice. Such a zone could experience early melt out during a DBA transient, creating a path for steam to pass through the ice bed without being condensed. The Frequency of 9 months was based on ice storage tests and the allowance built into the required ice mass over and above the mass assumed in the safety analyses. Operating experience has verified that, with the 9 month Frequency, the weight requirements are maintained with no significant degradation between surveillances. ## SURVEILLANCE REQUIREMENTS (continued) ### SR 3.6.15.3 This SR ensures that the azimuthal distribution of ice is reasonably uniform, by verifying that the average ice weight in each of three azimuthal groups of ice condenser bays is within the limit. The Frequency of 9 months was based on ice storage tests and the allowance built into the required ice mass over and above the mass assumed in the safety analyses. Operating experience has verified that, with the 9 month Frequency, the weight requirements are maintained with no significant degradation between surveillances. ## SR 3.6.15.4 This SR ensures that the flow channels through the ice condenser have not accumulated an excessive amount of ice or frost blockage. The visual inspection must be made for two or more flow channels per ice condenser bay and must include the following specific locations along the flow channel: - Past the lower inlet plenum support structures and turning vanes; - Between ice baskets; - c. Past lattice frames: - d. Through the intermediate floor grating; and - e. Through the top deck floor grating. The allowable [0.38] inch thick buildup of frost or ice is based on the analysis of containment response to a DBA with partial blockage of the ice condenser flow passages. If a flow channel in a given bay is found to have an accumulation of frost or ice > [0.38] inch thick, a representative sample of 20 additional flow channels from the same bay must be visually inspected. If these additional flow channels are all found to be acceptable, the discrepant flow channel may be considered single, unique, and acceptable deficiency. More than one discrepant flow channel in a bay is not acceptable, however. These requirements are based on the sensitivity of the partial blockage analysis to additional blockage. The ## SURVEILLANCE REQUIREMENTS # SR 3.6.15.4 (continued) Frequency of 9 months was based on ice storage tests and the allowance built into the required ice mass over and above the mass assumed in the safety analyses. ## SR 3.6.15.5 Verifying the chemical composition of the stored ice ensures that the stored ice has a boron concentration of at least [1800] ppm as sodium tetraborate and a high pH, \geq [9.0] and ≤ [9.5], in order to meet the requirement for borated water when the melted ice is used in the ECCS recirculation mode of operation. Sodium tetraborate has been proven effective in maintaining the boron content for long storage periods, and it also enhances the ability of the solution to remove and retain fission product iodine. The high pH is required to enhance the effectiveness of the ice and the melted ice in removing iodine from the containment atmosphere. This pH range also minimizes the occurrence of chloride and caustic stress corrosion on mechanical systems and components exposed to ECCS and Containment Spray System fluids in the recirculation mode of operation. The Frequency of [18] months was developed considering these facts: - a. Long term ice storage tests have determined that the chemical composition of the stored ice is extremely stable; - b. Operating experience has demonstrated that meeting the boron concentration and pH requirements has never been a problem; and - c. Someone would have to enter the containment to take the sample, and, if the unit is at power, that person would receive a radiation dose. ## SR 3.6.15.6 This SR ensures that a representative sampling of ice baskets, which are relatively thin walled, perforated cylinders, have not been degraded by wear, cracks, corrosion, or other damage. Each ice basket must be raised at least 12 feet for this inspection. The Frequency of #### BASES ## SURVEILLANCE REQUIREMENTS # <u>SR 3.6.15.6</u> (continued) 40 months for a visual inspection of the structural soundness of the ice baskets is based on engineering judgment and considers such factors as the thickness of the basket walls relative to corrosion rates expected in their service environment and the results of the long term ice storage testing. ## REFERENCES - 1. FSAR, Section [6.2]. - 2. 10 CFR 50, Appendix K. #### B 3.6 CONTAINMENT SYSTEMS B 3.6.16 Ice Condenser Doors (Ice Condenser) #### **BASES** #### **BACKGROUND** The ice condenser doors consist of the inlet doors, the intermediate deck doors, and the top deck doors. The functions of the doors are to: - a. Seal the ice condenser from air leakage during the lifetime of the unit; and - b. Open in the event of a Design Basis Accident (DBA) to direct the hot steam air mixture from the DBA into the ice bed, where the ice would absorb energy and limit containment peak pressure and temperature during the accident transient. Limiting the pressure and temperature following a DBA reduces the release of fission product radioactivity from containment to the environment. The ice condenser is an annular compartment enclosing approximately 300° of the perimeter of the upper containment compartment, but penetrating the operating deck so that a portion extends into the lower containment compartment. The inlet doors separate the atmosphere of the lower compartment from the ice bed inside the ice condenser. The top deck doors are above the ice bed and exposed to the atmosphere of the upper compartment. The intermediate deck doors, located below the top deck doors, form the floor of a plenum at the upper part of the ice condenser. This plenum area is used to facilitate surveillance and maintenance of the ice bed. The ice baskets held in the ice bed within the ice condenser are arranged to promote heat transfer from steam to ice. This arrangement enhances the ice condenser's primary function of condensing steam and absorbing heat energy released to the containment during a DBA. In the event of a DBA, the ice condenser inlet doors (located below the operating deck) open due to the pressure rise in the lower compartment. This allows air and steam to flow from the lower compartment into the ice condenser. The resulting pressure increase within the ice condenser causes the intermediate deck doors and the top deck doors to open, # BACKGROUND (continued) which allows the air to flow out of the ice condenser into the upper compartment. Steam condensation within the ice condensers limits the pressure and temperature buildup in containment. A divider barrier separates the upper and lower compartments and ensures that the steam is directed into the ice condenser. The ice, together with the containment spray, serves as a containment heat removal system and is adequate to absorb the initial blowdown of steam and water from a DBA as well as the additional heat loads that would enter containment during the several hours following the initial blowdown. The additional heat loads would come from the residual heat in the reactor core, the hot piping and components, and the secondary system, including the steam generators. During the post blowdown period, the Air Return System (ARS) returns upper compartment air through the divider barrier to the lower compartment. This serves to equalize pressures in containment and to continue circulating heated air and steam from the lower compartment through the ice condenser, where the heat is removed by the remaining ice. The water from the melted ice drains into the lower compartment where it serves as a source of borated water (via the containment sump) for the Emergency Core Cooling System (ECCS) and the Containment Spray System heat removal functions in the recirculation mode. The ice (via the Containment
Spray System) and the recirculated ice melt also serve to clean up the containment atmosphere. The ice condenser doors ensure that the ice stored in the ice bed is preserved during normal operation (doors closed) and that the ice condenser functions as designed if called upon to act as a passive heat sink following a DBA. # APPLICABLE SAFETY ANALYSES The limiting DBAs considered relative to containment pressure and temperature are the loss of coolant accident (LOCA) and the steam line break (SLB). The LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure and temperature transients. DBAs are assumed not to occur simultaneously or consecutively. ## APPLICABLE SAFETY ANALYSES (continued) Although the ice condenser is a passive system that requires no electrical power to perform its function, the Containment Spray System and ARS also function to assist the ice bed in limiting pressures and temperatures. Therefore, the postulated DBAs are analyzed with respect to Engineered Safety Feature (ESF) systems, assuming the loss of one ESF bus, which is the worst case single active failure and results in one train each of the Containment Spray System and the ARS being rendered inoperable. The limiting DBA analyses (Ref. 1) show that the maximum peak containment pressure results from the LOCA analysis and is calculated to be less than the containment design pressure. For certain aspects of transient accident analyses, maximizing the calculated containment pressure is not conservative. In particular, the cooling effectiveness of the ECCS during the core reflood phase of a LOCA analysis increases with increasing containment backpressure. For these calculations, the containment backpressure is calculated in a manner designed to conservatively minimize, rather than maximize, the calculated transient containment pressures, in accordance with 10 CFR 50, Appendix K (Ref. 2). The maximum peak containment atmosphere temperature results from the SLB analysis and is discussed in the Bases for LCO 3.6.5B, "Containment Air Temperature." An additional design requirement was imposed on the ice condenser door design for a small break accident in which the flow of heated air and steam is not sufficient to fully open the doors. For this situation, the doors are designed so that all of the doors would partially open by approximately the same amount. Thus, the partially opened doors would modulate the flow so that each ice bay would receive an approximately equal fraction of the total flow. This design feature ensures that the heated air and steam will not flow preferentially to some ice bays and deplete the ice there without utilizing the ice in the other bays. In addition to calculating the overall peak containment pressures, the DBA analyses include the calculation of the transient differential pressures that would occur across ## APPLICABLE SAFETY ANALYSES (continued) subcompartment walls during the initial blowdown phase of the accident transient. The internal containment walls and structures are designed to withstand the local transient pressure differentials for the limiting DBAs. The ice condenser doors satisfy Criterion 3 of the NRC Policy Statement. ## LC0 This LCO establishes the minimum equipment requirements to assure that the ice condenser doors perform their safety function. The ice condenser inlet doors, intermediate deck doors, and top deck doors must be closed to minimize air leakage into and out of the ice condenser, with its attendant leakage of heat into the ice condenser and loss of ice through melting and sublimation. The doors must be OPERABLE to ensure the proper opening of the ice condenser in the event of a DBA. OPERABILITY includes being free of any obstructions that would limit their opening, and for the inlet doors, being adjusted such that the opening and closing torques are within limits. The ice condenser doors function with the ice condenser to limit the pressure and temperature that could be expected following a DBA. #### APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause an increase in containment pressure and temperature requiring the operation of the ice condenser doors. Therefore, the LCO is applicable in MODES 1, 2, 3, and 4. The probability and consequences of these events in MODES 5 and 6 are reduced due to the pressure and temperature limitations of these MODES. Therefore, the ice condenser doors are not required to be OPERABLE in these MODES. ## **ACTIONS** A Note provides clarification that, for this LCO, separate Condition entry is allowed for each ice condenser door. # ACTIONS (continued) ### <u>A.1</u> If one or more ice condenser inlet doors are inoperable due to being physically restrained from opening, the door(s) must be restored to OPERABLE status within 1 hour. The Required Action is necessary to return operation to within the bounds of the containment analysis. The 1 hour Completion Time is consistent with the ACTIONS of LCO 3.6.1, "Containment," which requires containment to be restored to OPERABLE status within 1 hour. #### **B.1** and **B.2** If one or more ice condenser doors are determined to be partially open or otherwise inoperable for reasons other than Condition A or if a door is found that is not closed, it is acceptable to continue unit operation for up to 14 days, provided the ice bed temperature instrumentation is monitored once per 4 hours to ensure that the open or inoperable door is not allowing enough air leakage to cause the maximum ice bed temperature to approach the melting point. The Frequency of 4 hours is based on the fact that temperature changes cannot occur rapidly in the ice bed because of the large mass of ice involved. The 14 day Completion Time is based on long term ice storage tests that indicate that if the temperature is maintained below [27]°F, there would not be a significant loss of ice from sublimation. If the maximum ice bed temperature is > [27]°F at any time, the situation reverts to Condition C and a Completion Time of 48 hours is allowed to restore the inoperable door to OPERABLE status or enter into Required Actions D.1 and D.2. Ice bed temperature must be verified to be within the specified Frequency as augmented by the provisions of SR 3.0.2. If this verification is not made, Required Actions D.1 and D.2, not Required Action C.1, must be taken. # <u>C.1</u> If Required Actions B.1 or B.2 are not met, the doors must be restored to OPERABLE status and closed positions within 48 hours. The 48 hour Completion Time is based on the fact that, with the very large mass of ice involved, it would not be possible for the temperature to decrease to the melting #### **ACTIONS** ## C.1 (continued) point and a significant amount of ice to melt in a 48 hour period. Condition C is entered from Condition B only when the Completion Time of Required Action B.2 is not met or when the ice bed temperature has not been verified at the required frequency. ### D.1 and D.2 If the ice condenser doors cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS ## SR 3.6.16.1 Verifying, by means of the Inlet Door Position Monitoring System, that the inlet doors are in their closed positions makes the operator aware of an inadvertent opening of one or more doors. The Frequency of 12 hours ensures that operators on each shift are aware of the status of the doors. ### SR 3.6.16.2 Verifying, by visual inspection, that each intermediate deck door is closed and not impaired by ice, frost, or debris provides assurance that the intermediate deck doors (which form the floor of the upper plenum where frequent maintenance on the ice bed is performed) have not been left open or obstructed. The Frequency of 7 days is based on engineering judgment and takes into consideration such factors as the frequency of entry into the intermediate ice condenser deck, the time required for significant frost buildup, and the probability that a DBA will occur. ## SURVEILLANCE REQUIREMENTS (continued) ### SR 3.6.16.3 Verifying, by visual inspection, that the ice condenser inlet doors are not impaired by ice, frost, or debris provides assurance that the doors are free to open in the event of a DBA. For this unit, the Frequency of [18] months [3 months during the first year after receipt of license] is based on door design, which does not allow water condensation to freeze, and operating experience, which indicates that the inlet doors very rarely fail to meet their SR acceptance criteria. Because of high radiation in the vicinity of the inlet doors during power operation, this Surveillance is normally performed during a shutdown. #### SR 3.6.16.4 Verifying the opening torque of the inlet doors provides assurance that no doors have become stuck in the closed position. The value of [675] in-lb is based on the design opening pressure on the doors of 1.0 lb/ft². For this unit, the Frequency of [18] months [3 months during the first year after receipt of license] is based on the passive nature of the closing mechanism (i.e., once adjusted, there are no known factors that would change the setting, except possibly a buildup of ice; ice buildup is not likely, however, because of the door design, which does not allow water condensation to freeze). Operating experience indicates that the inlet doors usually meet their SR acceptance criteria. Because of high radiation in the vicinity of the inlet doors during power operation, this Surveillance is normally performed during a shutdown. ## SR 3.6.16.5 The torque test Surveillance ensures that
the inlet doors have not developed excessive friction and that the return springs are producing a door return torque within limits. The torque test consists of the following: Verify that the torque, T(OPEN), required to cause opening motion at the [40]° open position is ≤ [195] in-1b; ## SURVEILLANCE REQUIREMENTS # <u>SR 3.6.16.5</u> (continued) - 2. Verify that the torque, T(CLOSE), required to hold the door stationary (i.e., keep it from closing) at the [40]° open position is \geq [78] in-lb; and - 3. Calculate the frictional torque, T(FRICT) = 0.5 {T(OPEN) T(CLOSE)}, and verify that the T(FRICT) is $\leq [40]$ in-lb. The purpose of the friction and return torque Specifications is to ensure that, in the event of a small break LOCA or SLB, all of the 24 door pairs open uniformly. This assures that, during the initial blowdown phase, the steam and water mixture entering the lower compartment does not pass through part of the ice condenser, depleting the ice there, while bypassing the ice in other bays. The Frequency of [18] months [3 months during the first year after receipt of license] is based on the passive nature of the closing mechanism (i.e., once adjusted, there are no known factors that would change the setting, except possibly a buildup of ice; ice buildup is not likely, however, because of the door design, which does not allow water condensation to freeze). Operating experience indicates that the inlet doors very rarely fail to meet their SR acceptance criteria. Because of high radiation in the vicinity of the inlet doors during power operation, this Surveillance is normally performed during a shutdown. ## SR 3.6.16.6 Verifying the OPERABILITY of the intermediate deck doors provides assurance that the intermediate deck doors are free to open in the event of a DBA. The verification consists of visually inspecting the intermediate doors for structural deterioration, verifying free movement of the vent assemblies, and ascertaining free movement of each door when lifted with the applicable force shown below: ## SURVEILLANCE REQUIREMENTS ## SR 3.6.16.6 (continued) | <u>Door</u> | | <u>Lifting Force</u> | | | |----------------|--|----------------------|--|--| | c. Adjacent to | crane wall door adjacent to crane wall containment wall door adjacent to containment | <u> </u> | 37.4 lb
33.8 lb
31.8 lb
31.0 lb | | The 18 month Frequency [3 months during the first year after receipt of license] is based on the passive design of the intermediate deck doors, the frequency of personnel entry into the intermediate deck, and the fact that SR 3.6.16.2 confirms on a 7 day Frequency that the doors are not impaired by ice, frost, or debris, which are ways a door would fail the opening force test (i.e., by sticking or from increased door weight). ### SR 3.6.16.7 Verifying, by visual inspection, that the top deck doors are in place and not obstructed provides assurance that the doors are performing their function of keeping warm air out of the ice condenser during normal operation, and would not be obstructed if called upon to open in response to a DBA. The Frequency of 92 days is based on engineering judgment, which considered such factors as the following: - a. The relative inaccessibility and lack of traffic in the vicinity of the doors make it unlikely that a door would be inadvertently left open; - b. Excessive air leakage would be detected by temperature monitoring in the ice condenser; and - c. The light construction of the doors would ensure that, in the event of a DBA, air and gases passing through the ice condenser would find a flow path, even if a door were obstructed. #### REFERENCES - 1. FSAR, Chapter [15]. - 2. 10 CFR 50, Appendix K. #### B 3.6 CONTAINMENT SYSTEMS B 3.6.17 Divider Barrier Integrity (Ice Condenser) BASES #### BACKGROUND The divider barrier consists of the operating deck and associated seals, personnel access doors, and equipment hatches that separate the upper and lower containment compartments. Divider barrier integrity is necessary to minimize bypassing of the ice condenser by the hot steam and air mixture released into the lower compartment during a Design Basis Accident (DBA). This ensures that most of the gases pass through the ice bed, which condenses the steam and limits pressure and temperature during the accident transient. Limiting the pressure and temperature reduces the release of fission product radioactivity from containment to the environment in the event of a DBA. In the event of a DBA, the ice condenser inlet doors (located below the operating deck) open due to the pressure rise in the lower compartment. This allows air and steam to flow from the lower compartment into the ice condenser. resulting pressure increase within the ice condenser causes the intermediate deck doors and the door panels at the top of the condenser to open, which allows the air to flow out of the ice condenser into the upper compartment. The ice condenses the steam as it enters, thus limiting the pressure and temperature buildup in containment. The divider barrier separates the upper and lower compartments and ensures that the steam is directed into the ice condenser. The ice, together with the containment spray, is adequate to absorb the initial blowdown of steam and water from a DBA as well as the additional heat loads that would enter containment over several hours following the initial blowdown. additional heat loads would come from the residual heat in the reactor core, the hot piping and components, and the secondary system, including the steam generators. the post blowdown period, the Air Return System (ARS) returns upper compartment air through the divider barrier to the lower compartment. This serves to equalize pressures in containment and to continue circulating heated air and steam from the lower compartment through the ice condenser, where the heat is removed by the remaining ice. Divider barrier integrity ensures that the high energy fluids released during a DBA would be directed through the # BACKGROUND (continued) ice condenser and that the ice condenser would function as designed if called upon to act as a passive heat sink following a DBA. # APPLICABLE SAFETY ANALYSES Divider barrier integrity ensures the functioning of the ice condenser to the limiting containment pressure and temperature that could be experienced following a DBA. The limiting DBAs considered relative to containment temperature and pressure are the loss of coolant accident (LOCA) and the steam line break (SLB). The LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure and temperature transients. DBAs are assumed not to occur simultaneously or consecutively. Although the ice condenser is a passive system that requires no electrical power to perform its function, the Containment Spray System and the ARS also function to assist the ice bed in limiting pressures and temperatures. Therefore, the postulated DBAs are analyzed, with respect to containment Engineered Safety Feature (ESF) systems, assuming the loss of one ESF bus, which is the worst case single active failure and results in the inoperability of one train in both the Containment Spray System and the ARS. The limiting DBA analyses (Ref. 1) show that the maximum peak containment pressure results from the LOCA analysis and is calculated to be less than the containment design pressure. The maximum peak containment temperature results from the SLB analysis and is discussed in the Bases for LCO 3.6.5B, "Containment Air Temperature." In addition to calculating the overall peak containment pressures, the DBA analyses include calculation of the transient differential pressures that occur across subcompartment walls during the initial blowdown phase of the accident transient. The internal containment walls and structures are designed to withstand these local transient pressure differentials for the limiting DBAs. The divider barrier satisfies Criterion 3 of the NRC Policy Statement. ## BASES (continued) LC0 This LCO establishes the minimum equipment requirements to ensure that the divider barrier performs its safety function of ensuring that bypass leakage, in the event of a DBA, does not exceed the bypass leakage assumed in the accident analysis. Included are the requirements that the personnel access doors and equipment hatches in the divider barrier are OPERABLE and closed and that the divider barrier seal is properly installed and has not degraded with time. An exception to the requirement that the doors be closed is made to allow personnel transit entry through the divider barrier. The basis of this exception is the assumption that, for personnel transit, the time during which a door is open will be short (i.e., shorter than the Completion Time of 1 hour for Condition A). The divider barrier functions with the ice condenser to limit the pressure and temperature that could be expected following a DBA. ## APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause an increase in containment pressure and temperature requiring the integrity of the divider barrier. Therefore, the LCO is applicable in MODES 1, 2, 3, and 4. The probability and consequences of these events in MODES 5 and 6 are low due to the pressure and temperature limitations of these MODES. As such, divider barrier integrity is not required in these MODES. ## **ACTIONS** ### <u>A.1</u> If one or more personnel access doors or equipment hatches are inoperable or open, except for personnel transit entry, 1 hour is allowed to restore the door(s) and equipment hatches to OPERABLE status and the closed position. The 1 hour Completion Time is consistent with LCO 3.6.1, "Containment," which requires that containment be restored to OPERABLE status within 1 hour. Condition A has been modified by a Note to provide clarification that,
for this LCO, separate Condition entry is allowed for each personnel access door or equipment hatch. # ACTIONS (continued) ## <u>B.1</u> If the divider barrier seal is inoperable, 1 hour is allowed to restore the seal to OPERABLE status. The 1 hour Completion Time is consistent with LCO 3.6.1, which requires that containment be restored to OPERABLE status within 1 hour. #### C.1 and C.2 If divider barrier integrity cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS # SR 3.6.17.1 Verification, by visual inspection, that all personnel access doors and equipment hatches between the upper and lower containment compartments are closed provides assurance that divider barrier integrity is maintained prior to the reactor being taken from MODE 5 to MODE 4. This SR is necessary because many of the doors and hatches may have been opened for maintenance during the shutdown. #### SR 3.6.17.2 Verification, by visual inspection, that the personnel access door and equipment hatch seals, sealing surfaces, and alignments are acceptable provides assurance that divider barrier integrity is maintained. This inspection cannot be made when the door or hatch is closed. Therefore, SR 3.6.17.2 is required for each door or hatch that has been opened, prior to the final closure. Some doors and hatches may not be opened for long periods of time. Those that use resilient materials in the seals must be opened and inspected at least once every 10 years to provide assurance # SURVEILLANCE REQUIREMENTS # <u>SR 3.6.17.2</u> (continued) that the seal material has not aged to the point of degraded performance. The Frequency of 10 years is based on the known resiliency of the materials used for seals, the fact that the openings have not been opened (to cause wear), and operating experience that confirms that the seals inspected at this Frequency have been found to be acceptable. #### SR 3.6.17.3 Verification, by visual inspection, after each opening of a personnel access door or equipment hatch that it has been closed makes the operator aware of the importance of closing it and thereby provides additional assurance that divider barrier integrity is maintained while in applicable MODES. #### SR 3.6.17.4 Conducting periodic physical property tests on divider barrier seal test coupons provides assurance that the seal material has not degraded in the containment environment, including the effects of irradiation with the reactor at power. The required tests include a tensile strength test [and a test for elongation]. The Frequency of [18] months was developed considering such factors as the known resiliency of the seal material used, the inaccessibility of the seals and absence of traffic in their vicinity, and the unit conditions needed to perform the SR. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. ### SR 3.6.17.5 Visual inspection of the seal around the perimeter provides assurance that the seal is properly secured in place. The Frequency of [18] months was developed considering such factors as the inaccessibility of the seals and absence of traffic in their vicinity, the strength of the bolts and mechanisms used to secure the seal, and the unit conditions needed to perform the SR. Operating experience has shown | Q | ٨ | S | E | C | |---|---|---|---|---| | U | п | J | ᆫ | ১ | # SURVEILLANCE REQUIREMENTS <u>SR 3.6.17.5</u> (continued) that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. ## **REFERENCES** 1. FSAR, Section [6.2]. #### B 3.6 CONTAINMENT SYSTEMS B 3.6.18 Containment Recirculation Drains (Ice Condenser) #### **BASES** #### BACKGROUND The containment recirculation drains consist of the ice condenser drains and the refueling canal drains. The ice condenser is partitioned into 24 bays, each having a pair of inlet doors that open from the bottom plenum to allow the hot steam-air mixture from a Design Basis Accident (DBA) to enter the ice condenser. Twenty of the 24 bays have an ice condenser floor drain at the bottom to drain the melted ice into the lower compartment (in the 4 bays that do not have drains, the water drains through the floor drains in the adjacent bays). Each drain leads to a drain pipe that drops down several feet, then makes one or more 90° bends and exits into the lower compartment. A check (flapper) valve at the end of each pipe keeps warm air from entering during normal operation, but when the water exerts pressure, it opens to allow the water to spill into the lower compartment. This prevents water from backing up and interfering with the ice condenser inlet doors. The water delivered to the lower containment serves to cool the atmosphere as it falls through to the floor and provides a source of borated water at the containment sump for long term use by the Emergency Core Cooling System (ECCS) and the Containment Spray System during the recirculation mode of operation. The two refueling canal drains are at low points in the refueling canal. During a refueling, plugs are installed in the drains and the canal is flooded to facilitate the refueling process. The water acts to shield and cool the spent fuel as it is transferred from the reactor vessel to storage. After refueling, the canal is drained and the plugs removed. In the event of a DBA, the refueling canal drains are the main return path to the lower compartment for Containment Spray System water sprayed into the upper compartment. The ice condenser drains and the refueling canal drains function with the ice bed, the Containment Spray System, and the ECCS to limit the pressure and temperature that could be expected following a DBA. ### APPLICABLE SAFETY ANALYSES The limiting DBAs considered relative to containment temperature and pressure are the loss of coolant accident (LOCA) and the steam line break (SLB). The LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure and temperature transients. DBAs are assumed not to occur simultaneously or consecutively. Although the ice condenser is a passive system that requires no electrical power to perform its function, the Containment Spray System and the Air Return System (ARS) also function to assist the ice bed in limiting pressures and temperatures. Therefore, the analysis of the postulated DBAs, with respect to Engineered Safety Feature (ESF) systems, assumes the loss of one ESF bus, which is the worst case single active failure and results in one train of the Containment Spray System and one train of the ARS being rendered inoperable. The limiting DBA analyses (Ref. 1) show that the maximum peak containment pressure results from the LOCA analysis and is calculated to be less than the containment design pressure. The maximum peak containment atmosphere temperature results from the SLB analysis and is discussed in the Bases for LCO 3.6.5, "Containment Air Temperature." In addition to calculating the overall peak containment pressures, the DBA analyses include calculation of the transient differential pressures that occur across subcompartment walls during the initial blowdown phase of the accident transient. The internal containment walls and structures are designed to withstand these local transient pressure differentials for the limiting DBAs. The containment recirculation drains satisfy Criterion 3 of the NRC Policy Statement. LC0 This LCO establishes the minimum requirements to ensure that the containment recirculation drains perform their safety functions. The ice condenser floor drain valve disks must be closed to minimize air leakage into and out of the ice condenser during normal operation and must open in the event of a DBA when water begins to drain out. The refueling canal drains must have their plugs removed and remain clear to ensure the return of Containment Spray System water to the lower containment in the event of a DBA. The containment recirculation drains function with the ice #### BASES # (continued) condenser, ECCS, and Containment Spray System to limit the pressure and temperature that could be expected following a DBA. #### **APPLICABILITY** In MODES 1, 2, 3, and 4, a DBA could cause an increase in containment pressure and temperature, which would require the operation of the containment recirculation drains. Therefore, the LCO is applicable in MODES 1, 2, 3, and 4. The probability and consequences of these events in MODES 5 and 6 are low due to the pressure and temperature limitations of these MODES. As such, the containment recirculation drains are not required to be OPERABLE in these MODES. #### **ACTIONS** ## A.1 If one ice condenser floor drain is inoperable, 1 hour is allowed to restore the drain to OPERABLE status. The Required Action is necessary to return operation to within the bounds of the containment analysis. The 1 hour Completion Time is consistent with the ACTIONS of LCO 3.6.1, "Containment," which requires that containment be restored to OPERABLE status within 1 hour. ## **B.1** If one refueling canal drain is inoperable, 1 hour is allowed to restore the drain to OPERABLE status. The Required Action is necessary to return operation to within the bounds of the containment analysis. The 1 hour Completion Time is consistent with the ACTIONS of LCO 3.6.1, which requires that containment be restored to OPERABLE
status in 1 hour. ## C.1 and C.2 If the affected drain(s) cannot be restored to OPERABLE status within the required Completion Time, the plant must ### **ACTIONS** # C.1 and C.2 (continued) be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS ## SR 3.6.18.1 Verifying the OPERABILITY of the refueling canal drains ensures that they will be able to perform their functions in the event of a DBA. This Surveillance confirms that the refueling canal drain plugs have been removed and that the drains are clear of any obstructions that could impair their functioning. In addition to debris near the drains, attention must be given to any debris that is located where it could be moved to the drains in the event that the Containment Spray System is in operation and water is flowing to the drains. SR 3.6.18.1 must be performed before entering MODE 4 from MODE 5 after every filling of the canal to ensure that the plugs have been removed and that no debris that could impair the drains was deposited during the time the canal was filled. The 92 day Frequency was developed considering such factors as the inaccessibility of the drains, the absence of traffic in the vicinity of the drains, and the redundancy of the drains. ### SR 3.6.18.2 Verifying the OPERABILITY of the ice condenser floor drains ensures that they will be able to perform their functions in the event of a DBA. Inspecting the drain valve disk ensures that the valve is performing its function of sealing the drain line from warm air leakage into the ice condenser during normal operation, yet will open if melted ice fills the line following a DBA. Verifying that the drain lines are not obstructed ensures their readiness to drain water from the ice condenser. The [18] month Frequency was developed considering such factors as the inaccessibility of the drains during power operation; the design of the ice ### **BASES** # SURVEILLANCE REQUIREMENTS # SR 3.6.18.2 (continued) condenser, which precludes melting and refreezing of the ice; and operating experience that has confirmed that the drains are found to be acceptable when the Surveillance is performed at an [18] month Frequency. Because of high radiation in the vicinity of the drains during power operation, this Surveillance is normally done during a shutdown. ### **REFERENCES** 1. FSAR, Section [6.2]. #### B 3.6 CONTAINMENT SYSTEMS # B 3.6.19 Shield Building (Dual and Ice Condenser) #### **BASES** #### **BACKGROUND** The shield building is a concrete structure that surrounds the steel containment vessel. Between the containment vessel and the shield building inner wall is an annular space that collects containment leakage that may occur following a loss of coolant accident (LOCA). This space also allows for periodic inspection of the outer surface of the steel containment vessel. The Shield Building Air Cleanup System (SBACS) establishes a negative pressure in the annulus between the shield building and the steel containment vessel. Filters in the system then control the release of radioactive contaminants to the environment. The shield building is required to be OPERABLE to ensure retention of containment leakage and proper operation of the SBACS. # APPLICABLE SAFETY ANALYSES The design basis for shield building OPERABILITY is a LOCA. Maintaining shield building OPERABILITY ensures that the release of radioactive material from the containment atmosphere is restricted to those leakage paths and associated leakage rates assumed in the accident analyses. The shield building satisfies Criterion 3 of the NRC Policy Statement. ### LC0 Shield building OPERABILITY must be maintained to ensure proper operation of the SBACS and to limit radioactive leakage from the containment to those paths and leakage rates assumed in the accident analyses. #### **APPLICABILITY** Maintaining shield building OPERABILITY prevents leakage of radioactive material from the shield building. Radioactive material may enter the shield building from the containment following a LOCA. Therefore, shield building OPERABILITY is required in MODES 1, 2, 3, and 4 when a steam line break, # APPLICABILITY (continued) LOCA, or rod ejection accident could release radioactive material to the containment atmosphere. In MODES 5 and 6, the probability and consequences of these events are low due to the Reactor Coolant System temperature and pressure limitations in these MODES. Therefore, shield building OPERABILITY is not required in MODE 5 or 6. ### **ACTIONS** ## <u>A.1</u> In the event shield building OPERABILITY is not maintained, shield building OPERABILITY must be restored within 24 hours. Twenty-four hours is a reasonable Completion Time considering the limited leakage design of containment and the low probability of a Design Basis Accident occurring during this time period. #### B.1 and B.2 If the shield building cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS ### SR 3.6.19.1 Verifying that shield building annulus negative pressure is within limit ensures that operation remains within the limit assumed in the containment analysis. The 12 hour Frequency of this SR was developed considering operating experience related to shield building annulus pressure variations and pressure instrument drift during the applicable MODES. ## SURVEILLANCE REQUIREMENTS (continued) ### SR 3.6.19.2 Maintaining shield building OPERABILITY requires maintaining each door in the access opening closed, except when the access opening is being used for normal transient entry and exit (then at least one door must remain closed). The 31 day Frequency of this SR is based on engineering judgment and is considered adequate in view of the other indications of door status that are available to the operator. ### SR 3.6.19.3 This SR would give advance indication of gross deterioration of the concrete structural integrity of the shield building. The Frequency of this SR is the same as that of SR 3.6.1.1. The verification is done during shutdown. ### SR 3.6.19.4 The ability of a SBACS train with final flow \leq [] cfm to produce the required negative pressure \geq 0.5 inch water gauge during the test operation within [22] seconds provides assurance that the building is adequately sealed. The negative pressure prevents leakage from the building, since outside air will be drawn in by the low pressure. The negative pressure must be established within the time limit to ensure that no significant quantity of radioactive material leaks from the shield building prior to developing the negative pressure. The SBACS trains are tested every 18 months on a STAGGERED TEST BASIS to ensure that in addition to the requirements of LCO 3.6.13, "Shield Building Air Cleanup System," either SBACS train will perform this test. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage. | • | | | | LO. | \sim | - | |----|----|----|----|-----|--------|----| | R | | EF | RΕ | M | | ES | | 11 | _1 | L | ۱L | N | • | டப | None. #### B 3.7 PLANT SYSTEMS # B 3.7.1 Main Steam Safety Valves (MSSVs) #### BASES #### **BACKGROUND** The primary purpose of the MSSVs is to provide overpressure protection for the secondary system. The MSSVs also provide protection against overpressurizing the reactor coolant pressure boundary (RCPB) by providing a heat sink for the removal of energy from the Reactor Coolant System (RCS) if the preferred heat sink, provided by the Condenser and Circulating Water System, is not available. Five MSSVs are located on each main steam header, outside containment, upstream of the main steam isolation valves, as described in the FSAR, Section [10.3.1] (Ref. 1). The MSSV capacity criteria is 110% of rated steam flow at 110% of the steam generator design pressure. This meets the requirements of the ASME Code, Section III (Ref. 2). The MSSV design includes staggered setpoints, according to Table 3.7.1-2 in the accompanying LCO, so that only the needed valves will actuate. Staggered setpoints reduce the potential for valve chattering that is due to steam pressure insufficient to fully open all valves following a turbine reactor trip. ## APPLICABLE SAFETY ANALYSES The design basis for the MSSVs comes from Reference 2 and its purpose is to limit the secondary system pressure to ≤ 110% of design pressure when passing 100% of design steam flow. This design basis is sufficient to cope with any anticipated operational occurrence (AOO) or accident considered in the Design Basis Accident (DBA) and transient analysis. The events that challenge the relieving capacity of the MSSVs, and thus RCS pressure, are those characterized as decreased heat removal events, which are presented in the FSAR, Section [15.2] (Ref. 3). Of these, the full power turbine trip without steam dump is the limiting AOO. This event also terminates normal feedwater flow to the steam generators. The transient response for turbine trip without a direct reactor trip presents no hazard to the integrity of the RCS ## APPLICABLE SAFETY ANALYSES (continued) or the Main Steam System. If a minimum reactivity feedback is assumed, the reactor is tripped on high pressurizer pressure. In this case, the pressurizer
safety valves open, and RCS pressure remains below 110% of the design value. The MSSVs also open to limit the secondary steam pressure. If maximum reactivity feedback is assumed, the reactor is tripped on overtemperature ΔT . The departure from nucleate boiling ratio increases throughout the transient, and never drops below its initial value. Pressurizer relief valves and MSSVs are activated and prevent overpressurization in the primary and secondary systems. The MSSVs are assumed to have two active and one passive failure modes. The active failure modes are spurious opening, and failure to reclose once opened. The passive failure mode is failure to open upon demand. The MSSVs satisfy Criterion 3 of the NRC Policy Statement. #### LC0 The accident analysis requires four MSSVs per steam generator to provide overpressure protection for design basis transients occurring at 102% RTP. An MSSV will be considered inoperable if it fails to open on demand. The LCO requires that five MSSVs be OPERABLE in compliance with Reference 2, even though this is not a requirement of the DBA analysis. This is because operation with less than the full number of MSSVs requires limitations on allowable THERMAL POWER (to meet ASME Code requirements). These limitations are according to Table 3.7.1-1 in the accompanying LCO, and Required Action A.2. The OPERABILITY of the MSSVs is defined as the ability to open within the setpoint tolerances, relieve steam generator overpressure, and reseat when pressure has been reduced. The OPERABILITY of the MSSVs is determined by periodic surveillance testing in accordance with the Inservice Testing Program. The lift settings, according to Table 3.7.1-2 in the accompanying LCO, correspond to ambient conditions of the valve at nominal operating temperature and pressure. # LCO (continued) This LCO provides assurance that the MSSVs will perform their designed safety functions to mitigate the consequences of accidents that could result in a challenge to the RCPB. ## **APPLICABILITY** In MODE 1 above 40% RTP, the number of MSSVs per steam generator required to be OPERABLE must be according to Table 3.7.1-1 in the accompanying LCO. Below 40% RTP in MODES 1, 2, and 3, only two MSSVs per steam generator are required to be OPERABLE. In MODES 4 and 5, there are no credible transients requiring the MSSVs. The steam generators are not normally used for heat removal in MODES 5 and 6, and thus cannot be overpressurized; there is no requirement for the MSSVs to be OPERABLE in these MODES. ### **ACTIONS** The ACTIONS table is modified by a Note indicating that separate Condition entry is allowed for each MSSV. ### A.1 With one or more MSSVs inoperable, reduce power so that the available MSSV relieving capacity meets Reference 2 requirements for the applicable THERMAL POWER. Operation with less than all five MSSVs OPERABLE for each steam generator is permissible, if THERMAL POWER is proportionally limited to the relief capacity of the remaining MSSVs. This is accomplished by restricting THERMAL POWER so that the energy transfer to the most limiting steam generator is not greater than the available relief capacity in that steam generator. For example, if one MSSV is inoperable in one steam generator, the relief capacity of that steam generator is reduced by approximately 20%. To offset this reduction in relief capacity, energy transfer to that steam generator must be similarly reduced by at least 20%. This is accomplished by reducing THERMAL POWER by at least 20%, which conservatively limits the energy transfer to all steam generators to approximately 80% of total capacity, consistent with the relief capacity of the most limiting steam generator. **ACTIONS** <u>A.1</u> (continued) For each steam generator, at a specified pressure, the fractional relief capacity (FRC) of each MSSV is determined as follows: $$FRC = \frac{A}{B}$$ where: A = the relief capacity of the MSSV; and B = the total relief capacity of all the MSSVs of the steam generator. The FRC is the relief capacity necessary to address operation with reduced THERMAL POWER. The reduced THERMAL POWER levels in the LCO prevent operation at power levels greater than the relief capacity of the remaining MSSVs. The reduced THERMAL POWER is determined as follows: $$RP = [1 - (N_1 \times FRC_1 + N_2 \times FRC_2 + \dots + N_5 \times FRC_5)] \times 100\%$$ where: RP = Reduced THERMAL POWER for the most limiting steam generator expressed as a percent of RTP; N_1 , N_2 , ..., N_5 represent the status of the MSSV 1, 2, ..., 5, respectively, = 0 if the MSSV is OPERABLE, = 1 if the MSSV is inoperable; FRC_1 , FRC_2 , ..., FRC_5 = the relief capacity of the MSSV 1, 2, ..., 5, respectively, as defined above. # ACTIONS (continued) ## **B.1** and **B.2** If the MSSVs cannot be restored to OPERABLE status within the associated Completion Time, or if one or more steam generators have less than two MSSVs OPERABLE, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.7.1.1 This SR verifies the OPERABILITY of the MSSVs by the verification of each MSSV lift setpoint in accordance with the Inservice Testing Program. The ASME Code, Section XI (Ref. 4), requires that safety and relief valve tests be performed in accordance with ANSI/ASME OM-1-1987 (Ref. 5). According to Reference 5, the following tests are required: - a. Visual examination; - b. Seat tightness determination; - Setpoint pressure determination (lift setting); - d. Compliance with owner's seat tightness criteria; and - e. Verification of the balancing device integrity on balanced valves. The ANSI/ASME Standard requires that all valves be tested every 5 years, and a minimum of 20% of the valves be tested every 24 months. The ASME Code specifies the activities and frequencies necessary to satisfy the requirements. Table 3.7.1-2 allows a \pm [3]% setpoint tolerance for OPERABILITY; however, the valves are reset to \pm 1% during the Surveillance to allow for drift. This SR is modified by a Note that allows entry into and operation in MODE 3 prior to performing the SR. The MSSVs may be either bench tested or tested in situ at hot #### **BASES** # SURVEILLANCE REQUIREMENTS # <u>SR 3.7.1.1</u> (continued) conditions using an assist device to simulate lift pressure. If the MSSVs are not tested at hot conditions, the lift setting pressure shall be corrected to ambient conditions of the valve at operating temperature and pressure. # REFERENCES - 1. FSAR, Section [10.3.1]. - ASME, Boiler and Pressure Vessel Code, Section III, Article NC-7000, Class 2 Components. - 3. FSAR, Section [15.2]. - 4. ASME, Boiler and Pressure Vessel Code, Section XI. - 5. ANSI/ASME OM-1-1987. #### B 3.7 PLANT SYSTEMS # B 3.7.2 Main Steam Isolation Valves (MSIVs) #### BASES #### **BACKGROUND** The MSIVs isolate steam flow from the secondary side of the steam generators following a high energy line break (HELB). MSIV closure terminates flow from the unaffected (intact) steam generators. One MSIV is located in each main steam line outside, but close to, containment. The MSIVs are downstream from the main steam safety valves (MSSVs) and auxiliary feedwater (AFW) pump turbine steam supply, to prevent MSSV and AFW isolation from the steam generators by MSIV closure. Closing the MSIVs isolates each steam generator from the others, and isolates the turbine, Steam Bypass System, and other auxiliary steam supplies from the steam generators. The MSIVs close on a main steam isolation signal generated by either low steam generator pressure or high containment pressure. The MSIVs fail closed on loss of control or actuation power. Each MSIV has an MSIV bypass valve. Although these bypass valves are normally closed, they receive the same emergency closure signal as do their associated MSIVs. The MSIVs may also be actuated manually. A description of the MSIVs is found in the FSAR, Section [10.3] (Ref. 1). ### APPLICABLE SAFETY ANALYSES The design basis of the MSIVs is established by the containment analysis for the large steam line break (SLB) inside containment, discussed in the FSAR, Section [6.2] (Ref. 2). It is also affected by the accident analysis of the SLB events presented in the FSAR, Section [15.1.5] (Ref. 3). The design precludes the blowdown of more than one steam generator, assuming a single active component failure (e.g., the failure of one MSIV to close on demand). The limiting case for the containment analysis is the SLB inside containment, with a loss of offsite power following turbine trip, and failure of the MSIV on the affected steam APPLICABLE SAFETY ANALYSES (continued) generator to close. At lower powers, the steam generator inventory and temperature are at their maximum, maximizing the analyzed mass and energy release to the containment. Due to reverse flow and failure of the MSIV to close, the additional mass and energy in the steam headers downstream from the other MSIV contribute to the total release. With the most reactive rod cluster control assembly assumed stuck in the fully withdrawn position, there is an increased possibility that the core will become critical and return to power. The core is ultimately shut down by the boric acid injection delivered by the Emergency Core Cooling System. The accident analysis compares several different SLB events against different acceptance criteria. The large SLB outside containment upstream of the MSIV is limiting for offsite dose, although a break in this short section of main steam header has a very low probability. The large SLB inside containment at hot zero power is the limiting case for a post trip return to power.
