South Texas Project Units 1 & 2

STP Pilot Submittal for Risk-Informed Approach to Resolving GSI-191
Attendees for STP

Michael Murray Manager, Regulatory Affairs
Steve Blossom Manager, GSI-191 Project
Rick Grantom Manager, Risk Management Projects
Ernie Kee Risk Management Engineering
Wes Schulz Engineering
Coley Chappell Licensing
Ken Taplett Licensing
Tim Sande Enercon
Bruce Letellier, PhD Alion
Jeremy Tejada, PhD University of Texas at Austin
Rodolfo Vaghetto Texas A&M University
Kerry Howe, PhD University of New Mexico
Janet Leavitt, PhD Alion
Don Wakefield ABS Consulting
Steven Frantz Morgan Lewis
Zahra Mohaghegh, PhD University of Illinois at Champaign-Urbana
Agenda

- Desired outcomes
- Overview of the planned revised submittal
- Summary of additional information to be submitted
- STP responses to NRC items required for completion of staff’s acceptance review
- Recap of desired outcomes
- Questions and comments
Desired Outcomes

Clear understanding of:

- The structure of the submittal
- The submittal will address the completeness concern of the staff
- The level of detail that will be provided in the submittal
- What will be in the submittal and what will be available to the staff for audit
Structure of Revised Submittal – Outline

- Attachment to the Cover Letter
 - Responses to NRC items needed for acceptance review.
- Enclosure 1
 - Generic risk-informed methodology for resolving GSI-191.
- Enclosures 2 and 2-1 through 2-4
 - STP-specific 10 CFR 50.12 exemption requests for ECCS acceptance criterion 10 CFR 50.46(b)(5), and General Design Criteria 35, 38, and 41.
- Enclosure 3
 - 10 CFR 50.90 licensing amendment request (LAR)
 - Proposed changes to the STP UFSAR for NRC approval.
- Enclosures 4 and 4-1 through 4-3
 - Volume 1 Project Summary
 - Volume 2 Probabilistic Risk Assessment
 - Volume 3 CASA Grande Analysis (summary of engineering analysis)
Enclosure 4-1: Volume 1 Project Summary

- Addresses the required content of a RG 1.174 application using the same section numbering scheme as Regulatory Guide 1.174.

- Provides summaries of:
 - The generic methodology and how the risk metrics associated with the residual risk of GSI-191 are determined.
 - The plant-specific implementation of the methodology.
 - The *Independent Technical Oversight* provided to ensure the quality and validity of the project by performing an in-depth scientific review of the phenomenological models developed and experiments conducted.
Enclosure 4-2: Volume 2 PRA

- This volume contains the documentation for the standard process used by STP risk-informed application analyses.
- Describes how PRA insights are used to identify and prioritize CASA Grande inputs.
- Discusses how the CASA Grande outputs are used as the inputs to the PRA model.
- Describes the quantification of the risk metrics and uncertainties (for changes in risk)
 - Core Damage Frequency (CDF) and delta-CDF
 - Large Early Release Frequency (LERF) and delta-LERF
Enclosure 4-3: Volume 3 CASA Grande Analysis

- Volume 3 CASA Grande Analysis is a technical evaluation that provides a high level descriptive summary of the phenomenological portion of the overall risk-informed GSI-191 evaluation.

- Provides a more detailed summary of supporting engineering analyses (CASA Grande evaluation) including:
 - Input parameters
 - Assumptions
 - Methodology
 - Analysis
 - Results

- Analysis is based on NRC approved guidance for deterministic methods, e.g. NEI 04-07 SER, with differences identified and explained.

- Describes the STP Units 1 & 2 implementation of the generic methodology of the risk-informed approach (Enclosure 1) for addressing the required inputs to the plant-specific PRA model.
Questions and Comments
The following slides address the information items needed for acceptance review of the application as identified by the NRC staff in the April 1, 2013 letter.

STP responses to each item and the associated changes that will be included in the revised submittal are summarized.
1. For each exemption request submitted under 10 CFR 50.12, the application should include a narrative as to why the licensee believes that the special circumstances provided in 10 CFR 50.12(a)(2) is present. The licensee in its application has stated that 10 CFR 50.10(a)(2)(ii) and (iii) apply. There appears to be a typographical error and the NRC staff believes licensee meant to invoke 10 CFR 50.12(a)(2)(ii) and (iii). Please confirm this and provide adequate technical basis in support of applicability of 10 CFR 50.12(a)(2)(ii) and (iii). Also, please describe in detail how the special circumstances address 10 CFR 50.12(a).

