Standard Technical SpecificationsWestinghouse Plants Bases (Sections 2.0–3.3) U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation **April 1995** | | | | | · | | |--|--|---|---|---|--| , | | | | | | | | | | | | |) | · | ## **Standard Technical Specifications**Westinghouse Plants Bases (Sections 2.0–3.3) Issued by the U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation **April 1995** #### **AVAILABILITY NOTICE** Availability of Reference Materials Cited in NRC Publications Most documents cited in NRC publications will be available from one of the following sources: - 1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001 - The Superintendent of Documents, U.S. Government Printing Office, P. O. Box 37082, Washington, DC 20402–9328 - 3. The National Technical Information Service, Springfield, VA 22161-0002 Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive. Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence. The following documents in the NUREG series are available for purchase from the Government Printing Office: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, international agreement reports, grantee reports, and NRC booklets and brochures. Also available are regulatory guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances. Documents available from the National Technical Information Service include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission. Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions. *Federal Register* notices, Federal and State legislation, and congressional reports can usually be obtained from these libraries. Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited. Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Administration, Distribution and Mail Services Section, U.S. Nuclear Regulatory Commission, Washington DC 20555-0001. Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, Two White Flint North,11545 Rockville Pike, Rockville, MD 20852–2738, for use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018–3308. #### PREFACE This NUREG contains the improved Standard Technical Specifications (STS) for Westinghouse plants. Revision 1 incorporates the cumulative changes to Revision 0, which was published in September 1992. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, specifically the Westinghouse Owners Group (WOG), NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993 (58 FR 39132). Licensees are encouraged to upgrade their technical specifications consistent with those criteria and conforming, to the extent practical and consistent with the licensing basis for the facility, to Revision 1 to the improved STS. The Commission continues to place the highest priority on requests for complete conversions to the improved STS. Licensees adopting portions of the improved STS to existing technical specifications should adopt all related requirements, as applicable, to achieve a high degree of standardization and consistency. | | | | | () | |--|--|---|---|-----| - | | | | | | | | | | | | | ě | ÷ | #### TABLE OF CONTENTS | В | 2.0
2.1.1
2.1.2 | SAFETY LIMITS (SLs) | B
B | 2.0-1
2.0-1
2.0-7 | |---------------------------------------|--|--|---------------------------------------|--| | | 3.0
3.0 | LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY SURVEILLANCE REQUIREMENT (SR) APPLICABILITY | | 3.0-1
3.0-10 | | B B B B B B B B B B B B B B B B B B B | 3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.1.8
3.1.9
3.1.10
3.1.11 | REACTIVITY CONTROL SYSTEMS | B B B B B B B B B B B B B B B B B B B | 3.1-1
3.1-7
3.1-12
3.1-18
3.1-24
3.1-34
3.1-39
3.1-46
3.1-52
3.1-60
3.1-69 | | | 3.2
3.2.1A | POWER DISTRIBUTION LIMITS | | 3.2-1 | | В | 3.2.1B | $(F_{xy} \text{ Methodology}) \dots \dots$ | В | 3.2-1 | | В | 3.2.2 | (Fo Methodology) | | 3.2-113.2-21 | | В | 3.2.3A | Factor (FNH) | D
R | 3.2-21 | | В | 3.2.3B | AXIAL FLUX DIFFERENCE (AFD) (Relaxed Axial Offset Control (RAOC) Methodology) | | 3.2-38 | | В | 3.2.4 | QUADRANT POWER TILT RATIO (QPTR) | | 3.2-43 | | В | 3.3
3.3.1
3.3.2 | INSTRUMENTATION | В | 3.3-1
3.3-1 | | B
B | 3.3.3
3.3.4 | System (ESFAS) Instrumentation | В | 3.3-61
3.3-121
3.3-138 | | | 3.3.5 | Start Instrumentation | В | 3.3-144 | | | 3.3.6 | Instrument Purge and Exhaust Isolation Instrumentation | В | 3.3-150 | | | 3.3.7 | Control Room Emergency Filtration System (CREFS) Actuation Instrumentation | В | 3.3-159 | | | 3.3.8 | Fuel Building Air Cleanup System (FBACS) Actuation Instrumentation | В | 3.3-168 | | В | 3.3.9 | Boron Dilution Protection System (BDPS) | В | 3.3-175 | | | V. | |---|-----| * | | | | | | | | | | | | | | | | | | | 2 . | | | | | | V | • | #### B 2.0 SAFETY LIMITS (SLs) #### B 2.1.1 Reactor Core SLs #### BASES #### **BACKGROUND** GDC 10 (Ref. 1) requires that specified acceptable fuel design limits are not exceeded during steady state operation, normal operational transients, and anticipated operational occurrences (AOOs). This is accomplished by having a departure from nucleate boiling (DNB) design basis, which corresponds to a 95% probability at a 95% confidence level (the 95/95 DNB criterion) that DNB will not occur and by requiring that fuel centerline temperature stays below the melting temperature. The restrictions of this SL prevent overheating of the fuel and cladding, as well as possible cladding perforation, that would result in the release of fission products to the reactor coolant. Overheating of the fuel is prevented by maintaining the steady state peak linear heat rate (LHR) below the level at which fuel centerline melting occurs. Overheating of the fuel cladding is prevented by restricting fuel operation to within the nucleate boiling regime, where the heat transfer coefficient is large and the cladding surface temperature is slightly above the coolant saturation temperature. Fuel centerline melting occurs when the local LHR, or power peaking, in a region of the fuel is high enough to cause the fuel centerline temperature to reach the melting point of the fuel. Expansion of the pellet upon centerline melting may cause the pellet to stress the cladding to the point of failure, allowing an uncontrolled release of activity to the reactor coolant. Operation above the boundary of the nucleate boiling regime could result in excessive cladding temperature because of the onset of DNB and the resultant sharp reduction in heat transfer coefficient. Inside the steam film, high cladding temperatures are reached, and a cladding water (zirconium water) reaction may take place. This chemical reaction results in oxidation of the fuel cladding to a structurally weaker form. This weaker form may lose its integrity, resulting in an uncontrolled release of activity to the reactor coolant. ## BACKGROUND (continued) The proper functioning of the Reactor Protection System (RPS) and steam generator safety valves prevents violation of the reactor core SLs. ## APPLICABLE SAFETY ANALYSES The fuel cladding must not sustain
damage as a result of normal operation and AOOs. The reactor core SLs are established to preclude violation of the following fuel design criteria: - a. There must be at least 95% probability at a 95% confidence level (the 95/95 DNB criterion) that the hot fuel rod in the core does not experience DNB; and - b. The hot fuel pellet in the core must not experience centerline fuel melting. The Reactor Trip System setpoints (Ref. 2), in combination with all the LCOs, are designed to prevent any anticipated combination of transient conditions for Reactor Coolant System (RCS) temperature, pressure, and THERMAL POWER level that would result in a departure from nucleate boiling ratio (DNBR) of less than the DNBR limit and preclude the existence of flow instabilities. Automatic enforcement of these reactor core SLs is provided by the following functions: - a. High pressurizer pressure trip; - b. Low pressurizer pressure trip; - c. Overtemperature ΔT trip; - d. Overpower ΔT trip; - e. Power Range Neutron Flux trip; and - f. Steam generator safety valves. The limitation that the average enthalpy in the hot leg be less than or equal to the enthalpy of saturated liquid also ensures that the ΔT measured by instrumentation, used in the RPS design as a measure of core power, is proportional to core power. #### APPLICABLE SAFETY ANALYSES (continued) The SLs represent a design requirement for establishing the RPS trip setpoints identified previously. LCO 3.4.1, "RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits," or the assumed initial conditions of the safety analyses (as indicated in the FSAR, Ref. 2) provide more restrictive limits to ensure that the SLs are not exceeded. #### SAFETY LIMITS The curves provided in Figure B 2.1.1-1 show the loci of points of THERMAL POWER, RCS pressure, and average temperature for which the minimum DNBR is not less than the safety analyses limit, that fuel centerline temperature remains below melting, that the average enthalpy in the hot leg is less than or equal to the enthalpy of saturated liquid, or that the exit quality is within the limits defined by the DNBR correlation. The curves are based on enthalpy hot channel factor limits provided in the COLR. The dashed line of Figure B 2.1.1-1 shows an example of a limit curve at 2235 psig. In addition, it illustrates the various RPS functions that are designed to prevent the unit from reaching the limit. The SL is higher than the limit calculated when the AFD is within the limits of the $F_1(\Delta I)$ function of the overtemperature ΔI reactor trip. When the AFD is not within the tolerance, the AFD effect on the overtemperature ΔI reactor trips will reduce the setpoints to provide protection consistent with the reactor core SLs (Refs. 3 and 4). #### APPLICABILITY SL 2.1.1 only applies in MODES 1 and 2 because these are the only MODES in which the reactor is critical. Automatic protection functions are required to be OPERABLE during MODES 1 and 2 to ensure operation within the reactor core SLs. The steam generator safety valves or automatic protection actions serve to prevent RCS heatup to the reactor core SL conditions or to initiate a reactor trip function, which forces the unit into MODE 3. Setpoints for the reactor trip functions are specified in LCO 3.3.1, "Reactor Trip System (RTS) Instrumentation." In MODES 3, 4, ## APPLICABILITY (continued) 5, and 6, Applicability is not required since the reactor is not generating significant THERMAL POWER. ## SAFETY LIMIT VIOLATIONS The following SL violation responses are applicable to the reactor core SLs. #### 2.2.1 If SL 2.1.1 is violated, the requirement to go to MODE 3 places the unit in a MODE in which this SL is not applicable. The allowed Completion Time of 1 hour recognizes the importance of bringing the unit to a MODE of operation where this SL is not applicable, and reduces the probability of fuel damage. #### 2.2.3 If SL 2.1.1 is violated, the NRC Operations Center must be notified within 1 hour, in accordance with 10 CFR 50.72 (Ref. 5). #### 2.2.4 If SL 2.1.1 is violated, the Plant Superintendent and the Vice President—Nuclear Operations shall be notified within 24 hours. This 24 hour period provides time for the plant operators and staff to take the appropriate immediate action and assess the condition of the unit before reporting to senior management. #### 2.2.5 If SL 2.1.1 is violated, a Licensee Event Report shall be prepared and submitted within 30 days to the NRC in accordance with 10 CFR 50.73 (Ref. 6). A copy of the report shall also be provided to the Plant Superintendent and the Vice President—Nuclear Operations. #### **BASES** #### SAFETY LIMIT VIOLATIONS (continued) #### 2.2.6 If SL 2.1.1 is violated, restart of the unit shall not commence until authorized by the NRC. This requirement ensures the NRC that all necessary reviews, analyses, and actions are completed before the unit begins its restart to normal operation. #### REFERENCES - 1. 10 CFR 50, Appendix A, GDC 10. - 2. FSAR, Section [7.2]. - 3. WCAP-8746-A, March 1977. - 4. WCAP-9273-NP-A, July 1985. - 5. 10 CFR 50.72. - 6. 10 CFR 50.73. Figure B 2.1.1-1 (page 1 of 1) Reactor Core Safety Limits vs. Boundary of Protection #### B 2.0 SAFETY LIMITS (SLs) #### B 2.1.2 Reactor Coolant System (RCS) Pressure SL #### BASES #### BACKGROUND The SL on RCS pressure protects the integrity of the RCS against overpressurization. In the event of fuel cladding failure, fission products are released into the reactor coolant. The RCS then serves as the primary barrier in preventing the release of fission products into the atmosphere. By establishing an upper limit on RCS pressure, the continued integrity of the RCS is ensured. According to 10 CFR 50, Appendix A, GDC 14, "Reactor Coolant Pressure Boundary," and GDC 15, "Reactor Coolant System Design" (Ref. 1), the reactor pressure coolant boundary (RCPB) design conditions are not to be exceeded during normal operation and anticipated operational occurrences (AOOs). Also, in accordance with GDC 28, "Reactivity Limits" (Ref. 1), reactivity accidents, including rod ejection, do not result in damage to the RCPB greater than limited local yielding. The design pressure of the RCS is 2500 psia. During normal operation and AOOs, RCS pressure is limited from exceeding the design pressure by more than 10%, in accordance with Section III of the ASME Code (Ref. 2). To ensure system integrity, all RCS components are hydrostatically tested at 125% of design pressure, according to the ASME Code requirements prior to initial operation when there is no fuel in the core. Following inception of unit operation, RCS components shall be pressure tested, in accordance with the requirements of ASME Code, Section XI (Ref. 3). Overpressurization of the RCS could result in a breach of the RCPB. If such a breach occurs in conjunction with a fuel cladding failure, fission products could enter the containment atmosphere, raising concerns relative to limits on radioactive releases specified in 10 CFR 100, "Reactor Site Criteria" (Ref. 4). ## APPLICABLE SAFETY ANALYSES The RCS pressurizer safety valves, the main steam safety valves (MSSVs), and the reactor high pressure trip have settings established to ensure that the RCS pressure SL will not be exceeded. #### APPLICABLE SAFETY ANALYSES (continued) The RCS pressurizer safety valves are sized to prevent system pressure from exceeding the design pressure by more than 10%, as specified in Section III of the ASME Code for Nuclear Power Plant Components (Ref. 2). The transient that establishes the required relief capacity, and hence valve size requirements and lift settings, is a complete loss of external load without a direct reactor trip. During the transient, no control actions are assumed, except that the safety valves on the secondary plant are assumed to open when the steam pressure reaches the secondary plant safety valve settings, and nominal feedwater supply is maintained. The Reactor Trip System setpoints (Ref. 5), together with the settings of the MSSVs, provide pressure protection for normal operation and AOOs. The reactor high pressure trip setpoint is specifically set to provide protection against overpressurization (Ref. 5). The safety analyses for both the high pressure trip and the RCS pressurizer safety valves are performed using conservative assumptions relative to pressure control devices. More specifically, no credit is taken for operation of the following: - a. Pressurizer power operated relief valves (PORVs); - b. Steam line relief valve; - c. Steam Dump System; - d. Reactor Control System; - e. Pressurizer Level Control System; or - f. Pressurizer spray valve. #### SAFETY LIMITS The maximum transient pressure allowed in the RCS pressure vessel under the ASME Code, Section III, is 110% of design pressure. The maximum transient pressure allowed in the RCS piping, valves, and fittings under [USAS, Section B31.1 (Ref. 6)] is 120% of design pressure. The most limiting of these two allowances is the 110% of design pressure; therefore, the SL on maximum allowable RCS pressure is 2735 psig. #### BASES (continued) #### APPLICABILITY SL 2.1.2 applies in MODES 1, 2, 3, 4, and 5 because this SL could be approached or exceeded in these MODES due to overpressurization events. The SL is not applicable in MODE 6 because the reactor vessel head closure bolts are not fully tightened, making it unlikely that the RCS can be pressurized. ### SAFETY LIMIT VIOLATIONS The following SL violations are applicable to the RCS pressure SL. #### 2.2.2.1 If the RCS pressure SL is violated when the reactor is in MODE 1 or 2, the requirement is to restore compliance and be in MODE 3 within 1 hour. Exceeding the RCS pressure SL may cause immediate RCS failure and create a potential for radioactive releases in excess of 10 CFR 100, "Reactor Site Criteria," limits (Ref. 4). The allowable Completion Time of 1 hour recognizes
the importance of reducing power level to a MODE of operation where the potential for challenges to safety systems is minimized. #### 2.2.2.2 If the RCS pressure SL is exceeded in MODE 3, 4, or 5, RCS pressure must be restored to within the SL value within 5 minutes. Exceeding the RCS pressure SL in MODE 3, 4, or 5 is more severe than exceeding this SL in MODE 1 or 2, since the reactor vessel temperature may be lower and the vessel material, consequently, less ductile. As such, pressure must be reduced to less than the SL within 5 minutes. The action does not require reducing MODES, since this would require reducing temperature, which would compound the problem by adding thermal gradient stresses to the existing pressure stress. #### SAFETY LIMIT **VIOLATIONS** (continued) #### 2.2.3 If the RCS pressure SL is violated, the NRC Operations Center must be notified within 1 hour, in accordance with 10 CFR 50.72 (Ref. 7). #### 2.2.4 If the RCS pressure SL is violated, the Plant Superintendent and the Vice President-Nuclear Operations shall be notified within 24 hours. The 24 hour period provides time for the plant operators and staff to take the appropriate immediate action and assess the condition of the unit before reporting to senior management. #### 2.2.5 If the RCS pressure SL is violated, a Licensee Event Report shall be prepared and submitted within 30 days to the NRC in accordance with 10 CFR 50.73 (Ref. 8). A copy of the report shall also be provided to the Plant Superintendent and the Vice President - Nuclear Operations. #### 2.2.6 If the RCS pressure SL is violated, restart of the unit shall not commence until authorized by the NRC. This requirement ensures the NRC that all necessary reviews, analyses, and actions are completed before the unit begins its restart to normal operation. #### REFERENCES - 10 CFR 50, Appendix A, GDC 14, GDC 15, and GDC 28. 1. - ASME, Boiler and Pressure Vessel Code, Section III, 2. Article NB-7000. - ASME, Boiler and Pressure Vessel Code, Section XI, 3. Article IWX-5000. - 4. 10 CFR 100. #### **BASES** ## REFERENCES (continued) - 5. FSAR, Section [7.2]. - 6. USAS B31.1, Standard Code for Pressure Piping, American Society of Mechanical Engineers, 1967. - 7. 10 CFR 50.72. - 8. 10 CFR 50.73. #### B 3.0 LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY #### **BASES** #### LC0s LCO 3.0.1 through LCO 3.0.6 establish the general requirements applicable to all Specifications and apply at all times, unless otherwise stated. #### LCO 3.0.1 LCO 3.0.1 establishes the Applicability statement within each individual Specification as the requirement for when the LCO is required to be met (i.e., when the unit is in the MODES or other specified conditions of the Applicability statement of each Specification). #### LCO 3.0.2 LCO 3.0.2 establishes that upon discovery of a failure to meet an LCO, the associated ACTIONS shall be met. The Completion Time of each Required Action for an ACTIONS Condition is applicable from the point in time that an ACTIONS Condition is entered. The Required Actions establish those remedial measures that must be taken within specified Completion Times when the requirements of an LCO are not met. This Specification establishes that: - a. Completion of the Required Actions within the specified Completion Times constitutes compliance with a Specification; and - b. Completion of the Required Actions is not required when an LCO is met within the specified Completion Time, unless otherwise specified. There are two basic types of Required Actions. The first type of Required Action specifies a time limit in which the LCO must be met. This time limit is the Completion Time to restore an inoperable system or component to OPERABLE status or to restore variables to within specified limits. If this type of Required Action is not completed within the specified Completion Time, a shutdown may be required to place the unit in a MODE or condition in which the Specification is not applicable. (Whether stated as a Required Action or not, correction of the entered Condition is an action that may always be considered upon entering ## LCO 3.0.2 (continued) ACTIONS.) The second type of Required Action specifies the remedial measures that permit continued operation of the unit that is not further restricted by the Completion Time. In this case, compliance with the Required Actions provides an acceptable level of safety for continued operation. Completing the Required Actions is not required when an LCO is met or is no longer applicable, unless otherwise stated in the individual Specifications. The nature of some Required Actions of some Conditions necessitates that, once the Condition is entered, the Required Actions must be completed even though the associated Conditions no longer exist. The individual LCO's ACTIONS specify the Required Actions where this is the case. An example of this is in LCO 3.4.3, "RCS Pressure and Temperature (P/T) Limits." The Completion Times of the Required Actions are also applicable when a system or component is removed from service intentionally. The reasons for intentionally relying on the ACTIONS include, but are not limited to, performance of Surveillances, preventive maintenance, corrective maintenance, or investigation of operational Entering ACTIONS for these reasons must be done in a manner that does not compromise safety. Intentional entry into ACTIONS should not be made for operational convenience. Alternatives that would not result in redundant equipment being inoperable should be used instead. Doing so limits the time both subsystems/trains of a safety function are inoperable and limits the time other conditions exist which result in LCO 3.0.3 being entered. Individual Specifications may specify a time limit for performing an SR when equipment is removed from service or bypassed for testing. In this case, the Completion Times of the Required Actions are applicable when this time limit expires, if the equipment remains removed from service or bypassed. When a change in MODE or other specified condition is required to comply with Required Actions, the unit may enter a MODE or other specified condition in which another Specification becomes applicable. In this case, the Completion Times of the associated Required Actions would apply from the point in time that the new Specification becomes applicable, and the ACTIONS Condition(s) are entered. - LCO 3.0.3 LCO 3.0.3 establishes the actions that must be implemented when an LCO is not met and: - a. An associated Required Action and Completion Time is not met and no other Condition applies; or - b. The condition of the unit is not specifically addressed by the associated ACTIONS. This means that no combination of Conditions stated in the ACTIONS can be made that exactly corresponds to the actual condition of the unit. Sometimes, possible combinations of Conditions are such that entering LCO 3.0.3 is warranted; in such cases, the ACTIONS specifically state a Condition corresponding to such combinations and also that LCO 3.0.3 be entered immediately. This Specification delineates the time limits for placing the unit in a safe MODE or other specified condition when operation cannot be maintained within the limits for safe operation as defined by the LCO and its ACTIONS. It is not intended to be used as an operational convenience that permits routine voluntary removal of redundant systems or components from service in lieu of other alternatives that would not result in redundant systems or components being inoperable. Upon entering LCO 3.0.3, 1 hour is allowed to prepare for an orderly shutdown before initiating a change in unit operation. This includes time to permit the operator to coordinate the reduction in electrical generation with the load dispatcher to ensure the stability and availability of the electrical grid. The time limits specified to reach lower MODES of operation permit the shutdown to proceed in a controlled and orderly manner that is well within the specified maximum cooldown rate and within the capabilities of the unit, assuming that only the minimum required equipment is OPERABLE. This reduces thermal stresses on components of the Reactor Coolant System and the potential for a plant upset that could challenge safety systems under conditions to which this Specification applies. The use and interpretation of specified times to complete the actions of LCO 3.0.3 are consistent with the discussion of Section 1.3, Completion Times. ## LCO 3.0.3 (continued) A unit shutdown required in accordance with LCO 3.0.3 may be terminated and LCO 3.0.3 exited if any of the following occurs: - a. The LCO is now met. - b. A Condition exists for which the Required Actions have now been performed. - c. ACTIONS exist that do not have expired Completion Times. These Completion Times are applicable from the point in time that the Condition is initially entered and not from the time LCO 3.0.3 is exited. The time limits of Specification 3.0.3 allow 37 hours for the unit to be in MODE 5 when a shutdown is required during MODE 1 operation. If the unit is in a lower MODE of operation when a shutdown is required, the time limit for reaching the next lower MODE applies. If a lower MODE is reached in less time than allowed, however, the total allowable time to reach MODE 5, or other applicable MODE, is not reduced. For example, if MODE 3 is reached in 2 hours, then the time allowed for reaching MODE 4 is the next 11 hours, because the total time for reaching MODE 4 is not reduced from the allowable limit of 13 hours. Therefore, if remedial measures are completed that would permit a return to MODE 1, a penalty is not incurred by having to reach a lower MODE of operation in less than the total time allowed. In MODES 1, 2, 3, and 4, LCO 3.0.3 provides actions for Conditions not covered in other Specifications. The requirements of LCO 3.0.3 do not apply in MODES 5 and 6 because the unit is already in the most restrictive
Condition required by LCO 3.0.3. The requirements of LCO 3.0.3 do not apply in other specified conditions of the Applicability (unless in MODE 1, 2, 3, or 4) because the ACTIONS of individual Specifications sufficiently define the remedial measures to be taken. Exceptions to LCO 3.0.3 are provided in instances where requiring a unit shutdown, in accordance with LCO 3.0.3, would not provide appropriate remedial measures for the associated condition of the unit. An example of this is in LCO 3.7.15, "Fuel Storage Pool Water Level." LCO 3.7.15 has an Applicability of "During movement of irradiated fuel ## LCO 3.0.3 (continued) assemblies in the fuel storage pool." Therefore, this LCO can be applicable in any or all MODES. If the LCO and the Required Actions of LCO 3.7.15 are not met while in MODE 1, 2, or 3, there is no safety benefit to be gained by placing the unit in a shutdown condition. The Required Action of LCO 3.7.15 of "Suspend movement of irradiated fuel assemblies in the fuel storage pool" is the appropriate Required Action to complete in lieu of the actions of LCO 3.0.3. These exceptions are addressed in the individual Specifications. #### LCO 3.0.4 LCO 3.0.4 establishes limitations on changes in MODES or other specified conditions in the Applicability when an LCO is not met. It precludes placing the unit in a MODE or other specified condition stated in that Applicability (e.g., Applicability desired to be entered) when the following exist: - a. Unit conditions are such that the requirements of the LCO would not be met in the Applicability desired to be entered; and - b. Continued noncompliance with the LCO requirements, if the Applicability were entered, would result in the unit being required to exit the Applicability desired to be entered to comply with the Required Actions. Compliance with Required Actions that permit continued operation of the unit for an unlimited period of time in a MODE or other specified condition provides an acceptable level of safety for continued operation. This is without regard to the status of the unit before or after the MODE change. Therefore, in such cases, entry into a MODE or other specified condition in the Applicability may be made in accordance with the provisions of the Required Actions. The provisions of this Specification should not be interpreted as endorsing the failure to exercise the good practice of restoring systems or components to OPERABLE status before entering an associated MODE or other specified condition in the Applicability. The provisions of LCO 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability ## LCO 3.0.4 (continued) that are required to comply with ACTIONS. In addition, the provisions of LCO 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that result from any unit shutdown. Exceptions to LCO 3.0.4 are stated in the individual Specifications. Exceptions may apply to all the ACTIONS or to a specific Required Action of a Specification. LCO 3.0.4 is only applicable when entering MODE 4 from MODE 5, MODE 3 from MODE 4, MODE 2 from MODE 3, or MODE 1 from MODE 2. Furthermore, LCO 3.0.4 is applicable when entering any other specified condition in the Applicability only while operating in MODES 1, 2, 3, or 4. The requirements of LCO 3.0.4 do not apply in MODES 5 and 6, or in other specified conditions of the Applicability (unless in MODES 1, 2, 3, or 4) because the ACTIONS of individual Specifications sufficiently define the remedial measures to be taken. [In some cases (e.g., ..) these ACTIONS provide a Note that states "While this LCO is not met, entry into a MODE or other specified condition in the Applicability is not permitted, unless required to comply with ACTIONS." This Note is a requirement explicitly precluding entry into a MODE or other specified condition of the Applicability.] Surveillances do not have to be performed on the associated inoperable equipment (or on variables outside the specified limits), as permitted by SR 3.0.1. Therefore, changing MODES or other specified conditions while in an ACTIONS Condition, in compliance with LCO 3.0.4 or where an exception to LCO 3.0.4 is stated, is not a violation of SR 3.0.1 or SR 3.0.4 for those Surveillances that do not have to be performed due to the associated inoperable equipment. However, SRs must be met to ensure OPERABILITY prior to declaring the associated equipment OPERABLE (or variable within limits) and restoring compliance with the affected LCO. #### LCO 3.0.5 LCO 3.0.5 establishes the allowance for restoring equipment to service under administrative controls when it has been removed from service or declared inoperable to comply with ACTIONS. The sole purpose of this Specification is to ## LCO 3.0.5 (continued) provide an exception to LCO 3.0.2 (e.g., to not comply with the applicable Required Action(s)) to allow the performance of SRs to demonstrate: - a. The OPERABILITY of the equipment being returned to service; or - b. The OPERABILITY of other equipment. The administrative controls ensure the time the equipment is returned to service in conflict with the requirements of the ACTIONS is limited to the time absolutely necessary to perform the allowed SRs. This Specification does not provide time to perform any other preventive or corrective maintenance. An example of demonstrating the OPERABILITY of the equipment being returned to service is reopening a containment isolation valve that has been closed to comply with Required Actions and must be reopened to perform the SRs. An example of demonstrating the OPERABILITY of other equipment is taking an inoperable channel or trip system out of the tripped condition to prevent the trip function from occurring during the performance of an SR on another channel in the other trip system. A similar example of demonstrating the OPERABILITY of other equipment is taking an inoperable channel or trip system out of the tripped condition to permit the logic to function and indicate the appropriate response during the performance of an SR on another channel in the same trip system. #### LCO 3.0.6 LCO 3.0.6 establishes an exception to LCO 3.0.2 for support systems that have an LCO specified in the Technical Specifications (TS). This exception is provided because LCO 3.0.2 would require that the Conditions and Required Actions of the associated inoperable supported system LCO be entered solely due to the inoperability of the support system. This exception is justified because the actions that are required to ensure the unit is maintained in a safe condition are specified in the support system LCO's Required Actions. These Required Actions may include entering the ## LCO 3.0.6 (continued) supported system's Conditions and Required Actions or may specify other Required Actions. When a support system is inoperable and there is an LCO specified for it in the TS, the supported system(s) are required to be declared inoperable if determined to be inoperable as a result of the support system inoperability. However, it is not necessary to enter into the supported systems' Conditions and Required Actions unless directed to do so by the support system's Required Actions. The potential confusion and inconsistency of requirements related to the entry into multiple support and supported systems' LCOs' Conditions and Required Actions are eliminated by providing all the actions that are necessary to ensure the unit is maintained in a safe condition in the support system's Required Actions. However, there are instances where a support system's Required Action may either direct a supported system to be declared inoperable or direct entry into Conditions and Required Actions for the supported system. This may occur immediately or after some specified delay to perform some other Required Action. Regardless of whether it is immediate or after some delay, when a support system's Required Action directs a supported system to be declared inoperable or directs entry into Conditions and Required Actions for a supported system, the applicable Conditions and Required Actions shall be entered in accordance with LCO 3.0.2. Specification 5.5.15, "Safety Function Determination Program (SFDP)," ensures loss of safety function is detected and appropriate actions are taken. Upon entry into LCO 3.0.6, an evaluation shall be made to determine if loss of safety function exists. Additionally, other limitations, remedial actions, or compensatory actions may be identified as a result of the support system inoperability and corresponding exception to entering supported system Conditions and Required Actions. The SFDP implements the requirements of LCO 3.0.6. Cross train checks to identify a loss of safety function for those support systems that support multiple and redundant safety systems are required. The cross train check verifies that the supported systems of the redundant OPERABLE support ## LCO 3.0.6 (continued) system are OPERABLE, thereby ensuring safety function is retained. If this evaluation determines that a loss of safety function exists, the appropriate Conditions and Required Actions of the LCO in which the loss of safety function exists are required to be entered. #### LCO 3.0.7 There are certain special tests and operations required to be performed at various times over the life of the unit. These special tests and operations are necessary to demonstrate select unit performance characteristics, to perform special maintenance activities, and to perform special evolutions. Test Exception LCOs [3.1.9, 3.1.10, 3.1.11, and 3.4.19] allow specified Technical Specification (TS) requirements to be changed to permit performances of these special tests and operations, which otherwise could not be performed if required to comply with < the requirements of these TS. Unless otherwise specified, all the other TS requirements remain unchanged. This will ensure all appropriate requirements of the MODE or
other specified condition not directly associated with or required to be changed to perform the special test or operation will remain in effect. The Applicability of a Test Exception LCO represents a condition not necessarily in compliance with the normal requirements of the TS. Compliance with Test Exception LCOs is optional. A special operation may be performed either under the provisions of the appropriate Test Exception LCO or under the other applicable TS requirements. If it is desired to perform the special operation under the provisions of the Test Exception LCO, the requirements of the Test Exception LCO shall be followed. #### B 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY #### **BASES** SRs SR 3.0.1 through SR 3.0.4 establish the general requirements applicable to all Specifications and apply at all times, unless otherwise stated. SR 3.0.1 SR 3.0.1 establishes the requirement that SRs must be met during the MODES or other specified conditions in the Applicability for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a Surveillance within the specified Frequency, in accordance with SR 3.0.2, constitutes a failure to meet an LCO. Systems and components are assumed to be OPERABLE when the associated SRs have been met. Nothing in this Specification, however, is to be construed as implying that systems or components are OPERABLE when: - The systems or components are known to be inoperable, although still meeting the SRs; or - b. The requirements of the Surveillance(s) are known not to be met between required Surveillance performances. Surveillances do not have to be performed when the unit is in a MODE or other specified condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with a test exception are only applicable when the test exception is used as an allowable exception to the requirements of a Specification. Surveillances, including Surveillances invoked by Required Actions, do not have to be performed on inoperable equipment because the ACTIONS define the remedial measures that apply. Surveillances have to be met and performed in accordance with SR 3.0.2, prior to returning equipment to OPERABLE status. ## SR 3.0.1 (continued) Upon completion of maintenance, appropriate post maintenance testing is required to declare equipment OPERABLE. This includes ensuring applicable Surveillances are not failed and their most recent performance is in accordance with SR 3.0.2. Post maintenance testing may not be possible in the current MODE or other specified conditions in the Applicability due to the necessary unit parameters not having been established. In these situations, the equipment may be considered OPERABLE provided testing has been satisfactorily completed to the extent possible and the equipment is not otherwise believed to be incapable of performing its function. This will allow operation to proceed to a MODE or other specified condition where other necessary post maintenance tests can be completed. #### SR 3.0.2 SR 3.0.2 establishes the requirements for meeting the specified Frequency for Surveillances and any Required Action with a Completion Time that requires the periodic performance of the Required Action on a "once per . . ." interval. SR 3.0.2 permits a 25% extension of the interval specified in the Frequency. This extension facilitates Surveillance scheduling and considers plant operating conditions that may not be suitable for conducting the Surveillance (e.g., transient conditions or other ongoing Surveillance or maintenance activities). The 25% extension does not significantly degrade the reliability that results from performing the Surveillance at its specified Frequency. This is based on the recognition that the most probable result of any particular Surveillance being performed is the verification of conformance with the SRs. The exceptions to SR 3.0.2 are those Surveillances for which the 25% extension of the interval specified in the Frequency does not apply. These exceptions are stated in the individual Specifications. An example of where SR 3.0.2 does not apply is a Surveillance with a Frequency of "in accordance with 10 CFR 50, Appendix J, as modified by approved exemptions." The requirements of regulations take precedence over the TS. The TS cannot in and of themselves extend a test interval specified in the regulations. ## SR 3.0.2 (continued) Therefore, there is a Note in the Frequency stating, "SR 3.0.2 is not applicable." As stated in SR 3.0.2, the 25% extension also does not apply to the initial portion of a periodic Completion Time that requires performance on a "once per ..." basis. The 25% extension applies to each performance after the initial performance. The initial performance of the Required Action, whether it is a particular Surveillance or some other remedial action, is considered a single action with a single Completion Time. One reason for not allowing the 25% extension to this Completion Time is that such an action usually verifies that no loss of function has occurred by checking the status of redundant or diverse components or accomplishes the function of the inoperable equipment in an alternative manner. The provisions of SR 3.0.2 are not intended to be used repeatedly merely as an operational convenience to extend Surveillance intervals (other than those consistent with refueling intervals) or periodic Completion Time intervals beyond those specified. #### SR 3.0.3 SR 3.0.3 establishes the flexibility to defer declaring affected equipment inoperable or an affected variable outside the specified limits when a Surveillance has not been completed within the specified Frequency. A delay period of up to 24 hours or up to the limit of the specified Frequency, whichever is less, applies from the point in time that it is discovered that the Surveillance has not been performed in accordance with SR 3.0.2, and not at the time that the specified Frequency was not met. This delay period provides adequate time to complete Surveillances that have been missed. This delay period permits the completion of a Surveillance before complying with Required Actions or other remedial measures that might preclude completion of the Surveillance. The basis for this delay period includes consideration of unit conditions, adequate planning, availability of personnel, the time required to perform the Surveillance, the safety significance of the delay in completing the required Surveillance, and the recognition that the most ## SR 3.0.3 (continued) probable result of any particular Surveillance being performed is the verification of conformance with the requirements. When a Surveillance with a Frequency based not on time intervals, but upon specified unit conditions or operational situations, is discovered not to have been performed when specified, SR 3.0.3 allows the full delay period of 24 hours to perform the Surveillance. SR 3.0.3 also provides a time limit for completion of Surveillances that become applicable as a consequence of MODE changes imposed by Required Actions. Failure to comply with specified Frequencies for SRs is expected to be an infrequent occurrence. Use of the delay period established by SR 3.0.3 is a flexibility which is not intended to be used as an operational convenience to extend Surveillance intervals. If a Surveillance is not completed within the allowed delay period, then the equipment is considered inoperable or the variable is considered outside the specified limits and the Completion Times of the Required Actions for the applicable LCO Conditions begin immediately upon expiration of the delay period. If a Surveillance is failed within the delay period, then the equipment is inoperable, or the variable is outside the specified limits and the Completion Times of the Required Actions for the applicable LCO Conditions begin immediately upon the failure of the Surveillance. Completion of the Surveillance within the delay period allowed by this Specification, or within the Completion Time of the ACTIONS, restores compliance with SR 3.0.1. #### SR 3.0.4 SR 3.0.4 establishes the requirement that all applicable SRs must be met before entry into a MODE or other specified condition in the Applicability. This Specification ensures that system and component OPERABILITY requirements and variable limits are met before entry into MODES or other specified conditions in the Applicability for which these systems and components ensure safe operation of the unit. ## SR 3.0.4 (continued) The provisions of this Specification should not be interpreted as endorsing the failure to exercise the good practice of restoring systems or component to OPERABLE status before entering an associated MODE or other specified condition in the Applicability. However, in certain circumstances, failing to meet an SR will not result in SR 3.0.4 restricting a MODE change or other specified condition change. When a system, subsystem, division, component, device, or variable is inoperable or outside its specified limits, the associated SR(s) are not required to be performed, per SR 3.0.1, which states that surveillances do not have to be performed on inoperable equipment. When equipment is inoperable, SR 3.0.4 does not apply to the associated SR(s) since the requirement for the SR(s) to be performed is removed. Therefore, failing to perform the Surveillance(s) within the specified Frequency does not result in an SR 3.0.4 restriction to changing MODES or other specified conditions of the Applicability. However, since the LCO is not met in this instance, LCO 3.0.4 will govern any restrictions that may (or may not) apply to MODE or other specified condition changes. The provisions of SR 3.0.4 shall not prevent
changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS. In addition, the provisions of LCO 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that result from any unit shutdown. The precise requirements for performance of SRs are specified such that exceptions to SR 3.0.4 are not necessary. The specific time frames and conditions necessary for meeting the SRs are specified in the Frequency, in the Surveillance, or both. This allows performance of Surveillances when the prerequisite condition(s) specified in a Surveillance procedure require entry into the MODE or other specified condition in the Applicability of the associated LCO prior to the performance or completion of a Surveillance. A Surveillance that could not be performed until after entering the LCO Applicability, would have its Frequency specified such that it is not "due" until the specific conditions needed are met. Alternately, the Surveillance may be stated in the form of a Note as not required (to be met or performed) until a particular event, ## SR 3.0.4 (continued) condition, or time has been reached. Further discussion of the specific formats of SRs' annotation is found in Section 1.4, Frequency. SR 3.0.4 is only applicable when entering MODE 4 from MODE 5, MODE 3 from MODE 4, Mode 2 from MODE 3, or MODE 1 from MODE 2. Furthermore, SR 3.0.4 is applicable when entering any other specified condition in the Applicability only while operating in MODES 1, 2, 3, or 4. The requirements of SR 3.0.4 do not apply in MODES 5 and 6, or in other specified conditions of the Applicability (unless in MODES 1, 2, 3, or 4) because the ACTIONS of individual Specifications sufficiently define the remedial measures to be taken. ## B 3.1 REACTIVITY CONTROL SYSTEMS B 3.1.1 SHUTDOWN MARGIN (SDM)—Tavg > 200°F #### **BASES** #### BACKGROUND According to GDC 26 (Ref. 1), the reactivity control systems must be redundant and capable of holding the reactor core subcritical when shut down under cold conditions. Maintenance of the SDM ensures that postulated reactivity events will not damage the fuel. SDM requirements provide sufficient reactivity margin to ensure that acceptable fuel design limits will not be exceeded for normal shutdown and anticipated operational occurrences (AOOs). As such, the SDM defines the degree of subcriticality that would be obtained immediately following the insertion or scram of all shutdown and control rods, assuming that the single rod cluster assembly of highest reactivity worth is fully withdrawn. The system design requires that two independent reactivity control systems be provided, and that one of these systems be capable of maintaining the core subcritical under cold conditions. These requirements are provided by the use of movable control assemblies and soluble boric acid in the Reactor Coolant System (RCS). The Control Rod System can compensate for the reactivity effects of the fuel and water temperature changes accompanying power level changes over the range from full load to no load. In addition, the Control Rod System, together with the boration system, provides the SDM during power operation and is capable of making the core subcritical rapidly enough to prevent exceeding acceptable fuel damage limits, assuming that the rod of highest reactivity worth remains fully withdrawn. The soluble boron system can compensate for fuel depletion during operation and all xenon burnout reactivity changes and maintain the reactor subcritical under cold conditions. During power operation, SDM control is ensured by operating with the shutdown banks fully withdrawn and the control banks within the limits of LCO 3.1.7, "Control Bank Insertion Limits." When the unit is in the shutdown and refueling modes, the SDM requirements are met by means of adjustments to the RCS boron concentration. ## APPLICABLE SAFETY ANALYSES The minimum required SDM is assumed as an initial condition in safety analyses. The safety analysis (Ref. 2) establishes an SDM that ensures specified acceptable fuel design limits are not exceeded for normal operation and AOOs, with the assumption of the highest worth rod stuck out on scram. The acceptance criteria for the SDM requirements are that specified acceptable fuel design limits are maintained. This is done by ensuring that: - a. The reactor can be made subcritical from all operating conditions, transients, and Design Basis Events; - b. The reactivity transients associated with postulated accident conditions are controllable within acceptable limits (departure from nucleate boiling ratio (DNBR), fuel centerline temperature limits for AOOs, and ≤ 280 cal/gm energy deposition for the rod ejection accident); and - c. The reactor will be maintained sufficiently subcritical to preclude inadvertent criticality in the shutdown condition. The most limiting accident for the SDM requirements is based on a main steam line break (MSLB), as described in the accident analysis (Ref. 2). The increased steam flow resulting from a pipe break in the main steam system causes an increased energy removal from the affected steam generator (SG), and consequently the RCS. This results in a reduction of the reactor coolant temperature. The resultant coolant shrinkage causes a reduction in pressure. In the presence of a negative moderator temperature coefficient, this cooldown causes an increase in core reactivity. As RCS temperature decreases, the severity of an MSLB decreases until the MODE 5 value is reached. The most limiting MSLB. with respect to potential fuel damage before a reactor trip occurs, is a guillotine break of a main steam line inside containment initiated at the end of core life. The positive reactivity addition from the moderator temperature decrease will terminate when the affected SG boils dry, thus terminating RCS heat removal and cooldown. Following the MSLB, a post trip return to power may occur; however, no fuel damage occurs as a result of the post trip return to # APPLICABLE SAFETY ANALYSES (continued) power, and THERMAL POWER does not violate the Safety Limit (SL) requirement of SL 2.1.1. In addition to the limiting MSLB transient, the SDM requirement must also protect against: - a. Inadvertent boron dilution; - b. An uncontrolled rod withdrawal from subcritical or low power condition: - c. Startup of an inactive reactor coolant pump (RCP); and - d. Rod ejection. Each of these events is discussed below. In the boron dilution analysis, the required SDM defines the reactivity difference between an initial subcritical boron concentration and the corresponding critical boron concentration. These values, in conjunction with the configuration of the RCS and the assumed dilution flow rate, directly affect the results of the analysis. This event is most limiting at the beginning of core life, when critical boron concentrations are highest. Depending on the system initial conditions and reactivity insertion rate, the uncontrolled rod withdrawal transient is terminated by either a high power level trip or a high pressurizer pressure trip. In all cases, power level, RCS pressure, linear heat rate, and the DNBR do not exceed allowable limits. The startup of an inactive RCP will not result in a "cold water" criticality, even if the maximum difference in temperature exists between the SG and the core. The maximum positive reactivity addition that can occur due to an inadvertent RCP start is less than half the minimum required SDM. Startup of an idle RCP cannot, therefore, produce a return to power from the hot standby condition. The ejection of a control rod rapidly adds reactivity to the reactor core, causing both the core power level and heat flux to increase with corresponding increases in reactor ## **BASES** # APPLICABLE SAFETY ANALYSES (continued) coolant temperatures and pressure. The ejection of a rod also produces a time dependent redistribution of core power. SDM satisfies Criterion 2 of the NRC Policy Statement. Even though it is not directly observed from the control room, SDM is considered an initial condition process variable because it is periodically monitored to ensure that the unit is operating within the bounds of accident analysis assumptions. ## LCO SDM is a core design condition that can be ensured during operation through control rod positioning (control and shutdown banks) and through the soluble boron concentration. The MSLB (Ref. 2) and the boron dilution (Ref. 3) accidents are the most limiting analyses that establish the SDM value of the LCO. For MSLB accidents, if the LCO is violated, there is a potential to exceed the DNBR limit and to exceed 10 CFR 100, "Reactor Site Criteria," limits (Ref. 4). For the boron dilution accident, if the LCO is violated, the minimum required time assumed for operator action to terminate dilution may no longer be applicable. ### **APPLICABILITY** In MODE 2 with $k_{eff} < 1.0$ and in MODES 3 and 4, the SDM requirements are applicable to provide sufficient negative reactivity to meet the assumptions of the safety analyses discussed above. [In MODE 5, SDM is addressed by LCO 3.1.2, "SHUTDOWN MARGIN (SDM)— $T_{avg} \leq 200^{\circ}F.$ "] In MODE 6, the shutdown reactivity requirements are given in LCO 3.9.1, "Boron Concentration." In MODES 1 and 2, SDM is ensured by complying with LCO 3.1.6, "Shutdown Bank Insertion Limits," and LCO 3.1.7. #### ACTIONS ## <u>A.1</u> If the SDM requirements are not met, boration must be initiated promptly. A Completion Time of 15 minutes is adequate for an operator to correctly align and start the required systems and components. It is assumed that #### **ACTIONS** # A.1 (continued) boration will be continued until the SDM requirements are met. In the determination of the required combination of boration flow rate and boron concentration, there is no unique requirement that must be satisfied. Since it is imperative to raise the boron concentration of the RCS
as soon as possible, the boron concentration should be a highly concentrated solution, such as that normally found in the boric acid storage tank, or the borated water storage tank. The operator should borate with the best source available for the plant conditions. In determining the boration flow rate, the time in core life must be considered. For instance, the most difficult time in core life to increase the RCS boron concentration is at the beginning of cycle when the boron concentration may approach or exceed 2000 ppm. Assuming that a value of 1% $\Delta k/k$ must be recovered and a boration flow rate of [] gpm, it is possible to increase the boron concentration of the RCS by 100 ppm in approximately 35 minutes. If a boron worth of 10 pcm/ppm is assumed, this combination of parameters will increase the SDM by 1% $\Delta k/k$. These boration parameters of [] gpm and [] ppm represent typical values and are provided for the purpose of offering a specific example. # SURVEILLANCE REQUIREMENTS ## SR 3.1.1.1 In MODES 1 and 2, SDM is verified by observing that the requirements of LCO 3.1.6 and LCO 3.1.7 are met. In the event that a rod is known to be untrippable, however, SDM verification must account for the worth of the untrippable rod as well as another rod of maximum worth. In MODES 3, 4, and 5, the SDM is verified by performing a reactivity balance calculation, considering the listed reactivity effects: - a. RCS boron concentration; - b. Control bank position; ## SURVEILLANCE REQUIREMENTS # <u>SR 3.1.1.1</u> (continued) - c. RCS average temperature; - d. Fuel burnup based on gross thermal energy generation; - e. Xenon concentration; - f. Samarium concentration; and - g. Isothermal temperature coefficient (ITC). Using the ITC accounts for Doppler reactivity in this calculation because the reactor is subcritical, and the fuel temperature will be changing at the same rate as the RCS. The Frequency of 24 hours is based on the generally slow change in required boron concentration and the low probability of an accident occurring without the required SDM. This allows time for the operator to collect the required data, which includes performing a boron concentration analysis, and complete the calculation. ## REFERENCES - 1. 10 CFR 50, Appendix A, GDC 26. - 2. FSAR, Chapter [15]. - 3. FSAR, Chapter [15]. - 4. 10 CFR 100. #### B 3.1 REACTIVITY CONTROL SYSTEMS B 3.1.2 SHUTDOWN MARGIN (SDM)— $T_{avg} \le 200^{\circ}F$ #### **BASES** #### **BACKGROUND** According to GDC 26 (Ref. 1), the reactivity control systems must be redundant and capable of holding the reactor core subcritical when shut down under cold conditions. Maintenance of the SDM ensures that postulated reactivity events will not damage the fuel. SDM requirements provide sufficient reactivity margin to ensure that acceptable fuel design limits will not be exceeded for normal shutdown and anticipated operational occurrences (AOOs). As such, the SDM defines the degree of subcriticality that would be obtained immediately following the insertion or scram of all shutdown and control rods, assuming the single rod cluster assembly of highest reactivity worth is fully withdrawn. The system design requires that two independent reactivity control systems be provided, and that one of these systems be capable of maintaining the core subcritical under cold conditions. These requirements are provided by the use of movable control assemblies and soluble boric acid in the Reactor Coolant System (RCS). The Control Rod System can compensate for the reactivity effects of the fuel and water temperature changes accompanying power level changes over the range from full load to no load. In addition, the Control Rod System, together with the boration system, provides SDM during power operation and is capable of making the core subcritical rapidly enough to prevent exceeding acceptable fuel damage limits assuming that the rod of highest reactivity worth remains fully withdrawn. The soluble boron system can compensate for fuel depletion during operation and all xenon burnout reactivity changes, and maintain the reactor subcritical under cold conditions. During power operation, SDM control is ensured by operating with the shutdown banks fully withdrawn and the control banks within the limits of LCO 3.1.7, "Control Bank Insertion Limits." When the unit is in the shutdown and refueling modes, the SDM requirements are met by means of adjustments to the RCS boron concentration. ## APPLICABLE SAFETY ANALYSES The minimum required SDM is assumed as an initial condition in the safety analysis. The safety analysis (Ref. 2) establishes an SDM that ensures specified acceptable fuel design limits are not exceeded for normal operation and AOOs with the assumption of the highest worth rod stuck out on scram. Specifically, for MODE 5, the primary safety analysis that relies on the SDM limits is the boron dilution analysis. The acceptance criteria for the SDM requirements are that specified acceptable fuel design limits are maintained. This is done by ensuring that: - a. The reactor can be made subcritical from all operating conditions, transients, and Design Basis Events; - The reactivity transients associated with postulated accident conditions are controllable within acceptable limits (departure from nucleate boiling ratio, fuel centerline temperature limits for AOOs, and ≤ 280 cal/gm energy deposition for the rod ejection accident); and - c. The reactor will be maintained sufficiently subcritical to preclude inadvertent criticality in the shutdown condition. In the boron dilution analysis, the required SDM defines the reactivity difference between an initial subcritical boron concentration and the corresponding critical boron concentration. These values, in conjunction with the configuration of the RCS and the assumed dilution flow rate, directly affect the results of the analysis. This event is most limiting at the beginning of core life when critical boron concentrations are highest. SDM satisfies Criterion 2 of the NRC Policy Statement. Even though it is not directly observed from the control room, SDM is considered an initial condition process variable because it is periodically monitored to ensure that the unit is operating within the bounds of accident analysis assumptions. # BASES (continued) LC0 SDM is a core design condition that can be ensured during operation through control rod positioning (control and shutdown banks) and through the soluble boron concentration. The boron dilution accident (Ref. 2) is the most limiting analysis that establishes the SDM value of the LCO. For the boron dilution accident, if the LCO is violated, then the minimum required time assumed for operator action to terminate dilution may no longer be applicable. #### APPLICABILITY In MODE 5, the SDM requirements are applicable to provide sufficient negative reactivity to meet the assumptions of the safety analyses discussed above. In MODE 2, with $k_{eff} \geq 1.0$ and MODES 3 and 4, the SDM requirements are given in LCO 3.1.1, "SHUTDOWN MARGIN (SDM)— $T_{avg} > 200\,^{\circ}\text{F."}$ In MODE 6, the shutdown reactivity requirements are given in LCO 3.9.1, "Boron Concentration." In MODE 1 and MODE 2, with $k_{eff} \geq 1.0$, SDM is ensured by complying with LCO 3.1.6, "Shutdown Bank Insertion Limits," and LCO 3.1.7. #### **ACTIONS** ## <u>A.1</u> If the SDM requirements are not met, boration must be initiated promptly. A Completion Time of 15 minutes is adequate for an operator to correctly align and start the required systems and components. It is assumed that boration will be continued until the SDM requirements are met. In the determination of the required combination of boration flow rate and boron concentration, there is no unique requirement that must be satisfied. Since it is imperative to raise the boron concentration of the RCS as soon as possible, the boron concentration should be a highly concentrated solution, such as that normally found in the boric acid storage tank or the borated water storage tank. The operator should borate with the best source available for the plant conditions. In determining the boration flow rate the time in core life must be considered. For instance, the most difficult time ### **ACTIONS** # A.1 (continued) in core life to increase the RCS boron concentration is at the beginning of cycle, when the boron concentration may approach or exceed 2000 ppm. Assuming that a value of 1% $\Delta k/k$ must be recovered and a boration flow rate of [] gpm, it is possible to increase the boron concentration of the RCS by 100 ppm in approximately 35 minutes. If a boron worth of 10 pcm/ppm is assumed, this combination of parameters will increase the SDM by 1% $\Delta k/k$. These boration parameters of [] gpm and [] ppm represent typical values and are provided for the purpose of offering a specific example. # SURVEILLANCE REQUIREMENTS # SR 3.1.2.1 In MODE 5, the SDM is verified by performing a reactivity balance calculation, considering the following reactivity effects: - a. RCS boron concentration; - b. Control bank position; - c. RCS average temperature; - d. Fuel burnup based on gross thermal energy generation; - e. Xenon concentration; - f. Samarium concentration; and - g. Isothermal temperature coefficient (ITC). Using the ITC accounts for Doppler reactivity in this calculation because the reactor is subcritical, and the fuel temperature will be changing at the same rate as the RCS. The Frequency of 24 hours is based on the generally slow change in required boron concentration and on the low probability of an accident occurring without the required SDM. This allows time enough for the operator to collect | R | Δ | S | F | C | |----|---|---|---|---| | D. | п | | ᆫ | J | # SURVEILLANCE REQUIREMENTS <u>SR 3.1.2.1</u> (continued) the required data, which includes performing a boron concentration analysis, and complete the calculation. # REFERENCES - 1. 10 CFR 50, Appendix A, GDC