The analysis includes scenarios with offsite power available, and with a loss of offsite power following turbine trip. With offsite power available, the reactor coolant pumps continue to circulate coolant through the steam generators, maximizing the Reactor Coolant System cooldown. With a loss of offsite power, the response of mitigating systems is delayed. Significant single failures considered include failure of an MSIV to close. The MSIVs serve only a safety function and remain open during power operation. These valves operate under the following situations: a. An HELB inside containment. In order to maximize the mass and energy release into containment, the analysis assumes that the MSIV in the affected steam generator remains open. For this accident scenario, steam is discharged into containment from all steam generators until the remaining MSIVs close. After MSIV closure, steam is discharged into containment only from the affected steam generator and from the residual steam in the main steam header downstream of the closed MSIVs in the unaffected loops. Closure of the MSIVs isolates the break from the unaffected steam generators. ## APPLICABLE SAFETY ANALYSES (continued) - b. A break outside of containment and upstream from the MSIVs is not a containment pressurization concern. The uncontrolled blowdown of more than one steam generator must be prevented to limit the potential for uncontrolled RCS cooldown and positive reactivity addition. Closure of the MSIVs isolates the break and limits the blowdown to a single steam generator. - c. A break downstream of the MSIVs will be isolated by the closure of the MSIVs. - d. Following a steam generator tube rupture, closure of the MSIVs isolates the ruptured steam generator from the intact steam generators to minimize radiological releases. - e. The MSIVs are also utilized during other events such as a feedwater line break. This event is less limiting so far as MSIV OPERABILITY is concerned. The MSIVs satisfy Criterion 3 of the NRC Policy Statement. #### LC0 This LCO requires that [four] MSIVs in the steam lines be OPERABLE. The MSIVs are considered OPERABLE when the isolation times are within limits, and they close on an isolation actuation signal. This LCO provides assurance that the MSIVs will perform their design safety function to mitigate the consequences of accidents that could result in offsite exposures comparable to the 10 CFR 100 (Ref. 4) limits or the NRC staff approved licensing basis. #### **APPLICABILITY** The MSIVs must be OPERABLE in MODE 1, and in MODES 2 and 3 except when closed and de-activated, when there is significant mass and energy in the RCS and steam generators. When the MSIVs are closed, they are already performing the safety function. In MODE 4, normally most of the MSIVs are closed, and the steam generator energy is low. # APPLICABILITY (continued) In MODE 5 or 6, the steam generators do not contain much energy because their temperature is below the boiling point of water; therefore, the MSIVs are not required for isolation of potential high energy secondary system pipe breaks in these MODES. #### ACTIONS ## <u>A.1</u> With one MSIV inoperable in MODE 1, action must be taken to restore OPERABLE status within [8] hours. Some repairs to the MSIV can be made with the unit hot. The [8] hour Completion Time is reasonable, considering the low probability of an accident occurring during this time period that would require a closure of the MSIVs. The [8] hour Completion Time is greater than that normally allowed for containment isolation valves because the MSIVs are valves that isolate a closed system penetrating containment. These valves differ from other containment isolation valves in that the closed system provides an additional means for containment isolation. ## <u>B.1</u> If the MSIV cannot be restored to OPERABLE status within [8] hours, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in MODE 2 within 6 hours and Condition C would be entered. The Completion Times are reasonable, based on operating experience, to reach MODE 2 and to close the MSIVs in an orderly manner and without challenging unit systems. #### C.1 and C.2 Condition C is modified by a Note indicating that separate Condition entry is allowed for each MSIV. Since the MSIVs are required to be OPERABLE in MODES 2 and 3, the inoperable MSIVs may either be restored to OPERABLE status or closed. When closed, the MSIVs are already in the position required by the assumptions in the safety analysis. #### ACTIONS # C.1 and C.2 (continued) The [8] hour Completion Time is consistent with that allowed in Condition A. For inoperable MSIVs that cannot be restored to OPERABLE status within the specified Completion Time, but are closed, the inoperable MSIVs must be verified on a periodic basis to be closed. This is necessary to ensure that the assumptions in the safety analysis remain valid. The 7 day Completion Time is reasonable, based on engineering judgment, in view of MSIV status indications available in the control room, and other administrative controls, to ensure that these valves are in the closed position. ### D.1 and D.2 If the MSIVs cannot be restored to OPERABLE status or are not closed within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed at least in MODE 3 within 6 hours, and in MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from MODE 2 conditions in an orderly manner and without challenging unit systems. ## SURVEILLANCE REQUIREMENTS # SR 3.7.2.1 This SR verifies that MSIV closure time is \leq [4.6] seconds on an actual or simulated actuation signal. The MSIV closure time is assumed in the accident and containment analyses. This Surveillance is normally performed upon returning the unit to operation following a refueling outage. The MSIVs should not be tested at power, since even a part stroke exercise increases the risk of a valve closure when the unit is generating power. As the MSIVs are not tested at power, they are exempt from the ASME Code, Section XI (Ref. 5), requirements during operation in MODE 1 or 2. ## SURVEILLANCE REQUIREMENTS # <u>SR 3.7.2.1</u> (continued) The Frequency is in accordance with the [Inservice Testing Program or [18] months]. The [18] month Frequency for valve closure time is based on the refueling cycle. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency is acceptable from a reliability standpoint. This test is conducted in MODE 3 with the unit at operating temperature and pressure, as discussed in Reference 5 exercising requirements. This SR is modified by a Note that allows entry into and operation in MODE 3 prior to performing the SR. This allows a delay of testing until MODE 3, to establish conditions consistent with those under which the acceptance criterion was generated. ### REFERENCES - 1. FSAR, Section [10.3]. - 2. FSAR, Section [6.2]. - 3. FSAR, Section [15.1.5]. - 4. 10 CFR 100.11. - 5. ASME, Boiler and Pressure Vessel Code, Section XI. #### B 3.7 PLANT SYSTEMS B 3.7.3 Main Feedwater Isolation Valves (MFIVs) and Main Feedwater Regulation Valves (MFRVs) [and Associated Bypass Valves] BASES #### **BACKGROUND** The MFIVs isolate main feedwater (MFW) flow to the secondary side of the steam generators following a high energy line break (HELB). The safety related function of the MFRVs is to provide the second isolation of MFW flow to the secondary side of the steam generators following an HELB. Closure of the MFIVs and associated bypass valves or MFRVs and associated bypass valves terminates flow to the steam generators, terminating the event for feedwater line breaks (FWLBs) occurring upstream of the MFIVs or MFRVs. The consequences of events occurring in the main steam lines or in the MFW lines downstream from the MFIVs will be mitigated by their closure. Closure of the MFIVs and associated bypass valves, or MFRVs and associated bypass valves. effectively terminates the addition of feedwater to an affected steam generator, limiting the mass and energy release for steam line breaks (SLBs) or FWLBs inside containment, and reducing the cooldown effects for SLBs. The MFIVs and associated bypass valves, or MFRVs and associated bypass valves, isolate the nonsafety related portions from the safety related portions of the system. In the event of a secondary side pipe rupture inside containment, the valves limit the quantity of high energy fluid that enters containment through the break, and provide a pressure boundary for the controlled addition of auxiliary feedwater (AFW) to the intact loops. One MFIV and associated bypass valve, and one MFRV and its associated bypass valve, are located on each MFW line, outside but close to containment. The MFIVs and MFRVs are located upstream of the AFW injection point so that AFW may be supplied to the steam generators following MFIV or MFRV closure. The piping volume from these valves to the steam generators must be accounted for in calculating mass and energy releases, and refilled prior to AFW reaching the steam generator following either an SLB or FWLB. The MFIVs and associated bypass valves, and MFRVs and associated bypass valves, close on receipt of a T_{avg} —Low coincident with reactor trip (P-4) or steam generator water # BACKGROUND (continued) level—high high signal. They may also be actuated manually. In addition to the MFIVs and associated bypass valves, and the MFRVs and associated bypass valves, a check valve inside containment is available. The check valve isolates the feedwater line, penetrating containment, and ensures that the consequences of events do not exceed the capacity of the containment heat removal systems. A
description of the MFIVs and MFRVs is found in the FSAR, Section [10.4.7] (Ref. 1). # APPLICABLE SAFETY ANALYSES The design basis of the MFIVs and MFRVs is established by the analyses for the large SLB. It is also influenced by the accident analysis for the large FWLB. Closure of the MFIVs and associated bypass valves, or MFRVs and associated bypass valves, may also be relied on to terminate an SLB for core response analysis and excess feedwater event upon the receipt of a steam generator water level—high high signal or a feedwater isolation signal on high steam generator level. Failure of an MFIV, MFRV, or the associated bypass valves to close following an SLB or FWLB can result in additional mass and energy being delivered to the steam generators, contributing to cooldown. This failure also results in additional mass and energy releases following an SLB or FWLB event. The MFIVs and MFRVs satisfy Criterion 3 of the NRC Policy Statement. ## LC0 This LCO ensures that the MFIVs, MFRVs, and their associated bypass valves will isolate MFW flow to the steam generators, following an FWLB or main steam line break. These valves will also isolate the nonsafety related portions from the safety related portions of the system. This LCO requires that [four] MFIVs and associated bypass valves and [four] MFRVs [and associated bypass valves] be OPERABLE. The MFIVs and MFRVs and the associated bypass valves are considered OPERABLE when isolation times are # LCO (continued) within limits and they close on an isolation actuation signal. Failure to meet the LCO requirements can result in additional mass and energy being released to containment following an SLB or FWLB inside containment. If a feedwater isolation signal on high steam generator level is relied on to terminate an excess feedwater flow event, failure to meet the LCO may result in the introduction of water into the main steam lines. ### APPLICABILITY The MFIVs and MFRVs and the associated bypass valves must be OPERABLE whenever there is significant mass and energy in the Reactor Coolant System and steam generators. This ensures that, in the event of an HELB, a single failure cannot result in the blowdown of more than one steam generator. In MODES 1, 2, [and 3], the MFIVs and MFRVs and the associated bypass valves are required to be OPERABLE to limit the amount of available fluid that could be added to containment in the case of a secondary system pipe break inside containment. When the valves are closed and de-activated or isolated by a closed manual valve, they are already performing their safety function. In MODES 4, 5, and 6, steam generator energy is low. Therefore, the MFIVs, MFRVs, and the associated bypass valves are normally closed since MFW is not required. #### ACTIONS The ACTIONS table is modified by a Note indicating that separate Condition entry is allowed for each valve. ## A.1 and A.2 With one MFIV in one or more flow paths inoperable, action must be taken to restore the affected valves to OPERABLE status, or to close or isolate inoperable affected valves within [72] hours. When these valves are closed or isolated, they are performing their required safety function. #### **ACTIONS** # A.1 and A.2 (continued) The [72] hour Completion Time takes into account the redundancy afforded by the remaining OPERABLE valves and the low probability of an event occurring during this time period that would require isolation of the MFW flow paths. The [72] hour Completion Time is reasonable, based on operating experience. Inoperable MFIVs that are closed or isolated must be verified on a periodic basis that they are closed or isolated. This is necessary to ensure that the assumptions in the safety analysis remain valid. The 7 day Completion Time is reasonable, based on engineering judgment, in view of valve status indications available in the control room, and other administrative controls, to ensure that these valves are closed or isolated. ### **B.1** and **B.2** With one MFRV in one or more flow paths inoperable, action must be taken to restore the affected valves to OPERABLE status, or to close or isolate inoperable affected valves within [72] hours. When these valves are closed or isolated, they are performing their required safety function. The [72] hour Completion Time takes into account the redundancy afforded by the remaining OPERABLE valves and the low probability of an event occurring during this time period that would require isolation of the MFW flow paths. The [72] hour Completion Time is reasonable, based on operating experience. Inoperable MFRVs, that are closed or isolated, must be verified on a periodic basis that they are closed or isolated. This is necessary to ensure that the assumptions in the safety analysis remain valid. The 7 day Completion Time is reasonable, based on engineering judgment, in view of valve status indications available in the control room, and other administrative controls to ensure that the valves are closed or isolated. # ACTIONS (continued) ### <u>C.1 and C.2</u> With one associated bypass valve in one or more flow paths inoperable, action must be taken to restore the affected valves to OPERABLE status, or to close or isolate inoperable affected valves within [72] hours. When these valves are closed or isolated, they are performing their required safety function. The [72] hour Completion Time takes into account the redundancy afforded by the remaining OPERABLE valves and the low probability of an event occurring during this time period that would require isolation of the MFW flow paths. The [72] hour Completion Time is reasonable, based on operating experience. Inoperable associated bypass valves that are closed or isolated must be verified on a periodic basis that they are closed or isolated. This is necessary to ensure that the assumptions in the safety analysis remain valid. The 7 day Completion Time is reasonable, based on engineering judgment, in view of valve status indications available in the control room, and other administrative controls, to ensure that these valves are closed or isolated. #### D.1 With two inoperable valves in the same flow path, there may be no redundant system to operate automatically and perform the required safety function. Although the containment can be isolated with the failure of two valves in parallel in the same flow path, the double failure can be an indication of a common mode failure in the valves of this flow path, and as such, is treated the same as a loss of the isolation capability of this flow path. Under these conditions. affected valves in each flow path must be restored to OPERABLE status, or the affected flow path isolated within 8 hours. This action returns the system to the condition where at least one valve in each flow path is performing the required safety function. The 8 hour Completion Time is reasonable, based on operating experience, to complete the actions required to close the MFIV or MFRV, or otherwise isolate the affected flow path. # ACTIONS (continued) ## **E.1** and **E.2** If the MFIV(s) and MFRV(s) and the associated bypass valve(s) cannot be restored to OPERABLE status, or closed, or isolated within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, [and in MODE 4 within 12 hours]. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. # SURVEILLANCE REQUIREMENTS ## SR 3.7.3.1 This SR verifies that the closure time of each MFIV, MFRV, and associated bypass valves is ≤ 7 seconds on an actual or simulated actuation signal. The MFIV and MFRV closure times are assumed in the accident and containment analyses. This Surveillance is normally performed upon returning the unit to operation following a refueling outage. These valves should not be tested at power since even a part stroke exercise increases the risk of a valve closure with the unit generating power. This is consistent with the ASME Code, Section XI (Ref. 2), quarterly stroke requirements during operation in MODES 1 and 2. The Frequency for this SR is in accordance with the [Inservice Testing Program or [18] months]. The [18] month Frequency for valve closure is based on the refueling cycle. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. #### REFERENCES - 1. FSAR, Section [10.4.7]. - 2. ASME, Boiler and Pressure Vessel Code, Section XI. #### B 3.7 PLANT SYSTEMS ## B 3.7.4 Atmospheric Dump Valves (ADVs) #### BASES #### BACKGROUND The ADVs provide a method for cooling the unit to residual heat removal (RHR) entry conditions should the preferred heat sink via the Steam Bypass System to the condenser not be available, as discussed in the FSAR, Section [10.3] (Ref. 1). This is done in conjunction with the Auxiliary Feedwater System providing cooling water from the condensate storage tank (CST). The ADVs may also be required to meet the design cooldown rate during a normal cooldown when steam pressure drops too low for maintenance of a vacuum in the condenser to permit use of the Steam Dump System. One ADV line for each of the [four] steam generators is provided. Each ADV line consists of one ADV and an associated block valve. The ADVs are provided with upstream block valves to permit their being tested at power, and to provide an alternate means of isolation. The ADVs are equipped with pneumatic controllers to permit control of the cooldown rate. The ADVs are usually provided with a pressurized gas supply of bottled nitrogen that, on a loss of pressure in the normal instrument air supply, automatically supplies nitrogen to operate the ADVs. The nitrogen supply is sized to provide the sufficient pressurized gas to operate the ADVs for the time required
for Reactor Coolant System cooldown to RHR entry conditions. A description of the ADVs is found in Reference 1. The ADVs are OPERABLE with only a DC power source available. In addition, handwheels are provided for local manual operation. ## APPLICABLE SAFETY ANALYSES The design basis of the ADVs is established by the capability to cool the unit to RHR entry conditions. The design rate of [75]°F per hour is applicable for two steam generators, each with one ADV. This rate is adequate to cool the unit to RHR entry conditions with only one steam ## APPLICABLE SAFETY ANALYSES (continued) generator and one ADV, utilizing the cooling water supply available in the CST. In the accident analysis presented in Reference 1, the ADVs are assumed to be used by the operator to cool down the unit to RHR entry conditions for accidents accompanied by a loss of offsite power. Prior to operator actions to cool down the unit, the ADVs and main steam safety valves (MSSVs) are assumed to operate automatically to relieve steam and maintain the steam generator pressure below the design value. For the recovery from a steam generator tube rupture (SGTR) event, the operator is also required to perform a limited cooldown to establish adequate subcooling as a necessary step to terminate the primary to secondary break flow into the ruptured steam generator. The time required to terminate the primary to secondary break flow for an SGTR is more critical than the time required to cool down to RHR. conditions for this event and also for other accidents. Thus, the SGTR is the limiting event for the ADVs. The number of ADVs required to be OPERABLE to satisfy the SGTR accident analysis requirements depends upon the number of unit loops and consideration of any single failure assumptions regarding the failure of one ADV to open on demand. The ADVs are equipped with block valves in the event an ADV spuriously fails to open or fails to close during use. The ADVs satisfy Criterion 3 of the NRC Policy Statement. FC0 [Three] ADV lines are required to be OPERABLE. One ADV line is required from each of [three] steam generators to ensure that at least one ADV line is available to conduct a unit cooldown following an SGTR, in which one steam generator becomes unavailable, accompanied by a single, active failure of a second ADV line on an unaffected steam generator. The block valves must be OPERABLE to isolate a failed open ADV line. A closed block valve does not render it or its ADV line inoperable if operator action time to open the block valve is supported in the accident analysis. Failure to meet the LCO can result in the inability to cool the unit to RHR entry conditions following an event in which # LCO (continued) the condenser is unavailable for use with the Steam Bypass System. An ADV is considered OPERABLE when it is capable of providing controlled relief of the main steam flow and capable of fully opening and closing on demand. ## **APPLICABILITY** In MODES 1, 2, and 3, and in MODE 4, when a steam generator is being relied upon for heat removal, the ADVs are required to be OPERABLE. In MODE 5 or 6, an SGTR is not a credible event. #### **ACTIONS** ## <u>A.1</u> With one required ADV line inoperable, action must be taken to restore OPERABLE status within 7 days. The 7 day Completion Time allows for the redundant capability afforded by the remaining OPERABLE ADV lines, a nonsafety grade backup in the Steam Bypass System, and MSSVs. Required Action A.1 is modified by a Note indicating that LCO 3.0.4 does not apply. #### B.1 With two or more ADV lines inoperable, action must be taken to restore all but one ADV line to OPERABLE status. Since the block valve can be closed to isolate an ADV, some repairs may be possible with the unit at power. The 24 hour Completion Time is reasonable to repair inoperable ADV lines, based on the availability of the Steam Bypass System and MSSVs, and the low probability of an event occurring during this period that would require the ADV lines. #### C.1 and C.2 If the ADV lines cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least #### **ACTIONS** ## C.1 and C.2 (continued) MODE 3 within 6 hours, and in MODE 4, without reliance upon steam generator for heat removal, within [18] hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.7.4.1 To perform a controlled cooldown of the RCS, the ADVs must be able to be opened either remotely or locally and throttled through their full range. This SR ensures that the ADVs are tested through a full control cycle at least once per fuel cycle. Performance of inservice testing or use of an ADV during a unit cooldown may satisfy this requirement. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. The Frequency is acceptable from a reliability standpoint. #### SR 3.7.4.2 The function of the block valve is to isolate a failed open ADV. Cycling the block valve both closed and open demonstrates its capability to perform this function. Performance of inservice testing or use of the block valve during unit cooldown may satisfy this requirement. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. The Frequency is acceptable from a reliability standpoint. #### REFERENCES 1. FSAR, Section [10.3]. #### B 3.7 PLANT SYSTEMS ## B 3.7.5 Auxiliary Feedwater (AFW) System #### BASES #### **BACKGROUND** The AFW System automatically supplies feedwater to the steam generators to remove decay heat from the Reactor Coolant System upon the loss of normal feedwater supply. The AFW pumps take suction through separate and independent suction lines from the condensate storage tank (CST) (LCO 3.7.6) and pump to the steam generator secondary side via separate and independent connections to the main feedwater (MFW) piping outside containment. The steam generators function as a heat sink for core decay heat. The heat load is dissipated by releasing steam to the atmosphere from the steam generators via the main steam safety valves (MSSVs) (LCO 3.7.1) or atmospheric dump valves (LCO 3.7.4). If the main condenser is available, steam may be released via the steam bypass valves and recirculated to the CST. The AFW System consists of [two] motor driven AFW pumps and one steam turbine driven pump configured into [three] trains. Each motor driven pump provides [100]% of AFW flow capacity, and the turbine driven pump provides [200]% of the required capacity to the steam generators, as assumed in the accident analysis. The pumps are equipped with independent recirculation lines to prevent pump operation against a closed system. Each motor driven AFW pump is powered from an independent Class 1E power supply and feeds [two] steam generators, although each pump has the capability to be realigned from the control room to feed other steam generators. The steam turbine driven AFW pump receives steam from two main steam lines upstream of the main steam isolation valves. Each of the steam feed lines will supply 100% of the requirements of the turbine driven AFW pump. The AFW System is capable of supplying feedwater to the steam generators during normal unit startup, shutdown, and hot standby conditions. The turbine driven AFW pump supplies a common header capable of feeding all steam generators with DC powered control valves actuated to the appropriate steam generator by the Engineered Safety Feature Actuation System (ESFAS). One pump at full flow is sufficient to remove decay heat and cool the unit to residual heat removal (RHR) entry # BACKGROUND (continued) conditions. Thus, the requirement for diversity in motive power sources for the AFW System is met. The AFW System is designed to supply sufficient water to the steam generator(s) to remove decay heat with steam generator pressure at the setpoint of the MSSVs. Subsequently, the AFW System supplies sufficient water to cool the unit to RHR entry conditions, with steam released through the ADVs. The AFW System actuates automatically on steam generator water level—low-low by the ESFAS (LCO 3.3.2). The system also actuates on loss of offsite power, safety injection, and trip of all MFW pumps. The AFW System is discussed in the FSAR, Section [10.4.9] (Ref. 1). ## APPLICABLE SAFETY ANALYSES The AFW System mitigates the consequences of any event with loss of normal feedwater. The design basis of the AFW System is to supply water to the steam generator to remove decay heat and other residual heat by delivering at least the minimum required flow rate to the steam generators at pressures corresponding to the lowest steam generator safety valve set pressure plus 3%. In addition, the AFW System must supply enough makeup water to replace steam generator secondary inventory lost as the unit cools to MODE 4 conditions. Sufficient AFW flow must also be available to account for flow losses such as pump recirculation and line breaks. The limiting Design Basis Accidents (DBAs) and transients for the AFW System are as follows: - a. Feedwater Line Break (FWLB); and - b. Loss of MFW. In addition, the minimum available AFW flow and system characteristics are serious considerations in the analysis of a small break loss of coolant accident (LOCA). ## APPLICABLE SAFETY ANALYSES (continued) The AFW System design is such that it can perform its function following an FWLB between the MFW isolation valves and containment, combined with a loss of offsite power following turbine trip, and a single active failure of the steam turbine driven AFW pump. In such a case, the ESFAS logic may not detect the affected steam generator if the
backflow check valve to the affected MFW header worked properly. One motor driven AFW pump would deliver to the broken MFW header at the pump runout flow until the problem was detected, and flow terminated by the operator. Sufficient flow would be delivered to the intact steam generator by the redundant AFW pump. The ESFAS automatically actuates the AFW turbine driven pump and associated power operated valves and controls when required to ensure an adequate feedwater supply to the steam generators during loss of power. DC power operated valves are provided for each AFW line to control the AFW flow to each steam generator. The AFW System satisfies the requirements of Criterion 3 of the NRC Policy Statement. #### LCO This LCO provides assurance that the AFW System will perform its design safety function to mitigate the consequences of accidents that could result in overpressurization of the reactor coolant pressure boundary. [Three] independent AFW pumps in [three] diverse trains are required to be OPERABLE to ensure the availability of RHR capability for all events accompanied by a loss of offsite power and a single failure. This is accomplished by powering two of the pumps from independent emergency buses. The third AFW pump is powered by a different means, a steam driven turbine supplied with steam from a source that is not isolated by closure of the MSIVs. The AFW System is configured into [three] trains. The AFW System is considered OPERABLE when the components and flow paths required to provide redundant AFW flow to the steam generators are OPERABLE. This requires that the two motor driven AFW pumps be OPERABLE in [two] diverse paths, each supplying AFW to separate steam generators. The turbine driven AFW pump is required to be OPERABLE with redundant steam supplies from each of [two] main steam lines upstream # LCO (continued) of the MSIVs, and shall be capable of supplying AFW to any of the steam generators. The piping, valves, instrumentation, and controls in the required flow paths also are required to be OPERABLE. The LCO is modified by a Note indicating that one AFW train, which includes a motor driven pump, is required to be OPERABLE in MODE 4. This is because of the reduced heat removal requirements and short period of time in MODE 4 during which the AFW is required and the insufficient steam available in MODE 4 to power the turbine driven AFW pump. ## **APPLICABILITY** In MODES 1, 2, and 3, the AFW System is required to be OPERABLE in the event that it is called upon to function when the MFW is lost. In addition, the AFW System is required to supply enough makeup water to replace the steam generator secondary inventory, lost as the unit cools to MODE 4 conditions. In MODE 4 the AFW System may be used for heat removal via the steam generators. In MODE 5 or 6, the steam generators are not normally used for heat removal, and the AFW System is not required. #### **ACTIONS** #### A.1 If one of the two steam supplies to the turbine driven AFW train is inoperable, action must be taken to restore OPERABLE status within 7 days. The 7 day Completion Time is reasonable, based on the following reasons: - The redundant OPERABLE steam supply to the turbine driven AFW pump; - The availability of redundant OPERABLE motor driven AFW pumps; and - c. The low probability of an event occurring that requires the inoperable steam supply to the turbine driven AFW pump. #### **ACTIONS** ## A.1 (continued) The second Completion Time for Required Action A.1 establishes a limit on the maximum time allowed for any combination of Conditions to be inoperable during any continuous failure to meet this LCO. The 10 day Completion Time provides a limitation time allowed in this specified Condition after discovery of failure to meet the LCO. This limit is considered reasonable for situations in which Conditions A and B are entered concurrently. The <u>AND</u> connector between 7 days and 10 days dictates that both Completion Times apply simultaneously, and the more restrictive must be met. #### <u>B.1</u> With one of the required AFW trains (pump or flow path) inoperable in MODE 1, 2, or 3 [for reasons other than Condition A], action must be taken to restore OPERABLE status within 72 hours. This Condition includes the loss of two steam supply lines to the turbine driven AFW pump. The 72 hour Completion Time is reasonable, based on redundant capabilities afforded by the AFW System, time needed for repairs, and the low probability of a DBA occurring during this time period. The second Completion Time for Required Action B.1 establishes a limit on the maximum time allowed for any combination of Conditions to be inoperable during any continuous failure to meet this LCO. The 10 day Completion Time provides a limitation time allowed in this specified Condition after discovery of failure to meet the LCO. This limit is considered reasonable for situations in which Conditions A and B are entered concurrently. The <u>AND</u> connector between 72 hours and 10 days dictates that both Completion Times apply simultaneously, and the more restrictive must be met. ### <u>C.1 and C.2</u> When Required Action A.1 [or B.1] cannot be completed within the required Completion Time, or if two AFW trains are ### **ACTIONS** ## C.1 and C.2 (continued) inoperable in MODE 1, 2, or 3, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 4 within [18] hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. In MODE 4 with two AFW trains inoperable, operation is allowed to continue because only one motor driven pump AFW train is required in accordance with the Note that modifies the LCO. Although not required, the unit may continue to cool down and initiate RHR. ## <u>D.1</u> If all [three] AFW trains are inoperable in MODE 1, 2, or 3, the unit is in a seriously degraded condition with no safety related means for conducting a cooldown, and only limited means for conducting a cooldown with nonsafety related equipment. In such a condition, the unit should not be perturbed by any action, including a power change, that might result in a trip. The seriousness of this condition requires that action be started immediately to restore one AFW train to OPERABLE status. Required Action D.1 is modified by a Note indicating that all required MODE changes or power reductions are suspended until one AFW train is restored to OPERABLE status. In this case, LCO 3.0.3 is not applicable because it could force the unit into a less safe condition. ## E.1 In MODE 4, either the reactor coolant pumps or the RHR loops can be used to provide forced circulation. This is addressed in LCO 3.4.6, "RCS Loops—MODE 4." With one required AFW train inoperable, action must be taken to immediately restore the inoperable train to OPERABLE status. The immediate Completion Time is consistent with LCO 3.4.6. ## SURVEILLANCE REQUIREMENTS ## SR 3.7.5.1 Verifying the correct alignment for manual, power operated, and automatic valves in the AFW System water and steam supply flow paths provides assurance that the proper flow paths will exist for AFW operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since they are verified to be in the correct position prior to locking, sealing, or securing. This SR also does not apply to valves that cannot be inadvertently misaligned, such as check valves. This Surveillance does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve positions. #### SR 3.7.5.2 Verifying that each AFW pump's developed head at the flow test point is greater than or equal to the required developed head ensures that AFW pump performance has not degraded during the cycle. Flow and differential head are normal tests of centrigufal pump performance required by Section XI of the ASME Code (Ref 2). Because it is undesirable to introduce cold AFW into the steam generators while they are operating, this testing is performed on recirculation flow. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice tests confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance. Performance of inservice testing discussed in the ASME Code, Section XI (Ref. 2) (only required at 3 month intervals) satisfies this requirement. The [31] day Frequency on a STAGGERED TEST BASIS results in testing each pump once every 3 months, as required by Reference 2. This SR is modified by a Note indicating that the SR should be deferred until suitable test conditions are established. This deferral is required because there is insufficient steam pressure to perform the test. ## SURVEILLANCE REQUIREMENTS (continued) #### SR 3.7.5.3 This SR verifies that AFW can be delivered to the appropriate steam generator in the event of any accident or transient that generates an ESFAS, by demonstrating that each automatic valve in the flow path actuates to its correct position on an actual or simulated actuation signal. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. The [18] month Frequency is acceptable based on operating experience and the design
reliability of the equipment. This SR is modified by a Note that states the SR is not required in MODE 4. In MODE 4, the required AFW train is already aligned and operating. ## SR 3.7.5.4 This SR verifies that the AFW pumps will start in the event of any accident or transient that generates an ESFAS by demonstrating that each AFW pump starts automatically on an actual or simulated actuation signal in MODES 1, 2, and 3. In MODE 4, the required pump is already operating and the autostart function is not required. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. This SR is modified by [a] [two] Note[s]. [Note 1 indicates that the SR be deferred until suitable test conditions are established. This deferral is required because there is insufficient steam pressure to perform the test.] [The] Note [2] states that the SR is not required in MODE 4. [In MODE 4, the required pump is already operating and the autostart function is not required.] [In MODE 4, the heat removal requirements would be less providing more time for operator action to manually start the required AFW pump.] ## SURVEILLANCE REQUIREMENTS ## <u>SR 3.7.5.4</u> (continued) Reviewer's Note: Some plants may not routinely use the AFW for heat removal in MODE 4. The second justification is provided for plants that use a startup feedwater pump rather than AFW for startup and shutdown. ## SR 3.7.5.5 This SR verifies that the AFW is properly aligned by verifying the flow paths from the CST to each steam generator prior to entering MODE 2 after more than 30 days in MODE 5 or 6. OPERABILITY of AFW flow paths must be verified before sufficient core heat is generated that would require the operation of the AFW System during a subsequent shutdown. The Frequency is reasonable, based on engineering judgement and other administrative controls that ensure that flow paths remain OPERABLE. To further ensure AFW System alignment, flow path OPERABILITY is verified following extended outages to determine no misalignment of valves has occurred. This SR ensures that the flow path from the CST to the steam generators is properly aligned. (This SR is not required by those units that use AFW for normal startup and shutdown.) #### REFERENCES - 1. FSAR, Section [10.4.9]. - 2. ASME, Boiler and Pressure Vessel Code, Section XI. #### B 3.7 PLANT SYSTEMS ## B 3.7.6 Condensate Storage Tank (CST) #### BASES ## **BACKGROUND** The CST provides a safety grade source of water to the steam generators for removing decay and sensible heat from the Reactor Coolant System (RCS). The CST provides a passive flow of water, by gravity, to the Auxiliary Feedwater (AFW) System (LCO 3.7.5). The steam produced is released to the atmosphere by the main steam safety valves or the atmospheric dump valves. The AFW pumps operate with a continuous recirculation to the CST. When the main steam isolation valves are open, the preferred means of heat removal is to discharge steam to the condenser by the nonsafety grade path of the steam bypass valves. The condensed steam is returned to the CST by the condensate transfer pump. This has the advantage of conserving condensate while minimizing releases to the environment. Because the CST is a principal component in removing residual heat from the RCS, it is designed to withstand earthquakes and other natural phenomena, including missiles that might be generated by natural phenomena. The CST is designed to Seismic Category I to ensure availability of the feedwater supply. Feedwater is also available from alternate sources. A description of the CST is found in the FSAR, Section [9.2.6] (Ref. 1). ## APPLICABLE SAFETY ANALYSES The CST provides cooling water to remove decay heat and to cool down the unit following all events in the accident analysis as discussed in the FSAR, Chapters [6] and [15] (Refs. 2 and 3, respectively). For anticipated operational occurrences and accidents that do not affect the OPERABILITY of the steam generators, the analysis assumption is generally 30 minutes at MODE 3, steaming through the MSSVs, followed by a cooldown to residual heat removal (RHR) entry conditions at the design cooldown rate. The limiting event for the condensate volume is the large feedwater line break coincident with a loss of offsite ## APPLICABLE SAFETY ANALYSES (continued) power. Single failures that also affect this event include the following: - a. Failure of the diesel generator powering the motor driven AFW pump to the unaffected steam generator (requiring additional steam to drive the remaining AFW pump turbine); and - b. Failure of the steam driven AFW pump (requiring a longer time for cooldown using only one motor driven AFW pump). These are not usually the limiting failures in terms of consequences for these events. A nonlimiting event considered in CST inventory determinations is a break in either the main feedwater or AFW line near where the two join. This break has the potential for dumping condensate until terminated by operator action, since the Emergency Feedwater Actuation System would not detect a difference in pressure between the steam generators for this break location. This loss of condensate inventory is partially compensated for by the retention of steam generator inventory. The CST satisfies Criterion 3 of the NRC Policy Statement. LCO To satisfy accident analysis assumptions, the CST must contain sufficient cooling water to remove decay heat for [30 minutes] following a reactor trip from 102% RTP, and then to cool down the RCS to RHR entry conditions, assuming a coincident loss of offsite power and the most adverse single failure. In doing this, it must retain sufficient water to ensure adequate net positive suction head for the AFW pumps during cooldown, as well as account for any losses from the steam driven AFW pump turbine, or before isolating AFW to a broken line. The CST level required is equivalent to a usable volume of \geq [110,000 gallons], which is based on holding the unit in MODE 3 for [2] hours, followed by a cooldown to RHR entry conditions at [75]°F/hour. This basis is established in Reference 4 and exceeds the volume required by the accident analysis. LCO (continued) The OPERABILITY of the CST is determined by maintaining the tank level at or above the minimum required level. ## **APPLICABILITY** In MODES 1, 2, and 3, and in MODE 4, when steam generator is being relied upon for heat removal, the CST is required to be OPERABLE. In MODE 5 or 6, the CST is not required because the AFW System is not required. #### ACTIONS #### A.1 and A.2 If the CST level is not within limits, the OPERABILITY of the backup supply should be verified by administrative means within 4 hours and once every 12 hours thereafter. OPERABILITY of the backup feedwater supply must include verification that the flow paths from the backup water supply to the AFW pumps are OPERABLE, and that the backup supply has the required volume of water available. The CST must be restored to OPERABLE status within 7 days, because the backup supply may be performing this function in addition to its normal functions. The 4 hour Completion Time is reasonable, based on operating experience, to verify the OPERABILITY of the backup water supply. The 7 day Completion Time is reasonable, based on an OPERABLE backup water supply being available, and the low probability of an event occurring during this time period requiring the CST. ## **B.1** and **B.2** If the CST cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 4, without reliance on the steam generator for heat removal, within [18] hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.7.6.1 This SR verifies that the CST contains the required volume of cooling water. (The required CST volume may be single value or a function of RCS conditions.) The 12 hour Frequency is based on operating experience and the need for operator awareness of unit evolutions that may affect the CST inventory between checks. Also, the 12 hour Frequency is considered adequate in view of other indications in the control room, including alarms, to alert the operator to abnormal deviations in the CST level. #### REFERENCES - 1. FSAR, Section [9.2.6]. - 2. FSAR, Chapter [6]. - 3. FSAR, Chapter [15]. #### B 3.7 PLANT SYSTEMS ## B 3.7.7 Component Cooling Water (CCW) System #### BASES #### **BACKGROUND** The CCW System provides a heat sink for the removal of process and operating heat from safety related components during a Design Basis Accident (DBA) or transient. During normal operation, the CCW System also provides this function for various nonessential components, as well as the spent fuel storage pool. The CCW System serves as a barrier to the release of radioactive byproducts between potentially radioactive systems and the Service Water System, and thus to the environment. A typical CCW System is arranged as two independent, full capacity cooling loops, and has isolatable nonsafety related components. Each safety related train includes a full capacity pump, surge tank, heat exchanger, piping, valves, and instrumentation. Each safety related train is powered from a separate bus. An open surge tank in the system provides pump trip protective functions to ensure that sufficient net positive suction head is available. The pump in each train is automatically started on receipt of a safety injection signal, and all nonessential components are isolated. Additional information on the design and operation of