STP Response:
- The revised exemption requests will correct the typographical error and address the required information.
License Amendment Request

2. The application describes a departure from the method of evaluation described in the Updated Final Safety Analysis Report (UFSAR) used in establishing the design bases in the plant’s safety analysis, as defined in 10 CFR 50.59(a)(2) and proposes several draft modifications to the UFSAR. In accordance with 10 CFR 50.59(c)(2)(viii), these modifications would appear to be changes in the design and licensing basis and would require a license amendment in accordance with 10 CFR 50.90. Please explain why an amendment is not proposed to accompany this exemption, with the associated draft no significant hazards consideration. The licensee should clearly state the scope and nature of the change to the design and licensing basis.

STP Response:
- Revised submittal will include a license amendment request (LAR) pursuant to 10 CFR 50.90, with the proposed changes to the UFSAR for NRC approval, and a no significant hazards consideration.
License Amendment Request – Summary

The proposed change reconstitutes the licensing basis using a risk-informed method:

- For the long-term cooling ECCS acceptance criterion 10 CFR 50.46(b)(5), replaces the current licensing basis that applies a deterministic method for evaluating sump performance that meets the regulatory requirements, but has not been demonstrated to fully resolve GSI-191.

- For acceptable design of the ECCS containment emergency sumps and suction strainers in support of the design criteria for ECCS and CSS in recirculation mode following postulated loss-of-coolant accidents as specified in GDC-35, GDC-38 and GDC-41.

The proposed change resolves GSI-191 and is submitted for approval based on a risk-informed approach that meets RG 1.174 key principles.

LAR Regulatory Evaluation discusses the exemption requests that support the proposed change to the UFSAR.

The current licensing basis for ECCS compliance with 10 CFR 50.46, including the accident analyses provided in Chapter 15, and GDC-35, and for CSS compliance with GDC-38 and GDC-41 remain unchanged.
Environmental Review

3. To process the proposed exemption, the NRC staff will need to conduct an environmental review. Please provide the description that will address the special circumstances supporting this review in accordance with 10 CFR 51.41 and 10 CFR 51.45.

STP Response:

- For each exemption request, environmental considerations will include information to address the following:

 - 10 CFR 51.41 for compliance with Section 102(2) of National Environmental Policy Act (NEPA), consistent with SRP 19.2 (III.4.2) guidance for RG 1.174 applications.
 - 10 CFR 51.22(b), as referenced in 10 CFR 51.20, and categorical exclusion pursuant to 10 CFR 51.22(c)(9).
 - No significant hazards considerations address the three standards set forth in 10 CFR 50.92, “Issuance of amendment.”
Technical Specifications

4. Please describe how the proposed change will affect the Technical Specifications (TSs). Please indicate whether changes are needed to the operability requirements for the affected systems and any changes to the existing TS Action Statements that may be needed.

STP Response:

- An evaluation of the effect of the proposed change on the Technical Specifications will be included in the LAR:
 - Consideration of the categories specified in 10 CFR 50.36(c).
 - Provides a determination that no changes are needed to operability requirements or existing TS Action Statements based on TS definition of Operable/Operability addressing the required support function provided by the containment sumps and strainers for ECCS and CSS

- Conforming changes to the TS Bases (for information only) will be included in the markups submitted with the LAR.
Questions and Comments
5. The basis for the proposed change is that the residual risk from the remaining GSI-191 issues (e.g., those not already addressed in a deterministic manner) satisfies the criteria in Regulatory Guide (RG) 1.174, Revision 2, “An Approach For Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis,” May 2011 (ADAMS Accession No. ML100910006). However, the application does not appear to provide sufficient detail for the NRC staff to determine whether the criteria of RG 1.174 have been met. Please describe in detail how the principles of RG 1.174 criteria regarding safety margin, defense-in-depth (DID), and change in risk are met. In particular, please include the following:
Basis for the Proposed Change

5.a. Regarding the technical evaluation that supports the risk metrics, the Project Summary (Enclosure 4 to the application) describes numerous areas where the technical evaluation deviates from the approved guidance for addressing GSI-191. However, the application provides little or no information on how the issues were addressed. Please provide a discussion in sufficient detail to permit NRC staff review of the methods, bases, assumptions, acceptance criteria, and results. If test results are used to develop probability distributions, please describe how these distributions were determined and used in the overall risk evaluation. Please also provide the basis for the acceptance criteria chosen. The NRC staff requires additional information in the following areas:
NRC Approved GSI-191 Methods