26. - 2. FSAR, Chapter [15]. ## B 3.1 REACTIVITY CONTROL SYSTEMS # B 3.1.3 Core Reactivity #### BASES ### **BACKGROUND** According to GDC 26, GDC 28, and GDC 29 (Ref. 1), reactivity shall be controllable, such that subcriticality is maintained under cold conditions, and acceptable fuel design limits are not exceeded during normal operation and anticipated operational occurrences. Therefore, reactivity balance is used as a measure of the predicted versus measured core reactivity during power operation. The periodic confirmation of core reactivity is necessary to ensure that Design Basis Accident (DBA) and transient safety analyses remain valid. A large reactivity difference could be the result of unanticipated changes in fuel, control rod worth, or operation at conditions not consistent with those assumed in the predictions of core reactivity, and could potentially result in a loss of SDM or violation of acceptable fuel design limits. Comparing predicted versus measured core reactivity validates the nuclear methods used in the safety analysis and supports the SDM demonstrations (LCO 3.1.1, "SHUTDOWN MARGIN (SDM) $-T_{avg} > 200$ °F") in ensuring the reactor can be brought safely to cold, subcritical conditions. When the reactor core is critical or in normal power operation, a reactivity balance exists and the net reactivity is zero. A comparison of predicted and measured reactivity is convenient under such a balance, since parameters are being maintained relatively stable under steady state power conditions. The positive reactivity inherent in the core design is balanced by the negative reactivity of the control components, thermal feedback, neutron leakage, and materials in the core that absorb neutrons, such as burnable absorbers producing zero net reactivity. Excess reactivity can be inferred from the boron letdown curve (or critical boron curve), which provides an indication of the soluble boron concentration in the Reactor Coolant System (RCS) versus cycle burnup. Periodic measurement of the RCS boron concentration for comparison with the predicted value with other variables fixed (such as rod height, temperature, pressure, and power), provides a convenient method of ensuring that core reactivity is within design expectations and that the # BACKGROUND (continued) calculational models used to generate the safety analysis are adequate. In order to achieve the required fuel cycle energy output, the uranium enrichment, in the new fuel loading and in the fuel remaining from the previous cycle, provides excess positive reactivity beyond that required to sustain steady state operation throughout the cycle. When the reactor is critical at RTP and moderator temperature, the excess positive reactivity is compensated by burnable absorbers (if any), control rods, whatever neutron poisons (mainly xenon and samarium) are present in the fuel, and the RCS boron concentration. When the core is producing THERMAL POWER, the fuel is being depleted and excess reactivity is decreasing. As the fuel depletes, the RCS boron concentration is reduced to decrease negative reactivity and maintain constant THERMAL POWER. The boron letdown curve is based on steady state operation at RTP. Therefore, deviations from the predicted boron letdown curve may indicate deficiencies in the design analysis, deficiencies in the calculational models, or abnormal core conditions, and must be evaluated. # APPLICABLE SAFETY ANALYSES The acceptance criteria for core reactivity are that the reactivity balance limit ensures plant operation is maintained within the assumptions of the safety analyses. Accurate prediction of core reactivity is either an explicit or implicit assumption in the accident analysis evaluations. Every accident evaluation (Ref. 2) is, therefore, dependent upon accurate evaluation of core reactivity. In particular, SDM and reactivity transients, such as control rod withdrawal accidents or rod ejection accidents, are very sensitive to accurate prediction of core reactivity. These accident analysis evaluations rely on computer codes that have been qualified against available test data, operating plant data, and analytical benchmarks. Monitoring reactivity balance additionally ensures that the nuclear methods provide an accurate representation of the core reactivity. Design calculations and safety analyses are performed for each fuel cycle for the purpose of predetermining reactivity # APPLICABLE SAFETY ANALYSES (continued) behavior and the RCS boron concentration requirements for reactivity control during fuel depletion. The comparison between measured and predicted initial core reactivity provides a normalization for the calculational models used to predict core reactivity. If the measured and predicted RCS boron concentrations for identical core conditions at beginning of cycle (BOC) do not agree, then the assumptions used in the reload cycle design analysis or the calculational models used to predict soluble boron requirements may not be accurate. If reasonable agreement between measured and predicted core reactivity exists at BOC, then the prediction may be normalized to the measured boron concentration. Thereafter, any significant deviations in the measured boron concentration from the predicted boron letdown curve that develop during fuel depletion may be an indication that the calculational model is not adequate for core burnups beyond BOC, or that an unexpected change in core conditions has occurred. The normalization of predicted RCS boron concentration to the measured value is typically performed after reaching RTP following startup from a refueling outage, with the control rods in their normal positions for power operation. The normalization is performed at BOC conditions, so that core reactivity relative to predicted values can be continually monitored and evaluated as core conditions change during the cycle. Core reactivity satisfies Criterion 2 of the NRC Policy Statement. LCO Long term core reactivity behavior is a result of the core physics design and cannot be easily controlled once the core design is fixed. During operation, therefore, the LCO can only be ensured through measurement and tracking, and appropriate actions taken as necessary. Large differences between actual and predicted core reactivity may indicate that the assumptions of the DBA and transient analyses are no longer valid, or that the uncertainties in the Nuclear Design Methodology are larger than expected. A limit on the reactivity balance of \pm 1% Δ k/k has been established based on engineering judgment. A 1% deviation in reactivity from # (continued) that predicted is larger than expected for normal operation and should therefore be evaluated. When measured core reactivity is within $1\% \Delta k/k$ of the predicted value at steady state thermal conditions, the core is considered to be operating within acceptable design limits. Since deviations from the limit are normally detected by comparing predicted and measured steady state RCS critical boron concentrations, the difference between measured and predicted values would be approximately 100 ppm (depending on the boron worth) before the limit is reached. These values are well within the uncertainty limits for analysis of boron concentration samples, so that spurious violations of the limit due to uncertainty in measuring the RCS boron concentration are unlikely. #### APPLICABILITY The limits on core reactivity must be maintained during MODES 1 and 2 because a reactivity balance must exist when the reactor is critical or producing THERMAL POWER. As the fuel depletes, core conditions are changing, and confirmation of the reactivity balance ensures the core is operating as designed. This Specification does not apply in MODES 3, 4, and 5 because the reactor is shut down and the reactivity balance is not changing. In MODE 6, fuel loading results in a continually changing core reactivity. Boron concentration requirements (LCO 3.9.1, "Boron Concentration") ensure that fuel movements are performed within the bounds of the safety analysis. An SDM demonstration is required during the first startup following operations that could have altered core reactivity (e.g., fuel movement, control rod replacement, control rod shuffling). ### **ACTIONS** ## A.1 and A.2 Should an anomaly develop between measured and predicted core reactivity, an evaluation of the core design and safety analysis must be performed. Core conditions are evaluated to determine their consistency with input to design calculations. Measured core and process parameters are evaluated to determine that they are within the bounds of #### **ACTIONS** # A.1 and A.2 (continued) the safety analysis, and safety analysis calculational models are reviewed to verify that they are adequate for representation of the core conditions. The required Completion Time of 72 hours is based on the low probability of a DBA occurring during this period, and allows sufficient time to assess the physical condition of the reactor and complete the evaluation of the core design and safety analysis. Following evaluations of the core design and safety analysis, the cause of the reactivity anomaly may be resolved. If the cause of the reactivity anomaly is a mismatch in core conditions at the time of RCS boron concentration sampling, then a recalculation of the RCS boron concentration requirements may be performed to demonstrate that core reactivity is behaving as expected. If an unexpected physical change in the condition of the core has occurred, it must be evaluated and corrected, if possible. If the cause of the reactivity anomaly is in the calculation technique, then the calculational models must be revised to provide more accurate predictions. If any of these results are demonstrated, and it is concluded that the reactor core is acceptable for continued operation, then the boron letdown curve may be renormalized and power operation may continue. If operational
restriction or additional SRs are necessary to ensure the reactor core is acceptable for continued operation, then they must be defined. The required Completion Time of 72 hours is adequate for preparing whatever operating restrictions or Surveillances that may be required to allow continued reactor operation. #### B.1 If the core reactivity cannot be restored to within the $1\% \Delta k/k$ limit, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours. If the SDM for MODE 3 is not met, then the boration required by SR 3.1.1.1 would occur. The allowed Completion Time is reasonable, based on operating experience, for reaching MODE 3 from full power conditions in an orderly manner and without challenging plant systems. ## BASES (continued) # SURVEILLANCE REQUIREMENTS ### SR 3.1.3.1 Core reactivity is verified by periodic comparisons of measured and predicted RCS boron concentrations. The comparison is made, considering that other core conditions are fixed or stable, including control rod position, moderator temperature, fuel temperature, fuel depletion, xenon concentration, and samarium concentration. The Surveillance is performed prior to entering MODE 1 as an initial check on core conditions and design calculations at BOC. The SR is modified by a Note. The Note indicates that the normalization of predicted core reactivity to the measured value must take place within the first 60 effective full power days (EFPD) after each fuel loading. This allows sufficient time for core conditions to reach steady state, but prevents operation for a large fraction of the fuel cycle without establishing a benchmark for the design calculations. The required subsequent Frequency of 31 EFPD, following the initial 60 EFPD after entering MODE 1, is acceptable, based on the slow rate of core changes due to fuel depletion and the presence of other indicators (QPTR, AFD, etc.) for prompt indication of an anomaly. #### REFERENCES - 1. 10 CFR 50, Appendix A, GDC 26, GDC 28, and GDC 29. - 2. FSAR, Chapter [15]. #### B 3.1 REACTIVITY CONTROL SYSTEMS # B 3.1.4 Moderator Temperature Coefficient (MTC) #### BASES #### **BACKGROUND** According to GDC 11 (Ref. 1), the reactor core and its interaction with the Reactor Coolant System (RCS) must be designed for inherently stable power operation, even in the possible event of an accident. In particular, the net reactivity feedback in the system must compensate for any unintended reactivity increases. The MTC relates a change in core reactivity to a change in reactor coolant temperature (a positive MTC means that reactivity increases with increasing moderator temperature; conversely, a negative MTC means that reactivity decreases with increasing moderator temperature). The reactor is designed to operate with a negative MTC over the largest possible range of fuel cycle operation. Therefore, a coolant temperature increase will cause a reactivity decrease, so that the coolant temperature tends to return toward its initial value. Reactivity increases that cause a coolant temperature increase will thus be self limiting, and stable power operation will result. MTC values are predicted at selected burnups during the safety evaluation analysis and are confirmed to be acceptable by measurements. Both initial and reload cores are designed so that the beginning of cycle (BOC) MTC is less than zero when THERMAL POWER is at RTP. The actual value of the MTC is dependent on core characteristics, such as fuel loading and reactor coolant soluble boron concentration. The core design may require additional fixed distributed poisons to yield an MTC at BOC within the range analyzed in the plant accident analysis. The end of cycle (EOC) MTC is also limited by the requirements of the accident analysis. Fuel cycles that are designed to achieve high burnups or that have changes to other characteristics are evaluated to ensure that the MTC does not exceed the EOC limit. The limitations on MTC are provided to ensure that the value of this coefficient remains within the limiting conditions assumed in the FSAR accident and transient analyses. # BACKGROUND (continued) If the LCO limits are not met, the unit response during transients may not be as predicted. The core could violate criteria that prohibit a return to criticality, or the departure from nucleate boiling ratio criteria of the approved correlation may be violated, which could lead to a loss of the fuel cladding integrity. The SRs for measurement of the MTC at the beginning and near the end of the fuel cycle are adequate to confirm that the MTC remains within its limits, since this coefficient changes slowly, due principally to the reduction in RCS boron concentration associated with fuel burnup. ## APPLICABLE SAFETY ANALYSES The acceptance criteria for the specified MTC are: - a. The MTC values must remain within the bounds of those used in the accident analysis (Ref. 2); and - b. The MTC must be such that inherently stable power operations result during normal operation and accidents, such as overheating and overcooling events. The FSAR, Chapter 15 (Ref. 2), contains analyses of accidents that result in both overheating and overcooling of the reactor core. MTC is one of the controlling parameters for core reactivity in these accidents. Both the most positive value and most negative value of the MTC are important to safety, and both values must be bounded. Values used in the analyses consider worst case conditions to ensure that the accident results are bounding (Ref. 3). The consequences of accidents that cause core overheating must be evaluated when the MTC is positive. Such accidents include the rod withdrawal transient from either zero (Ref. 4) or RTP, loss of main feedwater flow, and loss of forced reactor coolant flow. The consequences of accidents that cause core overcooling must be evaluated when the MTC is negative. Such accidents include sudden feedwater flow increase and sudden decrease in feedwater temperature. In order to ensure a bounding accident analysis, the MTC is assumed to be its most limiting value for the analysis conditions appropriate to each accident. The bounding value is determined by considering rodded and unrodded conditions, # APPLICABLE SAFETY ANALYSES (continued) whether the reactor is at full or zero power, and whether it is the BOC or EOC life. The most conservative combination appropriate to the accident is then used for the analysis (Ref. 2). MTC values are bounded in reload safety evaluations assuming steady state conditions at BOC and EOC. An EOC measurement is conducted at conditions when the RCS boron concentration reaches approximately 300 ppm. The measured value may be extrapolated to project the EOC value, in order to confirm reload design predictions. MTC satisfies Criterion 2 of the NRC Policy Statement. Even though it is not directly observed and controlled from the control room, MTC is considered an initial condition process variable because of its dependence on boron concentration. #### **LCO** LCO 3.1.4 requires the MTC to be within specified limits of the COLR to ensure that the core operates within the assumptions of the accident analysis. During the reload core safety evaluation, the MTC is analyzed to determine that its values remain within the bounds of the original accident analysis during operation. Assumptions made in safety analyses require that the MTC be less positive than a given upper bound and more positive than a given lower bound. The MTC is most positive at BOC; this upper bound must not be exceeded. This maximum upper limit occurs at BOC, all rods out (ARO), hot zero power conditions. At EOC the MTC takes on its most negative value, when the lower bound becomes important. This LCO exists to ensure that both the upper and lower bounds are not exceeded. During operation, therefore, the conditions of the LCO can only be ensured through measurement. The Surveillance checks at BOC and EOC on MTC provide confirmation that the MTC is behaving as anticipated so that the acceptance criteria are met. The LCO establishes a maximum positive value that cannot be exceeded. The BOC positive limit and the EOC negative limit are established in the COLR to allow specifying limits for each particular cycle. This permits the unit to take (continued) advantage of improved fuel management and changes in unit operating schedule. ## **APPLICABILITY** Technical Specifications place both LCO and SR values on MTC, based on the safety analysis assumptions described above. In MODE 1, the limits on MTC must be maintained to ensure that any accident initiated from THERMAL POWER operation will not violate the design assumptions of the accident analysis. In MODE 2 with the reactor critical, the upper limit must also be maintained to ensure that startup and subcritical accidents (such as the uncontrolled CONTROL ROD assembly or group withdrawal) will not violate the assumptions of the accident analysis. The lower MTC limit must be maintained in MODES 2 and 3, in addition to MODE 1, to ensure that cooldown accidents will not violate the assumptions of the accident analysis. In MODES 4, 5, and 6, this LCO is not applicable, since no Design Basis Accidents using the MTC as an analysis assumption are initiated from these MODES. #### ACTIONS ## <u>A.1</u> If the BOC MTC limit is violated, administrative withdrawal limits for control banks must be established to maintain the MTC within its limits. The MTC becomes more negative with control bank insertion and decreased boron concentration. A Completion Time of 24 hours provides enough time for evaluating the MTC measurement and computing the required bank withdrawal limits. As cycle burnup is increased, the RCS boron concentration will be reduced. The reduced boron concentration causes the MTC to become more negative. Using physics calculations, the time in cycle life at which the calculated MTC
will meet the LCO requirement can be determined. At this point in core life Condition A no longer exists. The unit is no longer in the Required Action, so the administrative withdrawal limits are no longer in effect. # ACTIONS (continued) # <u>B.1</u> If the required administrative withdrawal limits at BOC are not established within 24 hours, the unit must be brought to MODE 2 with $k_{\rm eff} < 1.0$ to prevent operation with an MTC that is more positive than that assumed in safety analyses. The allowed Completion Time of 6 hours is reasonable, based on operating experience, for reaching the required MODE from full power conditions in an orderly manner and without challenging plant systems. # <u>C.1</u> Exceeding the EOC MTC limit means that the safety analysis assumptions for the EOC accidents that use a bounding negative MTC value may be invalid. If the EOC MTC limit is exceeded, the plant must be brought to a MODE or condition in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to at least MODE 4 within 12 hours. The allowed Completion Time is reasonable, based on operating experience, for reaching the required MODE from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS ## SR 3.1.4.1 This SR requires measurement of the MTC at BOC prior to entering MODE 1 in order to demonstrate compliance with the most positive MTC LCO. Meeting the limit prior to entering MODE 1 ensures that the limit will also be met at higher power levels. The BOC MTC value for ARO will be inferred from isothermal temperature coefficient measurements obtained during the physics tests after refueling. The ARO value can be directly compared to the BOC MTC limit of the LCO. If required, measurement results and predicted design values can be used to establish administrative withdrawal limits for control banks. # SURVEILLANCE REQUIREMENTS (continued) ## SR 3.1.4.2 and SR 3.1.4.3 In similar fashion, the LCO demands that the MTC be less negative than the specified value for EOC full power conditions. This measurement may be performed at any THERMAL POWER, but its results must be extrapolated to the conditions of RTP and all banks withdrawn in order to make a proper comparison with the LCO value. Because the RTP MTC value will gradually become more negative with further core depletion and boron concentration reduction, a 300 ppm SR value of MTC should necessarily be less negative than the EOC LCO limit. The 300 ppm SR value is sufficiently less negative than the EOC LCO limit value to ensure that the LCO limit will be met when the 300 ppm Surveillance criterion is met. SR 3.1.4.3 is modified by a Note that includes the following requirements: - a. If the 300 ppm Surveillance limit is exceeded, it is possible that the EOC limit on MTC could be reached before the planned EOC. Because the MTC changes slowly with core depletion, the Frequency of 14 effective full power days is sufficient to avoid exceeding the EOC limit. - b. The Surveillance limit for RTP boron concentration of 60 ppm is conservative. If the measured MTC at 60 ppm is more positive than the 60 ppm Surveillance limit, the EOC limit will not be exceeded because of the gradual manner in which MTC changes with core burnup. #### REFERENCES - 1. 10 CFR 50, Appendix A, GDC 11. - 2. FSAR, Chapter [15]. - 3. WCAP 9273-NP-A, "Westinghouse Reload Safety Evaluation Methodology," July 1985. - 4. FSAR, Chapter [15]. #### B 3.1 REACTIVITY CONTROL SYSTEMS # B 3.1.5 Rod Group Alignment Limits #### **BASES** ### **BACKGROUND** The OPERABILITY (e.g., trippability) of the shutdown and control rods is an initial assumption in all safety analyses that assume rod insertion upon reactor trip. Maximum rod misalignment is an initial assumption in the safety analysis that directly affects core power distributions and assumptions of available SDM. The applicable criteria for these reactivity and power distribution design requirements are 10 CFR 50, Appendix A, GDC 10, "Reactor Design," GDC 26, "Reactivity Control System Redundancy and Protection" (Ref. 1), and 10 CFR 50.46, "Acceptance Criteria for Emergency Core Cooling Systems for Light Water Nuclear Power Plants" (Ref. 2). Mechanical or electrical failures may cause a control rod to become inoperable or to become misaligned from its group. Control rod inoperability or misalignment may cause increased power peaking, due to the asymmetric reactivity distribution and a reduction in the total available rod worth for reactor shutdown. Therefore, control rod alignment and OPERABILITY are related to core operation in design power peaking limits and the core design requirement of a minimum SDM. Limits on control rod alignment have been established, and all rod positions are monitored and controlled during power operation to ensure that the power distribution and reactivity limits defined by the design power peaking and SDM limits are preserved. Rod cluster control assemblies (RCCAs), or rods, are moved by their control rod drive mechanisms (CRDMs). Each CRDM moves its RCCA one step (approximately % inch) at a time, but at varying rates (steps per minute) depending on the signal output from the Rod Control System. The RCCAs are divided among control banks and shutdown banks. Each bank may be further subdivided into two groups to provide for precise reactivity control. A group consists of two or more RCCAs that are electrically paralleled to step simultaneously. A bank of RCCAs consists of two groups # BACKGROUND (continued) that are moved in a staggered fashion, but always within one step of each other. All units have four control banks and at least two shutdown banks. The shutdown banks are maintained either in the fully inserted or fully withdrawn position. The control banks are moved in an overlap pattern, using the following withdrawal sequence: When control bank A reaches a predetermined height in the core, control bank B begins to move out with control bank A. Control bank A stops at the position of maximum withdrawal, and control bank B continues to move out. When control bank B reaches a predetermined height, control bank C begins to move out with control bank B. This sequence continues until control banks A, B, and C are at the fully withdrawn position, and control bank D is approximately halfway withdrawn. The insertion sequence is the opposite of the withdrawal sequence. The control rods are arranged in a radially symmetric pattern, so that control bank motion does not introduce radial asymmetries in the core power distributions. The axial position of shutdown rods and control rods is indicated by two separate and independent systems, which are the Bank Demand Position Indication System (commonly called group step counters) and the Digital Rod Position Indication (DRPI) System. The Bank Demand Position Indication System counts the pulses from the rod control system that moves the rods. There is one step counter for each group of rods. Individual rods in a group all receive the same signal to move and should, therefore, all be at the same position indicated by the group step counter for that group. The Bank Demand Position Indication System is considered highly precise (± 1 step or ± 5 % inch). If a rod does not move one step for each demand pulse, the step counter will still count the pulse and incorrectly reflect the position of the rod. The DRPI System provides a highly accurate indication of actual control rod position, but at a lower precision than the step counters. This system is based on inductive analog signals from a series of coils spaced along a hollow tube with a center to center distance of 3.75 inches, which is six steps. To increase the reliability of the system, the inductive coils are connected alternately to data system A or B. Thus, if one system fails, the DRPI will go on half # BACKGROUND (continued) accuracy with an effective coil spacing of 7.5 inches, which is 12 steps. Therefore, the normal indication accuracy of the DRPI System is \pm 6 steps (\pm 3.75 inches), and the maximum uncertainty is \pm 12 steps (\pm 7.5 inches). With an indicated deviation of 12 steps between the group step counter and DRPI, the maximum deviation between actual rod position and the demand position could be 24 steps, or 15 inches. ## APPLICABLE SAFETY ANALYSES Control rod misalignment accidents are analyzed in the safety analysis (Ref. 3). The acceptance criteria for addressing control rod inoperability or misalignment are that: - a. There be no violations of: - 1. specified acceptable fuel design limits, or - Reactor Coolant System (RCS) pressure boundary integrity; and - b. The core remains subcritical after accident transients. Two types of misalignment are distinguished. During movement of a control rod group, one rod may stop moving, while the other rods in the group continue. This condition may cause excessive power peaking. The second type of misalignment occurs if one rod fails to insert upon a reactor trip and remains stuck fully withdrawn. This condition requires an evaluation to determine that sufficient reactivity worth is held in the control rods to meet the SDM requirement, with the maximum worth rod stuck fully withdrawn. Two types of analysis are performed in regard to static rod misalignment (Ref. 4). With control banks at their insertion limits, one type of analysis considers the case when any one rod is completely inserted into the core. The second type of analysis considers the case of a completely withdrawn single rod from a bank inserted to its insertion limit. Satisfying limits on departure from nucleate boiling ratio in both of these cases bounds the situation when a rod is misaligned from its group by 12 steps. APPLICABLE SAFETY ANALYSES (continued) Another type of misalignment occurs if one RCCA fails to insert upon a reactor trip and remains stuck fully withdrawn. This condition is assumed in the
evaluation to determine that the required SDM is met with the maximum worth RCCA also fully withdrawn (Ref. 5). The Required Actions in this LCO ensure that either deviations from the alignment limits will be corrected or that THERMAL POWER will be adjusted so that excessive local linear heat rates (LHRs) will not occur, and that the requirements on SDM and ejected rod worth are preserved. Continued operation of the reactor with a misaligned control rod is allowed if the heat flux hot channel factor ($F_Q(Z)$) and the nuclear enthalpy hot channel factor ($F_{\Delta H}^N$) are verified to be within their limits in the COLR and the safety analysis is verified to remain valid. When a control rod is misaligned, the assumptions that are used to determine the rod insertion limits, AFD limits, and quadrant power tilt limits are not preserved. Therefore, the limits may not preserve the design peaking factors, and $F_Q(Z)$ and $F_{\Delta H}^N$ must be verified directly by incore mapping. Bases Section 3.2 (Power Distribution Limits) contains more complete discussions of the relation of $F_Q(Z)$ and $F_{\Delta H}^N$ to the operating limits. Shutdown and control rod OPERABILITY and alignment are directly related to power distributions and SDM, which are initial conditions assumed in safety analyses. Therefore they satisfy Criterion 2 of the NRC Policy Statement. LCO The limits on shutdown or control rod alignments ensure that the assumptions in the safety analysis will remain valid. The requirements on OPERABILITY ensure that upon reactor trip, the assumed reactivity will be available and will be inserted. The OPERABILITY requirements also ensure that the RCCAs and banks maintain the correct power distribution and rod alignment. The requirement to maintain the rod alignment to within plus or minus 12 steps is conservative. The minimum misalignment assumed in safety analysis is 24 steps (15 inches), and in some cases a total misalignment from fully withdrawn to fully inserted is assumed. ## **BASES** # LCO (continued) Failure to meet the requirements of this LCO may produce unacceptable power peaking factors and LHRs, or unacceptable SDMs, all of which may constitute initial conditions inconsistent with the safety analysis. ## APPLICABILITY The requirements on RCCA OPERABILITY and alignment are applicable in MODES 1 and 2 because these are the only MODES in which neutron (or fission) power is generated, and the OPERABILITY (i.e., trippability) and alignment of rods have the potential to affect the safety of the plant. In MODES 3, 4, 5, and 6, the alignment limits do not apply because the control rods are bottomed and the reactor is shut down and not producing fission power. In the shutdown MODES, the OPERABILITY of the shutdown and control rods has the potential to affect the required SDM, but this effect can be compensated for by an increase in the boron concentration of the RCS. See LCO 3.1.1, "SHUTDOWN MARGIN (SDM) — T_{avg} > 200°F," for SDM in MODES 3, 4, and 5 and LCO 3.9.1, "Boron Concentration," for boron concentration requirements during refueling. ## **ACTIONS** ## A.1.1 and A.1.2 When one or more rods are untrippable, there is a possibility that the required SDM may be adversely affected. Under these conditions, it is important to determine the SDM, and if it is less than the required value, initiate boration until the required SDM is recovered. The Completion Time of 1 hour is adequate for determining SDM and, if necessary, for initiating emergency boration and restoring SDM. In this situation, SDM verification must include the worth of the untrippable rod, as well as a rod of maximum worth. ## A.2 If the untrippable rod(s) cannot be restored to OPERABLE status, the plant must be brought to a MODE or condition in which the LCO requirements are not applicable. To achieve #### **ACTIONS** # A.2 (continued) this status, the unit must be brought to at least MODE 3 within 6 hours. The allowed Completion Time is reasonable, based on operating experience, for reaching MODE 3 from full power conditions in an orderly manner and without challenging plant systems. ## B.1 When a rod becomes misaligned, it can usually be moved and is still trippable. If the rod can be realigned within the Completion Time of 1 hour, local xenon redistribution during this short interval will not be significant, and operation may proceed without further restriction. An alternative to realigning a single misaligned RCCA to the group average position is to align the remainder of the group to the position of the misaligned RCCA. However, this must be done without violating the bank sequence, overlap, and insertion limits specified in LCO 3.1.6, "Shutdown Bank Insertion Limits," and LCO 3.1.7, "Control Bank Insertion Limits." The Completion Time of 1 hour gives the operator sufficient time to adjust the rod positions in an orderly manner. #### B.2.1.1 and B.2.1.2 With a misaligned rod, SDM must be verified to be within limit or boration must be initiated to restore SDM to within limit. In many cases, realigning the remainder of the group to the misaligned rod may not be desirable. For example, realigning control bank B to a rod that is misaligned 15 steps from the top of the core would require a significant power reduction, since control bank D must be moved fully in and control bank C must be moved in to approximately 100 to 115 steps. Power operation may continue with one RCCA trippable but misaligned, provided that SDM is verified within 1 hour. ### **ACTIONS** # B.2.1.1 and B.2.1.2 (continued) The Completion Time of 1 hour represents the time necessary for determining the actual unit SDM and, if necessary, aligning and starting the necessary systems and components to initiate boration. # B.2.2, B.2.3, B.2.4, B.2.5, and B.2.6 For continued operation with a misaligned rod, RTP must be reduced, SDM must periodically be verified within limits, hot channel factors ($F_Q(Z)$ and $F_{\Delta H}^N$) must be verified within limits, and the safety analyses must be re-evaluated to confirm continued operation is permissible. Reduction of power to 75% RTP ensures that local LHR increases due to a misaligned RCCA will not cause the core design criteria to be exceeded (Ref. 7). The Completion Time of 2 hours gives the operator sufficient time to accomplish an orderly power reduction without challenging the Reactor Protection System. When a rod is known to be misaligned, there is a potential to impact the SDM. Since the core conditions can change with time, periodic verification of SDM is required. A Frequency of 12 hours is sufficient to ensure this requirement continues to be met. Verifying that $F_{\bf Q}(Z)$ and $F_{\Delta H}^{\bf N}$ are within the required limits ensures that current operation at 75% RTP with a rod misaligned is not resulting in power distributions that may invalidate safety analysis assumptions at full power. The Completion Time of 72 hours allows sufficient time to obtain flux maps of the core power distribution using the incore flux mapping system and to calculate $F_{\bf Q}(Z)$ and $F_{\Delta H}^{\bf N}$. Once current conditions have been verified acceptable, time is available to perform evaluations of accident analysis to determine that core limits will not be exceeded during a Design Basis Event for the duration of operation under these conditions. A Completion Time of 5 days is sufficient time to obtain the required input data and to perform the analysis. # ACTIONS (continued) # C.1.1 and C.1.2 More than one control rod becoming misaligned from its group average position is not expected, and has the potential to reduce SDM. Therefore, SDM must be evaluated. One hour allows the operator adequate time to determine SDM. Restoration of the required SDM, if necessary, requires increasing the RCS boron concentration to provide negative reactivity, as described in the Bases or LCO 3.1.1. The required Completion Time of 1 hour for initiating boration is reasonable, based on the time required for potential xenon redistribution, the low probability of an accident occurring, and the steps required to complete the action. This allows the operator sufficient time to align the required valves and start the boric acid pumps. Boration will continue until the required SDM is restored. ## <u>C.2</u> If more than one rod is found to be misaligned or becomes misaligned because of bank movement, the unit conditions fall outside of the accident analysis assumptions. Since automatic bank sequencing would continue to cause misalignment, the unit must be brought to a MODE or Condition in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours. The allowed Completion Time is reasonable, based on operating experience, for reaching MODE 3 from full power conditions in an orderly manner and without challenging plant systems. ## D.1 When Required Actions cannot be completed within their Completion Time, the unit must be brought to a MODE or Condition in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours, which obviates concerns about the development of undesirable xenon or power distributions. The allowed Completion Time of 6 hours is reasonable, based on operating experience, for reaching MODE 3 from full power #### BASES #### ACTIONS ## <u>D.1</u> (continued) conditions in an orderly manner and without challenging the plant systems. # SURVEILLANCE REQUIREMENTS ## SR 3.1.5.1 Verification that individual rod positions are within alignment limits at a Frequency of 12 hours provides a history that allows the operator to detect a rod that is beginning to deviate from its expected position. If the rod position deviation monitor is inoperable, a Frequency of 4 hours accomplishes the same goal. The specified Frequency takes into account other rod position information that is continuously available to the
operator in the control room, so that during actual rod motion, deviations can immediately be detected. ## SR 3.1.5.2 Verifying each control rod is OPERABLE would require that each rod be tripped. However, in MODES 1 and 2, tripping each control rod would result in radial or axial power tilts, or oscillations. Exercising each individual control rod every 92 days provides increased confidence that all rods continue to be OPERABLE without exceeding the alignment limit, even if they are not regularly tripped. Moving each control rod by 10 steps will not cause radial or axial power tilts, or oscillations, to occur. The 92 day Frequency takes into consideration other information available to the operator in the control room and SR 3.1.5.1, which is performed more frequently and adds to the determination of OPERABILITY of the rods. Between required performances of SR 3.1.5.2 (determination of control rod OPERABILITY by movement), if a control rod(s) is discovered to be immovable, but remains trippable and aligned, the control rod(s) is considered to be OPERABLE. At any time, if a control rod(s) is immovable, a determination of the trippability (OPERABILITY) of the control rod(s) must be made, and appropriate action taken. # SURVEILLANCE REQUIREMENTS (continued) ### SR 3.1.5.3 Verification of rod drop times allows the operator to determine that the maximum rod drop time permitted is consistent with the assumed rod drop time used in the safety analysis. Measuring rod drop times prior to reactor criticality, after reactor vessel head removal, ensures that the reactor internals and rod drive mechanism will not interfere with rod motion or rod drop time, and that no degradation in these systems has occurred that would adversely affect control rod motion or drop time. This testing is performed with all RCPs operating and the average moderator temperature ≥ 500°F to simulate a reactor trip under actual conditions. This Surveillance is performed during a plant outage, due to the plant conditions needed to perform the SR and the potential for an unplanned plant transient if the Surveillance were performed with the reactor at power. #### REFERENCES - 1. 10 CFR 50, Appendix A, GDC 10 and GDC 26. - 2. 10 CFR 50.46. - 3. FSAR, Chapter [15]. - 4. FSAR, Chapter [15]. - 5. FSAR, Chapter [15]. - 6. FSAR, Chapter [15]. - 7. FSAR, Chapter [15]. ## B 3.1 REACTIVITY CONTROL SYSTEMS ### B 3.1.6 Shutdown Bank Insertion Limits #### BASES ## **BACKGROUND** The insertion limits of the shutdown and control rods are initial assumptions in all safety analyses that assume rod insertion upon reactor trip. The insertion limits directly affect core power and fuel burnup distributions and assumptions of available ejected rod worth, SDM and initial reactivity insertion rate. The applicable criteria for these reactivity and power distribution design requirements are 10 CFR 50, Appendix A, GDC 10, "Reactor Design," GDC 26, "Reactivity Control System Redundancy and Protection," GDC 28, "Reactivity Limits" (Ref. 1), and 10 CFR 50.46, "Acceptance Criteria for Emergency Core Cooling Systems for Light Water Nuclear Power Reactors" (Ref. 2). Limits on control rod insertion have been established, and all rod positions are monitored and controlled during power operation to ensure that the power distribution and reactivity limits defined by the design power peaking and SDM limits are preserved. The rod cluster control assemblies (RCCAs) are divided among control banks and shutdown banks. Each bank may be further subdivided into two groups to provide for precise reactivity control. A group consists of two or more RCCAs that are electrically paralleled to step simultaneously. A bank of RCCAs consists of two groups that are moved in a staggered fashion, but always within one step of each other. All plants have four control banks and at least two shutdown banks. See LCO 3.1.5, "Rod Group Alignment Limits," for control and shutdown rod OPERABILITY and alignment requirements, and LCO 3.1.8, "Rod Position Indication," for position indication requirements. The control banks are used for precise reactivity control of the reactor. The positions of the control banks are normally automatically controlled by the Rod Control System, but they can also be manually controlled. They are capable of adding negative reactivity very quickly (compared to borating). The control banks must be maintained above designed insertion limits and are typically near the fully withdrawn position during normal full power operations. # BACKGROUND (continued) Hence, they are not capable of adding a large amount of positive reactivity. Boration or dilution of the Reactor Coolant System (RCS) compensates for the reactivity changes associated with large changes in RCS temperature. The design calculations are performed with the assumption that the shutdown banks are withdrawn first. The shutdown banks can be fully withdrawn without the core going critical. This provides available negative reactivity in the event of boration errors. The shutdown banks are controlled manually by the control room operator. During normal unit operation, the shutdown banks are either fully withdrawn or fully inserted. The shutdown banks must be completely withdrawn from the core, prior to withdrawing any control banks during an approach to criticality. The shutdown banks are then left in this position until the reactor is shut down. They affect core power and burnup distribution, and add negative reactivity to shut down the reactor upon receipt of a reactor trip signal. ## APPLICABLE SAFETY ANALYSES On a reactor trip, all RCCAs (shutdown banks and control banks), except the most reactive RCCA, are assumed to insert into the core. The shutdown banks shall be at or above their insertion limits and available to insert the maximum amount of negative reactivity on a reactor trip signal. control banks may be partially inserted in the core, as allowed by LCO 3.1.7, "Control Bank Insertion Limits." shutdown bank and control bank insertion limits are established to ensure that a sufficient amount of negative reactivity is available to shut down the reactor and maintain the required SDM (see LCO 3.1.1, "SHUTDOWN MARGIN (SDM)— T_{avg} > 200°F," and LCO 3.1.2, "SHUTDOWN MARGIN (SDM)— T_{avg} \leq 200°F") following a reactor trip from full power. The combination of control banks and shutdown banks (less the most reactive RCCA, which is assumed to be fully withdrawn) is sufficient to take the reactor from full power conditions at rated temperature to zero power, and to maintain the required SDM at rated no load temperature (Ref. 3). The shutdown bank insertion limit also limits the reactivity worth of an ejected shutdown rod. The acceptance criteria for addressing shutdown and control rod bank insertion limits and inoperability or misalignment is that: # APPLICABLE SAFETY ANALYSES (continued) - a. There be no violations of: - specified acceptable fuel design limits, or - 2. RCS pressure boundary integrity; and - b. The core remains subcritical after accident transients. As such, the shutdown bank insertion limits affect safety analysis involving core reactivity and SDM (Ref. 3). The shutdown bank insertion limits preserve an initial condition assumed in the safety analyses and, as such, satisfy Criterion 2 of the NRC Policy Statement. LCO The shutdown banks must be within their insertion limits any time the reactor is critical or approaching criticality. This ensures that a sufficient amount of negative reactivity is available to shut down the reactor and maintain the required SDM following a reactor trip. The shutdown bank insertion limits are defined in the COLR. #### APPLICABILITY The shutdown banks must be within their insertion limits, with the reactor in MODES 1 and 2. The applicability in MODE 2 begins prior to initial control bank withdrawal, during an approach to criticality, and continues throughout MODE 2, until all control bank rods are again fully inserted by reactor trip or by shutdown. This ensures that a sufficient amount of negative reactivity is available to shut down the reactor and maintain the required SDM following a reactor trip. The shutdown banks do not have to be within their insertion limits in MODE 3, unless an approach to criticality is being made. In MODE 3, 4, 5, or 6, the shutdown banks are fully inserted in the core and contribute to the SDM. Refer to LCO 3.1.1 and LCO 3.1.2 for SDM requirements in MODES 3, 4, and 5. LCO 3.9.1, "Boron Concentration," ensures adequate SDM in MODE 6. The Applicability requirements have been modified by a Note indicating the LCO requirement is suspended during SR 3.1.5.2. This SR verifies the freedom of the rods to # APPLICABILITY (continued) move, and requires the shutdown bank to move below the LCO limits, which would normally violate the LCO. #### ACTIONS ## A.1.1, A.1.2 and A.2 When one or more shutdown banks is not within insertion limits, 2 hours is allowed to restore the shutdown banks to within the insertion limits. This is necessary because the available SDM may be significantly reduced, with one or more of the shutdown banks not within their insertion limits. Also, verification of SDM or initiation of boration within 1 hour is required, since the SDM in MODES 1 and 2 is ensured by adhering to the control and shutdown bank insertion limits (see LCO 3.1.1). If shutdown banks are not within their insertion limits, then SDM will be verified by performing a reactivity balance calculation, considering the effects listed in the BASES for SR 3.1.1.1. The allowed Completion Time of 2 hours provides an acceptable time for evaluating and repairing minor problems without allowing the plant to remain in an unacceptable condition for an extended period of time. ### B.1 If the shutdown banks cannot be restored to within their insertion limits within 2 hours, the unit must be brought to a MODE where the LCO is not applicable. The allowed Completion Time of 6 hours is
reasonable, based on operating experience, for reaching the required MODE from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.1.6.1 Verification that the shutdown banks are within their insertion limits prior to an approach to criticality ensures that when the reactor is critical, or being taken critical, the shutdown banks will be available to shut down the reactor, and the required SDM will be maintained following a reactor trip. This SR and Frequency ensure that the ### **BASES** ## SURVEILLANCE REQUIREMENTS ## <u>SR 3.1.6.1</u> (continued) shutdown banks are withdrawn before the control banks are withdrawn during a unit startup. Since the shutdown banks are positioned manually by the control room operator, a verification of shutdown bank position at a Frequency of 12 hours, after the reactor is taken critical, is adequate to ensure that they are within their insertion limits. Also, the 12 hour Frequency takes into account other information available in the control room for the purpose of monitoring the status of shutdown rods. ## REFERENCES - 1. 10 CFR 50, Appendix A, GDC 10, GDC 26, and GDC 28. - 2. 10 CFR 50.46. - 3. FSAR, Chapter [15]. ### B 3.1 REACTIVITY CONTROL SYSTEMS # B 3.1.7 Control Bank Insertion Limits #### **BASES** #### BACKGROUND The insertion limits of the shutdown and control rods are initial assumptions in all safety analyses that assume rod insertion upon reactor trip. The insertion limits directly affect core power and fuel burnup distributions and assumptions of available SDM, and initial reactivity insertion rate. The applicable criteria for these reactivity and power distribution design requirements are 10 CFR 50, Appendix A, GDC 10, "Reactor Design," GDC 26, "Reactivity Control System Redundancy and Protection," GDC 28, "Reactivity Limits" (Ref. 1), and 10 CFR 50.46, "Acceptance Criteria for Emergency Core Cooling Systems for Light Water Nuclear Power Reactors" (Ref. 2). Limits on control rod insertion have been established, and all rod positions are monitored and controlled during power operation to ensure that the power distribution and reactivity limits defined by the design power peaking and SDM limits are preserved. The rod cluster control assemblies (RCCAs) are divided among control banks and shutdown banks. Each bank may be further subdivided into two groups to provide for precise reactivity control. A group consists of two or more RCCAs that are electrically paralleled to step simultaneously. A bank of RCCAs consists of two groups that are moved in a staggered fashion, but always within one step of each other. All plants have four control banks and at least two shutdown banks. See LCO 3.1.5, "Rod Group Alignment Limits," for control and shutdown rod OPERABILITY and alignment requirements, and LCO 3.1.8, "Rod Position Indication," for position indication requirements. The control bank insertion limits are specified in the COLR. An example is provided for information only in Figure B 3.1.7-1. The control banks are required to be at or above the insertion limit lines. Figure B 3.1.7-1 also indicates how the control banks are moved in an overlap pattern. Overlap is the distance travelled together by two control banks. The predetermined position of control bank C, at which control bank D will begin to move with bank C on a withdrawal, will be at 118 steps for a fully withdrawn position of 231 steps. The fully withdrawn position is defined in the COLR. The control banks are used for precise reactivity control of the reactor. The positions of the control banks are normally controlled automatically by the Rod Control System, but can also be manually controlled. They are capable of adding reactivity very quickly (compared to borating or diluting). The power density at any point in the core must be limited, so that the fuel design criteria are maintained. Together, LCO 3.1.5, LCO 3.1.6, "Shutdown Bank Insertion Limits," LCO 3.1.7, LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," and LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)," provide limits on control component operation and on monitored process variables, which ensure that the core operates within the fuel design criteria. The shutdown and control bank insertion and alignment limits, AFD, and QPTR are process variables that together characterize and control the three dimensional power distribution of the reactor core. Additionally, the control bank insertion limits control the reactivity that could be added in the event of a rod ejection accident, and the shutdown and control bank insertion limits ensure the required SDM is maintained. Operation within the subject LCO limits will prevent fuel cladding failures that would breach the primary fission product barrier and release fission products to the reactor coolant in the event of a loss of coolant accident (LOCA), loss of flow, ejected rod, or other accident requiring termination by a Reactor Trip System (RTS) trip function. # APPLICABLE SAFETY ANALYSES The shutdown and control bank insertion limits, AFD, and QPTR LCOs are required to prevent power distributions that could result in fuel cladding failures in the event of a LOCA, loss of flow, ejected rod, or other accident requiring termination by an RTS trip function. ## APPLICABLE SAFETY ANALYSES (continued) The acceptance criteria for addressing shutdown and control bank insertion limits and inoperability or misalignment are that: - a. There be no violations of: - 1. specified acceptable fuel design limits, or - 2. Reactor Coolant System pressure boundary integrity; and - b. The core remains subcritical after accident transients. As such, the shutdown and control bank insertion limits affect safety analysis involving core reactivity and power distributions (Ref. 3). The SDM requirement is ensured by limiting the control and shutdown bank insertion limits so that allowable inserted worth of the RCCAs is such that sufficient reactivity is available in the rods to shut down the reactor to hot zero power with a reactivity margin that assumes the maximum worth RCCA remains fully withdrawn upon trip (Ref. 4). Operation at the insertion limits or AFD limits may approach the maximum allowable linear heat generation rate or peaking factor with the allowed QPTR present. Operation at the insertion limit may also indicate the maximum ejected RCCA worth could be equal to the limiting value in fuel cycles that have sufficiently high ejected RCCA worths. The control and shutdown bank insertion limits ensure that safety analyses assumptions for SDM, ejected rod worth, and power distribution peaking factors are preserved (Ref. 5). The insertion limits satisfy Criterion 2 of the NRC Policy Statement, in that they are initial conditions assumed in the safety analysis. LCO The limits on control banks sequence, overlap, and physical insertion, as defined in the COLR, must be maintained because they serve the function of preserving power distribution, ensuring that the SDM is maintained, ensuring that ejected rod worth is maintained, and ensuring adequate # (continued) negative reactivity insertion is available on trip. The overlap between control banks provides more uniform rates of reactivity insertion and withdrawal and is imposed to maintain acceptable power peaking during control bank motion. ### **APPLICABILITY** The control bank sequence, overlap, and physical insertion limits shall be maintained with the reactor in MODES 1 and 2 with $k_{\rm eff} \geq 1.0$. These limits must be maintained, since they preserve the assumed power distribution, ejected rod worth, SDM, and reactivity rate insertion assumptions. Applicability in MODES 3, 4, and 5 is not required, since neither the power distribution nor ejected rod worth assumptions would be exceeded in these MODES. The applicability requirements have been modified by a Note indicating the LCO requirements are suspended during the performance of SR 3.1.5.2. This SR verifies the freedom of the rods to move, and requires the control bank to move below the LCO limits, which would violate the LCO. #### **ACTIONS** # A.1.1, A.1.2, A.2, B.1.1, B.1.2, and B.2 When the control banks are outside the acceptable insertion limits, they must be restored to within those limits. This restoration can occur in two ways: - a. Reducing power to be consistent with rod position; or - Moving rods to be consistent with power. Also, verification of SDM or initiation of boration to regain SDM is required within 1 hour, since the SDM in MODES 1 and 2 normally ensured by adhering to the control and shutdown bank insertion limits (see LCO 3.1.1, "SHUTDOWN MARGIN (SDM)— T_{avg} > 200°F") has been upset. If control banks are not within their insertion limits, then SDM will be verified by performing a reactivity balance calculation, considering the effects listed in the BASES for SR 3.1.1.1. #### **ACTIONS** ## A.1.1, A.1.2, A.2, B.1.1, B.1.2, and B.2 (continued) Similarly, if the control banks are found to be out of sequence or in the wrong overlap configuration, they must be restored to meet the limits. Operation beyond the LCO limits is allowed for a short time period in order to take conservative action because the simultaneous occurrence of either a LOCA, loss of flow accident, ejected rod accident, or other accident during this short time period, together with an inadequate power distribution or reactivity capability, has an acceptably low probability. The allowed Completion Time of 2 hours for restoring the banks to within the insertion, sequence, and overlaps limits provides an acceptable time for evaluating and repairing minor problems without allowing the plant to remain in an unacceptable condition for an extended period of time. ## <u>C.1</u> If Required Actions A.1 and A.2, or B.1 and B.2 cannot be completed within the associated Completion Times, the plant must be brought to MODE 3, where the LCO is not applicable. The allowed Completion Time of
6 hours is reasonable, based on operating experience, for reaching the required MODE from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS #### SR 3.1.7.1 This Surveillance is required to ensure that the reactor does not achieve criticality with the control banks below their insertion limits. The estimated critical position (ECP) depends upon a number of factors, one of which is xenon concentration. If the ECP was calculated long before criticality, xenon concentration could change to make the ECP substantially in error. Conversely, determining the ECP immediately before criticality could be an unnecessary burden. There are a number of unit parameters requiring operator attention at # SURVEILLANCE REQUIREMENTS ## <u>SR 3.1.7.1</u> (continued) that point. Performing the ECP calculation within 4 hours prior to criticality avoids a large error from changes in xenon concentration, but allows the operator some flexibility to schedule the ECP calculation with other startup activities. ### SR 3.1.7.2 With an OPERABLE bank insertion limit monitor, verification of the control bank insertion limits at a Frequency of 12 hours is sufficient to ensure OPERABILITY of the bank insertion limit monitor and to detect control banks that may be approaching the insertion limits since, normally, very little rod motion occurs in 12 hours. If the insertion limit monitor becomes inoperable, verification of the control bank position at a Frequency of 4 hours is sufficient to detect control banks that may be approaching the insertion limits. ### SR 3.1.7.3 When control banks are maintained within their insertion limits as checked by SR 3.1.7.2 above, it is unlikely that their sequence and overlap will not be in accordance with requirements provided in the COLR. A Frequency of 12 hours is consistent with the insertion limit check above in SR 3.1.7.2. #### REFERENCES - 1. 10 CFR 50, Appendix A, GDC 10, GDC 26, GDC 28. - 2. 10 CFR 50.46. - 3. FSAR, Chapter [15]. - 4. FSAR, Chapter [15]. - 5. FSAR, Chapter [15]. Figure B 3.1.7-1 (page 1 of 1) Control Bank Insertion vs. Percent RTP #### B 3.1 REACTIVITY CONTROL SYSTEM ### B 3.1.8 Rod Position Indication #### **BASES** #### **BACKGROUND** According to GDC 13 (Ref. 1), instrumentation to monitor variables and systems over their operating ranges during normal operation, anticipated operational occurrences, and accident conditions must be OPERABLE. LCO 3.1.8 is required to ensure OPERABILITY of the control rod position indicators to determine control rod positions and thereby ensure compliance with the control rod alignment and insertion limits. The OPERABILITY, including position indication, of the shutdown and control rods is an initial assumption in all safety analyses that assume rod insertion upon reactor trip. Maximum rod misalignment is an initial assumption in the safety analysis that directly affects core power distributions and assumptions of available SDM. Rod position indication is required to assess OPERABILITY and misalignment. Mechanical or electrical failures may cause a control rod to become inoperable or to become misaligned from its group. Control rod inoperability or misalignment may cause increased power peaking, due to the asymmetric reactivity distribution and a reduction in the total available rod worth for reactor shutdown. Therefore, control rod alignment and OPERABILITY are related to core operation in design power peaking limits and the core design requirement of a minimum SDM. Limits on control rod alignment and OPERABILITY have been established, and all rod positions are monitored and controlled during power operation to ensure that the power distribution and reactivity limits defined by the design power peaking and SDM limits are preserved. Rod cluster control assemblies (RCCAs), or rods, are moved out of the core (up or withdrawn) or into the core (down or inserted) by their control rod drive mechanisms. The RCCAs are divided among control banks and shutdown banks. Each bank may be further subdivided into two groups to provide for precise reactivity control. The axial position of shutdown rods and control rods are determined by two separate and independent systems: the Bank Demand Position Indication System (commonly called group step counters) and the [Digital] Rod Position Indication (DRPI) System. The Bank Demand Position Indication System counts the pulses from the Rod Control System that move the rods. There is one step counter for each group of rods. Individual rods in a group all receive the same signal to move and should, therefore, all be at the same position indicated by the group step counter for that group. The Bank Demand Position Indication System is considered highly precise (± 1 step or ± 5 % inch). If a rod does not move one step for each demand pulse, the step counter will still count the pulse and incorrectly reflect the position of the rod. The DRPI System provides a highly accurate indication of actual control rod position, but at a lower precision than the step counters. This system is based on inductive analog signals from a series of coils spaced along a hollow tube with a center to center distance of 3.75 inches, which is 6 steps. To increase the reliability of the system, the inductive coils are connected alternately to data system A or B. Thus, if one system fails, the DRPI will go on half accuracy with an effective coil spacing of 7.5 inches, which is 12 steps. Therefore, the normal indication accuracy of the DRPI System is \pm 6 steps (\pm 3.75 inches), and the maximum uncertainty is \pm 12 steps (\pm 7.5 inches). With an indicated deviation of 12 steps between the group step counter and DRPI. the maximum deviation between actual rod position and the demand position could be 24 steps, or 15 inches. ## APPLICABLE SAFETY ANALYSES Control and shutdown rod position accuracy is essential during power operation. Power peaking, ejected rod worth, or SDM limits may be violated in the event of a Design Basis Accident (Ref. 2), with control or shutdown rods operating outside their limits undetected. Therefore, the acceptance criteria for rod position indication is that rod positions must be known with sufficient accuracy in order to verify the core is operating within the group sequence, overlap, design peaking limits, ejected rod worth, and with minimum SDM (LCO 3.1.6, "Shutdown Bank Insertion Limits," and ## APPLICABLE SAFETY ANALYSES (continued) LCO 3.1.7, "Control Bank Insertion Limits"). The rod positions must also be known in order to verify the alignment limits are preserved (LCO 3.1.5, "Rod Group Alignment Limits"). Control rod positions are continuously monitored to provide operators with information that ensures the plant is operating within the bounds of the accident analysis assumptions. The control rod position indicator channels satisfy Criterion 2 of the NRC Policy Statement. The control rod position indicators monitor control rod position, which is an initial condition of the accident. #### LC0 LCO 3.1.8 specifies that one DRPI System and one Bank Demand Position Indication System be OPERABLE for each control rod. For the control rod position indicators to be OPERABLE requires meeting the SR of the LCO and the following: - a. The DRPI System indicates within 12 steps of the group step counter demand position as required by LCO 3.1.5, "Rod Group Alignment Limits"; - b. For the DRPI System there are no failed coils; and - c. The Bank Demand Indication System has been calibrated either in the fully inserted position or to the DRPI System. The 12 step agreement limit between the Bank Demand Position Indication System and the DRPI System indicates that the Bank Demand Position Indication System is adequately calibrated, and can be used for indication of the measurement of control rod bank position. A deviation of less than the allowable limit, given in LCO 3.1.5, in position indication for a single control rod, ensures high confidence that the position uncertainty of the corresponding control rod group is within the assumed values used in the analysis (that specified control rod group insertion limits). These requirements ensure that control rod position indication during power operation and PHYSICS TESTS is accurate, and that design assumptions are not challenged. # LCO (continued) OPERABILITY of the position indicator channels ensures that inoperable, misaligned, or mispositioned control rods can be detected. Therefore, power peaking, ejected rod worth, and SDM can be controlled within acceptable limits. #### **APPLICABILITY** The requirements on the DRPI and step counters are only applicable in MODES 1 and 2 (consistent with LCO 3.1.5, LCO 3.1.6, and LCO 3.1.7), because these are the only MODES in which power is generated, and the OPERABILITY and alignment of rods have the potential to affect the safety of the plant. In the shutdown MODES, the OPERABILITY of the shutdown and control banks has the potential to affect the required SDM, but this effect can be compensated for by an increase in the boron concentration of the Reactor Coolant System. #### ACTIONS The ACTIONS table is modified by a Note indicating that a separate Condition entry is allowed for each inoperable rod position indicator per group and each demand position indicator per bank. This is acceptable because the Required Actions for each Condition provide appropriate compensatory actions for each inoperable position indicator. ### A.1 When one DRPI channel per group fails, the position of the rod can still be determined by use of the incore movable detectors. Based on experience, normal power operation does not require excessive movement of banks. If a bank has been significantly moved, the Required Action of B.1 or B.2 below is required. Therefore, verification of RCCA position within the Completion Time of 8 hours is adequate for allowing continued full power operation, since the
