WAll P7, P4, etc. what Relativeship to the Spent fuel pool (column 17 - 23) Any Upluse? (column p - w) | | Shear Walls | | | | | | | |--|---|---|--|--|--------------------------------------|---|--| | Item | SSE | OBE
Allowable
(Working
Stress) | SSE | SSE
Allowable
(Ultimate
Strength) | OBE | OBE
Allowable
(Working
Stress) | | | Maximu
m Out of
Plane
Conc.
Shear
Stress | 70 psi
Shear
Wall P7 | 70 psi | 77 psi
Shear
Wall P4 | 108 psi | 64.8 psi
Shear Wall
P4 | 70 psi | | | Maximu
m Out of
Plane
Moment
Per 1"
Width | 28.578
k-in.
Shear
Wall
P8A | 34 k-in. | 30 k-in.
Shear
Wall P3 | 66.15 k-in. | Shear Wall
P3* | 27 k-in. | | | Maximu
m In-
Plane
Shear
Stress | 68 psi
Shear
Wall
P10C | 70 psi | SSE vs.
SSE
envelope
d by
SSE vs.
OBE | ? | OBE vs. OBE enveloped by SSE vs. OBE | 9 | | | Maximu
m In-
Plane
Moment | 1,073,1
50 k-in.
Shear
Wall P3 | 1,097,317
k-in. | SSE vs.
SSE
envelope
d by
SSE vs.
OBE | ? | OBE Vs. OBE enveloped by SSE vs. OBE | ? | | | Maximu
m Axial
Load Per
Ft. of
Wall | 68.86
kips
Shear
Wall P4 | 96 kips | 314 kips
Shear
Wall
P11 | 345 kips | 230 kips
Shear Wall
P11 | 255.36
kips | | *SSE Max. Moment - 30 k-in per in./OBE Working Stress Allowable Moment - 27 k-in. per in. (IR= 1.111). The SSE load case was subsequently evaluated independently and the satisfactory results are tabulated above. Based on the analysis and the results tabulated in Attachment 51 of the ZION001-CALC-002, SSE forces and stresses are larger than OBE; therefore by comparison, the wall is acceptable under OBE conditions. ## c. KNES Calculation No. 36675-05 (Rev.01): Zion Bridge Structural Calculations Summary: This analysis evaluates the crane structural steel member stresses and deflections and demonstrates that they meet the NOG-1-2004 Section 4300 design criteria, along with the buckling requirements. Page 24 of 53