- Methodology for GSI-191 evaluation has evolved, and NRC accepted methods are documented in various sources:
 - NEI 04-07 and associated SER
 - Plant-specific audit reports
 - Crystal River, Ft. Calhoun, Watts Bar, etc.
 - March 2008 guidance reports
 - Public meeting minutes
- NRC requested more information on the technical areas in the submittal that involve deviations from approved guidance (summarized in Volume 1 Project Summary).
- Revised submittal will describe the methods, bases, assumptions, acceptance criteria, and results for each of these areas.
Topical Area: Debris Generation

<table>
<thead>
<tr>
<th>NRC-Approved Deterministic Methods – NEI 04-07 SER</th>
<th>STP Risk-Informed Methods</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use spherical or hemispherical ZOI</td>
<td>Use spherical or hemispherical ZOI</td>
<td>No difference</td>
</tr>
<tr>
<td>17D ZOI for Nukon and Thermal-Wrap</td>
<td>17D ZOI for Nukon and Thermal-Wrap</td>
<td>No difference</td>
</tr>
<tr>
<td>28.6D ZOI for Microtherm</td>
<td>28.6D ZOI for Microtherm</td>
<td>No difference</td>
</tr>
<tr>
<td>4D ZOI for qualified coatings</td>
<td>4D ZOI for qualified coatings</td>
<td>No difference</td>
</tr>
<tr>
<td>Truncate ZOI at walls</td>
<td>Truncate ZOI at walls</td>
<td>No difference</td>
</tr>
<tr>
<td>4-category size distribution for fiberglass debris including fines, small pieces, large pieces, and intact blankets</td>
<td>Alion proprietary 4-category size distribution methodology (consistent with guidance in SER appendices)</td>
<td>Alion 4-category size distribution methodology previously accepted by NRC for deterministic evaluations</td>
</tr>
<tr>
<td>100% fines for Microtherm debris</td>
<td>100% fines for Microtherm debris</td>
<td>No difference</td>
</tr>
<tr>
<td>100% fines (10 μm) for qualified coatings debris</td>
<td>100% fines (10 μm) for qualified coatings debris</td>
<td>No difference</td>
</tr>
</tbody>
</table>
Topical Area: Debris Generation

<table>
<thead>
<tr>
<th>NRC-Approved Deterministic Methods – NEI 04-07 SER</th>
<th>STP Risk-Informed Methods</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% failure for all unqualified coatings debris</td>
<td>Time-dependent and partial failure of unqualified coatings based on available data.</td>
<td>New engineering model documented in Volume 3 CASA Grande Analysis.</td>
</tr>
<tr>
<td>Unqualified coatings fail as 10 μm particles if the strainer is fully covered or as chips if a fiber bed would not be formed.</td>
<td>Unqualified coatings fail in a size distribution based on coating type and available data.</td>
<td>Similar methods previously accepted by NRC for deterministic evaluations</td>
</tr>
<tr>
<td>Plant-specific walkdowns required to determine latent debris quantity</td>
<td>STP-specific walkdown used to determine latent debris quantity</td>
<td>No difference</td>
</tr>
<tr>
<td>Latent debris consists of 85% dirt/dust and 15% fiber</td>
<td>Latent debris consists of 85% dirt/dust and 15% fiber</td>
<td>No difference</td>
</tr>
</tbody>
</table>
The following discussion of unqualified coatings debris generation (Item 5.a.1) is intended to provide an indication of the level of detail planned for the responses.
Topical Area: Debris Generation

5.a.1) Failure timing, failure amounts, and debris characteristics of unqualified coatings.

STP Response:

- Input parameters used for failure timing, failure amounts, and characteristics of unqualified coatings are provided in Volume 3.

- Description of the method, basis, and assumptions used to develop the unqualified coatings input parameters is provided in a plant-specific unqualified coatings calculation.