probability of simultaneously having a rod significantly out of position and an event sensitive to that rod position is small. # ACTIONS (continued) ## <u>A.2</u> Reduction of THERMAL POWER to \leq 50% RTP puts the core into a condition where rod position is not significantly affecting core peaking factors (Ref. 3). The allowed Completion Time of 8 hours is reasonable, based on operating experience, for reducing power to \leq 50% RTP from full power conditions without challenging plant systems and allowing for rod position determination by Required Action A.1 above. ### B.1 and B.2 These Required Actions clarify that when one or more rods with inoperable position indicators have been moved in excess of 24 steps in one direction, since the position was last determined, the Required Actions of A.1 and A.2 are still appropriate but must be initiated promptly under Required Action B.1 to begin verifying that these rods are still properly positioned, relative to their group positions. If, within [4] hours, the rod positions have not been determined, THERMAL POWER must be reduced to ≤ 50% RTP within 8 hours to avoid undesirable power distributions that could result from continued operation at > 50% RTP, if one or more rods are misaligned by more than 24 steps. The allowed Completion Time of [4] hours provides an acceptable period of time to verify the rod positions. ### C.1.1 and C.1.2 With one demand position indicator per bank inoperable, the rod positions can be determined by the DRPI System. Since normal power operation does not require excessive movement of rods, verification by administrative means that the rod position indicators are OPERABLE and the most withdrawn rod and the least withdrawn rod are \leq 12 steps apart within the allowed Completion Time of once every 8 hours is adequate. # ACTIONS (continued) ## <u>C.2</u> Reduction of THERMAL POWER to \leq 50% RTP puts the core into a condition where rod position is not significantly affecting core peaking factor limits (Ref. 3). The allowed Completion Time of 8 hours provides an acceptable period of time to verify the rod positions per Required Actions C.1.1 and C.1.2 or reduce power to \leq 50% RTP. ## D.1 If the Required Actions cannot be completed within the associated Completion Time, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours. The allowed Completion Time is reasonable, based on operating experience, for reaching the required MODE from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS ### SR 3.1.8.1 Verification that the DRPI agrees with the demand position within [12] steps ensures that the DRPI is operating correctly. Since the DRPI does not display the actual shutdown rod positions between 18 and 210 steps, only points within the indicated ranges are required in comparison. The [18 month] Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for unnecessary plant transients if the SR were performed with the reactor at power. Operating experience has shown these components usually pass the SR when performed at a Frequency of once every [18 months.] Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. #### REFERENCES - 1. 10 CFR 50, Appendix A, GDC 13. - 2. FSAR, Chapter [15]. - 3. FSAR, Chapter [15]. #### B 3.1 REACTIVITY CONTROL SYSTEMS ### B 3.1.9 PHYSICS TESTS Exceptions—MODE 1 ### **BASES** #### BACKGROUND The primary purpose of the MODE 1 PHYSICS TESTS exceptions is to permit relaxations of existing LCOs to allow the performance of instrumentation calibration tests and special PHYSICS TESTS. The exceptions to LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," and LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)" are most often appropriate for xenon stability tests. The exceptions to LCO 3.1.5, "Rod Group Alignment Limits"; LCO 3.1.6, "Shutdown Bank Insertion Limit"; and LCO 3.1.7, "Control Bank Insertion Limits," may be required in the event that it is necessary or desirable to do special PHYSICS TESTS involving abnormal rod or bank configurations. Section XI of 10 CFR 50, Appendix B (Ref. 1), requires that a test program be established to ensure that structures, systems, and components will perform satisfactorily in service. All functions necessary to ensure that the specified design conditions are not exceeded during normal operation and anticipated operational occurrences must be tested. This testing is an integral part of the design, construction, and operation of the plant. Requirements for notification of the NRC, for the purpose of conducting tests and experiments, are specified in 10 CFR 50.59 (Ref. 2). The key objectives of a test program are to (Ref. 3): - a. Ensure that the facility has been adequately designed; - b. Validate the analytical models used in the design and analysis: - c. Verify the assumptions used to predict unit response; - d. Ensure that installation of equipment at the facility has been accomplished, in accordance with the design; and - e. Verify that the operating and emergency procedures are adequate. To accomplish these objectives, testing is performed prior to initial criticality; during startup, low power, power ascension, and at power operation; and after each refueling. The PHYSICS TESTS requirements for reload fuel cycles ensure that the operating characteristics of the core are consistent with the design predictions, and that the core can be operated as designed (Ref. 4). PHYSICS TESTS procedures are written and approved in accordance with established formats. The procedures include all information necessary to permit a detailed execution of the testing required to ensure that the design intent is met. PHYSICS TESTS are performed in accordance with these procedures, and test results are approved prior to continued power escalation and long term power operation. The PHYSICS TESTS required for reload fuel cycles (Ref. 4) in MODE 1 are listed below: - a. Neutron Flux Symmetry; - Power Distribution—Intermediate Power; - c. Power Distribution-Full Power; and - d. Critical Boron Concentration-Full Power. The first test can be performed in either MODE 1 or 2, and the last three tests are performed in MODE 1. These and other supplementary tests may be required to calibrate the nuclear instrumentation or to diagnose operational problems. These tests may cause the operating controls and process variables to deviate from their LCO requirements during their performance. The last two tests are performed at > 90% RTP. - a. The Neutron Flux Symmetry Test measures the degree of azimuthal symmetry of the core neutron flux at as low a power level as practical, depending on the method used. The Flux Distribution Method uses incore flux detectors to measure the azimuthal flux distribution at selected locations with the core at ≤ 30% RTP. - b. The Power Distribution—Intermediate Power Test measures the power distribution of the reactor core at intermediate power levels between 40% and 75% RTP. This test uses the incore flux detectors to measure core power distribution. - c. The Power Distribution—Full Power Test measures the power distribution of the reactor core at \geq 90% RTP using incore flux detectors. - d. The Critical Boron Concentration—Full Power Test simply measures the critical boron concentration at > 90% RTP, with all rods fully withdrawn, the lead control bank being at or near its fully withdrawn position, and with the core at equilibrium xenon conditions. For initial startups, there are two currently required tests that violate the referenced LCO. The pseudo ejected rod test, performed at approximately 30% RTP, and the pseudo dropped rod test, performed at approximately 50% RTP, require individual rod misalignments that exceed the limits specified in the relevant LCO. ### APPLICABLE SAFETY ANALYSES The fuel is protected by an LCO, which preserves the initial conditions of the core assumed during the safety analyses. The methods for development of the LCO, which are superseded by this LCO, are described in the Westinghouse Reload Safety Evaluation Methodology Report (Ref. 5). The above mentioned PHYSICS TESTS, and other tests that may be required to calibrate nuclear instrumentation or to diagnose operational problems, may require the operating controls or process variables to deviate from their LCO limitations. Reference 6 defines requirements for initial testing of the facility, including PHYSICS TESTS. Tables [14.1-1 and 14.1-2] (Ref. 6) summarize the zero, low power, and power tests. Requirements for reload fuel cycle PHYSICS TESTS are defined in ANSI/ANS-19.6.1-1985 (Ref. 4). Although these PHYSICS TESTS are generally accomplished within the limits for all LCOs, conditions may occur when one or more LCOs must be suspended to make completion of PHYSICS TESTS possible or practical. This is acceptable as long as the fuel design criteria are not violated. When one or more of the requirements specified in: LCO 3.1.5, "Rod Group Alignment Limits"; LCO 3.1.6, "Shutdown Bank Insertion Limits"; LCO 3.1.7, "Control Bank Insertion Limits"; LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)"; or ## APPLICABLE SAFETY ANALYSES (continued) ## LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)" are suspended for PHYSICS TESTS, the fuel design criteria are preserved as long as the requirements of LCO 3.2.1, "Heat Flux Hot Channel Factor ($F_{Q}(Z)$)," and LCO 3.2.2, "Nuclear Enthalpy Rise Hot Channel Factor ($F_{\Delta H}^{N}$)," are satisfied, power level is maintained \leq 85% RTP, and SDM is \geq [1.6]% $\Delta k/k$. Therefore, LCO 3.1.9 requires surveillance of the hot channel factors and SDM to verify that their limits are not being exceeded. PHYSICS TESTS include measurements of core nuclear parameters or the exercise of control components
that affect process variables. Among the process variables involved are AFD and QPTR, which represent initial conditions of the unit safety analyses. Also involved are the movable control components (control and shutdown rods), which are required to shut down the reactor. The limits for these variables are specified for each fuel cycle in the COLR. PHYSICS TESTS meet the criteria for inclusion in the Technical Specifications, since the component and process variable LCOs suspended during PHYSICS TESTS meet Criteria 1, 2, and 3 of the NRC Policy Statement. Reference 7 allows special test exceptions to be included as part of the LCO that they affect. However, it was decided to retain this special test exception as a separate LCO because it was less cumbersome and provided additional clarity. LC0 This LCO allows selected control rods and shutdown rods to be positioned outside their specified alignment limits and insertion limits to conduct PHYSICS TESTS in MODE 1, to verify certain core physics parameters. The power level is limited to $\leq 85\%$ RTP and the power range neutron flux trip setpoint is set at 10% RTP above the PHYSICS TESTS power level with a maximum setting of 90% RTP. Violation of LCO 3.1.5, LCO 3.1.6, LCO 3.1.7, LCO 3.2.3, or LCO 3.2.4, during the performance of PHYSICS TESTS does not pose any threat to the integrity of the fuel as long as the requirements of LCO 3.2.1 and LCO 3.2.2 are satisfied and provided: #### BASES # LCO (continued) - a. THERMAL POWER is maintained ≤ 85% RTP; - b. Power Range Neutron Flux—High trip setpoints are \leq 10% RTP above the THERMAL POWER at which the test is performed, with a maximum setting of 90% RTP; and - c. SDM is $\geq [1.6]\% \Delta k/k$. Operation with THERMAL POWER \leq 85% RTP during PHYSICS TESTS provides an acceptable thermal margin when one or more of the applicable LCOs is out of specification. The Power Range Neutron Flux—High trip setpoint is reduced so that a similar margin exists between the steady state condition and the trip setpoint that exists during normal operation at RTP. ## **APPLICABILITY** This LCO is applicable in MODE 1 when performing PHYSICS TESTS. The applicable PHYSICS TESTS are performed at ≤ 85% RTP. Other PHYSICS TESTS are performed at full power but do not require violation of any existing LCO, and therefore do not require a PHYSICS TESTS exception. The PHYSICS TESTS performed in MODE 2 are covered by LCO 3.1.10, "PHYSICS TESTS Exceptions—MODE 2." ### **ACTIONS** ## A.1 and A.2 If the SDM requirement is not met, boration must be initiated promptly. A Completion Time of 15 minutes is adequate for an operator to correctly align and start the required systems and components. The operator should begin boration with the best source available for the plant conditions. Boration will be continued until SDM is within limit. Suspension of PHYSICS TESTS exceptions requires restoration of each of the applicable LCOs to within specification. # ACTIONS (continued) ### **B.1** and **B.2** When THERMAL POWER is > 85% RTP, the only acceptable actions are to reduce THERMAL POWER to \leq 85% RTP or to suspend the PHYSICS TESTS exceptions. With the PHYSICS TESTS exceptions suspended, the PHYSICS TESTS may proceed if all other LCO requirements are met. Fuel integrity may be challenged with control rods or shutdown rods misaligned and THERMAL POWER > 85% RTP. The allowed Completion Time of 1 hour is reasonable, based on operating experience, for completing the Required Actions in an orderly manner and without challenging plant systems. This Completion Time is also consistent with the Required Actions of the LCOs that are suspended by the PHYSICS TESTS. #### C.1 and C.2 When the Power Range Neutron Flux—High trip setpoints are > 10% RTP above the PHYSICS TESTS power level or > 90% RTP, the Reactor Trip System (RTS) may not provide the required degree of core protection if the trip setpoint is greater than the specified value. The only acceptable actions are to restore the trip setpoint to the allowed value or to suspend the performance of the PHYSICS TESTS exceptions. The Completion Time of 1 hour is based on the practical amount of time it may take to restore the Neutron Flux—High trip setpoints to the correct value, consistent with operating plant safety. This Completion Time is consistent with the Required Actions of the LCOs that are suspended by the PHYSICS TESTS. ## SURVEILLANCE REQUIREMENTS #### SR 3.1.9.1 Verification that the THERMAL POWER level is \leq 85% RTP will ensure that the required core protection is provided during the performance of PHYSICS TESTS. Control of the reactor power level is a vital parameter and is closely monitored during the performance of PHYSICS TESTS. A Frequency of 1 hour is sufficient for ensuring that the power level does not exceed the limit. ## SURVEILLANCE REQUIREMENTS (continued) ### SR 3.1.9.2 Verification of the Power Range Neutron Flux-High trip setpoints within 8 hours prior to initiation of the PHYSICS TESTS will ensure that the RTS is properly set to perform PHYSICS TESTS. ## SR 3.1.9.3 The performance of SR 3.2.1.1 and SR 3.2.2.1 measures the core $F_q(Z)$ and the $F_{\Delta H}^N$, respectively. If the requirements of these LCOs are met, the core has adequate protection from exceeding its design limits, while other LCO requirements are suspended. The Frequency of 12 hours is based on operating experience and the practical amount of time that it may take to run an incore flux map and calculate the hot channel factors. ## SR 3.1.9.4 The SDM is verified by performing a reactivity balance calculation, considering the following reactivity effects: - a. Reactor Coolant System (RCS) boron concentration; - b. Control bank position; - c. RCS average temperature; - d. Fuel burnup based on gross thermal energy generation; - e. Xenon concentration; - f. Samarium concentration; and - g. Isothermal temperature coefficient (ITC). Using the ITC accounts for Doppler reactivity in the calculation because the reactor is subcritical, and the fuel temperature will be changing at the same rate as the RCS. The Frequency of 24 hours is based on the generally slow change in required boron concentration and on the low probability of an accident without the required SDM. ## BASES (continued) ## REFERENCES - 1. 10 CFR 50, Appendix B, Section XI. - 2. 10 CFR 50.59. - 3. Regulatory Guide 1.68, Revision 2, August 1978. - 4. ANSI/ANS-19.6.1-1985, December 13, 1985. - 5. WCAP-9273-NP-A, "Westinghouse Reload Safety Evaluation Methodology Report", July 1985. - 6. FSAR, Section [14]. - 7. WCAP-11618, November 1987, and Addendum 1, April 1989. #### B 3.1 REACTIVITY CONTROL SYSTEMS ### B 3.1.10 PHYSICS TESTS Exceptions—MODE 2 ### **BASES** #### BACKGROUND The primary purpose of the MODE 2 PHYSICS TESTS exceptions is to permit relaxations of existing LCOs to allow certain PHYSICS TESTS to be performed. Section XI of 10 CFR 50, Appendix B (Ref. 1), requires that a test program be established to ensure that structures, systems, and components will perform satisfactorily in service. All functions necessary to ensure that the specified design conditions are not exceeded during normal operation and anticipated operational occurrences must be tested. This testing is an integral part of the design, construction, and operation of the plant. Requirements for notification of the NRC, for the purpose of conducting tests and experiments, are specified in 10 CFR 50.59 (Ref. 2). The key objectives of a test program are to (Ref. 3): - a. Ensure that the facility has been adequately designed; - Validate the analytical models used in the design and analysis; - c. Verify the assumptions used to predict unit response; - d. Ensure that installation of equipment in the facility has been accomplished in accordance with the design; and - e. Verify that the operating and emergency procedures are adequate. To accomplish these objectives, testing is performed prior to initial criticality, during startup, during low power operations, during power ascension, at high power, and after each refueling. The PHYSICS TESTS requirements for reload fuel cycles ensure that the operating characteristics of the core are consistent with the design predictions and that the core can be operated as designed (Ref. 4). PHYSICS TESTS procedures are written and approved in accordance with established formats. The procedures include all information necessary to permit a detailed execution of the testing required to ensure that the design intent is met. PHYSICS TESTS are performed in accordance with these procedures and test results are approved prior to continued power escalation and long term power operation. The PHYSICS TESTS required for reload fuel cycles (Ref. 4) in MODE 2 are listed below: - a. Critical Boron Concentration—Control Rods Withdrawn; - b. Critical Boron Concentration—Control Rods Inserted; - c. Control Rod Worth; - d. Isothermal Temperature Coefficient (ITC); and - e. Neutron Flux Symmetry. The first four tests are performed in MODE 2, and the last test can be performed in either MODE 1 or 2. These and other supplementary tests may be required to calibrate the nuclear instrumentation or to diagnose operational problems. These tests may cause the operating controls and process variables to deviate from their LCO requirements during their performance. - a. The Critical Boron Concentration—Control Rods Withdrawn Test measures the critical boron concentration at hot zero power (HZP). With all rods out, the lead control bank is at or near its fully withdrawn position. HZP is where the core is critical $(k_{\text{eff}}=1.0)$, and the Reactor Coolant System (RCS) is at design temperature and pressure for zero power. Performance of this test should not violate any of the referenced LCOs. - b. The Critical Boron Concentration—Control Rods Inserted Test measures the critical boron concentration at HZP, with a bank having a worth of at least 1% $\Delta k/k$ when
fully inserted into the core. This test is used to measure the boron reactivity coefficient. With the core at HZP and all banks fully withdrawn, the boron concentration of the reactor coolant is gradually lowered in a continuous manner. The selected bank is then inserted to make up for the decreasing boron concentration until the selected bank has been moved over its entire range of travel. The reactivity resulting from each incremental bank movement is measured with a reactivity computer. The difference between the measured critical boron concentration with all rods fully withdrawn and with the bank inserted is determined. The boron reactivity coefficient is determined by dividing the measured bank worth by the measured boron concentration difference. Performance of this test could violate LCO 3.1.5, "Rod Group Alignment Limits"; LCO 3.1.6, "Shutdown Bank Insertion Limit"; or LCO 3.1.7, "Control Bank Insertion Limits." - The Control Rod Worth Test is used to measure the C. reactivity worth of selected control banks. This test is performed at HZP and has three alternative methods of performance. The first method, the Boron Exchange Method, varies the reactor coolant boron concentration and moves the selected control bank in response to the changing boron concentration. The reactivity changes are measured with a reactivity computer. This sequence is repeated for the remaining control banks. The second method, the Rod Swap Method, measures the worth of a predetermined reference bank using the Boron Exchange Method above. The reference bank is then nearly fully inserted into the core. The selected bank is then inserted into the core as the reference bank is withdrawn. The HZP critical conditions are then determined with the selected bank fully inserted into the core. The worth of the selected bank is inferred, based on the position of the reference bank with respect to the selected bank. This sequence is repeated as necessary for the remaining control banks. The third method, the Boron Endpoint Method, moves the selected control bank over its entire length of travel and then varies the reactor coolant boron concentration to achieve HZP criticality again. The difference in boron concentration is the worth of the selected control bank. This sequence is repeated for the remaining control banks. Performance of this test could violate LCO 3.1.5, LCO 3.1.6, or LCO 3.1.7. - d. The ITC Test measures the ITC of the reactor. This test is performed at HZP and has two methods of performance. The first method, the Slope Method, varies RCS temperature in a slow and continuous manner. The reactivity change is measured with a reactivity computer as a function of the temperature change. The ITC is the slope of the reactivity versus the temperature plot. The test is repeated by reversing the direction of the temperature change, and the final ITC is the average of the two calculated The second method, the Endpoint Method, changes the RCS temperature and measures the reactivity at the beginning and end of the temperature change. The ITC is the total reactivity change divided by the total temperature change. The test is repeated by reversing the direction of the temperature change, and the final ITC is the average of the two calculated ITCs. Performance of this test could violate LCO 3.4.2, "RCS Minimum Temperature for Criticality." The Flux Symmetry Test measures the degree of azimuthal symmetry of the neutron flux at as low a power level as practical, depending on the test method employed. This test can be performed at HZP (Control Rod Worth Symmetry Method) or at ≤ 30% RTP (Flux Distribution Method). The Control Rod Worth Symmetry Method inserts a control bank, which can then be withdrawn to compensate for the insertion of a single control rod from a symmetric set. The symmetric rods of each set are then tested to evaluate the symmetry of the control rod worth and neutron flux (power distribution). A reactivity computer is used to measure the control rod worths. Performance of this test could violate LCO 3.1.5, LCO 3.1.6, or LCO 3.1.7. The Flux Distribution Method uses the incore flux detectors to measure the azimuthal flux distribution at selected locations with the core at \leq 30% RTP. ## APPLICABLE SAFETY ANALYSES The fuel is protected by LCOs that preserve the initial conditions of the core assumed during the safety analyses. The methods for development of the LCOs that are excepted by this LCO are described in the Westinghouse Reload Safety Evaluation Methodology Report (Ref. 5). The above mentioned PHYSICS TESTS, and other tests that may be required to calibrate nuclear instrumentation or to diagnose operational APPLICABLE SAFETY ANALYSES (continued) problems, may require the operating control or process variables to deviate from their LCO limitations. The FSAR defines requirements for initial testing of the facility, including PHYSICS TESTS. Tables [14.1-1 and 14.1-2] summarize the zero, low power, and power tests. Requirements for reload fuel cycle PHYSICS TESTS are defined in ANSI/ANS-19.6.1-1985 (Ref. 4). Although these PHYSICS TESTS are generally accomplished within the limits for all LCOs, conditions may occur when one or more LCOs must be suspended to make completion of PHYSICS TESTS possible or practical. This is acceptable as long as the fuel design criteria are not violated. When one or more of the requirements specified in LCO 3.1.4, "Moderator Temperature Coefficient (MTC)," LCO 3.1.5, LCO 3.1.6, LCO 3.1.7, and LCO 3.4.2 are suspended for PHYSICS TESTS, the fuel design criteria are preserved as long as the power level is limited to \leq 5% RTP, the reactor coolant temperature is kept \geq 531°F, and SDM is \geq [1.6]% Δ k/k. The PHYSICS TESTS include measurement of core nuclear parameters or the exercise of control components that affect process variables. Among the process variables involved are AFD and QPTR, which represent initial conditions of the unit safety analyses. Also involved are the movable control components (control and shutdown rods), which are required to shut down the reactor. The limits for these variables are specified for each fuel cycle in the COLR. PHYSICS TESTS meet the criteria for inclusion in the Technical Specifications, since the components and process variable LCOs suspended during PHYSICS TESTS meet Criteria 1, 2, and 3 of the NRC Policy Statement. Reference 6 allows special test exceptions (STEs) to be included as part of the LCO that they affect. It was decided, however, to retain this STE as a separate LCO because it was less cumbersome and provided additional clarity. LCO This LCO allows the reactor parameters of MTC and minimum temperature for criticality to be outside their specified limits. In addition, it allows selected control and shutdown rods to be positioned outside of their specified alignment and insertion limits. Operation beyond specified # LCO (continued) limits is permitted for the purpose of performing PHYSICS TESTS and poses no threat to fuel integrity, provided the SRs are met. The requirements of LCO 3.1.4, LCO 3.1.5, LCO 3.1.6, LCO 3.1.7, and LCO 3.4.2 may be suspended during the performance of PHYSICS TESTS provided: - a. RCS lowest loop average temperature is \geq [531] °F; and - b. SDM is $\geq [1.6]\% \Delta k/k$. ## APPLICABILITY This LCO is applicable in MODE 2 when performing low power PHYSICS TESTS. The applicable PHYSICS TESTS are performed in MODE 2 at HZP. Other PHYSICS TESTS are performed in MODE 1 and are addressed in LCO 3.1.9, "PHYSICS TESTS Exceptions—MODE 1." #### **ACTIONS** ## A.1 and A.2 If the SDM requirement is not met, boration must be initiated promptly. A Completion Time of 15 minutes is adequate for an operator to correctly align and start the required systems and components. The operator should begin boration with the best source available for the plant conditions. Boration will be continued until SDM is within limit. Suspension of PHYSICS TESTS exceptions requires restoration of each of the applicable LCOs to within specification. ### B.1 When THERMAL POWER is > 5% RTP, the only acceptable action is to open the reactor trip breakers (RTBs) to prevent operation of the reactor beyond its design limits. Immediately opening the RTBs will shut down the reactor and prevent operation of the reactor outside of its design limits. # ACTIONS (continued) ## <u>C.1</u> When the RCS lowest T_{avg} is < 531°F, the appropriate action is to restore T_{qvg} to within its specified limit. The allowed Completion Time of 15 minutes provides time for restoring T_{avg} to within limits without allowing the plant to remain in an unacceptable condition for an extended period of time. Operation with the reactor critical and with temperature below 531°F could violate the assumptions for accidents analyzed in the safety analyses. ### D.1 If the Required Actions cannot be completed within the associated Completion Time, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to at least MODE 3 within an additional 15 minutes. The Completion Time of 15 additional minutes is reasonable, based on operating experience, for reaching MODE 3 in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.1.10.1 The power range and intermediate range neutron detectors must be verified to be OPERABLE in MODE 2 by LCO 3.3.1, "Reactor Trip System (RTS) Instrumentation." A CHANNEL OPERATIONAL TEST is performed on each power range and intermediate range channel within 12 hours prior to initiation of the PHYSICS TESTS. This will ensure that the RTS is properly aligned to provide the required degree of core protection during the performance of the PHYSICS TESTS. The 12 hour time limit is sufficient to ensure that the instrumentation is OPERABLE shortly before initiating PHYSICS TESTS. ### SR 3.1.10.2 Verification that the RCS lowest loop T_{avg}
is $\geq 531^{\circ}F$ will ensure that the unit is not operating in a condition that could invalidate the safety analyses. Verification of the RCS temperature at a Frequency of 30 minutes during the ## SURVEILLANCE REQUIREMENTS ## <u>SR 3.1.10.2</u> (continued) performance of the PHYSICS TESTS will ensure that the initial conditions of the safety analyses are not violated. ### SR 3.1.10.3 The SDM is verified by performing a reactivity balance calculation, considering the following reactivity effects: - a. RCS boron concentration; - b. Control bank position; - c. RCS average temperature; - d. Fuel burnup based on gross thermal energy generation; - e. Xenon concentration; - f. Samarium concentration; and - g. Isothermal temperature coefficient (ITC). Using the ITC accounts for Doppler reactivity in this calculation because the reactor is subcritical, and the fuel temperature will be changing at the same rate as the RCS. The Frequency of 24 hours is based on the generally slow change in required boron concentration and on the low probability of an accident occurring without the required SDM. ## REFERENCES - 1. 10 CFR 50, Appendix B, Section XI. - 2. 10 CFR 50.59. - 3. Regulatory Guide 1.68, Revision 2, August, 1978. - 4. ANSI/ANS-19.6.1-1985, December 13, 1985. ## **BASES** # REFERENCES (continued) - 5. WCAP-9273-NP-A, "Westinghouse Reload Safety Evaluation Methodology Report," July 1985. - 6. WCAP-11618, including Addendum 1, April 1989. ## B 3.1 REACTIVITY CONTROL SYSTEMS ## B 3.1.11 SHUTDOWN MARGIN (SDM) Test Exception #### **BASES** #### BACKGROUND The primary purpose of the SDM test exception is to permit relaxation of the SDM requirements during the measurement of control rod worths in MODE 2 during PHYSICS TESTS. Section XI of 10 CFR 50, Appendix B (Ref. 1), requires that a test program be established to ensure that structures, systems, and components will perform satisfactorily in service. All functions necessary to ensure that the specified design conditions are not exceeded during normal operation and anticipated operational occurrences must be tested. This testing is an integral part of the design, construction, and operation of the plant. Requirements for notification of the NRC, for the purpose of conducting tests and experiments, are specified in 10 CFR 50.59 (Ref. 2). The key objectives of a test program are to (Ref. 3): - a. Ensure that the facility has been adequately designed; - Validate the analytical models used in the design and analysis; - Verify the assumptions used to predict unit response; - Ensure that installation of equipment at the facility has been accomplished in accordance with the design; and - e. Verify that operating and emergency procedures are adequate. To achieve these objectives, testing is performed prior to initial criticality, during startup, low power, power ascension, and at power operation, and after each refueling. The PHYSICS TESTS requirements for reload fuel cycles ensure that the operating characteristics of the core are consistent with the design predictions and that the core can be operated as designed (Ref. 4). PHYSICS TEST procedures are written and approved, in accordance with established formats. The procedures include all information necessary to permit a detailed execution of the testing required to ensure that the design intent is met. PHYSICS TESTS are performed in accordance with these procedures, and test results are approved prior to continued power escalation and long term power operation. During the PHYSICS TESTS measurements of control rod worth, it may be necessary to align individual rods and banks in certain configurations and utilize boron concentrations that do not provide sufficient SDM to meet the normal requirements. In this situation, it is necessary to invoke special test exceptions (STEs) to allow the necessary PHYSICS TESTS to be completed. ### APPLICABLE SAFETY ANALYSES Special PHYSICS TESTS may require operating the core under controlled conditions for short periods of time with less than the normally required SDM. As such, these tests are not covered by any safety analysis calculations. Under the acceptance criteria to allow suspension of certain LCOs for PHYSICS TESTS, fuel damage criteria are not to be exceeded. Even if an accident occurs during PHYSICS TESTS with one or more LCOs suspended, fuel damage criteria are preserved because adequate limits on power distribution and shutdown capability are maintained during PHYSICS TESTS. Reference 5 defines the requirements for initial testing of the facility, including PHYSICS TESTS. Requirements for reload fuel cycle PHYSICS TESTS are defined in ANSI/ANS-19.6.1-1985 (Ref. 4). PHYSICS TESTS for reload fuel cycles are given in Table 1 of ANSI/ANS-19-6.1-1985. Although these PHYSICS TESTS are generally accomplished within the limits of all LCOs, Conditions may occur when one or more LCOs must be suspended to make completion of PHYSICS TESTS possible or practical. This is acceptable as long as the fuel design criteria are not violated. As long as the linear heat rate remains within its limit, fuel design criteria are preserved. PHYSICS TESTS meet the criteria for inclusion in the Technical Specifications, since the components and process variable LCOs suspended during PHYSICS TESTS meet Criteria 1, 2, and 3 of the NRC Policy Statement. ## BASES (continued) LCO This LCO provides an exemption to the SDM requirements under controlled conditions. These conditions require that at least the highest estimated control rod worths be available for trip insertion. It is assumed that this available negative reactivity will be sufficient to shut down the core if required, assuming there is not a concurrent boron dilution or cooldown event. This exemption is allowed even though there are no bounding safety analyses, because the tests are performed under close supervision and provide valuable information on control rod worth and core SDM. ### **APPLICABILITY** This LCO is only applicable in MODE 2, and then only during actual measurement of control rod worths because this is the only time the exception is required. #### ACTIONS ## A.1 If one or more control rods are not fully inserted and the available trip reactivity from OPERABLE control rods is less than the highest estimated control rod worth, the SDM, assumed for the test conditions, may not be available. Under these conditions, it is necessary to promptly restore the SDM to within limits. The allowed Completion Time of 15 minutes ensures prompt action and provides an acceptable time for initiating boration to restore SDM, without allowing the core to remain in an unacceptable condition for an extended period of time. #### B.1 If all control rods are fully inserted, and the reactor is subcritical by less than the highest estimated control rod worth, the SDM, assumed for the test conditions, may not be available. Under these conditions, it is necessary to promptly restore the SDM to within limits. The allowed Completion Time of 15 minutes provides an acceptable time for initiating boration to restore SDM, without allowing the core to remain in an unacceptable condition for an extended period of time. ## SURVEILLANCE REQUIREMENTS ## SR 3.1.11.1 In order to establish an acceptable SDM during the measurement of control rod worths, it is necessary to know the position of each control rod. A test Frequency of 2 hours is reasonable, based on normal control rod motion during control rod worth measurements. SR 3.1.11.1 has been modified by a Note establishing that the position of only those control rods not fully inserted must be determined. It is assumed that the position and worth of fully inserted control rods is known. ### SR 3.1.11.2 One of the assumptions made in granting an STE for SDM, is that all control rods not fully inserted will fully insert when tripped. This Surveillance is performed to verify that fact. The Frequency of 24 hours prior to reducing the plant SDM below the normal requirements is acceptable, based on the assumption that the control rods will remain OPERABLE and trippable for 24 hours and during the performance of the test. SR 3.1.11.2 has been modified by a Note establishing that this Surveillance is only required for control rods not fully inserted. During the performance of control rod worth measurements, certain control rods remain fully inserted. Since these rods are not relied on to trip, there is no need to demonstrate that they will fully insert when tripped. ## REFERENCES - 1. 10 CFR 50, Appendix B, Section XI. - 2. 10 CFR 50.59. - 3. Regulatory Guide 1.68, Revision 2, August 1978. - 4. ANSI/ANS-19.6.1-1985, December 13, 1985. - 5. FSAR, Chapter [14]. ### B 3.2 POWER DISTRIBUTION LIMITS B 3.2.1A Heat Flux Hot Channel Factor $(F_Q(Z))$ $(F_{xy}$ Methodology) #### BASES #### **BACKGROUND** The purpose of the limits on the values of $F_Q(Z)$ is to limit the local (i.e., pellet) peak power density. The value of $F_Q(Z)$ varies along the axial height of the core (Z). $F_{\mathbf{Q}}(Z)$ is defined as the maximum local fuel rod linear power density divided by the average fuel rod linear power density, assuming nominal fuel pellet and fuel rod dimensions adjusted for uncertainty. Therefore, $F_{\mathbf{Q}}(Z)$ is a measure of the peak pellet power within the reactor core. During power operation, the global power distribution is limited by LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," and LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)," which are directly and continuously measured process variables. Therefore, these LCOs preserve core limits on a continuous basis. $F_{Q}(Z)$ varies with fuel loading patterns, control bank insertion, fuel burnup, and changes in axial power distribution. $F_{\mathbf{Q}}(Z)$ is measured periodically using the incore detector system, and measurements are generally taken with the core at or near steady state conditions. With the measured three dimensional power distributions, it is possible to determine a
measured value for $F_{\mathbf{Q}}(Z)$. However, because this value represents a steady state condition, it does not include variations in the value of $F_{\mathbf{Q}}(Z)$, which are present during a nonequilibrium situation such as load following. The steady state value of the fundamental radial peaking factor (F_{xy}) is adjusted by an elevation dependent factor to account for the variations in $F_{\varrho}(Z)$ due to transient conditions. Core monitoring and control under nonsteady state conditions are accomplished by operating the core within the limits of the appropriate LCOs, including the limits on AFD, QPTR, and control rod insertion. ### APPLICABLE SAFETY ANALYSES This LCO precludes core power distributions that violate the following fuel design criteria: - a. During a large break loss of coolant accident (LOCA), the peak cladding temperature must not exceed 2200°F (Ref. 1); - b. During a loss of forced reactor coolant flow accident, there must be at least 95% probability at the 95% confidence level (the 95/95 DNB criterion) that the hot fuel rod in the core does not experience a departure from nucleate boiling (DNB) condition; - c. During an ejected rod accident, the energy deposition to the fuel must not exceed 280 cal/gm (Ref. 2); and - d. The control rods must be capable of shutting down the reactor with a minimum required SDM with the highest worth control rod stuck fully withdrawn (Ref. 3). Limits on $F_{\mathbf{Q}}(Z)$ ensure that the value of the total peaking factor assumed as an initial condition in the accident analyses remains valid. Other criteria must also be met (e.g., maximum cladding oxidation, maximum hydrogen generation, coolable geometry, and long term cooling). However, the peak cladding temperature is typically most limiting. - $F_{\mathbb{Q}}(Z)$ limits assumed in the LOCA analysis are typically limiting relative to (i.e., lower than) the $F_{\mathbb{Q}}(Z)$ assumed in safety analyses for other accidents. Therefore, this LCO provides conservative limits for other accidents. - $F_{\text{Q}}(Z)$ satisfies Criterion 2 of the NRC Policy Statement. ## BASES (continued) LC0 The $F_{Q}(Z)$ shall be limited by the following relationships: $$F_{Q}(Z) \leq \frac{CFQ}{P} K(Z)$$ for P > 0.5 $$F_{Q}(Z) \leq \frac{CFQ}{0.5} K(Z)$$ for $P \leq 0.5$ where: CFQ is the Fq limit at RTP provided in the COLR, K(Z) is the normalized $F_{\mathbf{Q}}(Z)$ as a function of core height provided in the COLR, and $$P = \frac{THERMAL POWER}{RTP}$$ For this facility, the actual values of CFQ and K(Z) are given in the COLR; however, CFQ is normally a number on the order of [2.32], and K(Z) is a function that looks like the one provided in Figure B 3.2.1A-1. The $F_Q(Z)$ limits define limiting values for core power peaking that precludes peak cladding temperatures above 2200°F during either a large or small break LOCA. This LCO requires operation within the bounds assumed in the safety analyses. Calculations are performed in the core design process to confirm that the core can be controlled in such a manner during operation that it can stay within the LOCA $F_Q(Z)$ limits. If $F_Q(Z)$ cannot be maintained within the LCO limits, reduction of the core power is required. Violating the LCO limits for $F_{\mathbb{Q}}(Z)$ may produce unacceptable consequences if a design basis event occurs while $F_{\mathbb{Q}}(Z)$ is outside its specified limits. ### **APPLICABILITY** The $F_{\mathbf{Q}}(Z)$ limits must be maintained while in MODE 1 to prevent core power distributions from exceeding the limits assumed in the safety analyses. Applicability in other MODES is not required because there is insufficient stored energy in the fuel or energy being transferred to the ### **BASES** # APPLICABILITY (continued) reactor coolant to require a limit on the distribution of core power. ## **ACTIONS** ### A.1 Reducing THERMAL POWER by \geq 1% for each 1% by which F_Q(Z) exceeds its limit maintains an acceptable absolute power density. The Completion Time of 15 minutes provides an acceptable time to reduce power in an orderly manner and without allowing the plant to remain in an unacceptable condition for an extended period of time. ### A.2 When core peaking factors are sufficiently high that LCO 3.2.3 does not permit operation at RTP, the Acceptable Operation Limits for AFD are scaled down. This percentage reduction is equal to the amount, expressed as a percentage, by which $F_{\rm Q}(Z)$ exceeds its specified limit. This ensures a near constant maximum linear heat rate in units of kilowatts per foot at the acceptable operation limits. The Completion Time of 4 hours for the change in setpoints is sufficient, considering the small likelihood of a severe transient in this relatively short time period, and the preceding prompt reduction in THERMAL POWER in accordance with Required Action A.1. ### <u>A.3</u> A reduction of the Power Range Neutron—High trip setpoints by $\geq 1\%$ for each 1% by which $F_Q(Z)$ exceeds its specified limit, is a conservative action for protection against the consequences of severe transients with unanalyzed power distributions. The Completion Time of 8 hours is sufficient, considering the small likelihood of a severe transient in this period, and the preceding prompt reduction in THERMAL POWER in accordance with Required Action A.1. # ACTIONS (continued) ### <u>A.4</u> Reduction in the Overpower ΔT trip setpoints by $\geq 1\%$ for each 1% by which $F_{Q}(Z)$ exceeds its limit, is a conservative action for protection against the consequences of severe transients with unanalyzed power distributions. The Completion Time of 72 hours is sufficient considering the small likelihood of a severe transient in this period, and the preceding prompt reduction in THERMAL POWER in accordance with Required Action A.1. ### **A.5** Verification that $F_{\mathbb{Q}}(Z)$ has been restored to within its limit by performing SR 3.2.1.1 and SR 3.2.1.2 prior to increasing THERMAL POWER above the limit imposed by Required Action A.1 ensures that core conditions during operation at higher power levels are consistent with safety analyses assumptions. ### B.1 If the Required Actions of A.1 through A.4 cannot be met within their associated Completion Times, the plant must be placed in a MODE or condition in which the LCO requirements are not applicable. This is done by placing the plant in at least MODE 2 within 6 hours. This allowed Completion Time is reasonable based on operating experience regarding the amount of time it takes to reach MODE 2 from full power operation in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS ## SR 3.2.1.1 Verification that $F_Q(Z)$ is within its limit involves increasing the measured values of $F_Q(Z)$ to allow for manufacturing tolerance and measurement uncertainties and then making a comparison with the limits. These limits are provided in the COLR. Specifically, the measured value of the Heat Flux Hot Channel Factor (F_Q^H) is increased by 3% to account for fuel manufacturing tolerances and by 5% for flux # SURVEILLANCE REQUIREMENTS ## <u>SR 3.2.1.1</u> (continued) map measurement uncertainty. This procedure is equivalent to increasing the directly measured values of $F_Q(Z)$ by 1.0815% before comparing with LCO limits (Ref. 4). Performing the Surveillance in MODE 1 prior to THERMAL POWER exceeding 75% RTP after each refueling ensures that $F_{\rm e}(Z)$ is within limit when RTP is achieved. The Frequency of 31 EFPD is adequate for monitoring the change of power distribution with core burnup because the power distribution changes relatively slowly for this amount of fuel burnup. The Surveillance may be done more frequently if required by the results of SR 3.2.1.2. ## SR 3.2.1.2 The nuclear design includes calculations that predict that the core can be operated within the $F_{\mathbf{Q}}(Z)$ limits. Because flux maps are taken at steady state conditions, the axial variations in power distribution for normal operation maneuvers such as load following are not present in the flux map data. These axial variations are, however, conservatively calculated by considering, in the nuclear design process, a wide range of unit maneuvers in normal operation. $F_{xy}(Z)$ is the radial peaking factor, which is one component of $F_{\mathbf{Q}}(Z)$ and should be consistent between the nuclear design values and the measured values. $(F_{xy}(Z)$ multiplied by the normalized average axial power at elevation Z gives $F_{\mathbf{Q}}(Z)$.) The core plane regions applicable to an F_{xy} evaluation exclude the following, measured in percent of core height: - Lower core region, from 0% to 15% inclusive; - b. Upper core region, from 85% to 100% inclusive; - c. Grid plane regions, ± 2% inclusive; and - d. Core plane regions, within \pm 2% of the bank demand position of the control banks. ## SURVEILLANCE REQUIREMENTS ## <u>SR 3.2.1.2</u> (continued) The following terms are used in the F_{xy} evaluation: F_{xy}^{M} = The measured value of F_{xy} obtained directly from the flux map results. F_{xy}^{C} = The measured value, F_{xy}^{M} , multiplied by 1.0815 to account for fuel manufacturing tolerances and flux map measurement uncertainty (Ref. 2). F_{xy}^{RTP} = The limit of F_{xy} at RTP. $F_{xy}^{L} = F_{xy}^{RTP}[(1 + PFXY)(1 - P)]$ (the limit of F_{xy} at the current THERMAL POWER level). $PFXY = The power factor multiplier for F_{xy}$. $P = [The Fraction of RTP at which F_{xy} was measured.]$ F_{Q}^{PR} = The predicted value of the Heat Flux Hot Channel Factor. F_{xy}^{RP} and PFXY are provided in the COLR. F_{xy}^{M} and F_{xy}^{C} are measured and calculated at discrete core elevations. Note that F_{xy} can be rewritten as $F_{xy}(Z)$ to indicate that F_{xy} varies along the axial height of the core. Flux map data are typically taken for 30 to 75 core elevations. The top and bottom regions of the core are excluded from the F_{xy} evaluation
because of the difficulty of making precise and meaningful measurements in these regions and also because of the low probability that these regions would be more limiting than the central 70% of the core in the accident analyses. Grid plane regions and rod tip regions are also excluded because the flux data may give spurious values because of the difficulty in lining up flux traces accurately in regions of rapidly varying flux. In addition, these small portions of the core are reduced in local power density because of neutron absorption in the grids and control rods and, therefore, cannot be regions of peak linear power. An evaluation of $F_{xy}(Z)$ is used to confirm that $F_Q(Z)$ is within its limits. If F_{xy}^C is $< F_{xy}^{RTP}$, it is concluded that ### SURVEILLANCE REQUIREMENTS ## SR 3.2.1.2 (continued) the LCO limit on $F_{\mathbf{Q}}(Z)$ is met. This result is true for flux maps taken at reduced power because the $F_{xy}(Z)$ value is inherently decreased as THERMAL POWER is increased. The feedback from the Doppler coefficient and moderator effects flattens the power distribution with increased THERMAL POWER. The first Note of this Surveillance provides the action to be taken if F_{xy}^C is $> F_{xy}^L$. In this case, the $F_q(Z)$ limit may be exceeded. Proportionally increasing the predicted $F_q^{PR}(Z)$ by the amount that F_{xy}^L is exceeded gives an adjusted $F_q(Z)$, which is compared with the $F_q(Z)$ limit. If the adjusted $F_q(Z)$ exceeds the LCO limit, the operator must perform Required Actions A.1 through A.5. The second Note in this Surveillance states that if F_{xy}^{C} is $> F_{xy}^{RTP}$ but $< F_{xy}^{L}$, then this Surveillance shall be repeated within 24 hours after exceeding by $\geq 20\%$ RTP the THERMAL POWER at which F_{xy}^{C} was last determined, so as to demonstrate that $F_{xy}(Z)$ is being sufficiently reduced as power increases. This reduction, because of feedback from the Doppler coefficient and moderator effects, ensures that when RTP is attained, the measured $F_{xy}^{M}(Z)$ is $< F_{xy}^{RTP}$. Performing the Surveillance in MODE 1 prior to exceeding 75% RTP after each refueling ensures that the $F_{\mathbb{Q}}(Z)$ limit is met when RTP is achieved. The Surveillance Frequency of 31 EFPD is adequate to monitor the change of power distribution with core burnup because the power distribution changes relatively slowly for this amount of fuel burnup. The Surveillance may be done more frequently if required by the results of F_{xy} evaluations. Specifically, the F_{xy} evaluation is required by this Surveillance if the evaluation shows that $F_{xy}^{\text{RTP}} < F_{xy}^{\text{C}}$ and to demonstrate that the LCO is met after its limit has been exceeded. #### REFERENCES - 1. 10 CFR 50.46. - 2. Regulatory Guide 1.77, Rev. []. ### BASES # REFERENCES (continued) - 3. 10 CFR 50.46, GDC 26. - 4. [WCAP-7308-L-P-A, "Evaluation of Nuclear Hot Channel Factor Uncertainties," June 1988.] *For core height of 12 feet Figure B 3.2.1A-1 (page 1 of 1) K(Z) - Normalized $F_Q(Z)$ as a Function of Core Height ### B 3.2 POWER DISTRIBUTION LIMITS B 3.2.1B Heat Flux Hot Channel Factor $(F_Q(Z))$ $(F_Q Methodology)$ ### BASES #### BACKGROUND The purpose of the limits on the values of $F_{\bf Q}(Z)$ is to limit the local (i.e., pellet) peak power density. The value of $F_{\bf Q}(Z)$ varies along the axial height (Z) of the core. $F_{\mathbf{Q}}(Z)$ is defined as the maximum local fuel rod linear power density divided by the average fuel rod linear power density, assuming nominal fuel pellet and fuel rod dimensions. Therefore, $F_{\mathbf{Q}}(Z)$ is a measure of the peak fuel pellet power within the reactor core. During power operation, the global power distribution is limited by LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," and LCO 3.2.4, "QUADRANT TILT POWER RATIO (QPTR)," which are directly and continuously measured process variables. These LCOs, along with LCO 3.1.7, "Control Bank Insertion Limits," maintain the core limits on power distributions on a continuous basis. $F_{\alpha}(Z)$ varies with fuel loading patterns, control bank insertion, fuel burnup, and changes in axial power distribution. $F_{\text{Q}}(Z)$ is measured periodically using the incore detector system. These measurements are generally taken with the core at or near steady state conditions. Using the measured three dimensional power distributions, it is possible to derive a measured value for $F_{\bf Q}(Z)$. However, because this value represents a steady state condition, it does not include the variations in the value of $F_{\bf Q}(Z)$ that are present during nonequilibrium situations, such as load following. To account for these possible variations, the steady state value of $F_{\bf Q}(Z)$ is adjusted by an elevation dependent factor that accounts for the calculated worst case transient conditions. Core monitoring and control under nonsteady state conditions are accomplished by operating the core within the limits of # BACKGROUND (continued) the appropriate LCOs, including the limits on AFD, QPTR, and control rod insertion. ## APPLICABLE SAFETY ANALYSES This LCO precludes core power distributions that violate the following fuel design criteria: - a. During a large break loss of coolant accident (LOCA), the peak cladding temperature must not exceed 2200°F (Ref. 1); - b. During a loss of forced reactor coolant flow accident, there must be at least 95% probability at the 95% confidence level (the 95/95 DNB criterion) that the hot fuel rod in the core does not experience a departure from nucleate boiling (DNB) condition; - c. During an ejected rod accident, the energy deposition to the fuel must not exceed 280 cal/gm (Ref. 2); and - d. The control rods must be capable of shutting down the reactor with a minimum required SDM with the highest worth control rod stuck fully withdrawn (Ref. 3). Limits on $F_Q(Z)$ ensure that the value of the initial total peaking factor assumed in the accident analyses remains valid. Other criteria must also be met (e.g., maximum cladding oxidation, maximum hydrogen generation, coolable geometry, and long term cooling). However, the peak cladding temperature is typically most limiting. $F_{\text{Q}}(Z)$ limits assumed in the LOCA analysis are typically limiting relative to (i.e., lower than) the $F_{\text{Q}}(Z)$ limit assumed in safety analyses for other postulated accidents. Therefore, this LCO provides conservative limits for other postulated accidents. $F_{\mathbf{Q}}(Z)$ satisfies Criterion 2 of the NRC Policy Statement. ## BASES (continued) LC₀ The Heat Flux Hot Channel Factor, $F_{Q}(Z)$, shall be limited by the following relationships: $$F_{Q}(Z) \leq \frac{CFQ}{P} K(Z)$$ for $$P > 0.5$$ $$F_{Q}(Z) \leq \frac{CFQ}{0.5} K(Z)$$ for $$P \leq 0.5$$ where: CFQ is the $F_{\mathbf{Q}}(Z)$ limit at RTP provided in the COLR, K(Z) is the normalized $F_{\mathbb{Q}}(Z)$ as a function of core height provided in the COLR, and $$P = \frac{THERMAL POWER}{RTP}$$ For this facility, the actual values of CFQ and K(Z) are given in the COLR; however, CFQ is normally a number on the order of [2.32], and K(Z) is a function that looks like the one provided in Figure B 3.2.1B-1. For Relaxed Axial Offset Control operation, $F_q(Z)$ is approximated by $F_q^C(Z)$ and $F_q^C(Z)$. Thus, both $F_q^C(Z)$ and $F_q^C(Z)$ must meet the preceding limits on $F_q(Z)$. An $F_Q^C(Z)$ evaluation requires obtaining an incore flux map in MODE 1. From the incore flux map results we obtain the measured value $(F_Q^M(Z))$ of $F_Q(Z)$. Then, $$F_{Q}^{C}(Z) = F_{Q}^{M}(Z)$$ [1.0815] where [1.0815] is a factor that accounts for fuel manufacturing tolerances and flux map measurement uncertainty. $F_{\mathbf{Q}}^{c}(Z)$ is an excellent approximation for $F_{\mathbf{Q}}(Z)$ when the reactor is at the steady state power at which the incore flux map was taken. #### BASES LCO (continued) The expression for $F_{\alpha}^{V}(Z)$ is: $F_{Q}^{W}(Z) = F_{Q}^{C}(Z) W(Z)$ where W(Z) is a cycle dependent function that accounts for power distribution transients encountered during normal operation. W(Z) is included in the COLR. The $F_{\mathbf{Q}}(Z)$ limits define limiting values for core power peaking that precludes peak cladding temperatures above 2200°F during either a large or small break LOCA. This LCO requires operation within the bounds assumed in the safety analyses. Calculations are performed in the core design process to confirm that the core can be controlled in such a manner during operation that it can stay within the LOCA $F_q(Z)$ limits. If $F_q(Z)$ cannot be maintained within the LCO limits, reduction of the core power is required. Violating the LCO limits for $F_{\bf Q}(Z)$ produces unacceptable consequences if a design basis event occurs while $F_{\bf Q}(Z)$ is outside its specified limits. ### APPLICABILITY The $F_{\text{Q}}(Z)$ limits must be maintained in MODE 1 to prevent core power distributions from exceeding the limits assumed in the safety analyses. Applicability in other MODES is not required because there is either insufficient stored energy in the fuel or insufficient energy being transferred to the reactor coolant to require a limit on the distribution of core power. ### **ACTIONS** ### A.1 Reducing THERMAL POWER by \geq 1% RTP for each 1% by which $F_{\alpha}^{C}(Z)$ exceeds its limit, maintains an acceptable absolute power density. $F_{\alpha}^{C}(Z)$ is $F_{\alpha}^{M}(Z)$ multiplied by a factor accounting for manufacturing tolerances and measurement uncertainties. $F_{\alpha}^{M}(Z)$ is the measured value of $F_{\alpha}(Z)$. The Completion Time of 15 minutes provides an acceptable time to reduce power in an orderly manner and without allowing the plant to remain in an unacceptable condition for an extended period of time. # ACTIONS (continued) ## <u>A.2</u> A reduction of the Power Range Neutron Flux—High trip setpoints by $\geq 1\%$ for each 1% by which $F_q^c(Z)$ exceeds its limit, is a conservative
action for protection against the consequences of severe transients with unanalyzed power distributions. The Completion Time of 8 hours is sufficient considering the small likelihood of a severe transient in this time period and the preceding prompt reduction in THERMAL POWER in accordance with Required Action A.1. ### <u>A.3</u> Reduction in the Overpower ΔT trip setpoints by $\geq 1\%$ for each 1% by which $F_{\alpha}^{C}(Z)$ exceeds its limit, is a conservative action for protection against the consequences of severe transients with unanalyzed power distributions. The Completion Time of 72 hours is sufficient considering the small likelihood of a severe transient in this time period, and the preceding prompt reduction in THERMAL POWER in accordance with Required Action A.1. ### A.4 Verification that $F_{o}^{c}(Z)$ has been restored to within its limit, by performing SR 3.2.1.1 prior to increasing THERMAL POWER above the limit imposed by Required Action A.1, ensures that core conditions during operation at higher power levels are consistent with safety analyses assumptions. ### B.1 If it is found that the maximum calculated value of $F_Q(Z)$ that can occur during normal maneuvers, $F_Q^*(Z)$, exceeds its specified limits, there exists a potential for $F_Q^*(Z)$ to become excessively high if a normal operational transient occurs. Reducing the AFD by $\geq 1\%$ for each 1% by which $F_Q^*(Z)$ exceeds its limit within the allowed Completion Time of 2 hours, restricts the axial flux distribution such that even if a transient occurred, core peaking factors are not exceeded. # ACTIONS (continued) ## <u>C.1</u> If Required Actions A.1 through A.4 or B.1 are not met within their associated Completion Times, the plant must be placed in a mode or condition in which the LCO requirements are not applicable. This is done by placing the plant in at least MODE 2 within 6 hours. This allowed Completion Time is reasonable based on operating experience regarding the amount of time it takes to reach MODE 2 from full power operation in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS SR 3.2.1.1 and SR 3.2.1.2 are modified by a Note. The Note applies during the first power ascension after a refueling. It states that THERMAL POWER may be increased until an equilibrium power level has been achieved at which a power distribution map can be obtained. This allowance is modified, however, by one of the Frequency conditions that requires verification that $F_0(Z)$ and $F_0(Z)$ are within their specified limits after a power rise of more than 10% RTP over the THERMAL POWER at which they were last verified to be within specified limits. Because $F_q^c(Z)$ and $F_q^c(Z)$ could not have previously been measured in this reload core, there is a second Frequency condition, applicable only for reload cores, that requires determination of these parameters before exceeding 75% RTP. This ensures that some determination of $F_q^c(Z)$ and $F_q^c(Z)$ are made at a lower power level at which adequate margin is available before going to 100% RTP. Also, this Frequency condition, together with the Frequency condition requiring verification of $F_{\alpha}(Z)$ and $F_0^w(Z)$ following a power increase of more than 10%, ensures that they are verified as soon as RTP (or any other level for extended operation) is achieved. In the absence of these Frequency conditions, it is possible to increase power to RTP and operate for 31 days without verification of $F_{\alpha}(Z)$ and $F_{\alpha}^{\nu}(Z)$. The Frequency condition is not intended to require verification of these parameters after every 10% increase in power level above the last verification. only requires verification after a power level is achieved for extended operation that is 10% higher than that power at which Fo was last measured. ## SURVEILLANCE REQUIREMENTS (continued) ### SR 3.2.1.1 Verification that $F_q^c(Z)$ is within its specified limits involves increasing $F_q^M(Z)$ to allow for manufacturing tolerance and measurement uncertainties in order to obtain $F_q^c(Z)$. Specifically, $F_q^M(Z)$ is the measured value of $F_q(Z)$ obtained from incore flux map results and $F_q^c(Z) = F_q^M(Z)$ [1.0815] (Ref. 4). $F_q^c(Z)$ is then compared to its specified limits. The limit with which $F_q^c(Z)$ is compared varies inversely with power above 50% RTP and directly with a function called K(Z) provided in the COLR. Performing this Surveillance in MODE 1 prior to exceeding 75% RTP ensures that the $F_q^c(Z)$ limit is met when RTP is achieved, because peaking factors generally decrease as power level is increased. If THERMAL POWER has been increased by $\geq 10\%$ RTP since the last determination of $F_q^C(Z)$, another evaluation of this factor is required [12] hours after achieving equilibrium conditions at this higher power level (to ensure that $F_q^C(Z)$ values are being reduced sufficiently with power increase to stay within the LCO limits). The Frequency of 31 EFPD is adequate to monitor the change of power distribution with core burnup because such changes are slow and well controlled when the plant is operated in accordance with the Technical Specifications (TS). ### SR 3.2.1.2 The nuclear design process includes calculations performed to determine that the core can be operated within the $F_Q(Z)$ limits. Because flux maps are taken in steady state conditions, the variations in power distribution resulting from normal operational maneuvers are not present in the flux map data. These variations are, however, conservatively calculated by considering a wide range of unit maneuvers in normal operation. The maximum peaking factor increase over steady state values, calculated as a function of core elevation, Z, is called W(Z). Multiplying the measured total peaking factor, $F_Q^c(Z)$, by W(Z) gives the ## SURVEILLANCE REQUIREMENTS ## <u>SR 3.2.1.2</u> (continued) maximum $F_{\mathbf{Q}}(Z)$ calculated to occur in normal operation, $F_{\mathbf{Q}}^{\mathbf{Q}}(Z)$. The limit with which $F_{\mathbf{Q}}^{\mathbf{V}}(Z)$ is compared varies inversely with power and directly with the function K(Z) provided in the COLR. The W(Z) curve is provided in the COLR for discrete core elevations. Flux map data are typically taken for 30 to 75 core elevations. $F_0^{\alpha}(Z)$ evaluations are not applicable for the following axial core regions, measured in percent of core height: - a. Lower core region, from 0 to 15% inclusive; and - b. Upper core region, from 85 to 100% inclusive. The top and bottom 15% of the core are excluded from the evaluation because of the low probability that these regions would be more limiting in the safety analyses and because of the difficulty of making a precise measurement in these regions. This Surveillance has been modified by a Note that may require that more frequent surveillances be performed. If $F_Q^W(Z)$ is evaluated and found to be within its limit, an evaluation of the expression below is required to account for any increase to $F_Q^W(Z)$ that may occur and cause the $F_Q(Z)$ limit to be exceeded before the next required $F_Q(Z)$ evaluation. If the two most recent $F_{\mathbb{Q}}(Z)$ evaluations show an increase in the expression it is required to meet the $F_{\mathbb{Q}}(Z)$ limit with the last $F_{\mathbb{Q}}^{W}(Z)$ increased by a factor of [1.02], or to evaluate $F_{\mathbb{Q}}(Z)$ more frequently, each 7 EFPD. These alternative requirements prevent $F_{\mathbb{Q}}(Z)$ from exceeding its limit for any significant period of time without detection. # SURVEILLANCE REQUIREMENTS ## **SR 3.2.1.2** (continued) Performing the Surveillance in MODE 1 prior to exceeding 75% RTP ensures that the $F_{\text{Q}}(Z)$ limit is met when RTP is achieved, because peaking factors are generally decreased as power level is increased. $F_{\text{Q}}(Z)$ is verified at power levels $\geq 10\%$ RTP above the THERMAL POWER of its last verification, [12] hours after achieving equilibrium conditions to ensure that $F_{\text{Q}}(Z)$ is within its limit at higher power levels. The Surveillance Frequency of 31 EFPD is adequate to monitor the change of power distribution with core burnup. The Surveillance may be done more frequently if required by the results of $F_{\bf Q}(Z)$ evaluations. The Frequency of 31 EFPD is adequate to monitor the change of power distribution because such a change is sufficiently slow, when the plant is operated in accordance with the TS, to preclude adverse peaking factors between 31 day surveillances. ### REFERENCES - 1. 10 CFR 50.46, 1974. - 2. Regulatory Guide 1.77, Rev. 0, May 1974. - 3. 10 CFR 50, Appendix A, GDC 26. - 4. WCAP-7308-L-P-A, "Evaluation of Nuclear Hot Channel Factor Uncertainties," June 1988. *For core height of 12 feet Figure B 3.2.1B-1 (page 1 of 1) K(Z) - Normalized $F_Q(Z)$ as a Function of Core Height ### B 3.2 POWER DISTRIBUTION LIMITS ## B 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor $(F_{\Delta H}^N)$ #### BASES ### BACKGROUND The purpose of this LCO is to establish limits on the power density at any point in the core so that the fuel design criteria are not exceeded and the accident analysis assumptions remain valid. The design limits on local (pellet) and integrated fuel rod peak power density are expressed in terms of hot channel factors. Control of the core power distribution with respect to these factors ensures that local conditions in the fuel rods and coolant channels do not challenge core integrity at any location during either normal operation or a postulated accident analyzed in the safety analyses. $F_{\Delta H}^{N}$ is defined as the ratio of the integral of the linear power along the fuel rod with the highest integrated power to the average integrated fuel rod power. Therefore, $F_{\Delta H}^{N}$ is a measure of the maximum total power produced in a fuel rod. $F_{\Delta H}^{N}$ is sensitive to fuel loading patterns, bank insertion, and fuel burnup. $F_{\Delta H}^{N}$ typically increases