the system, along with a list of the components served, is presented in the FSAR, Section [9.2.2] (Ref. 1). The principal safety related function of the CCW System is the removal of decay heat from the reactor via the Residual Heat Removal (RHR) System. This may be during a normal or post accident cooldown and shutdown. ## APPLICABLE SAFETY ANALYSES The design basis of the CCW System is for one CCW train to remove the post loss of coolant accident (LOCA) heat load from the containment sump during the recirculation phase, with a maximum CCW temperature of [120]°F (Ref. 2). The Emergency Core Cooling System (ECCS) LOCA and containment OPERABILITY LOCA each model the maximum and minimum performance of the CCW System, respectively. The normal temperature of the CCW is [80]°F, and, during unit cooldown to MODE 5 (Tcold < [200]°F), a maximum temperature of 95°F is ## APPLICABLE SAFETY ANALYSES (continued) assumed. This prevents the containment sump fluid from increasing in temperature during the recirculation phase following a LOCA, and provides a gradual reduction in the temperature of this fluid as it is supplied to the Reactor Coolant System (RCS) by the ECCS pumps. The CCW System is designed to perform its function with a single failure of any active component, assuming a loss of offsite power. The CCW System also functions to cool the unit from RHR entry conditions ($T_{cold} < [350]^{\circ}F$), to MODE 5 ($T_{cold} < [200]^{\circ}F$), during normal and post accident operations. The time required to cool from [350]°F to [200]°F is a function of the number of CCW and RHR trains operating. One CCW train is sufficient to remove decay heat during subsequent operations with $T_{cold} < [200]^{\circ}F$. This assumes a maximum service water temperature of [95]°F occurring simultaneously with the maximum heat loads on the system. The CCW System satisfies Criterion 3 of the NRC Policy Statement. ## LC0 The CCW trains are independent of each other to the degree that each has separate controls and power supplies and the operation of one does not depend on the other. In the event of a DBA, one CCW train is required to provide the minimum heat removal capability assumed in the safety analysis for the systems to which it supplies cooling water. To ensure this requirement is met, two trains of CCW must be OPERABLE. At least one CCW train will operate assuming the worst case single active failure occurs coincident with a loss of offsite power. A CCW train is considered OPERABLE when: - a. The pump and associated surge tank are OPERABLE; and - b. The associated piping, valves, heat exchanger, and instrumentation and controls required to perform the safety related function are OPERABLE. The isolation of CCW from other components or systems not required for safety may render those components or systems #### **BASES** ## LCO (continued) inoperable but does not affect the <code>OPERABILITY</code> of the <code>CCW System</code>. #### **APPLICABILITY** In MODES 1, 2, 3, and 4, the CCW System is a normally operating system, which must be prepared to perform its post accident safety functions, primarily RCS heat removal, which is achieved by cooling the RHR heat exchanger. In MODE 5 or 6, the OPERABILITY requirements of the CCW System are determined by the systems it supports. #### **ACTIONS** #### <u>A.1</u> Required Action A.1 is modified by a Note indicating that the applicable Conditions and Required Actions of LCO 3.4.6, "RCS Loops—MODE 4," be entered if an inoperable CCW train results in an inoperable RHR loop. This is an exception to LCO 3.0.6 and ensures the proper actions are taken for these components. If one CCW train is inoperable, action must be taken to restore OPERABLE status within 72 hours. In this Condition, the remaining OPERABLE CCW train is adequate to perform the heat removal function. The 72 hour Completion Time is reasonable, based on the redundant capabilities afforded by the OPERABLE train, and the low probability of a DBA occurring during this period. ## **B.1** and **B.2** If the CCW train cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours and in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. # SURVEILLANCE REQUIREMENTS ## SR 3.7.7.1 This SR is modified by a Note indicating that the isolation of the CCW flow to individual components may render those components inoperable but does not affect the OPERABILITY of the CCW System. Verifying the correct alignment for manual, power operated, and automatic valves in the CCW flow path provides assurance that the proper flow paths exist for CCW operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since these valves are verified to be in the correct position prior to locking, sealing, or securing. This SR also does not apply to valves that cannot be inadvertently misaligned, such as check valves. This Surveillance does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve positions. #### SR 3.7.7.2 This SR verifies proper automatic operation of the CCW valves on an actual or simulated actuation signal. The CCW System is a normally operating system that cannot be fully actuated as part of routine testing during normal operation. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency is acceptable from a reliability standpoint. (continued) spen ## APPLICABLE SAFETY ANALYSES (continued) The SWS, in conjunction with the CCW System, also cools the unit from residual heat removal (RHR), as discussed in the FSAR, Section [5.4.7], (Ref. 3) entry conditions to MODE 5 during normal and post accident operations. The time required for this evolution is a function of the number of CCW and RHR System trains that are operating. One SWS train is sufficient to remove decay heat during subsequent operations in MODES 5 and 6. This assumes a maximum SWS temperature of [95]°F occurring simultaneously with maximum heat loads on the system. The SWS satisfies Criterion 3 of the NRC Policy Statement. #### LC0 Two SWS trains are required to be OPERABLE to provide the required redundancy to ensure that the system functions to remove post accident heat loads, assuming that the worst case single active failure occurs coincident with the loss of offsite power. An SWS train is considered OPERABLE during MODES 1, 2, 3, and 4 when: - a. The pump is OPERABLE; and - b. The associated piping, valves, heat exchanger, and instrumentation and controls required to perform the safety related function are OPERABLE. #### **APPLICABILITY** In MODES 1, 2, 3, and 4, the SWS is a normally operating system that is required to support the OPERABILITY of the equipment serviced by the SWS and required to be OPERABLE in these MODES. In MODES 5 and 6, the OPERABILITY requirements of the SWS are determined by the systems it supports. #### **ACTIONS** <u>A.1</u> If one SWS train is inoperable, action must be taken to restore OPERABLE status within 72 hours. In this Condition, #### **ACTIONS** ## A.1 (continued) the remaining OPERABLE SWS train is adequate to perform the heat removal function. However, the overall reliability is reduced because a single failure in the OPERABLE SWS train could result in loss of SWS function. Required Action A.1 is modified by two Notes. The first Note indicates that the applicable Conditions and Required Actions of LCO 3.8.1, "AC Sources-Operating," should be entered if an inoperable SWS train results in an inoperable emergency diesel generator. The second Note indicates that the applicable Conditions and Required Actions of LCO 3.4.6, "RCS Loops—MODE 4," should be entered if an inoperable SWS train results in an inoperable decay heat removal train. This is an exception to LCO 3.0.6 and ensures the proper actions are taken for these components. The 72 hour Completion Time is based on the redundant capabilities afforded by the OPERABLE train. and the low probability of a DBA occurring during this time period. ## **B.1** and **B.2** If the SWS train cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours and in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. # SURVEILLANCE REQUIREMENTS ## SR 3.7.8.1 This SR is modified by a Note indicating that the isolation of the SWS components or systems may render those components inoperable, but does not affect the OPERABILITY of the SWS. Verifying the correct alignment for manual, power operated, and automatic valves in the SWS flow path provides assurance that the proper flow paths exist for SWS operation. This SR does not apply to valves that are locked, sealed, or ## SURVEILLANCE REQUIREMENTS
<u>SR 3.7.8.1</u> (continued) otherwise secured in position, since they are verified to be in the correct position prior to being locked, sealed, or secured. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves. The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve positions. ## SR 3.7.8.2 This SR verifies proper automatic operation of the SWS valves on an actual or simulated actuation signal. The SWS is a normally operating system that cannot be fully actuated as part of normal testing. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency is acceptable from a reliability standpoint. ## SR 3.7.8.3 This SR verifies proper automatic operation of the SWS pumps on an actual or simulated actuation signal. The SWS is a normally operating system that cannot be fully actuated as part of normal testing during normal operation. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month | R | Δ | 2 | F | 5 | |---|---|---|---|---| | u | л | J | _ | · | # SURVEILLANCE REQUIREMENTS <u>SR 3.7.8.3</u> (continued) Frequency. Therefore, the Frequency is acceptable from a reliability standpoint. ## REFERENCES - 1. FSAR, Section [9.2.1]. - 2. FSAR, Section [6.2]. - 3. FSAR, Section [5.4.7]. #### B 3.7 PLANT SYSTEMS B 3.7.9 Ultimate Heat Sink (UHS) #### **BASES** #### BACKGROUND The UHS provides a heat sink for processing and operating heat from safety related components during a transient or accident, as well as during normal operation. This is done by utilizing the Service Water System (SWS) and the Component Cooling Water (CCW) System. The UHS has been defined as that complex of water sources, including necessary retaining structures (e.g., a pond with its dam, or a river with its dam), and the canals or conduits connecting the sources with, but not including, the cooling water system intake structures as discussed in the FSAR, Section [9.2.5] (Ref. 1). If cooling towers or portions thereof are required to accomplish the UHS safety functions, they should meet the same requirements as the sink. The two principal functions of the UHS are the dissipation of residual heat after reactor shutdown, and dissipation of residual heat after an accident. A variety of complexes is used to meet the requirements for a UHS. A lake or an ocean may qualify as a single source. If the complex includes a water source contained by a structure, it is likely that a second source will be required. The basic performance requirements are that a 30 day supply of water be available, and that the design basis temperatures of safety related equipment not be exceeded. Basins of cooling towers generally include less than a 30 day supply of water, typically 7 days or less. A 30 day supply would be dependent on other source(s) and makeup system(s) for replenishing the source in the cooling tower basin. For smaller basin sources, which may be as small as a 1 day supply, the systems for replenishing the basin and the backup source(s) become of sufficient importance that the makeup system itself may be required to meet the same design criteria as an Engineered Safety Feature (e.g., single failure considerations), and multiple makeup water sources may be required. #### BASES # BACKGROUND (continued) Additional information on the design and operation of the system, along with a list of components served, can be found in Reference 1. ## APPLICABLE SAFETY ANALYSES The UHS is the sink for heat removed from the reactor core following all accidents and anticipated operational occurrences in which the unit is cooled down and placed on residual heat removal (RHR) operation. For units that use UHS as the normal heat sink for condenser cooling via the Circulating Water System, unit operation at full power is its maximum heat load. Its maximum post accident heat load occurs 20 minutes after a design basis loss of coolant accident (LOCA). Near this time, the unit switches from injection to recirculation and the containment cooling systems and RHR are required to remove the core decay heat. The operating limits are based on conservative heat transfer analyses for the worst case LOCA. Reference 1 provides the details of the assumptions used in the analysis, which include worst expected meteorological conditions, conservative uncertainties when calculating decay heat, and worst case single active failure (e.g., single failure of a manmade structure). The UHS is designed in accordance with Regulatory Guide 1.27 (Ref. 2), which requires a 30 day supply of cooling water in the UHS. The UHS satisfies Criterion 3 of the NRC Policy Statement. LC0 The UHS is required to be OPERABLE and is considered OPERABLE if it contains a sufficient volume of water at or below the maximum temperature that would allow the SWS to operate for at least 30 days following the design basis LOCA without the loss of net positive suction head (NPSH), and without exceeding the maximum design temperature of the equipment served by the SWS. To meet this condition, the UHS temperature should not exceed [90°F] and the level should not fall below [562 ft mean sea level] during normal unit operation. ## BASES (continued) #### **APPLICABILITY** In MODES 1, 2, 3, and 4, the UHS is required to support the OPERABILITY of the equipment serviced by the UHS and required to be OPERABLE in these MODES. In MODE 5 or 6, the OPERABILITY requirements of the UHS are determined by the systems it supports. ### ACTIONS - ## A.1 If one or more cooling towers have one fan inoperable (i.e., up to one fan per cooling tower inoperable), action must be taken to restore the inoperable cooling tower fan(s) to OPERABLE status within 7 days. The 7 day Completion Time is reasonable based on the low probability of an accident occurring during the 7 days that one cooling tower fan is inoperable (in one or more cooling towers), the number of available systems, and the time required to reasonably complete the Required Action. ## **B.1** and **B.2** [If the cooling tower fan cannot be restored to OPERABLE status within the associated Completion Time, or] if the UHS is inoperable for reasons other than Condition A, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours and in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. # SURVEILLANCE REQUIREMENTS ## SR 3.7.9.1 This SR verifies that adequate long term (30 day) cooling can be maintained. The specified level also ensures that sufficient NPSH is available to operate the SWS pumps. The [24] hour Frequency is based on operating experience related to trending of the parameter variations during the ## SURVEILLANCE REQUIREMENTS ## SR 3.7.9.1 (continued) applicable MODES. This SR verifies that the UHS water level is \geq [562] ft [mean sea level]. #### SR 3.7.9.2 This SR verifies that the SWS is available to cool the CCW System to at least its maximum design temperature with the maximum accident or normal design heat loads for 30 days following a Design Basis Accident. The 24 hour Frequency is based on operating experience related to trending of the parameter variations during the applicable MODES. This SR verifies that the average water temperature of the UHS is $\leq [90^{\circ}F]$. ### SR 3.7.9.3 Operating each cooling tower fan for ≥ [15] minutes ensures that all fans are OPERABLE and that all associated controls are functioning properly. It also ensures that fan or motor failure, or excessive vibration, can be detected for corrective action. The 31 day Frequency is based on operating experience, the known reliability of the fan units, the redundancy available, and the low probability of significant degradation of the UHS cooling tower fans occurring between surveillances. ## SR 3.7.9.4 This SR verifies that each cooling tower fan starts and operates on an actual or simulated actuation signal. The [18] month Frequency is consistent with the typical refueling cycle. Operating experience has shown that these components usually pass the Surveillance when performed at the [18] month Frequency. Therefore, the Frequency is acceptable from a reliability standpoint. #### REFERENCES - 1. FSAR, Section [9.2.5]. - 2. Regulatory Guide 1.27. #### B 3.7 PLANT SYSTEMS B 3.7.10 Control Room Emergency Filtration System (CREFS) #### **BASES** #### **BACKGROUND** The CREFS provides a protected environment from which operators can control the unit following an uncontrolled release of radioactivity[, chemicals, or toxic gas]. The CREFS consists of two independent, redundant trains that recirculate and filter the control room air. Each train consists of a prefilter or demister, a high efficiency particulate air (HEPA) filter, an activated charcoal adsorber section for removal of gaseous
activity (principally iodines), and a fan. Ductwork, valves or dampers, and instrumentation also form part of the system, as well as demisters to remove water droplets from the air stream. A second bank of HEPA filters follows the adsorber section to collect carbon fines and provide backup in case of failure of the main HEPA filter bank. The CREFS is an emergency system, parts of which may also operate during normal unit operations in the standby mode of operation. Upon receipt of the actuating signal(s), normal air supply to the control room is isolated, and the stream of ventilation air is recirculated through the system filter trains. The prefilters or demisters remove any large particles in the air, and any entrained water droplets present, to prevent excessive loading of the HEPA filters and charcoal adsorbers. Continuous operation of each train for at least 10 hours per month, with the heaters on, reduces moisture buildup on the HEPA filters and adsorbers. Both the demister and heater are important to the effectiveness of the charcoal adsorbers. Actuation of the CREFS places the system in either of two separate states (emergency radiation state or toxic gas isolation state) of the emergency mode of operation, depending on the initiation signal. Actuation of the system to the emergency radiation state of the emergency mode of operation, closes the unfiltered outside air intake and unfiltered exhaust dampers, and aligns the system for recirculation of the control room air through the redundant trains of HEPA and the charcoal filters. The emergency radiation state also initiates pressurization and filtered ventilation of the air supply to the control room. # BACKGROUND (continued) Outside air is filtered, diluted with building air from the electrical equipment and cable spreading rooms, and added to the air being recirculated from the control room. Pressurization of the control room prevents infiltration of unfiltered air from the surrounding areas of the building. The actions taken in the toxic gas isolation state are the same, except that the signal switches control room ventilation to an isolation alignment to prevent outside air from entering the control room. The air entering the control room is continuously monitored by radiation and toxic gas detectors. One detector output above the setpoint will cause actuation of the emergency radiation state or toxic gas isolation state, as required. The actions of the toxic gas isolation state are more restrictive, and will override the actions of the emergency radiation state. A single train will pressurize the control room to about [0.125] inches water gauge. The CREFS operation in maintaining the control room habitable is discussed in the FSAR, Section [6.4] (Ref. 1). Redundant supply and recirculation trains provide the required filtration should an excessive pressure drop develop across the other filter train. Normally open isolation dampers are arranged in series pairs so that the failure of one damper to shut will not result in a breach of isolation. The CREFS is designed in accordance with Seismic Category I requirements. The CREFS is designed to maintain the control room environment for 30 days of continuous occupancy after a Design Basis Accident (DBA) without exceeding a 5 rem whole body dose or its equivalent to any part of the body. #### APPLICABLE SAFETY ANALYSES The CREFS components are arranged in redundant, safety related ventilation trains. The location of components and ducting within the control room envelope ensures an adequate supply of filtered air to all areas requiring access. The CREFS provides airborne radiological protection for the control room operators, as demonstrated by the control room accident dose analyses for the most limiting design basis ## APPLICABLE SAFETY ANALYSES (continued) loss of coolant accident, fission product release presented in the FSAR, Chapter [15] (Ref. 2). The analysis of toxic gas releases demonstrates that the toxicity limits are not exceeded in the control room following a toxic chemical release, as presented in Reference 1. The worst case single active failure of a component of the CREFS, assuming a loss of offsite power, does not impair the ability of the system to perform its design function. The CREFS satisfies Criterion 3 of the NRC Policy Statement. #### LC₀ Two independent and redundant CREFS trains are required to be OPERABLE to ensure that at least one is available assuming a single failure disables the other train. Total system failure could result in exceeding a dose of 5 rem to the control room operator in the event of a large radioactive release. The CREFS is considered OPERABLE when the individual components necessary to limit operator exposure are OPERABLE in both trains. A CREFS train is OPERABLE when the associated: - a. Fan is OPERABLE; - HEPA filters and charcoal adsorbers are not excessively restricting flow, and are capable of performing their filtration functions; and - c. Heater, demister, ductwork, valves, and dampers are OPERABLE, and air circulation can be maintained. In addition, the control room boundary must be maintained, including the integrity of the walls, floors, ceilings, ductwork, and access doors. #### **APPLICABILITY** In MODES 1, 2, 3, 4, [5, and 6,] and during movement of irradiated fuel assemblies [and during CORE ALTERATIONS], # APPLICABILITY (continued) CREFS must be OPERABLE to control operator exposure during and following a DBA. In [MODE 5 or 6], the CREFS is required to cope with the release from the rupture of an outside waste gas tank. During movement of irradiated fuel assemblies [and CORE ALTERATIONS], the CREFS must be OPERABLE to cope with the release from a fuel handling accident. ### **ACTIONS** ### <u>A.1</u> When one CREFS train is inoperable, action must be taken to restore OPERABLE status within 7 days. In this Condition, the remaining OPERABLE CREFS train is adequate to perform the control room protection function. However, the overall reliability is reduced because a single failure in the OPERABLE CREFS train could result in loss of CREFS function. The 7 day Completion Time is based on the low probability of a DBA occurring during this time period, and ability of the remaining train to provide the required capability. ## B.1 and B.2 In MODE 1, 2, 3, or 4, if the inoperable CREFS train cannot be restored to OPERABLE status within the required Completion Time, the unit must be placed in a MODE that minimizes accident risk. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. ## C.1, C.2.1, and C.2.2 [In MODE 5 or 6, or] during movement of irradiated fuel assemblies [, or during CORE ALTERATIONS], if the inoperable CREFS train cannot be restored to OPERABLE status within the required Completion Time, action must be taken to immediately place the OPERABLE CREFS train in the emergency #### **ACTIONS** ## <u>C.1, C.2.1, and C.2.2</u> (continued) mode. This action ensures that the remaining train is OPERABLE, that no failures preventing automatic actuation will occur, and that any active failure would be readily detected. An alternative to Required Action C.1 is to immediately suspend activities that could result in a release of radioactivity that might require isolation of the control room. This places the unit in a condition that minimizes risk. This does not preclude the movement of fuel to a safe position. Required Action C.1 is modified by a Note indicating to place the system in the toxic gas protection mode if automatic transfer to toxic gas protection mode is inoperable. #### D.1 and D.2 [In MODE 5 or 6, or] during movement of irradiated fuel assemblies [, or during CORE ALTERATIONS], with two CREFS trains inoperable, action must be taken immediately to suspend activities that could result in a release of radioactivity that might enter the control room. This places the unit in a condition that minimizes accident risk. This does not preclude the movement of fuel to a safe position. ## E.1 If both CREFS trains are inoperable in MODE 1, 2, 3, or 4, the CREFS may not be capable of performing the intended function and the unit is in a condition outside the accident analyses. Therefore, LCO 3.0.3 must be entered immediately. ## SURVEILLANCE REQUIREMENTS ## SR 3.7.10.1 Standby systems should be checked periodically to ensure that they function properly. As the environment and normal operating conditions on this system are not too severe, ## SURVEILLANCE REQUIREMENTS ## <u>SR 3.7.10.1</u> (continued) testing each train once every month provides an adequate check of this system. Monthly heater operations dry out any moisture accumulated in the charcoal from humidity in the ambient air. [Systems with heaters must be operated for \geq 10 continuous hours with the heaters energized. Systems without heaters need only be operated for \geq 15 minutes to demonstrate the function of the system.] The 31 day Frequency is based on the reliability of the equipment and the two train redundancy availability. #### SR 3.7.10.2 This SR verifies that the required CREFS testing is performed in accordance with the [Ventilation Filter Testing Program (VFTP)]. The CREFS filter tests are in accordance with Regulatory Guide 1.52 (Ref. 3). The [VFTP] includes testing the performance of the HEPA filter, charcoal adsorber efficiency, minimum flow rate, and the physical properties of the activated charcoal. Specific test Frequencies and additional information are discussed in detail in the [VFTP]. #### SR 3.7.10.3 This SR verifies that each CREFS train starts and operates on an actual or simulated actuation signal. The Frequency of [18] months is specified in Regulatory Guide 1.52 (Ref. 3). #### SR 3.7.10.4 This SR
verifies the integrity of the control room enclosure, and the assumed inleakage rates of the potentially contaminated air. The control room positive pressure, with respect to potentially contaminated adjacent areas, is periodically tested to verify proper functioning of the CREFS. During the emergency mode of operation, the CREFS is designed to pressurize the control room ≥ [0.125] inches water gauge positive pressure with respect to adjacent areas in order to prevent unfiltered inleakage. The CREFS is designed to maintain this positive pressure #### **BASES** ## SURVEILLANCE REQUIREMENTS ## SR 3.7.10.4 (continued) with one train at a makeup flow rate of [3000] cfm. The Frequency of [18] months on a STAGGERED TEST BASIS is consistent with the guidance provided in NUREG-0800 (Ref. 4). ## REFERENCES - 1. FSAR, Section [6.4]. - 2. FSAR, Chapter [15]. - 3. Regulatory Guide 1.52, Rev. 2. - 4. NUREG-0800, Section 6.4, Rev. 2, July 1981. B 3.7.11 Control Room Emergency Air Temperature Control System (CREATCS) ### **BASES** ## BACKGROUND The CREATCS provides temperature control for the control room following isolation of the control room. The CREATCS consists of two independent and redundant trains that provide cooling and heating of recirculated control room air. Each train consists of heating coils, cooling coils, instrumentation, and controls to provide for control room temperature control. The CREATCS is a subsystem providing air temperature control for the control room. The CREATCS is an emergency system, parts of which may also operate during normal unit operations. A single train will provide the required temperature control to maintain the control room between [70]°F and [85]°F. The CREATCS operation in maintaining the control room temperature is discussed in the FSAR, Section [6.4] (Ref. 1). # APPLICABLE SAFETY ANALYSES The design basis of the CREATCS is to maintain the control room temperature for 30 days of continuous occupancy. The CREATCS components are arranged in redundant, safety related trains. During emergency operation, the CREATCS maintains the temperature between [70]°F and [85]°F. A single active failure of a component of the CREATCS, with a loss of offsite power, does not impair the ability of the system to perform its design function. Redundant detectors and controls are provided for control room temperature control. The CREATCS is designed in accordance with Seismic Category I requirements. The CREATCS is capable of removing sensible and latent heat loads from the control room, which include consideration of equipment heat loads and personnel occupancy requirements, to ensure equipment OPERABILITY. The CREATCS satisfies Criterion 3 of the NRC Policy Statement. ## LC0 Two independent and redundant trains of the CREATCS are required to be OPERABLE to ensure that at least one is available, assuming a single failure disabling the other train. Total system failure could result in the equipment operating temperature exceeding limits in the event of an accident. The CREATCS is considered to be OPERABLE when the individual components necessary to maintain the control room temperature are OPERABLE in both trains. These components include the heating and cooling coils and associated temperature control instrumentation. In addition, the CREATCS must be operable to the extent that air circulation can be maintained. ## **APPLICABILITY** In MODES 1, 2, 3, 4, [5, and 6,] and during movement of irradiated fuel assemblies [and during CORE ALTERATIONS], the CREATCS must be OPERABLE to ensure that the control room temperature will not exceed equipment operational requirements following isolation of the control room. [In MODE 5 or 6,] CREATCS may not be required for those facilities that do not require automatic control room isolation. # **ACTIONS** ### A.1 With one CREATCS train inoperable, action must be taken to restore OPERABLE status within 30 days. In this Condition, the remaining OPERABLE CREATCS train is adequate to maintain the control room temperature within limits. However, the overall reliability is reduced because a single failure in the OPERABLE CREATCS train could result in loss of CREATCS function. The 30 day Completion Time is based on the low probability of an event requiring control room isolation, the consideration that the remaining train can provide the required protection, and that alternate safety or nonsafety related cooling means are available. # ACTIONS (continued) ## **B.1** and **B.2** In MODE 1, 2, 3, or 4, if the inoperable CREATCS train cannot be restored to OPERABLE status within the required Completion Time, the unit must be placed in a MODE that minimizes the risk. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. # C.1, C.2.1, and C.2.2 [In MODE 5 or 6, or] during movement of irradiated fuel [, or during CORE ALTERATIONS], if the inoperable CREATCS train cannot be restored to OPERABLE status within the required Completion Time, the OPERABLE CREATCS train must be placed in operation immediately. This action ensures that the remaining train is OPERABLE, that no failures preventing automatic actuation will occur, and that active failures will be readily detected. An alternative to Required Action C.1 is to immediately suspend activities that present a potential for releasing radioactivity that might require isolation of the control room. This places the unit in a condition that minimizes accident risk. This does not preclude the movement of fuel to a safe position. ### **D.1** and **D.2** [In MODE 5 or 6, or] during movement of irradiated fuel assemblies [, or during CORE ALTERATIONS], with two CREATCS trains inoperable, action must be taken immediately to suspend activities that could result in a release of radioactivity that might require isolation of the control room. This places the unit in a condition that minimizes risk. This does not preclude the movement of fuel to a safe position. # ACTIONS (continued) # <u>E.1</u> If both CREATCS trains are inoperable in MODE 1, 2, 3, or 4, the control room CREATCS may not be capable of performing its intended function. Therefore, LCO 3.0.3 must be entered immediately. # SURVEILLANCE REQUIREMENTS # SR 3.7.11.1 This SR verifies that the heat removal capability of the system is sufficient to remove the heat load assumed in the [safety analyses] in the control room. This SR consists of a combination of testing and calculations. The [18] month Frequency is appropriate since significant degradation of the CREATCS is slow and is not expected over this time period. ## REFERENCES 1. FSAR, Section [6.4]. B 3.7.12 Emergency Core Cooling System (ECCS) Pump Room Exhaust Air Cleanup System (PREACS) ## **BASES** ### BACKGROUND The ECCS PREACS filters air from the area of the active ECCS components during the recirculation phase of a loss of coolant accident (LOCA). The ECCS PREACS, in conjunction with other normally operating systems, also provides environmental control of temperature and humidity in the ECCS pump room area and the lower reaches of the auxiliary building. The ECCS PREACS consists of two independent and redundant trains. Each train consists of a heater, a prefilter or demister, a high efficiency particulate air (HEPA) filter, an activated charcoal adsorber section for removal of gaseous activity (principally iodines), and a fan. Ductwork, valves or dampers, and instrumentation also form part of the system, as well as demisters functioning to reduce the relative humidity of the air stream. A second bank of HEPA filters follows the adsorber section to collect carbon fines and provide backup in case the main HEPA filter bank fails. The downstream HEPA filter is not credited in the accident analysis, but serves to collect charcoal fines, and to back up the upstream HEPA filter should it develop a leak. The system initiates filtered ventilation of the pump room following receipt of a safety injection (SI) signal. The ECCS PREACS is a standby system, aligned to bypass the system HEPA filters and charcoal adsorbers. During emergency operations, the ECCS PREACS dampers are realigned, and fans are started to begin filtration. Upon receipt of the actuating Engineered Safety Feature Actuation System signal(s), normal air discharges from the ECCS pump room isolate, and the stream of ventilation air discharges through the system filter trains. The prefilters remove any large particles in the air, and any entrained water droplets present, to prevent excessive loading of the HEPA filters and charcoal adsorbers. The ECCS PREACS is discussed in the FSAR, Sections [6.5.1], [9.4.5], and [15.6.5] (Refs. 1, 2, and 3, respectively) since it may be used for normal, as well as post accident, atmospheric cleanup functions. The primary purpose of the # BACKGROUND (continued) heaters is to maintain the relative humidity at an acceptable level, consistent with iodine removal efficiencies per Regulatory Guide 1.52 (Ref. 4). ## APPLICABLE SAFETY ANALYSES The design basis of the ECCS PREACS is established by the large break LOCA. The system evaluation assumes a passive failure of the ECCS outside containment, such as an SI pump seal failure, during the recirculation mode. In such a case, the system limits radioactive release to within the 10 CFR 100 (Ref. 5) limits, or the NRC staff approved licensing basis (e.g., a specified fraction of Reference 5 limits). The analysis of the effects and consequences of a large break LOCA is presented in Reference 3. The ECCS PREACS also actuates following a small break LOCA, in those cases where the ECCS goes into the recirculation mode of long term cooling, to clean up releases of smaller leaks, such as from valve stem packing. Two types of system failures are
considered in the accident analysis: complete loss of function, and excessive LEAKAGE. Either type of failure may result in a lower efficiency of removal for any gaseous and particulate activity released to the ECCS pump rooms following a LOCA. The ECCS PREACS satisfies Criterion 3 of the NRC Policy Statement. ## LC0 Two independent and redundant trains of the ECCS PREACS are required to be OPERABLE to ensure that at least one is available, assuming that a single failure disables the other train coincident with loss of offsite power. Total system failure could result in the atmospheric release from the ECCS pump room exceeding 10 CFR 100 limits in the event of a Design Basis Accident (DBA). ECCS PREACS is considered OPERABLE when the individual components necessary to maintain the ECCS pump room filtration are OPERABLE in both trains. An ECCS PREACS train is considered OPERABLE when its associated: # LCO (continued) - a. Fan is OPERABLE; - b. HEPA filter and charcoal adsorbers are not excessively restricting flow, and are capable of performing their filtration functions; and - c. Heater, demister, ductwork, valves, and dampers are OPERABLE and air circulation can be maintained. # APPLICABILITY In MODES 1, 2, 3, and 4, the ECCS PREACS is required to be OPERABLE consistent with the OPERABILITY requirements of the ECCS. In MODE 5 or 6, the ECCS PREACS is not required to be OPERABLE since the ECCS is not required to be OPERABLE. ## **ACTIONS** ## <u>A.1</u> With one ECCS PREACS train inoperable, action must be taken to restore OPERABLE status within 7 days. During this time, the remaining OPERABLE train is adequate to perform the ECCS PREACS function. The 7 day Completion Time is appropriate because the risk contribution is less than that for the ECCS (72 hour Completion Time), and this system is not a direct support system for the ECCS. The 7 day Completion Time is based on the low probability of a DBA occurring during this time period, and ability of the remaining train to provide the required capability. Concurrent failure of two ECCS PREACS trains would result in the loss of functional capability; therefore, LCO 3.0.3 must be entered immediately. ### B.1 and B.2 If the ECCS PREACS train cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least ## **ACTIONS** # **B.1** and **B.2** (continued) MODE 3 within 6 hours, and in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. # SURVEILLANCE REQUIREMENTS ## SR 3.7.12.1 Standby systems should be checked periodically to ensure that they function properly. As the environment and normal operating conditions on this system are not severe, testing each train once a month provides an adequate check on this system. Monthly heater operations dry out any moisture that may have accumulated in the charcoal from humidity in the ambient air. [Systems with heaters must be operated ≥ 10 continuous hours with the heaters energized. Systems without heaters need only be operated for ≥ 15 minutes to demonstrate the function of the system.] The 31 day Frequency is based on the known reliability of equipment and the two train redundancy available. # SR 3.7.12.2 This SR verifies that the required ECCS PREACS testing is performed in accordance with the [Ventilation Filter Testing Program (VFTP)]. The ECCS PREACS filter tests are in accordance with Reference 4. The [VFTP] includes testing HEPA filter performance, charcoal adsorbers efficiency, minimum system flow rate, and the physical properties of the activated charcoal (general use and following specific operations). Specific test Frequencies and additional information are discussed in detail in the [VFTP]. ## SR 3.7.12.3 This SR verifies that each ECCS PREACS train starts and operates on an actual or simulated actuation signal. The [18] month Frequency is consistent with that specified in Reference 4. # SURVEILLANCE REQUIREMENTS (continued) # SR 3.7.12.4 This SR verifies the integrity of the ECCS pump room enclosure. The ability of the ECCS pump room to maintain a negative pressure, with respect to potentially uncontaminated adjacent areas, is periodically tested to verify proper functioning of the ECCS PREACS. During the [post accident] mode of operation, the ECCS PREACS is designed to maintain a slight negative pressure in the ECCS pump room, with respect to adjacent areas, to prevent unfiltered LEAKAGE. The ECCS PREACS is designed to maintain a \leq [-0.125] inches water gauge relative to atmospheric pressure at a flow rate of [3000] cfm from the ECCS pump room. The Frequency of [18] months is consistent with the guidance provided in NUREG-0800, Section 6.5.1 (Ref. 6). This test is conducted with the tests for filter penetration; thus, an [18] month Frequency on a STAGGERED TEST BASIS is consistent with that specified in Reference 4. # SR 3.7.12.5 Operating the ECCS PREACS bypass damper is necessary to ensure that the system functions properly. The OPERABILITY of the ECCS PREACS bypass damper is verified if it can be specified in Reference 4. ### REFERENCES - 1. FSAR, Section [6.5.1]. - 2. FSAR, Section [9.4.5]. - 3. FSAR, Section [15.6.5]. - 4. Regulatory Guide 1.52 (Rev. 2). - 5. 10 CFR 100.11. - 6. NUREG-0800, Section 6.5.1, Rev. 2, July 1981. B 3.7.13 Fuel Building Air Cleanup System (FBACS) ### **BASES** ### **BACKGROUND** The FBACS filters airborne radioactive particulates from the area of the fuel pool following a fuel handling accident or loss of coolant accident (LOCA). The FBACS, in conjunction with other normally operating systems, also provides environmental control of temperature and humidity in the fuel pool area. The FBACS consists of two independent and redundant trains. Each train consists of a heater, a prefilter or demister, a high efficiency particulate air (HEPA) filter, an activated charcoal adsorber section for removal of gaseous activity (principally iodines), and a fan. Ductwork, valves or dampers, and instrumentation also form part of the system, as well as demisters, functioning to reduce the relative humidity of the airstream. A second bank of HEPA filters follows the adsorber section to collect carbon fines and provide backup in case the main HEPA filter bank fails. The downstream HEPA filter is not credited in the analysis, but serves to collect charcoal fines, and to back up the upstream HEPA filter should it develop a leak. The system initiates filtered ventilation of the fuel handling building following receipt of a high radiation signal. The FBACS is a standby system, parts of which may also be operated during normal plant operations. Upon receipt of the actuating signal, normal air discharges from the building, the fuel handling building is isolated, and the stream of ventilation air discharges through the system filter trains. The prefilters or demisters remove any large particles in the air, and any entrained water droplets present, to prevent excessive loading of the HEPA filters and charcoal adsorbers. The FBACS is discussed in the FSAR, Sections [6.5.1], [9.4.5], and [15.7.4] (Refs. 1, 2, and 3, respectively) because it may be used for normal, as well as post accident, atmospheric cleanup functions. # APPLICABLE SAFETY ANALYSES The FBACS design basis is established by the consequences of the limiting Design Basis Accident (DBA), which is a fuel handling accident. The analysis of the fuel handling accident, given in Reference 3, assumes that all fuel rods in an assembly are damaged. The analysis of the LOCA assumes that radioactive materials leaked from the Emergency Core Cooling System (ECCS) are filtered and adsorbed by the The DBA analysis of the fuel handling accident assumes that only one train of the FBACS is functional due to a single failure that disables the other train. The accident analysis accounts for the reduction in airborne radioactive material provided by the one remaining train of this filtration system. The amount of fission products available for release from the fuel handling building is determined for a fuel handling accident and for a LOCA. These assumptions and the analysis follow the guidance provided in Regulatory Guide 1.25 (Ref. 4). The FBACS satisfies Criterion 3 of the NRC Policy Statement. ## LCO Two independent and redundant trains of the FBACS are required to be OPERABLE to ensure that at least one train is available, assuming a single failure that disables the other train, coincident with a loss of offsite power. Total system failure could result in the atmospheric release from the fuel handling building exceeding the 10 CFR 100 (Ref. 5) limits in the event of a fuel handling accident. The FBACS is considered OPERABLE when the individual components necessary to control exposure in the fuel handling building are OPERABLE in both trains. An FBACS train is considered OPERABLE when its associated: - a. Fan is OPERABLE; - HEPA filter and charcoal adsorber are not excessively restricting flow, and are capable of performing their filtration function; and - c. Heater, demister, ductwork, valves, and dampers are OPERABLE, and air circulation can be maintained. ## APPLICABILITY In MODE 1, 2, 3, or 4, the FBACS is required to be OPERABLE to provide fission product removal associated with ECCS leaks due to a LOCA and leakage from containment and annulus. In MODE 5 or 6, the FBACS is not required to be OPERABLE since the ECCS is not required to be OPERABLE. During movement of irradiated fuel in the fuel handling area, the FBACS is required to be OPERABLE to alleviate the consequences of a fuel handling accident. ## **ACTIONS** ## A.1 With one FBACS train inoperable, action must be taken to restore OPERABLE status within 7 days. During this period,