- As an example of the detailed information that will be provided in the revised submittal:
Example Response

<table>
<thead>
<tr>
<th>Unqualified Coatings Type</th>
<th>Upper Containment Quantity (lb_m)</th>
<th>Lower Containment Quantity (lb_m)</th>
<th>Reactor Cavity Quantity (lb_m)</th>
<th>Total Quantity (lb_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy</td>
<td>295 (15%)</td>
<td>36 (2%)</td>
<td>1,574 (83%)</td>
<td>1,905</td>
</tr>
<tr>
<td>IOZ</td>
<td>305 (83%)</td>
<td>64 (17%)</td>
<td>0 (0%)</td>
<td>369</td>
</tr>
<tr>
<td>Alkyd</td>
<td>146 (54%)</td>
<td>125 (46%)</td>
<td>0 (0%)</td>
<td>271</td>
</tr>
<tr>
<td>Baked Enamel</td>
<td>0 (0%)</td>
<td>267 (100%)</td>
<td>0 (0%)</td>
<td>267</td>
</tr>
<tr>
<td>Intumescent</td>
<td>0 (0%)</td>
<td>2 (100%)</td>
<td>0 (0%)</td>
<td>2</td>
</tr>
</tbody>
</table>
Example Response

Epoxy

- Probability
- % Failure

Public Meeting May 23, 2013
Example Response

<table>
<thead>
<tr>
<th>Time (Hours)</th>
<th>Time Dependent Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 24</td>
<td>$0.060 \cdot F_{\text{fail}}$</td>
</tr>
<tr>
<td>24 - 48</td>
<td>$0.067 \cdot F_{\text{fail}}$</td>
</tr>
<tr>
<td>48 - 72</td>
<td>$0.054 \cdot F_{\text{fail}}$</td>
</tr>
<tr>
<td>72 - 96</td>
<td>$0.054 \cdot F_{\text{fail}}$</td>
</tr>
<tr>
<td>96 - 124</td>
<td>$0.107 \cdot F_{\text{fail}}$</td>
</tr>
<tr>
<td>124 - 148</td>
<td>$0.040 \cdot F_{\text{fail}}$</td>
</tr>
<tr>
<td>148 - 172</td>
<td>$0.047 \cdot F_{\text{fail}}$</td>
</tr>
<tr>
<td>172 - 192</td>
<td>$0.040 \cdot F_{\text{fail}}$</td>
</tr>
<tr>
<td>192 - 216</td>
<td>$0.040 \cdot F_{\text{fail}}$</td>
</tr>
<tr>
<td>216 - 240</td>
<td>$0.040 \cdot F_{\text{fail}}$</td>
</tr>
</tbody>
</table>
Example Response

<table>
<thead>
<tr>
<th>Debris Type</th>
<th>Debris Size</th>
<th>Microscopic Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unqualified Epoxy</td>
<td>Fines: 6 mil particles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fine Chips: 0.0156” × 15 mil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small Chips: 0.125” - 0.5” × 15 mil</td>
<td>124 lbm/ft³</td>
</tr>
<tr>
<td></td>
<td>Large Chips: 0.5” - 2.0” × 15 mil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curled Chips: 0.5” - 2.0” × 15 mil</td>
<td></td>
</tr>
<tr>
<td>Unqualified IOZ</td>
<td>Fines: 4 - 20 μm particles</td>
<td>244 lbm/ft³</td>
</tr>
<tr>
<td>Unqualified Alkyd</td>
<td>Fines: 4 - 20 μm particles</td>
<td>207 lbm/ft³</td>
</tr>
<tr>
<td>Unqualified Baked Enamel</td>
<td>Fines: 4 - 20 μm particles</td>
<td>93 lbm/ft³</td>
</tr>
</tbody>
</table>
Chemical Effects
Chemical Effects in STP Submittal – Overview

- In-vessel
 - WCAP-16793 (cold leg breaks)
 - Adequate flow through alternate path for all hot leg breaks and for small cold leg breaks.

- Strainer head loss
 - STP-specific testing helped to confirm that chemical products do not form or form in small enough quantities that they are not deleterious for prototypical conditions.
 - Conservatively applied multipliers on strainer head loss:
 - 5 times multiplier on conventional head loss calculation
 - Multiplier distributions for chemical head loss based on break size.
 - SBLOCA 2.3 mean (15.4 maximum)
 - MBLOCA 2.5 mean (18.2 maximum)
 - LBLOCA 3.0 mean (24.0 maximum)
Topical Area: Chemical Effects