with control bank insertion and typically decreases with fuel burnup. $F_{\Delta H}^{N}$ is not directly measurable but is inferred from a power distribution map obtained with the movable incore detector system. Specifically, the results of the three dimensional power distribution map are analyzed by a computer to determine $F_{\Delta H}^{N}$. This factor is calculated at least every 31 EFPD. However, during power operation, the global power distribution is monitored by LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," and LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)," which address directly and continuously measured process variables. The COLR provides peaking factor limits that ensure that the design basis value of the departure from nucleate boiling (DNB) is met for normal operation, operational transients, and any transient condition arising from events of moderate frequency. The DNB design basis precludes DNB and is met by limiting the minimum local DNB heat flux ratio to [1.3] using the [W3] CHF correlation. All DNB limited transient events are assumed to begin with an $F_{\Delta H}^{N}$ value that satisfies the LCO requirements. # BACKGROUND (continued) Operation outside the LCO limits may produce unacceptable consequences if a DNB limiting event occurs. The DNB design basis ensures that there is no overheating of the fuel that results in possible cladding perforation with the release of fission products to the reactor coolant. ### APPLICABLE SAFETY ANALYSES Limits on $F_{\Delta H}^{N}$ preclude core power distributions that exceed the following fuel design limits: - a. There must be at least 95% probability at the 95% confidence level (the 95/95 DNB criterion) that the hottest fuel rod in the core does not experience a DNB condition; - During a large break loss of coolant accident (LOCA), peak cladding temperature (PCT) must not exceed 2200°F; - c. During an ejected rod accident, the energy deposition to the fuel must not exceed 280 cal/gm [Ref. 1]; and - d. Fuel design limits required by GDC 26 (Ref. 2) for the condition when control rods must be capable of shutting down the reactor with a minimum required SDM with the highest worth control rod stuck fully withdrawn. For transients that may be DNB limited, the Reactor Coolant System flow and $F_{\Delta H}^N$ are the core parameters of most importance. The limits on $F_{\Delta H}^N$ ensure that the DNB design basis is met for normal operation, operational transients, and any transients arising from events of moderate frequency. The DNB design basis is met by limiting the minimum DNBR to the 95/95 DNB criterion of [1.3] using the [W3] CHF correlation. This value provides a high degree of assurance that the hottest fuel rod in the core does not experience a DNB. The allowable $F_{\Delta H}^{N}$ limit increases with decreasing power level. This functionality in $F_{\Delta H}^{N}$ is included in the analyses that provide the Reactor Core Safety Limits (SLs) of SL 2.1.1. Therefore, any DNB events in which the calculation of the core limits is modeled implicitly use ## APPLICABLE SAFETY ANALYSES (continued) this variable value of $F_{\Delta H}^{N}$ in the analyses. Likewise, all transients that may be DNB limited are assumed to begin with an initial $F_{\Delta H}^{N}$ as a function of power level defined by the COLR limit equation. The LOCA safety analysis indirectly models $F_{\Delta H}^N$ as an input parameter. The Nuclear Heat Flux Hot Channel Factor ($F_Q(Z)$) and the axial peaking factors are inserted directly into the LOCA safety analyses that verify the acceptability of the resulting peak cladding temperature [Ref. 3]. The fuel is protected in part by Technical Specifications, which ensure that the initial conditions assumed in the safety and accident analyses remain valid. The following LCOs ensure this: LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)," LCO 3.1.7, "Control Bank Insertion Limits," LCO 3.2.2, "Nuclear Enthalpy Rise Hot Channel Factor ($F_{\Delta H}^{N}$)," and LCO 3.2.1, "Heat Flux Hot Channel Factor ($F_{Q}(Z)$)." $F_{\Delta H}^{N}$ and $F_{\mathbf{Q}}(Z)$ are measured periodically using the movable incore detector system. Measurements are generally taken with the core at, or near, steady state conditions. Core monitoring and control under transient conditions (Condition 1 events) are accomplished by operating the core within the limits of the LCOs on AFD, QPTR, and Bank Insertion Limits. $F_{\Delta H}^{N}$ satisfies Criterion 2 of the NRC Policy Statement. ### LC0 $F_{\Delta H}^{N}$ shall be maintained within the limits of the relationship provided in the COLR. The $F_{\Delta H}^N$ limit identifies the coolant flow channel with the maximum enthalpy rise. This channel has the least heat removal capability and thus the highest probability for a DNB. The limiting value of $F_{\Delta H}^N$, described by the equation contained in the COLR, is the design radial peaking factor used in the unit safety analyses. A power multiplication factor in this equation includes an additional margin for higher radial peaking from reduced ## LCO (continued) thermal feedback and greater control rod insertion at low power levels. The limiting value of $F_{\Delta H}^{N}$ is allowed to increase 0.3% for every 1% RTP reduction in THERMAL POWER. ### **APPLICABILITY** The $F_{\Delta H}^{N}$ limits must be maintained in MODE 1 to preclude core power distributions from exceeding the fuel design limits for DNBR and PCT. Applicability in other modes is not required because there is either insufficient stored energy in the fuel or insufficient energy being transferred to the coolant to require a limit on the distribution of core power. Specifically, the design bases events that are sensitive to $F_{\Delta H}^{N}$ in other modes (MODES 2 through 5) have significant margin to DNB, and therefore, there is no need to restrict $F_{\Delta H}^{N}$ in these modes. ### **ACTIONS** ### <u>A.1.1</u> With $F_{\Delta H}^{N}$ exceeding its limit, the unit is allowed 4 hours to restore $F_{\Delta H}^{N}$ to within its limits. This restoration may, for example, involve realigning any misaligned rods or reducing power enough to bring $F_{\Delta H}^{N}$ within its power dependent limit. When the $F_{\Delta H}^{N}$ limit is exceeded, the DNBR limit is not likely violated in steady state operation, because events that could significantly perturb the $F_{\Delta H}^{N}$ value (e.g., static control rod misalignment) are considered in the safety analyses. However, the DNBR limit may be violated if a DNB limiting event occurs. Thus, the allowed Completion Time of 4 hours provides an acceptable time to restore $F_{\Delta H}^{N}$ to within its limits without allowing the plant to remain in an unacceptable condition for an extended period of time. Condition A is modified by a Note that requires that Required Actions A.2 and A.3 must be completed whenever Condition A is entered. Thus, if power is not reduced because this Required Action is completed within the 4 hour time period, Required Action A.2 nevertheless requires another measurement and calculation of $F_{\Delta H}^{N}$ within 24 hours in accordance with SR 3.2.2.1. However, if power is reduced below 50% RTP, Required Action A.3 requires that another determination of $F_{\Delta H}^{N}$ must be done prior to exceeding 50% RTP, prior to exceeding ### **ACTIONS** ## A.1.1 (continued) 75% RTP, and within 24 hours after reaching or exceeding 95% RTP. In addition, Required Action A.2 is performed if power ascension is delayed past 24 hours. ## A.1.2.1 and A.1.2.2 If the value of $F_{\Delta H}^{N}$ is not restored to within its specified limit either by adjusting a misaligned rod or by reducing THERMAL POWER, the alternative option is to reduce THERMAL POWER to < 50% RTP in accordance with Required Action A.1.2.1 and reduce the Power Range Neutron Flux-High to \leq 55% RTP in accordance with Required Action A.1.2.2. Reducing RTP to < 50% RTP increases the DNB margin and does not likely cause the DNBR limit to be violated in steady state operation. The reduction in trip setpoints ensures that continuing operation remains at an acceptable low power level with adequate DNBR margin. The allowed Completion Time of 4 hours for Required Action A.1.2.1 is consistent with those allowed for in Required Action A.1.1 and provides an acceptable time to reach the required power level from full power operation without allowing the plant to remain in an unacceptable condition for an extended period of time. The Completion Times of 4 hours for Required Actions A.1.1 and A.1.2.1 are not additive. The allowed Completion Time of 8 hours to reset the trip setpoints per Required Action A.1.2.2 recognizes that, once power is reduced, the safety analysis assumptions are satisfied and there is no urgent need to reduce the trip setpoints. This is a sensitive operation that may inadvertently trip the Reactor Protection System. ### <u>A.2</u> Once the power level has been reduced to < 50% RTP per Required Action A.1.2.1, an incore flux map (SR 3.2.2.1) must be obtained and the measured value of $F_{\Delta H}^{N}$ verified not to exceed the allowed limit at the lower power level. The unit is provided 20 additional hours to perform this task over and above the 4 hours allowed by either Action A.1.1 or Action A.1.2.1. The Completion Time of 24 hours is acceptable because of the increase in the DNB margin, which ### **ACTIONS** ## A.2 (continued) is obtained at lower power levels, and the low probability of having a DNB limiting event within this 24 hour period. Additionally, operating experience has indicated that this Completion Time is sufficient to obtain the incore flux map, perform the required calculations, and evaluate $F_{\Delta H}^{N}$. ### <u>A.3</u> Verification that $F_{\Delta H}^{N}$ is within its specified limits after an out of limit occurrence ensures that the cause that led to the $F_{\Delta H}^{N}$ exceeding its
limit is corrected, and that subsequent operation proceeds within the LCO limit. This Action demonstrates that the $F_{\Delta H}^{N}$ limit is within the LCO limits prior to exceeding 50% RTP, again prior to exceeding 75% RTP, and within 24 hours after THERMAL POWER is \geq 95% RTP. This Required Action is modified by a Note that states that THERMAL POWER does not have to be reduced prior to performing this Action. ### **B.1** When Required Actions A.1.1 through A.3 cannot be completed within their required Completion Times, the plant must be placed in a mode in which the LCO requirements are not applicable. This is done by placing the plant in at least MODE 2 within 6 hours. The allowed Completion Time of 6 hours is reasonable, based on operating experience regarding the time required to reach MODE 2 from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ### SR 3.2.2.1 The value of $F_{\Delta H}^N$ is determined by using the movable incore detector system to obtain a flux distribution map. A data reduction computer program then calculates the maximum value of $F_{\Delta H}^N$ from the measured flux distributions. The measured value of $F_{\Delta H}^N$ must be multiplied by 1.04 to account for ### SURVEILLANCE REQUIREMENTS ## <u>SR 3.2.2.1</u> (continued) measurement uncertainty before making comparisons to the $F_{\Delta H}^{N}$ limit. After each refueling, $F_{\Delta H}^{N}$ must be determined in MODE 1 prior to exceeding 75% RTP. This requirement ensures that $F_{\Delta H}^{N}$ limits are met at the beginning of each fuel cycle. The 31 EFPD Frequency is acceptable because the power distribution changes relatively slowly over this amount of fuel burnup. Accordingly, this Frequency is short enough that the $F_{\Delta H}^{\Delta}$ limit cannot be exceeded for any significant period of operation. ### **REFERENCES** - 1. Regulatory Guide 1.77, Rev. [0], May 1974. - 2. 10 CFR 50, Appendix A, GDC 26. - 3. 10 CFR 50.46. ### B 3.2 POWER DISTRIBUTION LIMITS B 3.2.3A AXIAL FLUX DIFFERENCE (AFD) (Constant Axial Offset Control (CAOC) Methodology) ### **BASES** #### BACKGROUND The purpose of this LCO is to establish limits on the values of the AFD in order to limit the axial power distribution skewing to either the top or bottom of the core. By limiting the amount of power distribution skewing, core peaking factors are consistent with the assumptions used in the safety analyses. Limiting power distribution skewing over time also minimizes the xenon distribution skewing, which is a significant factor in axial power distribution control. The operating scheme used to control the axial power distribution, CAOC, involves maintaining the AFD within a tolerance band around a burnup dependent target, known as the target flux difference, to minimize the variation of the axial peaking factor and axial xenon distribution during unit maneuvers. The target flux difference is determined at equilibrium xenon conditions. The control banks must be positioned within the core in accordance with their insertion limits and Control Bank D should be inserted near its normal position (i.e., ≥ 210 steps withdrawn) for steady state operation at high power levels. The power level should be as near RTP as practical. The value of the target flux difference obtained under these conditions divided by the Fraction of RTP is the target flux difference at RTP for the associated core burnup conditions. Target flux differences for other THERMAL POWER levels are obtained by multiplying the RTP value by the appropriate fractional THERMAL POWER level. Periodic updating of the target flux difference value is necessary to follow the change of the flux difference at steady state conditions with burnup. The Nuclear Enthalpy Rise Hot Channel Factor $(F_{\Delta H}^{N})$ and QPTR LCOs limit the radial component of the peaking factors. ### APPLICABLE SAFETY ANALYSES The AFD is a measure of axial power distribution skewing to the top or bottom half of the core. The AFD is sensitive to many core related parameters such as control bank positions, core power level, axial burnup, axial xenon distribution and, to a lesser extent, reactor coolant temperature and boron concentrations. The allowed range of the AFD is used in the nuclear design process to confirm that operation within these limits produces core peaking factors and axial power distributions that meet safety analysis requirements. The CAOC methodology (Refs. 1, 2, and 3) entails: - a. Establishing an envelope of allowed power shapes and power densities; - Devising an operating strategy for the cycle that maximizes unit flexibility (maneuvering) and minimizes axial power shape changes; - c. Demonstrating that this strategy does not result in core conditions that violate the envelope of permissible core power characteristics; and - d. Demonstrating that this power distribution control scheme can be effectively supervised with excore detectors. The limits on the AFD ensure that the Heat Flux Hot Channel Factor ($F_{\text{Q}}(Z)$) is not exceeded during either normal operation or in the event of xenon redistribution following power changes. The limits on the AFD also limit the range of power distributions that are assumed as initial conditions in analyzing Condition 2, 3, and 4 events. This ensures that fuel cladding integrity is maintained for these postulated accidents. The most important Condition 4 event is the loss of coolant accident. The most significant Condition 3 event is the loss of flow accident. The most significant Condition 2 events are uncontrolled bank withdrawal and boration or dilution accidents. Condition 2 accidents, assumed to begin from within the AFD limits, are used to confirm the adequacy of Overpower ΔT and Overtemperature ΔT trip setpoints. The limits on the AFD satisfy Criterion 2 of the NRC Policy Statement. LCO The shape of the power profile in the axial (i.e., the vertical) direction is largely under the control of the operator, through either the manual operation of the control banks, or automatic motion of control banks responding to temperature deviations resulting from either manual operation of the Chemical and Volume Control System to change boron concentration, or from power level changes. Signals are available to the operator from the Nuclear Instrumentation System (NIS) excore neutron detectors (Ref. 4). Separate signals are taken from the top and bottom detectors. The AFD is defined as the difference in normalized flux signals between the top and bottom excore detector in each detector well. For convenience, this flux difference is converted to provide flux difference units expressed as a percentage and labeled as % flux or % AI. Part A of this LCO is modified by a Note that states the conditions necessary for declaring the AFD outside of the target band. The required target band varies with axial burnup distribution, which in turn varies with the core average accumulated burnup. The target band defined in the COLR may provide one target band for the entire cycle or more than one band, each to be followed for a specific range of cycle burnup. With THERMAL POWER \geq 90% RTP, the AFD must be kept within the target band. With the AFD outside the target band with THERMAL POWER \geq 90% RTP, the assumptions of the accident analyses may be violated. Parts B and C of this LCO are modified by Notes that describe how the cumulative penalty deviation time is calculated. It is intended that the unit is operated with the AFD within the target band about the target flux difference. However, during rapid THERMAL POWER reductions, control bank motion may cause the AFD to deviate outside of the target band at reduced THERMAL POWER levels. This deviation does not affect the xenon distribution sufficiently to change the envelope of peaking factors that may be reached on a subsequent return to RTP with the AFD within the target band, provided the time duration of the deviation is limited. Accordingly, while THERMAL POWER is ≥ 50% RTP and < 90% RTP (i.e., Part B of this LCO), a 1 hour cumulative penalty deviation time limit, cumulative during the preceding 24 hours, is allowed during which the unit may ## (continued) be operated outside of the target band but within the acceptable operation limits provided in the COLR. This penalty time is accumulated at the rate of 1 minute for each 1 minute of operating time within the power range of Part B of this LCO (i.e., THERMAL POWER > 50% RTP but < 90% RTP). The cumulative penalty time is the sum of penalty times from Parts B and C of this LCO. For THERMAL POWER levels > 15% RTP and < 50% RTP (i.e., Part C of this LCO), deviations of the AFD outside of the target band are less significant. The accumulation of 1/2 minute penalty deviation time per 1 minute of actual time outside the target band reflects this reduced significance. With THERMAL POWER < 15% RTP, AFD is not a significant parameter in the assumptions used in the safety analysis and, therefore, requires no limits. Because the xenon distribution produced at THERMAL POWER levels less than RTP does affect the power distribution as power is increased, unanalyzed xenon and power distribution is prevented by limiting the accumulated penalty deviation time. The frequency of monitoring the AFD by the unit computer is once per minute providing an essentially continuous accumulation of penalty deviation time that allows the operator to accurately assess the status of the penalty deviation time. Violating the LCO on the AFD could produce unacceptable consequences if a Condition 2, 3, or 4 event occurs while the AFD is outside its limits. Figure B 3.2.3A-1 shows a typical target band and typical AFD acceptable operation limits. ### **APPLICABILITY** AFD requirements are applicable in MODE 1 above 15% RTP. Above 50% RTP, the combination of THERMAL POWER and core peaking factors are the core parameters of primary
importance in safety analyses (Ref. 1). Between 15% RTP and 90% RTP, this LCO is applicable to ensure that the distributions of xenon are consistent with safety analysis assumptions. # APPLICABILITY (continued) At or below 15% RTP and for lower operating MODES, the stored energy in the fuel and the energy being transferred to the reactor coolant are low. The value of the AFD in these conditions does not affect the consequences of the design basis events. For surveillance of the power range channels performed according to SR 3.3.1.6, deviation outside the target band is permitted for 16 hours and no penalty deviation time is accumulated. Some deviation in the AFD is required for doing the NIS calibration with the incore detector system. This calibration is performed every 92 days. Low signal levels in the excore channels may preclude obtaining valid AFD signals below 15% RTP. ### **ACTIONS** ### A.1 With the AFD outside the target band and THERMAL POWER \geq 90% RTP, the assumptions used in the accident analyses may be violated with respect to the maximum heat generation. Therefore, a Completion Time of 15 minutes is allowed to restore the AFD to within the target band because xenon distributions change little in this relatively short time. ### B.1 If the AFD cannot be restored within the target band, then reducing THERMAL POWER to < 90% RTP places the core in a condition that has been analyzed and found to be acceptable, provided that the AFD is within the acceptable operation limits provided in the COLR. The allowed Completion Time of 15 minutes provides an acceptable time to reduce power to < 90% RTP without allowing the plant to remain in an unanalyzed condition for an extended period of time. ### C.1 With THERMAL POWER < 90% RTP but \geq 50% RTP, operation with the AFD outside the target band is allowed for up to 1 hour ### ACTIONS ## <u>C.1</u> (continued) if the AFD is within the acceptable operation limits provided in the COLR. With the AFD within these limits, the resulting axial power distribution is acceptable as an initial condition for accident analyses assuming the then existing xenon distributions. The 1 hour cumulative penalty deviation time restricts the extent of xenon redistribution. Without this limitation, unanalyzed xenon axial distributions may result from a different pattern of xenon buildup and decay. The reduction to a power level < 50% RTP puts the reactor at a THERMAL POWER level at which the AFD is not a significant accident analysis parameter. If the indicated AFD is outside the target band and outside the acceptable operation limits provided in the COLR, the peaking factors assumed in accident analysis may be exceeded with the existing xenon condition. (Any AFD within the target band is acceptable regardless of its relationship to the acceptable operation limits.) The Completion Time of 30 minutes allows for a prompt, yet orderly, reduction in power. Condition C is modified by a Note that requires that Required Actions C.1 and C.2 must be completed whenever this Condition is entered. ### D.1 If Required Action C.1 is not completed within its required Completion Time of 30 minutes, the axial xenon distribution starts to become significantly skewed with the THERMAL POWER ≥ 50% RTP. In this situation, the assumption that a cumulative penalty deviation time of 1 hour or less during the previous 24 hours while the AFD is outside its target band is acceptable at < 50% RTP, is no longer valid. Reducing the power level to < 15% RTP within the Completion Time of 9 hours and complying with LCO penalty deviation time requirements for subsequent increases in THERMAL POWER ensure that acceptable xenon conditions are restored. This Required Action must also be implemented either if the cumulative penalty deviation time is > 1 hour during the ### **ACTIONS** ## <u>D.1</u> (continued) previous 24 hours, or the AFD is not within the target band and not within the acceptable operation limits. Condition D is modified by a Note that requires Action D.1 be completed whenever this Condition is entered. ## SURVEILLANCE REQUIREMENTS ### SR 3.2.3.1 The AFD is monitored on an automatic basis using the unit process computer that has an AFD monitor alarm. The computer determines the 1 minute average of each of the OPERABLE excore detector outputs and provides an alarm message immediately if the AFDs for two or more OPERABLE excore channels are outside the target band and the THERMAL POWER is > 90% RTP. During operation at THERMAL POWER levels < 90% RTP but > 15% RTP, the computer sends an alarm message when the cumulative penalty deviation time is > 1 hour in the previous 24 hours. This Surveillance verifies that the AFD as indicated by the NIS excore channels is within the target band and consistent with the status of the AFD monitor alarm. The Surveillance Frequency of 7 days is adequate because the AFD is controlled by the operator and monitored by the process computer. Furthermore, any deviations of the AFD from the target band that is not alarmed should be readily noticed. ### SR 3.2.3.2 With the AFD monitor alarm inoperable, the AFD is monitored to detect operation outside of the target band and to compute the penalty deviation time. During operation at \geq 90% RTP, the AFD is monitored at a Surveillance Frequency of 15 minutes to ensure that the AFD is within its limits at high THERMAL POWER levels. At power levels < 90% RTP, but > 15% RTP, the Surveillance Frequency is reduced to 1 hour because the AFD may deviate from the target band for up to 1 hour using the methodology of Parts B and C of this LCO to calculate the cumulative penalty deviation time before corrective action is required. ## SURVEILLANCE REQUIREMENTS ## <u>SR 3.2.3.2</u> (continued) SR 3.2.3.2 is modified by a Note that states that monitored and logged values of the AFD are assumed to exist for the preceding 24 hour interval in order for the operator to compute the cumulative penalty deviation time. The AFD should be monitored and logged more frequently in periods of operation for which the power level or control bank positions are changing to allow corrective measures when the AFD is more likely to move outside the target band. ### SR 3.2.3.3 This Surveillance requires that the target flux difference is updated at a Frequency of 31 effective full power days (EFPD) to account for small changes that may occur in the target flux differences in that period due to burnup by performing SR 3.2.3.4. Alternatively, linear interpolation between the most recent measurement of the target flux differences and a predicted end of cycle value provides a reasonable update because the AFD changes due to burnup tend toward 0% AFD. When the predicted end of cycle AFD from the cycle nuclear design is different from 0%, it may be a better value for the interpolation. ### SR 3.2.3.4 Measurement of the target flux difference is accomplished by taking a flux map when the core is at equilibrium xenon conditions, preferably at high power levels with the control banks nearly withdrawn. This flux map provides the equilibrium xenon axial power distribution from which the target value can be determined. The target flux difference varies slowly with core burnup. A Frequency of 31 EFPD after each refueling and 92 EFPD thereafter for remeasuring the target flux differences adjusts the target flux difference for each excore channel to the value measured at steady state conditions. This is the basis for the CAOC. Remeasurement at this Surveillance interval also establishes the AFD target flux difference ### **BASES** ## SURVEILLANCE REQUIREMENTS ## <u>SR 3.2.3.4</u> (continued) values that account for changes in incore excore calibrations that may have occurred in the interim. A Note modifies this SR to allow the predicted end of cycle AFD from the cycle nuclear design to be used to determine the initial target flux difference after each refueling. ## REFERENCES - 1. WCAP-8403 (nonproprietary), "Power Distribution Control and Load Following Procedures," Westinghouse Electric Corporation, September 1974. - 2. T. M. Anderson to K. Kniel (Chief of Core Performance Branch, NRC), Attachment: "Operation and Safety Analysis Aspects of an Improved Load Follow Package," January 31, 1980. - 3. C. Eicheldinger to D. B. Vassallo (Chief of Light Water Reactors Branch, NRC), Letter NS-CE-687, July 16, 1975. - 4. FSAR, Chapter [15]. Figure B 3.2.3A-1 (Page 1 of 1) AXIAL FLUX DIFFERENCE Acceptable Operation Limits and Target Band Limits as a Function of RATED THERMAL POWER #### B 3.2 POWER DISTRIBUTION LIMITS B 3.2.3B AXIAL FLUX DIFFERENCE (AFD) (Relaxed Axial Offset Control (RAOC) Methodology) #### **BASES** #### **BACKGROUND** The purpose of this LCO is to establish limits on the values of the AFD in order to limit the amount of axial power distribution skewing to either the top or bottom of the core. By limiting the amount of power distribution skewing, core peaking factors are consistent with the assumptions used in the safety analyses. Limiting power distribution skewing over time also minimizes the xenon distribution skewing, which is a significant factor in axial power distribution control. RAOC is a calculational procedure that defines the allowed operational space of the AFD versus THERMAL POWER. The AFD limits are selected by considering a range of axial xenon distributions that may occur as a result of large variations of the AFD. Subsequently, power peaking factors and power distributions are examined to ensure that the loss of coolant accident (LOCA), loss of flow accident, and anticipated transient limits are met. Violation of the AFD limits invalidate the conclusions of the accident and transient analyses with regard to fuel cladding integrity. Although the RAOC defines limits that must be met to satisfy safety analyses, typically an operating scheme, Constant Axial Offset Control (CAOC), is used to control axial power distribution in day to day operation
(Ref. 1). CAOC requires that the AFD be controlled within a narrow tolerance band around a burnup dependent target to minimize the variation of axial peaking factors and axial xenon distribution during unit maneuvers. The CAOC operating space is typically smaller and lies within the RAOC operating space. Control within the CAOC operating space constrains the variation of axial xenon distributions and axial power distributions. RAOC calculations assume a wide range of xenon distributions and then confirm that the resulting power distributions satisfy the requirements of the accident analyses. ## BASES (continued) ## APPLICABLE SAFETY ANALYSES The AFD is a measure of the axial power distribution skewing to either the top or bottom half of the core. The AFD is sensitive to many core related parameters such as control bank positions, core power level, axial burnup, axial xenon distribution, and, to a lesser extent, reactor coolant temperature and boron concentration. The allowed range of the AFD is used in the nuclear design process to confirm that operation within these limits produces core peaking factors and axial power distributions that meet safety analysis requirements. The RAOC methodology (Ref. 2) establishes a xenon distribution library with tentatively wide AFD limits. One dimensional axial power distribution calculations are then performed to demonstrate that normal operation power shapes are acceptable for the LOCA and loss of flow accident, and for initial conditions of anticipated transients. The tentative limits are adjusted as necessary to meet the safety analysis requirements. The limits on the AFD ensure that the Heat Flux Hot Channel Factor ($F_Q(Z)$) is not exceeded during either normal operation or in the event of xenon redistribution following power changes. The limits on the AFD also restrict the range of power distributions that are used as initial conditions in the analyses of Condition 2, 3, or 4 events. This ensures that the fuel cladding integrity is maintained for these postulated accidents. The most important Condition 4 event is the LOCA. The most important Condition 3 event is the loss of flow accident. The most important Condition 2 events are uncontrolled bank withdrawal and boration or dilution accidents. Condition 2 accidents simulated to begin from within the AFD limits are used to confirm the adequacy of the Overpower ΔT and Overtemperature ΔT trip setpoints. The limits on the AFD satisfy Criterion 2 of the NRC Policy Statement. LCO The shape of the power profile in the axial (i.e., the vertical) direction is largely under the control of the operator through the manual operation of the control banks or automatic motion of control banks. The automatic motion # (continued) of the control banks is in response to temperature deviations resulting from manual operation of the Chemical and Volume Control System to change boron concentration or from power level changes. Signals are available to the operator from the Nuclear Instrumentation System (NIS) excore neutron detectors (Ref. 3). Separate signals are taken from the top and bottom detectors. The AFD is defined as the difference in normalized flux signals between the top and bottom excore detectors in each detector well. For convenience, this flux difference is converted to provide flux difference units expressed as a percentage and labeled as % flux or % L. The AFD limits are provided in the COLR. Figure B 3.2.3B-1 shows typical RAOC AFD limits. The AFD limits for RAOC do not depend on the target flux difference. However, the target flux difference may be used to minimize changes in the axial power distribution. Violating this LCO on the AFD could produce unacceptable consequences if a Condition 2, 3, or 4 event occurs while the AFD is outside its specified limits. #### APPLICABILITY The AFD requirements are applicable in MODE 1 greater than or equal to 50% RTP when the combination of THERMAL POWER and core peaking factors are of primary importance in safety analysis. For AFD limits developed using RAOC methodology, the value of the AFD does not affect the limiting accident consequences with THERMAL POWER < 50% RTP and for lower operating power MODES. #### ACTIONS ### <u>A.1</u> As an alternative to restoring the AFD to within its specified limits, Required Action A.1 requires a THERMAL POWER reduction to < 50% RTP. This places the core in a condition for which the value of the AFD is not important in the applicable safety analyses. A Completion Time of #### A.1 (continued) 30 minutes is reasonable, based on operating experience, to reach 50% RTP without challenging plant systems. # SURVEILLANCE REQUIREMENTS #### SR 3.2.3.1 The AFD is monitored on an automatic basis using the unit process computer, which has an AFD monitor alarm. The computer determines the 1 minute average of each of the OPERABLE excore detector outputs and provides an alarm message immediately if the AFD for two or more OPERABLE excore channels is outside its specified limits. This Surveillance verifies that the AFD, as indicated by the NIS excore channel, is within its specified limits and is consistent with the status of the AFD monitor alarm. With the AFD monitor alarm inoperable, the AFD is monitored every hour to detect operation outside its limit. The Frequency of I hour is based on operating experience regarding the amount of time required to vary the AFD, and the fact that the AFD is closely monitored. With the AFD monitor alarm OPERABLE, the Surveillance Frequency of 7 days is adequate considering that the AFD is monitored by a computer and any deviation from requirements is alarmed. #### REFERENCES - 1. WCAP-8403 (nonproprietary), "Power Distribution Control and Load Following Procedures," Westinghouse Electric Corporation, September 1974. - 2. R. W. Miller et al., "Relaxation of Constant Axial Offset Control: Fo Surveillance Technical Specification," WCAP-10217(NP), June 1983. - 3. FSAR, Chapter [15]. AXIAL FLUX DIFFERENCE (%) Figure B 3.2.3B-1 (page 1 of 1) AXIAL FLUX DIFFERENCE Acceptable Operation Limits as a Function of RATED THERMAL POWER #### B 3.2 POWER DISTRIBUTION LIMITS ## B 3.2.4 QUADRANT POWER TILT RATIO (QPTR) #### **BASES** #### BACKGROUND The QPTR limit ensures that the gross radial power distribution remains consistent with the design values used in the safety analyses. Precise radial power distribution measurements are made during startup testing, after refueling, and periodically during power operation. The power density at any point in the core must be limited so that the fuel design criteria are maintained. Together, LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," LCO 3.2.4, and LCO 3.1.7, "Control Rod Insertion Limits," provide limits on process variables that characterize and control the three dimensional power distribution of the reactor core. Control of these variables ensures that the core operates within the fuel design criteria and that the power distribution remains within the bounds used in the safety analyses. #### APPLICABLE SAFETY ANALYSES This LCO precludes core power distributions that violate the following fuel design criteria: - a. During a large break loss of coolant accident, the peak cladding temperature must not exceed 2200°F (Ref. 1); - b. During a loss of forced reactor coolant flow accident, there must be at least 95% probability at the 95% confidence level (the 95/95 departure from nucleate boiling (DNB) criterion) that the hot fuel rod in the core does not experience a DNB condition; - c. During an ejected rod accident, the energy deposition to the fuel must not exceed 280 cal/gm (Ref. 2); and - d. The control rods must be capable of shutting down the reactor with a minimum required SDM with the highest worth control rod stuck fully withdrawn (Ref. 3). The LCO limits on the AFD, the QPTR, the Heat Flux Hot Channel Factor $(F_{\mathbf{Q}}(Z))$, the Nuclear Enthalpy Rise Hot ## APPLICABLE SAFETY ANALYSES (continued) Channel Factor $(F_{\Delta H}^{N})$, and control bank insertion are established to preclude core power distributions that exceed the safety analyses limits. The QPTR limits ensure that $F_{\Delta H}^{N}$ and $F_{Q}(Z)$ remain below their limiting values by preventing an undetected change in the gross radial power distribution. In MODE 1, the $F_{\Delta H}^N$ and $F_{\bf Q}(Z)$ limits must be maintained to preclude core power distributions from exceeding design limits assumed in the safety analyses. The QPTR satisfies Criterion 2 of the NRC Policy Statement. #### LC₀ The QPTR limit of 1.02, at which corrective action is required, provides a margin of protection for both the DNB ratio and linear heat generation rate contributing to excessive power peaks resulting from X-Y plane power tilts. A limiting QPTR of 1.02 can be tolerated before the margin for uncertainty in $F_Q(Z)$ and $(F_{\Delta H}^N)$ is possibly challenged. #### **APPLICABILITY** The QPTR limit must be maintained in MODE 1 with THERMAL POWER > 50% RTP to prevent core power distributions from exceeding the design limits. Applicability in MODE $1 \leq 50\%$ RTP and in other MODES is not required because there is either insufficient stored energy in the fuel or insufficient energy being transferred to the reactor coolant to require the implementation of a QPTR limit on the distribution of core power. The QPTR limit in these conditions is, therefore, not important. Note that the $F_{\Delta H}^{N}$ and $F_{Q}(Z)$ LCOs still apply, but allow progressively higher peaking factors at 50% RTP or lower. #### ACTIONS #### **A.**1 With the QPTR exceeding its limit, a power level reduction of 3% RTP for each 1% by which the QPTR exceeds 1.00 is a conservative tradeoff of total core power with peak linear power. The Completion Time of 2 hours allows sufficient ## A.1 (continued) time to identify the cause and correct the tilt. Note that the power reduction itself may cause a change in the tilted condition. #### A.2 After completion
of Required Action A.1, the QPTR alarm may still be in its alarmed state. As such, any additional changes in the QPTR are detected by requiring a check of the QPTR once per 12 hours thereafter. If the QPTR continues to increase, THERMAL POWER has to be reduced accordingly. A 12 hour Completion Time is sufficient because any additional change in QPTR would be relatively slow. #### <u>A.3</u> The peaking factors $F_{\Delta H}^{N}$ and $F_{Q}(Z)$ are of primary importance in ensuring that the power distribution remains consistent with the initial conditions used in the safety analyses. Performing SRs on $F_{\Delta H}^{N}$ and $F_{Q}(Z)$ within the Completion Time of 24 hours ensures that these primary indicators of power distribution are within their respective limits. Completion Time of 24 hours takes into consideration the rate at which peaking factors are likely to change, and the time required to stabilize the plant and perform a flux map. If these peaking factors are not within their limits, the Required Actions of these Surveillances provide an appropriate response for the abnormal condition. QPTR remains above its specified limit, the peaking factor surveillances are required each 7 days thereafter to evaluate $F_{\Delta H}^{N}$ and $F_{Q}(Z)$ with changes in power distribution. Relatively small changes are expected due to either burnup and xenon redistribution or correction of the cause for exceeding the QPTR limit. ## A.4 Although $F_{\Delta H}^N$ and $F_Q(Z)$ are of primary importance as initial conditions in the safety analyses, other changes in the power distribution may occur as the QPTR limit is exceeded ## A.4 (continued) and may have an impact on the validity of the safety analysis. A change in the power distribution can affect such reactor parameters as bank worths and peaking factors for rod malfunction accidents. When the QPTR exceeds its limit, it does not necessarily mean a safety concern exists. It does mean that there is an indication of a change in the gross radial power distribution that requires an investigation and evaluation that is accomplished by examining the incore power distribution. Specifically, the core peaking factors and the quadrant tilt must be evaluated because they are the factors that best characterize the core power distribution. This re-evaluation is required to ensure that, before increasing THERMAL POWER to above the limit of Required Action A.1, the reactor core conditions are consistent with the assumptions in the safety analyses. ## <u>A.5</u> If the QPTR has exceeded the 1.02 limit and a re-evaluation of the safety analysis is completed and shows that safety requirements are met, the excore detectors are recalibrated to show a zero QPTR prior to increasing THERMAL POWER to above the limit of Required Action A.1. This is done to detect any subsequent significant changes in QPTR. Required Action A.5 is modified by a Note that states that the QPT is not zeroed out until after the re-evaluation of the safety analysis has determined that core conditions at RTP are within the safety analysis assumptions (i.e., Required Action A.4). This Note is intended to prevent any ambiguity about the required sequence of actions. #### A.6 Once the flux tilt is zeroed out (i.e., Required Action A.5 is performed), it is acceptable to return to full power operation. However, as an added check that the core power distribution at RTP is consistent with the safety analysis assumptions. Required Action A.6 requires verification that $F_{\rm e}(Z)$ and $F_{\Delta H}^{\rm N}$ are within their specified limits within 24 hours of reaching RTP. As an added precaution, if the ## A.6 (continued) core power does not reach RTP within 24 hours, but is increased slowly, then the peaking factor surveillances must be performed within 48 hours of the time when the ascent to power was begun. These Completion Times are intended to allow adequate time to increase THERMAL POWER to above the limit of Required Action A.1, while not permitting the core to remain with unconfirmed power distributions for extended periods of time. Required Action A.6 is modified by a Note that states that the peaking factor surveillances may only be done after the excore detectors have been calibrated to show zero tilt (i.e., Required Action A.5). The intent of this Note is to have the peaking factor surveillances performed at operating power levels, which can only be accomplished after the excore detectors are calibrated to show zero tilt and the core returned to power. #### **B.1** If Required Actions A.1 through A.6 are not completed within their associated Completion Times, the unit must be brought to a MODE or condition in which the requirements do not apply. To achieve this status, THERMAL POWER must be reduced to < 50% RTP within 4 hours. The allowed Completion Time of 4 hours is reasonable, based on operating experience regarding the amount of time required to reach the reduced power level without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.2.4.1 SR 3.2.4.1 is modified by two Notes. Note 1 allows QPTR to be calculated with three power range channels if THERMAL POWER is < 75% RTP and the input from one Power Range Neutron Flux channel is inoperable. Note 2 allows performance of SR 3.2.4.2 in lieu of SR 3.2.4.1 if more than one input from Power Range Neutron Flux channels are inoperable. This Surveillance verifies that the QPTR, as indicated by the Nuclear Instrumentation System (NIS) excore channels, is ## SURVEILLANCE REQUIREMENTS ## <u>SR 3.2.4.1</u> (continued) within its limits. The Frequency of 7 days when the QPTR alarm is OPERABLE is acceptable because of the low probability that this alarm can remain inoperable without detection. When the QPTR alarm is inoperable, the Frequency is increased to 12 hours. This Frequency is adequate to detect any relatively slow changes in QPTR, because for those causes of QPT that occur quickly (e.g., a dropped rod), there typically are other indications of abnormality that prompt a verification of core power tilt. ## SR 3.2.4.2 This Surveillance is modified by a Note, which states that it is required only when the input from one or more Power Range Neutron Flux channels are inoperable and the THERMAL POWER is \geq 75% RTP. With an NIS power range channel inoperable, tilt monitoring for a portion of the reactor core becomes degraded. Large tilts are likely detected with the remaining channels, but the capability for detection of small power tilts in some quadrants is decreased. Performing SR 3.2.4.2 at a Frequency of 12 hours provides an accurate alternative means for ensuring that any tilt remains within its limits. For purposes of monitoring the QPTR when one power range channel is inoperable, the moveable incore detectors are used to confirm that the normalized symmetric power distribution is consistent with the indicated QPTR and any previous data indicating a tilt. The incore detector monitoring is performed with a full incore flux map or two sets of four thimble locations with quarter core symmetry. The two sets of four symmetric thimbles is a set of eight unique detector locations. These locations are C-8, E-5, E-11, H-3, H-13, L-5, L-11, and N-8 for three and four loop cores. The symmetric thimble flux map can be used to generate symmetric thimble "tilt." This can be compared to a reference symmetric thimble tilt, from the most recent full # SURVEILLANCE REQUIREMENTS ## **SR 3.2.4.2** (continued) core flux map, to generate an incore QPTR. Therefore, QPTR can be used to confirm that QPTR is within limits. With one NIS channel inoperable, the indicated tilt may be changed from the value indicated with all four channels OPERABLE. To confirm that no change in tilt has actually occurred, which might cause the QPTR limit to be exceeded, the incore result may be compared against previous flux maps either using the symmetric thimbles as described above or a complete flux map. Nominally, quadrant tilt from the Surveillance should be within 2% of the tilt shown by the most recent flux map data. #### REFERENCES - 1. 10 CFR 50.46. - 2. Regulatory Guide 1.77, Rev [0], May 1974. - 3. 10 CFR 50, Appendix A, GDC 26. | |
V | | |--|-------|--| #### B 3.3 INSTRUMENTATION ## B 3.3.1 Reactor Trip System (RTS) Instrumentation #### **BASES** #### BACKGROUND The RTS initiates a unit shutdown, based on the values of selected unit parameters, to protect against violating the core fuel design limits and Reactor Coolant System (RCS) pressure boundary during anticipated operational occurrences (AOOs) and to assist the Engineered Safety Features (ESF) Systems in mitigating accidents. The protection and monitoring systems have been designed to assure safe operation of the reactor. This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the RTS, as well as specifying LCOs on other reactor system parameters and equipment performance. The LSSS, defined in this specification as the [Trip Setpoints], in conjunction with the LCOs, establish the threshold for protective system action to prevent exceeding acceptable limits during Design Basis Accidents (DBAs). During A00s, which are those events expected to occur one or more times during the unit life, the acceptable limits are: - The Departure from Nucleate Boiling Ratio (DNBR) shall be maintained above the Safety Limit (SL) value to prevent departure from nucleate boiling (DNB); - 2. Fuel centerline melt shall not occur; and - The RCS pressure SL of 2750 psia shall not be exceeded. Operation within the SLs of Specification 2.0, "Safety Limits (SLs)," also maintains the above values and assures that offsite dose will be within the 10 CFR 50 and 10 CFR 100 criteria during AOOs. Accidents are events that are analyzed even though they are not expected to occur during the unit life. The acceptable limit during
accidents is that offsite dose shall be maintained within an acceptable fraction of 10 CFR 100 limits. Different accident categories are allowed a # BACKGROUND (continued) different fraction of these limits, based on probability of occurrence. Meeting the acceptable dose limit for an accident category is considered having acceptable consequences for that event. The RTS instrumentation is segmented into four distinct but interconnected modules as illustrated in Figure [], FSAR, Chapter [7] (Ref. 1), and as identified below: - 1. Field transmitters or process sensors: provide a measurable electronic signal based upon the physical characteristics of the parameter being measured; - 2. Signal Process Control and Protection System, including Analog Protection System, Nuclear Instrumentation System (NIS), field contacts, and protection channel sets: provides signal conditioning, bistable setpoint comparison, process algorithm actuation, compatible electrical signal output to protection system devices, and control board/control room/miscellaneous indications; - Solid State Protection System (SSPS), including input, logic, and output bays: initiates proper unit shutdown and/or ESF actuation in accordance with the defined logic, which is based on the bistable outputs from the signal process control and protection system; and - 4. Reactor trip switchgear, including reactor trip breakers (RTBs) and bypass breakers: provides the means to interrupt power to the control rod drive mechanisms (CRDMs) and allows the rod cluster control assemblies (RCCAs), or "rods," to fall into the core and shut down the reactor. The bypass breakers allow testing of the RTBs at power. ## Field Transmitters or Sensors To meet the design demands for redundancy and reliability, more than one, and often as many as four, field transmitters or sensors are used to measure unit parameters. To account for the calibration tolerances and instrument drift, which are assumed to occur between calibrations, statistical allowances are provided in the Trip Setpoint and Allowable ## Field Transmitters or Sensors (continued) Values. The OPERABILITY of each transmitter or sensor can be evaluated when its "as found" calibration data are compared against its documented acceptance criteria. ## Signal Process Control and Protection System Generally, three or four channels of process control equipment are used for the signal processing of unit parameters measured by the field instruments. The process control equipment provides signal conditioning, comparable output signals for instruments located on the main control board, and comparison of measured input signals with setpoints established by safety analyses. These setpoints are defined in FSAR, Chapter [7] (Ref. 1), Chapter [6] (Ref. 2), and Chapter [15] (Ref. 3). If the measured value of a unit parameter exceeds the predetermined setpoint, an output from a bistable is forwarded to the SSPS for decision evaluation. Channel separation is maintained up to and through the input bays. However, not all unit parameters require four channels of sensor measurement and signal processing. Some unit parameters provide input only to the SSPS, while others provide input to the SSPS, the main control board, the unit computer, and one or more control systems. Generally, if a parameter is used only for input to the protection circuits, three channels with a two-out-of-three logic are sufficient to provide the required reliability and redundancy. If one channel fails in a direction that would not result in a partial Function trip, the Function is still OPERABLE with a two-out-of-two logic. If one channel fails, such that a partial Function trip occurs, a trip will not occur and the Function is still OPERABLE with a one-out-of-two logic. Generally, if a parameter is used for input to the SSPS and a control function, four channels with a two-out-of-four logic are sufficient to provide the required reliability and redundancy. The circuit must be able to withstand both an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Again, a single failure will neither cause nor # Signal Process Control and Protection System (continued) prevent the protection function actuation. These requirements are described in IEEE-279-1971 (Ref. 4). The actual number of channels required for each unit parameter is specified in Reference 1. Two logic channels are required to ensure no single random failure of a logic channel will disable the RTS. The logic channels are designed such that testing required while the reactor is at power may be accomplished without causing trip. Provisions to allow removing logic channels from service during maintenance are unnecessary because of the logic system's designed reliability. ## Trip Setpoints and Allowable Values The Trip Setpoints are the nominal values at which the bistables are set. Any bistable is considered to be properly adjusted when the "as left" value is within the band for CHANNEL CALIBRATION accuracy (i.e., ± rack calibration + comparator setting accuracy). The Trip Setpoints used in the bistables are based on the analytical limits stated in Reference 1. The selection of these Trip Setpoints is such that adequate protection is provided when all sensor and processing time delays are taken into account. To allow for calibration tolerances. instrumentation uncertainties, instrument drift, and severe environment errors for those RTS channels that must function in harsh environments as defined by 10 CFR 50.49 (Ref. 5). the Trip Setpoints and Allowable Values specified in Table 3.3.1-1 in the accompanying LCO are conservatively adjusted with respect to the analytical limits. A detailed description of the methodology used to calculate the Trip Setpoints, including their explicit uncertainties, is provided in the "RTS/ESFAS Setpoint Methodology Study" (Ref. 6). The actual nominal Trip Setpoint entered into the bistable is more conservative than that specified by the Allowable Value to account for changes in random measurement errors detectable by a COT. One example of such a change in measurement error is drift during the surveillance interval. If the measured setpoint does not exceed the Allowable Value, the bistable is considered OPERABLE. # Trip Setpoints and Allowable Values (continued) Setpoints in accordance with the Allowable Value ensure that SLs are not violated during AOOs (and that the consequences of DBAs will be acceptable, providing the unit is operated from within the LCOs at the onset of the AOO or DBA and the equipment functions as designed). Note that in the accompanying LCO 3.3.1, the Trip Setpoints of Table 3.3.1-1 are the LSSS. Each channel of the process control equipment can be tested on line to verify that the signal or setpoint accuracy is within the specified allowance requirements of Reference 2. Once a designated channel is taken out of service for testing, a simulated signal is injected in place of the field instrument signal. The process equipment for the channel in test is then tested, verified, and calibrated. SRs for the channels are specified in the SRs section. The Trip Setpoints and Allowable Values listed in Table 3.3.1-1 are based on the methodology described in Reference 6, which incorporates all of the known uncertainties applicable for each channel. The magnitudes of these uncertainties are factored into the determination of each Trip Setpoint. All field sensors and signal processing equipment for these channels are assumed to operate within the allowances of these uncertainty magnitudes. ## Solid State Protection System The SSPS equipment is used for the decision logic processing of outputs from the signal processing equipment bistables. To meet the redundancy requirements, two trains of SSPS, each performing the same functions, are provided. If one train is taken out of service for maintenance or test purposes, the second train will provide reactor trip and/or ESF actuation for the unit. If both trains are taken out of service or placed in test, a reactor trip will result. Each train is packaged in its own cabinet for physical and electrical separation to satisfy separation and independence requirements. The system has been designed to trip in the event of a loss of power, directing the unit to a safe shutdown condition. ## Solid State Protection System (continued) The SSPS performs the decision logic for actuating a reactor trip or ESF actuation, generates the electrical output signal that will initiate the required trip or actuation, and provides the status, permissive, and annunciator output signals to the main control room of the unit. The bistable outputs from the signal processing equipment are sensed by the SSPS equipment and combined into logic matrices that represent combinations indicative of various unit upset and accident transients. If a required logic matrix combination is completed, the system will initiate a reactor trip or send actuation signals via master and slave relays to those components whose aggregate Function best serves to alleviate the condition and restore the unit to a safe condition. Examples are given in the Applicable Safety Analyses, LCO, and Applicability sections of this Bases. ## Reactor Trip Switchgear The RTBs are in the electrical power supply line from the control rod drive motor generator set power supply to the CRDMs. Opening of the RTBs interrupts power to the CRDMs, which allows the shutdown rods and control rods to fall into the core by gravity. Each RTB is equipped with a bypass breaker to allow testing of the RTB while the unit is at power. During normal operation the output from the SSPS is a voltage signal that energizes the undervoltage coils in the RTBs and bypass breakers, if in use. When the required logic matrix combination is completed, the SSPS output voltage signal is removed, the
undervoltage coils are de-energized, the breaker trip lever is actuated by the de-energized undervoltage coil, and the RTBs and bypass breakers are tripped open. This allows the shutdown rods and control rods to fall into the core. In addition to the de-energization of the undervoltage coils, each breaker is also equipped with a shunt trip device that is energized to trip the breaker open upon receipt of a reactor trip signal from the SSPS. Either the undervoltage coil or the shunt trip mechanism is sufficient by itself, thus providing a diverse trip mechanism. The decision logic matrix Functions are described in the functional diagrams included in Reference 2. In addition to ## Reactor Trip Switchgear (continued) the reactor trip or ESF, these diagrams also describe the various "permissive interlocks" that are associated with unit conditions. Each train has a built in testing device that can automatically test the decision logic matrix Functions and the actuation devices while the unit is at power. When any one train is taken out of service for testing, the other train is capable of providing unit monitoring and protection until the testing has been completed. The testing device is semiautomatic to minimize testing time. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY The RTS functions to maintain the SLs during all AOOs and mitigates the consequences of DBAs in all MODES in which the RTBs are closed. Each of the analyzed accidents and transients can be detected by one or more RTS Functions. The accident analysis described in Reference 3 takes credit for most RTS trip Functions. RTS trip Functions not specifically credited in the accident analysis are qualitatively credited in the safety analysis and the NRC staff approved licensing basis for the unit. These RTS trip Functions may provide protection for conditions that do not require dynamic transient analysis to demonstrate Function performance. They may also serve as backups to RTS trip Functions that were credited in the accident analysis. The LCO requires all instrumentation performing an RTS Function, listed in Table 3.3.1-1 in the accompanying LCO, to be OPERABLE. Failure of any instrument renders the affected channel(s) inoperable and reduces the reliability of the affected Functions. The LCO generally requires OPERABILITY of four or three channels in each instrumentation Function, two channels of Manual Reactor Trip in each logic Function, and two trains in each Automatic Trip Logic Function. Four OPERABLE instrumentation channels in a two-out-of-four configuration are required when one RTS channel is also used as a control system input. This configuration accounts for the possibility of the shared channel failing in such a manner that it creates a transient that requires RTS action. In APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) this case, the RTS will still provide protection, even with random failure of one of the other three protection channels. Three operable instrumentation channels in a two-out-of-three configuration are generally required when there is no potential for control system and protection system interaction that could simultaneously create a need for RTS trip and disable one RTS channel. The two-out-of-three and two-out-of-four configurations allow one channel to be tripped during maintenance or testing without causing a reactor trip. Specific exceptions to the above general philosophy exist and are discussed below. #### Reactor Trip System Functions The safety analyses and OPERABILITY requirements applicable to each RTS Function are discussed below: ## 1. Manual Reactor Trip The Manual Reactor Trip ensures that the control room operator can initiate a reactor trip at any time by using either of two reactor trip switches in the control room. A Manual Reactor Trip accomplishes the same results as any one of the automatic trip Functions. It is used by the reactor operator to shut down the reactor whenever any parameter is rapidly trending toward its Trip Setpoint. The LCO requires two Manual Reactor Trip channels to be OPERABLE. Each channel is controlled by a manual reactor trip switch. Each channel activates the reactor trip breaker in both trains. Two independent channels are required to be OPERABLE so that no single random failure will disable the Manual Reactor Trip Function. In MODE 1 or 2, manual initiation of a reactor trip must be OPERABLE. These are the MODES in which the shutdown rods and/or control rods are partially or fully withdrawn from the core. In MODE 3, 4, or 5, the manual initiation Function must also be OPERABLE if the shutdown rods or control rods are withdrawn or the Control Rod Drive (CRD) System is capable of withdrawing the shutdown rods or the control rods. In this condition, inadvertent control rod withdrawal is ## 1. Manual Reactor Trip (continued) possible. In MODE 3, 4, or 5, manual initiation of a reactor trip does not have to be OPERABLE if the CRD System is not capable of withdrawing the shutdown rods or control rods. If the rods cannot be withdrawn from the core, there is no need to be able to trip the reactor because all of the rods are inserted. In MODE 6, neither the shutdown rods nor the control rods are permitted to be withdrawn and the CRDMs are disconnected from the control rods and shutdown rods. Therefore, the manual initiation Function is not required. ## 2. Power Range Neutron Flux The NIS power range detectors are located external to the reactor vessel and measure neutrons leaking from the core. The NIS power range detectors provide input to the Rod Control System and the Steam Generator (SG) Water Level Control System. Therefore, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Note that this Function also provides a signal to prevent automatic and manual rod withdrawal prior to initiating a reactor trip. Limiting further rod withdrawal may terminate the transient and eliminate the need to trip the reactor. ## a. Power Range Neutron Flux-High The Power Range Neutron Flux—High trip Function ensures that protection is provided, from all power levels, against a positive reactivity excursion leading to DNB during power operations. These can be caused by rod withdrawal or reductions in RCS temperature. The LCO requires all four of the Power Range Neutron Flux—High channels to be OPERABLE. In MODE 1 or 2, when a positive reactivity excursion could occur, the Power Range Neutron Flux—High trip must be OPERABLE. This Function # a. <u>Power Range Neutron Flux-High</u> (continued) will terminate the reactivity excursion and shut down the reactor prior to reaching a power level that could damage the fuel. In MODE 3, 4, 5, or 6, the NIS power range detectors cannot detect neutron levels in this range. In these MODES, the Power Range Neutron Flux—High does not have to be OPERABLE because the reactor is shut down and reactivity excursions into the power range are extremely unlikely. Other RTS Functions and administrative controls provide protection against reactivity additions when in MODE 3, 4, 5, or 6. ## b. Power Range Neutron Flux-Low The LCO requirement for the Power Range Neutron Flux—Low trip Function ensures that protection is provided against a positive reactivity excursion from low power or subcritical conditions. The LCO requires all four of the Power Range Neutron Flux—Low channels to be OPERABLE. In MODE 1, below the Power Range Neutron Flux (P-10 setpoint), and in MODE 2, the Power Range Neutron Flux—Low trip must be OPERABLE. This Function may be manually blocked by the operator when two out of four power range channels are greater than approximately 10% RTP (P-10 setpoint). This Function is automatically unblocked when three out of four power range channels are below the P-10 setpoint. Above the P-10 setpoint, positive reactivity additions are mitigated by the Power Range Neutron Flux—High trip Function. In MODE 3, 4, 5, or 6, the Power Range Neutron Flux—Low trip Function does not have to be OPERABLE because the reactor is shut down and the NIS power range detectors cannot detect neutron levels in this range. Other RTS trip Functions and administrative controls provide protection # b. <u>Power Range Neutron Flux-Low</u> (continued) against positive reactivity additions or power excursions in MODE 3, 4, 5, or 6. ## 3. Power Range Neutron Flux Rate The Power Range Neutron Flux Rate trips use the same channels as discussed for Function 2 above. ## a. Power Range Neutron Flux-High Positive Rate The Power Range Neutron Flux—High Positive Rate trip Function ensures that protection is provided against rapid increases in neutron flux that are characteristic of an RCCA drive rod housing rupture and the accompanying ejection of the RCCA. This Function compliments the Power Range Neutron Flux—High and Low Setpoint trip Functions to ensure that the criteria are met for a rod ejection from the power range. The LCO requires all four of the Power Range Neutron Flux—High Positive Rate channels to be OPERABLE. In MODE 1 or 2, when there is a potential to add a large amount of positive reactivity from a rod ejection accident (REA), the Power Range Neutron Flux—High Positive Rate trip must be OPERABLE. In MODE 3, 4, 5, or 6, the Power Range Neutron Flux-High Positive Rate trip Function does not have to be OPERABLE because other RTS trip Functions and administrative controls will provide protection against positive reactivity additions. Also, since only the shutdown banks may be withdrawn in MODE 3, 4, or 5, the remaining complement of control bank worth ensures a sufficient degree of SDM in the event of an REA. In MODE 6, no rods are withdrawn and the SDM is increased during refueling operations. The reactor vessel head is also removed or the closure bolts are detensioned preventing any pressure