the remaining OPERABLE train is adequate to perform the FBACS function. The 7 day Completion Time is based on the risk from an event occurring requiring the inoperable FBACS train, and the remaining FBACS train providing the required protection. ## B.1 and B.2 In MODE 1, 2, 3, or 4, when Required Action A.1 cannot be completed within the associated Completion Time, or when both FBACS trains are inoperable, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in MODE 3 within 6 hours, and in MODE 5 within 36 hours. The Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. ### C.1 and C.2 When Required Action A.1 cannot be completed within the required Completion Time, during movement of irradiated fuel assemblies in the fuel building, the OPERABLE FBACS train must be started immediately or fuel movement suspended. This action ensures that the remaining train is OPERABLE, ### **ACTIONS** # C.1 and C.2 (continued) that no undetected failures preventing system operation will occur, and that any active failure will be readily detected. If the system is not placed in operation, this action requires suspension of fuel movement, which precludes a fuel handling accident. This does not preclude the movement of fuel assemblies to a safe position. ## D.1 When two trains of the FBACS are inoperable during movement of irradiated fuel assemblies in the fuel building, action must be taken to place the unit in a condition in which the LCO does not apply. Action must be taken immediately to suspend movement of irradiated fuel assemblies in the fuel building. This does not preclude the movement of fuel to a safe position. # SURVEILLANCE REQUIREMENTS ## SR 3.7.13.1 Standby systems should be checked periodically to ensure that they function properly. As the environmental and normal operating conditions on this system are not severe, testing each train once every month provides an adequate check on this system. Monthly heater operation dries out any moisture accumulated in the charcoal from humidity in the ambient air. [Systems with heaters must be operated for ≥ 10 continuous hours with the heaters energized. Systems without heaters need only be operated for ≥ 15 minutes to demonstrate the function of the system.] The 31 day Frequency is based on the known reliability of the equipment and the two train redundancy available. ## SR 3.7.13.2 This SR verifies that the required FBACS testing is performed in accordance with the [Ventilation Filter Testing ## SURVEILLANCE REQUIREMENTS # <u>SR 3.7.13.2</u> (continued) Program (VFTP)]. The FBACS filter tests are in accordance with Regulatory Guide 1.52 (Ref. 6). The [VFTP] includes testing HEPA filter performance, charcoal adsorber efficiency, minimum system flow rate, and the physical properties of the activated charcoal (general use and following specific operations). Specific test frequencies and additional information are discussed in detail in the [VFTP]. ## SR 3.7.13.3 This SR verifies that each FBACS train starts and operates on an actual or simulated actuation signal. The [18] month Frequency is consistent with Reference 6. ## SR 3.7.13.4 This SR verifies the integrity of the fuel building enclosure. The ability of the fuel building to maintain negative pressure with respect to potentially uncontaminated adjacent areas is periodically tested to verify proper function of the FBACS. During the [post accident] mode of operation, the FBACS is designed to maintain a slight negative pressure in the fuel building, to prevent unfiltered LEAKAGE. The FBACS is designed to maintain a \leq [-0.125] inches water gauge with respect to atmospheric pressure at a flow rate of [20,000] cfm to the fuel building. The Frequency of [18] months is consistent with the guidance provided in NUREG-0800, Section 6.5.1 (Ref. 7). An [18] month Frequency (on a STAGGERED TEST BASIS) is consistent with Reference 6. ### SR 3.7.13.5 Operating the FBACS filter bypass damper is necessary to ensure that the system functions properly. The OPERABILITY of the FBACS filter bypass damper is verified if it can be closed. An [18] month Frequency is consistent with Reference 6. # REFERENCES - 1. FSAR, Section [6.5.1]. - 2. FSAR, Section [9.4.5]. - 3. FSAR, Section [15.7.4]. - 4. Regulatory Guide 1.25. - 5. 10 CFR 100. - 6. Regulatory Guide 1.52 (Rev. 2). - 7. NUREG-0800, Section 6.5.1, Rev. 2, July 1981. B 3.7.14 Penetration Room Exhaust Air Cleanup System (PREACS) ### **BASES** ### **BACKGROUND** The PREACS filters air from the penetration area between containment and the auxiliary building. The PREACS consists of two independent and redundant trains. Each train consists of a heater, a prefilter or demister, a high efficiency particulate air (HEPA) filter, an activated charcoal adsorber section for removal of gaseous activity (principally iodines), and a fan. Ductwork, valves or dampers, and instrumentation, as well as demisters, functioning to reduce the relative humidity of the air stream, also form part of the system. A second bank of HEPA filters, which follows the adsorber section, collects carbon fines and provides backup in case of failure of the main HEPA filter bank. The downstream HEPA filter, although not credited in the accident analysis, collects charcoal fines and serves as a backup should the upstream HEPA filter develop a leak. The system initiates filtered ventilation following receipt of a safety injection signal. The PREACS is a standby system, parts of which may also operate during normal unit operations. During emergency operations, the PREACS dampers are realigned and fans are started to initiate filtration. Upon receipt of the actuating signal(s), normal air discharges from the penetration room, the penetration room is isolated, and the stream of ventilation air discharges through the system filter trains. The prefilters remove any large particles in the air, as well as any entrained water droplets, to prevent excessive loading of the HEPA filters and charcoal adsorbers. The PREACS is discussed in the FSAR, Sections [6.5.1], [9.4.5], and [15.6.5] (Refs. 1, 2, and 3, respectively) since it may be used for normal, as well as post accident, atmospheric cleanup functions. Heaters may be included for moisture removal on systems operating in high humidity conditions. The primary purpose of the heaters is to maintain the relative humidity at an acceptable level consistent with iodine removal efficiencies per Regulatory Guide 1.52 (Ref. 4). ## APPLICABLE SAFETY ANALYSES The PREACS design basis is established by the large break loss of coolant accident (LOCA). The system evaluation assumes a passive failure outside containment, such as valve packing leakage during a Design Basis Accident (DBA). In such a case, the system restricts the radioactive release to within the 10 CFR 100 (Ref. 4) limits, or the NRC staff approved licensing basis (e.g., a specified fraction of 10 CFR 100 limits). The analysis of the effects and consequences of a large break LOCA are presented in Reference 3. Two types of system failures are considered in the accident analysis: a complete loss of function, and excessive LEAKAGE. Either type of failure may result in less efficient removal of any gaseous or particulate material released to the penetration room following a LOCA. The PREACS satisfies Criterion 3 of the NRC Policy Statement. ### LC0 Two independent and redundant trains of the PREACS are required to be OPERABLE to ensure that at least one train is available, assuming there is a single failure disabling the other train coincident with a loss of offsite power. The PREACS is considered OPERABLE when the individual components necessary to control radioactive releases are OPERABLE in both trains. A PREACS train is considered OPERABLE when its associated: - a. Fan is OPERABLE; - b. HEPA filter and charcoal adsorber are not excessively restricting flow, and are capable of performing their filtration functions; and - c. Heater, demister, ductwork, valves, and dampers are OPERABLE and air circulation can be maintained. # APPLICABILITY In MODES 1, 2, 3, and 4, the PREACS is required to be OPERABLE, consistent with the OPERABILITY requirements of the Emergency Core Cooling System (ECCS). # APPLICABILITY (continued) In MODE 5 or 6, the PREACS is not required to be OPERABLE since the ECCS is not required to be OPERABLE. ## **ACTIONS** ## A.1 With one PREACS train inoperable, the action must be taken to restore OPERABLE status within 7 days. During this period, the remaining OPERABLE train is adequate to perform the PREACS function. The 7 day Completion Time is appropriate because the risk contribution of the PREACS is less than that of the ECCS (72 hour Completion Time), and this system is not a direct support system for the ECCS. The 7 day Completion Time is based on the low probability of a DBA occurring during this period, and the remaining train providing the required capability. # B.1 and B.2 If the inoperable train cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 5 within 36 hours. The Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. # SURVEILLANCE REQUIREMENTS # SR 3.7.14.1 Standby systems should be checked periodically to ensure that they function properly. As the environmental and normal operating conditions on this system are not severe, testing each train once every month provides an adequate check on this system. Monthly heater operation dries out any moisture that may have accumulated in the charcoal
as a result of humidity in the ambient air. [Systems with heaters must be operated for ≥ 10 continuous hours with the heaters energized. Systems without heaters need only be operated for ≥ 15 minutes to demonstrate the function of the system.] The 31 day Frequency is based on the known # SURVEILLANCE REQUIREMENTS # <u>SR 3.7.14.1</u> (continued) reliability of equipment and the two train redundancy available. ## SR 3.7.14.2 This SR verifies that the required PREACS testing is performed in accordance with the [Ventilation Filter Testing Program (VFTP)]. The PREACS filter tests are in accordance with Regulatory Guide 1.52 (Ref. 5). The [VFTP] includes testing HEPA filter performance, charcoal adsorber efficiency, minimum system flow rate, and the physical properties of the activated charcoal (general use and following specific operations). Specific test frequencies and additional information are discussed in detail in the [VFTP]. ## SR 3.7.14.3 This SR verifies that each PREACS starts and operates on an actual or simulated actuation signal. The [18] month Frequency is consistent with that specified in Reference 5. ## SR 3.7.14.4 This SR verifies the integrity of the penetration room enclosure. The ability of the penetration room to maintain a negative pressure, with respect to potentially uncontaminated adjacent areas, is periodically tested to verify proper function of PREACS. During the [post accident] mode of operation, the PREACS is designed to maintain a \leq [-0.125] inches water gauge relative to atmospheric pressure at a flow rate of [3000] cfm in the penetration room, with respect to adjacent areas, to prevent unfiltered LEAKAGE. The Frequency of [18] months is consistent with the guidance provided in NUREG-0800 (Ref. 6). The minimum system flow rate maintains a slight negative pressure in the penetration room area, and provides sufficient air velocity to transport particulate # SURVEILLANCE REQUIREMENTS # <u>SR 3.7.14.4</u> (continued) contaminants, assuming only one filter train is operating. The number of filter elements is selected to limit the flow rate through any individual element to about [3000] cfm. This may vary based on filter housing geometry. The maximum limit ensures that the flow through, and pressure drop across, each filter element are not excessive. The number and depth of the adsorber elements ensure that, at the maximum flow rate, the residence time of the air stream in the charcoal bed achieves the desired adsorption rate. At least a [0.125] second residence time is necessary for an assumed [99]% efficiency. The filters have a certain pressure drop at the design flow rate when clean. The magnitude of the pressure drop indicates acceptable performance, and is based on manufacturers' recommendations for the filter and adsorber elements at the design flow rate. An increase in pressure drop or a decrease in flow indicates that the filter is being loaded or that there are other problems with the system. This test is conducted along with the tests for filter penetration; thus, the [18] month Frequency is consistent with that specified in Reference 5. # SR 3.7.14.5 It is necessary to operate the PREACS filter bypass damper to ensure that the system functions properly. The OPERABILITY of the PREACS filter bypass damper is verified if it can be closed. An [18] month Frequency is consistent with that specified in Reference 5. # REFERENCES - 1. FSAR, Section [6.5.1]. - 2. FSAR, Section [9.4.5]. - 3. FSAR, Section [15.6.5]. - 4. 10 CFR 100. # REFERENCES (continued) - 5. Regulatory Guide 1.52, Rev. 2. - 6. NUREG-0800, Section 6.5.1, Rev. 2, July 1981. B 3.7.15 Fuel Storage Pool Water Level ### **BASES** ## **BACKGROUND** The minimum water level in the fuel storage pool meets the assumptions of iodine decontamination factors following a fuel handling accident. The specified water level shields and minimizes the general area dose when the storage racks are filled to their maximum capacity. The water also provides shielding during the movement of spent fuel. A general description of the fuel storage pool design is given in the FSAR, Section [9.1.2] (Ref. 1). A description of the Spent Fuel Pool Cooling and Cleanup System is given in the FSAR, Section [9.1.3] (Ref. 2). The assumptions of the fuel handling accident are given in the FSAR, Section [15.7.4] (Ref. 3). ## APPLICABLE SAFETY ANALYSES The minimum water level in the fuel storage pool meets the assumptions of the fuel handling accident described in Regulatory Guide 1.25 (Ref. 4). The resultant 2 hour thyroid dose per person at the exclusion area boundary is a small fraction of the 10 CFR 100 (Ref. 5) limits. According to Reference 4, there is 23 ft of water between the top of the damaged fuel bundle and the fuel pool surface during a fuel handling accident. With 23 ft of water, the assumptions of Reference 4 can be used directly. In practice, this LCO preserves this assumption for the bulk of the fuel in the storage racks. In the case of a single bundle dropped and lying horizontally on top of the spent fuel racks, however, there may be < 23 ft of water above the top of the fuel bundle and the surface, indicated by the width of the bundle. To offset this small nonconservatism, the analysis assumes that all fuel rods fail, although analysis shows that only the first few rows fail from a hypothetical maximum drop. The fuel storage pool water level satisfies Criterion 2 of the NRC Policy Statement. LC0 The fuel storage pool water level is required to be \geq 23 ft over the top of irradiated fuel assemblies seated in the storage racks. The specified water level preserves the assumptions of the fuel handling accident analysis (Ref. 3). As such, it is the minimum required for fuel storage and movement within the fuel storage pool. ## APPLICABILITY This LCO applies during movement of irradiated fuel assemblies in the fuel storage pool, since the potential for a release of fission products exists. ## ACTIONS # <u>A.1</u> Required Action A.1 is modified by a Note indicating that LCO 3.0.3 does not apply. When the initial conditions for prevention of an accident cannot be met, steps should be taken to preclude the accident from occurring. When the fuel storage pool water level is lower than the required level, the movement of irradiated fuel assemblies in the fuel storage pool is immediately suspended to a safe position. This action effectively precludes the occurrence of a fuel handling accident. This does not preclude movement of a fuel assembly to a safe position. If moving irradiated fuel assemblies while in MODE 5 or 6, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODES 1, 2, 3, and 4, the fuel movement is independent of reactor operations. Therefore, inability to suspend movement of irradiated fuel assemblies is not sufficient reason to require a reactor shutdown. # SURVEILLANCE REQUIREMENTS ### SR 3.7.15.1 This SR verifies sufficient fuel storage pool water is available in the event of a fuel handling accident. The water level in the fuel storage pool must be checked periodically. The 7 day Frequency is appropriate because # SURVEILLANCE REQUIREMENTS # <u>SR 3.7.15.1</u> (continued) the volume in the pool is normally stable. Water level changes are controlled by plant procedures and are acceptable based on operating experience. During refueling operations, the level in the fuel storage pool is in equilibrium with the refueling canal, and the level in the refueling canal is checked daily in accordance with SR 3.9.6.1. # REFERENCES WOG STS - 1. FSAR, Section [9.1.2]. - 2. FSAR, Section [9.1.3]. - 3. FSAR, Section [15.7.4]. - 4. Regulatory Guide 1.25, [Rev. 0]. - 5. 10 CFR 100.11. B 3.7.16 Fuel Storage Pool Boron Concentration BASES #### BACKGROUND In the Maximum Density Rack (MDR) [(Refs. 1 and 2)] design, the spent fuel storage pool is divided into two separate and distinct regions which, for the purpose of criticality considerations, are considered as separate pools. [Region 1], with [336] storage positions, is designed to accommodate new fuel with a maximum enrichment of [4.65] wt% U-235, or spent fuel regardless of the discharge fuel burnup. [Region 2], with [2670] storage positions, is designed to accommodate fuel of various initial enrichments which have accumulated minimum burnups within the acceptable domain according to Figure [3.7.17-1], in the accompanying LCO. Fuel assemblies not meeting the criteria of Figure [3.7.17-1] shall be stored in accordance with paragraph 4.3.1.1 in Section 4.3, Fuel Storage. The water in the spent fuel storage pool normally contains soluble boron, which results in large subcriticality margins under actual operating conditions. However, the NRC guidelines, based upon the accident condition in which all soluble poison is assumed to have been lost, specify that the limiting k_{eff} of 0.95 be evaluated in the absence of soluble boron. Hence, the design of both regions is based on the use of unborated water, which maintains each region in a subcritical condition during normal operation with the regions fully loaded. The double contingency principle discussed in ANSI N-16.1-1975 and the April 1978 NRC letter (Ref. 3) allows credit for soluble boron under other abnormal or accident conditions, since only a single accident need be considered at one time. For example, the most severe accident scenario is associated with the movement of fuel from [Region 1 to Region 2], and accidental misloading of a fuel assembly in [Region 2]. This could potentially increase the criticality of [Region 2]. To mitigate these postulated criticality related accidents, boron is dissolved in the pool water. Safe operation of the MDR with no movement of assemblies may therefore be achieved by controlling the location of each assembly in accordance with LCO 3.7.17, "Spent Fuel Assembly Storage." Prior to movement of an assembly, it is necessary to perform SR 3.7.16.1. ##
APPLICABLE SAFETY ANALYSES Most accident conditions do not result in an increase in the activity of either of the two regions. Examples of these accident conditions are the loss of cooling (reactivity increase with decreasing water density) and the dropping of a fuel assembly on the top of the rack. However, accidents can be postulated that could increase the reactivity. This increase in reactivity is unacceptable with unborated water in the storage pool. Thus, for these accident occurrences, the presence of soluble boron in the storage pool prevents criticality in both regions. The postulated accidents are basically of two types. A fuel assembly could be incorrectly transferred from [Region 1 to Region 2] (e.g., an unirradiated fuel assembly or an insufficiently depleted fuel assembly). The second type of postulated accidents is associated with a fuel assembly which is dropped adjacent to the fully loaded [Region 2] storage rack. This could have a small positive reactivity effect on [Region 2]. However, the negative reactivity effect of the soluble boron compensates for the increased reactivity caused by either one of the two postulated accident scenarios. The accident analyses is provided in the FSAR, Section [15.7.4] (Ref. 4). The concentration of dissolved boron in the fuel storage pool satisfies Criterion 2 of the NRC Policy Statement. LC0 The fuel storage pool boron concentration is required to be ≥ [2300] ppm. The specified concentration of dissolved boron in the fuel storage pool preserves the assumptions used in the analyses of the potential critical accident scenarios as described in Reference 4. This concentration of dissolved boron is the minimum required concentration for fuel assembly storage and movement within the fuel storage pool. ### APPLICABILITY This LCO applies whenever fuel assemblies are stored in the spent fuel storage pool, until a complete spent fuel storage pool verification has been performed following the last movement of fuel assemblies in the spent fuel storage pool. This LCO does not apply following the verification, since the verification would confirm that there are no misloaded fuel assemblies. With no further fuel assembly movements in # APPLICABILITY (continued) progress, there is no potential for a misloaded fuel assembly or a dropped fuel assembly. ## ACTIONS # A.1, A.2.1, and A.2.2 The Required Actions are modified by a Note indicating that LCO 3.0.3 does not apply. When the concentration of boron in the fuel storage pool is less than required, immediate action must be taken to preclude the occurrence of an accident or to mitigate the consequences of an accident in progress. This is most efficiently achieved by immediately suspending the movement of fuel assemblies. The concentration of boron is restored simultaneously with suspending movement of fuel assemblies. An acceptable alternative is to verify by administrative means that the fuel storage pool verification has been performed since the last movement of fuel assemblies in the fuel storage pool. However, prior to resuming movement of fuel assemblies, the concentration of boron must be restored. This does not preclude movement of a fuel assembly to a safe position. If the LCO is not met while moving irradiated fuel assemblies in MODE 5 or 6, LCO 3.0.3 would not be applicable. If moving irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the fuel movement is independent of reactor operation. Therefore, inability to suspend movement of fuel assemblies is not sufficient reason to require a reactor shutdown. # SURVEILLANCE REQUIREMENTS ## SR 3.7.16.1 This SR verifies that the concentration of boron in the fuel storage pool is within the required limit. As long as this SR is met, the analyzed accidents are fully addressed. The 7 day Frequency is appropriate because no major replenishment of pool water is expected to take place over such a short period of time. ## REFERENCES - 1. Callaway FSAR, Appendix 9.1A, "The Maximum Density Rack (MDR) Design Concept." - 2. Description and Evaluation for Proposed Changes to Facility Operating Licenses DPR-39 and DPR-48 (Zion Power Station). - 3. Double contingency principle of ANSI N16.1-1975, as specified in the April 14, 1978 NRC letter (Section 1.2) and implied in the proposed revision to Regulatory Guide 1.13 (Section 1.4, Appendix A). - 4. FSAR, Section [15.7.4]. B 3.7.17 Spent Fuel Assembly Storage BASES ### **BACKGROUND** In the Maximum Density Rack (MDR) [(Refs. 1 and 2)] design, the spent fuel storage pool is divided into two separate and distinct regions which, for the purpose of criticality considerations, are considered as separate pools. [Region 1], with [336] storage positions, is designed to accommodate new fuel with a maximum enrichment of [4.65] wt% U-235, or spent fuel regardless of the discharge fuel burnup. [Region 2], with [2670] storage positions, is designed to accommodate fuel of various initial enrichments which have accumulated minimum burnups within the acceptable domain according to Figure 3.7.17-1, in the accompanying LCO. Fuel assemblies not meeting the criteria of Figure [3.7.17-1] shall be stored in accordance with paragraph 4.3.1.1 in Section 4.3, Fuel Storage. The water in the spent fuel storage pool normally contains soluble boron, which results in large subcriticality margins under actual operating conditions. However, the NRC guidelines, based upon the accident condition in which all soluble poison is assumed to have been lost, specify that the limiting k_{eff} of 0.95 be evaluated in the absence of soluble boron. Hence, the design of both regions is based on the use of unborated water, which maintains each region in a subcritical condition during normal operation with the regions fully loaded. The double contingency principle discussed in ANSI N-16.1-1975 and the April 1978 NRC letter (Ref. 3) allows credit for soluble boron under other abnormal or accident conditions, since only a single accident need be considered at one time. For example, the most severe accident scenario is associated with the movement of fuel from [Region 1 to Region 2], and accidental misloading of a fuel assembly in [Region 2]. This could potentially increase the criticality of [Region 2]. To mitigate these postulated criticality related accidents, boron is dissolved in the pool water. Safe operation of the MDR with no movement of assemblies may therefore be achieved by controlling the location of each assembly in accordance with the accompanying LCO. Prior to movement of an assembly, it is necessary to perform SR 3.7.16.1. ## APPLICABLE SAFETY ANALYSES The hypothetical accidents can only take place during or as a result of the movement of an assembly (Ref. 4). For these accident occurrences, the presence of soluble boron in the spent fuel storage pool (controlled by LCO 3.7.16, "Fuel Storage Pool Boron Concentration") prevents criticality in both regions. By closely controlling the movement of each assembly and by checking the location of each assembly after movement, the time period for potential accidents may be limited to a small fraction of the total operating time. During the remaining time period with no potential for accidents, the operation may be under the auspices of the accompanying LCO. The configuration of fuel assemblies in the fuel storage pool satisfies Criterion 2 of the NRC Policy Statement. # LCO The restrictions on the placement of fuel assemblies within the spent fuel pool, in accordance with Figure 3.7.17-1, in the accompanying LCO, ensures the k_{eff} of the spent fuel storage pool will always remain < 0.95, assuming the pool to be flooded with unborated water. Fuel assemblies not meeting the criteria of Figure [3.7.17-1] shall be stored in accordance with Specification 4.3.1.1 in Section 4.3. ## **APPLICABILITY** This LCO applies whenever any fuel assembly is stored in [Region 2] of the fuel storage pool. ### ACTIONS ## A.1 Required Action A.1 is modified by a Note indicating that LCO 3.0.3 does not apply. When the configuration of fuel assemblies stored in [Region 2] the spent fuel storage pool is not in accordance with Figure 3.7.17-1, or paragraph 4.3.1.1, the immediate action is to initiate action to make the necessary fuel assembly movement(s) to bring the configuration into compliance with Figure 3.7.17-1 or Specification 4.3.1.1. ## **ACTIONS** # A.1 (continued) If unable to move irradiated fuel assemblies while in MODE 5 or 6, LCO 3.0.3 would not be applicable. If unable to move irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the action is independent of reactor operation. Therefore, inability to move fuel assemblies is not sufficient reason to require a reactor shutdown. # SURVEILLANCE REQUIREMENTS # SR 3.7.17.1 This SR verifies by administrative means that the initial enrichment and burnup of the fuel assembly is in accordance with Figure [3.7.17-1] in the accompanying LCO. For fuel assemblies in the unacceptable range of Figure 3.7.17-1, performance of this SR will ensure compliance with Specification 4.3.1.1. ## REFERENCES - Callaway FSAR, Appendix 9.1A, "The Maximum Density Rack (MDR) Design Concept." - Description and Evaluation for Proposed Changes to Facility Operating Licenses DPR-39 and DPR-48 (Zion Power Station). - 3. Double contingency principle of ANSI N16.1-1975, as specified in the April 14, 1978 NRC letter (Section 1.2) and implied in the proposed revision to Regulatory Guide 1.13 (Section 1.4, Appendix A). - 4. FSAR, Section [15.7.4]. # B 3.7.18 Secondary Specific Activity ### **BASES** ### **BACKGROUND** Activity in the secondary coolant results from steam generator tube outleakage from the Reactor Coolant System (RCS). Under steady state conditions, the activity is primarily iodines with relatively short half lives and, thus, indicates current conditions. During transients, I-131 spikes have been observed as well as increased releases of some noble gases. Other fission product isotopes, as well as
activated corrosion products in lesser amounts, may also be found in the secondary coolant. A limit on secondary coolant specific activity during power operation minimizes releases to the environment because of normal operation, anticipated operational occurrences, and accidents. This limit is lower than the activity value that might be expected from a l gpm tube leak (LCO 3.4.13, "RCS Operational LEAKAGE") of primary coolant at the limit of [1.0] μ Ci/gm (LCO 3.4.16, "RCS Specific Activity"). The steam line failure is assumed to result in the release of the noble gas and iodine activity contained in the steam generator inventory, the feedwater, and the reactor coolant LEAKAGE. Most of the iodine isotopes have short half lives, (i.e., < 20 hours). I-131, with a half life of 8.04 days, concentrates faster than it decays, but does not reach equilibrium because of blowdown and other losses. With the specified activity limit, the resultant 2 hour thyroid dose to a person at the exclusion area boundary (EAB) would be about 0.58 rem if the main steam safety valves (MSSVs) open for 2 hours following a trip from full power. Operating a unit at the allowable limits could result in a 2 hour EAB exposure of a small fraction of the 10 CFR 100 (Ref. 1) limits, or the limits established as the NRC staff approved licensing basis. ## APPLICABLE SAFETY ANALYSES The accident analysis of the main steam line break (MSLB), as discussed in the FSAR, Chapter [15] (Ref. 2) assumes the initial secondary coolant specific activity to have a radioactive isotope concentration of [0.10] μ Ci/gm DOSE EQUIVALENT I-131. This assumption is used in the analysis for determining the radiological consequences of the postulated accident. The accident analysis, based on this and other assumptions, shows that the radiological consequences of an MSLB do not exceed a small fraction of the unit EAB limits (Ref. 1) for whole body and thyroid dose rates. With the loss of offsite power, the remaining steam generators are available for core decay heat dissipation by venting steam to the atmosphere through the MSSVs and steam generator atmospheric dump valves (ADVs). The Auxiliary Feedwater System supplies the necessary makeup to the steam generators. Venting continues until the reactor coolant temperature and pressure have decreased sufficiently for the Residual Heat Removal System to complete the cooldown. In the evaluation of the radiological consequences of this accident, the activity released from the steam generator connected to the failed steam line is assumed to be released directly to the environment. The unaffected steam generator is assumed to discharge steam and any entrained activity through the MSSVs and ADVs during the event. Since no credit is taken in the analysis for activity plateout or retention, the resultant radiological consequences represent a conservative estimate of the potential integrated dose due to the postulated steam line failure. Secondary specific activity limits satisfy Criterion 2 of the NRC Policy Statement. LCO As indicated in the Applicable Safety Analyses, the specific activity of the secondary coolant is required to be \leq [0.10] $\mu\text{Ci/gm}$ DOSE EQUIVALENT I-131 to limit the radiological consequences of a Design Basis Accident (DBA) to a small fraction of the required limit (Ref. 1). Monitoring the specific activity of the secondary coolant ensures that when secondary specific activity limits are exceeded, appropriate actions are taken in a timely manner # LCO (continued) to place the unit in an operational MODE that would minimize the radiological consequences of a DBA. # APPLICABILITY In MODES 1, 2, 3, and 4, the limits on secondary specific activity apply due to the potential for secondary steam releases to the atmosphere. In MODES 5 and 6, the steam generators are not being used for heat removal. Both the RCS and steam generators are depressurized, and primary to secondary LEAKAGE is minimal. Therefore, monitoring of secondary specific activity is not required. ## **ACTIONS** ## A.1 and A.2 DOSE EQUIVALENT I-131 exceeding the allowable value in the secondary coolant, is an indication of a problem in the RCS and contributes to increased post accident doses. If the secondary specific activity cannot be restored to within limits within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. # SURVEILLANCE REQUIREMENTS # SR 3.7.18.1 This SR verifies that the secondary specific activity is within the limits of the accident analysis. A gamma isotopic analysis of the secondary coolant, which determines DOSE EQUIVALENT I-131, confirms the validity of the safety analysis assumptions as to the source terms in post accident releases. It also serves to identify and trend any unusual isotopic concentrations that might indicate changes in reactor coolant activity or LEAKAGE. The 31 day Frequency is based on the detection of increasing trends of the level | R | Δ | C | | C | |----|---|---|---|---| | D. | л | J | L | J | # SURVEILLANCE REQUIREMENTS <u>SR 3.7.18.1</u> (continued) of DOSE EQUIVALENT I-131, and allows for appropriate action to be taken to maintain levels below the LCO limit. ## REFERENCES - 1. 10 CFR 100.11. - 2. FSAR, Chapter [15]. ## B 3.8 ELECTRICAL POWER SYSTEMS ## B 3.8.1 AC Sources—Operating #### **BASES** #### **BACKGROUND** The unit Class 1E AC Electrical Power Distribution System AC sources consist of the offsite power sources (preferred power sources, normal and alternate(s)), and the onsite standby power sources (Train A and Train B diesel generators (DGs)). As required by 10 CFR 50, Appendix A, GDC 17 (Ref. 1), the design of the AC electrical power system provides independence and redundancy to ensure an available source of power to the Engineered Safety Feature (ESF) systems. The onsite Class 1E AC Distribution System is divided into redundant load groups (trains) so that the loss of any one group does not prevent the minimum safety functions from being performed. Each train has connections to two preferred offsite power sources and a single DG. Offsite power is supplied to the unit switchyard(s) from the transmission network by [two] transmission lines. From the switchyard(s), two electrically and physically separated circuits provide AC power, through [step down station auxiliary transformers], to the 4.16 kV ESF buses. A detailed description of the offsite power network and the circuits to the Class IE ESF buses is found in the FSAR, Chapter [8] (Ref. 2). An offsite circuit consists of all breakers, transformers, switches, interrupting devices, cabling, and controls required to transmit power from the offsite transmission network to the onsite Class 1E ESF bus(es). Certain required unit loads are returned to service in a predetermined sequence in order to prevent overloading the transformer supplying offsite power to the onsite Class 1E Distribution System. Within [1] minute after the initiating signal is received, all automatic and permanently connected loads needed to recover the unit or maintain it in a safe condition are returned to service via the load sequencer. The onsite standby power source for each 4.16 kV ESF bus is a dedicated DG. DGs [11] and [12] are dedicated to ESF buses [11] and [12], respectively. A DG starts # BACKGROUND (continued) automatically on a safety injection (SI) signal (i.e., low pressurizer pressure or high containment pressure signals) or on an [ESF bus degraded voltage or undervoltage signal] (refer to LCO 3.3.5, "Loss of Power (LOP) Diesel Generator (DG) Start Instrumentation"). After the DG has started, it will automatically tie to its respective bus after offsite power is tripped as a consequence of ESF bus undervoltage or degraded voltage, independent of or coincident with an SI signal. The DGs will also start and operate in the standby mode without tying to the ESF bus on an SI signal alone. Following the trip of offsite power, [a sequencer/an undervoltage signal] strips nonpermanent loads from the ESF bus. When the DG is tied to the ESF bus, loads are then sequentially connected to its respective ESF bus by the automatic load sequencer. The sequencing logic controls the permissive and starting signals to motor breakers to prevent overloading the DG by automatic load application. In the event of a loss of preferred power, the ESF electrical loads are automatically connected to the DGs in sufficient time to provide for safe reactor shutdown and to mitigate the consequences of a Design Basis Accident (DBA) such as a loss of coolant accident (LOCA). Certain required unit loads are returned to service in a predetermined sequence in order to prevent overloading the DG in the process. Within [1] minute after the initiating signal is received, all loads needed to recover the unit or maintain it in a safe condition are returned to service. Ratings for Train A and Train B DGs satisfy the requirements of Regulatory Guide 1.9 (Ref. 3). The continuous service rating of each DG is [7000] kW with [10]% overload permissible for up to 2 hours in any 24 hour period. The ESF loads that are powered from the 4.16 kV ESF buses are listed in Reference 2. ## APPLICABLE SAFETY ANALYSES The initial conditions of DBA and transient analyses in the FSAR, Chapter [6] (Ref. 4) and Chapter [15] (Ref. 5), assume ESF systems are OPERABLE. The AC electrical power sources are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System (RCS), and containment design limits are not ## APPLICABLE SAFETY
ANALYSES (continued) exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems. The OPERABILITY of the AC electrical power sources is consistent with the initial assumptions of the Accident analyses and is based upon meeting the design basis of the unit. This results in maintaining at least one train of the onsite or offsite AC sources OPERABLE during Accident conditions in the event of: - An assumed loss of all offsite power or all onsite AC power; and - b. A worst case single failure. The AC sources satisfy Criterion 3 of NRC Policy Statement. LCO Two qualified circuits between the offsite transmission network and the onsite Class IE Electrical Power System and separate and independent DGs for each train ensure availability of the required power to shut down the reactor and maintain it in a safe shutdown condition after an anticipated operational occurrence (AOO) or a postulated DBA. Qualified offsite circuits are those that are described in the FSAR and are part of the licensing basis for the unit. In addition, one required automatic load sequencer per train must be OPERABLE. Each offsite circuit must be capable of maintaining rated frequency and voltage, and accepting required loads during an accident, while connected to the ESF buses. Offsite circuit #1 consists of Safeguards Transformer B, which is supplied from Switchyard Bus B, and is fed through breaker 52-3 powering the ESF transformer XNB01, which, in turn, powers the #1 ESF bus through its normal feeder breaker. Offsite circuit #2 consists of the Startup Transformer, which is normally fed from the Switchyard # LCO (continued) Bus A, and is fed through breaker PA 0201, powering the ESF transformer, which, in turn, powers the #2 ESF bus through its normal feeder breaker. Each DG must be capable of starting, accelerating to rated speed and voltage, and connecting to its respective ESF bus on detection of bus undervoltage. This will be accomplished within [10] seconds. Each DG must also be capable of accepting required loads within the assumed loading sequence intervals, and continue to operate until offsite power can be restored to the ESF buses. These capabilities are required to be met from a variety of initial conditions such as DG in standby with the engine hot and DG in standby with the engine at ambient conditions. Additional DG capabilities must be demonstrated to meet required Surveillance, e.g., capability of the DG to revert to standby status on an ECCS signal while operating in parallel test mode. Proper sequencing of loads, [including tripping of nonessential loads,] is a required function for DG OPERABILITY. The AC sources in one train must be separate and independent (to the extent possible) of the AC sources in the other train. For the DGs, separation and independence are complete. For the offsite AC sources, separation and independence are to the extent practical. A circuit may be connected to more than one ESF bus, with fast transfer capability to the other circuit OPERABLE, and not violate separation criteria. A circuit that is not connected to an ESF bus is required to have OPERABLE fast transfer interlock mechanisms to at least two ESF buses to support OPERABILITY of that circuit. ## **APPLICABILITY** The AC sources [and sequencers] are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure that: a. Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients; and # APPLICABILITY (continued) b. Adequate core cooling is provided and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA. The AC power requirements for MODES 5 and 6 are covered in LCO 3.8.2, "AC Sources—Shutdown." #### ACTIONS #### A.1 To ensure a highly reliable power source remains with one offsite circuit inoperable, it is necessary to verify the OPERABILITY of the remaining required offsite circuit on a more frequent basis. Since the Required Action only specifies "perform," a failure of SR 3.8.1.1 acceptance criteria does not result in a Required Action not met. However, if a second required circuit fails SR 3.8.1.1, the second offsite circuit is inoperable, and Condition C, for two offsite circuits inoperable, is entered. Reviewer's Note: The turbine driven auxiliary feedwater pump is only required to be considered a redundant required feature, and, therefore, required to be determined OPERABLE by this Required Action, if the design is such that the remaining OPERABLE motor or turbine driven auxiliary feedwater pump(s) is not by itself capable (without any reliance on the motor driven auxiliary feedwater pump powered by the emergency bus associated with the inoperable diesel generator) of providing 100% of the auxiliary feedwater flow assumed in the safety analysis. #### A.2 Required Action A.2, which only applies if the train cannot be powered from an offsite source, is intended to provide assurance that an event coincident with a single failure of the associated DG will not result in a complete loss of safety function of critical redundant required features. These features are powered from the redundant AC electrical power train. This includes motor driven auxiliary feedwater pumps. Single train systems, such as turbine driven auxiliary feedwater pumps, may not be included. ## A.2 (continued) The Completion Time for Required Action A.2 is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action, the Completion Time only begins on discovery that both: - a. The train has no offsite power supplying it loads; and - b. A required feature on the other train is inoperable. If at any time during the existence of Condition A (one offsite circuit inoperable) a redundant required feature subsequently becomes inoperable, this Completion Time begins to be tracked. Discovering no offsite power to one train of the onsite Class IE Electrical Power Distribution System coincident with one or more inoperable required support or supported features, or both, that are associated with the other train that has offsite power, results in starting the Completion Times for the Required Action. Twenty-four hours is acceptable because it minimizes risk while allowing time for restoration before subjecting the unit to transients associated with shutdown. The remaining OPERABLE offsite circuit and DGs are adequate to supply electrical power to Train A and Train B of the onsite Class 1E Distribution System. The 24 hour Completion Time takes into account the component OPERABILITY of the redundant counterpart to the inoperable required feature. Additionally, the 24 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period. #### A.3 According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition A for a period that should not exceed 72 hours. With one offsite circuit inoperable, the reliability of the offsite system is degraded, and the ### A.3 (continued) potential for a loss of offsite power is increased, with attendant potential for a challenge to the unit safety systems. In this Condition, however, the remaining OPERABLE offsite circuit and DGs are adequate to supply electrical power to the onsite Class 1E Distribution System. The 72 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period. The second Completion Time for Required Action A.3 establishes a limit on the maximum time allowed for any combination of required AC power sources to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition A is entered while, for instance, a DG is inoperable and that DG is subsequently returned OPERABLE, the LCO may already have been not met for up to 72 hours. This could lead to a total of 144 hours, since initial failure to meet the LCO, to restore the offsite circuit. At this time, a DG could again become inoperable, the circuit restored OPERABLE, and an additional 72 hours (for a total of 9 days) allowed prior to complete restoration of the LCO. The 6 day Completion Time provides a limit on the time allowed in a specified condition after discovery of failure to meet the LCO. This limit is considered reasonable for situations in which Conditions A and B are entered concurrently. The "AND" connector between the 72 hour and 6 day Completion Times means that both Completion Times apply simultaneously, and the more restrictive Completion Time must be met. As in Required Action A.2, the Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time that the LCO was initially not met, instead of at the time Condition A was entered. #### B.1 To ensure a highly reliable power source remains with an inoperable DG, it is necessary to verify the availability of ### <u>B.1</u> (continued) the offsite circuits on a more frequent basis. Since the Required Action only specifies "perform," a failure of SR 3.8.1.1 acceptance criteria does not result in a Required Action being not met. However, if a circuit fails to pass SR 3.8.1.1, it is inoperable. Upon offsite circuit inoperability, additional Conditions and Required Actions must then be entered. Reviewer's Note: The turbine driven auxiliary feedwater pump is only required to be considered a redundant required feature, and, therefore, required to be determined OPERABLE by this Required Action, if the design is such