<table>
<thead>
<tr>
<th>NRC-Approved Deterministic Methods – NEI 04-07 SER</th>
<th>STP Risk-Informed Methods</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosion and dissolution of metals and insulation in containment is a function of temperature, pH, and water volume. Accepted model is WCAP-16530-NP.</td>
<td>WCAP-16530-NP model used to calculate corrosion for wide range of scenarios, and inform engineering judgment for chemical effects bump-up factors.</td>
<td>Overall chemical effects evaluation is a new approach as documented in Volume 3 CASA Grande Analysis.</td>
</tr>
<tr>
<td>100% of material in solution will precipitate.</td>
<td>Some material in solution may not precipitate depending on the temperature-dependent solubility limit of the precipitate.</td>
<td>Overall chemical effects evaluation is a new approach as in Volume 3 CASA Grande Analysis.</td>
</tr>
<tr>
<td>Precipitates can be simulated using the surrogate recipe provided in WCAP-16530-NP.</td>
<td>Chemical products generally appear to be more benign than WCAP surrogate.</td>
<td>Overall chemical effects evaluation is a new approach as documented in Volume 3 CASA Grande Analysis.</td>
</tr>
</tbody>
</table>
Topical Area: Chemical Effects

5.a.6) Chemical effects corrosion and dissolution models.

STP Response:

- Corrosion and dissolution models are part of the overall chemical effects analysis; the approach used to account for chemical effects head loss is documented in Volume 3 CASA Grande Analysis.

- New models were not developed for corrosion and dissolution, but the WCAP-16530-NP methodology was used to determine the range of potential chemical product quantities for various break scenarios as documented in a plant-specific calculation.
Topical Area: Chemical Effects

5.a.7) Basis for excluding any plant materials from chemical testing.

STP Response:
- Copper, lead, carbon steel, Microtherm, alkyd coatings, and epoxy coatings were not included in the integrated tests based either on minimal exposure in the STP containment or previous testing that indicated negligible effects.
Topical Area: Chemical Effects

5.a.8) Chemical precipitation models – amount, type, head loss effect.

STP Response:
- Chemical precipitation inputs are addressed in the 5.a.6 response.
- Head loss effects addressed as part of the 5.a.11 response.
Topical Area: Chemical Effects

5.a.9) *Disposition of chemical effects Phenomena Identification and Ranking Table open items.*

STP Response:
- Methods used to address PIRT issues will be documented with the revised submittal.
Topical Area: Strainer Head Loss

<table>
<thead>
<tr>
<th>NRC-Approved Deterministic Methods – NEI 04-07 SER</th>
<th>STP Risk-Informed Methods</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform plant-specific head loss testing of the bounding scenario(s) with a prototype strainer module.</td>
<td>Use the NUREG/CR-6224 correlation so that head loss can be evaluated at the full range of scenarios.</td>
<td>Approach documented in Volume 3 CASA Grande Analysis.</td>
</tr>
<tr>
<td>Address chemical effects head loss using WCAP-16530-NP surrogates in prototype strainer testing.</td>
<td>Address chemical effects head loss with bump-up factor conditional probability distributions.</td>
<td>Overall chemical effects evaluation is a new approach as documented in Volume 3 CASA Grande Analysis.</td>
</tr>
<tr>
<td>Minimum fiber quantity equivalent to 1/16 inch debris bed on the strainers is required to form a thin bed.</td>
<td>Minimum fiber quantity equivalent to 1/16 inch debris bed on the strainers is required to form a thin bed.</td>
<td>No difference</td>
</tr>
<tr>
<td>Bounding strainer head loss compared to bounding NPSH margin and bounding structural margin to determine whether the pumps or strainer would fail.</td>
<td>Time-dependent strainer head loss compared to time-dependent NPSH margin and bounding structural margin to determine whether the pumps or strainer would fail.</td>
<td>Similar engineering model as documented in Volume 3 CASA Grande Analysis.</td>
</tr>
</tbody>
</table>
Topical Area: Strainer Head Loss

5.a.10) Head loss model.

STP Response:

- Basic head loss model is consistent with the NUREG/CR-6224 correlation as documented in Volume 3 CASA Grande Analysis.
- Limited head loss testing used to help confirm that the NUREG/CR-6224 model provided reasonable predictions for STP conditions is documented in a head loss test report.
Topical Area: Strainer Head Loss

5.a.11) Chemical effects on head loss (bump-up factor) model.

STP Response:

- Multiplier factor probability distributions that are dependent on break size were used to account for chemical effects head loss; the basis for the probability distributions is documented in Volume 3 CASA Grande Analysis.

