In Situ Object Counting System (ISOCS) as Applied to Scan

Requirements in Support of Final Status Survey at HBPP

September 26, 2012

•

.

In Situ Object Counting System™ (ISOCS) as Applied to Scan **Requirements in Support of the Final Status Survey at HBPP**

September, 26, 2012 **Dale Randall**

Reviewed By: Math Cail Date: 4/1/13 Approved By: MABarly Date: 4/1/13

1.0 <u>SCOPE</u>

This TBD is intended to cover the use of the Canberra ISOCS® detector system as a scanning instrument for Final Status Surveys.

2.0 DISCUSSION

The Canberra characterized High Purity Germanium (HPGe) detector will be used in conjunction with the Canberra Genie[™] software suite to achieve Final Status Survey (FSS) scans of building surfaces and land areas and possibly other media as deemed appropriate (e.g. piping systems). The ISOCS® scanning technique achieves scan coverage over a defined area to set a-priori detection limits. These detection limits must be capable of detecting the investigation level to facilitate follow-up investigations where required

System Description

Two ISOCS-characterized P-type HPGe detectors, manufactured by Canberra Industries, have been procured. As the project progresses, other ISOCS® detectors (e.g. reverse electrode coaxial) may be employed. The key factor regarding the use of other ISOCS® characterized detectors is that specific efficiency calibrations will be developed and evaluated to account for each detector's unique characteristics.

The HPGe detector is mounted on a bracket designed to hold the detector *l* cryostat assembly and associated collimators. This bracket may be mounted in a cage-like frame. This frame permits the detector to be oriented (pointed) over a full range from a horizontal to vertical orientation while being positioned above the surface being evaluated.

The InSpector (MCA) unit that drives the signal chain and the laptop computer that runs the acquisition software (Genie-2000) are mounted either in the frame or on a wheeled cart. These components may be battery powered. Back-up power supplies (e.g. inverter) may be used to support the duty cycle. A wireless network may also be installed so that the laptop computers used to run the systems can be controlled from remote laptop, eliminating the need for a direct cable connection between the operator's station and the ISOCS unit LTP Chapter 5 Performance Criteria

In the performance of required survey unit measurements, levels of radioactivity may be identified that warrant investigation. Depending on the results of the investigation, the survey unit may require no action, remediation, and/or reclassification and resurvey. In order to satisfy the requirements of the HBPP LTP (REF 1), the scan sensitivity and coverage must be adequate to meet the dual specifications for coverage and investigation level as presented in Table 1 and Table 2.

Table I Scan Survey Coverage Requirements					
Class I Class 2 Class 3					
Scan Coverage	100%	10-100 %*	Judgmental (1-10%)		

* For Class 2 Survey Units, the amount of scan coverage will be proportional to the potential for finding areas of elevated activity or areas close to the release criterion in accordance with MARSSIM Section 5.5.3. Accordingly, HBPP will use historical information and the results of individual measurements collected during characterization to correlate this activity potential to scan coverage levels.

Table 2 Investigation Levels

Classification	Scan Investigation Levels	Direct Investigation Levels
		$> DCGL_{EMC}$ or $> DCGL_{W}$ and $>$ a statistical parameter-based
Class I	$> DCGL_{EMC}$	Value
	$> DCGL_W$ or $> MDC_{SCAN}$ if	
Class 2	MDC_{SCAN} is greater than $DCGL_{W}$	> DCGL _W
Class 3	Detectable over Background	> 0.5 DCGL _W

Traditional Scan methodologies

Traditional gamma scan surveys have been performed with handheld instruments such as Nal(Tl) scintillation detectors for gamma in potentially contaminated media or gas flow proportional probes when alpha/beta detection on surfaces is desired.

Technicians will respond to all instrument indications of elevated activity while surveying. Upon receiving an indication, the technician will stop and resurvey the last square meter of area surveyed to verify the increase. Technicians are cautioned, in training, about the importance of the verification survey and are given specific direction in the procedure as to survey extent and scan speed. If the indication is verified, the technician will mark the area with a flag or other appropriate means. Each area marked will be addressed in an investigation survey instruction prepared for the survey unit. The instruction will specify the required actions, such as a re-scan of the area, direct measurements, and collection of a soil sample (for land surveys). Each investigation will be evaluated and reported in the survey area report. (Investigation levels are shown in Table 2.)

With respect to Class 1 Survey Units, surveillance for elevated activity is performed via scan surveys using hand-held field instruments. Acceptance criteria (i.e. $DCGL_{EMC}$) is derived by multiplying the DCGLw by the area factor associated with that area bounded by the grid used to locate soil samples. Occasionally, due to either background radioactivity or the size of the sample location grid, the detection sensitivity for these hand-held instruments exceeds the $DCGL_{EMC}$. In such instances, the survey grid is reduced so that area factors yielding higher $DCGL_{EMC}$ values can be used.