that the remaining OPERABLE motor or turbine driven auxiliary feedwater pump(s) is not by itself capable (without any reliance on the motor driven auxiliary feedwater pump powered by the emergency bus associated with the inoperable diesel generator) of providing 100% of the auxiliary feedwater flow assumed in the safety analysis. #### **B.2** Required Action B.2 is intended to provide assurance that a loss of offsite power, during the period that a DG is inoperable, does not result in a complete loss of safety function of critical systems. These features are designed with redundant safety related trains. This includes motor driven auxiliary feedwater pumps. Single train systems, such as turbine driven auxiliary feedwater pumps, are not included. Redundant required feature failures consist of inoperable features associated with a train, redundant to the train that has an inoperable DG. The Completion Time for Required Action B.2 is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action, the Completion Time only begins on discovery that both: #### **B.2** (continued) - a. An inoperable DG exists; and - b. A required feature on the other train (Train A or Train B) is inoperable. If at any time during the existence of this Condition (one DG inoperable) a required feature subsequently becomes inoperable, this Completion Time would begin to be tracked. Discovering one required DG inoperable coincident with one or more inoperable required support or supported features, or both, that are associated with the OPERABLE DG, results in starting the Completion Time for the Required Action. Four hours from the discovery of these events existing concurrently is Acceptable because it minimizes risk while allowing time for restoration before subjecting the unit to transients associated with shutdown. In this Condition, the remaining OPERABLE DG and offsite circuits are adequate to supply electrical power to the onsite Class IE Distribution System. Thus, on a component basis, single failure protection for the required feature's function may have been lost; however, function has not been lost. The 4 hour Completion Time takes into account the OPERABILITY of the redundant counterpart to the inoperable required feature. Additionally, the 4 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period. #### B.3.1 and B.3.2 Required Action B.3.1 provides an allowance to avoid unnecessary testing of OPERABLE DG(s). If it can be determined that the cause of the inoperable DG does not exist on the OPERABLE DG, SR 3.8.1.2 does not have to be performed. If the cause of inoperability exists on other DG(s), the other DG(s) would be declared inoperable upon discovery and Condition E of LCO 3.8.1 would be entered. Once the failure is repaired, the common cause failure no longer exists, and Required Action B.3.1 is satisfied. If the cause of the initial inoperable DG cannot be confirmed not to exist on the remaining DG(s), performance of ## B.3.1 and B.3.2 (continued) SR 3.8.1.2 suffices to provide assurance of continued OPERABILITY of that DG. In the event the inoperable DG is restored to OPERABLE status prior to completing either B.3.1 or B.3.2, the [plant corrective action program] will continue to evaluate the common cause possibility. This continued evaluation, however, is no longer under the 24 hour constraint imposed while in Condition B. According to Generic Letter 84-15 (Ref. 7), [24] hours is reasonable to confirm that the OPERABLE DG(s) is not affected by the same problem as the inoperable DG. #### B.4 According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition B for a period that should not exceed 72 hours. In Condition B, the remaining OPERABLE DG and offsite circuits are adequate to supply electrical power to the onsite Class 1E Distribution System. The 72 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period. The second Completion Time for Required Action B.4 establishes a limit on the maximum time allowed for any combination of required AC power sources to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition B is entered while, for instance, an offsite circuit is inoperable and that circuit is subsequently restored OPERABLE, the LCO may already have been not met for up to 72 hours. This could lead to a total of 144 hours, since initial failure to meet the LCO, to restore the DG. At this time, an offsite circuit could again become inoperable, the DG restored OPERABLE, and an additional 72 hours (for a total of 9 days) allowed prior to complete restoration of the LCO. The 6 day Completion Time provides a limit on time allowed in a specified condition after discovery of failure to meet the LCO. This limit is considered reasonable for situations in which Conditions A ### **B.4** (continued) and B are entered concurrently. The "AND" connector between the 72 hour and 6 day Completion Times means that both Completion Times apply simultaneously, and the more restrictive Completion Time must be met. As in Required Action B.2, the Completion Time allows for an exception to the normal "time zero" for beginning the allowed time "clock." This will result in establishing the "time zero" at the time that the LCO was initially not met, instead of at the time Condition B was entered. #### C.1 and C.2 Required Action C.1, which applies when two offsite circuits are inoperable, is intended to provide assurance that an event with a coincident single failure will not result in a complete loss of redundant required safety functions. The Completion Time for this failure of redundant required features is reduced to 12 hours from that allowed for one train without offsite power (Required Action A.2). The rationale for the reduction to 12 hours is that Regulatory Guide 1.93 (Ref. 6) allows a Completion Time of 24 hours for two required offsite circuits inoperable, based upon the assumption that two complete safety trains are OPERABLE. When a concurrent redundant required feature failure exists, this assumption is not the case, and a shorter Completion Time of 12 hours is appropriate. These features are powered from redundant AC safety trains. This includes motor driven auxiliary feedwater pumps. Single train features, such as turbine driven auxiliary pumps, are not included in the list. The Completion Time for Required Action C.1 is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action the Completion Time only begins on discovery that both: - a. All required offsite circuits are inoperable; and - b. A required feature is inoperable. ## C.1 and C.2 (continued) If at any time during the existence of Condition C (two offsite circuits inoperable) a required feature becomes inoperable, this Completion Time begins to be tracked. According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition C for a period that should not exceed 24 hours. This level of degradation means that the offsite electrical power system does not have the capability to effect a safe shutdown and to mitigate the effects of an accident; however, the onsite AC sources have not been degraded. This level of degradation generally corresponds to a total loss of the immediately accessible offsite power sources. Because of the normally high availability of the offsite sources, this level of degradation may appear to be more severe than other combinations of two AC sources inoperable that involve one or more DGs inoperable. However, two factors tend to decrease the severity of this level of degradation: - a. The configuration of the redundant AC electrical power system that remains available is not susceptible to a single bus or switching failure; and - b. The time required to detect and restore an unavailable offsite power source is generally much less than that required to detect and restore an unavailable onsite AC source. With both of the required offsite circuits inoperable, sufficient onsite AC sources are available to maintain the unit in a safe shutdown condition in the event of a DBA or transient. In fact, a simultaneous loss of offsite AC sources, a LOCA, and a worst case single failure were postulated as a part of the design basis in the safety analysis. Thus, the 24 hour Completion Time provides a period of time to effect restoration of one of the offsite circuits commensurate with the importance of maintaining an AC electrical power system capable of meeting its design criteria. According to Reference 6, with the available offsite AC sources, two less than required by the LCO, operation may ### C.1 and C.2 (continued) continue for 24 hours. If two offsite sources are restored within 24 hours, unrestricted operation may continue. If only one offsite source is restored within 24 hours, power operation continues in accordance with Condition A. #### D.1 and D.2 Pursuant to LCO 3.0.6, the Distribution System ACTIONS would not be entered even if all AC sources to it were inoperable, resulting in de-energization. Therefore, the Required Actions of Condition D are modified by a Note to indicate that when Condition D is entered with no AC source to any train, the Conditions and Required Actions for LCO 3.8.9, "Distribution Systems—Operating," must be immediately entered. This allows Condition D to provide requirements for the loss of one offsite circuit and one DG, without regard to whether a
train is de-energized. LCO 3.8.9 provides the appropriate restrictions for a de-energized train. According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition D for a period that should not exceed 12 hours. In Condition D, individual redundancy is lost in both the offsite electrical power system and the onsite AC electrical power system. Since power system redundancy is provided by two diverse sources of power, however, the reliability of the power systems in this Condition may appear higher than that in Condition C (loss of both required offsite circuits). This difference in reliability is offset by the susceptibility of this power system configuration to a single bus or switching failure. The 12 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period. ### <u>E.1</u> With Train A and Train B DGs inoperable, there are no remaining standby AC sources. Thus, with an assumed loss of offsite electrical power, insufficient standby AC sources ### E.1 (continued) are available to power the minimum required ESF functions. Since the offsite electrical power system is the only source of AC power for this level of degradation, the risk associated with continued operation for a very short time could be less than that associated with an immediate controlled shutdown (the immediate shutdown could cause grid instability, which could result in a total loss of AC power). Since any inadvertent generator trip could also result in a total loss of offsite AC power, however, the time allowed for continued operation is severely restricted. The intent here is to avoid the risk associated with an immediate controlled shutdown and to minimize the risk associated with this level of degradation. According to Reference 6, with both DGs inoperable, operation may continue for a period that should not exceed 2 hours. ## F.1 The sequencer(s) is an essential support system to [both the offsite circuit and the DG associated with a given ESF bus]. [Furthermore, the sequencer is on the primary success path for most major AC electrically powered safety systems powered from the associated ESF bus.] Therefore, loss of an [ESF bus sequencer] affects every major ESF system in the [division]. The [12] hour Completion Time provides a period of time to correct the problem commensurate with the importance of maintaining sequencer OPERABILITY. This time period also ensures that the probability of an accident (requiring sequencer OPERABILITY) occurring during periods when the sequencer is inoperable is minimal. This Condition is preceded by a Note that allows the Condition to be deleted if the unit design is such that any sequencer failure mode will only affect the ability of the associated DG to power its respective safety loads under any conditions. Implicit in this Note is the concept that the Condition must be retained if any sequencer failure mode results in the inability to start all or part of the safety loads when required, regardless of power availability, or results in overloading the offsite power circuit to a safety bus during an event and thereby causes its failure. Also ## $\underline{F.1}$ (continued) implicit in the Note, is that the Condition is not applicable to any train that does not have a sequencer. #### G.1 and G.2 If the inoperable AC electric power sources cannot be restored to OPERABLE status within the required Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems. ## H.1 Condition H corresponds to a level of degradation in which all redundancy in the AC electrical power supplies has been lost. At this severely degraded level, any further losses in the AC electrical power system will cause a loss of function. Therefore, no additional time is justified for continued operation. The unit is required by LCO 3.0.3 to commence a controlled shutdown. ## SURVEILLANCE REQUIREMENTS The AC sources are designed to permit inspection and testing of all important areas and features, especially those that have a standby function, in accordance with 10 CFR 50, Appendix A, GDC 18 (Ref. 8). Periodic component tests are supplemented by extensive functional tests during refueling outages (under simulated accident conditions). The SRs for demonstrating the OPERABILITY of the DGs are in accordance with the recommendations of Regulatory Guide 1.9 (Ref. 3), Regulatory Guide 1.108 (Ref. 9), and Regulatory Guide 1.137 (Ref. 10), as addressed in the FSAR. Where the SRs discussed herein specify voltage and frequency tolerances, the following is applicable. The minimum steady state output voltage of [3740] V is 90% of the nominal 4160 V output voltage. This value, which is specified in ## SURVEILLANCE REQUIREMENTS (continued) ANSI C84.1 (Ref. 11), allows for voltage drop to the terminals of 4000 V motors whose minimum operating voltage is specified as 90% or 3600 V. It also allows for voltage drops to motors and other equipment down through the 120 V level where minimum operating voltage is also usually specified as 90% of name plate rating. The specified maximum steady state output voltage of [4756] V is equal to the maximum operating voltage specified for 4000 V motors. It ensures that for a lightly loaded distribution system, the voltage at the terminals of 4000 V motors is no more than the maximum rated operating voltages. The specified minimum and maximum frequencies of the DG are 58.8 Hz and 61.2 Hz, respectively. These values are equal to \pm 2% of the 60 Hz nominal frequency and are derived from the recommendations given in Regulatory Guide 1.9 (Ref. 3). ### SR 3.8.1.1 This SR ensures proper circuit continuity for the offsite AC electrical power supply to the onsite distribution network and availability of offsite AC electrical power. The breaker alignment verifies that each breaker is in its correct position to ensure that distribution buses and loads are connected to their preferred power source, and that appropriate independence of offsite circuits is maintained. The 7 day Frequency is adequate since breaker position is not likely to change without the operator being aware of it and because its status is displayed in the control room. #### SR 3.8.1.2 and SR 3.8.1.7 These SRs help to ensure the availability of the standby electrical power supply to mitigate DBAs and transients and to maintain the unit in a safe shutdown condition. To minimize the wear on moving parts that do not get lubricated when the engine is not running, these SRs are modified by a Note (Note 2 for SR 3.8.1.2) to indicate that all DG starts for these Surveillances may be preceded by an engine prelube period and followed by a warmup period prior to loading. For the purposes of SR 3.8.1.2 and SR 3.8.1.7 testing, the DGs are started from standby conditions. Standby conditions ## <u>SR 3.8.1.2 and SR 3.8.1.7</u> (continued) for a DG mean that the diesel engine coolant and oil are being continuously circulated and temperature is being maintained consistent with manufacturer recommendations. In order to reduce stress and wear on diesel engines, some manufacturers recommend a modified start in which the starting speed of DGs is limited, warmup is limited to this lower speed, and the DGs are gradually accelerated to synchronous speed prior to loading. These start procedures are the intent of Note 3, which is only applicable when such modified start procedures are recommended by the manufacturer. SR 3.8.1.7 requires that, at a 184 day Frequency, the DG starts from standby conditions and achieves required voltage and frequency within 10 seconds. The 10 second start requirement supports the assumptions of the design basis LOCA analysis in the FSAR, Chapter [15] (Ref. 5). The 10 second start requirement is not applicable to SR 3.8.1.2 (see Note 3) when a modified start procedure as described above is used. If a modified start is not used, the 10 second start requirement of SR 3.8.1.7 applies. Since SR 3.8.1.7 requires a 10 second start, it is more restrictive than SR 3.8.1.2, and it may be performed in lieu of SR 3.8.1.2. This is the intent of Note 1 of SR 3.8.1.2. The normal 31 day Frequency for SR 3.8.1.2 (see Table 3.8.1-1, "Diesel Generator Test Schedule," in the accompanying LCO) is consistent with Regulatory Guide 1.9 (Ref. 3). The 184 day Frequency for SR 3.8.1.7 is a reduction in cold testing consistent with Generic Letter 84-15 (Ref. 7). These Frequencies provide adequate assurance of DG OPERABILITY, while minimizing degradation resulting from testing. #### SR 3.8.1.3 This Surveillance verifies that the DGs are capable of synchronizing with the offsite electrical system and accepting loads greater than or equal to the equivalent of the maximum expected accident loads. A minimum run time of ## <u>SR 3.8.1.3</u> (continued) 60 minutes is required to stabilize engine temperatures, while minimizing the time that the DG is connected to the offsite source. Although no power factor requirements are established by this SR, the DG is normally operated at a power factor between [0.8 lagging] and [1.0]. The [0.8] value is the design rating of the machine, while the [1.0] is an operational limitation [to ensure circulating currents are minimized]. The load band is provided to avoid routine overloading of the DG. Routine overloading may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain DG OPERABILITY. The 31 day Frequency for this Surveillance (Table 3.8.1-1) is consistent with Regulatory Guide 1.9 (Ref. 3). This SR is modified by four Notes.
Note 1 indicates that diesel engine runs for this Surveillance may include gradual loading, as recommended by the manufacturer, so that mechanical stress and wear on the diesel engine are minimized. Note 2 states that momentary transients, because of changing bus loads, do not invalidate this test. Similarly, momentary power factor transients above the limit do not invalidate the test. Note 3 indicates that this Surveillance should be conducted on only one DG at a time in order to avoid common cause failures that might result from offsite circuit or grid perturbations. Note 4 stipulates a prerequisite requirement for performance of this SR. A successful DG start must precede this test to credit satisfactory performance. #### SR 3.8.1.4 This SR provides verification that the level of fuel oil in the day tank [and engine mounted tank] is at or above the level at which fuel oil is automatically added. The level is expressed as an equivalent volume in gallons, and is selected to ensure adequate fuel oil for a minimum of 1 hour of DG operation at full load plus 10%. The 31 day Frequency is adequate to assure that a sufficient supply of fuel oil is available, since low level alarms are ## <u>SR 3.8.1.4</u> (continued) provided and facility operators would be aware of any large uses of fuel oil during this period. #### SR 3.8.1.5 Microbiological fouling is a major cause of fuel oil degradation. There are numerous bacteria that can grow in fuel oil and cause fouling, but all must have a water environment in order to survive. Removal of water from the fuel oil day [and engine mounted] tanks once every [31] days eliminates the necessary environment for bacterial survival. This is the most effective means of controlling microbiological fouling. In addition, it eliminates the potential for water entrainment in the fuel oil during DG operation. Water may come from any of several sources, including condensation, ground water, rain water, contaminated fuel oil, and breakdown of the fuel oil by bacteria. Frequent checking for and removal of accumulated water minimizes fouling and provides data regarding the watertight integrity of the fuel oil system. The Surveillance Frequencies are established by Regulatory Guide 1.137 (Ref. 10). This SR is for preventative maintenance. The presence of water does not necessarily represent failure of this SR, provided the accumulated water is removed during the performance of this Surveillance. ## SR 3.8.1.6 This Surveillance demonstrates that each required fuel oil transfer pump operates and transfers fuel oil from its associated storage tank to its associated day tank. This is required to support continuous operation of standby power sources. This Surveillance provides assurance that the fuel oil transfer pump is OPERABLE, the fuel oil piping system is intact, the fuel delivery piping is not obstructed, and the controls and control systems for automatic fuel transfer systems are OPERABLE. The Frequency for this SR is variable, depending on individual system design, with up to a [92] day interval. The [92] day Frequency corresponds to the testing requirements for pumps as contained in the ASME Code, ### <u>SR 3.8.1.6</u> (continued) Section XI (Ref. 11); however, the design of fuel transfer systems is such that pumps operate automatically or must be started manually in order to maintain an adequate volume of fuel oil in the day [and engine mounted] tanks during or following DG testing. In such a case, a 31 day Frequency is appropriate. Since proper operation of fuel transfer systems is an inherent part of DG OPERABILITY, the Frequency of this SR should be modified to reflect individual designs. SR 3.8.1.7 See SR 3.8.1.2. ### SR 3.8.1.8 Transfer of each [4.16 kV ESF bus] power supply from the normal offsite circuit to the alternate offsite circuit demonstrates the OPERABILITY of the alternate circuit distribution network to power the shutdown loads. The [18 month] Frequency of the Surveillance is based on engineering judgment, taking into consideration the unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the [18 month] Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. This SR is modified by a Note. The reason for the Note is that, during operation with the reactor critical, performance of this SR could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, unit safety systems. Credit may be taken for unplanned events that satisfy this SR. #### SR 3.8.1.9 Each DG is provided with an engine overspeed trip to prevent damage to the engine. Recovery from the transient caused by the loss of a large load could cause diesel engine ## <u>SR 3.8.1.9</u> (continued) overspeed, which, if excessive, might result in a trip of the engine. This Surveillance demonstrates the DG load response characteristics and capability to reject the largest single load without exceeding predetermined voltage and frequency and while maintaining a specified margin to the overspeed trip. [For this unit, the single load for each DG and its horsepower rating is as follows:] This Surveillance may be accomplished by: - a. Tripping the DG output breaker with the DG carrying greater than or equal to its associated single largest post-accident load while paralleled to offsite power, or while solely supplying the bus; or - b. Tripping its associated single largest post-accident load with the DG solely supplying the bus. As required by IEEE-308 (Ref. 12), the load rejection test is acceptable if the increase in diesel speed does not exceed 75% of the difference between synchronous speed and the overspeed trip setpoint, or 15% above synchronous speed, whichever is lower. The time, voltage, and frequency tolerances specified in this SR are derived from Regulatory Guide 1.9 (Ref. 3) recommendations for response during load sequence intervals. The 3 seconds specified is equal to 60% of a typical 5 second load sequence interval associated with sequencing of the largest load. The voltage and frequency specified are consistent with the design range of the equipment powered by the DG. SR 3.8.1.9.a corresponds to the maximum frequency excursion, while SR 3.8.1.9.b and SR 3.8.1.9.c are steady state voltage and frequency values to which the system must recover following load rejection. The [18 month] Frequency is consistent with the recommendation of Regulatory Guide 1.108 (Ref. 9). This SR is modified by two Notes. The reason for Note 1 is that during operation with the reactor critical, performance of this SR could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, unit safety systems. Credit may be taken for unplanned events that satisfy this SR. In order to ensure that the DG is tested under load ## <u>SR 3.8.1.9</u> (continued) conditions that are as close to design basis conditions as possible, Note 2 requires that, if synchronized to offsite power, testing must be performed using a power factor \leq [0.9]. This power factor is chosen to be representative of the actual design basis inductive loading that the DG would experience. Reviewer's Note: The above MODE restrictions may be deleted if it can be demonstrated to the staff, on a plant specific basis, that performing the SR with the reactor in any of the restricted MODES can satisfy the following criteria, as applicable: - a. Performance of the SR will not render any safety system or component inoperable; - b. Performance of the SR will not cause perturbations to any of the electrical distribution systems that could result in a challenge to steady state operation or to plant safety systems; and - c. Performance of the SR, or failure of the SR, will not cause, or result in, an AOO with attendant challenge to plant safety systems. #### SR 3.8.1.10 This Surveillance demonstrates the DG capability to reject a full load without overspeed tripping or exceeding the predetermined voltage limits. The DG full load rejection may occur because of a system fault or inadvertent breaker tripping. This Surveillance ensures proper engine generator load response under the simulated test conditions. This test simulates the loss of the total connected load that the DG experiences following a full load rejection and verifies that the DG does not trip upon loss of the load. These acceptance criteria provide for DG damage protection. While the DG is not expected to experience this transient during an event and continues to be available, this response ensures that the DG is not degraded for future application, including reconnection to the bus if the trip initiator can be corrected or isolated. ## <u>SR 3.8.1.10</u> (continued) In order to ensure that the DG is tested under load conditions that are as close to design basis conditions as possible, testing must be performed using a power factor \leq [0.9]. This power factor is chosen to be representative of the actual design basis inductive loading that the DG would experience. The [18 month] Frequency is consistent with the recommendation of Regulatory Guide 1.108 (Ref. 9) and is intended to be consistent with expected fuel cycle lengths. This SR has been modified by a Note. The reason for the Note is that during operation with the reactor critical, performance of this SR could cause perturbation to the electrical distribution systems that could challenge continued steady state operation and, as a result, unit safety systems. Credit may be taken for unplanned events that satisfy this SR. Reviewer's Note: The above MODE restrictions may be deleted if it can be demonstrated to the staff, on a plant specific basis, that performing the SR with the reactor in any of the restricted MODES can satisfy
the following criteria, as applicable: - a. Performance of the SR will not render any safety system or component inoperable; - Performance of the SR will not cause perturbations to any of the electrical distribution systems that could result in a challenge to steady state operation or to plant safety systems; and - c. Performance of the SR, or failure of the SR, will not cause, or result in, an AOO with attendant challenge to plant safety systems. #### SR 3.8.1.11 As required by Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(1), this Surveillance demonstrates the as designed operation of the standby power sources during loss of the offsite source. This test verifies all actions ## <u>SR 3.8.1.11</u> (continued) encountered from the loss of offsite power, including shedding of the nonessential loads and energization of the emergency buses and respective loads from the DG. It further demonstrates the capability of the DG to automatically achieve the required voltage and frequency within the specified time. The DG autostart time of [10] seconds is derived from requirements of the accident analysis to respond to a design basis large break LOCA. The Surveillance should be continued for a minimum of 5 minutes in order to demonstrate that all starting transients have decayed and stability is achieved. The requirement to verify the connection and power supply of permanent and autoconnected loads is intended to satisfactorily show the relationship of these loads to the DG loading logic. In certain circumstances, many of these loads cannot actually be connected or loaded without undue hardship or potential for undesired operation. For instance, Emergency Core Cooling Systems (ECCS) injection valves are not desired to be stroked open, or high pressure injection systems are not capable of being operated at full flow, or residual heat removal (RHR) systems performing a decay heat removal function are not desired to be realigned to the ECCS mode of operation. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the DG systems to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified. The Frequency of [18 months] is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(1), takes into consideration unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. This SR is modified by two Notes. The reason for Note 1 is to minimize wear and tear on the DGs during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil continuously circulated and temperature maintained ## <u>SR 3.8.1.11</u> (continued) consistent with manufacturer recommendations. The reason for Note 2 is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. Credit may be taken for unplanned events that satisfy this SR. #### SR 3.8.1.12 This Surveillance demonstrates that the DG automatically starts and achieves the required voltage and frequency within the specified time ([10] seconds) from the design basis actuation signal (LOCA signal) and operates for ≥ 5 minutes. The 5 minute period provides sufficient time to demonstrate stability. SR 3.8.1.12.d and SR 3.8.1.12.e ensure that permanently connected loads and emergency loads are energized from the offsite electrical power system on an ESF signal without loss of offsite power. The requirement to verify the connection of permanent and autoconnected loads is intended to satisfactorily show the relationship of these loads to the DG loading logic. certain circumstances, many of these loads cannot actually be connected or loaded without undue hardship or potential for undesired operation. For instance, ECCS injection valves are not desired to be stroked open, or high pressure injection systems are not capable of being operated at full flow, or RHR systems performing a decay heat removal function are not desired to be realigned to the ECCS mode of operation. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the DG system to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified. The Frequency of [18 months] takes into consideration unit conditions required to perform the Surveillance and is intended to be consistent with the expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the [18 month] Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. ## <u>SR 3.8.1.12</u> (continued) This SR is modified by two Notes. The reason for Note 1 is to minimize wear and tear on the DGs during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil continuously circulated and temperature maintained consistent with manufacturer recommendations. The reason for Note 2 is that during operation with the reactor critical, performance of this Surveillance could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, unit safety systems. Credit may be taken for unplanned events that satisfy this SR. #### SR 3.8.1.13 This Surveillance demonstrates that DG noncritical protective functions (e.g., high jacket water temperature) are bypassed on a loss of voltage signal concurrent with an ESF actuation test signal, and critical protective functions (engine overspeed, generator differential current, [low lube oil pressure, high crankcase pressure, and start failure relay]) trip the DG to avert substantial damage to the DG unit. The noncritical trips are bypassed during DBAs and provide an alarm on an abnormal engine condition. This alarm provides the operator with sufficient time to react appropriately. The DG availability to mitigate the DBA is more critical than protecting the engine against minor problems that are not immediately detrimental to emergency operation of the DG. The [18 month] Frequency is based on engineering judgment, taking into consideration unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the [18 month] Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. The SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required DG from service. Credit may be taken for unplanned events that satisfy this SR. ## <u>SR 3.8.1.13</u> (continued) Reviewer's Note: The above MODE restrictions may be deleted if it can be demonstrated to the staff, on a plant specific basis, that performing the SR with the reactor in any of the restricted MODES can satisfy the following criteria, as applicable: - a. Performance of the SR will not render any safety system or component inoperable; - b. Performance of the SR will not cause perturbations to any of the electrical distribution systems that could result in a challenge to steady state operation or to plant safety systems; and - c. Performance of the SR, or failure of the SR, will not cause, or result in, an AOO with attendant challenge to plant safety systems. ## SR 3.8.1.14 Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(3), requires demonstration once per 18 months that the DGs can start and run continuously at full load capability for an interval of not less than 24 hours, \geq [2] hours of which is at a load equivalent to 110% of the continuous duty rating and the remainder of the time at a load equivalent to the continuous duty rating of the DG. The DG starts for this Surveillance can be performed either from standby or hot conditions. The provisions for prelubricating and warmup, discussed in SR 3.8.1.2, and for gradual loading, discussed in SR 3.8.1.3, are applicable to this SR. In order to ensure that the DG is tested under load conditions that are as close to design conditions as possible, testing must be performed using a power factor of ≤ [0.9]. This power factor is chosen to be representative of the actual design basis inductive loading that the DG would experience. The load band is provided to avoid routine overloading of the DG. Routine overloading may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain DG OPERABILITY. ## <u>SR 3.8.1.14</u> (continued) The [18 month] Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(3), takes into consideration unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. This Surveillance is modified by two Notes. Note 1 states that momentary transients due to changing bus loads do not invalidate this test. Similarly, momentary power factor transients above the power factor limit will not invalidate the test. The reason for Note 2 is that during operation with the reactor critical, performance of this Surveillance could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, unit safety systems. Credit may be taken for unplanned events that satisfy this SR. #### SR 3.8.1.15 This Surveillance demonstrates that the diesel engine can restart from a hot condition, such as subsequent to shutdown from normal Surveillances, and achieve the required voltage and frequency
within [10] seconds. The [10] second time is derived from the requirements of the accident analysis to respond to a design basis large break LOCA. The [18 month] Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(5). This SR is modified by two Notes. Note 1 ensures that the test is performed with the diesel sufficiently hot. The load band is provided to avoid routine overloading of the DG. Routine overloads may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain DG OPERABILITY. The requirement that the diesel has operated for at least [2] hours at full load conditions prior to performance of this Surveillance is based on manufacturer recommendations for achieving hot conditions. Momentary transients due to changing bus loads do not invalidate this test. Note 2 allows all DG starts to be preceded by an engine prelube period to minimize wear and tear on the diesel during testing. ## SURVEILLANCE REQUIREMENTS (continued) #### SR 3.8.1.16 As required by Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(6), this Surveillance ensures that the manual synchronization and automatic load transfer from the DG to the offsite source can be made and the DG can be returned to ready to load status when offsite power is restored. It also ensures that the autostart logic is reset to allow the DG to reload if a subsequent loss of offsite power occurs. The DG is considered to be in ready to load status when the DG is at rated speed and voltage, the output breaker is open and can receive an autoclose signal on bus undervoltage, and the load sequence timers are reset. The Frequency of [18 months] is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(6), and takes into consideration unit conditions required to perform the Surveillance. This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. Credit may be taken for unplanned events that satisfy this SR. #### SR 3.8.1.17 Demonstration of the test mode override ensures that the DG availability under accident conditions will not be compromised as the result of testing and the DG will automatically reset to ready to load operation if a LOCA actuation signal is received during operation in the test mode. Ready to load operation is defined as the DG running at rated speed and voltage with the DG output breaker open. These provisions for automatic switchover are required by IEEE-308 (Ref. 13), paragraph 6.2.6(2). The requirement to automatically energize the emergency loads with offsite power is essentially identical to that of SR 3.8.1.12. The intent in the requirement associated with SR 3.8.1.17.b is to show that the emergency loading was not affected by the DG operation in test mode. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the emergency loads to perform these functions is acceptable. ## <u>SR 3.8.1.17</u> (continued) This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified. The [18 month] Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(8), takes into consideration unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. Credit may be taken for unplanned events that satisfy this SR. ## SR 3.8.1.18 Under accident [and loss of offsite power] conditions loads are sequentially connected to the bus by the [automatic load sequencer]. The sequencing logic controls the permissive and starting signals to motor breakers to prevent overloading of the DGs due to high motor starting currents. The [10]% load sequence time interval tolerance ensures that sufficient time exists for the DG to restore frequency and voltage prior to applying the next load and that safety analysis assumptions regarding ESF equipment time delays are not violated. Reference 2 provides a summary of the automatic loading of ESF buses. The Frequency of [18 months] is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(2), takes into consideration unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. Credit may be taken for unplanned events that satisfy this SR. ### <u>SR 3.8.1.18</u> (continued) Reviewer's Note: The above MODE restrictions may be deleted if it can be demonstrated to the staff, on a plant specific basis, that performing the SR with the reactor in any of the restricted MODES can satisfy the following criteria, as applicable: - Performance of the SR will not render any safety system or component inoperable; - b. Performance of the SR will not cause perturbations to any of the electrical distribution systems that could result in a challenge to steady state operation or to plant safety systems; and - c. Performance of the SR, or failure of the SR, will not cause, or result in, an AOO with attendant challenge to plant safety systems. ## SR 3.8.1.19 In the event of a DBA coincident with a loss of offsite power, the DGs are required to supply the necessary power to ESF systems so that the fuel, RCS, and containment design limits are not exceeded. This Surveillance demonstrates the DG operation, as discussed in the Bases for SR 3.8.1.11, during a loss of offsite power actuation test signal in conjunction with an ESF actuation signal. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the DG system to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified. The Frequency of [18 months] takes into consideration unit conditions required to perform the Surveillance and is intended to be consistent with an expected fuel cycle length of [18 months]. This SR is modified by two Notes. The reason for Note 1 is to minimize wear and tear on the DGs during testing. For ## <u>SR 3.8.1.19</u> (continued) the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil continuously circulated and temperature maintained consistent with manufacturer recommendations for DGs. The reason for Note 2 is that the performance of the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. Credit may be taken for unplanned events that satisfy this SR. #### SR 3.8.1.20 This Surveillance demonstrates that the DG starting independence has not been compromised. Also, this Surveillance demonstrates that each engine can achieve proper speed within the specified time when the DGs are started simultaneously. The 10 year Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9). This SR is modified by a Note. The reason for the Note is to minimize wear on the DG during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil continuously circulated and temperature maintained consistent with manufacturer recommendations. #### Diesel Generator Test Schedule The DG test schedule (Table 3.8.1-1) implements the recommendations of Revision 3 to Regulatory Guide 1.9 (Ref. 3). The purpose of this test schedule is to provide timely test data to establish a confidence level associated with the goal to maintain DG reliability > 0.95 per demand. According to Regulatory Guide 1.9, Revision 3 (Ref. 3), each DG should be tested at least once every 31 days. Whenever a DG has experienced 4 or more valid failures in the last 25 valid tests, the maximum time between tests is reduced to 7 days. Four failures in 25 valid tests is a failure rate of 0.16, or the threshold of acceptable DG performance, and ## <u>Diesel Generator Test Schedule</u> (continued) hence may be an early indication of the degradation of DG reliability. When considered in the light of a long history of tests, however, 4 failures in the last 25 valid tests may only be a statistically probable distribution of random events. Increasing the test Frequency will allow for a more timely accumulation of additional test data upon which to base judgment of the reliability of the DG. The increased test Frequency must be maintained until seven consecutive, failure free tests have been performed. The Frequency for accelerated testing is 7 days, but no less than 24 hours. Tests conducted at intervals of less than 24 hours may be credited for compliance with Required Actions. However, for the purpose of re-establishing the normal 31-day Frequency, a successful test at an interval of less than 24 hours should be considered an invalid test and not count towards the 7 consecutive failure free starts, and the consecutive test count is not reset. A test interval in excess of 7 days (or 31 days, as appropriate) constitutes a failure to meet the SRs, and results in the associated DG being declared inoperable. It does not, however, constitute a valid test or failure of the DG, and any consecutive test count is not reset. #### REFERENCES - 1. 10 CFR 50, Appendix A, GDC 17. - 2. FSAR, Chapter [8]. - 3.