buildup. In addition, the NIS power range detectors cannot detect neutron levels present in this mode. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) # b. Power Range Neutron Flux-High Negative Rate The Power Range Neutron Flux—High Negative Rate trip Function ensures that protection is provided for multiple rod drop accidents. At high power levels, a multiple rod drop accident could cause local flux peaking that would result in an unconservative local DNBR. DNBR is defined as the ratio of the heat flux required to cause a DNB at a particular location in the core to the local heat flux. The DNBR is indicative of the margin to DNB. No credit is taken for the operation of this Function for those rod drop accidents in which the local DNBRs will be greater than the limit. The LCO requires all four Power Range Neutron Flux—High Negative Rate channels to be OPERABLE. In MODE 1 or 2, when there is potential for a multiple rod drop accident to occur, the Power Range Neutron Flux—High Negative Rate trip must be OPERABLE. In MODE 3, 4, 5, or 6, the Power Range Neutron Flux—High Negative Rate trip Function does not have to be OPERABLE because the core is not critical and DNB is not a concern. Also, since only the shutdown banks may be withdrawn in MODE 3, 4, or 5, the remaining complement of control bank worth ensures a sufficient degree of SDM in the event of an REA. In MODE 6, no rods are withdrawn and the required SDM is increased during refueling operations. In addition, the NIS power range detectors cannot detect neutron levels present in this MODE. # 4. Intermediate Range Neutron Flux The Intermediate Range Neutron Flux trip Function ensures that protection is provided against an uncontrolled RCCA bank rod withdrawal accident from a subcritical condition during startup. This trip Function provides redundant protection to the Power Range Neutron Flux—Low Setpoint trip Function. The NIS intermediate range detectors are located external to the reactor vessel and measure neutrons leaking from the core. The NIS intermediate range detectors # 4. <u>Intermediate Range Neutron Flux</u> (continued) do not provide any input to control systems. Note that this Function also provides a signal to prevent automatic and manual rod withdrawal prior to initiating a reactor trip. Limiting further rod withdrawal may terminate the transient and eliminate the need to trip the reactor. The LCO requires two channels of Intermediate Range Neutron Flux to be OPERABLE. Two OPERABLE channels are sufficient to ensure no single random failure will disable this trip Function. Because this trip Function is important only during startup, there is generally no need to disable channels for testing while the Function is required to be OPERABLE. Therefore, a third channel is unnecessary. In MODE 1 below the P-10 setpoint, and in MODE 2, when there is a potential for an uncontrolled RCCA bank rod withdrawal accident during reactor startup, the Intermediate Range Neutron Flux trip must be OPERABLE. Above the P-10 setpoint, the Power Range Neutron Flux—High Setpoint trip and the Power Range Neutron Flux—High Positive Rate trip provide core protection for a rod withdrawal accident. In MODE 3, 4, or 5, the Intermediate Range Neutron Flux trip does not have to be OPERABLE because the control rods must be fully inserted and only the shutdown rods may be withdrawn. The reactor cannot be started up in this condition. The core also has the required SDM to mitigate the consequences of a positive reactivity addition accident. In MODE 6, all rods are fully inserted and the core has a required increased SDM. Also, the NIS intermediate range detectors cannot detect neutron levels present in this MODE. ## 5. Source Range Neutron Flux The LCO requirement for the Source Range Neutron Flux trip Function ensures that protection is provided against an uncontrolled RCCA bank rod withdrawal accident from a subcritical condition during startup. This trip Function provides redundant protection to # 5. <u>Source Range Neutron Flux</u> (continued) the Power Range Neutron Flux—Low Setpoint and Intermediate Range Neutron Flux trip Functions. In MODES 3, 4, and 5, administrative controls also prevent the uncontrolled withdrawal of rods. The NIS source range detectors are located external to the reactor vessel and measure neutrons leaking from the core. The NIS source range detectors do not provide any inputs to control systems. The source range trip is the only RTS automatic protection function required in MODES 3, 4, and 5. Therefore, the functional capability at the specified Trip Setpoint is assumed to be available. The LCO requires two channels of Source Range Neutron Flux to be OPERABLE. Two OPERABLE channels are sufficient to ensure no single random failure will disable this trip Function. The LCO also requires one channel of the Source Range Neutron Flux to be OPERABLE in MODE 3, 4, or 5 with RTBs open. In this case, the source range Function is to provide control room indication and input to the Boron Dilution Protection System (BDPS). The outputs of the Function to RTS logic are not required OPERABLE when the RTBs are open. The Source Range Neutron Flux Function provides protection for control rod withdrawal from subcritical, boron dilution and control rod ejection events. The Function also provides visual neutron flux indication in the control room. In MODE 2 when below the P-6 setpoint during a reactor startup, the Source Range Neutron Flux trip must be OPERABLE. Above the P-6 setpoint, the Intermediate Range Neutron Flux trip and the Power Range Neutron Flux—Low Setpoint trip will provide core protection for reactivity accidents. Above the P-6 setpoint, the NIS source range detectors are de-energized and inoperable. In MODE 3, 4, or 5 with the reactor shut down, the Source Range Neutron Flux trip Function must also be OPERABLE. If the CRD System is capable of rod withdrawal, the Source Range Neutron Flux trip must be # 5. <u>Source Range Neutron Flux</u> (continued) OPERABLE to provide core protection against a rod withdrawal accident. If the CRD System is not capable of rod withdrawal, the source range detectors are not required to trip the reactor. However, their monitoring Function must be OPERABLE to monitor core neutron levels and provide indication of reactivity changes that may occur as a result of events like a boron dilution. These inputs are provided to the BDPS. The requirements for the NIS source range detectors in MODE 6 are addressed in LCO 3.9.3, "Nuclear Instrumentation." ## 6. <u>Overtemperature ΔT</u> The Overtemperature ΔT trip Function is provided to ensure that the design limit DNBR is met. This trip Function also limits the range over which the Overpower ΔT trip Function must provide protection. The inputs to the Overtemperature ΔT trip include all pressure, coolant temperature, axial power distribution, and reactor power as indicated by loop ΔT assuming full reactor coolant flow. Protection from violating the DNBR limit is assured for those transients that are slow with respect to delays from the core to the measurement system. The Function monitors both variation in power and flow since a decrease in flow has the same effect on ΔT as a power increase. The Overtemperature ΔT trip Function uses each loop's ΔT as a measure of reactor power and is compared with a setpoint that is automatically varied with the following parameters: - reactor coolant average temperature—the Trip Setpoint is varied to correct for changes in coolant density and specific heat capacity with changes in coolant temperature; - pressurizer pressure—the Trip Setpoint is varied to correct for changes in system pressure; and - axial power distribution— $f(\Delta I)$, the Trip Setpoint is varied to account for imbalances in the axial power distribution as detected by the # 6. Overtemperature ΔT (continued) NIS upper and lower power range detectors. If axial peaks are greater than the design limit, as indicated by the difference between the upper and lower NIS power range detectors, the Trip Setpoint is reduced in accordance with Note 1 of Table 3.3.1-1. Dynamic compensation is included for system piping delays from the core to the temperature measurement system. The Overtemperature ΔT trip Function is calculated for each loop as described in Note 1 of Table 3.3.1-1. Trip occurs if Overtemperature ΔT is indicated in two loops. At some units, the pressure and temperature signals are used for other control functions. For those units, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Note that this Function also provides a signal to generate a turbine runback prior to reaching the Trip Setpoint. A turbine runback will reduce turbine power and reactor power. A reduction in power will normally alleviate the Overtemperature ΔT condition and may prevent a reactor trip. The LCO requires all four channels of the Overtemperature ΔT trip Function to be OPERABLE for two and four loop units (the LCO requires all three channels on the Overtemperature ΔT trip Function to be OPERABLE for three loop units). Note that the Overtemperature ΔT Function receives input from channels shared with other RTS Functions. Failures that affect multiple Functions require entry into the Conditions applicable to all affected Functions. In MODE 1 or 2, the Overtemperature ΔT trip must be OPERABLE to prevent DNB. In MODE 3, 4, 5, or 6, this trip Function does not have to be OPERABLE because the reactor is not operating and there is insufficient heat production to be concerned about DNB. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) ## 7. Overpower ΔT The Overpower ΔT trip Function ensures
that protection is provided to ensure the integrity of the fuel (i.e., no fuel pellet melting and less than 1% cladding strain) under all possible overpower conditions. This trip Function also limits the required range of the Overtemperature ΔT trip Function and provides a backup to the Power Range Neutron Flux—High Setpoint trip. The Overpower ΔT trip Function ensures that the allowable heat generation rate (kW/ft) of the fuel is not exceeded. It uses the ΔT of each loop as a measure of reactor power with a setpoint that is automatically varied with the following parameters: - reactor coolant average temperature—the Trip Setpoint is varied to correct for changes in coolant density and specific heat capacity with changes in coolant temperature; and - rate of change of reactor coolant average temperature—including dynamic compensation for the delays between the core and the temperature measurement system. The Overpower ΔT trip Function is calculated for each loop as per Note 2 of Table 3.3.1-1. Trip occurs if Overpower ΔT is indicated in two loops. At some units, the temperature signals are used for other control functions. At those units, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation and a single failure in the remaining channels providing the protection function actuation. Note that this Function also provides a signal to generate a turbine runback prior to reaching the Allowable Value. A turbine runback will reduce turbine power and reactor power. A reduction in power will normally alleviate the Overpower ΔT condition and may prevent a reactor trip. The LCO requires four channels for two and four loop units (three channels for three loop units) of the Overpower ΔT trip Function to be OPERABLE. Note that the Overpower ΔT trip Function receives input from ## 7. Overpower ΔT (continued) channels shared with other RTS Functions. Failures that affect multiple Functions require entry into the Conditions applicable to all affected Functions. In MODE 1 or 2, the Overpower ΔT trip Function must be OPERABLE. These are the only times that enough heat is generated in the fuel to be concerned about the heat generation rates and overheating of the fuel. In MODE 3, 4, 5, or 6, this trip Function does not have to be OPERABLE because the reactor is not operating and there is insufficient heat production to be concerned about fuel overheating and fuel damage. #### 8. Pressurizer Pressure The same sensors provide input to the Pressurizer Pressure—High and —Low trips and the Overtemperature ΔT trip. At some units, the Pressurizer Pressure channels are also used to provide input to the Pressurizer Pressure Control System. For those units, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. #### a. Pressurizer Pressure-Low The Pressurizer Pressure—Low trip Function ensures that protection is provided against violating the DNBR limit due to low pressure. The LCO requires four channels for two and four loop units (three channels for three loop units) of Pressurizer Pressure—Low to be OPERABLE. In MODE 1, when DNB is a major concern, the Pressurizer Pressure—Low trip must be OPERABLE. This trip Function is automatically enabled on increasing power by the P-7 interlock (NIS power range P-10 or turbine impulse pressure greater than approximately 10% of full power equivalent ## a. <u>Pressurizer Pressure-Low</u> (continued) (P-13)). On decreasing power, this trip Function is automatically blocked below P-7. Below the P-7 setpoint, no conceivable power distributions can occur that would cause DNB concerns. #### b. Pressurizer Pressure—High The Pressurizer Pressure—High trip Function ensures that protection is provided against overpressurizing the RCS. This trip Function operates in conjunction with the pressurizer relief and safety valves to prevent RCS overpressure conditions. The LCO requires four channels for two and four loop units (three channels for three loop units) of the Pressurizer Pressure—High to be OPERABLE. The Pressurizer Pressure—High LSSS is selected to be below the pressurizer safety valve actuation pressure and above the power operated relief valve (PORV) setting. This setting minimizes challenges to safety valves while avoiding unnecessary reactor trip for those pressure increases that can be controlled by the PORVs. In MODE 1 or 2, the Pressurizer Pressure—High trip must be OPERABLE to help prevent RCS overpressurization and minimize challenges to the relief and safety valves. In MODE 3, 4, 5, or 6, the Pressurizer Pressure—High trip Function does not have to be OPERABLE because transients that could cause an overpressure condition will be slow to occur. Therefore, the operator will have sufficient time to evaluate unit conditions and take corrective actions. Additionally, low temperature overpressure protection systems provide overpressure protection when below MODE 4. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) ## 9. <u>Pressurizer Water Level-High</u> The Pressurizer Water Level—High trip Function provides a backup signal for the Pressurizer Pressure—High trip and also provides protection against water relief through the pressurizer safety valves. These valves are designed to pass steam in order to achieve their design energy removal rate. A reactor trip is actuated prior to the pressurizer becoming water solid. The LCO requires three channels of Pressurizer Water Level-High to be OPERABLE. The pressurizer level channels are used as input to the Pressurizer Level Control System. A fourth channel is not required to address control/protection interaction concerns. The level channels do not actuate the safety valves, and the high pressure reactor trip is set below the safety valve setting. Therefore, with the slow rate of charging available, pressure overshoot due to level channel failure cannot cause the safety valve to lift before reactor high pressure trip. In MODE 1, when there is a potential for overfilling the pressurizer, the Pressurizer Water Level—High trip must be OPERABLE. This trip Function is automatically enabled on increasing power by the P-7 interlock. On decreasing power, this trip Function is automatically blocked below P-7. Below the P-7 setpoint, transients that could raise the pressurizer water level will be slow and the operator will have sufficient time to evaluate unit conditions and take corrective actions. ## 10. Reactor Coolant Flow-Low ## a. Reactor Coolant Flow—Low (Single Loop) The Reactor Coolant Flow—Low (Single Loop) trip Function ensures that protection is provided against violating the DNBR limit due to low flow in one or more RCS loops, while avoiding reactor trips due to normal variations in loop flow. Above the P-8 setpoint, which is approximately 48% RTP, a loss of flow in any RCS loop will actuate a reactor trip. Each RCS loop has three flow detectors to monitor flow. The flow signals are not used for any control system input. # a. Reactor Coolant Flow—Low (Single Loop) (continued) The LCO requires three Reactor Coolant Flow—Low channels per loop to be OPERABLE in MODE 1 above P-8. In MODE 1 above the P-8 setpoint, a loss of flow in one RCS loop could result in DNB conditions in the core. In MODE 1 below the P-8 setpoint, a loss of flow in two or more loops is required to actuate a reactor trip (Function 10.b) because of the lower power level and the greater margin to the design limit DNBR. ## Reactor Coolant Flow—Low (Two Loops) The Reactor Coolant Flow—Low (Two Loops) trip Function ensures that protection is provided against violating the DNBR limit due to low flow in two or more RCS loops while avoiding reactor trips due to normal variations in loop flow. Above the P-7 setpoint and below the P-8 setpoint, a loss of flow in two or more loops will initiate a reactor trip. Each loop has three flow detectors to monitor flow. The flow signals are not used for any control system input. The LCO requires three Reactor Coolant Flow—Low channels per loop to be OPERABLE. In MODE 1 above the P-7 setpoint and below the P-8 setpoint, the Reactor Coolant Flow—Low (Two Loops) trip must be OPERABLE. Below the P-7 setpoint, all reactor trips on low flow are automatically blocked since no conceivable power distributions could occur that would cause a DNB concern at this low power level. Above the P-7 setpoint, the reactor trip on low flow in two or more RCS loops is automatically enabled. Above the P-8 setpoint, a loss of flow in any one loop will actuate a reactor trip because of the higher power level and the reduced margin to the design limit DNBR. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) # II. Reactor Coolant Pump (RCP) Breaker Position Both RCP Breaker Position trip Functions operate together on two sets of auxiliary contacts, with one set on each RCP breaker. These Functions anticipate the Reactor Coolant Flow—Low trips to avoid RCS heatup that would occur before the low flow trip actuates. # a. Reactor Coolant Pump Breaker Position (Single Loop) The RCP Breaker Position (Single Loop) trip Function ensures that protection is provided against violating the DNBR limit due to a loss of flow in one RCS loop. The position of each RCP breaker is monitored. If one RCP breaker is open above the P-8 setpoint, a reactor trip is initiated. This trip Function will generate a reactor trip before the Reactor Coolant Flow—Low (Single Loop) Trip Setpoint is reached. The LCO requires one RCP Breaker Position channel per RCP to be OPERABLE. One OPERABLE channel is sufficient for this trip Function because the RCS Flow—Low trip alone provides sufficient protection of unit SLs for loss of flow events. The
RCP Breaker Position trip serves only to anticipate the low flow trip, minimizing the thermal transient associated with loss of a pump. This Function measures only the discrete position (open or closed) of the RCP breaker, using a position switch. Therefore, the Function has no adjustable trip setpoint with which to associate an LSSS. In MODE 1 above the P-8 setpoint, when a loss of flow in any RCS loop could result in DNB conditions in the core, the RCP Breaker Position (Single Loop) trip must be OPERABLE. In MODE 1 below the P-8 setpoint, a loss of flow in two or more loops is required to actuate a reactor trip because of the lower power level and the greater margin to the design limit DNBR. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) # b. Reactor Coolant Pump Breaker Position (Two Loops) The RCP Breaker Position (Two Loops) trip Function ensures that protection is provided against violating the DNBR limit due to a loss of flow in two or more RCS loops. The position of each RCP breaker is monitored. Above the P-7 setpoint and below the P-8 setpoint, a loss of flow in two or more loops will initiate a reactor trip. This trip Function will generate a reactor trip before the Reactor Coolant Flow—Low (Two Loops) Trip Setpoint is reached. The LCO requires one RCP Breaker Position channel per RCP to be OPERABLE. One OPERABLE channel is sufficient for this Function because the RCS Flow—Low trip alone provides sufficient protection of unit SLs for loss of flow events. The RCP Breaker Position trip serves only to anticipate the low flow trip, minimizing the thermal transient associated with loss of an RCP. This Function measures only the discrete position (open or closed) of the RCP breaker, using a position switch. Therefore, the Function has no adjustable trip setpoint with which to associate an LSSS. In MODE 1 above the P-7 setpoint and below the P-8 setpoint, the RCP Breaker Position (Two Loops) trip must be OPERABLE. Below the P-7 setpoint, all reactor trips on loss of flow are automatically blocked since no conceivable power distributions could occur that would cause a DNB concern at this low power level. Above the P-7 setpoint, the reactor trip on loss of flow in two RCS loops is automatically enabled. Above the P-8 setpoint, a loss of flow in any one loop will actuate a reactor trip because of the higher power level and the reduced margin to the design limit DNBR. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) # 12. <u>Undervoltage Reactor Coolant Pumps</u> The Undervoltage RCPs reactor trip Function ensures that protection is provided against violating the DNBR limit due to a loss of flow in two or more RCS loops. The voltage to each RCP is monitored. Above the P-7 setpoint, a loss of voltage detected on two or more RCP buses will initiate a reactor trip. This trip Function will generate a reactor trip before the Reactor Coolant Flow—Low (Two Loops) Trip Setpoint is reached. Time delays are incorporated into the Undervoltage RCPs channels to prevent reactor trips due to momentary electrical power transients. The LCO requires three Undervoltage RCPs channels (one per phase) per bus to be OPERABLE. In MODE 1 above the P-7 setpoint, the Undervoltage RCP trip must be OPERABLE. Below the P-7 setpoint, all reactor trips on loss of flow are automatically blocked since no conceivable power distributions could occur that would cause a DNB concern at this low power level. Above the P-7 setpoint, the reactor trip on loss of flow in two or more RCS loops is automatically enabled. This Function uses the same relays as the ESFAS Function 6.f, "Undervoltage Reactor Coolant Pump (RCP)" start of the auxiliary feedwater (AFW) pumps. # 13. <u>Underfrequency Reactor Coolant Pumps</u> The Underfrequency RCPs reactor trip Function ensures that protection is provided against violating the DNBR limit due to a loss of flow in two or more RCS loops from a major network frequency disturbance. An underfrequency condition will slow down the pumps, thereby reducing their coastdown time following a pump trip. The proper coastdown time is required so that reactor heat can be removed immediately after reactor trip. The frequency of each RCP bus is monitored. Above the P-7 setpoint, a loss of frequency detected on two or more RCP buses will initiate a reactor trip. This trip Function will generate a reactor trip before the Reactor Coolant Flow-Low (Two Loops) Trip Setpoint is reached. Time delays are incorporated into the Underfrequency RCPs channels to prevent reactor trips due to momentary electrical power transients. # 13. <u>Underfrequency Reactor Coolant Pumps</u> (continued) The LCO requires three Underfrequency RCPs channels per bus to be OPERABLE. In MODE 1 above the P-7 setpoint, the Underfrequency RCPs trip must be OPERABLE. Below the P-7 setpoint, all reactor trips on loss of flow are automatically blocked since no conceivable power distributions could occur that would cause a DNB concern at this low power level. Above the P-7 setpoint, the reactor trip on loss of flow in two or more RCS loops is automatically enabled. # 14. Steam Generator Water Level-Low Low The SG Water Level—Low Low trip Function ensures that protection is provided against a loss of heat sink and actuates the AFW System prior to uncovering the SG tubes. The SGs are the heat sink for the reactor. In order to act as a heat sink, the SGs must contain a minimum amount of water. A narrow range low low level in any SG is indicative of a loss of heat sink for the reactor. The level transmitters provide input to the SG Level Control System. Therefore, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. This Function also performs the ESFAS function of starting the AFW pumps on low low SG level. The LCO requires four channels of SG Water Level—Low Low per SG to be OPERABLE for four loop units in which these channels are shared between protection and control. In two, three, and four loop units where three SG Water Levels are dedicated to the RTS, only three channels per SG are required to be OPERABLE. In MODE 1 or 2, when the reactor requires a heat sink, the SG Water Level—Low Low trip must be OPERABLE. The normal source of water for the SGs is the Main Feedwater (MFW) System (not safety related). The MFW System is only in operation in MODE 1 or 2. The AFW System is the safety related backup source of water to # 14. <u>Steam Generator Water Level-Low Low</u> (continued) ensure that the SGs remain the heat sink for the reactor. During normal startups and shutdowns, the AFW System provides feedwater to maintain SG level. In MODE 3, 4, 5, or 6, the SG Water Level—Low Low Function does not have to be OPERABLE because the MFW System is not in operation and the reactor is not operating or even critical. Decay heat removal is accomplished by the AFW System in MODE 3 and by the Residual Heat Removal (RHR) System in MODE 4, 5, or 6. # 15. <u>Steam Generator Water Level—Low, Coincident With Steam</u> Flow/Feedwater Flow Mismatch SG Water Level-Low, in conjunction with the Steam Flow/Feedwater Flow Mismatch, ensures that protection is provided against a loss of heat sink and actuates the AFW System prior to uncovering the SG tubes. In addition to a decreasing water level in the SG, the difference between feedwater flow and steam flow is evaluated to determine if feedwater flow is significantly less than steam flow. With less feedwater flow than steam flow, SG level will decrease at a rate dependent upon the magnitude of the difference in flow rates. There are two SG level channels and two Steam Flow/Feedwater Flow Mismatch channels per SG. One narrow range level channel sensing a low level coincident with one Steam Flow/ Feedwater Flow Mismatch channel sensing flow mismatch (steam flow greater than feed flow) will actuate a reactor trip. The LCO requires two channels of SG Water Level—Low coincident with Steam Flow/Feedwater Flow Mismatch. In MODE 1 or 2, when the reactor requires a heat sink, the SG Water Level—Low coincident with Steam Flow/Feedwater Flow Mismatch trip must be OPERABLE. The normal source of water for the SGs is the MFW System (not safety related). The MFW System is only in operation in MODE 1 or 2. The AFW System is the safety related backup source of water to ensure that the SGs remain the heat sink for the reactor. During normal startups and shutdowns, the AFW System provides feedwater to maintain SG level. In MODE 3, 4, 5, # 15. <u>Steam Generator Water Level—Low, Coincident With Steam Flow/Feedwater Flow Mismatch</u> (continued) or 6, the SG Water Level—Low coincident with Steam Flow/Feedwater Flow Mismatch Function does not have to be OPERABLE because the MFW System is not in operation and the reactor is not operating or even critical. Decay heat removal is accomplished by the AFW System in MODE 3 and by the RHR System in MODE 4, 5, or 6. The MFW System is in operation only in MODE 1 or 2 and, therefore, this trip Function need only be OPERABLE in these MODES. # 16. Turbine Trip ## a. Turbine Trip-Low Fluid Oil Pressure The Turbine Trip—Low Fluid Oil Pressure trip Function anticipates the loss of heat removal capabilities of the secondary system following a turbine trip. This trip Function acts to minimize the pressure/temperature transient on the reactor. Any turbine trip from a power level below the P-9 setpoint, approximately 50% power, will not actuate a reactor trip. Three pressure switches monitor the control oil pressure in the Turbine Electrohydraulic Control System. A low pressure condition sensed by two-out-of-three pressure switches will actuate a reactor trip. These pressure switches do not provide any input to the control system. The unit is designed to withstand a complete loss of load and not sustain core damage or challenge the
RCS pressure limitations. Core protection is provided by the Pressurizer Pressure—High trip Function and RCS integrity is ensured by the pressurizer safety valves. The LCO requires three channels of Turbine Trip—Low Fluid Oil Pressure to be OPERABLE in MODE 1 above P-9. Below the P-9 setpoint, a turbine trip does not actuate a reactor trip. In MODE 2, 3, 4, 5, or 6, there is no potential for a turbine trip, # a. <u>Turbine Trip—Low Fluid Oil Pressure</u> (continued) and the Turbine Trip—Low Fluid Oil Pressure trip Function does not need to be OPERABLE. # b. <u>Turbine Trip-Turbine Stop Valve Closure</u> The Turbine Trip—Turbine Stop Valve Closure trip Function anticipates the loss of heat removal capabilities of the secondary system following a turbine trip from a power level below the P-9 setpoint, approximately 50% power. This action will not actuate a reactor trip. The trip Function anticipates the loss of secondary heat removal capability that occurs when the stop valves close. Tripping the reactor in anticipation of loss of secondary heat removal acts to minimize the pressure and temperature transient on the reactor. This trip Function will not and is not required to operate in the presence of a single channel failure. The unit is designed to withstand a complete loss of load and not sustain core damage or challenge the RCS pressure limitations. Core protection is provided by the Pressurizer Pressure—High trip Function, and RCS integrity is ensured by the pressurizer safety valves. This trip Function is diverse to the Turbine Trip—Low Fluid Oil Pressure trip Function. Each turbine stop valve is equipped with one limit switch that inputs to the RTS. If all four limit switches indicate that the stop valves are all closed, a reactor trip is initiated. The LSSS for this Function is set to assure channel trip occurs when the associated stop valve is completely closed. The LCO requires four Turbine Trip—Turbine Stop Valve Closure channels, one per valve, to be OPERABLE in MODE 1 above P-9. All four channels must trip to cause reactor trip. Below the P-9 setpoint, a load rejection can be accommodated by the Steam Dump System. In MODE 2, 3, 4, 5, or 6, there is no potential for # b. <u>Turbine Trip—Turbine Stop Valve Closure</u> (continued) a load rejection, and the Turbine Trip—Stop Valve Closure trip Function does not need to be OPERABLE. # 17. <u>Safety Injection Input from Engineered Safety Feature</u> Actuation System The SI Input from ESFAS ensures that if a reactor trip has not already been generated by the RTS, the ESFAS automatic actuation logic will initiate a reactor trip upon any signal that initiates SI. This is a condition of acceptability for the LOCA. However, other transients and accidents take credit for varying levels of ESF performance and rely upon rod insertion, except for the most reactive rod that is assumed to be fully withdrawn, to ensure reactor shutdown. Therefore, a reactor trip is initiated every time an SI signal is present. Trip Setpoint and Allowable Values are not applicable to this Function. The SI Input is provided by relay in the ESFAS. Therefore, there is no measurement signal with which to associate an LSSS. The LCO requires two trains of SI Input from ESFAS to be OPERABLE in MODE 1 or 2. A reactor trip is initiated every time an SI signal is present. Therefore, this trip Function must be OPERABLE in MODE 1 or 2, when the reactor is critical, and must be shut down in the event of an accident. In MODE 3, 4, 5, or 6, the reactor is not critical, and this trip Function does not need to be OPERABLE. # 18. Reactor Trip System Interlocks Reactor protection interlocks are provided to ensure reactor trips are in the correct configuration for the current unit status. They back up operator actions to ensure protection system Functions are not bypassed during unit conditions under which the safety analysis assumes the Functions are not bypassed. Therefore, the interlock Functions do not need to be OPERABLE # 18. Reactor Trip System Interlocks (continued) when the associated reactor trip functions are outside the applicable MODES. These are: # a. <u>Intermediate Range Neutron Flux</u>, P-6 The Intermediate Range Neutron Flux, P-6 interlock is actuated when any NIS intermediate range channel goes approximately one decade above the minimum channel reading. If both channels drop below the setpoint, the permissive will automatically be defeated. The LCO requirement for the P-6 interlock ensures that the following Functions are performed: - on increasing power, the P-6 interlock allows the manual block of the NIS Source Range, Neutron Flux reactor trip. This prevents a premature block of the source range trip and allows the operator to ensure that the intermediate range is OPERABLE prior to leaving the source range. When the source range trip is blocked, the high voltage to the detectors is also removed; - on decreasing power, the P-6 interlock automatically energizes the NIS source range detectors and enables the NIS Source Range Neutron Flux reactor trip; and - on increasing power, the P-6 interlock provides a backup block signal to the source range flux doubling circuit. Normally, this Function is manually blocked by the control room operator during the reactor startup. The LCO requires two channels of Intermediate Range Neutron Flux, P-6 interlock to be OPERABLE in MODE 2 when below the P-6 interlock setpoint. Above the P-6 interlock setpoint, the NIS Source Range Neutron Flux reactor trip will be blocked, and this Function will no longer be necessary. a. <u>Intermediate Range Neutron Flux, P-6</u> (continued) In MODE 3, 4, 5, or 6, the P-6 interlock does not have to be OPERABLE because the NIS Source Range is providing core protection. b. Low Power Reactor Trips Block, P-7 The Low Power Reactor Trips Block, P-7 interlock is actuated by input from either the Power Range Neutron Flux, P-10, or the Turbine Impulse Pressure, P-13 interlock. The LCO requirement for the P-7 interlock ensures that the following Functions are performed: - (1) on increasing power, the P-7 interlock automatically enables reactor trips on the following Functions: - Pressurizer Pressure—Low; - Pressurizer Water Level—High; - Reactor Coolant Flow—Low (Two Loops); - RCPs Breaker Open (Two Loops); - Undervoltage RCPs; and - Underfrequency RCPs. These reactor trips are only required when operating above the P-7 setpoint (approximately 10% power). The reactor trips provide protection against violating the DNBR limit. Below the P-7 setpoint, the RCS is capable of providing sufficient natural circulation without any RCP running. - (2) on decreasing power, the P-7 interlock automatically blocks reactor trips on the following Functions: - Pressurizer Pressure—Low: # b. <u>Low Power Reactor Trips Block, P-7</u> (continued) - Pressurizer Water Level—High; - Reactor Coolant Flow—Low (Two Loops); - RCP Breaker Position (Two Loops); - Undervoltage RCPs; and - Underfrequency RCPs. Trip Setpoint and Allowable Value are not applicable to the P-7 interlock because it is a logic Function and thus has no parameter with which to associate an LSSS. The P-7 interlock is a logic Function with train and not channel identity. Therefore, the LCO requires one channel per train of Low Power Reactor Trips Block, P-7 interlock to be OPERABLE in MODE 1. The low power trips are blocked below the P-7 setpoint and unblocked above the P-7 setpoint. In MODE 2, 3, 4, 5, or 6, this Function does not have to be OPERABLE because the interlock performs its Function when power level drops below 10% power, which is in MODE 1. ## c. Power Range Neutron Flux, P-8 The Power Range Neutron Flux, P-8 interlock is actuated at approximately 48% power as determined by two-out-of-four NIS power range detectors. The P-8 interlock automatically enables the Reactor Coolant Flow—Low (Single Loop) and RCP Breaker Position (Single Loop) reactor trips on low flow in one or more RCS loops on increasing power. The LCO requirement for this trip Function ensures that protection is provided against a loss of flow in any RCS loop that could result in DNB conditions in the core when greater than approximately 48% power. On decreasing # c. <u>Power Range Neutron Flux, P-8</u> (continued) power, the reactor trip on low flow in any loop is automatically blocked. The LCO requires four channels of Power Range Neutron Flux, P-8 interlock to be OPERABLE in MODE 1. In MODE 1, a loss of flow in one RCS loop could result in DNB conditions, so the Power Range Neutron Flux, P-8 interlock must be OPERABLE. In MODE 2, 3, 4, 5, or 6, this Function does not have to be OPERABLE because the core is not producing sufficient power to be concerned about DNB conditions. ## d. Power Range Neutron Flux, P-9 The Power Range Neutron Flux, P-9 interlock is actuated at approximately 50% power as determined by two-out-of-four NIS power range detectors. The LCO requirement for this Function ensures that the Turbine Trip—Low Fluid Oil Pressure and Turbine Trip—Turbine Stop Valve Closure reactor trips are enabled above the P-9 setpoint. Above the P-9 setpoint, a turbine trip will cause a load rejection beyond the capacity of the Steam Dump System. A reactor trip is automatically initiated on a turbine trip when it is above the P-9 setpoint, to minimize the transient on the reactor. The LCO requires four channels of Power Range Neutron Flux, P-9 interlock to be OPERABLE in MODE 1. In MODE 1, a turbine trip could cause a load rejection beyond the capacity of the Steam Dump System, so the Power Range Neutron Flux interlock must be OPERABLE. In MODE 2, 3, 4, 5, or 6, this Function does not have to be OPERABLE because the reactor is not at a power level sufficient to have a load rejection beyond the capacity of the Steam Dump System. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) ## e. Power Range Neutron Flux, P-10 The Power Range Neutron Flux, P-10 interlock is actuated at approximately 10% power,
as determined by two-out-of-four NIS power range detectors. If power level falls below 10% RTP on 3 of 4 channels, the nuclear instrument trips will be automatically unblocked. The LCO requirement for the P-10 interlock ensures that the following Functions are performed: - on increasing power, the P-10 interlock allows the operator to manually block the Intermediate Range Neutron Flux reactor trip. Note that blocking the reactor trip also blocks the signal to prevent automatic and manual rod withdrawal; - on increasing power, the P-10 interlock allows the operator to manually block the Power Range Neutron Flux—Low reactor trip; - on increasing power, the P-10 interlock automatically provides a backup signal to block the Source Range Neutron Flux reactor trip, and also to de-energize the NIS source range detectors; - the P-10 interlock provides one of the two inputs to the P-7 interlock; and - on decreasing power, the P-10 interlock automatically enables the Power Range Neutron Flux—Low reactor trip and the Intermediate Range Neutron Flux reactor trip (and rod stop). The LCO requires four channels of Power Range Neutron Flux, P-10 interlock to be OPERABLE in MODE 1 or 2. OPERABILITY in MODE 1 ensures the Function is available to perform its decreasing power Functions in the event of a reactor shutdown. This Function must be OPERABLE in MODE 2 to ensure that core protection is provided during a # e. <u>Power Range Neutron Flux, P-10</u> (continued) startup or shutdown by the Power Range Neutron Flux—Low and Intermediate Range Neutron Flux reactor trips. In MODE 3, 4, 5, or 6, this Function does not have to be OPERABLE because the reactor is not at power and the Source Range Neutron Flux reactor trip provides core protection. # f. <u>Turbine Impulse Pressure</u>, P-13 The Turbine Impulse Pressure, P-13 interlock is actuated when the pressure in the first stage of the high pressure turbine is greater than approximately 10% of the rated full power pressure. This is determined by one-out-of-two pressure detectors. The LCO requirement for this Function ensures that one of the inputs to the P-7 interlock is available. The LCO requires two channels of Turbine Impulse Pressure, P-13 interlock to be OPERABLE in MODE 1. The Turbine Impulse Chamber Pressure, P-13 interlock must be OPERABLE when the turbine generator is operating. The interlock Function is not required OPERABLE in MODE 2, 3, 4, 5, or 6 because the turbine generator is not operating. ## 19. Reactor Trip Breakers This trip Function applies to the RTBs exclusive of individual trip mechanisms. The LCO requires two OPERABLE trains of trip breakers. A trip breaker train consists of all trip breakers associated with a single RTS logic train that are racked in, closed, and capable of supplying power to the CRD System. Thus, the train may consist of the main breaker, bypass breaker, or main breaker and bypass breaker, depending upon the system configuration. Two OPERABLE trains ensure no single random failure can disable the RTS trip capability. #### Reactor Trip Breakers (continued) 19. These trip Functions must be OPERABLE in MODE 1 or 2 when the reactor is critical. In MODE 3, 4, or 5, these RTS trip Functions must be OPERABLE when the RTBs or associated bypass breakers are closed, and the CRD System is capable of rod withdrawal. #### Reactor Trip Breaker Undervoltage and Shunt Trip 20. Mechanisms The LCO requires both the Undervoltage and Shunt Trip Mechanisms to be OPERABLE for each RTB that is in service. The trip mechanisms are not required to be OPERABLE for trip breakers that are open, racked out, incapable of supplying power to the CRD System, or declared inoperable under Function 19 above. OPERABILITY of both trip mechanisms on each breaker ensures that no single trip mechanism failure will prevent opening any breaker on a valid signal. These trip Functions must be OPERABLE in MODE 1 or 2 when the reactor is critical. In MODE 3, 4, or 5, these RTS trip Functions must be OPERABLE when the RTBs and associated bypass breakers are closed, and the CRD System is capable of rod withdrawal. #### 21. Automatic Trip Logic The LCO requirement for the RTBs (Functions 19 and 20) and Automatic Trip Logic (Function 21) ensures that means are provided to interrupt the power to allow the rods to fall into the reactor core. Each RTB is equipped with an undervoltage coil and a shunt trip coil to trip the breaker open when needed. Each RTB is equipped with a bypass breaker to allow testing of the trip breaker while the unit is at power. The reactor trip signals generated by the RTS Automatic Trip Logic cause the RTBs and associated bypass breakers to open and shut down the reactor. The LCO requires two trains of RTS Automatic Trip Logic to be OPERABLE. Having two OPERABLE channels ensures that random failure of a single logic channel will not prevent reactor trip. # 21. Automatic Trip Logic (continued) These trip Functions must be OPERABLE in MODE 1 or 2 when the reactor is critical. In MODE 3, 4, or 5, these RTS trip Functions must be OPERABLE when the RTBs and associated bypass breakers are closed, and the CRD System is capable of rod withdrawal. The RTS instrumentation satisfies Criterion 3 of the NRC Policy Statement. ## **ACTIONS** A Note has been added to the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed in Table 3.3.1-1. In the event a channel's Trip Setpoint is found nonconservative with respect to the Allowable Value, or the transmitter, instrument loop, signal processing electronics, or bistable is found inoperable, then all affected Functions provided by that channel must be declared inoperable and the LCO Condition(s) entered for the protection Function(s) affected. When the number of inoperable channels in a trip Function exceed those specified in one or other related Conditions associated with a trip Function, then the unit is outside the safety analysis. Therefore, LCO 3.0.3 must be immediately entered if applicable in the current MODE of operation. Reviewer's Note: Certain LCO Completion Times are based on approved topical reports. In order for a licensee to use these times, the licensee must justify the Completion Times as required by the staff Safety Evaluation Report (SER) for the topical report. ## A.1 Condition A applies to all RTS protection Functions. Condition A addresses the situation where one or more required channels for one or more Functions are inoperable # <u>A.1</u> (continued) at the same time. The Required Action is to refer to Table 3.3.1-1 and to take the Required Actions for the protection functions affected. The Completion Times are those from the referenced Conditions and Required Actions. ## B.1, B.2.1, and B.2.2 Condition B applies to the Manual Reactor Trip in MODE 1 or 2. This action addresses the train orientation of the SSPS for this Function. With one channel inoperable, the inoperable channel must be restored to OPERABLE status within 48 hours. In this Condition, the remaining OPERABLE channel is adequate to perform the safety function. The Completion Time of 48 hours is reasonable considering that there are two automatic actuation trains and another manual initiation channel OPERABLE, and the low probability of an event occurring during this interval. If the Manual Reactor Trip Function cannot be restored to OPERABLE status within the allowed 48 hour Completion Time, the unit must be brought to a MODE in which the requirement does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 additional hours (54 hours total time) followed by opening the RTBs within 1 additional hour (55 hours total time). The 6 additional hours to reach MODE 3 and the 1 hour to open the RTBs are reasonable, based on operating experience, to reach MODE 3 and open the RTBs from full power operation in an orderly manner and without challenging unit systems. With the RTBs open and the unit in MODE 3, this trip Function is no longer required to be OPERABLE. ## C.1 and C.2 Condition C applies to the following reactor trip Functions in MODE 3, 4, or 5 with the RTBs closed and the CRD System capable of rod withdrawal: # C.1 and C.2 (continued) - Manual Reactor Trip; - RTBs: - RTB Undervoltage and Shunt Trip Mechanisms; and - Automatic Trip Logic. This action addresses the train orientation of the SSPS for these Functions. With one channel or train inoperable, the inoperable channel or train must be restored to OPERABLE status within 48 hours. If the affected Function(s) cannot be restored to OPERABLE status within the allowed 48 hour Completion Time, the unit must be placed in a MODE in which the requirement does not apply. To achieve this status, the RTBs must be opened within the next hour. The additional hour provides sufficient time to accomplish the action in an orderly manner. With the RTBs open, these Functions are no longer required. The Completion Time is reasonable considering that in this Condition, the remaining OPERABLE train is adequate to perform the safety function, and given the low probability of an event occurring during this interval. # D.1.1, D.1.2, D.2.1, D.2.2, and D.3 Condition D applies to the Power Range Neutron Flux—High Function. The NIS power range detectors provide input to the CRD System and the SG Water Level Control System and, therefore, have a two-out-of-four trip logic. A known inoperable channel must be placed in the tripped condition. This results in a partial trip condition requiring only one-out-of-three logic for actuation. The 6 hours allowed to place the inoperable channel in the tripped condition is justified in WCAP-10271-P-A (Ref. 7). In addition to placing the inoperable channel in the tripped condition, THERMAL POWER must be reduced to \leq 75% RTP within 12 hours. Reducing the power level prevents operation of the core with radial power distributions beyond the design #
D.1.1, D.1.2, D.2.1, D.2.2, and D.3 (continued) limits. With one of the NIS power range detectors inoperable, 1/4 of the radial power distribution monitoring capability is lost. As an alternative to the above actions, the inoperable channel can be placed in the tripped condition within 6 hours and the QPTR monitored once every 12 hours as per SR 3.2.4.2, QPTR verification. Calculating QPTR every 12 hours compensates for the lost monitoring capability due to the inoperable NIS power range channel and allows continued unit operation at power levels \geq 75% RTP. The 6 hour Completion Time and the 12 hour Frequency are consistent with LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)." As an alternative to the above Actions, the plant must be placed in a MODE where this Function is no longer required OPERABLE. Twelve hours are allowed to place the plant in MODE 3. This is a reasonable time, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging plant systems. If Required Actions cannot be completed within their allowed Completion Times, LCO 3.0.3 must be entered. The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypass condition for up to 4 hours while performing routine surveillance testing of other channels. The Note also allows placing the inoperable channel in the bypass condition to allow setpoint adjustments of other channels when required to reduce the setpoint in accordance with other Technical Specifications. The 4 hour time limit is justified in Reference 7. Required Action D.2.2 has been modified by a Note which only requires SR 3.2.4.2 to be performed if the Power Range Neutron Flux input to QPTR becomes inoperable. Failure of a component in the Power Range Neutron Flux Channel which renders the High Flux Trip Function inoperable may not affect the capability to monitor QPTR. As such, determining QPTR using this movable incore detectors once per 12 hours may not be necessary. # ACTIONS (continued) # E.1 and E.2 Condition E applies to the following reactor trip Functions: - Power Range Neutron Flux—Low; - Overtemperature ΔT; - Overpower ΔT; - Power Range Neutron Flux—High Positive Rate; - Power Range Neutron Flux—High Negative Rate; - Pressurizer Pressure—High; - SG Water Level—Low Low; and - SG Water Level—Low coincident with Steam Flow/ Feedwater Flow Mismatch. A known inoperable channel must be placed in the tripped condition within 6 hours. Placing the channel in the tripped condition results in a partial trip condition requiring only one-out-of-two logic for actuation of the two-out-of-three trips and one-out-of-three logic for actuation of the two-out-of-four trips. The 6 hours allowed to place the inoperable channel in the tripped condition is justified in Reference 7. If the operable channel cannot be placed in the trip condition within the specified Completion Time, the unit must be placed in a MODE where these Functions are not required OPERABLE. An additional 6 hours is allowed to place the unit in MODE 3. Six hours is a reasonable time, based on operating experience, to place the unit in MODE 3 from full power in an orderly manner and without challenging unit systems. The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypassed condition for up to 4 hours while performing routine surveillance testing of the other channels. The 4 hour time limit is justified in Reference 7. # ACTIONS (continued) # F.1 and F.2 Condition F applies to the Intermediate Range Neutron Flux trip when THERMAL POWER is above the P-6 setpoint and below the P-10 setpoint and one channel is inoperable. Above the P-6 setpoint and below the P-10 setpoint, the NIS intermediate range detector performs the monitoring Functions. If THERMAL POWER is greater than the P-6 setpoint but less than the P-10 setpoint, 2 hours is allowed to reduce THERMAL POWER below the P-6 setpoint or increase to THERMAL POWER above the P-10 setpoint. The NIS Intermediate Range Neutron Flux channels must be OPERABLE when the power level is above the capability of the source range, P-6, and below the capability of the power range, P-10. If THERMAL POWER is greater than the P-10 setpoint, the NIS power range detectors perform the monitoring and protection functions and the intermediate range is not required. The Completion Times allow for a slow and controlled power adjustment above P-10 or below P-6 and take into account the redundant capability afforded by the redundant OPERABLE channel, and the low probability of its failure during this period. This action does not require the inoperable channel to be tripped because the Function uses one-out-of-two logic. Tripping one channel would trip the reactor. Thus, the Required Actions specified in this Condition are only applicable when channel failure does not result in reactor trip. ## **G.1** and **G.2** Condition G applies to two inoperable Intermediate Range Neutron Flux trip channels in MODE 2 when THERMAL POWER is above the P-6 setpoint and below the P-10 setpoint. Required Actions specified in this Condition are only applicable when channel failures do not result in reactor trip. Above the P-6 setpoint and below the P-10 setpoint, the NIS intermediate range detector performs the monitoring Functions. With no intermediate range channels OPERABLE, the Required Actions are to suspend operations involving positive reactivity additions immediately. This will preclude any power level increase since there are no OPERABLE Intermediate Range Neutron Flux channels. The operator must also reduce THERMAL POWER below the P-6 setpoint within two hours. Below P-6, the Source Range Neutron Flux channels will be able to monitor the core power # <u>G.1 and G.2</u> (continued) level. The Completion Time of 2 hours will allow a slow and controlled power reduction to less than the P-6 setpoint and takes into account the low probability of occurrence of an event during this period that may require the protection afforded by the NIS Intermediate Range Neutron Flux trip. # <u>H.1</u> Condition H applies to the Intermediate Range Neutron Flux trip when THERMAL POWER is below the P-6 setpoint and one or two channels are inoperable. Below the P-6 setpoint, the NIS source range performs the monitoring and protection functions. The inoperable NIS intermediate range channel(s) must be returned to OPERABLE status prior to increasing power above the P-6 setpoint. The NIS intermediate range channels must be OPERABLE when the power level is above the capability of the source range, P-6, and below the capability of the power range, P-10. # <u>I.1</u> Condition I applies to one inoperable Source Range Neutron Flux trip channel when in MODE 2, below the P-6 setpoint, and performing a reactor startup. With the unit in this Condition, below P-6, the NIS source range performs the monitoring and protection functions. With one of the two channels inoperable, operations involving positive reactivity additions shall be suspended immediately. This will preclude any power escalation. With only one source range channel OPERABLE, core protection is severely reduced and any actions that add positive reactivity to the core must be suspended immediately. ## <u>J.1</u> Condition J applies to two inoperable Source Range Neutron Flux trip channels when in MODE 2, below the P-6 setpoint, and performing a reactor startup, or in MODE 3, 4, or 5 with the RTBs closed and the CRD System capable of rod withdrawal. With the unit in this Condition, below P-6, the # <u>J.1</u> (continued) NIS source range performs the monitoring and protection functions. With both source range channels inoperable, the RTBs must be opened immediately. With the RTBs open, the core is in a more stable condition and the unit enters Condition L. ## K.1 and K.2 Condition K applies to one inoperable source range channel in MODE 3, 4, or 5 with the RTBs closed and the CRD System capable of rod withdrawal. With the unit in this Condition, below P-6, the NIS source range performs the monitoring and protection functions. With one of the source range channels inoperable, 48 hours is allowed to restore it to an OPERABLE status. If the channel cannot be returned to an OPERABLE status, 1 additional hour is allowed to open the RTBs. Once the RTBs are open, the core is in a more stable condition and the unit enters Condition L. The allowance of 48 hours to restore the channel to OPERABLE status, and the additional hour to open the RTBs, are justified in Reference 7. # L.1, L.2, and L.3 Condition L applies when the required number of OPERABLE Source Range Neutron Flux channels is not met in MODE 3, 4, or 5 with the RTBs open. With the unit in this Condition, the NIS source range performs the monitoring and protection functions. With less than the required number of source range channels OPERABLE, operations involving positive reactivity additions shall be suspended immediately. This will preclude any power escalation. In addition to suspension of positive reactivity additions, all valves that could add unborated water to the RCS must be closed within 1 hour as specified in LCO 3.9.2. The isolation of unborated water sources will preclude a boron dilution accident. Also, the SDM must be verified within 1 hour and once every 12 hours thereafter as per SR 3.1.1.1, SDM verification. With no source range channels OPERABLE, core protection is severely reduced. Verifying the SDM within 1 hour allows # L.1, L.2, and L.3 (continued) sufficient time to perform the calculations and determine that the SDM requirements are met. The SDM must also be verified once per 12 hours thereafter to ensure that the core reactivity has not changed. Required Action L.1 precludes any positive reactivity additions; therefore, core reactivity should not be increasing, and a 12 hour Frequency is adequate. The Completion Times of within 1 hour and once per 12 hours are based on
operating experience in performing the Required Actions and the knowledge that unit conditions will change slowly. # M.1 and M.2 Condition M applies to the following reactor trip Functions: - Pressurizer Pressure—Low; - Pressurizer Water Level—High; - Reactor Coolant Flow—Low (Two Loops); - RCP Breaker Position (Two Loops); - Undervoltage RCPs; and - Underfrequency RCPs. With one channel inoperable, the inoperable channel must be placed in the tripped condition within 6 hours. Placing the channel in the tripped condition results in a partial trip condition requiring only one additional channel to initiate a reactor trip above the P-7 setpoint and below the P-8 setpoint. These Functions do not have to be OPERABLE below the P-7 setpoint because there are no loss of flow trips below the P-7 setpoint. The 6 hours allowed to place the channel in the tripped condition is justified in Reference 7. An additional 6 hours is allowed to reduce THERMAL POWER to below P-7 if the inoperable channel cannot be restored to OPERABLE status or placed in trip within the specified Completion Time. Allowance of this time interval takes into consideration the redundant capability provided by the remaining redundant # M.1 and M.2 (continued) OPERABLE channel, and the low probability of occurrence of an event during this period that may require the protection afforded by the Functions associated with Condition M. The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypassed condition for up to 4 hours while performing routine surveillance testing of the other channels. The 4 hour time limit is justified in Reference 7. # N.1 and N.2 Condition N applies to the Reactor Coolant Flow—Low (Single Loop) reactor trip Function. With one channel inoperable, the inoperable channel must be placed in trip within 6 hours. If the channel cannot be restored to OPERABLE status or the channel placed in trip within the 6 hours, then THERMAL POWER must be reduced below the P-8 setpoint within the next 4 hours. This places the unit in a MODE where the LCO is no longer applicable. This trip Function does not have to be OPERABLE below the P-8 setpoint because other RTS trip Functions provide core protection below the P-8 setpoint. The 6 hours allowed to restore the channel to OPERABLE status or place in trip and the 4 additional hours allowed to reduce THERMAL POWER to below the P-8 setpoint are justified in Reference 7. The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypassed condition for up to 4 hours while performing routine surveillance testing of the other channels. The 4 hour time limit is justified in Reference 7. ## 0.1 and 0.2 Condition O applies to the RCP Breaker Position (Single Loop) reactor trip Function. There is one breaker position device per RCP breaker. With one channel inoperable, the inoperable channel must be restored to OPERABLE status within 6 hours. If the channel cannot be restored to OPERABLE status within the 6 hours, then THERMAL POWER must be reduced below the P-8 setpoint within the next 4 hours. # 0.1 and 0.2 (continued) This places the unit in a MODE where the LCO is no longer applicable. This Function does not have to be OPERABLE below the P-8 setpoint because other RTS Functions provide core protection below the P-8 setpoint. The 6 hours allowed to restore the channel to OPERABLE status and the 4 additional hours allowed to reduce THERMAL POWER to below the P-8 setpoint are justified in Reference 7. The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypassed condition for up to 4 hours while performing routine surveillance testing of the other channels. The 4 hour time limit is justified in Reference 7. ## P.1 and P.2 Condition P applies to Turbine Trip on Low Fluid Oil Pressure or on Turbine Stop Valve Closure. With one channel inoperable, the inoperable channel must be placed in the trip condition within 6 hours. If placed in the tripped condition, this results in a partial trip condition requiring only one additional channel to initiate a reactor trip. If the channel cannot be restored to OPERABLE status or placed in the trip condition, then power must be reduced below the P-9 setpoint within the next 4 hours. The 6 hours allowed to place the inoperable channel in the tripped condition and the 4 hours allowed for reducing power are justified in Reference 7. The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypassed condition for up to 4 hours while performing routine surveillance testing of the other channels. The 4 hour time limit is justified in Reference 7. ## Q.1 and Q.2 Condition Q applies to the SI Input from ESFAS reactor trip and the RTS Automatic Trip Logic in MODES 1 and 2. These actions address the train orientation of the RTS for these Functions. With one train inoperable, 6 hours are allowed to restore the train to OPERABLE status (Required Action Q.1) or the unit must be placed in MODE 3 within the # Q.1 and Q.2 (continued) next 6 hours. The Completion Time of 6 hours (Required Action Q.1) is reasonable considering that in this Condition, the remaining OPERABLE train is adequate to perform the safety function and given the low probability of an event during this interval. The Completion Time of 6 hours (Required Action Q.2) is reasonable, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging unit systems. The Required Actions have been modified by a Note that allows bypassing one train up to [4] hours for surveillance testing, provided the other train is OPERABLE. ## R.1 and R.2 Condition R applies to the RTBs in MODES 1 and 2. These actions address the train orientation of the RTS for the RTBs. With one train inoperable, 1 hour is allowed to restore the train to OPERABLE status or the unit must be placed in MODE 3 within the next 6 hours. The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging unit systems. The 1 hour and 6 hour Completion Times are equal to the time allowed by LCO 3.0.3 for shutdown actions in the event of a complete loss of RTS Function. Placing the unit in MODE 3 removes the requirement for this particular Function. The Required Actions have been modified by two Notes. Note 1 allows one channel to be bypassed for up to 2 hours for surveillance testing, provided the other channel is OPERABLE. Note 2 allows one RTB to be bypassed for up to 2 hours for maintenance on undervoltage or shunt trip mechanisms if the other RTB train is OPERABLE. The 2 hour time limit is justified in Reference 7. # S.1 and S.2 Condition S applies to the P-6 and P-10 interlocks. With one channel inoperable for one-out-of-two or two-out-of-four coincidence logic, the associated interlock must be verified to be in its required state for the existing unit condition # S.1 and S.2 (continued) within 1 hour or the unit must be placed in MODE 3 within the next 6 hours. Verifying the interlock status manually accomplishes the interlock's Function. The Completion Time of 1 hour is based on operating experience and the minimum amount of time allowed for manual operator actions. The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging unit systems. The 1 hour and 6 hour Completion Times are equal to the time allowed by LCO 3.0.3 for shutdown actions in the event of a complete loss of RTS Function. ## T.1 and T.2 Condition T applies to the P-7, P-8, P-9, and P-13 interlocks. With one channel inoperable for one-out-of-two or two-out-of-four coincidence logic, the associated interlock must be verified to be in its required state for the existing unit condition within 1 hour or the unit must be placed in MODE 2 within the next 6 hours. These actions are conservative for the case where power level is being raised. Verifying the interlock status manually accomplishes the interlock's Function. The Completion Time of 1 hour is based on operating experience and the minimum amount of time allowed for manual operator actions. The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 2 from full power in an orderly manner and without challenging unit systems. ## U.1, U.2.1, and U.2.2 Condition U applies to the RTB Undervoltage and Shunt Trip Mechanisms, or diverse trip features, in MODES 1 and 2. With one of the diverse trip features inoperable, it must be restored to an OPERABLE status within 48 hours or the unit must be placed in a MODE where the requirement does not apply. This is accomplished by placing the unit in MODE 3 within the next 6 hours (54 hours total time) followed by opening the RTBs in 1 additional hour (55 hours total time). The Completion Time of 6 hours is a reasonable time, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging unit systems. # <u>U.1, U.2.1, and U.2.2</u> (continued) With the RTBs open and the unit in MODE 3, this trip Function is no longer required to be OPERABLE. The affected RTB shall not be bypassed while one of the diverse features is inoperable except for the time required to perform maintenance to one of the diverse features. The allowable time for performing maintenance of the diverse features is 2 hours for the reasons stated under Condition R. The Completion Time of 48 hours for Required Action U.1 is reasonable considering that in this Condition there is one remaining diverse feature for the affected RTB, and one OPERABLE RTB capable of performing the safety function and given the low probability of an event occurring during this interval. ## <u>V.1</u> With two RTS trains inoperable, no automatic capability is available to shut down the reactor, and immediate