ISOCS Scan methodologies

For the ISOCS scan method, the primary assumption made is that a potential one-squaremeter of elevated radioactivity exists at the edge of the area being evaluated by a single in-situ measurement.

To account for detection (i.e. efficiency) radionuclide-specific investigation levels are developed. Since the investigation levels approximate the DCGLw, assay results below investigation level(s) satisfy both the DCGLw and DCGL_{EMC} criteria.

The ability of ISOCS to perform radionuclide identification is also beneficial where influences from background radioactivity (e.g. ISFSI) impede survey efforts. Count times can be tailored to achieve required detection sensitivities and the detector can be collimated to minimize the influence from sources outside the detector's field of view.

Set up

The ISOCS is most commonly deployed on its cart, a tripod or a crane to accommodate the physical requirements of various measurements. Power may be supplied by battery, AC line or generator. The decision regarding the selection of collimator configuration is determined by the engineer. In some cases it may be desirable to use a 180 degree collimator, taking advantage of exposing more of the detector's sensitive volume whenever background sources are at an insignificant level.

Data collection to support FSS activities will be administered by a specific Survey Plan. Survey Plans may include an index of measurement locations with associated spectrum filenames to ensure that all the required measurements are made and results appropriately managed. Personnel specifically trained to operate the system will perform data collection activities.

Data collection activities will address environmental conditions that may impact soil moisture content. Logs shall be maintained so as to provide a mechanism to annotate such conditions to ensure that efficiency calibration files address the in-situ condition(s). In extreme cases (e.g. standing water, etc.) specific conditions will be addressed to ensure that analysis results reflect the conditions. As previously discussed with respect to water, when unique environmental conditions exist that may impact analysis results, conservative compensatory factors will be applied to the analysis of the data.

Efficiency Calibration

The central feature of the portable ISOCS technology is to support in-situ gamma spectroscopy via the application of mathematically derived efficiency calibrations. Due to the nature of the environment and surfaces being evaluated (assayed), input parameters for the ISOCS efficiency calibrations will be reviewed on a case-by-case basis to ensure the applicability of the resultant efficiency. Material densities applied

to efficiency calibrations will be documented. In practice, a single efficiency calibration file may be applied to the majority of the measurements.

The geometry most generally employed will be a circular plane assuming uniformly distributed activity. Efficiency calibrations will address a depth of 15 cm for soil and a depth up to 5 cm for concrete surfaces to account for activity embedded in cracks, etc. Other geometrics (e.g. exponential circular plane, rectangular plane, etc.) will be applied if warranted by the physical attributes of the area or surface being evaluated. Efficiency calibrations are developed by radiological engineers who have received training with respect to the ISOCS software. Efficiency calibrations will be documented in accordance with the HBPP QAPP.

Attenuation by standing water will need to be modeled into the shot and carefully verified so as to not understate the depth. Experience has shown that it becomes difficult to meet detection limits with more than two inches of water in a scan shot. If there is evidence of standing water (i.e., a water sheen is visible on the soil media) then an appropriately thick layer of water attenuator will be added to the model.

Designing coverage

It is frequently desirable or required to ensure 100% scan coverage of a survey unit. This may be achieved through the use of a triangular grid pattern with positions determined using the Visual Sample Plan (VSP) software. For the purposes of this discussion, it is assumed that the 90 degree collimators are installed and that the detector face is orientated downward and is lifted to the desired height, h above the horizontal plane. The field of view of the detector is a circle of radius h. By geometric construction, the maximum horizontal distance L, between the scan shots becomes:

Equation 1

$$L=\sqrt{3}*h$$

Where, L is the triangular grid spacing; and h is the vertical height of the detector

To use VSP to design a triangular grid pattern for a given survey unit, we will use a random start point. The current VSP software version (v. 6.2d) requires that the number of desired samples (scan shots) N, be used to establish a triangular grid with a random start point of appropriate grid spacing. This input may be determined by using the familiar triangular grid equation from the MARSSIM:

$$L = \sqrt{\frac{A}{0.866N}}$$

Or, stated more purely;

Equation 3

$$L = \sqrt{\frac{A}{\sqrt{\frac{3}{2}N}}}$$

Thus Using Equations 2 and 3:

$$\sqrt{3} * h = \sqrt{\frac{A}{\sqrt{\frac{3}{2}N}}}$$

Thus,

$$^{2}3h^{2} = \frac{A}{N * \sqrt{\frac{3}{2}}}$$

Solving for N,

Equation 4

$$N = \frac{A}{3h^2 * \sqrt{\frac{3}{2}}}$$

It is recommended that N+1 be input into the VSP run to ensure a slight additional overlap for conservative margin. As shown in Figures 1 and 2, once the triangular grid is constructed it will be necessary to verify that 100% of the area is covered by plotting the scan measurement locations and the field of view for each measurement in a drafting program such as AutoCAD. Additional scan shots on the periphery of the survey unit may be readily added by plotting additional measurement locations using the sample

points along the triangular grid. The manually added scan shot locations are shown in red.

