Stress Corrosion Cracking of Stainless Steel - Where Next?

David Alley

6 June 2013
Agenda

• Introduction
• Common Knowledge
• Interesting Events
• Potential Lessons
• Where to look next?
Introduction

• Will consider 300 series stainless
 – Environmental conditions leading to cracking
 – Cracking morphology
Common Knowledge
Common Knowledge

• Cracking environments
 – Chlorides (halides)
 • Maybe others (sulfates)
 – Oxygen needed
 – Temperature > 140°F
 – BWR normal water chemistry
 • Very low chlorides if any
 – Grade makes little difference in Cl⁻ cracking
 – Cold work makes cracking worse
Common Knowledge

• Cracking morphology
 – Sensitized
 • Intergranular cracking
 – Unsensitized
 • Normally transgranular cracking
Common Knowledge
Interesting Events
Interesting Events

• Canopy Seal Welds
• CRDM Seal Housing J Groove Welds
• CRDM Housing Welds 3 and 5
• Refueling Water Storage Tanks
• Reactor Vessel Leak Off Lines
• OD Pipe/Vessel Cracking
Canopy Seal Welds

- 5 Plants
- Base metal and weld
 - 304/308/309
- Transgranular
- Cl\(^-\) verified
- High oxygen assumed
- Various housing types
- High stress
CRDM Seal Housing

- One Plant
- Rack and Pinion Housing
- Multiple failures
- 304 and 347
- Transgranular
- Lower temperature
- Low flow area
- Cl\(^-\), O\(_2\) assumed
CRDM Housing Weld 3 and 5
CRDM Housing Weld 3 and 5

- Two plants
- Three failure occurrences
- Rack and Pinion Housings
- 40 + housings replaced
- 316, 347, 348
- Cl^-, O_2 assumed

- One dead leg
- One low flow
- Transgranular
 - Beach marks
- One instance
 - Manufacturing issues
 - Affected stresses
 - Voids at crack initiation
 - F^- containing flux?
CRDM Housing Weld 3 and 5

Void at crack initiation

Beach Mark
Refueling Water Storage Tank

- Chloride SCC
- OD originated
- Temp probably < 140°F
Reactor Vessel Leak Off Lines

• Both OD and ID cracking
• ID cracking
 – At “water level” in line
 – Oxygen and Chlorides assumed
• OD cracking
 – Lines used as handrails
 • Chlorides from sweaty skin
• Not necessarily at welds
OD Pipe/Vessel Cracking

- Chlorides in air
- Chlorides on hands
- Not necessarily at welds
 - Info Notice IN-2011-04
- Can occur below dew point (Hygroscopic)
- Temperature < 140°F
- Dry Cask storage
 - Info Notice IN-2012-20
Potential Lessons
Potential Lessons

• Sweaty hands cause cracking
• Cl\(^-\) deposition from the air causes cracking
• Cracking will occur < 140\(^\circ\)F in air environments
• Cracking not limited to welds
• Stresses/strains including weld residual stress and cold work accelerate cracking
• Temperature accelerates cracking
Potential Lessons

• Cracking occurs in PWRs
 – Dead legs help but not required
 – Reduced flow, O_2, contaminants required?

• Attempts to call a location or environment “special” have fared poorly in light of history
Where to Look Next?
Where to Look Next?

• All CRDM housings (not just rack and pinion)?
 – All welds (not just pressure boundary welds)?
 – Base material?

• Vessel internals out of main flow?

• Dead leg piping (especially if O_2 enters during outages)?
Where to Look Next?

• Outdoor stainless material
 – Near coastlines etc.?
 – Exposed to dicing salts?
 – Exposed to saline groundwater?
 – Below 140°F?
 – Welded with F⁻ containing flux?