plant shutdown in accordance with LCO 3.0.3 is required. # SURVEILLANCE REQUIREMENTS The SRs for each RTS Function are identified by the SRs column of Table 3.3.1-1 for that Function. A Note has been added to the SR Table stating that Table 3.3.1-1 determines which SRs apply to which RTS Functions. Note that each channel of process protection supplies both trains of the RTS. When testing Channel I, Train A and Train B must be examined. Similarly, Train A and Train B must be examined when testing Channel II, Channel III, and Channel IV (if applicable). The CHANNEL CALIBRATION and COTs are performed in a manner that is consistent with the assumptions used in analytically calculating the required channel accuracies. Reviewer's Note: Certain Frequencies are based on approval topical reports. In order for a licensee to use these times, the licensee must justify the Frequencies as required by the staff SER for the topical report. # SURVEILLANCE REQUIREMENTS (continued) # SR 3.3.1.1 Performance of the CHANNEL CHECK once every 12 hours ensures that gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION. Agreement criteria are determined by the unit staff based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels. ## SR 3.3.1.2 SR 3.3.1.2 compares the calorimetric heat balance calculation to the NIS channel output every 24 hours. If the calorimetric exceeds the NIS channel output by > 2% RTP, the NIS is not declared inoperable, but must be adjusted. If the NIS channel output cannot be properly adjusted, the channel is declared inoperable. Two Notes modify SR 3.3.1.2. The first Note indicates that the NIS channel output shall be adjusted consistent with the calorimetric results if the absolute difference between the NIS channel output and the calorimetric is > 2% RTP. The second Note clarifies that this Surveillance is required only if reactor power is $\geq 15\%$ RTP and that 12 hour is ## SURVEILLANCE REQUIREMENTS # <u>SR 3.3.1.2</u> (continued) allowed for performing the first Surveillance after reaching 15% RTP. At lower power levels, calorimetric data are inaccurate. The Frequency of every 24 hours is adequate. It is based on unit operating experience, considering instrument reliability and operating history data for instrument drift. Together these factors demonstrate the change in the absolute difference between NIS and heat balance calculated powers rarely exceeds 2% in any 24 hour period. In addition, control room operators periodically monitor redundant indications and alarms to detect deviations in channel outputs. ## SR 3.3.1.3 SR 3.3.1.3 compares the incore system to the NIS channel output every 31 EFPD. If the absolute difference is \geq 3%, the NIS channel is still OPERABLE, but must be readjusted. If the NIS channel cannot be properly readjusted, the channel is declared inoperable. This Surveillance is performed to verify the $f(\Delta I)$ input to the overtemperature ΔI Function. Two Notes modify SR 3.3.1.3. Note 1 indicates that the excore NIS channel shall be adjusted if the absolute difference between the incore and excore AFD is \geq 3%. Note 2 clarifies that the Surveillance is required only if reactor power is \geq [15%] RTP and that 24 hours is allowed for performing the first Surveillance after reaching [15%] RTP. The Frequency of every 31 EFPD is adequate. It is based on unit operating experience, considering instrument reliability and operating history data for instrument drift. Also, the slow changes in neutron flux during the fuel cycle can be detected during this interval. # SURVEILLANCE REQUIREMENTS (continued) ## SR 3.3.1.4 SR 3.3.1.4 is the performance of a TADOT every 31 days on a STAGGERED TEST BASIS. This test shall verify OPERABILITY by actuation of the end devices. The RTB test shall include separate verification of the undervoltage and shunt trip mechanisms. Independent verification of RTB undervoltage and shunt trip Function is not required for the bypass breakers. No capability is provided for performing such a test at power. The independent test for bypass breakers is included in SR 3.3.1.14. The bypass breaker test shall include a local shunt trip. A Note has been added to indicate that this test must be performed on the bypass breaker prior to placing it in service. The Frequency of every 31 days on a STAGGERED TEST BASIS is adequate. It is based on industry operating experience, considering instrument reliability and operating history data. ## SR 3.3.1.5 SR 3.3.1.5 is the performance of an ACTUATION LOGIC TEST. The SSPS is tested every 31 days on a STAGGERED TEST BASIS, using the semiautomatic tester. The train being tested is placed in the bypass condition, thus preventing inadvertent actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection function. The Frequency of every 31 days on a STAGGERED TEST BASIS is adequate. It is based on industry operating experience, considering instrument reliability and operating history data. ### SR 3.3.1.6 SR 3.3.1.6 is a calibration of the excore channels to the incore channels. If the measurements do not agree, the excore channels are not declared inoperable but must be calibrated to agree with the incore detector measurements. If the excore channels cannot be adjusted, the channels are declared inoperable. This Surveillance is performed to verify the $f(\Delta I)$ input to the overtemperature ΔI Function. ## SURVEILLANCE REQUIREMENTS # <u>SR 3.3.1.6</u> (continued) A Note modifies SR 3.3.1.6. The Note states that this Surveillance is required only if reactor power is > 50% RTP and that [24] hours is allowed for performing the first surveillance after reaching 50% RTP. The Frequency of 92 EFPD is adequate. It is based on industry operating experience, considering instrument reliability and operating history data for instrument drift. ## SR 3.3.1.7 SR 3.3.1.7 is the performance of a COT every [92] days. A COT is performed on each required channel to ensure the entire channel will perform the intended Function. Setpoints must be within the Allowable Values specified in Table 3.3.1-1. The difference between the current "as found" values and the previous test "as left" values must be consistent with the drift allowance used in the setpoint methodology. The setpoint shall be left set consistent with the assumptions of the current unit specific setpoint methodology. The "as found" and "as left" values must also be recorded and reviewed for consistency with the assumptions of Reference 7. SR 3.3.1.7 is modified by a Note that provides a 4 hour delay in the requirement to perform this Surveillance for source range instrumentation when entering MODE 3 from MODE 2. This Note allows a normal shutdown to proceed without a delay for testing in MODE 2 and for a short time in MODE 3 until the RTBs are open and SR 3.3.1.7 is no longer required to be performed. If the unit is to be in MODE 3 with the RTBs closed for > 4 hours this Surveillance must be performed prior to 4 hours after entry into MODE 3. The Frequency of [92] days is justified in Reference 7. # SURVEILLANCE REQUIREMENTS (continued) ## <u>SR 3.3.1.8</u> SR 3.3.1.8 is the performance of a COT as described in SR 3.3.1.7, except it is modified by a Note that this test shall include verification that the P-6 and P-10 interlocks are in their required state for the existing unit condition. The Frequency is modified by a Note that allows this surveillance to be satisfied if it has been performed within [92] days of the Frequencies prior to reactor startup and four hours after reducing power below P-10 and P-6. The Frequency of "prior to startup" ensures this surveillance is performed prior to critical operations and applies to the source, intermediate and power range low instrument channels. The Frequency of "4 hours after reducing power below P-10" (applicable to intermediate and power range low channels) and "4 hours after reducing power below P-6" (applicable to source range channels) allows a normal shutdown to be completed and the unit removed from the MODE of Applicability for this surveillance without a delay to perform the testing required by this surveillance. The Frequency of every 92 days thereafter applies if the plant remains in the MODE of Applicability after the initial performances of prior to reactor startup and four hours after reducing power below P-10 or P-6. The MODE of Applicability for this surveillance is < P-10 for the power range low and intermediate range channels and < P-6 for the source range channels. Once the unit is in MODE 3, this surveillance is no longer required. If power is to be maintained < P-10 or < P-6 for more than 4 hours, then the testing required by this surveillance must be performed prior to the expiration of the 4 hour limit. Four hours is a reasonable time to complete the required testing or place the unit in a MODE where
this surveillance is no longer required. This test ensures that the NIS source. intermediate, and power range low channels are OPERABLE prior to taking the reactor critical and after reducing power into the applicable MODE (< P-10 or < P-6) for periods > 4 hours. ## SR 3.3.1.9 SR 3.3.1.9 is the performance of a TADOT and is performed every [92] days, as justified in Reference 7. ## SURVEILLANCE REQUIREMENTS # <u>SR 3.3.1.9</u> (continued) The SR is modified by a Note that excludes verification of setpoints from the TADOT. Since this SR applies to RCP undervoltage and underfrequency relays, setpoint verification requires elaborate bench calibration and is accomplished during the CHANNEL CALIBRATION. ## SR 3.3.1.10 A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy. CHANNEL CALIBRATIONS must be performed consistent with the assumptions of the unit specific setpoint methodology. The difference between the current "as found" values and the previous test "as left" values must be consistent with the drift allowance used in the setpoint methodology. The Frequency of 18 months is based on the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint methodology. SR 3.3.1.10 is modified by a Note stating that this test shall include verification that the time constants are adjusted to the prescribed values where applicable. ## SR 3.3.1.11 SR 3.3.1.11 is the performance of a CHANNEL CALIBRATION, as described in SR 3.3.1.10, every [18] months. This SR is modified by a Note stating that neutron detectors are excluded from the CHANNEL CALIBRATION. The CHANNEL CALIBRATION for the power range neutron detectors consists of a normalization of the detectors based on a power calorimetric and flux map performed above 15% RTP. The CHANNEL CALIBRATION for the source range and intermediate range neutron detectors consists of obtaining the detector ## SURVEILLANCE REQUIREMENTS # <u>SR 3.3.1.11</u> (continued) plateau or preamp discriminator curves, evaluating those curves, and comparing the curves to the manufacturer's data. This Surveillance is not required for the NIS power range detectors for entry into MODE 2 or 1, and is not required for the NIS intermediate range detectors for entry into MODE 2, because the unit must be in at least MODE 2 to perform the test for the intermediate range detectors and MODE 1 for the power range detectors. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed on the [18] month Frequency. ## SR 3.3.1.12 SR 3.3.1.12 is the performance of a CHANNEL CALIBRATION, as described in SR 3.3.1.10, every [18] months. This SR is modified by a Note stating that this test shall include verification of the RCS resistance temperature detector (RTD) bypass loop flow rate. This test will verify the rate lag compensation for flow from the core to the RTDs. The Frequency is justified by the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis. ## SR 3.3.1.13 SR 3.3.1.13 is the performance of a COT of RTS interlocks every [18] months. The Frequency is based on the known reliability of the interlocks and the multichannel redundancy available, and has been shown to be acceptable through operating experience. # SURVEILLANCE REQUIREMENTS (continued) ## SR 3.3.1.14 SR 3.3.1.14 is the performance of a TADOT of the Manual Reactor Trip, RCP Breaker Position, and the SI Input from ESFAS. This TADOT is performed every [18] months. The test shall independently verify the OPERABILITY of the undervoltage and shunt trip mechanisms for the Manual Reactor Trip Function for the Reactor Trip Breakers and Reactor Trip Bypass Breakers. The Reactor Trip Bypass Breaker test shall include testing of the automatic undervoltage trip. The Frequency is based on the known reliability of the Functions and the multichannel redundancy available, and has been shown to be acceptable through operating experience. The SR is modified by a Note that excludes verification of setpoints from the TADOT. The Functions affected have no setpoints associated with them. ## SR 3.3.1.15 SR 3.3.1.15 is the performance of a TADOT of Turbine Trip Functions. This TADOT is as described in SR 3.3.1.4, except that this test is performed prior to reactor startup. A Note states that this Surveillance is not required if it has been performed within the previous 31 days. Verification of the Trip Setpoint does not have to be performed for this Surveillance. Performance of this test will ensure that the turbine trip Function is OPERABLE prior to taking the reactor critical. This test cannot be performed with the reactor at power and must therefore be performed prior to reactor startup. ## SR 3.3.1.16 SR 3.3.1.16 verifies that the individual channel/train actuation response times are less than or equal to the maximum values assumed in the accident analysis. Response time testing acceptance criteria are included in Technical Requirements Manual, Section 15 (Ref. 8). Individual component response times are not modeled in the analyses. # SURVEILLANCE REQUIREMENTS # <u>SR 3.3.1.16</u> (continued) The analyses model the overall or total elapsed time, from the point at which the parameter exceeds the trip setpoint value at the sensor to the point at which the equipment reaches the required functional state (i.e., control and shutdown rods fully inserted in the reactor core). For channels that include dynamic transfer Functions (e.g., lag, lead/lag, rate/lag, etc.), the response time test may be performed with the transfer Function set to one, with the resulting measured response time compared to the appropriate FSAR response time. Alternately, the response time test can be performed with the time constants set to their nominal value, provided the required response time is analytically calculated assuming the time constants are set at their nominal values. The response time may be measured by a series of overlapping tests such that the entire response time is measured. As appropriate, each channel's response must be verified every [18] months on a STAGGERED TEST BASIS. Testing of the final actuation devices is included in the testing. Response times cannot be determined during unit operation because equipment operation is required to measure response times. Experience has shown that these components usually pass this surveillance when performed at the 18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. SR 3.3.1.16 is modified by a Note stating that neutron detectors are excluded from RTS RESPONSE TIME testing. This Note is necessary because of the difficulty in generating an appropriate detector input signal. Excluding the detectors is acceptable because the principles of detector operation ensure a virtually instantaneous response. #### REFERENCES - 1. FSAR, Chapter [7]. - 2. FSAR, Chapter [6]. - 3. FSAR, Chapter [15]. - 4. IEEE-279-1971. ### **BASES** # REFERENCES (continued) - 5. 10 CFR 50.49. - 6. RTS/ESFAS Setpoint Methodology Study. - 7. WCAP-10271-P-A, Supplement 2, Rev. 1, June 1990. - 8. Technical Requirements Manual, Section 15, "Response Times." #### B 3.3 INSTRUMENTATION ## B 3.3.2 Engineered Safety Feature Actuation System (ESFAS) Instrumentation #### **BASES** #### BACKGROUND The ESFAS initiates necessary safety systems, based on the values of selected unit parameters, to protect against violating core design limits and the Reactor Coolant System (RCS) pressure boundary, and to mitigate accidents. The ESFAS instrumentation is segmented into three distinct but interconnected modules as identified below: - Field transmitters or process sensors and instrumentation: provide a measurable electronic signal based on the physical characteristics of the parameter being measured; - Signal processing equipment including analog protection system, field contacts, and protection channel sets: provide signal conditioning, bistable setpoint comparison, process algorithm actuation, compatible electrical signal output to protection system devices, and control board/control room/ miscellaneous indications; and - Solid State Protection System (SSPS) including input, logic, and output bays: initiates the proper unit shutdown or engineered safety feature (ESF) actuation in accordance with the defined logic and based on the bistable outputs from the signal process control and protection system. #### Field Transmitters or Sensors To meet the design demands for redundancy and reliability, more than one, and often as many as four, field transmitters or sensors are used to measure unit parameters. In many cases, field transmitters or sensors that input to the ESFAS are shared with the Reactor Trip System (RTS). In some cases, the same channels also provide control system inputs. To account for calibration tolerances and instrument drift, which are assumed to occur between calibrations, statistical allowances are provided in the Trip Setpoint and Allowable # Field Transmitters or Sensors (continued) Values. The OPERABILITY of each transmitter or sensor can be evaluated when its "as found" calibration data are compared against its documented acceptance criteria. ### Signal Processing Equipment Generally, three or four channels of process control equipment are used for the signal processing of unit parameters measured by the field instruments. The process control equipment provides signal conditioning, comparable
output signals for instruments located on the main control board, and comparison of measured input signals with setpoints established by safety analyses. These setpoints are defined in FSAR, Chapter [6] (Ref. 1), Chapter [7] (Ref. 2), and Chapter [15] (Ref. 3). If the measured value of a unit parameter exceeds the predetermined setpoint, an output from a bistable is forwarded to the SSPS for decision evaluation. Channel separation is maintained up to and through the input bays. However, not all unit parameters require four channels of sensor measurement and signal processing. Some unit parameters provide input only to the SSPS, while others provide input to the SSPS, the main control board, the unit computer, and one or more control systems. Generally, if a parameter is used only for input to the protection circuits, three channels with a two-out-of-three logic are sufficient to provide the required reliability and redundancy. If one channel fails in a direction that would not result in a partial Function trip, the Function is still OPERABLE with a two-out-of-two logic. If one channel fails such that a partial Function trip occurs, a trip will not occur and the Function is still OPERABLE with a one-out-of-two logic. Generally, if a parameter is used for input to the SSPS and a control function, four channels with a two-out-of-four logic are sufficient to provide the required reliability and redundancy. The circuit must be able to withstand both an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function # Signal Processing Equipment (continued) actuation. Again, a single failure will neither cause nor prevent the protection function actuation. These requirements are described in IEEE-279-1971 (Ref. 4). The actual number of channels required for each unit parameter is specified in Reference 2. ### Trip Setpoints and Allowable Values The Trip Setpoints are the nominal values at which the bistables are set. Any bistable is considered to be properly adjusted when the "as left" value is within the band for CHANNEL CALIBRATION accuracy. The Trip Setpoints used in the bistables are based on the analytical limits stated in Reference 2. The selection of these Trip Setpoints is such that adequate protection is provided when all sensor and processing time delays are taken into account. To allow for calibration tolerances. instrumentation uncertainties, instrument drift, and severe environment errors for those ESFAS channels that must function in harsh environments as defined by 10 CFR 50.49 (Ref. 5), the Trip Setpoints and Allowable Values specified in Table 3.3.2-1 in the accompanying LCO are conservatively adjusted with respect to the analytical limits. A detailed description of the methodology used to calculate the Trip Setpoints, including their explicit uncertainties, is provided in the "RTS/ESFAS Setpoint Methodology Study" (Ref. 6). The actual nominal Trip Setpoint entered into the bistable is more conservative than that specified by the Allowable Value to account for changes in random measurement errors detectable by a COT. One example of such a change in measurement error is drift during the surveillance interval. If the measured setpoint does not exceed the Allowable Value, the bistable is considered OPERABLE. Setpoints in accordance with the Allowable Value ensure that the consequences of Design Basis Accidents (DBAs) will be acceptable, providing the unit is operated from within the LCOs at the onset of the DBA and the equipment functions as designed. # Trip Setpoints and Allowable Values (continued) Each channel can be tested on line to verify that the signal processing equipment and setpoint accuracy is within the specified allowance requirements of Reference 2. Once a designated channel is taken out of service for testing, a simulated signal is injected in place of the field instrument signal. The process equipment for the channel in test is then tested, verified, and calibrated. SRs for the channels are specified in the SR section. The Trip Setpoints and Allowable Values listed in Table 3.3.2-1 are based on the methodology described in Reference 6, which incorporates all of the known uncertainties applicable for each channel. The magnitudes of these uncertainties are factored into the determination of each Trip Setpoint. All field sensors and signal processing equipment for these channels are assumed to operate within the allowances of these uncertainty magnitudes. #### Solid State Protection System The SSPS equipment is used for the decision logic processing of outputs from the signal processing equipment bistables. To meet the redundancy requirements, two trains of SSPS, each performing the same functions, are provided. If one train is taken out of service for maintenance or test purposes, the second train will provide ESF actuation for the unit. If both trains are taken out of service or placed in test, a reactor trip will result. Each train is packaged in its own cabinet for physical and electrical separation to satisfy separation and independence requirements. The SSPS performs the decision logic for most ESF equipment actuation; generates the electrical output signals that initiate the required actuation; and provides the status, permissive, and annunciator output signals to the main control room of the unit. The bistable outputs from the signal processing equipment are sensed by the SSPS equipment and combined into logic matrices that represent combinations indicative of various # Solid State Protection System (continued) transients. If a required logic matrix combination is completed, the system will send actuation signals via master and slave relays to those components whose aggregate Function best serves to alleviate the condition and restore the unit to a safe condition. Examples are given in the Applicable Safety Analyses, LCO, and Applicability sections of this Bases. Each SSPS train has a built in testing device that can automatically test the decision logic matrix functions and the actuation devices while the unit is at power. When any one train is taken out of service for testing, the other train is capable of providing unit monitoring and protection until the testing has been completed. The testing device is semiautomatic to minimize testing time. The actuation of ESF components is accomplished through master and slave relays. The SSPS energizes the master relays appropriate for the condition of the unit. Each master relay then energizes one or more slave relays, which then cause actuation of the end devices. The master and slave relays are routinely tested to ensure operation. The test of the master relays energizes the relay, which then operates the contacts and applies a low voltage to the associated slave relays. The low voltage is not sufficient to actuate the slave relays but only demonstrates signal path continuity. The SLAVE RELAY TEST actuates the devices if their operation will not interfere with continued unit operation. For the latter case, actual component operation is prevented by the SLAVE RELAY TEST circuit, and slave relay contact operation is verified by a continuity check of the circuit containing the slave relay. Reviewer's Note: No one unit ESFAS incorporates all of the Functions listed in Table 3.3.2-1. In some cases (e.g., Containment Pressure—High 3, Function 2.c), the table reflects several different implementations of the same Function. Typically, only one of these implementations are used at any specific unit. Each of the analyzed accidents can be detected by one or more ESFAS Functions. One of the ESFAS Functions is the primary actuation signal for that accident. An ESFAS Function may be the primary actuation signal for more than one type of accident. An ESFAS Function may also be a secondary, or backup, actuation signal for one or more other accidents. For example, Pressurizer Pressure-Low is a primary actuation signal for small loss of coolant accidents (LOCAs) and a backup actuation signal for steam line breaks (SLBs) outside containment. Functions such as manual initiation, not specifically credited in the accident safety analysis, are qualitatively credited in the safety analysis and the NRC staff approved licensing basis for the unit. These Functions may provide protection for conditions that do not require dynamic transient analysis to demonstrate Function performance. These Functions may also serve as backups to Functions that were credited in the accident analysis (Ref. 3). The LCO requires all instrumentation performing an ESFAS Function to be OPERABLE. Failure of any instrument renders the affected channel(s) inoperable and reduces the reliability of the affected Functions. The LCO generally requires OPERABILITY of four or three channels in each instrumentation function and two channels in each logic and manual initiation function. The two-out-of-three and the two-out-of-four configurations allow one channel to be tripped during maintenance or testing without causing an ESFAS initiation. Two logic or manual initiation channels are required to ensure no single random failure disables the ESFAS. The required channels of ESFAS instrumentation provide unit protection in the event of any of the analyzed accidents. ESFAS protection functions are as follows: #### 1. Safety Injection Safety Injection (SI) provides two primary functions: Primary side water addition to ensure maintenance or recovery of reactor vessel water level (coverage of the active fuel for heat removal, clad integrity, and for limiting peak clad temperature to < 2200°F); and # 1. <u>Safety Injection</u> (continued) 2. Boration to ensure recovery and maintenance of SDM ($k_{\rm eff} < 1.0$). These functions are necessary to mitigate the effects of high energy line breaks (HELBs) both inside and outside of containment. The SI signal is also used to initiate other
Functions such as: - Phase A Isolation; - Containment Purge Isolation; - Reactor Trip; - Turbine Trip; - Feedwater Isolation; - Start of motor driven auxiliary feedwater (AFW) pumps; - Control room ventilation isolation; and - Enabling automatic switchover of Emergency Core Cooling Systems (ECCS) suction to containment sump. These other functions ensure: - Isolation of nonessential systems through containment penetrations; - Trip of the turbine and reactor to limit power generation; - Isolation of main feedwater (MFW) to limit secondary side mass losses; - Start of AFW to ensure secondary side cooling capability; - Isolation of the control room to ensure habitability; and # 1. <u>Safety Injection</u> (continued) Enabling ECCS suction from the refueling water storage tank (RWST) switchover on low low RWST level to ensure continued cooling via use of the containment sump. # a. <u>Safety Injection—Manual Initiation</u> The LCO requires one channel per train to be OPERABLE. The operator can initiate SI at any time by using either of two switches in the control room. This action will cause actuation of all components in the same manner as any of the automatic actuation signals. The LCO for the Manual Initiation Function ensures the proper amount of redundancy is maintained in the manual ESFAS actuation circuitry to ensure the operator has manual ESFAS initiation capability. Each channel consists of one push button and the interconnecting wiring to the actuation logic cabinet. Each push button actuates both trains. This configuration does not allow testing at power. # b. <u>Safety Injection—Automatic Actuation Logic and Actuation Relays</u> This LCO requires two trains to be OPERABLE. Actuation logic consists of all circuitry housed within the actuation subsystems, including the initiating relay contacts responsible for actuating the ESF equipment. Manual and automatic initiation of SI must be OPERABLE in MODES 1, 2, and 3. In these MODES, there is sufficient energy in the primary and secondary systems to warrant automatic initiation of ESF systems. Manual Initiation is also required in MODE 4 even though automatic actuation is not required. In this MODE, adequate time is available to manually actuate required components in the event of a DBA, but # b. <u>Safety Injection—Automatic Actuation Logic and Actuation Relays</u> (continued) because of the large number of components actuated on a SI, actuation is simplified by the use of the manual actuation push buttons. Automatic actuation logic and actuation relays must be OPERABLE in MODE 4 to support system level manual initiation. These Functions are not required to be OPERABLE in MODES 5 and 6 because there is adequate time for the operator to evaluate unit conditions and respond by manually starting individual systems, pumps, and other equipment to mitigate the consequences of an abnormal condition or accident. Unit pressure and temperature are very low and many ESF components are administratively locked out or otherwise prevented from actuating to prevent inadvertent overpressurization of unit systems. # c. <u>Safety Injection—Containment Pressure—High 1</u> This signal provides protection against the following accidents: - SLB inside containment; - LOCA: and - Feed line break inside containment. Containment Pressure—High 1 provides no input to any control functions. Thus, three OPERABLE channels are sufficient to satisfy protective requirements with a two-out-of-three logic. The transmitters (d/p cells) and electronics are located outside of containment with the sensing line (high pressure side of the transmitter) located inside containment. Thus, the high pressure Function will not experience any adverse environmental conditions and the Trip Setpoint reflects only steady state instrument uncertainties. c. <u>Safety Injection—Containment Pressure—High 1</u> (continued) Containment Pressure—High 1 must be OPERABLE in MODES 1, 2, and 3 when there is sufficient energy in the primary and secondary systems to pressurize the containment following a pipe break. In MODES 4, 5, and 6, there is insufficient energy in the primary or secondary systems to pressurize the containment. d. Safety Injection-Pressurizer Pressure-Low This signal provides protection against the following accidents: - Inadvertent opening of a steam generator (SG) relief or safety valve; - SLB; - A spectrum of rod cluster control assembly ejection accidents (rod ejection); - Inadvertent opening of a pressurizer relief or safety valve; - LOCAs; and - SG Tube Rupture. At some units pressurizer pressure provides both control and protection functions: input to the Pressurizer Pressure Control System, reactor trip, and SI. Therefore, the actuation logic must be able to withstand both an input failure to control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Thus, four OPERABLE channels are required to satisfy the requirements with a two-out-of-four logic. For units that have dedicated protection and control channels, only three protection channels are necessary to satisfy the protective requirements. # d. <u>Safety Injection—Pressurizer Pressure—Low</u> (continued) The transmitters are located inside containment, with the taps in the vapor space region of the pressurizer, and thus possibly experiencing adverse environmental conditions (LOCA, SLB inside containment, rod ejection). Therefore, the Trip Setpoint reflects the inclusion of both steady state and adverse environmental instrument uncertainties. This Function must be OPERABLE in MODES 1, 2, and 3 (above P-11) to mitigate the consequences of an HELB inside containment. This signal may be manually blocked by the operator below the P-11 setpoint. Automatic SI actuation below this pressure setpoint is then performed by the Containment Pressure—High 1 signal. This Function is not required to be OPERABLE in MODE 3 below the P-11 setpoint. Other ESF functions are used to detect accident conditions and actuate the ESF systems in this MODE. In MODES 4, 5, and 6, this Function is not needed for accident detection and mitigation. ### e. <u>Safety Injection—Steam Line Pressure</u> #### (1) Steam Line Pressure—Low Steam Line Pressure—Low provides protection against the following accidents: - SLB; - Feed line break; and - Inadvertent opening of an SG relief or an SG safety valve. Steam Line Pressure—Low provides no input to any control functions. Thus, three OPERABLE channels on each steam line are sufficient to satisfy the protective # (1) Steam Line Pressure—Low (continued) requirements with a two-out-of-three logic on each steam line. With the transmitters typically located inside the steam tunnels, it is possible for them to experience adverse environmental conditions during a secondary side break. Therefore, the Trip Setpoint reflects both steady state and adverse environmental instrument uncertainties. This Function is anticipatory in nature and has a typical lead/lag ratio of 50/5. Steam Line Pressure—Low must be OPERABLE in MODES 1, 2, and 3 (above P-11) when a secondary side break or stuck open valve could result in the rapid depressurization of the steam lines. This signal may be manually blocked by the operator below the P-11 setpoint. Below P-11, feed line break is not a concern. Inside containment SLB will be terminated by automatic SI actuation via Containment Pressure-High 1. and outside containment SLB will be terminated by the Steam Line Pressure—Negative Rate—High signal for steam line isolation. This Function is not required to be OPERABLE in MODE 4, 5, or 6 because there is insufficient energy in the secondary side of the unit to cause an accident. (2) <u>Steam Line Pressure—High Differential</u> <u>Pressure Between Steam Lines</u> Steam Line Pressure—High Differential Pressure Between Steam Lines provides protection against the following accidents: - SLB: - Feed line break; and - (2) <u>Steam Line Pressure—High Differential</u> <u>Pressure Between Steam Lines</u> (continued) - Inadvertent opening of an SG relief or an SG safety valve. Steam Line Pressure—High Differential Pressure Between Steam Lines provides no input to any control functions. Thus, three OPERABLE channels on each steam line are sufficient to satisfy the requirements, with a two-out-of-three logic on each steam line. With the transmitters typically located inside the steam tunnels, it is possible for them to experience adverse environmental conditions during an SLB event. Therefore, the Trip Setpoint reflects both steady state and adverse environmental instrument uncertainties. Steam line high differential pressure must be OPERABLE in MODES 1, 2, and 3 when a secondary side break or stuck open valve could result in the rapid depressurization of the steam line(s). This Function is not required to be OPERABLE in MODE 4, 5, or 6 because there is not sufficient energy in the secondary side of the unit to cause an accident. f, g. <u>Safety Injection—High Steam Flow in Two Steam</u> <u>Lines Coincident With T_{avg}—Low Low or Coincident</u> <u>With Steam Line Pressure—Low</u> These Functions (1.f and 1.g) provide protection against the following accidents: - SLB; and - the inadvertent opening of an SG relief or an SG safety valve. Two steam line flow channels per steam line are required OPERABLE for these Functions. The steam line flow channels are combined in a one-out-of- f, g. <u>Safety Injection—High Steam Flow in Two Steam</u> <u>Lines Coincident With T_{avg}—Low Low or Coincident</u> <u>With Steam Line Pressure—Low</u> (continued) two logic to indicate high steam flow in one steam line. The steam flow transmitters provide control inputs, but the control function cannot cause the events that the Function must protect against. Therefore, two channels are sufficient to satisfy redundancy requirements. The one-out-of-two configuration allows online testing because trip of
one high steam flow channel is not sufficient to cause initiation. High steam flow in two steam lines is acceptable in the case of a single steam line fault due to the fact that the remaining intact steam lines will pick up the full turbine load. The increased steam flow in the remaining intact lines will actuate the required second high steam flow trip. Additional protection is provided by Function 1.e.(2), High Differential Pressure Between Steam Lines. One channel of $T_{\rm avg}$ per loop and one channel of low steam line pressure per steam line are required OPERABLE. For each parameter, the channels for all loops or steam lines are combined in a logic such that two channels tripped will cause a trip for the parameter. example, for three loop units, the low steam line pressure channels are combined in two-out-ofthree logic. Thus, the Function trips on one-out-of-two high flow in any two-out-of-three steam lines if there is one-out-of-one low low T_{avg} trip in any two-out-of-three RCS loops, or if there is a one-out-of-one low pressure trip in any two-out-of-three steam lines. Since the accidents that this event protects against cause both low steam line pressure and low low Tays. provision of one channel per loop or steam line ensures no single random failure can disable both of these Functions. The steam line pressure channels provide no control inputs. The T_{avg} channels provide control inputs, but the control function cannot initiate events that the Function acts to mitigate. f, g. <u>Safety Injection—High Steam Flow in Two Steam</u> <u>Lines Coincident With T_{avg}—Low Low or Coincident</u> <u>With Steam Line Pressure—Low</u> (continued) The Allowable Value for high steam flow is a linear function that varies with power level. The function is a ΔP corresponding to 44% of full steam flow between 0% and 20% load to 114% of full steam flow at 100% load. The nominal trip setpoint is similarly calculated. With the transmitters typically located inside the containment (T_{avg}) or inside the steam tunnels (High Steam Flow), it is possible for them to experience adverse steady state environmental conditions during an SLB event. Therefore, the Trip Setpoint reflects both steady state and adverse environmental instrument uncertainties. The Steam Line Pressure—Low signal was discussed previously under Function 1.e.(1). This Function must be OPERABLE in MODES 1, 2, and 3 (above P-12) when a secondary side break or stuck open valve could result in the rapid depressurization of the steam line(s). This signal may be manually blocked by the operator when below the P-12 setpoint. Above P-12, this Function is automatically unblocked. This Function is not required OPERABLE below P-12 because the reactor is not critical, so feed line break is not a concern. SLB may be addressed by Containment Pressure High 1 (inside containment) or by High Steam Flow in Two Steam Lines coincident with Steam Line Pressure-Low, for Steam Line Isolation, followed by High Differential Pressure Between Two Steam Lines, for SI. This Function is not required to be OPERABLE in MODE 4, 5, or 6 because there is insufficient energy in the secondary side of the unit to cause an accident. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) ### 2. Containment Spray Containment Spray provides three primary functions: - 1. Lowers containment pressure and temperature after an HELB in containment; - 2. Reduces the amount of radioactive iodine in the containment atmosphere; and - 3. Adjusts the pH of the water in the containment recirculation sump after a large break LOCA. These functions are necessary to: - Ensure the pressure boundary integrity of the containment structure; - Limit the release of radioactive iodine to the environment in the event of a failure of the containment structure; and - Minimize corrosion of the components and systems inside containment following a LOCA. The containment spray actuation signal starts the containment spray pumps and aligns the discharge of the pumps to the containment spray nozzle headers in the upper levels of containment. Water is initially drawn from the RWST by the containment spray pumps and mixed with a sodium hydroxide solution from the spray additive tank. When the RWST reaches the low low level setpoint, the spray pump suctions are shifted to the containment sump if continued containment spray is required. Containment spray is actuated manually by Containment Pressure—High 3 or Containment Pressure—High High. #### a. Containment Spray-Manual Initiation The operator can initiate containment spray at any time from the control room by simultaneously turning two containment spray actuation switches in the same train. Because an inadvertent actuation of containment spray could have such serious consequences, two switches must be turned # a. <u>Containment Spray—Manual Initiation</u> (continued) There are two sets of two switches each in the control room. Simultaneously turning the two switches in either set will actuate containment spray in both trains in the same manner as the automatic actuation signal. Two Manual Initiation switches in each train are required to be OPERABLE to ensure no single failure disables the Manual Initiation Function. Note that Manual Initiation of containment spray also actuates Phase B containment isolation. b. <u>Containment Spray—Automatic Actuation Logic and Actuation Relays</u> Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b. Manual and automatic initiation of containment spray must be OPERABLE in MODES 1, 2, and 3 when there is a potential for an accident to occur, and sufficient energy in the primary or secondary systems to pose a threat to containment integrity due to overpressure conditions. Manual initiation is also required in MODE 4, even though automatic actuation is not required. this MODE, adequate time is available to manually actuate required components in the event of a However, because of the large number of components actuated on a containment spray. actuation is simplified by the use of the manual actuation push buttons. Automatic actuation logic and actuation relays must be OPERABLE in MODE 4 to support system level manual initiation. In MODES 5 and 6, there is insufficient energy in the primary and secondary systems to result in containment overpressure. In MODES 5 and 6, there is also adequate time for the operators to evaluate unit conditions and respond, to mitigate the consequences of abnormal conditions by manually starting individual components. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) ### c. Containment Spray-Containment Pressure This signal provides protection against a LOCA or an SLB inside containment. The transmitters (d/p cells) are located outside of containment with the sensing line (high pressure side of the transmitter) located inside containment. The transmitters and electronics are located outside of containment. Thus, they will not experience any adverse environmental conditions and the Trip Setpoint reflects only steady state instrument uncertainties. This is one of the only Functions that requires the bistable output to energize to perform its required action. It is not desirable to have a loss of power actuate containment spray, since the consequences of an inadvertent actuation of containment spray could be serious. Note that this Function also has the inoperable channel placed in bypass rather than trip to decrease the probability of an inadvertent actuation. Two different logic configurations are typically used. Three and four loop units use four channels in a two-out-of-four logic configuration. This configuration may be called the Containment Pressure—High 3 Setpoint for three and four loop units, and Containment Pressure—High High Setpoint for other units. Some two loop units use three sets of two channels, each set combined in a one-out-of-two configuration, with these outputs combined so that two-out-of-three sets tripped initiates containment spray. This configuration is called Containment Pressure—High 3 Setpoint. Since containment pressure is not used for control, both of these arrangements exceed the minimum redundancy requirements. Additional redundancy is warranted because this Function is energize to trip. Containment Pressure—[High 3] [High High] must be OPERABLE in MODES 1, 2, and 3 when there is sufficient energy in the primary and secondary sides to pressurize the containment following a pipe break. In MODES 4, 5, and 6, there is insufficient energy in the primary and secondary # c. <u>Containment Spray—Containment Pressure</u> (continued) sides to pressurize the containment and reach the Containment Pressure—High 3 (High High) setpoints. #### 3. Containment Isolation Containment Isolation provides isolation of the containment atmosphere, and all process systems that penetrate containment, from the environment. This Function is necessary to prevent or limit the release of radioactivity to the environment in the event of a large break LOCA. There are two separate Containment Isolation signals, Phase A and Phase B. Phase A isolation isolates all automatically isolable process lines, except component cooling water (CCW), at a relatively low containment pressure indicative of primary or secondary system leaks. For these types of events, forced circulation cooling using the reactor coolant pumps (RCPs) and SGs is the preferred (but not required) method of decay heat removal. Since CCW is required to support RCP operation, not isolating CCW on the low pressure Phase A signal enhances unit safety by allowing operators to use forced RCS circulation to cool the unit. Isolating CCW on the low pressure signal may force the use of feed and bleed cooling, which could prove more difficult to control. Phase A containment isolation is actuated automatically by SI, or manually via the
automatic actuation logic. All process lines penetrating containment, with the exception of CCW, are isolated. CCW is not isolated at this time to permit continued operation of the RCPs with cooling water flow to the thermal barrier heat exchangers and air or oil coolers. All process lines not equipped with remote operated isolation valves are manually closed, or otherwise isolated, prior to reaching MODE 4. Manual Phase A Containment Isolation is accomplished by either of two switches in the control room. Either switch actuates both trains. Note that manual # 3. <u>Containment Isolation</u> (continued) actuation of Phase A Containment Isolation also actuates Containment Purge and Exhaust Isolation. The Phase B signal isolates CCW. This occurs at a relatively high containment pressure that is indicative of a large break LOCA or an SLB. For these events, forced circulation using the RCPs is no longer desirable. Isolating the CCW at the higher pressure does not pose a challenge to the containment boundary because the CCW System is a closed loop inside containment. Although some system components do not meet all of the ASME Code requirements applied to the containment itself, the system is continuously pressurized to a pressure greater than the Phase B setpoint. Thus, routine operation demonstrates the integrity of the system pressure boundary for pressures exceeding the Phase B setpoint. Furthermore, because system pressure exceeds the Phase B setpoint, any system leakage prior to initiation of Phase B isolation would be into containment. Therefore, the combination of CCW System design and Phase B isolation ensures the CCW System is not a potential path for radioactive release from containment. Phase B containment isolation is actuated by Containment Pressure—High 3 or Containment Pressure—High High, or manually, via the automatic actuation logic, as previously discussed. For containment pressure to reach a value high enough to actuate Containment Pressure—High 3 or Containment Pressure—High High, a large break LOCA or SLB must have occurred and containment spray must have been actuated. RCP operation will no longer be required and CCW to the RCPs is, therefore, no longer necessary. The RCPs can be operated with seal injection flow alone and without CCW flow to the thermal barrier heat exchanger. Manual Phase B Containment Isolation is accomplished by the same switches that actuate Containment Spray. When the two switches in either set are turned simultaneously, Phase B Containment Isolation and Containment Spray will be actuated in both trains. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) # a. <u>Containment Isolation—Phase A Isolation</u> # (1) Phase A Isolation—Manual Initiation Manual Phase A Containment Isolation is actuated by either of two switches in the control room. Either switch actuates both trains. Note that manual initiation of Phase A Containment Isolation also actuates Containment Purge Isolation. # (2) Phase A Isolation—Automatic Actuation Logic and Actuation Relays Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b. Manual and automatic initiation of Phase A Containment Isolation must be OPERABLE in MODES 1, 2, and 3, when there is a potential for an accident to occur. Manual initiation is also required in MODE 4 even though automatic actuation is not required. In this MODE, adequate time is available to manually actuate required components in the event of a DBA, but because of the large number of components actuated on a Phase A Containment Isolation, actuation is simplified by the use of the manual actuation push buttons. Automatic actuation logic and actuation relays must be OPERABLE in MODE 4 to support system level manual initiation. In MODES 5 and 6, there is insufficient energy in the primary or secondary systems to pressurize the containment to require Phase A Containment Isolation. There also is adequate time for the operator to evaluate unit conditions and manually actuate individual isolation valves in response to abnormal or accident conditions. #### (3) Phase A Isolation—Safety Injection Phase A Containment Isolation is also initiated by all Functions that initiate SI. The Phase A Containment Isolation # (3) Phase A Isolation—Safety Injection (continued) requirements for these Functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead, Function 1, SI, is referenced for all initiating Functions and requirements. # b. <u>Containment Isolation—Phase B Isolation</u> Phase B Containment Isolation is accomplished by Manual Initiation, Automatic Actuation Logic and Actuation Relays, and by Containment Pressure channels (the same channels that actuate Containment Spray, Function 2). The Containment Pressure trip of Phase B Containment Isolation is energized to trip in order to minimize the potential of spurious trips that may damage the RCPs. # (1) Phase B Isolation—Manual Initiation # (2) Phase B Isolation—Automatic Actuation Logic and Actuation Relays Manual and automatic initiation of Phase B containment isolation must be OPERABLE in MODES 1, 2, and 3, when there is a potential for an accident to occur. initiation is also required in MODE 4 even though automatic actuation is not required. In this MODE, adequate time is available to manually actuate required components in the event of a DBA. However, because of the large number of components actuated on a Phase B containment isolation, actuation is simplified by the use of the manual actuation push buttons. Automatic actuation logic and actuation relays must be OPERABLE in MODE 4 to support system level manual initiation. In MODES 5 and 6, there is insufficient energy in the primary or secondary systems to pressurize the containment to require Phase B containment - (1) Phase B Isolation—Manual Initiation - (2) Phase B Isolation—Automatic Actuation Logic and Actuation Relays (continued) isolation. There also is adequate time for the operator to evaluate unit conditions and manually actuate individual isolation valves in response to abnormal or accident conditions. (3) Phase B Isolation—Containment Pressure The basis for containment pressure MODE applicability is as discussed for ESFAS Function 2.c above. ### 4. Steam Line Isolation Isolation of the main steam lines provides protection in the event of an SLB inside or outside containment. Rapid isolation of the steam lines will limit the steam break accident to the blowdown from one SG, at most. For an SLB upstream of the main steam isolation valves (MSIVs), inside or outside of containment, closure of the MSIVs limits the accident to the blowdown from only the affected SG. For an SLB downstream of the MSIVs, closure of the MSIVs terminates the accident as soon as the steam lines depressurize. For units that do not have steam line check valves, Steam Line Isolation also mitigates the effects of a feed line break and ensures a source of steam for the turbine driven AFW pump during a feed line break. # a. <u>Steam Line Isolation—Manual Initiation</u> Manual initiation of Steam Line Isolation can be accomplished from the control room. There are two switches in the control room and either switch can initiate action to immediately close all MSIVs. The LCO requires two channels to be OPERABLE. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) # b. <u>Steam Line Isolation—Automatic Actuation Logic</u> and Actuation Relays Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b. Manual and automatic initiation of steam line isolation must be OPERABLE in MODES 1, 2, and 3 when there is sufficient energy in the RCS and SGs to have an SLB or other accident. This could result in the release of significant quantities of energy and cause a cooldown of the primary system. The Steam Line Isolation Function is required in MODES 2 and 3 unless all MSIVs are closed and [de-activated]. In MODES 4, 5, and 6, there is insufficient energy in the RCS and SGs to experience an SLB or other accident releasing significant quantities of energy. ### c. <u>Steam Line Isolation—Containment Pressure—High 2</u> This Function actuates closure of the MSIVs in the event of a LOCA or an SLB inside containment to maintain at least one unfaulted SG as a heat sink for the reactor, and to limit the mass and energy release to containment. The transmitters (d/p cells) are located outside containment with the sensing line (high pressure side of the transmitter) located inside containment. Containment Pressure—High 2 provides no input to any control functions. Thus, three OPERABLE channels are sufficient to satisfy protective requirements with two-out-of-three logic. However, for enhanced reliability, this Function was designed with four channels and a two-out-of-four logic. The transmitters and electronics are located outside of containment. Thus, they will not experience any adverse environmental conditions, and the Trip Setpoint reflects only steady state instrument uncertainties. Containment Pressure—High 2 must be OPERABLE in MODES 1, 2, and 3, when there is sufficient energy in the primary and secondary side to pressurize the containment following a pipe # c. <u>Steam Line Isolation—Containment Pressure—High 2</u> (continued) break. This would cause a significant increase in the containment pressure, thus allowing detection and closure of the MSIVs. The Steam Line Isolation Function remains OPERABLE in MODES 2 and 3 unless all MSIVs are closed and [de-activated]. In MODES 4, 5, and 6, there is not enough energy in the primary and secondary sides to pressurize the containment to the Containment Pressure—High 2 setpoint. ### d. <u>Steam Line Isolation—Steam Line Pressure</u> #### (1) Steam Line Pressure—Low Steam Line Pressure—Low provides
closure of the MSIVs in the event of an SLB to maintain at least one unfaulted SG as a heat sink for the reactor, and to limit the mass and energy release to containment. This Function provides closure of the MSIVs in the event of a feed line break to ensure a supply of steam for the turbine driven AFW pump. Steam Line Pressure—Low was discussed previously under SI Function 1.e.1. Steam Line Pressure—Low Function must be OPERABLE in MODES 1, 2, and 3 (above P-11), with any main steam valve open, when a secondary side break or stuck open valve could result in the rapid depressurization of the steam lines. This signal may be manually blocked by the operator below the P-11 setpoint. Below P-11, an inside containment SLB will be terminated by automatic actuation via Containment Pressure—High 2. Stuck valve transients and outside containment SLBs will be terminated by the Steam Line Pressure—Negative Rate—High signal for Steam Line Isolation below P-11 when SI has been manually blocked. The Steam Line Isolation Function is required in MODES 2 # (1) <u>Steam Line Pressure—Low</u> (continued) and 3 unless all MSIVs are closed and [de-activated]. This Function is not required to be OPERABLE in MODES 4, 5, and 6 because there is insufficient energy in the secondary side of the unit to have an accident. ### (2) <u>Steam Line Pressure—Negative Rate—High</u> Steam Line Pressure—Negative Rate—High provides closure of the MSIVs for an SLB when less than the P-11 setpoint, to maintain at least one unfaulted SG as a heat sink for the reactor, and to limit the mass and energy release to containment. When the operator manually blocks the Steam Line Pressure-Low main steam isolation signal when less than the P-11 setpoint. the Steam Line Pressure—Negative Rate—High signal is automatically enabled. Steam Line Pressure—Negative Rate—High provides no input to any control functions. Thus, three OPERABLE channels are sufficient to satisfy requirements with a two-out-of-three logic on each steam line. Steam Line Pressure—Negative Rate—High must be OPERABLE in MODE 3 when less than the P-11 setpoint, when a secondary side break or stuck open valve could result in the rapid depressurization of the steam line(s). In MODES 1 and 2, and in MODE 3, when above the P-11 setpoint, this signal is automatically disabled and the Steam Line Pressure—Low signal is automatically enabled. The Steam Line Isolation Function is required to be OPERABLE in MODES 2 and 3 unless all MSIVs are closed and [de-activated]. In MODES 4, 5, and 6, there is insufficient energy in the primary and secondary sides to have an SLB or other accident that would result in a release of significant enough quantities of energy to cause a cooldown of the RCS. (2) <u>Steam Line Pressure—Negative Rate—High</u> (continued) While the transmitters may experience elevated ambient temperatures due to an SLB, the trip function is based on rate of change, not the absolute accuracy of the indicated steam pressure. Therefore, the Trip Setpoint reflects only steady state instrument uncertainties. e, f. Steam Line Isolation—High Steam Flow in Two Steam Lines Coincident with T_{avg}—Low Low or Coincident With Steam Line Pressure—Low (Three and Four Loop Units) These Functions (4.e and 4.f) provide closure of the MSIVs during an SLB or inadvertent opening of an SG relief or a safety valve, to maintain at least one unfaulted SG as a heat sink for the reactor and to limit the mass and energy release to containment. These Functions were discussed previously as Functions 1.f. and 1.g. These Functions must be OPERABLE in MODES 1 and 2, and in MODE 3, when a secondary side break or stuck open valve could result in the rapid depressurization of the steam lines unless all MSIVs are closed and [de-activated]. These Functions are not required to be OPERABLE in MODES 4, 5, and 6 because there is insufficient energy in the secondary side of the unit to have an accident. g. Steam Line Isolation—High Steam Flow Coincident With Safety Injection and Coincident With Tayg—Low Low (Two Loop Units) This Function provides closure of the MSIVs during an SLB or inadvertent opening of an SG relief or safety valve to maintain at least one unfaulted SG as a heat sink for the reactor, and to limit the mass and energy release to containment. g. Steam Line Isolation—High Steam Flow Coincident With Safety Injection and Coincident With T_{avg} —Low Low (Two Loop Units) (continued) Two steam line flow channels per steam line are required OPERABLE for this Function. These are combined in a one-out-of-two logic to indicate high steam flow in one steam line. The steam flow transmitters provide control inputs, but the control function cannot cause the events that the function must protect against. Therefore, two channels are sufficient to satisfy redundancy requirements. The one-out-of-two configuration allows online testing because trip of one high steam flow channel is not sufficient to cause initiation. The High Steam Flow Allowable Value is a ΔP corresponding to 25% of full steam flow at no load steam pressure. The Trip Setpoint is similarly calculated. With the transmitters (d/p cells) typically located inside the steam tunnels, it is possible for them to experience adverse environmental conditions during an SLB event. Therefore, the Trip Setpoints reflect both steady state and adverse environmental instrument uncertainties. The main steam line isolates only if the high steam flow signal occurs coincident with an SI and low low RCS average temperature. The Main Steam Line Isolation Function requirements for the SI Functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead, Function 1, SI, is referenced for all initiating functions and requirements. Two channels of $T_{\rm avg}$ per loop are required to be OPERABLE. The $T_{\rm avg}$ channels are combined in a logic such that two channels tripped cause a trip for the parameter. The accidents that this Function protects against cause reduction of $T_{\rm avg}$ in the entire primary system. Therefore, the provision of two OPERABLE channels per loop in a g. Steam Line Isolation—High Steam Flow Coincident With Safety Injection and Coincident With Tavo—Low Low (Two Loop Units) (continued) two-out-of-four configuration ensures no single random failure disables the $T_{\rm avg}$ —Low Low Function. The $T_{\rm avg}$ channels provide control inputs, but the control function cannot initiate events that the Function acts to mitigate. Therefore, additional channels are not required to address control protection interaction issues. With the T_{avg} resistance temperature detectors (RTDs) located inside the containment, it is possible for them to experience adverse environmental conditions during an SLB event. Therefore, the Trip Setpoint reflects both steady state and adverse environmental instrumental uncertainties. This Function must be OPERABLE in MODES 1 and 2, and in MODE 3, when above the P-12 setpoint, when a secondary side break or stuck open valve could result in rapid depressurization of the steam lines. Below P-12 this Function is not required to be OPERABLE because the High High Steam Flow coincident with SI Function provides the required protection. The Steam Line Isolation Function is required to be OPERABLE in MODES 2 and 3 unless all MSIVs are closed and [de-activated]. This Function is not required to be OPERABLE in MODES 4, 5, and 6 because there is insufficient energy in the secondary side of the unit to have an accident. h. <u>Steam Line Isolation—High High Steam Flow</u> Coincident With Safety Injection (Two Loop Units) This Function provides closure of the MSIVs during a steam line break (or inadvertent opening of a relief or safety valve) to maintain at least one unfaulted SG as a heat sink for the reactor, and to limit the mass and energy release to containment. h. <u>Steam Line Isolation—High High Steam Flow</u> <u>Coincident With Safety Injection (Two Loop Units)</u> (continued) Two steam line flow channels per steam line are required to be OPERABLE for this Function. These are combined in a one-out-of-two logic to indicate high steam flow in one steam line. The steam flow transmitters provide control inputs, but the control function cannot cause the events that the Function must protect against. Therefore, two channels are sufficient to satisfy redundancy requirements. The Allowable Value for high steam flow is a ΔP , corresponding to 130% of full steam flow at full steam pressure. The Trip Setpoint is similarly calculated. With the transmitters typically located inside the steam tunnels, it is possible for them to experience adverse environmental conditions during an SLB event. Therefore, the Trip Setpoint reflects both steady state and adverse environmental instrument uncertainties. The main steam lines isolate only if the high steam flow signal occurs coincident with an SI signal. The Main Steam Line Isolation Function requirements for the SI Functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead, Function 1, SI, is referenced for all initiating functions and requirements. This Function must be OPERABLE in MODES 1, 2, and 3 when a secondary side break or stuck open valve could result in rapid depressurization of the steam lines unless all MSIVs are closed and [de-activated]. This Function is not required to be OPERABLE in MODES 4, 5, and 6 because there is insufficient energy in the secondary side of the unit to have an accident. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) # 5. <u>Turbine Trip and Feedwater Isolation</u> The primary functions of the Turbine Trip and Feedwater Isolation signals are to prevent damage to the turbine due to water in the steam lines, and to stop the excessive flow of feedwater into the SGs. These Functions are necessary to mitigate