Regulatory Guide 1.9, Rev. 3, [date]. - 4. FSAR, Chapter [6]. - 5. FSAR, Chapter [15]. - 6. Regulatory Guide 1.93, Rev. 0, December 1974. - 7. Generic Letter 84-15, "Proposed Staff Actions to Improve and Maintain Diesel Generator Reliability," July 2, 1984. - 8. 10 CFR 50, Appendix A, GDC 18. ## BASES # REFERENCES (continued) - 9. Regulatory Guide 1.108, Rev. 1, August 1977. - 10. Regulatory Guide 1.137, Rev. [], [date]. - 11. ASME, Boiler and Pressure Vessel Code, Section XI. - 12. IEEE Standard 308-1978. #### B 3.8 ELECTRICAL POWER SYSTEMS #### B 3.8.2 AC Sources—Shutdown #### BASES #### **BACKGROUND** A description of the AC sources is provided in the Bases for LCO 3.8.1, "AC Sources—Operating." #### APPLICABLE SAFETY ANALYSES The OPERABILITY of the minimum AC sources during MODES 5 and 6 and during movement of irradiated fuel assemblies ensures that: - a. The unit can be maintained in the shutdown or refueling condition for extended periods; - Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status; and - c. Adequate AC electrical power is provided to mitigate events postulated during shutdown, such as a fuel handling accident. In general, when the unit is shut down, the Technical Specifications requirements ensure that the unit has the capability to mitigate the consequences of postulated accidents. However, assuming a single failure and concurrent loss of all offsite or all onsite power is not required. The rationale for this is based on the fact that many Design Basis Accidents (DBAs) that are analyzed in MODES 1, 2, 3, and 4 have no specific analyses in MODES 5 and 6. Worst case bounding events are deemed not credible in MODES 5 and 6 because the energy contained within the reactor pressure boundary, reactor coolant temperature and pressure, and the corresponding stresses result in the probabilities of occurrence being significantly reduced or eliminated, and in minimal consequences. These deviations from DBA analysis assumptions and design requirements during shutdown conditions are allowed by the LCO for required systems. During MODES 1, 2, 3, and 4, various deviations from the analysis assumptions and design requirements are allowed #### APPLICABLE SAFETY ANALYSES (continued) within the Required Actions. This allowance is in recognition that certain testing and maintenance activities must be conducted provided an acceptable level of risk is not exceeded. During MODES 5 and 6, performance of a significant number of required testing and maintenance activities is also required. In MODES 5 and 6, the activities are generally planned and administratively controlled. Relaxations from MODE 1, 2, 3, and 4 LCO requirements are acceptable during shutdown modes based on: - a. The fact that time in an outage is limited. This is a risk prudent goal as well as a utility economic consideration. - b. Requiring appropriate compensatory measures for certain conditions. These may include administrative controls, reliance on systems that do not necessarily meet typical design requirements applied to systems credited in operating MODE analyses, or both. - c. Prudent utility consideration of the risk associated with multiple activities that could affect multiple systems. - d. Maintaining, to the extent practical, the ability to perform required functions (even if not meeting MODE 1, 2, 3, and 4 OPERABILITY requirements) with systems assumed to function during an event. In the event of an accident during shutdown, this LCO ensures the capability to support systems necessary to avoid immediate difficulty, assuming either a loss of all offsite power or a loss of all onsite diesel generator (DG) power. The AC sources satisfy Criterion 3 of the NRC Policy Statement. #### LC0 WOG STS One offsite circuit capable of supplying the onsite Class 1E power distribution subsystem(s) of LCO 3.8.10, "Distribution Systems—Shutdown," ensures that all required loads are powered from offsite power. An OPERABLE DG, associated with the distribution system train required to be OPERABLE by LCO 3.8.10, ensures a diverse power source is available to # (continued) provide electrical power support, assuming a loss of the offsite circuit. Together, OPERABILITY of the required offsite circuit and DG ensures the availability of sufficient AC sources to operate the unit in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents). The qualified offsite circuit must be capable of maintaining rated frequency and voltage, and accepting required loads during an accident, while connected to the Engineered Safety Feature (ESF) bus(es). Qualified offsite circuits are those that are described in the FSAR and are part of the licensing basis for the unit. Offsite circuit #1 consists of Safeguards Transformer B, which is supplied from Switchyard Bus B, and is fed through breaker 52-3 powering the ESF transformer XNB01, which, in turn, powers the #1 ESF bus through its normal feeder breaker. The second offsite circuit consists of the Startup Transformer, which is normally fed from the Switchyard Bus A, and is fed through breaker PA 0201 powering the ESF transformer, which, in turn, powers the #2 ESF bus through its normal feeder breaker. The DG must be capable of starting, accelerating to rated speed and voltage, and connecting to its respective ESF bus on detection of bus undervoltage. This sequence must be accomplished within [10] seconds. The DG must be capable of accepting required loads within the assumed loading sequence intervals, and continue to operate until offsite power can be restored to the ESF buses. These capabilities are required to be met from a variety of initial conditions such as DG in standby with the engine hot and DG in standby at ambient conditions. Proper sequencing of loads, including tripping of nonessential loads, is a required function for DG OPERABILITY. In addition, proper sequencer operation is an integral part of offsite circuit OPERABILITY since its inoperability impacts on the ability to start and maintain energized loads required OPERABLE by LCO 3.8.10. ## (continued) It is acceptable for trains to be cross tied during shutdown conditions, allowing a single offsite power circuit to supply all required trains. #### **APPLICABILITY** The AC sources required to be OPERABLE in MODES 5 and 6 and during movement of irradiated fuel assemblies provide assurance that: - a. Systems to provide adequate coolant inventory makeup are available for the irradiated fuel assemblies in the core; - Systems needed to mitigate a fuel handling accident are available; - c. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available; and - d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition. The AC power requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.1. #### ACTIONS ### A.1 An offsite circuit would be considered inoperable if it were not available to one required ESF train. Although two trains are required by LCO 3.8.10, the one train with offsite power available may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS and fuel movement. By the allowance of the option to declare required features inoperable, with no offsite power available, appropriate restrictions will be implemented in accordance with the affected required features LCO's ACTIONS. # ACTIONS (continued) ## A.2.1, A.2.2, A.2.3, A.2.4, B.1, B.2, B.3, and B.4 With the offsite circuit not available to all required trains, the option would still exist to declare all required features inoperable. Since this option may involve undesired administrative efforts, the allowance for sufficiently conservative actions is made. With the required DG inoperable, the minimum required diversity of AC power sources is not available. It is, therefore, required to suspend CORE ALTERATIONS, movement of irradiated fuel assemblies, and operations involving positive reactivity additions. The Required Action to suspend positive reactivity additions does not preclude actions to maintain or increase reactor vessel inventory provided the required SDM is maintained. Suspension of these activities does not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability or the occurrence of postulated events. It is further required to immediately initiate action to restore the required AC sources and to continue this action until restoration is accomplished in order to provide the necessary AC power to the unit safety systems. The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required AC electrical power sources should be completed as quickly as possible in order to minimize the time during which the unit safety systems may be without sufficient power. Pursuant to LCO 3.0.6, the Distribution System's ACTIONS would not be entered even if all AC sources to it are inoperable, resulting in de-energization. Therefore, the Required Actions of Condition A are modified by a Note to indicate that when Condition A is entered with no AC power to any required ESF bus, the ACTIONS for LCO 3.8.10 must be immediately entered. This Note allows Condition A to provide requirements for the loss of the offsite circuit, whether or not a train is de-energized. LCO 3.8.10 would provide the appropriate restrictions for the situation involving a de-energized train. ## BASES (continued) ### SURVEILLANCE REQUIREMENTS #### SR 3.8.2.1 SR 3.8.2.1 requires the SRs from LCO 3.8.1 that are necessary for ensuring the OPERABILITY of the AC sources in other than MODES 1, 2, 3, and 4. SR 3.8.1.8 is not required to be met since only one offsite circuit is required to be OPERABLE. SR 3.8.1.17 is not required to
be met because the required OPERABLE DG(s) is not required to undergo periods of being synchronized to the offsite circuit. SR 3.8.1.20 is excepted because starting independence is not required with the DG(s) that is not required to be operable. This SR is modified by a Note. The reason for the Note is to preclude requiring the OPERABLE DG(s) from being paralleled with the offsite power network or otherwise rendered inoperable during performance of SRs, and to preclude deenergizing a required 4160 V ESF bus or disconnecting a required offsite circuit during performance of SRs. With limited AC sources available, a single event could compromise both the required circuit and the DG. It is the intent that these SRs must still be capable of being met, but actual performance is not required during periods when the DG and offsite circuit is required to be OPERABLE. Refer to the corresponding Bases for LCO 3.8.1 for a discussion of each SR. | | | | | ES | |--|--|--|--|----| None. #### B 3.8 ELECTRICAL POWER SYSTEMS B 3.8.3 Diesel Fuel Oil, Lube Oil, and Starting Air #### BASES #### **BACKGROUND** Each diesel generator (DG) is provided with a storage tank having a fuel oil capacity sufficient to operate that diesel for a period of 7 days while the DG is supplying maximum post loss of coolant accident load demand discussed in the FSAR, Section [9.5.4.2] (Ref. 1). The maximum load demand is calculated using the assumption that a minimum of any two DGs is available. This onsite fuel oil capacity is sufficient to operate the DGs for longer than the time to replenish the onsite supply from outside sources. Fuel oil is transferred from storage tank to day tank by either of two transfer pumps associated with each storage tank. Redundancy of pumps and piping precludes the failure of one pump, or the rupture of any pipe, valve or tank to result in the loss of more than one DG. All outside tanks, pumps, and piping are located underground. For proper operation of the standby DGs, it is necessary to ensure the proper quality of the fuel oil. Regulatory Guide 1.137 (Ref. 2) addresses the recommended fuel oil practices as supplemented by ANSI N195 (Ref. 3). The fuel oil properties governed by these SRs are the water and sediment content, the kinematic viscosity, specific gravity (or API gravity), and impurity level. The DG lubrication system is designed to provide sufficient lubrication to permit proper operation of its associated DG under all loading conditions. The system is required to circulate the lube oil to the diesel engine working surfaces and to remove excess heat generated by friction during operation. Each engine oil sump contains an inventory capable of supporting a minimum of [7] days of operation. [The onsite storage in addition to the engine oil sump is sufficient to ensure 7 days of continuous operation.] This supply is sufficient to allow the operator to replenish lube oil from outside sources. Each DG has an air start system with adequate capacity for five successive start attempts on the DG without recharging the air start receiver(s). ### BASES (continued) #### APPLICABLE SAFETY ANALYSES The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 4), and in the FSAR, Chapter [15] (Ref. 5), assume Engineered Safety Feature (ESF) systems are OPERABLE. The DGs are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that fuel, Reactor Coolant System and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems. Since diesel fuel oil, lube oil, and the air start subsystem support the operation of the standby AC power sources, they satisfy Criterion 3 of the NRC Policy Statement. #### LCO Stored diesel fuel oil is required to have sufficient supply for 7 days of full load operation. It is also required to meet specific standards for quality. Additionally, sufficient lubricating oil supply must be available to ensure the capability to operate at full load for 7 days. This requirement, in conjunction with an ability to obtain replacement supplies within 7 days, supports the availability of DGs required to shut down the reactor and to maintain it in a safe condition for an anticipated operational occurrence (AOO) or a postulated DBA with loss of offsite power. DG day tank fuel requirements, as well as transfer capability from the storage tank to the day tank, are addressed in LCO 3.8.1, "AC Sources—Operating," and LCO 3.8.2, "AC Sources—Shutdown." The starting air system is required to have a minimum capacity for five successive DG start attempts without recharging the air start receivers. #### APPLICABILITY The AC sources (LCO 3.8.1 and LCO 3.8.2) are required to ensure the availability of the required power to shut down the reactor and maintain it in a safe shutdown condition after an AOO or a postulated DBA. Since stored diesel fuel oil, lube oil, and the starting air subsystem support LCO 3.8.1 and LCO 3.8.2, stored diesel fuel oil, lube oil, # APPLICABILITY (continued) and starting air are required to be within limits when the associated DG is required to be OPERABLE. #### **ACTIONS** The ACTIONS Table is modified by a Note indicating that separate Condition entry is allowed for each DG. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable DG subsystem. Complying with the Required Actions for one inoperable DG subsystem may allow for continued operation, and subsequent inoperable DG subsystem(s) are governed by separate Condition entry and application of associated Required Actions. #### A.1 In this Condition, the 7 day fuel oil supply for a DG is not available. However, the Condition is restricted to fuel oil level reductions that maintain at least a 6 day supply. These circumstances may be caused by events, such as full load operation required after an inadvertent start while at minimum required level, or feed and bleed operations, which may be necessitated by increasing particulate levels or any number of other oil quality degradations. This restriction allows sufficient time for obtaining the requisite replacement volume and performing the analyses required prior to addition of fuel oil to the tank. A period of 48 hours is considered sufficient to complete restoration of the required level prior to declaring the DG inoperable. This period is acceptable based on the remaining capacity (> 6 days), the fact that procedures will be initiated to obtain replenishment, and the low probability of an event during this brief period. #### B.1 With lube oil inventory < 500 gal, sufficient lubricating oil to support 7 days of continuous DG operation at full load conditions may not be available. However, the Condition is restricted to lube oil volume reductions that maintain at least a 6 day supply. This restriction allows sufficient time to obtain the requisite replacement volume. A period of 48 hours is considered sufficient to complete #### **ACTIONS** ## <u>B.1</u> (continued) restoration of the required volume prior to declaring the DG inoperable. This period is acceptable based on the remaining capacity (> 6 days), the low rate of usage, the fact that procedures will be initiated to obtain replenishment, and the low probability of an event during this brief period. #### <u>C.1</u> This Condition is entered as a result of a failure to meet the acceptance criterion of SR 3.8.3.5. Normally, trending of particulate levels allows sufficient time to correct high particulate levels prior to reaching the limit of acceptability. Poor sample procedures (bottom sampling), contaminated sampling equipment, and errors in laboratory analysis can produce failures that do not follow a trend. Since the presence of particulates does not mean failure of the fuel oil to burn properly in the diesel engine, and particulate concentration is unlikely to change significantly between Surveillance Frequency intervals, and proper engine performance has been recently demonstrated (within 31 days), it is prudent to allow a brief period prior to declaring the associated DG inoperable. The 7 day Completion Time allows for further evaluation, resampling and re-analysis of the DG fuel oil. ## D.1 With the new fuel oil properties defined in the Bases for SR 3.8.3.4 not within the required limits, a period of 30 days is allowed for restoring the stored fuel oil properties. This period provides sufficient time to test the stored fuel oil to determine that the new fuel oil, when mixed with previously stored fuel oil, remains acceptable, or to restore the stored fuel oil properties. This restoration may involve feed and bleed procedures, filtering, or combinations of these procedures. Even if a DG start and load was required during this time interval and the fuel oil properties were outside limits, there is a high likelihood that the DG would still be capable of performing its intended function. # ACTIONS (continued) ## <u>E.1</u> With starting air receiver pressure < [225] psig, sufficient capacity for five successive DG start attempts does not exist. However, as long as the receiver pressure is > [125] psig, there is adequate capacity for at least one start attempt, and the DG can be considered OPERABLE while the air receiver pressure is restored to the required limit. A period of 48 hours is considered sufficient to complete restoration to the required pressure prior to declaring the DG inoperable. This period is acceptable based on the remaining air start capacity, the fact that most DG starts are accomplished on the first attempt, and the low probability of an event during this brief period. ## <u>F.1</u> With a Required Action and associated Completion Time not met, or one or
more DG's fuel oil, lube oil, or starting air subsystem not within limits for reasons other than addressed by Conditions A through D, the associated DG may be incapable of performing its intended function and must be immediately declared inoperable. ## SURVEILLANCE REQUIREMENTS #### SR 3.8.3.1 This SR provides verification that there is an adequate inventory of fuel oil in the storage tanks to support each DG's operation for 7 days at full load. The 7 day period is sufficient time to place the unit in a safe shutdown condition and to bring in replenishment fuel from an offsite location. The 31 day Frequency is adequate to ensure that a sufficient supply of fuel oil is available, since low level alarms are provided and unit operators would be aware of any large uses of fuel oil during this period. #### SR 3.8.3.2 This Surveillance ensures that sufficient lube oil inventory is available to support at least 7 days of full load ## <u>SR 3.8.3.2</u> (continued) operation for each DG. The [500] gal requirement is based on the DG manufacturer consumption values for the run time of the DG. Implicit in this SR is the requirement to verify the capability to transfer the lube oil from its storage location to the DG, when the DG lube oil sump does not hold adequate inventory for 7 days of full load operation without the level reaching the manufacturer recommended minimum level. A 31 day Frequency is adequate to ensure that a sufficient lube oil supply is onsite, since DG starts and run time are closely monitored by the unit staff. #### SR 3.8.3.3 The tests listed below are a means of determining whether new fuel oil is of the appropriate grade and has not been contaminated with substances that would have an immediate, detrimental impact on diesel engine combustion. If results from these tests are within acceptable limits, the fuel oil may be added to the storage tanks without concern for contaminating the entire volume of fuel oil in the storage tanks. These tests are to be conducted prior to adding the new fuel to the storage tank(s), but in no case is the time between receipt of new fuel and conducting the tests to exceed 31 days. The tests, limits, and applicable ASTM Standards are as follows: - a. Sample the new fuel oil in accordance with ASTM D4057-[] (Ref. 6); - b. Verify in accordance with the tests specified in ASTM D975-[] (Ref. 6) that the sample has an absolute specific gravity at $60/60^{\circ}$ F of ≥ 0.83 and ≤ 0.89 or an API gravity at 60° F of $\geq 27^{\circ}$ and $\leq 39^{\circ}$, a kinematic viscosity at 40° C of ≥ 1.9 centistokes and ≤ 4.1 centistokes, and a flash point of $\geq 125^{\circ}$ F; and - c. Verify that the new fuel oil has a clear and bright appearance with proper color when tested in accordance with ASTM D4176-[] (Ref. 6). ## <u>SR 3.8.3.3</u> (continued) Failure to meet any of the above limits is cause for rejecting the new fuel oil, but does not represent a failure to meet the LCO concern since the fuel oil is not added to the storage tanks. Within 31 days following the initial new fuel oil sample, the fuel oil is analyzed to establish that the other properties specified in Table 1 of ASTM D975-[] (Ref. 7) are met for new fuel oil when tested in accordance with ASTM D975-[] (Ref. 6), except that the analysis for sulfur may be performed in accordance with ASTM D1552-[] (Ref. 6) or ASTM D2622-[] (Ref. 6). The 31 day period is acceptable because the fuel oil properties of interest, even if they were not within stated limits, would not have an immediate effect on DG operation. This Surveillance ensures the availability of high quality fuel oil for the DGs. Fuel oil degradation during long term storage shows up as an increase in particulate, due mostly to oxidation. The presence of particulate does not mean the fuel oil will not burn properly in a diesel engine. The particulate can cause fouling of filters and fuel oil injection equipment, however, which can cause engine failure. Particulate concentrations should be determined in accordance with ASTM D2276-[], Method A (Ref. 6). This method involves a gravimetric determination of total particulate concentration in the fuel oil and has a limit of 10 mg/l. It is acceptable to obtain a field sample for subsequent laboratory testing in lieu of field testing. [For those designs in which the total stored fuel oil volume is contained in two or more interconnected tanks, each tank must be considered and tested separately.] The Frequency of this test takes into consideration fuel oil degradation trends that indicate that particulate concentration is unlikely to change significantly between Frequency intervals. ## SURVEILLANCE REQUIREMENTS (continued) #### SR 3.8.3.4 This Surveillance ensures that, without the aid of the refill compressor, sufficient air start capacity for each DG is available. The system design requirements provide for a minimum of [five] engine start cycles without recharging. [A start cycle is defined by the DG vendor, but usually is measured in terms of time (seconds of cranking) or engine cranking speed.] The pressure specified in this SR is intended to reflect the lowest value at which the [five] starts can be accomplished. The 31 day Frequency takes into account the capacity, capability, redundancy, and diversity of the AC sources and other indications available in the control room, including alarms, to alert the operator to below normal air start pressure. #### SR 3.8.3.5 Microbiological fouling is a major cause of fuel oil degradation. There are numerous bacteria that can grow in fuel oil and cause fouling, but all must have a water environment in order to survive. Removal of water from the fuel storage tanks once every [31] days eliminates the necessary environment for bacterial survival. This is the most effective means of controlling microbiological fouling. In addition, it eliminates the potential for water entrainment in the fuel oil during DG operation. Water may come from any of several sources, including condensation, ground water, rain water, and contaminated fuel oil, and from breakdown of the fuel oil by bacteria. Frequent checking for and removal of accumulated water minimizes fouling and provides data regarding the watertight integrity of the fuel oil system. The Surveillance Frequencies are established by Regulatory Guide 1.137 (Ref. 2). This SR is for preventive maintenance. The presence of water does not necessarily represent failure of this SR, provided the accumulated water is removed during performance of the Surveillance. #### BASES ## SURVEILLANCE REQUIREMENTS (continued) ### SR 3.8.3.6 Draining of the fuel oil stored in the supply tanks, removal of accumulated sediment, and tank cleaning are required at 10 year intervals by Regulatory Guide 1.137 (Ref. 2), paragraph 2.f. This SR also requires the performance of the ASME Code, Section XI (Ref. 8), examinations of the tanks. To preclude the introduction of surfactants in the fuel oil system, the cleaning should be accomplished using sodium hypochlorite solutions, or their equivalent, rather than soap or detergents. This SR is for preventive maintenance. The presence of sediment does not necessarily represent a failure of this SR, provided that accumulated sediment is removed during performance of the Surveillance. #### REFERENCES - 1. FSAR, Section [9.5.4.2]. - 2. Regulatory Guide 1.137. - 3. ANSI N195-1976, Appendix B. - 4. FSAR, Chapter [6]. - 5. FSAR, Chapter [15]. - 6. ASTM Standards: D4057-[]; D975-[]; D4176-[]; D1552-[]; D2622-[]; D2276, Method A. - 7. ASTM Standards, D975, Table 1. - 8. ASME, Boiler and Presser Vessel Code, Section XI. ## B 3.8 ELECTRICAL POWER SYSTEMS B 3.8.4 DC Sources—Operating #### **BASES** #### **BACKGROUND** The station DC electrical power system provides the AC emergency power system with control power. It also provides both motive and control power to selected safety related equipment and preferred AC vital bus power (via inverters). As required by 10 CFR 50, Appendix A, GDC 17 (Ref. 1), the DC electrical power system is designed to have sufficient independence, redundancy, and testability to perform its safety functions, assuming a single failure. The DC electrical power system also conforms to the recommendations of Regulatory Guide 1.6 (Ref. 2) and IEEE-308 (Ref. 3). The [125/250] VDC electrical power system consists of two independent and redundant safety related Class 1E DC electrical power subsystems ([Train A and Train B]). Each subsystem consists of [two] 125 VDC batteries [(each battery [50]% capacity)], the associated battery charger(s) for each battery, and all the associated control equipment and interconnecting cabling. The 250 VDC source is obtained by use of the two 125 VDC batteries connected in series. Additionally there is [one] spare battery charger per subsystem, which provides backup service in the event that the preferred battery charger is out of service. If the spare battery charger is substituted for one of the preferred battery chargers, then the requirements of independence and redundancy between subsystems are maintained. During normal operation, the [125/250] VDC load is powered from the battery chargers with the batteries floating on the system. In case of loss of normal power to the battery charger, the DC load is automatically powered from the station batteries. The [Train A and Train B] DC electrical power subsystems provide the control power for its associated Class 1E AC power load group, [4.16] kV switchgear, and [480] V load centers. The DC electrical power subsystems also provide DC electrical power to the inverters, which in turn power the AC vital buses. # BACKGROUND (continued) The DC power distribution system is described in more detail in Bases for LCO 3.8.9, "Distribution System—Operating," and LCO 3.8.10, "Distribution Systems—Shutdown." Each battery has adequate storage capacity to carry the required load continuously for
at least 2 hours and to perform three complete cycles of intermittent loads discussed in the FSAR, Chapter [8] (Ref. 4). Each 125 VDC battery is separately housed in a ventilated room apart from its charger and distribution centers. Each subsystem is located in an area separated physically and electrically from the other subsystem to ensure that a single failure in one subsystem does not cause a failure in a redundant subsystem. There is no sharing between redundant Class 1E subsystems, such as batteries, battery chargers, or distribution panels. The batteries for Train A and Train B DC electrical power subsystems are sized to produce required capacity at 80% of nameplate rating, corresponding to warranted capacity at end of life cycles and the 100% design demand. Battery size is based on 125% of required capacity and, after selection of an available commercial battery, results in a battery capacity in excess of 150% of required capacity. The voltage limit is 2.13 V per cell, which corresponds to a total minimum voltage output of 128 V per battery discussed in the FSAR, Chapter [8] (Ref. 4). The criteria for sizing large lead storage batteries are defined in IEEE-485 (Ref. 5). Each Train A and Train B DC electrical power subsystem has ample power output capacity for the steady state operation of connected loads required during normal operation, while at the same time maintaining its battery bank fully charged. Each battery charger also has sufficient capacity to restore the battery from the design minimum charge to its fully charged state within 24 hours while supplying normal steady state loads discussed in the FSAR, Chapter [8] (Ref. 4). ## APPLICABLE SAFETY ANALYSES The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 6), and in the FSAR, Chapter [15] (Ref. 7), assume that Engineered Safety Feature (ESF) systems are OPERABLE. The DC ## APPLICABLE SAFETY ANALYSES (continued) electrical power system provides normal and emergency DC electrical power for the DGs, emergency auxiliaries, and control and switching during all MODES of operation. The OPERABILITY of the DC sources is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining the DC sources OPERABLE during accident conditions in the event of: - An assumed loss of all offsite AC power or all onsite AC power; and - b. A worst case single failure. The DC sources satisfy Criterion 3 of the NRC Policy Statement. ### LCO The DC electrical power subsystems, each subsystem consisting of [two] batteries, battery charger [for each battery] and the corresponding control equipment and interconnecting cabling supplying power to the associated bus within the train are required to be OPERABLE to ensure the availability of the required power to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA. Loss of any train DC electrical power subsystem does not prevent the minimum safety function from being performed (Ref. 4). An OPERABLE DC electrical power subsystem requires all required batteries and respective chargers to be operating and connected to the associated DC bus(es). #### **APPLICABILITY** The DC electrical power sources are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure safe unit operation and to ensure that: a. Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients; and # APPLICABILITY (continued) b. Adequate core cooling is provided, and containment integrity and other vital functions are maintained in the event of a postulated DBA. The DC electrical power requirements for MODES 5 and 6 are addressed in the Bases for LCO 3.8.5, "DC Sources—Shutdown." #### ACTIONS ### A.1 Condition A represents one train with a loss of ability to completely respond to an event, and a potential loss of ability to remain energized during normal operation. It is, therefore, imperative that the operator's attention focus on stabilizing the unit, minimizing the potential for complete loss of DC power to the affected train. The 2 hour limit is consistent with the allowed time for an inoperable DC distribution system train. If one of the required DC electrical power subsystems is inoperable (e.g., inoperable battery, inoperable battery charger(s), or inoperable battery charger and associated inoperable battery), the remaining DC electrical power subsystem has the capacity to support a safe shutdown and to mitigate an accident condition. Since a subsequent worst case single failure would, however, result in the complete loss of the remaining 125 VDC electrical power subsystems with attendant loss of ESF functions, continued power operation should not exceed 2 hours. The 2 hour Completion Time is based on Regulatory Guide 1.93 (Ref. 8) and reflects a reasonable time to assess unit status as a function of the inoperable DC electrical power subsystem and, if the DC electrical power subsystem is not restored to OPERABLE status, to prepare to effect an orderly and safe unit shutdown. #### B.1 and B.2 If the inoperable DC electrical power subsystem cannot be restored to OPERABLE status within the required Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 5 #### **ACTIONS** ## B.1 and B.2 (continued) within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems. The Completion Time to bring the unit to MODE 5 is consistent with the time required in Regulatory Guide 1.93 (Ref. 8). ## SURVEILLANCE REQUIREMENTS ### SR 3.8.4.1 Verifying battery terminal voltage while on float charge for the batteries helps to ensure the effectiveness of the charging system and the ability of the batteries to perform their intended function. Float charge is the condition in which the charger is supplying the continuous charge required to overcome the internal losses of a battery (or battery cell) and maintain the battery (or a battery cell) in a fully charged state. The voltage requirements are based on the nominal design voltage of the battery and are consistent with the initial voltages assumed in the battery sizing calculations. The 7 day Frequency is consistent with manufacturer recommendations and IEEE-450 (Ref. 9). ## SR 3.8.4.2 Visual inspection to detect corrosion of the battery cells and connections, or measurement of the resistance of each intercell, interrack, intertier, and terminal connection, provides an indication of physical damage or abnormal deterioration that could potentially degrade battery performance. The limits established for this SR must be no more than 20% above the resistance as measured during installation or not above the ceiling value established by the manufacturer. The Surveillance Frequency for these inspections, which can detect conditions that can cause power losses due to resistance heating, is 92 days. This Frequency is considered acceptable based on operating experience related to detecting corrosion trends. ## SURVEILLANCE REQUIREMENTS (continued) #### SR 3.8.4.3 Visual inspection of the battery cells, cell plates, and battery racks provides an indication of physical damage or abnormal deterioration that could potentially degrade battery performance. The 12 month Frequency for this SR is consistent with IEEE-450 (Ref. 9), which recommends detailed visual inspection of cell condition and rack integrity on a yearly basis. #### SR 3.8.4.4 and SR 3.8.4.5 Visual inspection and resistance measurements of intercell, interrack, intertier, and terminal connections provide an indication of physical damage or abnormal deterioration that could indicate degraded battery condition. The anticorrosion material is used to help ensure good electrical connections and to reduce terminal deterioration. The visual inspection for corrosion is not intended to require removal of and inspection under each terminal connection. The removal of visible corrosion is a preventive maintenance SR. The presence of visible corrosion does not necessarily represent a failure of this SR provided visible corrosion is removed during performance of SR 3.8.4.4. Reviewer's Note: The requirement to verify that terminal connections are clean and tight applies only to nickel cadmium batteries as per IEEE Standard P1106, "IEEE Recommended Practice for Installation, Maintenance, Testing and Replacement of Vented Nickel - Cadmium Batteries for Stationary Applications." This requirement may be removed for lead acid batteries. The connection resistance limits for SR 3.8.4.5 shall be no more than 20% above the resistance as measured during installation, or not above the ceiling value established by the manufacturer. The Surveillance Frequencies of 12 months is consistent with IEEE-450 (Ref. 9), which recommends cell to cell and terminal connection resistance measurement on a yearly basis. ## SURVEILLANCE REQUIREMENTS (continued) #### SR 3.8.4.6 This SR requires that each battery charger be capable of supplying [400] amps and [125] V for ≥ [8] hours. These requirements are based on the design capacity of the chargers (Ref. 4). According to Regulatory Guide 1.32 (Ref. 10), the battery charger supply is required to be based on the largest combined demands of the various steady state loads and the charging capacity to restore the battery from the design minimum charge state to the fully charged state, irrespective of the status of the unit during these demand occurrences. The minimum required amperes and duration ensures that these requirements can be satisfied. The Surveillance Frequency is acceptable, given the unit conditions required to
perform the test and the other administrative controls existing to ensure adequate charger performance during these [18 month] intervals. In addition, this Frequency is intended to be consistent with expected fuel cycle lengths. This Surveillance is required to be performed during MODES 5 and 6 since it would require the DC electrical power subsystem to be inoperable during performance of the test. This SR is modified by a Note. The reason for the Note is that performing the Surveillance would perturb the electrical distribution system and challenge safety systems. Credit may be taken for unplanned events that satisfy this SR. #### SR 3.8.4.7 A battery service test is a special test of battery capability, as found, to satisfy the design requirements (battery duty cycle) of the DC electrical power system. The discharge rate and test length should correspond to the design duty cycle requirements as specified in Reference 4. The Surveillance Frequency of [18 months] is consistent with the recommendations of Regulatory Guide 1.32 (Ref. 10) and Regulatory Guide 1.129 (Ref. 11), which state that the battery service test should be performed during refueling operations or at some other outage, with intervals between tests, not to exceed [18 months]. ## SR 3.8.4.7 (continued) This SR is modified by two Notes. Note 1 allows the performance of a modified performance discharge test in lieu of a service test once per 60 months. The modified performance discharge test is a simulated duty cycle consisting of just two rates; the one minute rate published for the battery or the largest current load of the duty cycle, followed by the test rate employed for the performance test, both of which envelope the duty cycle of the service test. Since the ampere-hours removed by a rated one minute discharge represents a very small portion of the battery capacity, the test rate can be changed to that for the performance test without compromising the results of the performance discharge test. The battery terminal voltage for the modified performance discharge test should remain above the minimum battery terminal voltage specified in the battery service test for the duration of time equal to that of the service test. A modified discharge test is a test of the battery capacity and its ability to provide a high rate, short duration load (usually the highest rate of the duty cycle). This will often confirm the battery's ability to meet the critical period of the load duty cycle, in addition to determining its percentage of rated capacity. Initial conditions for the modified performance discharge test should be identical to those specified for a service test. The reason for Note 2 is that performing the Surveillance would perturb the electrical distribution system and challenge safety systems. Credit may be taken for unplanned events that satisfy this SR. #### SR 3.8.4.8 A battery performance discharge test is a test of constant current capacity of a battery, normally done in the as found condition, after having been in service, to detect any change in the capacity determined by the acceptance test. The test is intended to determine overall battery degradation due to age and usage. ## **SR** 3.8.4.8 (continued) A battery modified performance discharge test is described in the Bases for SR 3.8.4.7. Either the battery performance discharge test or the modified performance discharge test is acceptable for satisfying SR 3.8.4.8; however, only the modified performance discharge test may be used to satisfy SR 3.8.4.8 while satisfying the requirements of SR 3.8.4.7 at the same time. The acceptance criteria for this Surveillance are consistent with IEEE-450 (Ref. 9) and IEEE-485 (Ref. 5). These references recommend that the battery be replaced if its capacity is below 80% of the manufacturer's rating. A capacity of 80% shows that the battery rate of deterioration is increasing, even if there is ample capacity to meet the load requirements. The Surveillance Frequency for this test is normally 60 months. If the battery shows degradation, or if the battery has reached 85% of its expected life and capacity is < 100% of the manufacturer's rating, the Surveillance Frequency is reduced to 12 months. However, if the battery shows no degradation but has reached 85% of its expected life, the Surveillance Frequency is only reduced to 24 months for batteries that retain capacity \geq 100% of the manufacturer's rating. Degradation is indicated, according to IEEE-450 (Ref. 9), when the battery capacity drops by more than 10% relative to its capacity on the previous performance test or when it is \geq [10%] below the manufacturer's rating. These Frequencies are consistent with the recommendations in IEEE-450 (Ref. 9). This SR is modified by a Note. The reason for the Note is that performing the Surveillance would perturb the electrical distribution system and challenge safety systems. Credit may be taken for unplanned events that satisfy this SR. #### REFERENCES - 1. 10 CFR 50, Appendix A, GDC 17. - 2. Regulatory Guide 1.6, March 10, 1971. - 3. IEEE-308-[1978]. ### BASES # REFERENCES (continued) - 4. FSAR, Chapter [8]. - 5. IEEE-485-[1983], June 1983. - 6. FSAR, Chapter [6]. - 7. FSAR, Chapter [15]. - 8. Regulatory Guide 1.93, December 1974. - 9. IEEE-450-[1987]. - 10. Regulatory Guide 1.32, February 1977. - 11. Regulatory Guide 1.129, December 1974. #### B 3.8 ELECTRICAL POWER SYSTEMS #### B 3.8.5 DC Sources—Shutdown #### **BASES** #### BACKGROUND A description of the DC sources is provided in the Bases for LCO 3.8.4, "DC Sources—Operating." ## APPLICABLE SAFETY ANALYSES The initial conditions of Design Basis Accident and transient analyses in the FSAR, Chapter [6] (Ref. 1) and Chapter [15] (Ref. 2), assume that Engineered Safety Feature systems are OPERABLE. The DC electrical power system provides normal and emergency DC electrical power for the diesel generators, emergency auxiliaries, and control and switching during all MODES of operation. The OPERABILITY of the DC subsystems is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY. The OPERABILITY of the minimum DC electrical power sources during MODES 5 and 6 and during movement of irradiated fuel assemblies ensures that: - a. The unit can be maintained in the shutdown or refueling condition for extended periods; - Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status; and - c. Adequate DC electrical power is provided to mitigate events postulated during shutdown, such as a fuel handling accident. The DC sources satisfy Criterion 3 of the NRC Policy Statement. LCO The DC electrical power subsystems, each subsystem consisting of two batteries, one battery charger per battery, and the corresponding control equipment and # LCO (continued) interconnecting cabling within the train, are required to be OPERABLE to support required trains of the distribution systems required OPERABLE by LCO 3.8.10, "Distribution Systems—Shutdown." This ensures the availability of sufficient DC electrical power sources to operate the unit in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents). ### APPLICABILITY The DC electrical power sources required to be OPERABLE in MODES 5 and 6, and during movement of irradiated fuel assemblies, provide assurance that: - a. Required features to provide adequate coolant inventory makeup are available for the irradiated fuel assemblies in the core: - Required features needed to mitigate a fuel handling accident are available; - c. Required features necessary to mitigate the effects of events that can lead to core damage during shutdown are available; and - d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition. The DC electrical power requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.4. #### **ACTIONS** ### A.1, A.2.1, A.2.2, A.2.3, and A.2.4 If two trains are required by LCO 3.8.10, the remaining train with DC power available may be capable of supporting sufficient systems to allow continuation of CORE ALTERATIONS and fuel movement. By allowing the option to declare required features inoperable with the associated DC power source(s) inoperable, appropriate restrictions will be implemented in accordance with the affected required features LCO ACTIONS. In many instances, this option may involve undesired administrative efforts. Therefore, the #### **ACTIONS** ## A.1, A.2.1, A.2.2, A.2.3, and A.2.4 (continued) allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS, movement of irradiated fuel assemblies, and operations involving positive reactivity additions). The Required Action to suspend positive reactivity additions does not preclude actions to maintain or increase reactor vessel inventory, provided the required SDM is maintained. Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required DC electrical power subsystems and to continue this action until restoration is accomplished in order to provide the necessary DC electrical power to the unit safety systems. The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required DC electrical power subsystems should be completed as quickly as possible in order to minimize the time during which the unit safety systems may be without sufficient power. # SURVEILLANCE REQUIREMENTS ## SR 3.8.5.1 SR 3.8.5.1 requires performance of all Surveillances required by SR 3.8.4.1 through SR 3.8.4.8. Therefore, see the corresponding Bases for LCO 3.8.4