- Based on engineering judgment multipliers were applied to the NUREG/CR-6224 correlation to account for uncertainties in chemical effects head loss.
Questions and Comments
Topical Area: Debris Transport

<table>
<thead>
<tr>
<th>NRC-Approved Deterministic Methods – NEI 04-07 SER</th>
<th>STP Risk-Informed Methods</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic tree approach to analyzing transport phases: blowdown, washdown, pool fill, recirculation, and erosion</td>
<td>Logic tree approach to analyzing transport phases: blowdown, washdown, pool fill, recirculation, and erosion</td>
<td>No difference</td>
</tr>
<tr>
<td>All large pieces and a portion of small pieces are captured when blowdown flow passes through grating.</td>
<td>Fines transport proportional to containment flow, grating and miscellaneous obstructions capture some small and large pieces.</td>
<td>Similar methods previously accepted by NRC for deterministic evaluations</td>
</tr>
<tr>
<td>100% washdown of fines, limited credit for hold-up of small pieces, and 0% washdown of large pieces through grating</td>
<td>100% washdown of fines. Credit for hold-up of some small piece debris on grating. 0% washdown of large pieces through grating.</td>
<td>Includes some new methodology as documented in Volume 3 CASA Grande Analysis.</td>
</tr>
<tr>
<td>Pool fill transport to inactive cavities must be limited to 15% unless sufficient justification can be made</td>
<td>Pool fill transport to inactive cavities is less than 15%. Methodology is based on exponential equation with uniform mixing of fines.</td>
<td>Similar methods previously accepted by NRC for deterministic evaluations</td>
</tr>
</tbody>
</table>
Topical Area: Debris Transport

<table>
<thead>
<tr>
<th>NRC-Approved Deterministic Methods – NEI 04-07 SER</th>
<th>STP Risk-Informed Methods</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFD refinements are appropriate for recirculation transport, but a blanket assumption that all debris is uniformly distributed is not appropriate.</td>
<td>Recirculation transport based on conservative CFD simulations developed for the deterministic STP debris transport calculation. All debris was not assumed to be uniformly distributed.</td>
<td>Methodology for CFD modeling and recirculation transport analysis previously accepted by NRC for deterministic evaluations.</td>
</tr>
<tr>
<td>90% erosion should be used for non-transporting pieces of unjacketed fiberglass in the recirculation pool unless additional testing is performed to justify a lower fraction.</td>
<td>Probability distribution with a range of less than 10% erosion based on Alion testing.</td>
<td>Values are relatively close to the experimentally determined 10% erosion value previously accepted by the NRC for deterministic evaluations.</td>
</tr>
<tr>
<td>1% erosion of small or large pieces of fiberglass held up in upper containment.</td>
<td>1% erosion of small or large pieces of fiberglass held up in upper containment.</td>
<td>No difference.</td>
</tr>
<tr>
<td>Minimal previous analysis on time-dependent transport.</td>
<td>Time-dependent transport evaluated for pool fill, washdown, recirculation, and erosion.</td>
<td>Several aspects of the time-dependent transport are new engineering models as documented in Volume 3 CASA Grande Analysis.</td>
</tr>
</tbody>
</table>
Topical Area: Debris Transport

5.a.2) Capture of small and large pieces of debris on gratings and obstructions.

STP Response:

- Methodology for debris capture on gratings and obstructions during the blowdown phase is documented in an engineering calculation based on plant-specific features (locations of grating, etc.) and applicable test data.

- Debris capture on grating and obstructions is related to the blowdown transport. Transport fractions that were used are documented in Volume 3 CASA Grande Analysis.
Topical Area: Debris Transport

5.a.3) Washdown transport holdups.

STP Response:
- Description of the method, basis, and assumptions used to develop the washdown transport fractions is provided in a plant-specific debris transport calculation.
- Washdown transport holdups are related to the overall washdown transport; the transport fractions that were used are documented in Volume 3 CASA Grande Analysis.
Topical Area: Debris Transport

5.a.4) Non-uniform debris distribution at the onset of recirculation.

STP Response:

- The debris distribution at the start of recirculation is related to the recirculation transport; the transport fractions that were used are documented in Volume 3 CASA Grande Analysis.