the effects of a high water level in the SGs, which could result in carryover of water into the steam lines and excessive cooldown of the primary system. The SG high water level is due to excessive feedwater flows. The Function is actuated when the level in any SG exceeds the high high setpoint, and performs the following functions: - Trips the main turbine; - Trips the MFW pumps; - Initiates feedwater isolation; and - Shuts the MFW regulating valves and the bypass feedwater regulating valves. This Function is actuated by SG Water Level—High High, or by an SI signal. The RTS also initiates a turbine trip signal whenever a reactor trip (P-4) is generated. In the event of SI, the unit is taken off line and the turbine generator must be tripped. The MFW System is also taken out of operation and the AFW System is automatically started. The SI signal was discussed previously. a. <u>Turbine Trip and Feedwater Isolation—Automatic Actuation Logic and Actuation Relays</u> Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b. b. <u>Turbine Trip and Feedwater Isolation—Steam</u> <u>Generator Water Level—High High (P-14)</u> This signal provides protection against excessive feedwater flow. The ESFAS SG water level # b. <u>Turbine Trip and Feedwater Isolation—Steam Generator Water Level—High High (P-14)</u> (continued) instruments provide input to the SG Water Level Control System. Therefore, the actuation logic must be able to withstand both an input failure to the control system (which may then require the protection function actuation) and a single failure in the other channels providing the protection function actuation. Thus, four OPERABLE channels are required to satisfy the requirements with a two-out-of-four logic. For units that have dedicated protection and control channels, only three protection channels are necessary to satisfy the protective requirements. For other units that have only three channels, a median signal selector is provided or justification is provided in NUREG-1218 (Ref. 7). The transmitters (d/p cells) are located inside containment. However, the events that this Function protects against cannot cause a severe environment in containment. Therefore, the Trip Setpoint reflects only steady state instrument uncertainties. # c. <u>Turbine Trip and Feedwater Isolation—Safety</u> Injection Turbine Trip and Feedwater Isolation is also initiated by all Functions that initiate SI. The Feedwater Isolation Function requirements for these Functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead Function 1, SI, is referenced for all initiating functions and requirements. Turbine Trip and Feedwater Isolation Functions must be OPERABLE in MODES 1 and 2 [and 3] except when all MFIVs, MFRVs, [and associated bypass valves] are closed and [de-activated] [or isolated by a closed manual valve] when the MFW System is in operation and the turbine generator may be in operation. In MODES [3,] 4, 5, and 6, the MFW System and the turbine # c. <u>Turbine Trip and Feedwater Isolation—Safety</u> <u>Injection</u> (continued) generator are not in service and this Function is not required to be OPERABLE. #### 6. <u>Auxiliary Feedwater</u> The AFW System is designed to provide a secondary side heat sink for the reactor in the event that the MFW System is not available. The system has two motor driven pumps and a turbine driven pump, making it available during normal unit operation, during a loss of AC power, a loss of MFW, and during a Feedwater System pipe break. The normal source of water for the AFW System is the condensate storage tank (CST) (normally not safety related). A low level in the CST will automatically realign the pump suctions to the Essential Service Water (ESW) System (safety related). The AFW System is aligned so that upon a pump start, flow is initiated to the respective SGs immediately. Auxiliary Feedwater—Automatic Actuation Logic and Actuation Relays (Solid State Protection System) Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b. b. <u>Auxiliary Feedwater—Automatic Actuation Logic</u> and Actuation Relays (Balance of Plant ESFAS) Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b. c. <u>Auxiliary Feedwater—Steam Generator Water</u> Level—Low Low SG Water Level—Low Low provides protection against a loss of heat sink. A feed line break, inside or outside of containment, or a loss of MFW, would result in a loss of SG water level. SG Water Level—Low Low provides input to the SG ### c. <u>Auxiliary Feedwater—Steam Generator Water</u> <u>Level—Low Low</u> (continued) Level Control System. Therefore, the actuation logic must be able to withstand both an input failure to the control system which may then require a protection function actuation and a single failure in the other channels providing the protection function actuation. Thus, four OPERABLE channels are required to satisfy the requirements with two-out-of-four logic. For units that have dedicated protection and control channels, only three protection channels are necessary to satisfy the protective requirements. For other units that have only three channels, a median signal selector is provided or justification is provided in Reference 7. With the transmitters (d/p cells) located inside containment and thus possibly experiencing adverse environmental conditions (feed line break), the Trip Setpoint reflects the inclusion of both steady state and adverse environmental instrument uncertainties. ## d. Auxiliary Feedwater-Safety Injection An SI signal starts the motor driven and turbine driven AFW pumps. The AFW initiation functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead, Function 1, SI, is referenced for all initiating functions and requirements. ### e. Auxiliary Feedwater-Loss of Offsite Power A loss of offsite power to the service buses will be accompanied by a loss of reactor coolant pumping power and the subsequent need for some method of decay heat removal. The loss of offsite power is detected by a voltage drop on each service bus. Loss of power to either service bus will start the turbine driven AFW pumps to ensure that at least one SG contains enough water to serve as the heat sink for # e. <u>Auxiliary Feedwater-Loss of Offsite Power</u> (continued) reactor decay heat and sensible heat removal following the reactor trip. Functions 6.a through 6.e must be OPERABLE in MODES 1, 2, and 3 to ensure that the SGs remain the heat sink for the reactor. SG Water Level—Low Low in any operating SG will cause the motor driven AFW pumps to start. The system is aligned so that upon a start of the pump, water immediately begins to flow to the SGs. SG Water Level—Low Low in any two operating SGs will cause the turbine driven pumps to start. These Functions do not have to be OPERABLE in MODES 5 and 6 because there is not enough heat being generated in the reactor to require the SGs as a heat sink. In MODE 4, AFW actuation does not need to be OPERABLE because either AFW or residual heat removal (RHR) will already be in operation to remove decay heat or sufficient time is available to manually place either system in operation. # f. <u>Auxiliary Feedwater-Undervoltage Reactor Coolant Pump</u> A loss of power on the buses that provide power to the RCPs provides indication of a pending loss of RCP forced flow in the RCS. The Undervoltage RCP Function senses the voltage downstream of each RCP breaker. A loss of power, or an open RCP breaker, on two or more RCPs, will start the turbine driven AFW pump to ensure that at least one SG contains enough water to serve as the heat sink for reactor decay heat and sensible heat removal following the reactor trip. # g. <u>Auxiliary Feedwater—Trip of All Main Feedwater</u> <u>Pumps</u> A Trip of all MFW pumps is an indication of a loss of MFW and the subsequent need for some method of decay heat and sensible heat removal to bring the reactor back to no load temperature and pressure. A turbine driven MFW pump is equipped with two pressure switches on the control air/oil # g. <u>Auxiliary Feedwater-Trip of All Main Feedwater Pumps</u> (continued) line for the speed control system. A low pressure signal from either of these pressure switches indicates a trip of that pump. Motor driven MFW pumps are equipped with a breaker position sensing device. An open supply breaker indicates that the pump is not running. Two OPERABLE channels per pump satisfy redundancy requirements with one-out-of-two taken twice logic. A trip of all MFW pumps starts the motor driven and turbine driven AFW pumps to ensure that at least one SG is available with water to act as the heat sink for the reactor. Functions 6.f and 6.g must be OPERABLE in MODES 1 and 2. This ensures that at least one SG is provided with water to serve as the heat sink to remove reactor decay heat and sensible heat in the event of an accident. In MODES 3, 4, and 5, the RCPs and MFW pumps may be normally shut down, and thus neither pump trip is indicative of a condition requiring automatic AFW initiation. # h. <u>Auxiliary Feedwater—Pump Suction Transfer on Suction Pressure—Low</u> A low pressure signal in the AFW pump suction line protects the AFW pumps against a loss of the normal supply of water for the pumps, the CST. Two pressure switches are located on the AFW pump suction line from the CST. A low pressure signal sensed by any one of the switches will cause the emergency supply of water for both pumps to be aligned, or cause the AFW pumps to stop until the emergency source of water is aligned. ESW (safety grade) is then lined up to supply the AFW
pumps to ensure an adequate supply of water for the AFW System to maintain at least one of the SGs as the heat sink for reactor decay heat and sensible heat removal. Since the detectors are located in an area not affected by HELBs or high radiation, they will not experience any adverse environmental # h. <u>Auxiliary Feedwater—Pump Suction Transfer on Suction Pressure—Low</u> (continued) conditions and the Trip Setpoint reflects only steady state instrument uncertainties. This Function must be OPERABLE in MODES 1, 2, and 3 to ensure a safety grade supply of water for the AFW System to maintain the SGs as the heat sink for the reactor. This Function does not have to be OPERABLE in MODES 5 and 6 because there is not enough heat being generated in the reactor to require the SGs as a heat sink. In MODE 4, AFW automatic suction transfer does not need to be OPERABLE because RHR will already be in operation, or sufficient time is available to place RHR in operation, to remove decay heat. ## 7. Automatic Switchover to Containment Sump At the end of the injection phase of a LOCA, the RWST will be nearly empty. Continued cooling must be provided by the ECCS to remove decay heat. The source of water for the ECCS pumps is automatically switched to the containment recirculation sump. The low head residual heat removal (RHR) pumps and containment spray pumps draw the water from the containment recirculation sump, the RHR pumps pump the water through the RHR heat exchanger, inject the water back into the RCS, and supply the cooled water to the other ECCS pumps. Switchover from the RWST to the containment sump must occur before the RWST empties to prevent damage to the RHR pumps and a loss of core cooling capability. For similar reasons, switchover must not occur before there is sufficient water in the containment sump to support ESF pump suction. Furthermore, early switchover must not occur to ensure that sufficient borated water is injected from the RWST. This ensures the reactor remains shut down in the recirculation mode. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) a. <u>Automatic Switchover to Containment Sump—</u> <u>Automatic Actuation Logic and Actuation Relays</u> Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b. b, c. Automatic Switchover to Containment Sump—Refueling Water Storage Tank (RWST) Level—Low Low Coincident With Safety Injection and Coincident With Containment Sump Level—High During the injection phase of a LOCA, the RWST is the source of water for all ECCS pumps. A low low level in the RWST coincident with an SI signal provides protection against a loss of water for the ECCS pumps and indicates the end of the injection phase of the LOCA. The RWST is equipped with four level transmitters. These transmitters provide no control functions. Therefore, a two-out-of-four logic is adequate to initiate the protection function actuation. Although only three channels would be sufficient, a fourth channel has been added for increased reliability. The RWST—Low Low Allowable Value/Trip Setpoint has both upper and lower limits. The lower limit is selected to ensure switchover occurs before the RWST empties, to prevent ECCS pump damage. The upper limit is selected to ensure enough borated water is injected to ensure the reactor remains shut down. The high limit also ensures adequate water inventory in the containment sump to provide ECCS pump suction. The transmitters are located in an area not affected by HELBs or post accident high radiation. Thus, they will not experience any adverse environmental conditions and the Trip Setpoint reflects only steady state instrument uncertainties. Automatic switchover occurs only if the RWST low low level signal is coincident with SI. This prevents accidental switchover during normal b, c. Automatic Switchover to Containment Sump—Refueling Water Storage Tank (RWST) Level—Low Low Coincident With Safety Injection and Coincident With Containment Sump Level—High (continued) operation. Accidental switchover could damage ECCS pumps if they are attempting to take suction from an empty sump. The automatic switchover Function requirements for the SI Functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead, Function 1, SI, is referenced for all initiating Functions and requirements. Reviewer's Note: In some units, additional protection from spurious switchover is provided by requiring a Containment Sump Level-High signal as well as RWST Level-Low Low and SI. This ensures sufficient water is available in containment to support the recirculation phase of the accident. A Containment Sump Level-High signal must be present, in addition to the SI signal and the RWST Level-Low Low signal, to transfer the suctions of the RHR pumps to the containment sump. The containment sump is equipped with four level transmitters. These transmitters provide no control functions. Therefore, a two-out-of-four logic is adequate to initiate the protection function actuation. Although only three channels would be sufficient, a fourth channel has been added for increased reliability. The containment sump level Trip Setpoint/Allowable Value is selected to ensure enough borated water is injected to ensure the reactor remains shut down. The high limit also ensures adequate water inventory in the containment sump to provide ECCS pump suction. The transmitters are located inside containment and thus possibly experience adverse environmental conditions. Therefore, the trip setpoint reflects the inclusion of both steady state and environmental instrument uncertainties. Units only have one of the Functions, 7.b or 7.c. b, c. Automatic Switchover to Containment Sump—Refueling Water Storage Tank (RWST) Level—Low Low Coincident With Safety Injection and Coincident With Containment Sump Level—High (continued) These Functions must be OPERABLE in MODES 1, 2, 3, and 4 when there is a potential for a LOCA to occur, to ensure a continued supply of water for the ECCS pumps. These Functions are not required to be OPERABLE in MODES 5 and 6 because there is adequate time for the operator to evaluate unit conditions and respond by manually starting systems, pumps, and other equipment to mitigate the consequences of an abnormal condition or accident. System pressure and temperature are very low and many ESF components are administratively locked out or otherwise prevented from actuating to prevent inadvertent overpressurization of unit systems. # 8. Engineered Safety Feature Actuation System Interlocks To allow some flexibility in unit operations, several interlocks are included as part of the ESFAS. These interlocks permit the operator to block some signals, automatically enable other signals, prevent some actions from occurring, and cause other actions to occur. The interlock Functions back up manual actions to ensure bypassable functions are in operation under the conditions assumed in the safety analyses. # a. <u>Engineered Safety Feature Actuation System</u> <u>Interlocks—Reactor Trip, P-4</u> The P-4 interlock is enabled when a reactor trip breaker (RTB) and its associated bypass breaker is open. Once the P-4 interlock is enabled, automatic SI initiation is blocked after a [] second time delay. This Function allows operators to take manual control of SI systems after the initial phase of injection is complete. Once SI is blocked, automatic actuation of SI cannot occur until the RTBs have been manually closed. The functions of the P-4 interlock are: - a. <u>Engineered Safety Feature Actuation System</u> <u>Interlocks—Reactor Trip, P-4</u> (continued) - Trip the main turbine; - Isolate MFW with coincident low T_{avg}; - Prevent reactuation of SI after a manual reset of SI: - Transfer the steam dump from the load rejection controller to the unit trip controller; and - Prevent opening of the MFW isolation valves if they were closed on SI or SG Water Level—High High. Each of the above Functions is interlocked with P-4 to avert or reduce the continued cooldown of the RCS following a reactor trip. An excessive cooldown of the RCS following a reactor trip could cause an insertion of positive reactivity with a subsequent increase in generated power. To avoid such a situation, the noted Functions have been interlocked with P-4 as part of the design of the unit control and protection system. None of the noted Functions serves a mitigation function in the unit licensing basis safety analyses. Only the turbine trip Function is explicitly assumed since it is an immediate consequence of the reactor trip Function. Neither turbine trip, nor any of the other four Functions associated with the reactor trip signal, is required to show that the unit licensing basis safety analysis acceptance criteria are not exceeded. The RTB position switches that provide input to the P-4 interlock only function to energize or de-energize or open or close contacts. Therefore, this Function has no adjustable trip setpoint with which to associate a Trip Setpoint and Allowable Value. # a. <u>Engineered Safety Feature Actuation System Interlocks—Reactor Trip, P-4</u> (continued) This Function must be OPERABLE in MODES 1, 2, and 3 when the reactor may be critical or approaching criticality. This Function does not have to be OPERABLE in MODE 4, 5, or 6 because the main turbine, the MFW System, and the Steam Dump System are not in operation. # b. <u>Engineered Safety Feature Actuation System</u> <u>Interlocks—Pressurizer Pressure</u>, P-11 The P-11 interlock permits a normal unit cooldown and depressurization without actuation of SI or main steam line isolation. With two-out-of-three pressurizer pressure channels (discussed previously) less than the P-11 setpoint, the operator can manually block the Pressurizer Pressure—Low and Steam Line Pressure—Low SI signals and the Steam Line
Pressure-Low steam line isolation signal (previously discussed). When the Steam Line Pressure-Low steam line isolation signal is manually blocked, a main steam isolation signal on Steam Line Pressure—Negative Rate—High is enabled. provides protection for an SLB by closure of the MSIVs. With two-out-of-three pressurizer pressure channels above the P-11 setpoint, the Pressurizer Pressure-Low and Steam Line Pressure—Low SI signals and the Steam Line Pressure—Low steam line isolation signal are automatically enabled. The operator can also enable these trips by use of the respective manual reset buttons. When the Steam Line Pressure-Low steam line isolation signal is enabled, the main steam isolation on Steam Line Pressure-Negative Rate-High is disabled. The Trip Setpoint reflects only steady state instrument uncertainties. This Function must be OPERABLE in MODES 1, 2, and 3 to allow an orderly cooldown and depressurization of the unit without the actuation of SI or main steam isolation. This Function does not have to be OPERABLE in MODE 4, b. Engineered Safety Feature Actuation System Interlocks—Pressurizer Pressure, P-11 (continued) 5, or 6 because system pressure must already be below the P-11 setpoint for the requirements of the heatup and cooldown curves to be met. c. <u>Engineered Safety Feature Actuation System</u> <u>Interlocks—Taya—Low Low, P-12</u> On increasing reactor coolant temperature, the P-12 interlock reinstates SI on High Steam Flow Coincident With Steam Line Pressure—Low or Coincident With T_{avg} —Low Low and provides an arming signal to the Steam Dump System. On decreasing reactor coolant temperature, the P-12 interlock allows the operator to manually block SI on High Steam Flow Coincident With Steam Line Pressure—Low or Coincident with T_{avg} —Low Low. On a decreasing temperature, the P-12 interlock also removes the arming signal to the Steam Dump System to prevent an excessive cooldown of the RCS due to a malfunctioning Steam Dump System. Since T_{avg} is used as an indication of bulk RCS temperature, this Function meets redundancy requirements with one OPERABLE channel in each loop. In three loop units, these channels are used in two-out-of-three logic. In four loop units, they are used in two-out-of-four logic. This Function must be OPERABLE in MODES 1, 2, and 3 when a secondary side break or stuck open valve could result in the rapid depressurization of the steam lines. This Function does not have to be OPERABLE in MODE 4, 5, or 6 because there is insufficient energy in the secondary side of the unit to have an accident. The ESFAS instrumentation satisfies Criterion 3 of the NRC Policy Statement. A Note has been added in the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed on Table 3.3.2-1. In the event a channel's Trip Setpoint is found nonconservative with respect to the Allowable Value, or the transmitter, instrument Loop, signal processing electronics, or bistable is found inoperable, then all affected Functions provided by that channel must be declared inoperable and the LCO Condition(s) entered for the protection Function(s) affected. When the Required Channels in Table 3.3.2-1 are specified (e.g., on a per steam line, per loop, per SG, etc., basis), then the Condition may be entered separately for each steam line, loop, SG, etc., as appropriate. When the number of inoperable channels in a trip function exceed those specified in one or other related Conditions associated with a trip function, then the unit is outside the safety analysis. Therefore, LCO 3.0.3 should be immediately entered if applicable in the current MODE of operation. Reviewer's Note: Certain LCO Completion Times are based on approved topical reports. In order for a licensee to use these times, the licensee must justify the Completion Times as required by the staff Safety Evaluation Report (SER) for the topical report. ### A.1 Condition A applies to all ESFAS protection functions. Condition A addresses the situation where one or more channels or trains for one or more Functions are inoperable at the same time. The Required Action is to refer to Table 3.3.2-1 and to take the Required Actions for the protection functions affected. The Completion Times are those from the referenced Conditions and Required Actions. # ACTIONS (continued) # B.1, B.2.1 and B.2.2 Condition B applies to manual initiation of: - SI; - Containment Spray; - Phase A Isolation; and - Phase B Isolation. This action addresses the train orientation of the SSPS for the functions listed above. If a channel or train is inoperable, 48 hours is allowed to return it to an OPERABLE status. Note that for containment spray and Phase B isolation, failure of one or both channels in one train renders the train inoperable. Condition B, therefore, encompasses both situations. The specified Completion Time is reasonable considering that there are two automatic actuation trains and another manual initiation train OPERABLE for each Function, and the low probability of an event occurring during this interval. If the train cannot be restored to OPERABLE status, the unit must be placed in a MODE in which the LCO does not apply. This is done by placing the unit in at least MODE 3 within an additional 6 hours (54 hours total time) and in MODE 5 within an additional 30 hours (84 hours total time). The allowable Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. ### C.1, C.2.1 and C.2.2 Condition C applies to the automatic actuation logic and actuation relays for the following functions: - SI; - Containment Spray; - Phase A Isolation: # C.1, C.2.1 and C.2.2 (continued) - Phase B Isolation; and - Automatic Switchover to Containment Sump. This action addresses the train orientation of the SSPS and the master and slave relays. If one train is inoperable, 6 hours are allowed to restore the train to OPERABLE status. The specified Completion Time is reasonable considering that there is another train OPERABLE, and the low probability of an event occurring during this interval. If the train cannot be restored to OPERABLE status, the unit must be placed in a MODE in which the LCO does not apply. This is done by placing the unit in at least MODE 3 within an additional 6 hours (12 hours total time) and in MODE 5 within an additional 30 hours (42 hours total time). The Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. The Required Actions are modified by a Note that allows one train to be bypassed for up to [4] hours for surveillance testing, provided the other train is OPERABLE. This allowance is based on the reliability analysis assumption of WCAP-10271-P-A (Ref. 8) that 4 hours is the average time required to perform channel surveillance. ### D.1, D.2.1, and D.2.2 Condition D applies to: - Containment Pressure—High 1; - Pressurizer Pressure—Low (two, three, and four loop units); - Steam Line Pressure—Low: - Steam Line Differential Pressure—High; - High Steam Flow in Two Steam Lines Coincident With T_{avg}—Low Low or Coincident With Steam Line Pressure—Low: # D.1, D.2.1, and D.2.2 (continued) - Containment Pressure—High 2; - Steam Line Pressure—Negative Rate—High; - High Steam Flow Coincident With Safety Injection Coincident With T_{avg}—Low Low; - High High Steam Flow Coincident With Safety Injection; - High Steam Flow in Two Steam Lines Coincident With T_{avg} —Low Low; - SG Water level—Low Low (two, three, and four loop units); and - SG Water level High High (P-14) (two, three, and four loop units). If one channel is inoperable, 6 hours are allowed to restore the channel to OPERABLE status or to place it in the tripped condition. Generally this Condition applies to functions that operate on two-out-of-three logic. Therefore, failure of one channel places the Function in a two-out-of-two configuration. One channel must be tripped to place the Function in a one-out-of-three configuration that satisfies redundancy requirements. Failure to restore the inoperable channel to OPERABLE status or place it in the tripped condition within 6 hours requires the unit be placed in MODE 3 within the following 6 hours and MODE 4 within the next 6 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. In MODE 4, these Functions are no longer required OPERABLE. The Required Actions are modified by a Note that allows the inoperable channel to be bypassed for up to [4] hours for surveillance testing of other channels. The 6 hours allowed to restore the channel to OPERABLE status or to place the inoperable channel in the tripped condition, and the 4 hours allowed for testing, are justified in Reference 8. # ACTIONS (continued) ## E.1, E.2.1, and E.2.2 Condition E applies to: - Containment Spray Containment Pressure—High 3 (High, High) (two, three, and four loop units); and - Containment Phase B Isolation Containment Pressure— High 3 (High, High). None of these signals has input to a control function. Thus, two-out-of-three logic is necessary to meet acceptable protective requirements. However, a two-out-of-three design would require tripping a failed channel. This is undesirable because a single failure would then cause spurious containment spray initiation. Spurious spray actuation is undesirable because of the cleanup problems presented. Therefore, these channels are designed with two-out-of-four logic so that a failed channel may be bypassed rather than tripped. Note that one channel may be bypassed and still satisfy the single failure criterion. Furthermore, with one
channel bypassed, a single instrumentation channel failure will not spuriously initiate containment spray. To avoid the inadvertent actuation of containment spray and Phase B containment isolation, the inoperable channel should not be placed in the tripped condition. Instead it is bypassed. Restoring the channel to OPERABLE status, or placing the inoperable channel in the bypass condition within 6 hours, is sufficient to assure that the Function remains OPERABLE and minimizes the time that the Function may be in a partial trip condition (assuming the inoperable channel has failed high). The Completion Time is further justified based on the low probability of an event occurring during this interval. Failure to restore the inoperable channel to OPERABLE status, or place it in the bypassed condition within 6 hours, requires the unit be placed in MODE 3 within the following 6 hours and MODE 4 within the next 6 hours. The allowed Completion Times are reasonable. based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. In MODE 4, these Functions are no longer required OPERABLE. # <u>E.1, E.2.1, and E.2.2</u> (continued) The Required Actions are modified by a Note that allows one additional channel to be bypassed for up to [4] hours for surveillance testing. Placing a second channel in the bypass condition for up to 4 hours for testing purposes is acceptable based on the results of Reference 8. ### F.1, F.2.1, and F.2.2 Condition F applies to: - Manual Initiation of Steam Line Isolation; - Loss of Offsite Power: - Auxiliary Feedwater Pump Suction Transfer on Suction Pressure—Low; and - P-4 Interlock. For the Manual Initiation and the P-4 Interlock Functions. this action addresses the train orientation of the SSPS. For the Loss of Offsite Power Function, this action recognizes the lack of manual trip provision for a failed channel. For the AFW System pump suction transfer channels, this action recognizes that placing a failed channel in trip during operation is not necessarily a conservative action. Spurious trip of this function could align the AFW System to a source that is not immediately capable of supporting pump suction. If a train or channel is inoperable, 48 hours is allowed to return it to OPERABLE status. The specified Completion Time is reasonable considering the nature of these Functions, the available redundancy, and the low probability of an event occurring during this interval. If the Function cannot be returned to OPERABLE status, the unit must be placed in MODE 3 within the next 6 hours and MODE 4 within the following 6 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power in an orderly manner and without challenging unit systems. In MODE 4, the unit does not have any analyzed transients or conditions that require the explicit use of the protection functions noted above. # ACTIONS (continued) # G.1, G.2.1 and G.2.2 Condition G applies to the automatic actuation logic and actuation relays for the Steam Line Isolation [,Turbine Trip and Feedwater Isolation,] and AFW actuation Functions. The action addresses the train orientation of the SSPS and the master and slave relays for these functions. train is inoperable, 6 hours are allowed to restore the train to OPERABLE status. The Completion Time for restoring a train to OPERABLE status is reasonable considering that there is another train OPERABLE, and the low probability of an event occurring during this interval. If the train cannot be returned to OPERABLE status, the unit must be brought to MODE 3 within the next 6 hours and MODE 4 within the following 6 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. Placing the unit in MODE 4 removes all requirements for OPERABILITY of the protection channels and actuation functions. In this MODE, the unit does not have analyzed transients or conditions that require the explicit use of the protection functions noted above. The Required Actions are modified by a Note that allows one train to be bypassed for up to [4] hours for surveillance testing provided the other train is OPERABLE. This allowance is based on the reliability analysis (Ref. 8) assumption that 4 hours is the average time required to perform channel surveillance. ### H.1 and H.2 Condition H applies to the automatic actuation logic and actuation relays for the Turbine Trip and Feedwater Isolation Function. This action addresses the train orientation of the SSPS and the master and slave relays for this Function. If one train is inoperable, 6 hours are allowed to restore the train to OPERABLE status or the unit must be placed in MODE 3 within the following 6 hours. The Completion Time for restoring a train to OPERABLE status is reasonable considering that there is another train OPERABLE, and the low probability of _ # H.1 and H.2 (continued) an event occurring during this interval. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging unit systems. These Functions are no longer required in MODE 3. Placing the unit in MODE 3 removes all requirements for OPERABILITY of the protection channels and actuation functions. In this MODE, the unit does not have analyzed transients or conditions that require the explicit use of the protection functions noted above. The Required Actions are modified by a Note that allows one train to be bypassed for up to [4] hours for surveillance testing provided the other train is OPERABLE. This allowance is based on the reliability analysis (Ref. 8) assumption that 4 hours is the average time required to perform channel surveillance. ## I.1 and I.2 Condition I applies to: - SG Water Level—High High (P-14) (two, three, and four loop units); and - Undervoltage Reactor Coolant Pump. If one channel is inoperable, 6 hours are allowed to restore one channel to OPERABLE status or to place it in the tripped condition. If placed in the tripped condition, the Function is then in a partial trip condition where one-out-of-two or one-out-of-three logic will result in actuation. The 6 hour Completion Time is justified in Reference 8. Failure to restore the inoperable channel to OPERABLE status or place it in the tripped condition within 6 hours requires the unit to be placed in MODE 3 within the following 6 hours. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging unit systems. In MODE 3, these Functions are no longer required OPERABLE. ## <u>I.1 and I.2</u> (continued) The Required Actions are modified by a Note that allows the inoperable channel to be bypassed for up to [4] hours for surveillance testing of other channels. The 6 hours allowed to place the inoperable channel in the tripped condition, and the 4 hours allowed for a second channel to be in the bypassed condition for testing, are justified in Reference 8. ### J.1 and J.2 Condition J applies to the AFW pump start on trip of all MFW pumps. This action addresses the train orientation of the SSPS for the auto start function of the AFW System on loss of all MFW pumps. The OPERABILITY of the AFW System must be assured by allowing automatic start of the AFW System pumps. If a channel is inoperable, 48 hours are allowed to return it to an OPERABLE status. If the function cannot be returned to an OPERABLE status, 6 hours are allowed to place the unit in MODE 3. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging unit systems. In MODE 3, the unit does not have any analyzed transients or conditions that require the explicit use of the protection function noted above. The allowance of 48 hours to return the train to an OPERABLE status is justified in Reference 8. ### K.1, K.2.1 and K.2.2 Condition K applies to: - RWST Level—Low Low Coincident with Safety Injection; and - RWST Level—Low Low Coincident with Safety Injection and Coincident with Containment Sump Level—High. RWST Level—Low Low Coincident With SI and Coincident With Containment Sump Level—High provides actuation of switchover to the containment sump. Note that this Function # K.1, K.2.1 and K.2.2 (continued) requires the bistables to energize to perform their required action. The failure of up to two channels will not prevent the operation of this Function. However, placing a failed channel in the tripped condition could result in a premature switchover to the sump, prior to the injection of the minimum volume from the RWST. Placing the inoperable channel in bypass results in a two-out-of-three logic configuration, which satisfies the requirement to allow another failure without disabling actuation of the switchover when required. Restoring the channel to OPERABLE status or placing the inoperable channel in the bypass condition within 6 hours is sufficient to ensure that the Function remains OPERABLE, and minimizes the time that the Function may be in a partial trip condition (assuming the inoperable channel has failed high). The 6 hour Completion Time is justified in Reference 8. If the channel cannot be returned to OPERABLE status or placed in the bypass condition within 6 hours, the unit must be brought to MODE 3 within the following 6 hours and MODE 5 within the next 30 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. In MODE 5, the unit does not have any analyzed transients or
conditions that require the explicit use of the protection functions noted above. The Required Actions are modified by a Note that allows placing a second channel in the bypass condition for up to [4] hours for surveillance testing. The total of 12 hours to reach MODE 3 and 4 hours for a second channel to be bypassed is acceptable based on the results of Reference 8. ### L.1, L.2.1 and L.2.2 Condition L applies to the P-11 and P-12 [and P-14] interlocks. With one channel inoperable, the operator must verify that the interlock is in the required state for the existing unit condition. This action manually accomplishes the function of the interlock. Determination must be made within 1 hour. The 1 hour Completion Time is equal to the time allowed by ## L.I. L.2.1 and L.2.2 (continued) LCO 3.0.3 to initiate shutdown actions in the event of a complete loss of ESFAS function. If the interlock is not in the required state (or placed in the required state) for the existing unit condition, the unit must be placed in MODE 3 within the next 6 hours and MODE 4 within the following 6 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. Placing the unit in MODE 4 removes all requirements for OPERABILITY of these interlocks. # SURVEILLANCE REQUIREMENTS The SRs for each ESFAS Function are identified by the SRs column of Table 3.3.2-1. A Note has been added to the SR Table to clarify that Table 3.3.2-1 determines which SRs apply to which ESFAS Functions. Note that each channel of process protection supplies both trains of the ESFAS. When testing channel I, train A and train B must be examined. Similarly, train A and train B must be examined when testing channel II, channel III, and channel IV (if applicable). The CHANNEL CALIBRATION and COTs are performed in a manner that is consistent with the assumptions used in analytically calculating the required channel accuracies. Reviewer's Note: Certain Frequencies are based on approved topical reports. In order for a licensee to use these times, the licensee must justify the Frequencies as required by the staff SER for the topical report. ## SR 3.3.2.1 Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read # <u>SR 3.3.2.1</u> (continued) approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION. Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including indication and reliability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels. ### SR 3.3.2.2 SR 3.3.2.2 is the performance of an ACTUATION LOGIC TEST. The SSPS is tested every 31 days on a STAGGERED TEST BASIS, using the semiautomatic tester. The train being tested is placed in the bypass condition, thus preventing inadvertent actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection function. In addition, the master relay coil is pulse tested for continuity. This verifies that the logic modules are OPERABLE and that there is an intact voltage signal path to the master relay coils. The Frequency of every 31 days on a STAGGERED TEST BASIS is adequate. It is based on industry operating experience, considering instrument reliability and operating history data. ### SR 3.3.2.3 SR 3.3.2.3 is the performance of an ACTUATION LOGIC TEST as described in SR 3.3.2.2, except that the semiautomatic ## SURVEILLANCE REQUIREMENTS # <u>SR 3.3.2.3</u> (continued) tester is not used and the continuity check does not have to be performed, as explained in the Note. This SR is applied to the balance of plant actuation logic and relays that do not have the SSPS test circuits installed to utilize the semiautomatic tester or perform the continuity check. This test is also performed every 31 days on a STAGGERED TEST BASIS. The Frequency is adequate based on industry operating experience, considering instrument reliability and operating history data. ### SR 3.3.2.4 SR 3.3.2.4 is the performance of a MASTER RELAY TEST. The MASTER RELAY TEST is the energizing of the master relay, verifying contact operation and a low voltage continuity check of the slave relay coil. Upon master relay contact operation, a low voltage is injected to the slave relay coil. This voltage is insufficient to pick up the slave relay, but large enough to demonstrate signal path continuity. This test is performed every 31 days on a STAGGERED TEST BASIS. The time allowed for the testing (4 hours) and the surveillance interval are justified in Reference 8. ### SR 3.3.2.5 SR 3.3.2.5 is the performance of a COT. A COT is performed on each required channel to ensure the entire channel will perform the intended Function. Setpoints must be found within the Allowable Values specified in Table 3.3.1-1. The difference between the current "as found" values and the previous test "as left" values must be consistent with the drift allowance used in the setpoint methodology. The setpoint shall be left set consistent with the assumptions of the current unit specific setpoint methodology. The "as found" and "as left" values must also be recorded and reviewed for consistency with the assumptions of the # SURVEILLANCE REQUIREMENTS # <u>SR 3.3.2.5</u> (continued) surveillance interval extension analysis (Ref. 8) when applicable. The Frequency of 92 days is justified in Reference 8. ### SR 3.3.2.6 SR 3.3.2.6 is the performance of a SLAVE RELAY TEST. The SLAVE RELAY TEST is the energizing of the slave relays. Contact operation is verified in one of two ways. Actuation equipment that may be operated in the design mitigation MODE is either allowed to function, or is placed in a condition where the relay contact operation can be verified without operation of the equipment. Actuation equipment that may not be operated in the design mitigation MODE is prevented from operation by the SLAVE RELAY TEST circuit. For this latter case, contact operation is verified by a continuity check of the circuit containing the slave relay. This test is performed every [92] days. The Frequency is adequate, based on industry operating experience, considering instrument reliability and operating history data. ### SR 3.3.2.7 SR 3.3.2.7 is the performance of a TADOT every [92] days. This test is a check of the Loss of Offsite Power, Undervoltage RCP, and AFW Pump Suction Transfer on Suction Pressure—Low Functions. Each Function is tested up to, and including, the master transfer relay coils. The test also includes trip devices that provide actuation signals directly to the SSPS. The SR is modified by a Note that excludes verification of setpoints for relays. Relay setpoints require elaborate bench calibration and are verified during CHANNEL CALIBRATION. The Frequency is adequate. It is based on industry operating experience, considering instrument reliability and operating history data. # SURVEILLANCE REQUIREMENTS (continued) ### SR 3.3.2.8 SR 3.3.2.8 is the performance of a TADOT. This test is a check of the Manual Actuation Functions and AFW pump start on trip of all MFW pumps. It is performed every [18] months. Each Manual Actuation Function is tested up to, and including, the master relay coils. In some instances, the test includes actuation of the end device (i.e., pump starts, valve cycles, etc.). The Frequency is adequate, based on industry operating experience and is consistent with the typical refueling cycle. The SR is modified by a Note that excludes verification of setpoints during the TADOT for manual initiation Functions. The manual initiation Functions have no associated setpoints. ### SR 3.3.2.9 SR 3.3.2.9 is the performance of a CHANNEL CALIBRATION. A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to measured parameter within the necessary range and accuracy. CHANNEL CALIBRATIONS must be performed consistent with the assumptions of the unit specific setpoint methodology. The difference between the current "as found" values and the previous test "as left" values must be consistent with the drift allowance used in the setpoint methodology. The Frequency of [18] months is based on the assumption of an [18] month calibration interval in the determination of the magnitude of equipment drift in the setpoint methodology. This SR is modified by a Note stating that this test should include verification that the time constants are adjusted to the prescribed values where applicable. ### SR 3.3.2.10 This SR ensures the individual channel ESF RESPONSE TIMES are less than or equal to the maximum values assumed in the # SURVEILLANCE REQUIREMENTS # <u>SR 3.3.2.10</u> (continued) accident analysis. Response Time testing acceptance criteria are included in the Technical Requirements Manual, Section 15 (Ref. 9). Individual component
response times are not modeled in the analyses. The analyses model the overall or total elapsed time, from the point at which the parameter exceeds the Trip Setpoint value at the sensor, to the point at which the equipment in both trains reaches the required functional state (e.g., pumps at rated discharge pressure, valves in full open or closed position). For channels that include dynamic transfer functions (e.g., lag, lead/lag, rate/lag, etc.), the response time test may be performed with the transfer functions set to one with the resulting measured response time compared to the appropriate FSAR response time. Alternately, the response time test can be performed with the time constants set to their nominal value provided the required response time is analytically calculated assuming the time constants are set at their nominal values. The response time may be measured by a series of overlapping tests such that the entire response time is measured. ESF RESPONSE TIME tests are conducted on an [18] month STAGGERED TEST BASIS. Testing of the final actuation devices, which make up the bulk of the response time, is included in the testing of each channel. The final actuation device in one train is tested with each channel. Therefore, staggered testing results in response time verification of these devices every [18] months. The [18] month Frequency is consistent with the typical refueling cycle and is based on unit operating experience, which shows that random failures of instrumentation components causing serious response time degradation, but not channel failure, are infrequent occurrences. This SR is modified by a Note that clarifies that the turbine driven AFW pump is tested within 24 hours after reaching [1000] psig in the SGs. ## SR 3.3.2.11 SR 3.3.2.11 is the performance of a TADOT as described in SR 3.3.2.8, except that it is performed for the P-4 Reactor ### **BASES** ## SURVEILLANCE REQUIREMENTS # <u>SR 3.3.2.11</u> (continued) Trip Interlock, and the Frequency is once per RTB cycle. This Frequency is based on operating experience demonstrating that undetected failure of the P-4 interlock sometimes occurs when the RTB is cycled. The SR is modified by a Note that excludes verification of setpoints during the TADOT. The Function tested has no associated setpoint. ### REFERENCES - 1. FSAR, Chapter [6]. - 2. FSAR, Chapter [7]. - 3. FSAR, Chapter [15]. - 4. IEEE-279-1971. - 5. 10 CFR 50.49. - 6. RTS/ESFAS Setpoint Methodology Study. - 7. NUREG-1218, April 1988. - 8. WCAP-10271-P-A, Supplement 2, Rev. 1, June 1990. - 9. Technical Requirements Manual, Section 15, "Response Times." ### B 3.3 INSTRUMENTATION # B 3.3.3 Post Accident Monitoring (PAM) Instrumentation ### **BASES** ### BACKGROUND The primary purpose of the PAM instrumentation is to display unit variables that provide information required by the control room operators during accident situations. This information provides the necessary support for the operator to take the manual actions for which no automatic control is provided and that are required for safety systems to accomplish their safety functions for Design Basis Accidents (DBAs). The OPERABILITY of the accident monitoring instrumentation ensures that there is sufficient information available on selected unit parameters to monitor and to assess unit status and behavior following an accident. The availability of accident monitoring instrumentation is important so that responses to corrective actions can be observed and the need for, and magnitude of, further actions can be determined. These essential instruments are identified by unit specific documents (Ref. 1) addressing the recommendations of Regulatory Guide 1.97 (Ref. 2) as required by Supplement 1 to NUREG-0737 (Ref. 3). The instrument channels required to be OPERABLE by this LCO include two classes of parameters identified during unit specific implementation of Regulatory Guide 1.97 as Type A and Category I variables. Type A variables are included in this LCO because they provide the primary information required for the control room operator to take specific manually controlled actions for which no automatic control is provided, and that are required for safety systems to accomplish their safety functions for DBAs. Because the list of Type A variables differs widely between units, Table 3.3.3-1 in the accompanying LCO contains no examples of Type A variables, except for those that may also be Category I variables. Category I variables are the key variables deemed risk significant because they are needed to: # BACKGROUND (continued) - Determine whether other systems important to safety are performing their intended functions; - Provide information to the operators that will enable them to determine the likelihood of a gross breach of the barriers to radioactivity release; and - Provide information regarding the release of radioactive materials to allow for early indication of the need to initiate action necessary to protect the public, and to estimate the magnitude of any impending threat. These key variables are identified by the unit specific Regulatory Guide 1.97 analyses (Ref. 1). These analyses identify the unit specific Type A and Category I variables and provide justification for deviating from the NRC proposed list of Category I variables. Reviewer's Note: Table 3.3.3-1 provides a list of variables typical of those identified by the unit specific Regulatory Guide 1.97 analyses. Table 3.3.3-1 in unit specific Technical Specifications (TS) shall list all Type A and Category I variables identified by the unit specific Regulatory Guide 1.97 analyses, as amended by the NRC's Safety Evaluation Report (SER). The specific instrument Functions listed in Table 3.3.3-1 are discussed in the LCO section. ## APPLICABLE SAFETY ANALYSES The PAM instrumentation ensures the operability of Regulatory Guide 1.97 Type A and Category I variables so that the control room operating staff can: - Perform the diagnosis specified in the emergency operating procedures (these variables are restricted to preplanned actions for the primary success path of DBAs), e.g., loss of coolant accident (LOCA); - Take the specified, pre-planned, manually controlled actions, for which no automatic control is provided, and that are required for safety systems to accomplish their safety function; # APPLICABLE SAFETY ANALYSES (continued) - Determine whether systems important to safety are performing their intended functions; - Determine the likelihood of a gross breach of the barriers to radioactivity release; - Determine if a gross breach of a barrier has occurred; and - Initiate action necessary to protect the public and to estimate the magnitude of any impending threat. PAM instrumentation that meets the definition of Type A in Regulatory Guide 1.97 satisfies Criterion 3 of the NRC Policy Statement. Category I, non-Type A, instrumentation must be retained in TS because it is intended to assist operators in minimizing the consequences of accidents. Therefore, Category I, non-Type A, variables are important for reducing public risk. LCO The PAM instrumentation LCO provides OPERABILITY requirements for Regulatory Guide 1.97 Type A monitors, which provide information required by the control room operators to perform certain manual actions specified in the unit Emergency Operating Procedures. These manual actions ensure that a system can accomplish its safety function, and are credited in the safety analyses. Additionally, this LCO addresses Regulatory Guide 1.97 instruments that have been designated Category I, non-Type A. The OPERABILITY of the PAM instrumentation ensures there is sufficient information available on selected unit parameters to monitor and assess unit status following an accident. This capability is consistent with the recommendations of Reference 1. LCO 3.3.3 requires two OPERABLE channels for most Functions. Two OPERABLE channels ensure no single failure prevents operators from getting the information necessary for them to determine the safety status of the unit, and to bring the unit to and maintain it in a safe condition following an accident. # LCO (continued) Furthermore, OPERABILITY of two channels allows a CHANNEL CHECK during the post accident phase to confirm the validity of displayed information. More than two channels may be required at some units if the unit specific Regulatory Guide 1.97 analyses (Ref. 1) determined that failure of one accident monitoring channel results in information ambiguity (that is, the redundant displays disagree) that could lead operators to defeat or fail to accomplish a required safety function. The exception to the two channel requirement is Containment Isolation Valve (CIV) Position. In this case, the important information is the status of the containment penetrations. The LCO requires one position indicator for each active CIV. This is sufficient to redundantly verify the isolation status of each isolable penetration either via indicated status of the active valve and prior knowledge of a passive valve, or via system boundary status. If a normally active CIV is known to be closed and deactivated, position indication is not needed to determine status. Therefore, the position indication for valves in this state is not required to be OPERABLE. Table 3.3.3-1 provides a list of variables typical of those identified by the unit specific Regulatory Guide 1.97 (Ref. 1) analyses. Table 3.3.3-1 in unit specific TS should list all Type A and Category I variables identified by the unit specific Regulatory Guide 1.97 analyses, as amended by the NRC's SER. Type A and Category I variables are required to meet Regulatory Guide 1.97 Category I (Ref. 2) design and qualification requirements for seismic and environmental qualification, single failure criterion, utilization of emergency standby power, immediately accessible display, continuous readout, and recording of display. Listed below are discussions of the specified instrument
Functions listed in Table 3.3.3-1. These discussions are intended as examples of what should be provided for each Function when the unit specific list is prepared. # (continued) # 1, 2. <u>Power Range and Source Range Neutron Flux</u> Power Range and Source Range Neutron Flux indication is provided to verify reactor shutdown. The two ranges are necessary to cover the full range of flux that may occur post accident. Neutron flux is used for accident diagnosis, verification of subcriticality, and diagnosis of positive reactivity insertion. # 3, 4. Reactor Coolant System (RCS) Hot and Cold Leg Temperatures RCS Hot and Cold Leg Temperatures are Category I variables provided for verification of core cooling and long term surveillance. RCS hot and cold leg temperatures are used to determine RCS subcooling margin. RCS subcooling margin will allow termination of safety injection (SI), if still in progress, or reinitiation of SI if it has been stopped. RCS subcooling margin is also used for unit stabilization and cooldown control. In addition, RCS cold leg temperature is used in conjunction with RCS hot leg temperature to verify the unit conditions necessary to establish natural circulation in the RCS. Reactor outlet temperature inputs to the Reactor Protection System are provided by two fast response resistance elements and associated transmitters in each loop. The channels provide indication over a range of 32°F to 700°F. # 5. Reactor Coolant System Pressure (Wide Range) RCS wide range pressure is a Category I variable provided for verification of core cooling and RCS integrity long term surveillance. RCS pressure is used to verify delivery of SI flow to RCS from at least one train when the RCS pressure is LCO # 5. Reactor Coolant System Pressure (Wide Range) (continued) below the pump shutoff head. RCS pressure is also used to verify closure of manually closed spray line valves and pressurizer power operated relief valves (PORVs). In addition to these verifications, RCS pressure is used for determining RCS subcooling margin. RCS subcooling margin will allow termination of SI, if still in progress, or reinitiation of SI if it has been stopped. RCS pressure can also be used: - to determine whether to terminate actuated SI or to reinitiate stopped SI; - to determine when to reset SI and shut off low head SI: - to manually restart low head SI; - as reactor coolant pump (RCP) trip criteria; and - to make a determination on the nature of the accident in progress and where to go next in the procedure. RCS subcooling margin is also used for unit stabilization and cooldown control. RCS pressure is also related to three decisions about depressurization. They are: - to determine whether to proceed with primary system depressurization; - to verify termination of depressurization; and - to determine whether to close accumulator isolation valves during a controlled cooldown/depressurization. A final use of RCS pressure is to determine whether to operate the pressurizer heaters. #### LCO # 5. Reactor Coolant System Pressure (Wide Range) (continued) In some units, RCS pressure is a Type A variable because the operator uses this indication to monitor the cooldown of the RCS following a steam generator tube rupture (SGTR) or small break LOCA. Operator actions to maintain a controlled cooldown, such as adjusting steam generator (SG) pressure or level, would use this indication. Furthermore, RCS pressure is one factor that may be used in decisions to terminate RCP operation. ### 6. Reactor Vessel Water Level Reactor Vessel Water Level is provided for verification and long term surveillance of core cooling. It is also used for accident diagnosis and to determine reactor coolant inventory adequacy. The Reactor Vessel Water Level Monitoring System provides a direct measurement of the collapsed liquid level above the fuel alignment plate. The collapsed level represents the amount of liquid mass that is in the reactor vessel above the core. Measurement of the collapsed water level is selected because it is a direct indication of the water inventory. # 7. <u>Containment Sump Water Level (Wide Range)</u> Containment Sump Water Level is provided for verification and long term surveillance of RCS integrity. Containment Sump Water Level is used to determine: - containment sump level accident diagnosis; - when to begin the recirculation procedure; and - whether to terminate SI, if still in progress. # LCO (continued) # 8. <u>Containment Pressure (Wide Range)</u> Containment Pressure (Wide Range) is provided for verification of RCS and containment OPERABILITY. Containment pressure is used to verify closure of main steam isolation valves (MSIVs), and containment spray Phase B isolation when High-3 containment pressure is reached. ### 9. Containment Isolation Valve Position CIV Position is provided for verification of Containment OPERABILITY, and Phase A and Phase B isolation. When used to verify Phase A and Phase B isolation, the important information is the isolation status of the containment penetrations. The LCO requires one channel of valve position indication in the control room to be OPERABLE for each active CIV in a containment penetration flow path, i.e., two total channels of CIV position indication for a penetration flow path with two active valves. For containment penetrations with only one active CIV having control room indication, Note (b) requires a single channel of valve position indication to be OPERABLE. This is sufficient to redundantly verify the isolation status of each isolable penetration either via indicated status of the active valve, as applicable, and prior knowledge of a passive valve, or via system boundary status. If a normally active CIV is known to be closed and deactivated, position indication is not needed to determine status. Therefore, the position indication for valves in this state is not required to be OPERABLE. Note (a) to the Required Channels states that the Function is not required for isolation valves whose associated penetration is isolated by at least one closed and deactivated automatic valve, closed manual valve, blind flange, or check valve with flow through the valve secured. # LCO (continued) # 10. Containment Area Radiation (High Range) Containment Area Radiation is provided to monitor for the potential of significant radiation releases and to provide release assessment for use by operators in determining the need to invoke site emergency plans. Containment radiation level is used to determine if a high energy line break (HELB) has occurred, and whether the event is inside or outside of containment. ### 11. Hydrogen Monitors Hydrogen Monitors are provided to detect high hydrogen concentration conditions that represent a potential for containment breach from a hydrogen explosion. This variable is also important in verifying the adequacy of mitigating actions. ## 12. Pressurizer Level Pressurizer Level is used to determine whether to terminate SI, if still in progress, or to reinitiate SI if it has been stopped. Knowledge of pressurizer water level is also used to verify the unit conditions necessary to establish natural circulation in the RCS and to verify that the unit is maintained in a safe shutdown condition. # 13. Steam Generator Water Level (Wide Range) SG Water Level is provided to monitor operation of decay heat removal via the SGs. The Category I indication of SG level is the extended startup range level instrumentation. The extended startup range level covers a span of \geq 6 inches to \leq 394 inches above the lower tubesheet. The measured differential pressure is displayed in inches of water at 68°F. Temperature compensation of this indication is performed manually by the operator. Redundant monitoring capability is provided by two trains of instrumentation. The uncompensated level signal is LCO # 13. <u>Steam Generator Water Level (Wide Range)</u> (continued) input to the unit computer, a control room indicator, and the Emergency Feedwater Control System. SG Water Level (Wide Range) is used to: - identify the faulted SG following a tube rupture; - verify that the intact SGs are an adequate heat sink for the reactor; - determine the nature of the accident in progress (e.g., verify an SGTR); and - verify unit conditions for termination of SI during secondary unit HELBs outside containment. At some units, operator action is based on the control room indication of SG level. The RCS response during a design basis small break LOCA depends on the break size. For a certain range of break sizes, the boiler condenser mode of heat transfer is necessary to remove decay heat. Extended startup range level is a Type A variable because the operator must manually raise and control SG level to establish boiler condenser heat transfer. Operator action is initiated on a loss of subcooled margin. Feedwater flow is increased until the indicated extended startup range level reaches the boiler condenser setpoint. # 14. Condensate Storage Tank (CST) Level CST Level is provided to ensure water supply for auxiliary feedwater (AFW). The CST provides the ensured safety grade water supply for the AFW System. The CST consists of two identical tanks connected by a common outlet header. Inventory is monitored by a 0 inch to 144 inch level indication for each tank. CST Level is displayed on a control room indicator, strip chart recorder, and unit computer. In addition, a control room annunciator alarms on low level. At some units, CST Level is considered a Type A variable because the control room meter and LCO # 14. <u>Condensate Storage Tank (CST) Level</u> (continued) annunciator are considered the primary indication used by the operator. The DBAs that require AFW are the loss of electric power, steam line break (SLB), and small break LOCA. The CST is the initial source of water for the AFW System. However, as the CST is depleted, manual operator action is necessary to replenish the CST or align suction to the
AFW pumps from the hotwell. # 15, 16, 17, 18. Core Exit Temperature Core Exit Temperature is provided for verification and long term surveillance of core cooling. An evaluation was made of the minimum number of valid core exit thermocouples (CET) necessary for measuring core cooling. The evaluation determined the reduced complement of CETs necessary to detect initial core recovery and trend the ensuing core heatup. The evaluations account for core nonuniformities, including incore effects of the radial decay power distribution, excore effects of condensate runback in the hot legs, and nonuniform inlet temperatures. Based on these evaluations, adequate core cooling is ensured with two valid Core Exit Temperature channels per quadrant with two CETs per required channel. The CET pair are oriented radially to permit evaluation of core radial decay power distribution. Core Exit Temperature is used to determine whether to terminate SI, if still in progress, or to reinitiate SI if it has been stopped. Core Exit Temperature is also used for unit stabilization and cooldown control. Two OPERABLE channels of Core Exit Temperature are required in each quadrant to provide indication of radial distribution of the coolant temperature rise across representative regions of the core. Power distribution symmetry was considered in determining the specific number and locations provided for diagnosis of local core problems. Therefore, two randomly selected thermocouples are not sufficient to # LCO 15, 16, 17, 18. Core Exit Temperature (continued) meet the two thermocouples per channel requirement in any quadrant. The two thermocouples in each channel must meet the additional requirement that one is located near the center of the core and the other near the core perimeter, such that the pair of Core Exit Temperatures indicate the radial temperature gradient across their core quadrant. Unit specific evaluations in response to Item II.F.2 of NUREG-0737 (Ref. 3) should have identified the thermocouple pairings that satisfy these requirements. Two sets of two thermocouples ensure a single failure will not disable the ability to determine the radial temperature gradient. # 19. Auxiliary Feedwater Flow AFW Flow is provided to monitor operation of decay heat removal via the SGs. The AFW Flow to each SG is determined from a differential pressure measurement calibrated for a range of 0 gpm to 1200 gpm. Redundant monitoring capability is provided by two independent trains of instrumentation for each SG. Each differential pressure transmitter provides an input to a control room indicator and the unit computer. Since the primary indication used by the operator during an accident is the control room indicator, the PAM specification deals specifically with this portion of the instrument channel. # AFW flow is used three ways: - to verify delivery of AFW flow to the SGs; - to determine whether to terminate SI if still in progress, in conjunction with SG water level (narrow range); and - to regulate AFW flow so that the SG tubes remain covered. #### LCO # 19. Auxiliary Feedwater Flow (continued) At some units, AFW flow is a Type A variable because operator action is required to throttle flow during an SLB accident to prevent the AFW pumps from operating in runout conditions. AFW flow is also used by the operator to verify that the AFW System is delivering the correct flow to each SG. However, the primary indication used by the operator to ensure an adequate inventory is SG level. #### APPLICABILITY The PAM instrumentation LCO is applicable in MODES 1, 2, and 3. These variables are related to the diagnosis and pre-planned actions required to mitigate DBAs. The applicable DBAs are assumed to occur in MODES 1, 2, and 3. In MODES 4, 5, and 6, unit conditions are such that the likelihood of an event that would require PAM instrumentation is low; therefore, the PAM instrumentation is not required to be OPERABLE in these MODES. #### **ACTIONS** Note 1 has been added in the ACTIONS to exclude the MODE change restriction of LCO 3.0.4. This exception allows entry into the applicable MODE while relying on the ACTIONS even though the ACTIONS may eventually require unit shutdown. This exception is acceptable due to the passive function of the instruments, the operator's ability to respond to an accident using alternate instruments and methods, and the low probability of an event requiring these instruments. Note 2 has been added in the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed on Table 3.3.3-1. The Completion Time(s) of the inoperable channel(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function. # <u>A.1</u> Condition A applies when one or more Functions have one required channel that is inoperable. Required Action A.1 requires restoring the inoperable channel to OPERABLE status within 30 days. The 30 day Completion Time is based on operating experience and takes into account the remaining OPERABLE channel (or in the case of a Function that has only one required channel, other non-Regulatory Guide 1.97 instrument channels to monitor the Function), the passive nature of the instrument (no critical automatic action is assumed to occur from these instruments), and the low probability of an event requiring PAM instrumentation during this interval. ### B.1 Condition B applies when the Required Action and associated Completion Time for Condition A are not met. This Required Action specifies initiation of actions in Specification 5.6.8, which requires a written report to be submitted to the NRC immediately. This report discusses the results of the root cause evaluation of the inoperability and identifies proposed restorative actions. This action is appropriate in lieu of a shutdown requirement since alternative actions are identified before loss of functional capability, and given the likelihood of unit conditions that would require information provided by this instrumentation. ## C.1 Condition C applies when one or more Functions have two inoperable required channels (i.e., two channels inoperable in the same Function). Required Action C.1 requires restoring one channel in the Function(s) to OPERABLE status within 7 days. The Completion Time of 7 days is based on the relatively low probability of an event requiring PAM instrument operation and the availability of alternate means to obtain the required information. Continuous operation with two required channels inoperable in a Function is not acceptable because the alternate indications may not fully meet all performance qualification requirements applied to the PAM instrumentation. Therefore, requiring restoration #### **ACTIONS** # C.1 (continued) of one inoperable channel of the Function limits the risk that the PAM Function will be in a degraded condition should an accident occur. Condition C is modified by a Note that excludes hydrogen monitor channels. ### <u>D.1</u> Condition D applies when two hydrogen monitor channels are inoperable. Required Action D.1 requires restoring one hydrogen monitor channel to OPERABLE status within 72 hours. The 72 hour Completion Time is reasonable based on the backup capability of the Post Accident Sampling System to monitor the hydrogen concentration for evaluation of core damage and to provide information for operator decisions. Also, it is unlikely that a LOCA (which would cause core damage) would occur during this time. # E.1 Condition E applies when the Required Action and associated Completion Time of Condition C or D are not met. Required Action E.1 requires entering the appropriate Condition referenced in Table 3.3.3-1 for the channel immediately. The applicable Condition referenced in the Table is Function dependent. Each time an inoperable channel has not met any Required Action of Condition C or D, and the associated Completion Time has expired, Condition E is entered for that channel and provides for transfer to the appropriate subsequent Condition. ## F.1 and F.2 If the Required Action and associated Completion Time of Conditions C or D are not met and Table 3.3.3-1 directs entry into Condition F, the unit must be brought to a MODE where the requirements of this LCO do not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions #### ACTIONS # F.1 and F.2 (continued) from full power conditions in an orderly manner and without challenging unit systems. ### <u>G.1</u> At this unit, alternate means of monitoring Reactor Vessel Water Level and Containment Area Radiation have been developed and tested. These alternate means may be temporarily installed if the normal PAM channel cannot be restored to OPERABLE status within the allotted time. If these alternate means are used, the Required Action is not to shut down the unit but rather to follow the directions of Specification 5.6.8, in the Administrative Controls section of the TS. The report provided to the NRC should discuss the alternate means used, describe the degree to which the alternate means are equivalent to the installed PAM channels, justify the areas in which they are not equivalent, and provide a schedule for restoring the normal PAM channels. # SURVEILLANCE REQUIREMENTS A Note has been added to the SR Table to clarify that SR 3.3.3.1 and SR 3.3.3.3 apply to each PAM instrumentation Function in Table 3.3.3-1. # SR 3.3.3.1 Performance of the CHANNEL CHECK once every 31 days ensures that a gross instrumentation failure has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read
approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION. The high radiation instrumentation # SURVEILLANCE REQUIREMENTS # <u>SR 3.3.3.1</u> (continued) should be compared to similar unit instruments located throughout the unit. Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including isolation, indication, and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. If the channels are within the criteria, it is an indication that the channels are OPERABLE. As specified in the SR, a CHANNEL CHECK is only required for those channels that are normally energized. The Frequency of 31 days is based on operating experience that demonstrates that channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels. # SR 3.3.3.2 A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to measured parameter with the necessary range and accuracy. This SR is modified by a Note that excludes neutron detectors. The calibration method for neutron detectors is specified in the Bases of LCO 3.3.1, "Reactor Trip System (RTS) Instrumentation." The Frequency is based on operating experience and consistency with the typical industry refueling cycle. ### REFERENCES - 1. [Unit specific document (e.g., FSAR, NRC Regulatory Guide 1.97 SER letter).] - Regulatory Guide 1.97, [date]. - 3. NUREG-0737, Supplement 1, "TMI Action Items." #### B 3.3 INSTRUMENTATION ### B 3.3.4 Remote Shutdown System #### BASES #### BACKGROUND The Remote Shutdown System provides the control room operator with sufficient instrumentation and controls to place and maintain the unit in a safe shutdown condition from a location other than the control room. This capability is necessary to protect against the possibility that the control room becomes inaccessible. A safe shutdown condition is defined as MODE 3. With the unit in MODE 3, the Auxiliary Feedwater (AFW) System and the steam generator (SG) safety valves or the SG atmospheric dump valves (ADVs) can be used to remove core decay heat and meet all safety requirements. The long term supply of water for the AFW System and the ability to borate the Reactor Coolant System (RCS) from outside the control room allows extended operation in MODE 3. If the control room becomes inaccessible, the operators can establish control at the remote shutdown panel, and place and maintain the unit in MODE 3. Not all controls and necessary transfer switches are located at the remote shutdown panel. Some controls and transfer switches will have to be operated locally at the switchgear, motor control panels, or other local stations. The unit automatically reaches MODE 3 following a unit shutdown and can be maintained safely in MODE 3 for an extended period of time. The OPERABILITY of the remote shutdown control and instrumentation functions ensures there is sufficient information available on selected unit parameters to place and maintain the unit in MODE 3 should the control room become inaccessible. ### APPLICABLE SAFETY ANALYSES The Remote Shutdown System is required to provide equipment at appropriate locations outside the control room with a capability to promptly shut down and maintain the unit in a safe condition in MODE 3. The criteria governing the design and specific system requirements of the Remote Shutdown System are located in 10 CFR 50, Appendix A, GDC 19 (Ref. 1). APPLICABLE SAFETY ANALYSES (continued) The Remote Shutdown System is considered an important contributor to the reduction of unit risk to accidents and as such it has been retained in the Technical Specifications as indicated in the NRC Policy Statement. LC0 The Remote Shutdown System LCO provides the OPERABILITY requirements of the instrumentation and controls necessary to place and maintain the unit in MODE 3 from a location other than the control room. The instrumentation and controls typically required are listed in Table 3.3.4-1 in the accompanying LCO. Reviewer's Note: For channels that fulfill GDC 19 requirements, the number of OPERABLE channels required depends upon the unit licensing basis as described in the NRC unit specific Safety Evaluation Report (SER). Generally, two divisions are required OPERABLE. However, only one channel per a given Function is required if the unit has justified such a design, and NRC's SER accepted the justification. The controls, instrumentation, and transfer switches are required for: - Core reactivity control (initial and long term); - RCS pressure control; - Decay heat removal via the AFW System and the SG safety valves or SG ADVs; - RCS inventory control via charging flow; and - Safety support systems for the above Functions, including service water, component cooling water, and onsite power, including the diesel generators. A Function of a Remote Shutdown System is OPERABLE if all instrument and control channels needed to support the Remote Shutdown System Function are OPERABLE. In some cases, Table 3.3.4-1 may indicate that the required information or control capability is available from several alternate sources. In these cases, the Function is OPERABLE as long # LCO (continued) as one channel of any of the alternate information or control sources is OPERABLE. The remote shutdown instrument and control circuits covered by this LCO do not need to be energized to be considered OPERABLE. This LCO is intended to ensure the instruments and control circuits will be OPERABLE if unit conditions require that the Remote Shutdown System be placed in operation. ### **APPLICABILITY** The Remote Shutdown System LCO is applicable in MODES 1, 2, and 3. This is required so that the unit can be placed and maintained in MODE 3 for an extended period of time from a location other than the control room. This LCO is not applicable in MODE 4, 5, or 6. In these MODES, the facility is already subcritical and in a condition of reduced RCS energy. Under these conditions, considerable time is available to restore necessary instrument control functions if control room instruments or controls become unavailable. # ACTIONS Note 1 is included which excludes the MODE change restriction of LCO 3.0.4. This exception allows entry into an applicable MODE while relying on the ACTIONS even though the ACTIONS may eventually require a unit shutdown. This exception is acceptable due to the low probability of an event requiring the Remote Shutdown System and because the equipment can generally be repaired during operation without significant risk of spurious trip. Note 2 has been added to the ACTIONS to clarify the application of Completion Time rules. Separate Condition entry is allowed for each Function listed on Table 3.3.4-1. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function. # <u>A.1</u> Condition A addresses the situation where one or more required Functions of the Remote Shutdown System are inoperable. This includes any Function listed in Table 3.3.4-1, as well as the control and transfer switches. The Required Action is to restore the required Function to OPERABLE status within 30 days. The Completion Time is based on operating experience and the low probability of an event that would require evacuation of the control room. # **B.1** and **B.2** If the Required Action and associated Completion Time of Condition A is not met, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. # SURVEILLANCE REQUIREMENTS ### SR 3.3.4.1 Performance of the CHANNEL CHECK once every 31 days ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION. Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including indication and readability. If the channels are # SURVEILLANCE REQUIREMENTS # <u>SR 3.3.4.1</u> (continued) within the criteria, it is an indication that the channels are OPERABLE. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. As specified in the Surveillance, a CHANNEL CHECK is only required for those channels which are normally energized. The Frequency of 31 days is based upon operating experience which demonstrates that channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent,
checks of channels during normal operational use of the displays associated with the LCO required channels. #### SR 3.3.4.2 SR 3.3.4.2 verifies each required Remote Shutdown System control circuit and transfer switch performs the intended function. This verification is performed from the remote shutdown panel and locally, as appropriate. Operation of the equipment from the remote shutdown panel is not necessary. The Surveillance can be satisfied by performance of a continuity check. This will ensure that if the control room becomes inaccessible, the unit can be placed and maintained in MODE 3 from the remote shutdown panel and the local control stations. The [18] month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. (However, this Surveillance is not required to be performed only during a unit outage.) Operating experience demonstrates that remote shutdown control channels usually pass the Surveillance test when performed at the [18] month Frequency. #### SR 3.3.4.3 CHANNEL CALIBRATION is a complete check of the instrument loop and the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy. #### **BASES** # SURVEILLANCE REQUIREMENTS # <u>SR 3.3.4.3</u> (continued) The Frequency of [18] months is based upon operating experience and consistency with the typical industry refueling cycle. # SR 3.3.4.4 SR 3.3.4.4 is the performance of a TADOT every 18 months. This test should verify the OPERABILITY of the reactor trip breakers (RTBs) open and closed indication on the remote shutdown panel, by actuating the RTBs. The Frequency is based upon operating experience and consistency with the typical industry refueling outage. # REFERENCES 1. 10 CFR 50, Appendix A, GDC 19. ### B 3.3 INSTRUMENTATION B 3.3.5 Loss of Power (LOP) Diesel Generator (DG) Start Instrumentation #### **BASES** ### **BACKGROUND** The DGs provide a source of emergency power when offsite power is either unavailable or is insufficiently stable to allow safe unit operation. Undervoltage protection will generate an LOP start if a loss of voltage or degraded voltage condition occurs in the switchyard. There are two LOP start signals, one for each 4.16 kV vital bus. Three undervoltage relays with inverse time characteristics are provided on each 4160 Class 1E instrument bus for detecting a sustained degraded voltage condition or a loss of bus voltage. The relays are combined in a two-out-of-three logic to generate an LOP signal if the voltage is below 75% for a short time or below 90% for a long time. The LOP start actuation is described in FSAR, Section 8.3 (Ref. 1). # Trip Setpoints and Allowable Values The Trip Setpoints used in the relays are based on the analytical limits presented in FSAR, Chapter 15 (Ref. 2). The selection of these Trip Setpoints is such that adequate protection is provided when all sensor and processing time delays are taken into account. The actual nominal Trip Setpoint entered into the relays is normally still more conservative than that required by the Allowable Value. If the measured setpoint does not exceed the Allowable Value, the relay is considered OPERABLE. Setpoints adjusted in accordance with the Allowable Value ensure that the consequences of accidents will be acceptable, providing the unit is operated from within the LCOs at the onset of the accident and that the equipment functions as designed. Allowable Values and/or Trip Setpoints are specified for each Function in the LCO. Nominal Trip Setpoints are also specified in the unit specific setpoint calculations. The nominal setpoints are selected to ensure that the setpoint measured by the surveillance procedure does not exceed the #### **BACKGROUND** # <u>Trip Setpoints and Allowable Values</u> (continued) Allowable Value if the relay is performing as required. If the measured setpoint does not exceed the Allowable Value, the relay is considered OPERABLE. Operation with a Trip Setpoint less conservative than the nominal Trip Setpoint, but within the Allowable Value, is acceptable provided that operation and testing is consistent with the assumptions of the unit specific setpoint calculation. Each Allowable Value and/or Trip Setpoint specified is more conservative than the analytical limit assumed in the transient and accident analyses in order to account for instrument uncertainties appropriate to the trip function. These uncertainties are defined in the "Unit Specific RTS/ESFAS Setpoint Methodology Study" (Ref. 3). ### APPLICABLE SAFETY ANALYSES The LOP DG start instrumentation is required for the Engineered Safety Features (ESF) Systems to function in any accident with a loss of offsite power. Its design basis is that of the ESF Actuation System (ESFAS). Accident analyses credit the loading of the DG based on the loss of offsite power during a loss of coolant accident (LOCA). The actual DG start has historically been associated with the ESFAS actuation. The DG loading has been included in the delay time associated with each safety system component requiring DG supplied power following a loss of offsite power. The analyses assume a non-mechanistic DG loading, which does not explicitly account for each individual component of loss of power detection and subsequent actions. The required channels of LOP DG start instrumentation, in conjunction with the ESF systems powered from the DGs, provide unit protection in the event of any of the analyzed accidents discussed in Reference 2, in which a loss of offsite power is assumed. The delay times assumed in the safety analysis for the ESF equipment include the 10 second DG start delay, and the appropriate sequencing delay, if applicable. The response times for ESFAS actuated equipment in LCO 3.3.2, "Engineered Safety Feature Actuation System (ESFAS) Instrumentation," include the appropriate DG loading and sequencing delay. #### BASES # APPLICABLE SAFETY ANALYSES (continued) The LOP DG start instrumentation channels satisfy Criterion 3 of the NRC Policy Statement. #### LCO The LCO for LOP DG start instrumentation requires that [three] channels per bus of both the loss of voltage and degraded voltage Functions shall be OPERABLE in MODES 1, 2, 3, and 4 when the LOP DG start instrumentation supports safety systems associated with the ESFAS. In MODES 5 and 6, the [three] channels must be OPERABLE whenever the associated DG is required to be OPERABLE to ensure that the automatic start of the DG is available when needed. Loss of the LOP DG Start Instrumentation Function could result in the delay of safety systems initiation when required. This could lead to unacceptable consequences during accidents. During the loss of offsite power the DG powers the motor driven auxiliary feedwater pumps. Failure of these pumps to start would leave only one turbine driven pump, as well as an increased potential for a loss of decay heat removal through the secondary system. ### **APPLICABILITY** The LOP DG Start Instrumentation Functions are required in MODES 1, 2, 3, and 4 because ESF Functions are designed to provide protection in these MODES. Actuation in MODE 5 or 6 is required whenever the required DG must be OPERABLE so that it can perform its function on an LOP or degraded power to the vital bus. #### ACTIONS In the event a channel's Trip Setpoint is found nonconservative with respect to the Allowable Value, or the channel is found inoperable, then the function that channel provides must be declared inoperable and the LCO Condition entered for the particular protection function affected. Because the required channels are specified on a per bus basis, the Condition may be entered separately for each bus as appropriate. A Note has been added in the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed in the LCO. The Completion Time(s) of the inoperable channel(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function. # <u>A.1</u> Condition A applies to the LOP DG start Function with one loss of voltage or degraded voltage channel per bus inoperable. If one channel is inoperable, Required Action A.1 requires that channel to be placed in trip within 6 hours. With a channel in trip, the LOP DG start instrumentation channels are configured to provide a one-out-of-three logic to initiate a trip of the incoming offsite power. A Note is added to allow bypassing an inoperable channel for up to 4 hours for surveillance testing of other channels. This allowance is made where bypassing the channel does not cause an actuation and where at least two other channels are monitoring that parameter. The specified Completion Time and time allowed for bypassing one channel are reasonable considering the Function remains fully OPERABLE on every bus and the low probability of an event occurring during these intervals. ### <u>B.1</u> Condition B applies when more than one loss of voltage or more than one degraded voltage channel on a single bus is inoperable. Required Action B.1 requires restoring all but one channel to OPERABLE status. The 1 hour Completion Time should allow ample time to repair most failures and takes into account the low probability of an event requiring an LOP start occurring during this interval. # <u>C.1</u> Condition C applies to each of the LOP DG start Functions when the Required Action and associated Completion Time for Condition A or B are not met. In these circumstances the Conditions specified in LCO 3.8.1, "AC Sources—Operating," or LCO 3.8.2, "AC Sources—Shutdown," for the DG made inoperable by failure of the LOP DG start instrumentation are required to be entered immediately. The actions of those LCOs provide for adequate compensatory
actions to assure unit safety. # SURVEILLANCE REQUIREMENTS ### SR 3.3.5.1 Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION. Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels. # SURVEILLANCE REQUIREMENTS (continued) ### SR 3.3.5.2 SR 3.3.5.2 is the performance of a TADOT. This test is performed every [31 days]. The test checks trip devices that provide actuation signals directly, bypassing the analog process control equipment. For these tests, the relay Trip Setpoints are verified and adjusted as necessary. The Frequency is based on the known reliability of the relays and controls and the multichannel redundancy available, and has been shown to be acceptable through operating experience. #### SR 3.3.5.3 SR 3.3.5.3 is the performance of a CHANNEL CALIBRATION. The setpoints, as well as the response to a loss of voltage and a degraded voltage test, shall include a single point verification that the trip occurs within the required time delay, as shown in Reference 1. A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy. The Frequency of [18] months is based on operating experience and consistency with the typical industry refueling cycle and is justified by the assumption of an [18] month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis. #### REFERENCES - 1. FSAR, Section [8.3]. - 2. FSAR, Chapter [15]. - 3. Unit Specific RTS/ESFAS Setpoint Methodology Study. # B 3.3 INSTRUMENTATION # B 3.3.6 Containment Purge and Exhaust Isolation Instrumentation #### BASES ### **BACKGROUND** Containment purge and exhaust isolation instrumentation closes the containment isolation valves in the Mini Purge System and the Shutdown Purge System. This action isolates the containment atmosphere from the environment to minimize releases of radioactivity in the event of an accident. The Mini Purge System may be in use during reactor operation and the Shutdown Purge System will be in use with the reactor shutdown. Containment purge and exhaust isolation initiates on a automatic safety injection (SI) signal through the Containment Isolation—Phase A Function, or by manual actuation of Phase A Isolation. The Bases for LCO 3.3.2, "Engineered Safety Feature Actuation System (ESFAS) Instrumentation," discuss these modes of initiation. Four radiation monitoring channels are also provided as input to the containment purge and exhaust isolation. The four channels measure containment radiation at two locations. One channel is a containment area gamma monitor, and the other three measure radiation in a sample of the containment purge exhaust. The three purge exhaust radiation detectors are of three different types: gaseous, particulate, and iodine monitors. All four detectors will respond to most events that release radiation to containment. However, analyses have not been conducted to demonstrate that all credible events will be detected by more than one monitor. Therefore, for the purposes of this LCO the four channels are not considered redundant. Instead, they are treated as four one-out-of-one Functions. Since the purge exhaust monitors constitute a sampling system, various components such as sample line valves. sample line heaters, sample pumps, and filter motors are required to support monitor OPERABILITY. Each of the purge systems has inner and outer containment isolation valves in its supply and exhaust ducts. A high radiation signal from any one of the four channels initiates containment purge isolation, which closes both inner and outer containment isolation valves in the Mini Purge System # BACKGROUND (continued) and the Shutdown Purge System. These systems are described in the Bases for LCO 3.6.3, "Containment Isolation Valves." ## APPLICABLE SAFETY ANALYSES The safety analyses assume that the containment remains intact with penetrations unnecessary for core cooling isolated early in the event, within approximately 60 seconds. The isolation of the purge valves has not been analyzed mechanistically in the dose calculations, although its rapid isolation is assumed. The containment purge and exhaust isolation radiation monitors act as backup to the SI signal to ensure closing of the purge and exhaust valves. They are also the primary means for automatically isolating containment in the event of a fuel handling accident during shutdown. Containment isolation in turn ensures meeting the containment leakage rate assumptions of the safety analyses, and ensures that the calculated accidental offsite radiological doses are below 10 CFR 100 (Ref. 1) limits. The containment purge and exhaust isolation instrumentation satisfies Criterion 3 of the NRC Policy Statement. #### LC0 The LCO requirements ensure that the instrumentation necessary to initiate Containment Purge and Exhaust Isolation, listed in Table 3.3.6-1, is OPERABLE. # 1. Manual Initiation The LCO requires two channels OPERABLE. The operator can initiate Containment Purge Isolation at any time by using either of two switches in the control room. Either switch actuates both trains. This action will cause actuation of all components in the same manner as any of the automatic actuation signals. The LCO for Manual Initiation ensures the proper amount of redundancy is maintained in the manual actuation circuitry to ensure the operator has manual initiation capability. Each channel consists of one push button and the interconnecting wiring to the actuation logic cabinet. # (continued) # Automatic Actuation Logic and Actuation Relays The LCO requires two trains of Automatic Actuation Logic and Actuation Relays OPERABLE to ensure that no single random failure can prevent automatic actuation. Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b, SI, and ESFAS Function 3.a, Containment Phase A Isolation. The applicable MODES and specified conditions for the containment purge isolation portion of these Functions are different and less restrictive than those for their Phase A isolation and SI roles. If one or more of the SI or Phase A isolation Functions becomes inoperable in such a manner that only the Containment Purge Isolation Function is affected, the Conditions applicable to their SI and Phase A isolation Functions need not be entered. The less restrictive Actions specified for inoperability of the Containment Purge Isolation Functions specify sufficient compensatory measures for this case. # 3. <u>Containment Radiation</u> The LCO specifies four required channels of radiation monitors to ensure that the radiation monitoring instrumentation necessary to initiate Containment Purge Isolation remains OPERABLE. For sampling systems, channel OPERABILITY involves more than OPERABILITY of the channel electronics. OPERABILITY may also require correct valve lineups, sample pump operation, and filter motor operation, as well as detector OPERABILITY, if these supporting features are necessary for trip to occur under the conditions assumed by the safety analyses. # 4. <u>Containment Isolation—Phase A</u> Refer to LCO 3.3.2, Function 3.a., for all initiating Functions and requirements. # BASES (continued) #### APPLICABILITY The Manual Initiation, Automatic Actuation Logic and Actuation Relays, Containment Isolation—Phase A, and Containment Radiation Functions are required OPERABLE in MODES 1, 2, 3, and 4, and during CORE ALTERATIONS or movement of irradiated fuel assemblies within containment. Under these conditions, the potential exists for an accident that could release fission product radioactivity into containment. Therefore, the containment purge and exhaust isolation instrumentation must be OPERABLE in these MODES. While in MODES 5 and 6 without fuel handling in progress, the containment purge and exhaust isolation instrumentation need not be OPERABLE since the potential for radioactive releases is minimized and operator action is sufficient to ensure post accident offsite doses are maintained within the limits of Reference 1. #### ACTIONS The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by unit specific calibration procedures. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. This determination is generally made during the performance of a COT, when the process instrumentation is set up for adjustment to bring it within specification. If the Trip Setpoint is less conservative than the tolerance specified by the
calibration procedure, the channel must be declared inoperable immediately and the appropriate Condition entered. A Note has been added to the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed in Table 3.3.6-1. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function. ### <u>A.1</u> Condition A applies to the failure of one containment purge isolation radiation monitor channel. Since the four containment radiation monitors measure different parameters, #### **ACTIONS** # <u>A.1</u> (continued) failure of a single channel may result in loss of the radiation monitoring Function for certain events. Consequently, the failed channel must be restored to OPERABLE status. The 4 hours allowed to restore the affected channel is justified by the low likelihood of events occurring during this interval, and recognition that one or more of the remaining channels will respond to most events. ### **B.**1 Condition B applies to all Containment Purge and Exhaust Isolation Functions and addresses the train orientation of the Solid State Protection System (SSPS) and the master and slave relays for these Functions. It also addresses the failure of multiple radiation monitoring channels, or the inability to restore a single failed channel to OPERABLE status in the time allowed for Required Action A.1. If a train is inoperable, multiple channels are inoperable, or the Required Action and associated Completion Time of Condition A are not met, operation may continue as long as the Required Action for the applicable Conditions of LCO 3.6.3 is met for each valve made inoperable by failure of isolation instrumentation. A Note is added stating that Condition B is only applicable in MODE 1, 2, 3, or 4. ### C.1 and C.2 Condition C applies to all Containment Purge and Exhaust Isolation Functions and addresses the train orientation of the SSPS and the master and slave relays for these Functions. It also addresses the failure of multiple radiation monitoring channels, or the inability to restore a single failed channel to OPERABLE status in the time allowed for Required Action A.l. If a train is inoperable, multiple channels are inoperable, or the Required Action and associated Completion Time of Condition A are not met, operation may continue as long as the Required Action to place and maintain containment purge and exhaust isolation #### **ACTIONS** # C.1 and C.2 (continued) valves in their closed position is met or the applicable Conditions of LCO 3.9.4, "Containment Penetrations," are met for each valve made inoperable by failure of isolation instrumentation. The Completion Time for these Required Actions is Immediately. A Note states that Condition C is applicable during CORE ALTERATIONS and during movement of irradiated fuel assemblies within containment. # SURVEILLANCE REQUIREMENTS A Note has been added to the SR Table to clarify that Table 3.3.6-1 determines which SRs apply to which Containment Purge and Exhaust Isolation Functions. #### SR 3.3.6.1 Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION. Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of # SURVEILLANCE REQUIREMENTS # <u>SR 3.3.6.1</u> (continued) channels during normal operational use of the displays associated with the LCO required channels. #### SR 3.3.6.2 SR 3.3.6.2 is the performance of an ACTUATION LOGIC TEST. The train being tested is placed in the bypass condition, thus preventing inadvertent actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection function. In addition, the master relay coil is pulse tested for continuity. This verifies that the logic modules are OPERABLE and there is an intact voltage signal path to the master relay coils. This test is performed every 31 days on a STAGGERED TEST BASIS. The Surveillance interval is acceptable based on instrument reliability and industry operating experience. # SR 3.3.6.3 SR 3.3.6.3 is the performance of a MASTER RELAY TEST. The MASTER RELAY TEST is the energizing of the master relay, verifying contact operation and a low voltage continuity check of the slave relay coil. Upon master relay contact operation, a low voltage is injected to the slave relay coil. This voltage is insufficient to pick up the slave relay, but large enough to demonstrate signal path continuity. This test is performed every 31 days on a STAGGERED TEST BASIS. The Surveillance interval is acceptable based on instrument reliability and industry operating experience. #### SR 3.3.6.4 A COT is performed every 92 days on each required channel to ensure the entire channel will perform the intended Function. The Frequency is based on the staff recommendation for increasing the availability of radiation monitors according to NUREG-1366 (Ref. 2). This test verifies the capability of the instrumentation to provide the containment purge and exhaust system isolation. The # SURVEILLANCE REQUIREMENTS # <u>SR 3.3.6.4</u> (continued) setpoint shall be left consistent with the current unit specific calibration procedure tolerance. #### SR 3.3.6.5 SR 3.3.6.5 is the performance of a SLAVE RELAY TEST. The SLAVE RELAY TEST is the energizing of the slave relays. Contact operation is verified in one of two ways. Actuation equipment that may be operated in the design mitigation mode is either allowed to function or is placed in a condition where the relay contact operation can be verified without operation of the equipment. Actuation equipment that may not be operated in the design mitigation mode is prevented from operation by the SLAVE RELAY TEST circuit. For this latter case, contact operation is verified by a continuity check of the circuit containing the slave relay. This test is performed every [92] days. The Frequency is acceptable based on instrument reliability and industry operating experience. ## SR 3.3.6.6 SR 3.3.6.6 is the performance of a TADOT. This test is a check of the Manual Actuation Functions and is performed every [18] months. Each Manual Actuation Function is tested up to, and including, the master relay coils. In some instances, the test includes actuation of the end device (i.e., pump starts, valve cycles, etc.). The test also includes trip devices that provide actuation signals directly to the SSPS, bypassing the analog process control equipment. The SR is modified by a Note that excludes verification of setpoints during the TADOT. The Functions tested have no setpoints associated with them. The Frequency is based on the known reliability of the Function and the redundancy available, and has been shown to be acceptable through operating experience. ## **BASES** # SURVEILLANCE REQUIREMENTS (continued) #### SR 3.3.6.7 A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy. The Frequency is based on operating experience and is consistent with the typical industry refueling cycle. ## REFERENCES - 1. 10 CFR 100.11. - 2. NUREG-1366, [date]. #### B 3.3 INSTRUMENTATION B 3.3.7 Control Room Emergency Filtration System (CREFS) Actuation Instrumentation #### **BASES** #### BACKGROUND The CREFS provides an enclosed control room environment from which the unit can be operated following an uncontrolled release of radioactivity. During normal operation, the Auxiliary Building Ventilation System provides control room ventilation. Upon receipt of an actuation signal, the CREFS initiates filtered ventilation and pressurization of the control room. This system is described in the Bases for LCO 3.7.10, "Control Room Emergency Filtration System." The actuation instrumentation consists of redundant radiation monitors in the air intakes and control room area. A high radiation signal from any of these detectors will initiate both trains of the CREFS. The control room operator can also initiate CREFS trains by manual switches in the control room. The CREFS is also actuated by a safety injection (SI) signal. The SI Function is discussed in LCO 3.3.2, "Engineered Safety Feature Actuation System (ESFAS) Instrumentation." ### APPLICABLE SAFETY ANALYSES The control room must be kept habitable for the operators stationed there during accident recovery and post accident operations. The CREFS acts to terminate the supply of unfiltered outside air to the control room, initiate filtration, and pressurize the control room. These actions are necessary to ensure the control room is kept habitable for the operators stationed there during accident recovery and post accident operations by
minimizing the radiation exposure of control room personnel. In MODES 1, 2, 3, and 4, the radiation monitor actuation of the CREFS is a backup for the SI signal actuation. This ensures initiation of the CREFS during a loss of coolant accident or steam generator tube rupture. The radiation monitor actuation of the CREFS in MODES 5 and 6, during movement of irradiated fuel assemblies [, and ## APPLICABLE SAFETY ANALYSES (continued) CORE ALTERATIONS], is the primary means to ensure control room habitability in the event of a fuel handling or waste gas decay tank rupture accident. The CREFS actuation instrumentation satisfies Criterion 3 of the NRC Policy Statement. #### LC0 The LCO requirements ensure that instrumentation necessary to initiate the CREFS is OPERABLE. # 1. Manual Initiation The LCO requires two channels OPERABLE. The operator can initiate the CREFS at any time by using either of two switches in the control room. This action will cause actuation of all components in the same manner as any of the automatic actuation signals. The LCO for Manual Initiation ensures the proper amount of redundancy is maintained in the manual actuation circuitry to ensure the operator has manual initiation capability. Each channel consists of one push button and the interconnecting wiring to the actuation logic cabinet. ## 2. Automatic Actuation Logic and Actuation Relays The LCO requires two trains of Actuation Logic and Relays OPERABLE to ensure that no single random failure can prevent automatic actuation. Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b., SI, in LCO 3.3.2. The applicable MODES and specified conditions for the CREFS portion of these functions are different and less restrictive than those specified for their SI roles. If one or more of the SI functions becomes inoperable in such a manner that only the CREFS function is affected, the Conditions applicable to their SI function need not be entered. The less #### **BASES** #### LC₀ # 2. <u>Automatic Actuation Logic and Actuation Relays</u> (continued) restrictive Actions specified for inoperability of the CREFS Functions specify sufficient compensatory measures for this case. ## 3. Control Room Radiation The LCO specifies two required Control Room Atmosphere Radiation Monitors and two required Control Room Air Intake Radiation Monitors to ensure that the radiation monitoring instrumentation necessary to initiate the CREFS remains OPERABLE. For sampling systems, channel OPERABILITY involves more than OPERABILITY of channel electronics. OPERABILITY may also require correct valve lineups, sample pump operation, and filter motor operation, as well as detector OPERABILITY, if these supporting features are necessary for trip to occur under the conditions assumed by the safety analyses. #### 4. Safety Injection Refer to LCO 3.3.2, Function 1, for all initiating Functions and requirements. #### APPLICABILITY The CREFS Functions must be OPERABLE in MODES 1, 2, 3, 4, [and during CORE ALTERATIONS] and movement of irradiated fuel assemblies. The Functions must also be OPERABLE in MODES [5 and 6] when required for a waste gas decay tank rupture accident, to ensure a habitable environment for the control room operators. #### **ACTIONS** The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by the unit specific calibration procedures. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. This determination is generally made during the performance of a COT, when the process instrumentation is set up for adjustment to bring it within specification. If the Trip Setpoint is less conservative than the tolerance specified by the calibration procedure, the channel must be declared inoperable immediately and the appropriate Condition entered. A Note has been added to the ACTIONS indicating that separate Condition entry is allowed for each Function. The Conditions of this Specification may be entered independently for each Function listed in Table 3.3.7-1 in the accompanying LCO. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function. # <u>A.1</u> Condition A applies to the actuation logic train Function of the CREFS, the radiation monitor channel Functions, and the manual channel Functions. If one train is inoperable, or one radiation monitor channel is inoperable in one or more Functions, 7 days are permitted to restore it to OPERABLE status. The 7 day Completion Time is the same as is allowed if one train of the mechanical portion of the system is inoperable. The basis for this Completion Time is the same as provided in LCO 3.7.10. If the channel/train cannot be restored to OPERABLE status, one CREFS train must be placed in the emergency radiation protection mode of operation. This accomplishes the actuation instrumentation Function and places the unit in a conservative mode of operation. The Required Action for Condition A is modified by a Note that requires placing one CREFS train in the toxic gas protection mode instead of the [radiation protection] mode of operation if the automatic transfer to toxic gas protection mode is inoperable. This ensures the CREFS train is placed in the most conservative mode of operation relative to the OPERABILITY of the associated actuation instrumentation. # B.1.1, B.1.2, and B.2 Condition B applies to the failure of two CREFS actuation trains, two radiation monitor channels, or two manual channels. The first Required Action is to place one CREFS train in the emergency [radiation protection] mode of operation immediately. This accomplishes the actuation instrumentation Function that may have been lost and places the unit in a conservative mode of operation. The applicable Conditions and Required Actions of LCO 3.7.10 must also be entered for the CREFS train made inoperable by the inoperable actuation instrumentation. This ensures appropriate limits are placed upon train inoperability as discussed in the Bases for LCO 3.7.10. Alternatively, both trains may be placed in the emergency [radiation protection] mode. This ensures the CREFS function is performed even in the presence of a single failure. The Required Action for Condition B is modified by a Note that requires placing one CREFS train in the toxic gas protection mode instead of the [radiation protection] mode of operation if the automatic transfer to toxic gas protection mode is inoperable. This ensures the CREFS train is placed in the most conservative mode of operation relative to the OPERABILITY of the associated actuation instrumentation. ## C.1 and C.2 Condition C applies when the Required Action and associated Completion Time for Condition A or B have not been met and the unit is in MODE 1, 2, 3, or 4. The unit must be brought to a MODE in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. # **D.1** and **D.2** Condition D applies when the Required Action and associated Completion Time for Condition A or B have not been met [during CORE ALTERATIONS or] when irradiated fuel assemblies are being moved. Movement of irradiated fuel assemblies [and CORE ALTERATIONS] must be suspended immediately to reduce the risk of accidents that would require CREFS actuation. ### **E.1** Condition E applies when the Required Action and associated Completion Time for Condition A or B have not been met in MODE 5 or 6. Actions must be initiated to restore the inoperable train(s) to OPERABLE status immediately to ensure adequate isolation capability in the event of a waste gas decay tank rupture. # SURVEILLANCE REQUIREMENTS A Note has been added to the SR Table to clarify that Table 3.3.7-1 determines which SRs apply to which CREFS Actuation Functions. #### SR 3.3.7.1 Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION. Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, # SURVEILLANCE REQUIREMENTS # <u>SR 3.3.7.1</u> (continued) including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels. # SR 3.3.7.2 A COT is performed once every 92 days on each required channel to ensure the entire channel will perform the intended function. This test verifies the capability of the instrumentation to provide the CREFS actuation. The setpoints shall be left consistent with the unit specific calibration procedure tolerance. The Frequency is based on the known reliability
of the monitoring equipment and has been shown to be acceptable through operating experience. ## SR 3.3.7.3 SR 3.3.7.3 is the performance of an ACTUATION LOGIC TEST. The train being tested is placed in the bypass condition, thus preventing inadvertent actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection function. In addition, the master relay coil is pulse tested for continuity. This verifies that the logic modules are OPERABLE and there is an intact voltage signal path to the master relay coils. This test is performed every 31 days on a STAGGERED TEST BASIS. The Frequency is justified in WCAP-10271-P-A, Supplement 2, Rev. 1 (Ref. 1). #### SR 3.3.7.4 SR 3.3.7.4 is the performance of a MASTER RELAY TEST. The MASTER RELAY TEST is the energizing of the master relay, verifying contact operation and a low voltage continuity # SURVEILLANCE REQUIREMENTS # <u>SR 3.3.7.4</u> (continued) check of the slave relay coil. Upon master relay contact operation, a low voltage is injected to the slave relay coil. This voltage is insufficient to pick up the slave relay, but large enough to demonstrate signal path continuity. This test is performed every 31 days on a STAGGERED TEST BASIS. The Frequency is acceptable based on instrument reliability and industry operating experience. ## SR 3.3.7.5 SR 3.3.7.5 is the performance of a SLAVE RELAY TEST. The SLAVE RELAY TEST is the energizing of the slave relays. Contact operation is verified in one of two ways. Actuation equipment that may be operated in the design mitigation MODE is either allowed to function or is placed in a condition where the relay contact operation can be verified without operation of the equipment. Actuation equipment that may not be operated in the design mitigation MODE is prevented from operation by the SLAVE RELAY TEST circuit. For this latter case, contact operation is verified by a continuity check of the circuit containing the slave relay. This test is performed every [92] days. The Frequency is acceptable based on instrument reliability and industry operating experience. #### SR 3.3.7.6 SR 3.3.7.6 is the performance of a TADOT. This test is a check of the Manual Actuation Functions and is performed every [18] months. Each Manual Actuation Function is tested up to, and including, the master relay coils. In some instances, the test includes actuation of the end device (i.e., pump starts, valve cycles, etc.). The test also includes trip devices that provide actuation signals directly to the Solid State Protection System, bypassing the analog process control equipment. The Frequency is based on the known reliability of the Function and the redundancy available, and has been shown to be acceptable through operating experience. The SR is modified by a Note that excludes verification of setpoints during the #### **BASES** # SURVEILLANCE REQUIREMENTS # <u>SR 3.3.7.6</u> (continued) TADOT. The Functions tested have no setpoints associated with them. ## SR 3.3.7.7 A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy. The Frequency is based on operating experience and is consistent with the typical industry refueling cycle. ### REFERENCES None. #### B 3.3 INSTRUMENTATION B 3.3.8 Fuel Building Air Cleanup System (FBACS) Actuation Instrumentation ## **BASES** #### **BACKGROUND** The FBACS ensures that radioactive materials in the fuel building atmosphere following a fuel handling accident or a loss of coolant accident (LOCA) are filtered and adsorbed prior to exhausting to the environment. The system is described in the Bases for LCO 3.7.13, "Fuel Building Air Cleanup System." The system initiates filtered ventilation of the fuel building automatically following receipt of a high radiation signal (gaseous or particulate) or a safety injection (SI) signal. Initiation may also be performed manually as needed from the main control room. High gaseous and particulate radiation, each monitored by either of two monitors, provides FBACS initiation. Each FBACS train is initiated by high radiation detected by a channel dedicated to that train. There are a total of two channels, one for each train. Each channel contains a gaseous and particulate monitor. High radiation detected by any monitor or an SI signal from the Engineered Safety Features Actuation System (ESFAS) initiates fuel building isolation and starts the FBACS. These actions function to prevent exfiltration of contaminated air by initiating filtered ventilation, which imposes a negative pressure on the fuel building. Since the radiation monitors include an air sampling system, various components such as sample line valves, sample line heaters, sample pumps, and filter motors are required to support monitor OPERABILITY. # APPLICABLE SAFETY ANALYSES The FBACS ensures that radioactive materials in the fuel building atmosphere following a fuel handling accident or a LOCA are filtered and adsorbed prior to being exhausted to the environment. This action reduces the radioactive content in the fuel building exhaust following a LOCA or fuel handling accident so that offsite doses remain within the limits specified in 10 CFR 100 (Ref. 1). The FBACS actuation instrumentation satisfies Criterion 3 of the NRC Policy Statement. LC0 The LCO requirements ensure that instrumentation necessary to initiate the FBACS is OPERABLE. #### 1. Manual Initiation The LCO requires two channels OPERABLE. The operator can initiate the FBACS at any time by using either of two switches in the control room. This action will cause actuation of all components in the same manner as any of the automatic actuation signals. The LCO for Manual Initiation ensures the proper amount of redundancy is maintained in the manual actuation circuitry to ensure the operator has manual initiation capability. Each channel consists of one push button and the interconnecting wiring to the actuation logic cabinet. #### 2. Automatic Actuation Logic and Actuation Relays The LCO requires two trains of Actuation Logic and Relays OPERABLE to ensure that no single random failure can prevent automatic actuation. Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b., SI, in LCO 3.3.2. The applicable MODES and specified conditions for the FBACS portion of these functions are different and less restrictive than those specified for their SI roles. If one or more of the SI functions becomes inoperable in such a manner that only the FBACS function is affected, the Conditions applicable to their SI function need not be entered. The less restrictive Actions specified for inoperability of the FBACS functions specify sufficient compensatory measures for this case. # 3. Fuel Building Radiation The LCO specifies two required Gaseous Radiation Monitor channels and two required Particulate Radiation Monitor channels to ensure that the radiation monitoring instrumentation necessary to initiate the FBACS remains OPERABLE. LC₀ # 3. Fuel Building Radiation (continued) For sampling systems, channel OPERABILITY involves more than OPERABILITY of channel electronics. OPERABILITY may also require correct valve lineups, sample pump operation, filter motor operation, detector OPERABILITY, if these supporting features are necessary for actuation to occur under the conditions assumed by the safety analyses. Only the Trip Setpoint is specified for each FBACS Function in the LCO. The Trip Setpoint limits account for instrument uncertainties, which are defined in the Unit Specific Setpoint Calibration Procedure (Ref. 2). #### **APPLICABILITY** The manual FBACS initiation must be OPERABLE in MODES [1, 2, 3, and 4] and when moving irradiated fuel assemblies in the fuel building, to ensure the FBACS operates to remove fission products associated with leakage after a LOCA or a fuel handling accident. The automatic FBACS actuation instrumentation is also required in MODES [1, 2, 3, and 4] to remove fission products caused by post LOCA Emergency Core Cooling Systems leakage. High radiation initiation of the FBACS must be OPERABLE in any MODE during movement of irradiated fuel assemblies in the fuel building to ensure automatic initiation of the FBACS when the potential for a fuel handling accident exists. While in MODES 5 and 6 without fuel handling in progress, the FBACS instrumentation need not be OPERABLE since a fuel handling accident cannot occur. #### **ACTIONS** The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by unit specific calibration procedures. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. This determination is generally made during the performance of a COT, when the process instrumentation is set up for adjustment to bring it within # ACTIONS (continued) specification. If the Trip Setpoint is less conservative than the tolerance specified by the calibration procedure, the channel must be declared inoperable immediately and the appropriate Condition entered. A Note has been added to the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed in Table 3.3.8-1 in the accompanying LCO. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function. ## A.1 Condition A applies to the actuation logic train function of the Solid State Protection System (SSPS), the radiation monitor functions, and the manual
function. Condition A applies to the failure of a single actuation logic train, radiation monitor channel, or manual channel. If one channel or train is inoperable, a period of 7 days is allowed to restore it to OPERABLE status. If the train cannot be restored to OPERABLE status, one FBACS train must be placed in operation. This accomplishes the actuation instrumentation function and places the unit in a conservative mode of operation. The 7 day Completion Time is the same as is allowed if one train of the mechanical portion of the system is inoperable. The basis for this time is the same as that provided in LCO 3.7.13. #### B.1.1, B.1.2, B.2 Condition B applies to the failure of two FBACS actuation logic trains, two radiation monitors, or two manual channels. The Required Action is to place one FBACS train in operation immediately. This accomplishes the actuation instrumentation function that may have been lost and places the unit in a conservative mode of operation. The applicable Conditions and Required Actions of LCO 3.7.13 must also be entered for the FBACS train made inoperable by the inoperable actuation instrumentation. This ensures appropriate limits are placed on train inoperability as discussed in the Bases for LCO 3.7.13. #### **ACTIONS** # <u>B.1.1</u>, <u>B.1.2</u>, <u>B.2</u> (continued) Alternatively, both trains may be placed in the emergency [radiation protection] mode. This ensures the FBACS Function is performed even in the presence of a single failure. # <u>C.1</u> Condition C applies when the Required Action and associated Completion Time for Condition A or B have not been met and irradiated fuel assemblies are being moved in the fuel building. Movement of irradiated fuel assemblies in the fuel building must be suspended immediately to eliminate the potential for events that could require FBACS actuation. ## D.1 and D.2 Condition D applies when the Required Action and associated Completion Time for Condition A or B have not been met and the unit is in MODE 1, 2, 3, or 4. The unit must be brought to a MODE in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. # SURVEILLANCE REQUIREMENTS A Note has been added to the SR Table to clarify that Table 3.3.8-1 determines which SRs apply to which FBACS Actuation Functions. #### SR 3.3.8.1 Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument ## SURVEILLANCE REQUIREMENTS # <u>SR 3.3.8.1</u> (continued) channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION. Agreement criteria are determined by the unit staff, based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels. #### SR 3.3.8.2 A COT is performed once every 92 days on each required channel to ensure the entire channel will perform the intended function. This test verifies the capability of the instrumentation to provide the FBACS actuation. The setpoints shall be left consistent with the unit specific calibration procedure tolerance. The Frequency of 92 days is based on the known reliability of the monitoring equipment and has been shown to be acceptable through operating experience. #### SR 3.3.8.3 SR 3.3.8.3 is the performance of an ACTUATION LOGIC TEST. The actuation logic is tested every 31 days on a STAGGERED TEST BASIS. All possible logic combinations, with and without applicable permissives, are tested for each protection function. The Frequency is based on the known ## SURVEILLANCE REQUIREMENTS # <u>SR 3.3.8.3</u> (continued) reliability of the relays and controls and the multichannel redundancy available, and has been shown to be acceptable through operating experience. #### SR 3.3.8.4 SR 3.3.8.4 is the performance of a TADOT. This test is a check of the manual actuation functions and is performed every [18] months. Each manual actuation function is tested up to, and including, the master relay coils. In some instances, the test includes actuation of the end device (e.g., pump starts, valve cycles, etc.). The Frequency is based on operating experience and is consistent with the typical industry refueling cycle. The SR is modified by a Note that excludes verification of setpoints during the TADOT. The Functions tested have no setpoints associated with them. ### SR 3.3.8.5 A CHANNEL CALIBRATION is performed every [18] months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy. The Frequency is based on operating experience and is consistent with the typical industry refueling cycle. #### REFERENCES - 1. 10 CFR 100.11. - Unit Specific Setpoint Calibration Procedure. #### B 3.3 INSTRUMENTATION # B 3.3.9 Boron Dilution Protection System (BDPS) #### **BASES** #### **BACKGROUND** The primary purpose of the BDPS is to mitigate the consequences of the inadvertent addition of unborated primary grade water into the Reactor Coolant System (RCS) when the reactor is in a shutdown condition (i.e., MODES 2, 3, 4, and 5). The BDPS utilizes two channels of source range instrumentation. Each source range channel provides a signal to both trains of the BDPS. A unit computer is used to continuously record the counts per minute provided by these signals. At the end of each minute, an algorithm compares the counts per minute value (flux rate) of that I minute interval with the counts per minute value for the previous nine, I minute intervals. If the flux rate during a I minute interval is greater than or equal to twice the flux rate during any of the prior nine I minute intervals, the BDPS provides a signal to initiate mitigating actions. Upon detection of a flux doubling by either source range instrumentation train, an alarm is sounded to alert the operator and valve movement is automatically initiated to terminate the dilution and start boration. Valves that isolate the refueling water storage tank (RWST) are opened to supply 2000 ppm borated water to the suction of the charging pumps, and valves which isolate the Chemical and Volume Control System (CVCS) are closed to terminate the dilution. # APPLICABLE SAFETY ANALYSES The BDPS senses abnormal increases in source range counts per minute (flux rate) and actuates CVCS and RWST valves to mitigate the consequences of an inadvertent boron dilution event as described in FSAR, Chapter 15 (Ref. 1). The accident analyses rely on automatic BDPS actuation to mitigate the consequences of inadvertent boron dilution events. The BDPS satisfies Criterion 3 of the NRC Policy Statement. ## BASES (continued) LC0 LCO 3.3.9 provides the requirements for OPERABILITY of the instrumentation and controls that mitigate the consequences of a boron dilution event. Two redundant trains are required to be OPERABLE to provide protection against single failure. Because the BDPS utilizes the source range instrumentation as its detection system, the OPERABILITY of the detection system is also part of the OPERABILITY of the Reactor Trip System. The flux doubling algorithm, the alarms, and signals to the various valves all must be OPERABLE for each train in the system to be considered OPERABLE. #### APPLICABILITY The BDPS must be OPERABLE in MODES [2], 3, 4, and 5 because the safety analysis identifies this system as the primary means to mitigate an inadvertent boron dilution of the RCS. The BDPS OPERABILITY requirements are not applicable in MODE[S] 1 [and 2] because an inadvertent boron dilution would be terminated by a source range trip, a trip on the Power Range Neutron Flux—High (low setpoint nominally 25% RTP), or Overtemperature ΔT . These RTS Functions are discussed in LCO 3.3.1, "RTS Instrumentation." In MODE 6, a dilution event is precluded by locked valves that isolate the RCS from the potential source of unborated water (according to LCO 3.9.2, "Unborated Water Source Isolation Valves"). The Applicability is modified by a Note that allows the boron dilution flux doubling signal to be blocked during reactor startup in MODES 2 and 3. Blocking the flux doubling signal is acceptable during startup while in MODE 3, provided the reactor trip breakers are closed with the intent to withdraw rods for startup. #### **ACTIONS** The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by the unit specific calibration procedure. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. This determination of # ACTIONS (continued) setpoint drift is generally made during the performance of a COT when the process instrumentation is set up for
adjustment to bring it to within specification. If the Trip Setpoint is less conservative than the tolerance specified by the calibration procedure, the channel must be declared inoperable immediately and the appropriate Condition entered. #### <u>A.1</u> With one train of the BDPS OPERABLE, Required Action A.1 requires that the inoperable train must be restored to OPERABLE status within 72 hours. In this Condition, the remaining the BDPS train is adequate to provide protection. The 72 hour Completion Time is based on the BDPS Function and is consistent with Engineered Safety Feature Actuation System Completion Times for loss of one redundant train. Also, the remaining OPERABLE train provides continuous indication of core power status to the operator, has an alarm function, and sends a signal to both trains of the BDPS to assure system actuation. #### B.1, B.2.1, B.2.2.1, and B.2.2.2 With two trains inoperable, or the Required Action and associated Completion Time of Condition A not met, the initial action (Required Action B.1) is to suspend all operations involving positive reactivity additions immediately. This includes withdrawal of control or shutdown rods and intentional boron dilution. A Completion Time of 1 hour is provided to restore one train to OPERABLE status. As an alternate to restoring one train to OPERABLE status (Required Action B.2.1), Required Action B.2.2.1 requires valves listed in LCO 3.9.2 (Required Action A.2) to be secured to prevent the flow of unborated water into the RCS. Once it is recognized that two trains of the BDPS are inoperable, the operators will be aware of the possibility of a boron dilution, and the 1 hour Completion Time is adequate to complete the requirements of LCO 3.9.2. Required Action B.2.2.2 accompanies Required Action B.2.2.1 to verify the SDM according to SR 3.1.1.1 within 1 hour and ## **ACTIONS** # B.1, B.2.1, B.2.2.1, and B.2.2.2 (continued) once per 12 hours thereafter. This backup action is intended to confirm that no unintended boron dilution has occurred while the BDPS was inoperable, and that the required SDM has been maintained. The specified Completion Time takes into consideration sufficient time for the initial determination of SDM and other information available in the control room related to SDM. # SURVEILLANCE REQUIREMENTS The BDPS trains are subject to a COT and a CHANNEL CALIBRATION. ### SR 3.3.9.1 SR 3.3.9.1 requires the performance of a COT every [92] days, to ensure that each train of the BDPS and associated trip setpoints are fully operational. This test shall include verification that the boron dilution alarm setpoint is equal to or less than an increase of twice the count rate within a 10 minute period. The Frequency of [92] days is consistent with the requirements for source range channels in WCAP-10271-P-A (Ref. 2). #### SR 3.3.9.2 SR 3.3.9.2 is the performance of a CHANNEL CALIBRATION every [18] months. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy. For the BDPS, the CHANNEL CALIBRATION shall include verification that on a simulated or actual boron dilution flux doubling signal the centrifugal charging pump suction valves from the RWST open, and the normal CVCS volume control tank discharge valves close in the required closure time of \leq 20 seconds. The Frequency is based on operating experience and consistency with the typical industry refueling cycle. # BASES (continued) # REFERENCES - 1. FSAR, Chapter [15]. - 2. WCAP-10271-P-A, Supplement 2, Revision 1, June 1990. | NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION (2-89) | (Assigned by NRC, Add Vol., Supp., Rev., | | | | |--|--|--|--|--| | NRCM 1102,
3201, 3202 BIBLIOGRAPHIC DATA SHEET | and Addendum Numbers, if any.) | | | | | (See instructions on the reverse) | NUDEC 1/121 | | | | | 2. TITLE AND SUBTITLE | NUREG 1431
Vol. 2, Rev. 1 | | | | | | voi. 2, kev. i | | | | | Standard Technical Specifications | 3. DATE REPORT PUBLISHED | | | | | Westinghouse Plants Bases (Sections 2.0 - 3.3) | MONTH YEAR | | | | | bases (Sections 2.0 - 5.5) | April 1995 | | | | | | 4. FIN OR GRANT NUMBER | | | | | | | | | | | 5. AUTHOR(S) | 6. TYPE OF REPORT | | | | | | | | | | | | | | | | | | 7. PERIOD COVERED (Inclusive Dates) | | | | | | | | | | | | | | | | | 8. PERFORMING ORGANIZATION — NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory C | ommission, and mailing address; if contractor, provide | | | | | Division of Project Support | | | | | | Office of Nuclear Reactor Regulation | | | | | | U.S. Nuclear Regulatory Commission | | | | | | Washington, D.C. 20555 -0001 | | | | | | | | | | | | 9. SPONSORING ORGANIZATION — NAME AND ADDRESS (If NRC, type "Same as above"; if contractor, provide NRC Division, Of and mailing address.) | ffice or Region, U.S. Nuclear Regulatory Commission, | | | | | | | | | | | Same as above | | | | | | | | | | | | | | | | | | 10. SUPPLEMENTARY NOTES | | | | | | 10. SOFFLEWIEITANT NOTES | | | | | | 11. ABSTRACT (200 words or less) | | | | | | | | | | | | This report documents the results of the combined effort of the | ne NRC and the industry | | | | | to produce improved Standard Technical Specifications (STS), F | (evision 1 for | | | | | Westinghouse Plants. The changes reflected in Revision 1 resulted from the experience | | | | | | gained from license amendment applications to convert to these | e improved SIS or to | | | | | adopt partial improvements to existing technical specification | is. Inis NUKEG is the | | | | | result of extensive public technical meetings and discussions | | | | | | Regulatory Commission (NRC) staff and various nuclear power pl
Steam Supply System (NSSS) Owners Groups, NSSS vendors, and th | | | | | | Institute (NEI). The improved STS were developed based on the | | | | | | Commission Policy Statement on Technical Specifications Improve | | | | | | Reactors, dated July 22, 1993. The improved STS will be used as the basis for | | | | | | individual nuclear power plant licensees to develop improved p | lant-specific technical | | | | | specifications. This report contains three volumes. Volume | contains the | | | | | Specifications for all chapters and sections of the improved S | | | | | | the Bases for Chapters 2.0 and 3.0, and Sections 3.1 - 3.3 of the improved STS. | | | | | | Volume 3 contains the Bases for Sections 3.4 - 3.9 of the impr | roved STS. | | | | | 12. KEY WORDS/DESCR!PTORS (List words or phrases that will assist researchers in locating the report,) | 13, AVAILABILITY STATEMENT | | | | | | | | | | | | Unlimited 14. SECURITY CLASSIFICATION | | | | | Technical Specifications | (This Page) | | | | | Westinghouse | Unclassified | | | | | PWR | (This Report) | | | | | | Unclassified | | | | | | 15. NUMBER OF PAGES | | | | | 1 | | | | | 16. PRICE | | | • | | | |-----|-----|---|---|--| | | | | | | | | | | • | As. | | | | | | | | | | | · · | Federal Recycling Program