for a discussion of each SR. This SR is modified by a Note. The reason for the Note is to preclude requiring the OPERABLE DC sources from being discharged below their capability to provide the required power supply or otherwise rendered inoperable during the performance of SRs. It is the intent that these SRs must still be capable of being met, but actual performance is not required. ## BASES (continued) REFERENCES - 1. FSAR, Chapter [6]. - 2. FSAR, Chapter [15]. #### B 3.8 ELECTRICAL POWER SYSTEMS ## B 3.8.6 Battery Cell Parameters #### BASES #### BACKGROUND This LCO delineates the limits on electrolyte temperature, level, float voltage, and specific gravity for the DC power source batteries. A discussion of these batteries and their OPERABILITY requirements is provided in the Bases for LCO 3.8.4, "DC Sources—Operating," and LCO 3.8.5, "DC Sources—Shutdown." #### APPLICABLE SAFETY ANALYSES The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 1) and Chapter [15] (Ref. 2), assume Engineered Safety Feature systems are OPERABLE. The DC electrical power system provides normal and emergency DC electrical power for the diesel generators, emergency auxiliaries, and control and switching during all MODES of operation. The OPERABILITY of the DC subsystems is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining at least one train of DC sources OPERABLE during accident conditions, in the event of: - An assumed loss of all offsite AC power or all onsite AC power; and - b. A worst case single failure. Battery cell parameters satisfy the Criterion 3 of the NRC Policy Statement. #### LCO Battery cell parameters must remain within acceptable limits to ensure availability of the required DC power to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence or a postulated DBA. Electrolyte limits are conservatively established, allowing continued DC electrical system function even with Category A and B limits not met. ## BASES (continued) #### **APPLICABILITY** The battery cell parameters are required solely for the support of the associated DC electrical power subsystems. Therefore, battery electrolyte is only required when the DC power source is required to be OPERABLE. Refer to the Applicability discussion in Bases for LCO 3.8.4 and LCO 3.8.5. #### ACTIONS ## A.1, A.2, and A.3 With one or more cells in one or more batteries not within limits (i.e., Category A limits not met, Category B limits not met, or Category A and B limits not met) but within the Category C limits specified in Table 3.8.6-1 in the accompanying LCO, the battery is degraded but there is still sufficient capacity to perform the intended function. Therefore, the affected battery is not required to be considered inoperable solely as a result of Category A or B limits not met and operation is permitted for a limited period. The pilot cell electrolyte level and float voltage are required to be verified to meet the Category C limits within 1 hour (Required Action A.1). This check will provide a quick indication of the status of the remainder of the battery cells. One hour provides time to inspect the electrolyte level and to confirm the float voltage of the pilot cells. One hour is considered a reasonable amount of time to perform the required verification. Verification that the Category C limits are met (Required Action A.2) provides assurance that during the time needed to restore the parameters to the Category A and B limits, the battery is still capable of performing its intended function. A period of 24 hours is allowed to complete the initial verification because specific gravity measurements must be obtained for each connected cell. Taking into consideration both the time required to perform the required verification and the assurance that the battery cell parameters are not severely degraded, this time is considered reasonable. The verification is repeated at 7 day intervals until the parameters are restored to Category A or B limits. This periodic verification is consistent with the normal Frequency of pilot cell Surveillances. #### **ACTIONS** ## A.1, A.2, and A.3 (continued) Continued operation is only permitted for 31 days before battery cell parameters must be restored to within Category A and B limits. With the consideration that, while battery capacity is degraded, sufficient capacity exists to perform the intended function and to allow time to fully restore the battery cell parameters to normal limits, this time is acceptable prior to declaring the battery inoperable. #### <u>B.1</u> With one or more batteries with one or more battery cell parameters outside the Category C limit for any connected cell, sufficient capacity to supply the maximum expected load requirement is not assured and the corresponding DC electrical power subsystem must be declared inoperable. Additionally, other potentially extreme conditions, such as not completing the Required Actions of Condition A within the required Completion Time or average electrolyte temperature of representative cells falling below 60°F, are also cause for immediately declaring the associated DC electrical power subsystem inoperable. # SURVEILLANCE REQUIREMENTS ### SR 3.8.6.1 This SR verifies that Category A battery cell parameters are consistent with IEEE-450 (Ref. 3), which recommends regular battery inspections (at least one per month) including voltage, specific gravity, and electrolyte temperature of pilot cells. #### SR 3.8.6.2 The quarterly inspection of specific gravity and voltage is consistent with IEEE-450 (Ref. 3). In addition, within 24 hours of a battery discharge < [110] V or a battery overcharge > [150] V, the battery must be demonstrated to meet Category B limits. Transients, such as motor starting transients, which may momentarily cause battery voltage to drop to \le [110] V, do not constitute a battery discharge ## SR 3.8.6.2 (continued) provided the battery terminal voltage and float current return to pre-transient values. This inspection is also consistent with IEEE-450 (Ref. 3), which recommends special inspections following a severe discharge or overcharge, to ensure that no significant degradation of the battery occurs as a consequence of such discharge or overcharge. ## SR 3.8.6.3 This Surveillance verification that the average temperature of representative cells is > 60°F, is consistent with a recommendation of IEEE-450 (Ref. 3), that states that the temperature of electrolytes in representative cells should be determined on a quarterly basis. Lower than normal temperatures act to inhibit or reduce battery capacity. This SR ensures that the operating temperatures remain within an acceptable operating range. This limit is based on manufacturer recommendations. ## Table 3.8.6-1 This table delineates the limits on electrolyte level, float voltage, and specific gravity for three different categories. The meaning of each category is discussed below. Category A defines the normal parameter limit for each designated pilot cell in each battery. The cells selected as pilot cells are those whose temperature, voltage, and electrolyte specific gravity approximate the state of charge of the entire battery. The Category A limits specified for electrolyte level are based on manufacturer recommendations and are consistent with the guidance in IEEE-450 (Ref. 3), with the extra ½ inch allowance above the high water level indication for operating margin to account for temperatures and charge effects. In addition to this allowance, footnote a to Table 3.8.6-1 permits the electrolyte level to be above the specified maximum level during equalizing charge, provided it is not overflowing. These limits ensure that the plates ## <u>Table 3.8.6-1</u> (continued) suffer no physical damage, and that adequate electron transfer capability is maintained in the event of transient conditions. IEEE-450 (Ref. 3) recommends that electrolyte level readings should be made only after the battery has been at float charge for at least 72 hours. The Category A limit specified for float voltage is ≥ 2.13 V per cell. This value is based on the recommendations of IEEE-450 (Ref. 3), which states that prolonged operation of cells < 2.13 V can reduce the life expectancy of cells. The Category A limit specified for specific gravity for each pilot cell is ≥ [1.200] (0.015 below the manufacturer fully charged nominal specific gravity or a battery charging current that had stabilized at a low value). This value is characteristic of a charged cell with adequate capacity. According to IEEE-450 (Ref. 3), the specific gravity readings are based on a temperature of 77°F (25°C). The specific gravity readings are corrected for actual electrolyte temperature and level. For each 3°F (1.67°C) above 77°F (25°C), 1 point (0.001) is added to the reading; 1 point is subtracted for each 3°F below 77°F. The specific gravity of the electrolyte in a cell increases with a loss of water due to electrolysis or evaporation. Category B defines the normal parameter limits for each connected cell. The term "connected cell" excludes any battery cell that may be jumpered out. The Category B limits specified for electrolyte level and float voltage are the same as those specified for Category A and have been discussed above. The Category B limit specified for specific gravity for each connected cell is ≥ [1.195] (0.020 below the manufacturer fully charged, nominal specific gravity) with the average of all connected cells > [1.205] (0.010 below the manufacturer fully charged, nominal specific gravity). These values are based on manufacturer's recommendations. The minimum specific gravity value required for each cell ensures that the effects of a highly charged or newly installed cell will not mask overall degradation of the battery. ## Table 3.8.6-1
(continued) Category C defines the limits for each connected cell. These values, although reduced, provide assurance that sufficient capacity exists to perform the intended function and maintain a margin of safety. When any battery parameter is outside the Category C limits, the assurance of sufficient capacity described above no longer exists, and the battery must be declared inoperable. The Category C limits specified for electrolyte level (above the top of the plates and not overflowing) ensure that the plates suffer no physical damage and maintain adequate electron transfer capability. The Category C limits for float voltage is based on IEEE-450 (Ref. 3), which states that a cell voltage of 2.07 V or below, under float conditions and not caused by elevated temperature of the cell, indicates internal cell problems and may require cell replacement. The Category C limit of average specific gravity ≥ 1.195 is based on manufacturer recommendations (0.020 below the manufacturer recommended fully charged, nominal specific gravity). In addition to that limit, it is required that the specific gravity for each connected cell must be no less than 0.020 below the average of all connected cells. This limit ensures that the effect of a highly charged or new cell does not mask overall degradation of the battery. The footnotes to Table 3.8.6-1 are applicable to Category A, B, and C specific gravity. Footnote (b) to Table 3.8.6-1 requires the above mentioned correction for electrolyte level and temperature, with the exception that level correction is not required when battery charging current is < [2] amps on float charge. This current provides, in general, an indication of overall battery condition. Because of specific gravity gradients that are produced during the recharging process, delays of several days may occur while waiting for the specific gravity to stabilize. A stabilized charger current is an acceptable alternative to specific gravity measurement for determining the state of charge. This phenomenon is discussed in IEEE-450 (Ref. 3). Footnote (c) to Table 3.8.6-1 allows the float charge current to be used as an alternate to specific gravity for ## <u>Table 3.8.6-1</u> (continued) up to [7] days following a battery recharge. Within [7] days, each connected cell's specific gravity must be measured to confirm the state of charge. Following a minor battery recharge (such as equalizing charge that does not follow a deep discharge) specific gravity gradients are not significant, and confirming measurements may be made in less than [7] days. Reviewer's Note: The value of [2] amps used in footnote (b) and (c) is the nominal value for float current established by the battery vendor as representing a fully charged battery with an allowance for overall battery condition. #### REFERENCES - 1. FSAR, Chapter [6]. - 2. FSAR, Chapter [15]. - 3. IEEE-450-[1980]. #### B 3.8 ELECTRICAL POWER SYSTEMS ## B 3.8.7 Inverters—Operating #### **BASES** #### **BACKGROUND** The inverters are the preferred source of power for the AC vital buses because of the stability and reliability they achieve. The function of the inverter is to provide AC electrical power to the vital buses. The inverters can be powered from an internal AC source/rectifier or from the station battery. The station battery provides an uninterruptible power source for the instrumentation and controls for the Reactor Protective System (RPS) and the Engineered Safety Feature Actuation System (ESFAS). Specific details on inverters and their operating characteristics are found in the FSAR, Chapter [8] (Ref. 1). ### APPLICABLE SAFETY ANALYSES The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 2) and Chapter [15] (Ref. 3), assume Engineered Safety Feature systems are OPERABLE. The inverters are designed to provide the required capacity, capability, redundancy, and reliability to ensure the availability of necessary power to the RPS and ESFAS instrumentation and controls so that the fuel, Reactor Coolant System, and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems. The OPERABILITY of the inverters is consistent with the initial assumptions of the accident analyses and is based on meeting the design basis of the unit. This includes maintaining required AC vital buses OPERABLE during accident conditions in the event of: - a. An assumed loss of all offsite AC electrical power or all onsite AC electrical power; and - b. A worst case single failure. Inverters are a part of the distribution system and, as such, satisfy Criterion 3 of the NRC Policy Statement. LC₀ The inverters ensure the availability of AC electrical power for the systems instrumentation required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA. Maintaining the required inverters OPERABLE ensures that the redundancy incorporated into the design of the RPS and ESFAS instrumentation and controls is maintained. The four inverters [(two per train)] ensure an uninterruptible supply of AC electrical power to the AC vital buses even if the 4.16 kV safety buses are de-energized. Operable inverters require the associated vital bus to be powered by the inverter with output voltage and frequency within tolerances, and power input to the inverter from a [125 VDC] station battery. Alternatively, power supply may be from an internal AC source via rectifier as long as the station battery is available as the uninterruptible power supply. This LCO is modified by a Note that allows [one/two] inverters to be disconnected from a [common] battery for ≤ 24 hours, if the vital bus(es) is powered from a [Class 1E constant voltage transformer or inverter using internal AC source] during the period and all other inverters are operable. This allows an equalizing charge to be placed on one battery. If the inverters were not disconnected, the resulting voltage condition might damage the inverter[s]. These provisions minimize the loss of equipment that would occur in the event of a loss of offsite power. The 24 hour time period for the allowance minimizes the time during which a loss of offsite power could result in the loss of equipment energized from the affected AC vital bus while taking into consideration the time required to perform an equalizing charge on the battery bank. The intent of this Note is to limit the number of inverters that may be disconnected. Only those inverters associated with the single battery undergoing an equalizing charge may be disconnected. All other inverters must be aligned to their associated batteries, regardless of the number of inverters or unit design. #### **APPLICABILITY** The inverters are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure that: - a. Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients; and - b. Adequate core cooling is provided, and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA. Inverter requirements for MODES 5 and 6 are covered in the Bases for LCO 3.8.8, "Inverters—Shutdown." #### ACTIONS ### <u>A.1</u> With a required inverter inoperable, its associated AC vital bus becomes inoperable until it is [manually] re-energized from its [Class 1E constant voltage source transformer or inverter using internal AC source]. For this reason a Note has been included in Condition A requiring the entry into the Conditions and Required Actions of LCO 3.8.9, "Distribution Systems—Operating." This ensures that the vital bus is re-energized within 2 hours. Required Action A.1 allows 24 hours to fix the inoperable inverter and return it to service. The 24 hour limit is based upon engineering judgment, taking into consideration the time required to repair an inverter and the additional risk to which the unit is exposed because of the inverter inoperability. This has to be balanced against the risk of an immediate shutdown, along with the potential challenges to safety systems such a shutdown might entail. When the AC vital bus is powered from its constant voltage source, it is relying upon interruptible AC electrical power sources (offsite and onsite). The uninterruptible inverter source to the AC vital buses is the preferred source for powering instrumentation trip setpoint devices. # ACTIONS (continued) # **B.1** and **B.2** If the inoperable devices or components cannot be restored to OPERABLE status within the required Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS # SR 3.8.7.1 This Surveillance verifies that the inverters are functioning properly with all required circuit breakers closed and AC vital buses energized from the inverter. The verification of proper voltage and frequency output ensures that the required power is readily available for the instrumentation of the RPS and ESFAS connected to the AC vital buses. The 7 day Frequency takes into account the redundant capability of the inverters and other indications available in the control room that alert the operator to inverter malfunctions. - 1. FSAR, Chapter [8]. - 2. FSAR, Chapter [6]. - 3. FSAR, Chapter [15]. #### B 3.8 ELECTRICAL POWER SYSTEMS #### B 3.8.8 Inverters—Shutdown #### BASES #### **BACKGROUND** A description of the inverters is provided in the Bases for LCO 3.8.7, "Inverters—Operating." ### APPLICABLE
SAFETY ANALYSES The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 1) and Chapter [15] (Ref. 2), assume Engineered Safety Feature systems are OPERABLE. The DC to AC inverters are designed to provide the required capacity, capability, redundancy, and reliability to ensure the availability of necessary power to the Reactor Protective System and Engineered Safety Features Actuation System instrumentation and controls so that the fuel, Reactor Coolant System, and containment design limits are not exceeded. The OPERABILITY of the inverters is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY. The OPERABILITY of the minimum inverters to each AC vital bus during MODES 5 and 6 ensures that: - a. The unit can be maintained in the shutdown or refueling condition for extended periods; - Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status; and - c. Adequate power is available to mitigate events postulated during shutdown, such as a fuel handling accident. The inverters were previously identified as part of the distribution system and, as such, satisfy Criterion 3 of the NRC Policy Statement. LCO The inverters ensure the availability of electrical power for the instrumentation for systems required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence or a postulated DBA. The battery powered inverters provide uninterruptible supply of AC electrical power to the AC vital buses even if the 4.16 kV safety buses are de-energized. OPERABILITY of the inverters requires that the AC vital bus be powered by the inverter. This ensures the availability of sufficient inverter power sources to operate the unit in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents). #### APPLICABILITY The inverters required to be OPERABLE in MODES 5 and 6 and during movement of irradiated fuel assemblies provide assurance that: - a. Systems to provide adequate coolant inventory makeup are available for the irradiated fuel in the core: - b. Systems needed to mitigate a fuel handling accident are available; - c. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available; and - d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition. Inverter requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.7. #### ACTIONS #### A.1, A.2.1, A.2.2, A.2.3, and A.2.4 If two trains are required by LCO 3.8.10, "Distribution Systems—Shutdown," the remaining OPERABLE Inverters may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS, fuel movement, and operations with a potential for positive reactivity additions. By the allowance of the option to declare # A.1, A.2.1, A.2.2, A.2.3, and A.2.4 (continued) required features inoperable with the associated inverter(s) inoperable, appropriate restrictions will be implemented in accordance with the affected required features LCOs' Required Actions. In many instances, this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS, movement of irradiated fuel assemblies, and operations involving positive reactivity additions). The Required Action to suspend positive reactivity additions does not preclude actions to maintain or increase reactor vessel inventory, provided the required SDM is maintained. Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required inverters and to continue this action until restoration is accomplished in order to provide the necessary inverter power to the unit safety systems. The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required inverters should be completed as quickly as possible in order to minimize the time the unit safety systems may be without power or powered from a constant voltage source transformer. # SURVEILLANCE REQUIREMENTS #### SR 3.8.8.1 This Surveillance verifies that the inverters are functioning properly with all required circuit breakers closed and AC vital buses energized from the inverter. The verification of proper voltage and frequency output ensures that the required power is readily available for the instrumentation connected to the AC vital buses. The 7 day Frequency takes into account the redundant capability of the inverters and other indications available in the control room that alert the operator to inverter malfunctions. - 1. FSAR, Chapter [6]. - 2. FSAR, Chapter [15]. #### B 3.8 ELECTRICAL POWER SYSTEMS # B 3.8.9 Distribution Systems—Operating #### BASES #### **BACKGROUND** The onsite Class 1E AC, DC, and AC vital bus electrical power distribution systems are divided by train into [two] redundant and independent AC, DC, and AC vital bus electrical power distribution subsystems. The AC electrical power subsystem for each train consists of a primary Engineered Safety Feature (ESF) 4.16 kV bus and secondary [480 and 120] V buses, distribution panels, motor control centers and load centers. Each [4.16 kV ESF bus] has at least [one separate and independent offsite source of power] as well as a dedicated onsite diesel generator (DG) source. Each [4.16 kV ESF bus] is normally connected to a preferred offsite source. After a loss of the preferred offsite power source to a 4.16 kV ESF bus, a transfer to the alternate offsite source is accomplished by utilizing a time delayed bus undervoltage relay. If all offsite sources are unavailable, the onsite emergency DG supplies power to the 4.16 kV ESF bus. Control power for the 4.16 kV breakers is supplied from the Class 1E batteries. Additional description of this system may be found in the Bases for LCO 3.8.1, "AC Sources—Operating," and the Bases for LCO 3.8.4, "DC Sources—Operating." The secondary AC electrical power distribution system for each train includes the safety related load centers, motor control centers, and distribution panels shown in Table B 3.8.9-1. The 120 VAC vital buses are arranged in two load groups per train and are normally powered from the inverters. The alternate power supply for the vital buses are Class 1E constant voltage source transformers powered from the same train as the associated inverter, and its use is governed by LCO 3.8.7, "Inverters—Operating." Each constant voltage source transformer is powered from a Class 1E AC bus. There are two independent 125/250 VDC electrical power distribution subsystems (one for each train). The list of all required distribution buses is presented in Table B 3.8.9-1. ## APPLICABLE SAFETY ANALYSES The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter [6] (Ref. 1), and in the FSAR, Chapter [15] (Ref. 2), assume ESF systems are OPERABLE. The AC, DC, and AC vital bus electrical power distribution systems are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System, and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems. The OPERABILITY of the AC, DC, and AC vital bus electrical power distribution systems is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining power distribution systems OPERABLE during accident conditions in the event of: - a. An assumed loss of all offsite power or all onsite AC electrical power; and - b. A worst case single failure. The distribution systems satisfy Criterion 3 of the NRC Policy Statement. LC0 The required power distribution subsystems listed in Table B 3.8.9-1 ensure the availability of AC, DC, and AC vital bus electrical power for the systems required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA. The AC, DC, and AC vital bus electrical power distribution subsystems are required to be OPERABLE. Maintaining the Train A and Train B AC, DC, and AC vital bus electrical power distribution subsystems OPERABLE ensures that the redundancy incorporated into the design of ESF is not defeated. Therefore, a single failure within any system or within the electrical power distribution subsystems will not prevent safe shutdown of the reactor. # LCO (continued) OPERABLE AC electrical power distribution subsystems require the associated buses, load centers, motor control centers, and distribution panels to be energized to their proper voltages. OPERABLE DC electrical power distribution subsystems require the associated buses to be energized to their proper voltage from either the associated battery or charger. OPERABLE vital bus electrical power distribution subsystems require the associated buses to be energized to their proper voltage from the associated [inverter via inverted DC voltage, inverter using internal AC source, or Class 1E constant voltage transformer]. In addition, tie breakers between redundant safety related AC, DC, and AC vital bus power distribution subsystems, if they exist, must be open. This prevents any electrical malfunction in any power distribution subsystem from propagating to the redundant subsystem, that could cause the failure
of a redundant subsystem and a loss of essential safety function(s). If any tie breakers are closed, the affected redundant electrical power distribution subsystems are considered inoperable. This applies to the onsite, safety related redundant electrical power distribution subsystems. It does not, however, preclude redundant Class 1E 4.16 kV buses from being powered from the same offsite circuit. #### APPLICABILITY The electrical power distribution subsystems are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure that: - a. Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients; and - b. Adequate core cooling is provided, and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA. Electrical power distribution subsystem requirements for MODES 5 and 6 are covered in the Bases for LCO 3.8.10, "Distribution Systems—Shutdown." #### A.1 With one or more required AC buses, load centers, motor control centers, or distribution panels, except AC vital buses, in one train inoperable, the remaining AC electrical power distribution subsystem in the other train is capable of supporting the minimum safety functions necessary to shut down the reactor and maintain it in a safe shutdown condition, assuming no single failure. The overall reliability is reduced, however, because a single failure in the remaining power distribution subsystems could result in the minimum required ESF functions not being supported. Therefore, the required AC buses, load centers, motor control centers, and distribution panels must be restored to OPERABLE status within 8 hours. Condition A worst scenario is one train without AC power (i.e., no offsite power to the train and the associated DG inoperable). In this Condition, the unit is more vulnerable to a complete loss of AC power. It is, therefore, imperative that the unit operator's attention be focused on minimizing the potential for loss of power to the remaining train by stabilizing the unit, and on restoring power to the affected train. The 8 hour time limit before requiring a unit shutdown in this Condition is acceptable because of: - a. The potential for decreased safety if the unit operator's attention is diverted from the evaluations and actions necessary to restore power to the affected train, to the actions associated with taking the unit to shutdown within this time limit; and - b. The potential for an event in conjunction with a single failure of a redundant component in the train with AC power. The second Completion Time for Required Action A.1 establishes a limit on the maximum time allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition A is entered while, for instance, a DC bus is inoperable and subsequently restored OPERABLE, the LCO may already have been not met for up to 2 hours. This could lead to a total of 10 hours, since initial failure of the LCO, to restore the AC distribution system. At this time, a DC circuit could again WOG STS # A.1 (continued) become inoperable, and AC distribution restored OPERABLE. This could continue indefinitely. The Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time the LCO was initially not met, instead of the time Condition A was entered. The 16 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely. ### B.1 With one AC vital bus inoperable, the remaining OPERABLE AC vital buses are capable of supporting the minimum safety functions necessary to shut down the unit and maintain it in the safe shutdown condition. Overall reliability is reduced, however, since an additional single failure could result in the minimum [required] ESF functions not being supported. Therefore, the required AC vital bus must be restored to OPERABLE status within 2 hours by powering the bus from the associated [inverter via inverted DC, inverter using internal AC source, or Class 1E constant voltage transformer]. Condition B represents one AC vital bus without power; potentially both the DC source and the associated AC source are nonfunctioning. In this situation, the unit is significantly more vulnerable to a complete loss of all noninterruptible power. It is, therefore, imperative that the operator's attention focus on stabilizing the unit, minimizing the potential for loss of power to the remaining vital buses and restoring power to the affected vital bus. This 2 hour limit is more conservative than Completion Times allowed for the vast majority of components that are without adequate vital AC power. Taking exception to LCO 3.0.2 for components without adequate vital AC power, that would have the Required Action Completion Times shorter than 2 hours if declared inoperable, is acceptable because of: # <u>B.1</u> (continued) - a. The potential for decreased safety by requiring a change in unit conditions (i.e., requiring a shutdown) and not allowing stable operations to continue: - b. The potential for decreased safety by requiring entry into numerous Applicable Conditions and Required Actions for components without adequate vital AC power and not providing sufficient time for the operators to perform the necessary evaluations and actions for restoring power to the affected train; and - c. The potential for an event in conjunction with a single failure of a redundant component. The 2 hour Completion Time takes into account the importance to safety of restoring the AC vital bus to OPERABLE status, the redundant capability afforded by the other OPERABLE vital buses, and the low probability of a DBA occurring during this period. The second Completion Time for Required Action B.1 establishes a limit on the maximum allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition B is entered while, for instance, an AC bus is inoperable and subsequently returned OPERABLE, the LCO may already have been not met for up to 8 hours. This could lead to a total of 10 hours, since initial failure of the LCO, to restore the vital bus distribution system. At this time, an AC train could again become inoperable, and vital bus distribution restored OPERABLE. This could continue indefinitely. This Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time the LCO was initially not met, instead of the time Condition B was entered. The 16 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely. # ACTIONS (continued) # <u>C.1</u> With DC bus(es) in one train inoperable, the remaining DC electrical power distribution subsystems are capable of supporting the minimum safety functions necessary to shut down the reactor and maintain it in a safe shutdown condition, assuming no single failure. The overall reliability is reduced, however, because a single failure in the remaining DC electrical power distribution subsystem could result in the minimum required ESF functions not being supported. Therefore, the [required] DC buses must be restored to OPERABLE status within 2 hours by powering the bus from the associated battery or charger. Condition C represents one train without adequate DC power; potentially both with the battery significantly degraded and the associated charger nonfunctioning. In this situation, the unit is significantly more vulnerable to a complete loss of all DC power. It is, therefore, imperative that the operator's attention focus on stabilizing the unit, minimizing the potential for loss of power to the remaining trains and restoring power to the affected train. This 2 hour limit is more conservative than Completion Times allowed for the vast majority of components that would be without power. Taking exception to LCO 3.0.2 for components without adequate DC power, which would have Required Action Completion Times shorter than 2 hours, is acceptable because of: - The potential for decreased safety by requiring a change in unit conditions (i.e., requiring a shutdown) while allowing stable operations to continue; - b. The potential for decreased safety by requiring entry into numerous applicable Conditions and Required Actions for components without DC power and not providing sufficient time for the operators to perform the necessary evaluations and actions for restoring power to the affected train; and - c. The potential for an event in conjunction with a single failure of a redundant component. The 2 hour Completion Time for DC buses is consistent with Regulatory Guide 1.93 (Ref. 3). # C.1 (continued) The second Completion Time for Required Action C.1 establishes a limit on the maximum time allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition C is entered while, for instance, an AC bus is inoperable and subsequently returned OPERABLE, the LCO may already have been not met for up to 8 hours. This could lead to a total of 10 hours, since initial failure of the LCO, to restore the DC distribution system. At this time, an AC train could again become inoperable, and DC distribution restored OPERABLE. This could continue indefinitely. This Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time the LCO was initially not met, instead of the time Condition C was entered. The 16 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely. #### D.1 and D.2 If the
inoperable distribution subsystem cannot be restored to OPERABLE status within the required Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems. ### E.1 With two trains with inoperable distribution subsystems that result in a loss of safety function, adequate core cooling, containment OPERABILITY and other vital functions for DBA mitigation would be compromised, and immediate plant shutdown in accordance with LCO 3.0.3 is required. # SURVEILLANCE REQUIREMENTS ## SR 3.8.9.1 This Surveillance verifies that the [required] AC, DC, and AC vital bus electrical power distribution systems are functioning properly, with the correct circuit breaker alignment. The correct breaker alignment ensures the appropriate separation and independence of the electrical divisions is maintained, and the appropriate voltage is available to each required bus. The verification of proper voltage availability on the buses ensures that the required voltage is readily available for motive as well as control functions for critical system loads connected to these buses. The 7 day Frequency takes into account the redundant capability of the AC, DC, and AC vital bus electrical power distribution subsystems, and other indications available in the control room that alert the operator to subsystem malfunctions. - 1. FSAR, Chapter [6]. - 2. FSAR, Chapter [15]. - 3. Regulatory Guide 1.93, December 1974. Table B 3.8.9-1 (page 1 of 1) AC and DC Electrical Power Distribution Systems | ТҮРЕ | VOLTAGE | TRAIN A* | TRAIN B* | |--------------------|----------|--|--| | AC safety
buses | [4160 V] | [ESF Bus] [NB01] | [ESF Bus] [NBO2] | | | [480 V] | Load Centers
[NGO1, NGO3] | Load Centers
[NGO2, NGO4] | | | [480 V] | Motor Control
Centers
[NGO1A, NGO1I,
NGO1B, NGO3C,
NGO3I, NGO3D] | Motor Control
Centers
[NGO2A, NGO2I,
NGO2B, NGO4C,
NGO4I, NGO4D] | | | [120 V] | Distribution
Panels
[NPO1, NPO3] | Distribution
Panels
[NPO2, NPO4] | | DC buses | [125 V] | Bus [NK01] | Bus [NK02] | | | | Bus [NK03] | Bus [NKO4] | | | | Distribution
Panels
[NK41, NK43, NK51] | Distribution
Panels
[NK42, NK44, NK52] | | AC vital
buses | [120 V] | Bus [NNO1] | Bus [NNO2] | | | | Bus [NNO3] | Bus [NNO4] | $[\]mbox{*}$ Each train of the AC and DC electrical power distribution systems is a subsystem. #### B 3.8 ELECTRICAL POWER SYSTEMS # B 3.8.10 Distribution Systems—Shutdown #### **BASES** #### BACKGROUND A description of the AC, DC, and AC vital bus electrical power distribution systems is provided in the Bases for LCO 3.8.9, "Distribution Systems—Operating." #### APPLICABLE SAFETY ANALYSES The initial conditions of Design Basis Accident and transient analyses in the FSAR, Chapter [6] (Ref. 1) and Chapter [15] (Ref. 2), assume Engineered Safety Feature (ESF) systems are OPERABLE. The AC, DC, and AC vital bus electrical power distribution systems are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System, and containment design limits are not exceeded. The OPERABILITY of the AC, DC, and AC vital bus electrical power distribution system is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY. The OPERABILITY of the minimum AC, DC, and AC vital bus electrical power distribution subsystems during MODES 5 and 6, and during movement of irradiated fuel assemblies ensures that: - a. The unit can be maintained in the shutdown or refueling condition for extended periods; - b. Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status: and - c. Adequate power is provided to mitigate events postulated during shutdown, such as a fuel handling accident. The AC and DC electrical power distribution systems satisfy Criterion 3 of the NRC Policy Statement. LC0 Various combinations of subsystems, equipment, and components are required OPERABLE by other LCOs, depending on the specific plant condition. Implicit in those requirements is the required OPERABILITY of necessary support required features. This LCO explicitly requires energization of the portions of the electrical distribution system necessary to support OPERABILITY of required systems, equipment, and components—all specifically addressed in each LCO and implicitly required via the definition of OPERABILITY. Maintaining these portions of the distribution system energized ensures the availability of sufficient power to operate the unit in a safe manner to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents). ### **APPLICABILITY** The AC and DC electrical power distribution subsystems required to be OPERABLE in MODES 5 and 6, and during movement of irradiated fuel assemblies, provide assurance that: - a. Systems to provide adequate coolant inventory makeup are available for the irradiated fuel in the core: - Systems needed to mitigate a fuel handling accident are available; - c. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available; and - d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition and refueling condition. The AC, DC, and AC vital bus electrical power distribution subsystems requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.9. # A.1, A.2.1, A.2.2, A.2.3, A.2.4, and A.2.5 Although redundant required features may require redundant trains of electrical power distribution subsystems to be OPERABLE, one OPERABLE distribution subsystem train may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS and fuel movement. By allowing the option to declare required features associated with an inoperable distribution subsystem inoperable, appropriate restrictions are implemented in accordance with the affected distribution subsystem LCO's Required Actions. In many instances, this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS, movement of irradiated fuel assemblies, and operations involving positive reactivity additions). Suspension of these activities does not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required AC and DC electrical power distribution subsystems and to continue this action until restoration is accomplished in order to provide the necessary power to the unit safety systems. Notwithstanding performance of the above conservative Required Actions, a required residual heat removal (RHR) subsystem may be inoperable. In this case, Required Actions A.2.1 through A.2.4 do not adequately address the concerns relating to coolant circulation and heat removal. Pursuant to LCO 3.0.6, the RHR ACTIONS would not be entered. Therefore, Required Action A.2.5 is provided to direct declaring RHR inoperable, which results in taking the appropriate RHR actions. The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required distribution subsystems should be completed as quickly as possible in order to minimize the time the unit safety systems may be without power. # SURVEILLANCE REQUIREMENTS # SR 3.8.10.1 This Surveillance verifies that the AC, DC, and AC vital bus electrical power distribution subsystems are functioning properly, with all the buses energized. The verification of proper voltage availability on the buses ensures that the required power is readily available for motive as well as control functions for critical system loads connected to these buses. The 7 day Frequency takes into account the capability of the electrical power distribution subsystems, and other indications available in the control room that alert the operator to subsystem malfunctions. - 1. FSAR, Chapter [6]. - 2. FSAR, Chapter [15]. #### B 3.9 REFUELING OPERATIONS #### B 3.9.1 Boron Concentration #### **BASES** #### BACKGROUND The limit on the boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity during refueling ensures that the reactor remains subcritical during MODE 6. Refueling boron concentration is the soluble boron concentration in the coolant in each of these volumes having direct access to the reactor core during refueling. The soluble boron concentration offsets the core reactivity and is measured by chemical analysis of a representative sample of the coolant in each of the volumes. The refueling boron concentration limit is specified in the COLR. Plant procedures ensure the specified boron concentration in order to maintain an overall core reactivity of $k_{eff} \leq 0.95$ during fuel handling, with control rods and fuel assemblies assumed to be in the most adverse configuration (least negative reactivity) allowed by plant procedures. GDC 26 of 10 CFR 50, Appendix A, requires that two independent reactivity control systems of different design principles be provided (Ref. 1). One of these systems must be capable of holding the reactor core subcritical under cold conditions. The Chemical and Volume Control System (CVCS) is the system
capable of maintaining the reactor subcritical in cold conditions by maintaining the boron concentration. The reactor is brought to shutdown conditions before beginning operations to open the reactor vessel for refueling. After the RCS is cooled and depressurized and the vessel head is unbolted, the head is slowly removed to form the refueling cavity. The refueling canal and the refueling cavity are then flooded with borated water from the refueling water storage tank through the open reactor vessel by gravity feeding or by the use of the Residual Heat Removal (RHR) System pumps. The pumping action of the RHR System in the RCS and the natural circulation due to thermal driving heads in the reactor vessel and refueling cavity mix the added concentrated boric acid with the water in the refueling # BACKGROUND (continued) canal. The RHR System is in operation during refueling (see LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation—High Water Level," and LCO 3.9.6, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level") to provide forced circulation in the RCS and assist in maintaining the boron concentrations in the RCS, the refueling canal, and the refueling cavity above the COLR limit. ## APPLICABLE SAFETY ANALYSES During refueling operations, the reactivity condition of the core is consistent with the initial conditions assumed for the boron dilution accident in the accident analysis and is conservative for MODE 6. The boron concentration limit specified in the COLR is based on the core reactivity at the beginning of each fuel cycle (the end of refueling) and includes an uncertainty allowance. The required boron concentration and the plant refueling procedures that verify the correct fuel loading plan (including full core mapping) ensure that the k_{eff} of the core will remain ≤ 0.95 during the refueling operation. Hence, at least a 5% $\Delta k/k$ margin of safety is established during refueling. During refueling, the water volume in the spent fuel pool, the transfer canal, the refueling canal, the refueling cavity, and the reactor vessel form a single mass. As a result, the soluble boron concentration is relatively the same in each of these volumes. The limiting boron dilution accident analyzed occurs in MODE 5 (Ref. 2). A detailed discussion of this event is provided in Bases B 3.1.2, "SHUTDOWN MARGIN (SDM)— $T_{avg} \le 200^{\circ}F$." The RCS boron concentration satisfies Criterion 2 of the NRC Policy Statement. LCO The LCO requires that a minimum boron concentration be maintained in the RCS, the refueling canal, and the refueling cavity while in MODE 6. The boron concentration limit specified in the COLR ensures that a core $k_{\rm eff}$ of #### **BASES** # (continued) ≤ 0.95 is maintained during fuel handling operations. Violation of the LCO could lead to an inadvertent criticality during MODE 6. ### APPLICABILITY This LCO is applicable in MODE 6 to ensure that the fuel in the reactor vessel will remain subcritical. The required boron concentration ensures a $k_{eff} \leq 0.95$. Above MODE 6, LCO 3.1.1, "SHUTDOWN MARGIN (SDM)— $T_{avg} > 200\,^{\circ}\text{F}$," and LCO 3.1.2, "SHUTDOWN MARGIN (SDM)— $T_{avg} \leq 200\,^{\circ}\text{F}$," ensure that an adequate amount of negative reactivity is available to shut down the reactor and maintain it subcritical. #### **ACTIONS** #### A.1 and A.2 Continuation of CORE ALTERATIONS or positive reactivity additions (including actions to reduce boron concentration) is contingent upon maintaining the unit in compliance with the LCO. If the boron concentration of any coolant volume in the RCS, the refueling canal, or the refueling cavity is less than its limit, all operations involving CORE ALTERATIONS or positive reactivity additions must be suspended immediately. Suspension of CORE ALTERATIONS and positive reactivity additions shall not preclude moving a component to a safe position. ### A.3 In addition to immediately suspending CORE ALTERATIONS or positive reactivity additions, boration to restore the concentration must be initiated immediately. In determining the required combination of boration flow rate and concentration, no unique Design Basis Event must be satisfied. The only requirement is to restore the boron concentration to its required value as soon as possible. In order to raise the boron concentration as soon as possible, the operator should begin boration with the best source available for unit conditions. #### BASES #### ACTIONS # A.3 (continued) Once actions have been initiated, they must be continued until the boron concentration is restored. The restoration time depends on the amount of boron that must be injected to reach the required concentration. # SURVEILLANCE REQUIREMENTS # SR 3.9.1.1 This SR ensures that the coolant boron concentration in the RCS, the refueling canal, and the refueling cavity is within the COLR limits. The boron concentration of the coolant in each volume is determined periodically by chemical analysis. A minimum Frequency of once every 72 hours is a reasonable amount of time to verify the boron concentration of representative samples. The Frequency is based on operating experience, which has shown 72 hours to be adequate. - 1. 10 CFR 50, Appendix A, GDC 26. - 2. FSAR, Chapter [15]. #### B 3.9 REFUELING OPERATIONS ### B 3.9.2 Unborated Water Source Isolation Valves ### **BASES** #### **BACKGROUND** During MODE 6 operations, all isolation valves for reactor makeup water sources containing unborated water that are connected to the Reactor Coolant System (RCS) must be closed to prevent unplanned boron dilution of the reactor coolant. The isolation valves must be secured in the closed position. The Chemical and Volume Control System is capable of supplying borated and unborated water to the RCS through various flow paths. Since a positive reactivity addition made by reducing the boron concentration is inappropriate during MODE 6, isolation of all unborated water sources prevents an unplanned boron dilution. ## APPLICABLE SAFETY ANALYSES The possibility of an inadvertent boron dilution event (Ref. 1) occurring during MODE 6 refueling operations is precluded by adherence to this LCO, which requires that potential dilution sources be isolated. Closing the required valves during refueling operations prevents the flow of unborated water to the filled portion of the RCS. The valves are used to isolate unborated water sources. These valves have the potential to indirectly allow dilution of the RCS boron concentration in MODE 6. By isolating unborated water sources, a safety analysis for an uncontrolled boron dilution accident in accordance with the Standard Review Plan (Ref. 2) is not required for MODE 6. The RCS boron concentration satisfies Criterion 2 of the NRC Policy Statement. #### **LCO** This LCO requires that flow paths to the RCS from unborated water sources be isolated to prevent unplanned boron dilution during MODE 6 and thus avoid a reduction in SDM. ### **APPLICABILITY** In MODE 6, this LCO is applicable to prevent an inadvertent boron dilution event by ensuring isolation of all sources of unborated water to the RCS. For all other MODES, the boron dilution accident was analyzed and was found to be capable of being mitigated. #### **ACTIONS** The ACTIONS table has been modified by a Note that allows separate Condition entry for each unborated water source isolation valve. #### A.1 Continuation of CORE ALTERATIONS is contingent upon maintaining the unit in compliance with this LCO. With any valve used to isolate unborated water sources not secured in the closed position, all operations involving CORE ALTERATIONS must be suspended immediately. The Completion Time of "immediately" for performance of Required Action A.1 shall not preclude completion of movement of a component to a safe position. Condition A has been modified by a Note to require that Required Action A.3 be completed whenever Condition A is entered. #### A.2 Preventing inadvertent dilution of the reactor coolant boron concentration is dependent on maintaining the unborated water isolation valves secured closed. Securing the valves in the closed position ensures that the valves cannot be inadvertently opened. The Completion Time of "immediately" requires an operator to initiate actions to close an open valve and secure the isolation valve in the closed position immediately. Once actions are initiated, they must be continued until the valves are secured in the closed position. #### **BASES** # ACTIONS (continued) # <u>A.3</u> Due to the potential of having diluted the boron concentration of the reactor coolant, SR 3.9.1.1 (verification of boron concentration) must be performed whenever Condition A is entered to demonstrate that the required boron concentration exists. The Completion Time of 4 hours is sufficient to obtain and analyze a reactor coolant sample for boron concentration. # SURVEILLANCE REQUIREMENTS ### SR 3.9.2.1 These valves are to be secured closed to isolate possible dilution paths. The likelihood of a significant reduction in the boron concentration during MODE 6 operations is remote due to the large mass of borated water in the refueling cavity and the fact that all unborated water sources are isolated, precluding a dilution. The boron concentration is checked every 72 hours during MODE 6 under SR 3.9.1.1. This Surveillance demonstrates that the valves are closed through a system walkdown. The 31 day Frequency is based on engineering judgment and is considered reasonable in view of other administrative controls that will ensure that the valve opening is an unlikely possibility. - 1. FSAR, Section [15.2.4]. - 2. NUREG-0800, Section 15.4.6. #### B 3.9 REFUELING OPERATIONS #### B 3.9.3 Nuclear Instrumentation #### **BASES** #### **BACKGROUND** The source range neutron flux monitors are used during refueling operations to monitor the core reactivity condition. The installed source range neutron flux monitors