- Description of the method, basis, and assumptions used to develop the recirculation transport fractions is provided in a plant-specific debris transport calculation.
Topical Area: Debris Transport

5.a.5) *Time dependent transport.*

STP Response:

- Time-dependent arrival of debris on the strainer is documented in Volume 3 CASA Grande Analysis.
- Description of the method, basis, and assumptions used to determine the time-dependent transport is provided in a plant-specific debris transport calculation.
Topical Area: Air Intrusion

<table>
<thead>
<tr>
<th>NRC-Approved Deterministic Methods – NEI 04-07 SER</th>
<th>STP Risk-Informed Methods</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release of air bubbles at the strainer calculated based on the water temperature, submergence, strainer head loss, and flow rate.</td>
<td>Release of air bubbles at the strainer calculated based on the water temperature, submergence, strainer head loss, and flow rate.</td>
<td>No difference</td>
</tr>
<tr>
<td>NPSH margin adjusted based on the void fraction at the pump inlet</td>
<td>NPSH margin adjusted based on the void fraction at the pump inlet</td>
<td>No difference</td>
</tr>
<tr>
<td>Void fraction at pumps compared to a steady-state void fraction of 2% to determine whether the pumps would fail.</td>
<td>Void fraction at pumps compared to a steady-state void fraction of 2% to determine whether the pumps would fail.</td>
<td>No difference.</td>
</tr>
</tbody>
</table>
Topical Area: Debris Penetration

<table>
<thead>
<tr>
<th>NRC-Approved Deterministic Methods – NEI 04-07 SER</th>
<th>STP Risk-Informed Methods</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform plant-specific fiber penetration testing of the bounding scenario(s) with a prototype strainer module.</td>
<td>Develop a fiber penetration correlation as a function of strainer flow rate and fiber accumulation based on a series of penetration tests.</td>
<td>New approach documented in Volume 3 CASA Grande Analysis.</td>
</tr>
<tr>
<td>100% penetration of transportable particulate and chemical precipitates.</td>
<td>100% penetration of transportable particulate and chemical precipitates.</td>
<td>No difference.</td>
</tr>
</tbody>
</table>
Topical Area: Debris Penetration

5.a.12) *Fiber bypass amounts and amounts reaching the core for various scenarios.*

STP Response:

- The methodology and model for determining time-dependent penetration and accumulation on the core is documented in Volume 3 CASA Grande Analysis.

- Testing used to develop the penetration correlation is documented in a penetration test report, and the correlation parameters are documented in a plant-specific data analysis report.
Topical Area: Ex-Vessel Downstream Effects

<table>
<thead>
<tr>
<th>NRC-Approved Deterministic Methods – NEI 04-07 SER</th>
<th>STP Risk-Informed Methods</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate ex-vessel wear and clogging based on the methodology in WCAP-16406-P</td>
<td>Evaluate ex-vessel wear and clogging based on the methodology in WCAP-16406-P</td>
<td>No difference.</td>
</tr>
</tbody>
</table>
Topical Area: In-Vessel Downstream Effects

<table>
<thead>
<tr>
<th>NRC-Approved Deterministic Methods – NEI 04-07 SER</th>
<th>STP Risk-Informed Methods</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compare fiber quantity on core to bounding 15 g/FA limit based on WCAP-16793-NP.</td>
<td>Use RELAP5 simulations to show that cold leg small break LOCAs and all hot leg LOCAs would not go to core damage with full blockage at the base of the core. For medium and large cold leg breaks, use WCAP-16793-P for fiber limit on the core.</td>
<td>New approach documented in Volume 3 CASA Grande Analysis.</td>
</tr>
<tr>
<td>Evaluate reduced heat transfer due to deposition on fuel rods using LOCADM software.</td>
<td>Evaluate reduced heat transfer due to deposition on fuel rods using LOCADM software.</td>
<td>No difference.</td>
</tr>
</tbody>
</table>
Topical Area: In-Vessel Downstream Effects

5.a.13) *Fiber limits for in-vessel evaluations.*

STP Response:

- Fiber limits for core blockage and boron precipitation are described in Volume 3 CASA Grande Analysis.
- Limits are based in part on thermal-hydraulic modeling documented in a plant specific report, as well as fuel head loss test results documented in WCAP-16793-NP.
Topical Area: In-Vessel Downstream Effects

5.a.14) *Thermal-hydraulic analysis for in-vessel evaluations.*

STP Response:

- Thermal-hydraulic results are described at a high level in Volume 3 CASA Grande Analysis, and a detailed description of the analysis is described in plant-specific reports.
Topical Area: Boron Precipitation

<table>
<thead>
<tr>
<th>NRC-Approved Deterministic Methods – NEI 04-07 SER</th>
<th>STP Risk-Informed Methods</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>No currently accepted methodology.</td>
<td>Evaluate fiber accumulation on the core for cold leg breaks during cold leg injection. Assume that 7.5 g/FA of fiber is sufficient to form a debris bed that would prevent natural mixing between the core and lower plenum. Assume failure due to boron precipitation if this quantity arrives prior to hot leg switchover.</td>
<td>New approach documented in Volume 3 CASA Grande Analysis.</td>
</tr>
</tbody>
</table>
Topical Area: Boron Precipitation

5.a.15) *Boric acid precipitation evaluations.*

STP Response:

- Methodology for addressing boric acid precipitation is described in Volume 3 CASA Grande Analysis.
Questions and Comments
5.a.16) Methodology for determination and implementation of physical effects probability distributions.