are part of the Nuclear Instrumentation System (NIS). These detectors are located external to the reactor vessel and detect neutrons leaking from the core. The installed source range neutron flux monitors are BF3 detectors operating in the proportional region of the gas filled detector characteristic curve. The detectors monitor the neutron flux in counts per second. The instrument range covers six decades of neutron flux (1E+6 cps) with a [5]% instrument accuracy. The detectors also provide continuous visual indication in the control room and an audible alarm to alert operators to a possible dilution accident. The NIS is designed in accordance with the criteria presented in Reference 1. ### APPLICABLE SAFETY ANALYSES Two OPERABLE source range neutron flux monitors are required to provide a signal to alert the operator to unexpected changes in core reactivity such as with a boron dilution accident (Ref. 2) or an improperly loaded fuel assembly. The need for a safety analysis for an uncontrolled boron dilution accident is eliminated by isolating all unborated water sources as required by LCO 3.9.2, "Unborated Water Source Isolation Valves." The source range neutron flux monitors satisfy Criterion 3 of the NRC Policy Statement. #### LCO This LCO requires that two source range neutron flux monitors be OPERABLE to ensure that redundant monitoring capability is available to detect changes in core reactivity. #### **APPLICABILITY** In MODE 6, the source range neutron flux monitors must be OPERABLE to determine changes in core reactivity. There are no other direct means available to check core reactivity levels. In MODES 2, 3, 4, and 5, these same installed source range detectors and circuitry are also required to be OPERABLE by LCO 3.3.1, "Reactor Trip System (RTS) Instrumentation." #### ACTIONS #### A.1 and A.2 With only one source range neutron flux monitor OPERABLE, redundancy has been lost. Since these instruments are the only direct means of monitoring core reactivity conditions, CORE ALTERATIONS and positive reactivity additions must be suspended immediately. Performance of Required Action A.1 shall not preclude completion of movement of a component to a safe position. ## <u>B.1</u> With no source range neutron flux monitor OPERABLE, action to restore a monitor to OPERABLE status shall be initiated immediately. Once initiated, action shall be continued until a source range neutron flux monitor is restored to OPERABLE status. #### B.2 With no source range neutron flux monitor OPERABLE, there are no direct means of detecting changes in core reactivity. However, since CORE ALTERATIONS and positive reactivity additions are not to be made, the core reactivity condition is stabilized until the source range neutron flux monitors are OPERABLE. This stabilized condition is determined by performing SR 3.9.1.1 to ensure that the required boron concentration exists. The Completion Time of 4 hours is sufficient to obtain and analyze a reactor coolant sample for boron concentration. The Frequency of once per 12 hours ensures that unplanned changes in boron concentration would be identified. The 12 hour Frequency is reasonable, considering the low #### **BASES** #### **ACTIONS** # **B.2** (continued) probability of a change in core reactivity during this time period. # SURVEILLANCE REQUIREMENTS # SR 3.9.3.1 SR 3.9.3.1 is the performance of a CHANNEL CHECK, which is a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that the two indication channels should be consistent with core conditions. Changes in fuel loading and core geometry can result in significant differences between source range channels, but each channel should be consistent with its local conditions. The Frequency of 12 hours is consistent with the CHANNEL CHECK Frequency specified similarly for the same instruments in LCO 3.3.1. ### SR 3.9.3.2 SR 3.9.3.2 is the performance of a CHANNEL CALIBRATION every 18 months. This SR is modified by a Note stating that neutron detectors are excluded from the CHANNEL CALIBRATION. The CHANNEL CALIBRATION for the source range neutron flux monitors consists of obtaining the detector plateau or preamp discriminator curves, evaluating those curves, and comparing the curves to the manufacturer's data. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage. Operating experience has shown these components usually pass the Surveillance when performed at the 18 month Frequency. - 1. 10 CFR 50, Appendix A, GDC 13, GDC 26, GDC 28, and GDC 29. - 2. FSAR, Section [15.2.4]. ## B 3.9 REFUELING OPERATIONS ## B 3.9.4 Containment Penetrations #### BASES #### **BACKGROUND** During CORE ALTERATIONS or movement of irradiated fuel assemblies within containment, a release of fission product radioactivity within containment will be restricted from escaping to the environment when the LCO requirements are met. In MODES 1, 2, 3, and 4, this is accomplished by maintaining containment OPERABLE as described in LCO 3.6.1, "Containment." In MODE 6, the potential for containment pressurization as a result of an accident is not likely; therefore, requirements to isolate the containment from the outside atmosphere can be less stringent. The LCO requirements are referred to as "containment closure" rather than "containment OPERABILITY." Containment closure means that all potential escape paths are closed or capable of being closed. Since there is no potential for containment pressurization, the Appendix J leakage criteria and tests are not required. The containment serves to contain fission product radioactivity that may be released from the reactor core following an accident, such that offsite radiation exposures are maintained well within the requirements of 10 CFR 100. Additionally, the containment provides radiation shielding from the fission products that may be present in the containment atmosphere following accident conditions. The containment equipment hatch, which is part of the containment pressure boundary, provides a means for moving large equipment and components into and out of containment. During CORE ALTERATIONS or movement of irradiated fuel assemblies within containment, the equipment hatch must be held in place by at least four bolts. Good engineering practice dictates that the bolts required by this LCO be approximately equally spaced. The containment air locks, which are also part of the containment pressure boundary, provide a means for personnel access during MODES 1, 2, 3, and 4 unit operation in accordance with LCO 3.6.2, "Containment Air Locks." Each air lock has a door at both ends. The doors are normally interlocked to prevent simultaneous opening when containment OPERABILITY is required. During periods of unit shutdown # BACKGROUND (continued) when containment closure is not required, the door interlock mechanism may be disabled, allowing both doors of an air lock to remain open for extended periods when frequent containment entry is necessary. During CORE ALTERATIONS or movement of irradiated fuel assemblies within containment, containment closure is required; therefore, the door interlock mechanism may remain disabled, but one air lock door must always remain closed. The requirements for containment penetration closure ensure that a release of fission product radioactivity within containment will be restricted from escaping to the environment. The closure restrictions are sufficient to restrict fission product radioactivity release from containment due to a fuel handling accident during refueling. The Containment Purge and Exhaust System includes two subsystems. The normal subsystem includes a 42 inch purge penetration and a 42 inch exhaust penetration. The second subsystem, a minipurge system, includes an 8 inch purge penetration and an 8 inch exhaust penetration. During MODES 1, 2, 3, and 4, the two valves in each of the normal purge and exhaust penetrations are secured in the closed position. The two valves in each of the two minipurge penetrations can be opened intermittently, but are closed automatically by the Engineered Safety Features Actuation System (ESFAS). Neither of the subsystems is subject to a Specification in MODE 5. In MODE 6, large air exchangers are necessary to conduct refueling operations. The normal 42 inch purge system is used for this purpose, and all four valves are closed by the ESFAS in accordance with LCO 3.3.2, "Engineered Safety Feature Actuation System (ESFAS) Instrumentation." The minipurge system remains operational in MODE 6, and all four valves are also closed by the ESFAS. or The minipurge system is not used in MODE 6. All four 8 inch valves are secured in the closed position. The other containment penetrations that provide direct access from containment atmosphere to outside atmosphere #### **BASES** # BACKGROUND (continued) must be isolated on at least one side. Isolation may be achieved by an OPERABLE automatic isolation valve, or by a manual isolation valve, blind flange, or equivalent. Equivalent isolation methods must be approved and may include use of a material that can provide a temporary, atmospheric pressure, ventilation barrier for the other containment penetrations during fuel movements (Ref. 1). # APPLICABLE SAFETY ANALYSES During CORE ALTERATIONS or movement of irradiated fuel assemblies within containment, the most severe radiological consequences result from a fuel handling accident. The fuel handling accident is a postulated event that involves damage to irradiated fuel (Ref. 2). Fuel handling accidents, analyzed in Reference 3, include dropping a single irradiated fuel assembly and handling tool or a heavy object onto other irradiated fuel assemblies. The requirements of LCO 3.9.7, "Refueling Cavity Water Level," and the minimum decay time of 100 hours prior to CORE ALTERATIONS ensure that the release of fission product
radioactivity, subsequent to a fuel handling accident, results in doses that are well within the guideline values specified in 10 CFR 100. Standard Review Plan, Section 15.7.4, Rev. 1 (Ref. 3), defines "well within" 10 CFR 100 to be 25% or less of the 10 CFR 100 values. The acceptance limits for offsite radiation exposure will be 25% of 10 CFR 100 values or the NRC staff approved licensing basis (e.g., a specified fraction of 10 CFR 100 limits). Containment penetrations satisfy Criterion 3 of the NRC Policy Statement. LCO This LCO limits the consequences of a fuel handling accident in containment by limiting the potential escape paths for fission product radioactivity released within containment. The LCO requires any penetration providing direct access from the containment atmosphere to the outside atmosphere to be closed except for the OPERABLE containment purge and exhaust penetrations. For the OPERABLE containment purge and exhaust penetrations, this LCO ensures that these penetrations are isolable by the Containment Purge and Exhaust Isolation System. The OPERABILITY requirements for this LCO ensure that the automatic purge and exhaust valve #### **BASES** # LCO (continued) closure times specified in the FSAR can be achieved and, therefore, meet the assumptions used in the safety analysis to ensure that releases through the valves are terminated, such that radiological doses are within the acceptance limit. # **APPLICABILITY** The containment penetration requirements are applicable during CORE ALTERATIONS or movement of irradiated fuel assemblies within containment because this is when there is a potential for a fuel handling accident. In MODES 1, 2, 3, and 4, containment penetration requirements are addressed by LCO 3.6.1. In MODES 5 and 6, when CORE ALTERATIONS or movement of irradiated fuel assemblies within containment are not being conducted, the potential for a fuel handling accident does not exist. Therefore, under these conditions no requirements are placed on containment penetration status. ### **ACTIONS** # A.1 and A.2 If the containment equipment hatch, air locks, or any containment penetration that provides direct access from the containment atmosphere to the outside atmosphere is not in the required status, including the Containment Purge and Exhaust Isolation System not capable of automatic actuation when the purge and exhaust valves are open, the unit must be placed in a condition where the isolation function is not needed. This is accomplished by immediately suspending CORE ALTERATIONS and movement of irradiated fuel assemblies within containment. Performance of these actions shall not preclude completion of movement of a component to a safe position. # SURVEILLANCE REQUIREMENTS # SR 3.9.4.1 This Surveillance demonstrates that each of the containment penetrations required to be in its closed position is in that position. The Surveillance on the open purge and exhaust valves will demonstrate that the valves are not blocked from closing. Also the Surveillance will # SURVEILLANCE REQUIREMENTS # SR 3.9.4.1 (continued) demonstrate that each valve operator has motive power, which will ensure that each valve is capable of being closed by an OPERABLE automatic containment purge and exhaust isolation signal. The Surveillance is performed every 7 days during CORE ALTERATIONS or movement of irradiated fuel assemblies within containment. The Surveillance interval is selected to be commensurate with the normal duration of time to complete fuel handling operations. A surveillance before the start of refueling operations will provide two or three surveillance verifications during the applicable period for this LCO. As such, this Surveillance ensures that a postulated fuel handling accident that releases fission product radioactivity within the containment will not result in a release of fission product radioactivity to the environment. ## SR 3.9.4.2 This Surveillance demonstrates that each containment purge and exhaust valve actuates to its isolation position on manual initiation or on an actual or simulated high radiation signal. The 18 month Frequency maintains consistency with other similar ESFAS instrumentation and valve testing requirements. In LCO 3.3.6, the Containment Purge and Exhaust Isolation instrumentation requires a CHANNEL CHECK every 12 hours and a COT every 92 days to ensure the channel OPERABILITY during refueling operations. Every 18 months a CHANNEL CALIBRATION is performed. The system actuation response time is demonstrated every 18 months, during refueling, on a STAGGERED TEST BASIS. SR 3.6.3.5 demonstrates that the isolation time of each valve is in accordance with the Inservice Testing Program requirements. These Surveillances performed during MODE 6 will ensure that the valves are capable of closing after a postulated fuel handling accident to limit a release of fission product radioactivity from the containment. - 1. GPU Nuclear Safety Evaluation SE-0002000-001, Rev. 0, May 20, 1988. - 2. FSAR, Section [15.4.5]. - 3. NUREG-0800, Section 15.7.4, Rev. 1, July 1981. #### B 3.9 REFUELING OPERATIONS B 3.9.5 Residual Heat Removal (RHR) and Coolant Circulation—High Water Level #### **BASES** #### **BACKGROUND** The purpose of the RHR System in MODE 6 is to remove decay heat and sensible heat from the Reactor Coolant System (RCS), as required by GDC 34, to provide mixing of borated coolant and to prevent boron stratification (Ref. 1). Heat is removed from the RCS by circulating reactor coolant through the RHR heat exchanger(s), where the heat is transferred to the Component Cooling Water System. The coolant is then returned to the RCS via the RCS cold leg(s). Operation of the RHR System for normal cooldown or decay heat removal is manually accomplished from the control room. The heat removal rate is adjusted by controlling the flow of reactor coolant through the RHR heat exchanger(s) and the bypass. Mixing of the reactor coolant is maintained by this continuous circulation of reactor coolant through the RHR System. # APPLICABLE SAFETY ANALYSES If the reactor coolant temperature is not maintained below 200°F, boiling of the reactor coolant could result. This could lead to a loss of coolant in the reactor vessel. Additionally, boiling of the reactor coolant could lead to a reduction in boron concentration in the coolant due to boron plating out on components near the areas of the boiling activity. The loss of reactor coolant and the reduction of boron concentration in the reactor coolant would eventually challenge the integrity of the fuel cladding, which is a fission product barrier. One train of the RHR System is required to be operational in MODE 6, with the water level ≥ 23 ft above the top of the reactor vessel flange, to prevent this challenge. The LCO does permit de-energizing the RHR pump for short durations, under the condition that the boron concentration is not diluted. This conditional de-energizing of the RHR pump does not result in a challenge to the fission product barrier. Although the RHR System does not meet a specific criterion of the NRC Policy Statement, it was identified in the NRC Policy Statement as an important contributor to risk # APPLICABLE SAFETY ANALYSES (continued) reduction. Therefore, the RHR System is retained as a Specification. LCO Only one RHR loop is required for decay heat removal in MODE 6, with the water level \geq 23 ft above the top of the reactor vessel flange. Only one RHR loop is required to be OPERABLE, because the volume of water above the reactor vessel flange provides backup decay heat removal capability. At least one RHR loop must be OPERABLE and in operation to provide: - a. Removal of decay heat; - Mixing of borated coolant to minimize the possibility of criticality; and - Indication of reactor coolant temperature. An OPERABLE RHR loop includes an RHR pump, a heat exchanger, valves, piping, instruments, and controls to ensure an OPERABLE flow path and to determine the low end temperature. The flow path starts in one of the RCS hot legs and is returned to the RCS cold legs. The LCO is modified by a Note that allows the required operating RHR loop to be removed from service for up to 1 hour per 8 hour period, provided no operations are permitted that would cause a reduction of the RCS boron concentration. Boron concentration reduction is prohibited because uniform concentration distribution cannot be ensured without forced circulation. This permits operations such as core mapping or alterations in the vicinity of the reactor vessel hot leg nozzles and RCS to RHR isolation valve testing. During this 1 hour period, decay heat is removed by natural convection to the large mass of water in the refueling cavity. ## APPLICABILITY, One RHR loop must be OPERABLE and in operation in MODE 6, with the water level \geq 23 ft above the top of the reactor vessel flange, to provide decay heat removal. The 23 ft water level was selected because it corresponds to the 23 ft # APPLICABILITY (continued) requirement established for fuel movement in LCO 3.9.7, "Refueling Cavity Water Level." Requirements for the RHR System in other MODES are covered by LCOs in Section 3.4, Reactor Coolant System (RCS), and Section 3.5, Emergency Core Cooling Systems (ECCS). RHR loop requirements in MODE 6 with the water level < 23 ft are located in LCO 3.9.6, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level." ### ACTIONS RHR loop requirements are met by having one RHR loop OPERABLE and in operation, except as permitted in the Note to the LCO. ## A.1 If RHR loop requirements are not met, there will be no forced circulation to provide mixing to establish uniform boron concentrations. Reduced boron concentrations cannot occur by the addition of water with a lower boron concentration than that contained in the RCS because all of unborated water sources are isolated. ### A.2 If RHR loop requirements are not met, actions shall be taken immediately to suspend
loading of irradiated fuel assemblies in the core. With no forced circulation cooling, decay heat removal from the core occurs by natural convection to the heat sink provided by the water above the core. A minimum refueling water level of 23 ft above the reactor vessel flange provides an adequate available heat sink. Suspending any operation that would increase decay heat load, such as loading a fuel assembly, is a prudent action under this condition. ### A.3 If RHR loop requirements are not met, actions shall be initiated and continued in order to satisfy RHR loop requirements. With the unit in MODE 6 and the refueling #### **ACTIONS** # A.3 (continued) water level \geq 23 ft above the top of the reactor vessel flange, corrective actions shall be initiated immediately. ### A.4 If RHR loop requirements are not met, all containment penetrations providing direct access from the containment atmosphere to the outside atmosphere must be closed within 4 hours. With the RHR loop requirements not met, the potential exists for the coolant to boil and release radioactive gas to the containment atmosphere. Closing containment penetrations that are open to the outside atmosphere ensures dose limits are not exceeded. The Completion Time of 4 hours is reasonable, based on the low probability of the coolant boiling in that time. # SURVEILLANCE REQUIREMENTS ## SR 3.9.5.1 This Surveillance demonstrates that the RHR loop is in operation and circulating reactor coolant. The flow rate is determined by the flow rate necessary to provide sufficient decay heat removal capability and to prevent thermal and boron stratification in the core. The Frequency of 12 hours is sufficient, considering the flow, temperature, pump control, and alarm indications available to the operator in the control room for monitoring the RHR System. ## REFERENCES 1. FSAR, Section [5.5.7]. #### B 3.9 REFUELING OPERATIONS B 3.9.6 Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level ### **BASES** #### **BACKGROUND** The purpose of the RHR System in MODE 6 is to remove decay heat and sensible heat from the Reactor Coolant System (RCS), as required by GDC 34, to provide mixing of borated coolant, and to prevent boron stratification (Ref. 1). Heat is removed from the RCS by circulating reactor coolant through the RHR heat exchangers where the heat is transferred to the Component Cooling Water System. The coolant is then returned to the RCS via the RCS cold leg(s). Operation of the RHR System for normal cooldown decay heat removal is manually accomplished from the control room. The heat removal rate is adjusted by controlling the flow of reactor coolant through the RHR heat exchanger(s) and the bypass lines. Mixing of the reactor coolant is maintained by this continuous circulation of reactor coolant through the RHR System. ## APPLICABLE SAFETY ANALYSES If the reactor coolant temperature is not maintained below 200°F, boiling of the reactor coolant could result. This could lead to a loss of coolant in the reactor vessel. Additionally, boiling of the reactor coolant could lead to a reduction in boron concentration in the coolant due to the boron plating out on components near the areas of the boiling activity. The loss of reactor coolant and the reduction of boron concentration in the reactor coolant will eventually challenge the integrity of the fuel cladding, which is a fission product barrier. Two trains of the RHR System are required to be OPERABLE, and one train in operation, in order to prevent this challenge. Although the RHR System does not meet a specific criterion of the NRC Policy Statement, it was identified in the NRC Policy Statement as an important contributor to risk reduction. Therefore, the RHR System is retained as a Specification. LC0 In MODE 6, with the water level < 23 ft above the top of the reactor vessel flange, both RHR loops must be OPERABLE. #### **BASES** # LCO (continued) Additionally, one loop of RHR must be in operation in order to provide: - a. Removal of decay heat; - Mixing of borated coolant to minimize the possibility of criticality; and - c. Indication of reactor coolant temperature. An OPERABLE RHR loop consists of an RHR pump, a heat exchanger, valves, piping, instruments and controls to ensure an OPERABLE flow path and to determine the low end temperature. The flow path starts in one of the RCS hot legs and is returned to the RCS cold legs. # **APPLICABILITY** Two RHR loops are required to be OPERABLE, and one RHR loop must be in operation in MODE 6, with the water level < 23 ft above the top of the reactor vessel flange, to provide decay heat removal. Requirements for the RHR System in other MODES are covered by LCOs in Section 3.4, Reactor Coolant System (RCS), and Section 3.5, Emergency Core Cooling Systems (ECCS). RHR loop requirements in MODE 6 with the water level \geq 23 ft are located in LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation—High Water Level." #### ACTIONS ### A.1 and A.2 If less than the required number of RHR loops are OPERABLE, action shall be immediately initiated and continued until the RHR loop is restored to OPERABLE status and to operation or until \geq 23 ft of water level is established above the reactor vessel flange. When the water level is \geq 23 ft above the reactor vessel flange, the Applicability changes to that of LCO 3.9.5, and only one RHR loop is required to be OPERABLE and in operation. An immediate Completion Time is necessary for an operator to initiate corrective actions. # ACTIONS (continued) # <u>B.1</u> If no RHR loop is in operation, there will be no forced circulation to provide mixing to establish uniform boron concentrations. Reduced boron concentrations cannot occur by the addition of water with a lower boron concentration than that contained in the RCS, because all of the unborated water sources are isolated. # **B.2** If no RHR loop is in operation, actions shall be initiated immediately, and continued, to restore one RHR loop to operation. Since the unit is in Conditions A and B concurrently, the restoration of two OPERABLE RHR loops and one operating RHR loop should be accomplished expeditiously. ### B.3 If no RHR loop is in operation, all containment penetrations providing direct access from the containment atmosphere to the outside atmosphere must be closed within 4 hours. With the RHR loop requirements not met, the potential exists for the coolant to boil and release radioactive gas to the containment atmosphere. Closing containment penetrations that are open to the outside atmosphere ensures that dose limits are not exceeded. The Completion Time of 4 hours is reasonable, based on the low probability of the coolant boiling in that time. # SURVEILLANCE REQUIREMENTS # SR 3.9.6.1 This Surveillance demonstrates that one RHR loop is in operation and circulating reactor coolant. The flow rate is determined by the flow rate necessary to provide sufficient decay heat removal capability and to prevent thermal and boron stratification in the core. In addition, during operation of the RHR loop with the water level in the vicinity of the reactor vessel nozzles, the RHR pump suction requirements must be met. The Frequency of 12 hours is sufficient, considering the flow, temperature, pump control, ## **BASES** # SURVEILLANCE REQUIREMENTS # <u>SR 3.9.6.1</u> (continued) and alarm indications available to the operator for monitoring the RHR System in the control room. Verification that the required pump is OPERABLE ensures that an additional RCS or RHR pump can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power available to the required pump. The Frequency of 7 days is considered reasonable in view of other administrative controls available and has been shown to be acceptable by operating experience. # **REFERENCES** 1. FSAR, Section [5.5.7]. #### B 3.9 REFUELING OPERATIONS # B 3.9.7 Refueling Cavity Water Level ### **BASES** #### **BACKGROUND** The movement of irradiated fuel assemblies or performance of CORE ALTERATIONS, except during latching and unlatching of control rod drive shafts, within containment requires a minimum water level of 23 ft above the top of the reactor vessel flange. During refueling, this maintains sufficient water level in the containment, refueling canal, fuel transfer canal, refueling cavity, and spent fuel pool. Sufficient water is necessary to retain iodine fission product activity in the water in the event of a fuel handling accident (Refs. 1 and 2). Sufficient iodine activity would be retained to limit offsite doses from the accident to < 25% of 10 CFR 100 limits, as provided by the guidance of Reference 3. # APPLICABLE SAFETY ANALYSES During CORE ALTERATIONS and movement of irradiated fuel assemblies, the water level in the refueling canal and the refueling cavity is an initial condition design parameter in the analysis of a fuel handling accident in containment, as postulated by Regulatory Guide 1.25 (Ref. 1). A minimum water level of 23 ft (Regulatory Position C.1.c of Ref. 1) allows a decontamination factor of 100 (Regulatory Position C.1.g of Ref. 1) to be used in the accident analysis for iodine. This relates to the assumption that 99% of the total iodine released from the pellet to cladding gap of all the dropped fuel assembly rods is retained by the refueling cavity water. The fuel pellet to cladding gap is assumed to contain 10% of the total fuel rod iodine inventory (Ref. 1). The fuel handling accident analysis inside containment is described in Reference 2. With a minimum water level of 23 ft and a minimum decay time of 100 hours prior to fuel handling, the analysis and test programs demonstrate that the iodine release due to a postulated fuel handling accident is adequately captured by the water and offsite doses are maintained within allowable limits (Refs. 4 and 5). ## BASES #
APPLICABLE SAFETY ANALYSES (continued) Refueling cavity water level satisfies Criterion 2 of the NRC Policy Statement. #### LCO A minimum refueling cavity water level of 23 ft above the reactor vessel flange is required to ensure that the radiological consequences of a postulated fuel handling accident inside containment are within acceptable limits, as provided by the guidance of Reference 3. ## **APPLICABILITY** LCO 3.9.7 is applicable during CORE ALTERATIONS, except during latching and unlatching of control rod drive shafts, and when moving irradiated fuel assemblies within containment. The LCO minimizes the possibility of a fuel handling accident in containment that is beyond the assumptions of the safety analysis. If irradiated fuel assemblies are not present in containment, there can be no significant radioactivity release as a result of a postulated fuel handling accident. Requirements for fuel handling accidents in the spent fuel pool are covered by LCO 3.7.15, "Fuel Storage Pool Water Level." #### **ACTIONS** #### A.1 and A.2 With a water level of < 23 ft above the top of the reactor vessel flange, all operations involving CORE ALTERATIONS or movement of irradiated fuel assemblies within the containment shall be suspended immediately to ensure that a fuel handling accident cannot occur. The suspension of CORE ALTERATIONS and fuel movement shall not preclude completion of movement of a component to a safe position. ### A.3 In addition to immediately suspending CORE ALTERATIONS or movement of irradiated fuel, action to restore refueling cavity water level must be initiated immediately. # BASES (continued) ## SURVEILLANCE REQUIREMENTS # SR 3.9.7.1 Verification of a minimum water level of 23 ft above the top of the reactor vessel flange ensures that the design basis for the analysis of the postulated fuel handling accident during refueling operations is met. Water at the required level above the top of the reactor vessel flange limits the consequences of damaged fuel rods that are postulated to result from a fuel handling accident inside containment (Ref. 2). The Frequency of 24 hours is based on engineering judgment and is considered adequate in view of the large volume of water and the normal procedural controls of valve positions, which make significant unplanned level changes unlikely. #### REFERENCES - 1. Regulatory Guide 1.25, March 23, 1972. - 2. FSAR, Section [15.4.5]. - 3. NUREG-0800, Section 15.7.4. - 4. 10 CFR 100.10. - 5. Malinowski, D. D., Bell, M. J., Duhn, E., and Locante, J., WCAP-828, Radiological Consequences of a Fuel Handling Accident, December 1971. | | | t Herrica | |--|--|-----------| U.S. NUCLEAR REGULATORY CON | MMISSION 1. REPORT NUMBER | |--|--|---| | NRC FORM 335
(2-89)
NRCM 1102, | (Assigned by NRC, Add Vol., Supp., Rev., and Addendum Numbers, if any.) | | | 3201, 3202 | BIBLIOGRAPHIC DATA SHEET | | | (See instructions on the reverse) | | NUREG 1431 | | 2. TITLE AND SUBTITLE | | Vol. 3, Řev. 1 | | Chandand Taskadasa (| · · · · · · · · · · · · · · · · · · · | 3. DATE REPORT PUBLISHED | | Standard Technical S
Westinghouse Plants | pecifications | MONTH YEAR | | Bases (Sections 3.4 | - 3.9) | April ' 1995 | | bases (occorrons of | 3.3 / | 4. FIN OR GRANT NUMBER | | 5. AUTHOR(S) | | 6. TYPE OF REPORT | | 3. A0 111011(3) | | | | | | . | | | | 7. PERIOD COVERED (Inclusive Dates) | | | | | | 9 DEDECORMING OPERANIZATION | NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Re | egulatory Commission, and mailing address: if contractor, provide | | name and mailing address.) Division of Project | | • | | Office of Nuclear Re | | | | U.S. Nuclear Regulat | | | | Washington, D.C. 205 | 555-0001 | | | | | Office - Carlos U.S. Nuclear Completes Commission | | 9. SPONSORING ORGANIZATION — and mailing address,) | NAME AND ADDRESS (If NRC, type "Same as above"; if contractor, provide NRC to | Division, Office of Region, U.S. Nuclear Regulatory Commission, | | Same as above | | | | Jame as above | | | | | | | | AN OUR EMENTARY NOTES | | | | 10. SUPPLEMENTARY NOTES | | | | 11. ABSTRACT (200 words or less) | | | | This report document | ts the results of the combined effort of | f the NRC and the industry | | to produce improved | | | | Wootinghouse Minte | Standard Technical Specifications (STS) | | | | . The changes reflected in Revision 1 i | resulted from the experience | | gained from license | . The changes reflected in Revision 1 is amendment applications to convert to the | resulted from the experience
nese improved STS or to | | gained from license
adopt partial improv | . The changes reflected in Revision 1 in amendment applications to convert to the vements to existing technical specifications. | resulted from the experience
nese improved STS or to
tions. This NUREG is the | | gained from license
adopt partial improversult of extensive | The changes reflected in Revision 1 in
amendment applications to convert to the
vements to existing technical specifical
public technical meetings and discussion | resulted from the experience
nese improved STS or to
tions. This NUREG is the
ons between the Nuclear | | gained from license
adopt partial improvesult of extensive
Regulatory Commission | . The changes reflected in Revision 1 in amendment applications to convert to the vements to existing technical
specifical public technical meetings and discussion (NRC) staff and various nuclear power | resulted from the experience nese improved STS or to tions. This NUREG is the ons between the Nuclear plant licensees, Nuclear | | gained from license
adopt partial improversult of extensive
Regulatory Commission
Steam Supply System | . The changes reflected in Revision 1 in amendment applications to convert to the vements to existing technical specifical public technical meetings and discussion (NRC) staff and various nuclear power (NSSS) Owners Groups, NSSS vendors, and | resulted from the experience nese improved STS or to tions. This NUREG is the ons between the Nuclear plant licensees, Nuclear the Nuclear Energy | | gained from license
adopt partial improvement of extensive
Regulatory Commission
Steam Supply System
Institute (NEI). | The changes reflected in Revision 1 in amendment applications to convert to the vements to existing technical specifical public technical meetings and discussion (NRC) staff and various nuclear power (NSSS) Owners Groups, NSSS vendors, and he improved STS were developed based on | resulted from the experience nese improved STS or to tions. This NUREG is the ons between the Nuclear plant licensees, Nuclear the Nuclear the criteria in the Final | | gained from license adopt partial improves result of extensive Regulatory Commission Steam Supply System Institute (NEI). The Commission Policy Steam Steam Policy Steam Steam Policy Steam Steam Policy | The changes reflected in Revision 1 in amendment applications to convert to the vements to existing technical specifications to the public technical meetings and discussion (NRC) staff and various nuclear power (NSSS) Owners Groups, NSSS vendors, and he improved STS were developed based on tatement on Technical Specifications Imp | resulted from the experience nese improved STS or to tions. This NUREG is the ons between the Nuclear plant licensees, Nuclear the Nuclear Energy the criteria in the Final provements for Nuclear Power | | gained from license adopt partial improves result of extensive Regulatory Commission Steam Supply System Institute (NEI). The Commission Policy Steactors, dated July | The changes reflected in Revision 1 in amendment applications to convert to the vements to existing technical specifications to the public technical meetings and discussion (NRC) staff and various nuclear power (NSSS) Owners Groups, NSSS vendors, and he improved STS were developed based on tatement on Technical Specifications Impoly 22, 1993. The improved STS will be used to the proved STS will be used. | resulted from the experience nese improved STS or to tions. This NUREG is the ons between the Nuclear plant licensees, Nuclear the Nuclear Energy the criteria in the Final provements for Nuclear Power sed as the basis for | | gained from license adopt partial improves result of extensive Regulatory Commission Steam Supply System Institute (NEI). The Commission Policy Steactors, dated July individual nuclear page 1975 | The changes reflected in Revision 1 in amendment applications to convert to the vements to existing technical specifications to the public technical meetings and discussion (NRC) staff and various nuclear power (NSSS) Owners Groups, NSSS vendors, and the improved STS were developed based on tatement on Technical Specifications Imposed 22, 1993. The improved STS will be use power plant licensees to develop improved | resulted from the experience nese improved STS or to tions. This NUREG is the ons between the Nuclear plant licensees, Nuclear the Nuclear Energy the criteria in the Final provements for Nuclear Power sed as the basis for ed plant-specific technical | | gained from license adopt partial improvement of extensive Regulatory Commission Steam Supply System Institute (NEI). The Commission Policy Steators, dated July individual nuclear papecifications. The | The changes reflected in Revision 1 in amendment applications to convert to the vements to existing technical specifications to the convert to the vements to existing technical specification (NRC) staff and various nuclear power (NSSS) Owners Groups, NSSS vendors, and the improved STS were developed based on tatement on Technical Specifications Impower plant licensees to develop improved statement contains three volumes. Volumes | resulted from the experience nese improved STS or to tions. This NUREG is the ons between the Nuclear replant licensees, Nuclear defined the Nuclear Energy the criteria in the Final provements for Nuclear Power sed as the basis for ed plant-specific technical me 1 contains the | | gained from license adopt partial improvement of extensive Regulatory Commission Steam Supply System Institute (NEI). The Commission Policy Steators, dated July individual nuclear papecifications. The Specifications for a steators of the steators of the steators of the steators of the steators. | The changes reflected in Revision 1 in amendment applications to convert to the vements to existing technical specifications to the vements to existing technical specification (NRC) staff and various nuclear power (NSSS) Owners Groups, NSSS vendors, and the improved STS were developed based on tatement on Technical Specifications Impower plant licensees to develop improved is report contains three volumes. Volume all chapters and sections of the improved statements. | resulted from the experience nese improved STS or to tions. This NUREG is the ons between the Nuclear plant licensees, Nuclear the Nuclear Energy the criteria in the Final provements for Nuclear Power sed as the basis for ed plant-specific technical me 1 contains the ed STS. Volume 2 contains | | gained from license adopt partial improvement of extensive Regulatory Commission Steam Supply System Institute (NEI). The Commission Policy Steactors, dated July individual nuclear papecifications. The Specifications for a the Bases for Chapter adopted the steam of | The changes reflected in Revision 1 in amendment applications to convert to the vements to existing technical specifications to the convert to the vements to existing technical specification (NRC) staff and various nuclear power (NSSS) Owners Groups, NSSS vendors, and the improved STS were developed based on tatement on Technical Specifications Impower plant licensees to develop improved statement contains three volumes. Volumes | resulted from the experience nese improved STS or to tions. This NUREG is the ons between the Nuclear replant licensees, Nuclear of the Nuclear Energy the criteria in the Final provements for Nuclear Power as the basis for ed plant-specific technical me 1 contains the ed STS. Volume 2 contains of the improved STS. | | gained from license adopt partial improveresult of extensive Regulatory Commission Steam Supply System Institute (NEI). The Commission Policy Steators, dated July individual nuclear particular in Specifications. The Specifications for the Bases for Chapter Volume 3 contains the | The changes reflected in Revision 1 in amendment applications to convert to the vements to existing technical specification (NRC) staff and various nuclear power (NSSS) Owners Groups, NSSS vendors, and the improved STS were developed based on tatement on Technical Specifications Imply 22, 1993. The improved STS will be use power plant licensees to develop improved is report contains three volumes. Volumeal chapters and sections of the improvements 2.0 and 3.0, and Sections 3.1 - 3.3 | resulted from the experience nese improved STS or to tions. This NUREG is the ons between the Nuclear replant licensees, Nuclear of the Nuclear Energy the criteria in the Final provements for Nuclear Power as the basis for ed plant-specific technical me 1 contains the ed STS. Volume 2 contains of the improved STS. | | gained from license adopt partial improveresult of extensive Regulatory Commission Steam Supply System Institute (NEI). The Commission Policy Steators, dated July individual nuclear particular in Specifications. The Specifications for the Bases for Chapter Volume 3 contains the | amendment applications to convert to the vements to existing technical specifications to convert to the vements to existing technical specification (NRC) staff and various nuclear power (NSSS) Owners Groups, NSSS vendors, and me improved STS were developed based on tatement on Technical Specifications Imply 22, 1993. The improved STS will be use power plant licensees to develop improved is report contains three volumes. Volumental chapters and sections of the improvement 2.0 and 3.0, and Sections 3.1 - 3.3 and Bases for Sections 3.4 - 3.9 of the | resulted from the experience nese improved STS or to tions. This NUREG is the ons between the Nuclear replant licensees, Nuclear of the Nuclear Energy the criteria in the Final provements for Nuclear Power sed as the basis for ed plant-specific technical me 1 contains the ed STS. Volume 2 contains of the improved STS. | | gained from license adopt partial improveresult of extensive Regulatory Commission Steam Supply System Institute (NEI). The Commission Policy Steators, dated July individual nuclear particular part | amendment applications to convert to the vements to existing technical specifications to convert to the vements to existing technical specifications and discussion (NRC) staff and various nuclear power (NSSS) Owners Groups, NSSS vendors, and he improved STS were developed based on tatement on Technical Specifications Imply 22, 1993. The improved STS will be use power plant licensees to develop improve is report contains three volumes. Volume all chapters and sections of the improvements 2.0 and 3.0, and Sections 3.1 – 3.3 he bases for Sections 3.4 – 3.9 of the improvements | resulted from the experience nese improved STS or to tions. This NUREG is the ons between the Nuclear replant licensees, Nuclear defined the Nuclear Energy the criteria in the Final provements for Nuclear Power sed as the
basis for ed plant-specific technical me 1 contains the ed STS. Volume 2 contains of the improved STS. | | gained from license adopt partial improveresult of extensive Regulatory Commission Steam Supply System Institute (NEI). The Commission Policy Steators, dated July individual nuclear particular in Specifications. The Specifications for the Bases for Chapter Volume 3 contains the | amendment applications to convert to the vements to existing technical specifications to convert to the vements to existing technical specifications and discussion (NRC) staff and various nuclear power (NSSS) Owners Groups, NSSS vendors, and he improved STS were developed based on tatement on Technical Specifications Imply 22, 1993. The improved STS will be use power plant licensees to develop improve is report contains three volumes. Volume all chapters and sections of the improvements 2.0 and 3.0, and Sections 3.1 – 3.3 he bases for Sections 3.4 – 3.9 of the improvements | resulted from the experience nese improved STS or to tions. This NUREG is the ons between the Nuclear replant licensees, Nuclear of the Nuclear Energy the criteria in the Final provements for Nuclear Power sed as the basis for ed plant-specific technical me 1 contains the ed STS. Volume 2 contains of the improved STS. 13. AVAILABILITY STATEMENT Unlimited | Unclassified 15. NUMBER OF PAGES 16. PRICE | | | (| |--|--|---| | | | , | | | |---|--|---|--|--| | | | | | | | | | | | | | | | - | | | | , | | | | | Federal Recycling Program