STP Response:

- Probability distributions for each input parameter are described in Volume 3 CASA Grande Analysis.
- Descriptions of the method, basis, and assumptions used to develop the probability distributions are provided in several different plant-specific calculations and reports.
Treatment of Uncertainty

5.d. Please provide sufficient detail necessary to assess the treatment of uncertainty. While several known categories of uncertainty are identified (zone of influence, chemical effects, debris transport, etc.), the mechanistic models and associated parametric factors used in the analysis are not identified, nor are probability density functions for the parameters provided (Enclosure 4, Section 2.5). Please provide this information.

STP Response:

- Uncertainty associated with the various CASA Grande input parameters is quantified using the probability distributions for the parameters.
- Different approaches are used to develop the CASA Grande input parameters depending on the data that is available; these approaches are documented in several different plant-specific calculations and reports.
Questions and Comments
Defense-in-Depth

5.b. Regarding DID, please address how DID is maintained to account for scenarios that are predicted to lead to failure. One method of maintaining DID is to demonstrate that the operators can detect and mitigate inadequate flow through the recirculation strainer and inadequate core cooling. Please describe the supporting evaluations that demonstrate DID actions will be effective.

STP Response:

- The proposed change to the UFSAR does not involve a physical change to the plant or changes to the operation of the plant.
- STP DID approach incorporates plant modifications previously implemented to address GSI-191 concerns. These modifications are included in the site-specific PRA model for evaluation of the as-built and as-operated plant.
Defense-in-Depth (DID)

Previous modifications implemented to address GSI-191 are not part of the application, but are included in the site-specific model:

- Original sump screens were replaced with new advanced design, passive sump strainers.
 - New strainers satisfy the current licensing basis requirements for debris loading.
 - Maintain independence and redundancy of the ECCS and CSS sump configurations, with each train pipe inlet provided from its own sump and strainer, and no shared components between trains.
 - Surface area of each strainer increased from ~150 ft² to ~1800 ft².
 - Strainer perforations reduced from 0.25 inches to 0.095 inches in diameter.
- Calcium silicate insulation (Marinite) around reactor vessel nozzles has been replaced with removable NUKON fiberglass insulation.
Defense-in-Depth (DID)

Operator Actions for DID:

- Describes Operator actions for maintaining DID
 - Actions and plant design features for preventing, detecting, and mitigating inadequate recirculation strainer flow and inadequate core cooling
 - Followed guidance in NEI letter on DID strategies (March 5, 2012)
 - Actions that were described in the STP responses to Bulletin 2003-01 and Generic Letter 2004-02 remain in effect.

- Operators will inform the Technical Support Center (TSC) of the condition, and the TSC will evaluate and recommend actions as necessary
Defense-in-Depth (DID)

Supporting Evaluations

- Training – the capabilities of the operators are evaluated through initial and continuing operator training, and the use of simulator exercises.

- Procedure implementation – STP EOPs are evaluated during the procedure development, validation, and approval. Procedures are supported by site-specific analyses, as required.

- Industry guidance – STP EOP directions are based on generic guidance provided by the Westinghouse Owners Group (WOG) Emergency Response Guidelines (ERGs), as supported by vendor analyses.
Barriers for Release of Radioactivity

5.c. Please provide supporting evaluations that demonstrate that the barriers for the release of radioactivity will be maintained with sufficient safety margin.

STP Response:

The physical barriers discussed in Volume 1 Project Summary as part of the RG 1.174 application are:

- The containment
- The reactor coolant pressure boundary
- The fuel cladding

In addition, evaluation of emergency plan actions are discussed.
Questions and Comments
Desired Outcomes – Recap

At the beginning of the meeting, the stated desired outcomes were to gain a clear understanding of:

- The structure of the submittal
- The submittal will address the completeness concern of the staff
- The level of detail that will be provided in the submittal
- What will be in the submittal and what will be provided to the staff for audit