Figure 1- Using VSP for plotting ISOCS scan locations

Figure 2- An array of 2m high ISOCS scans used to achieve 100% coverage

HBPP Required Detection Levels

Class I Survey Units

As noted earlier, the primary assumption made is that a potential one-square-meter of elevated radioactivity exists at the edge of the area being evaluated by a single in-situ measurement. In order to determine the required scan MDC one needs to determine the DCGL_{EMC} for this hypothetical case. Tables 3 and 4 present the DCGL_{EMC} scan requirement for Class 1 Areas for the primary nuclides of concern Cs-137 and Co-60.

Table 3 Soil Values

Nuclide	DCGL _w (pCi/g)	Area Factor (1m ²)	DCGL _{EMC} (pCi/g)
Cs-137	7.9	14	110
Co-60	3.8	10	380

Table 4 Surface Values

Nuclide	$DCGL_w$ (dpm/ 100 cm ²)	Area Factor (1m ²)	DCGL _{EMC} (dpm/ 100 cm ²)
Cs-137	4.6 E4	15	6.90 E5
Co-60	1.3 E4	13	1.69 E5

Class 2 Survey Units

Since the investigation Level for Class 2 Survey units is given from Table 2 as:

 $>DCGL_W$ or $>MDC_{SCAN}$ if MDC_{SCAN} is greater than $DCGL_W$

In order to meet this requirement we will set the detection limits such that:

 $>DCGL_w$ in a 1 m² area at the edge of the field of view may be detected.

Class 3 Survey Units

Since the investigation Level for Class 3 Survey units is given from Table 2 as:

Detectable over background.

This requirement is met by investigating any scan that positively detects activity in excess of the site assessed surface soil background of 0.4 pCi/g Cs-137.

Attachment 1 provides a site specific ISOCS run that demonstrates the nominal scan detection limits are met for soils in a 600 second count.

3.0 LIMITATIONS

The use of the in-situ techniques should be limited to characterized HPGe detectors utilizing appropriate geometries and will be used in conjunction with the Canberra GenieTM software suite. All operations should be conducted in accordance with applicable site procedures additionally; the following condition must be satisfied:

• The geometries must be reviewed by a Subject Matter Expert (SME) to ensure they are correctly developed and accurate or conservative approximations of the media being measured.

4.0 CONCLUSION

Caution needs to be used in the application of geometries for ISOCS scanning. Careful verification that the environmental conditions and geometric arrangement are appropriate to the detector geometry is pivotal to ensuring the accuracy of the results.

Field conditions may also significantly influence the practical applicability of the ISOCS as a field instrument. Experience has shown that the impact of attenuation from standing water may be particularly problematic in achieving the required detection sensitivity. Consequently, it is recommended that standing water be avoided to the extent practical and sufficient counting times are planned for where it is impractical to eliminate.

The ISOCS methodology presented has been demonstrated as an acceptable means for achieving survey scan objectives; provided that proper care is taken to ensure that the results are valid.

8.0 <u>REFERENCES</u>

- 1. NUREG- 1575, MARSSIM "Multi-Agency Radiation Site Survey and Investigation Manual", Rev 1, August, 2000.
- 2. HBPP License Termination Plan DRAFT (May 2012)
- 3. ENG-HB-003 "Humboldt Bay Soil Derived Concentration Guideline Levels", Rev 0, 2-29-12
- 4. ENG-HB-004 "Humboldt Bay Building Surface Derived Concentration Guideline Levels", Rev 0, 2-29-12.

- 5. ENG-HB-005 "Area Factors for Use with Humboldt Bay Soil DCGLs", Rev 0, 3-02-12.
- 6. ENG-HB-006 "Area Factors for Use with Humboldt Bay Building Surface DCGLs", Rev 0, 3-02-12.
- 7. C&RP B-9 Vol. 8, Rev 0, "OPERATION OF THE GENIE-2000 GAMMA SPECTROSCOPY SYSTEM"

.

Attachment 1

.

.

.

Demonstration of Achieving Required Detection Limits for Soils in a 10 minute Count Interval

.

-

.

Case Modeled	Case A	Case B	Case C
	MDA (pCi/g)	MDA (pCi/g)	MDA (pCi/g) Cs-
Time (sec)	Cs-137	Cs-137	137
600	0.300	3.13	2.87
Case Modeled	Case A	Case B	Case C
Case Modeled Time (sec)	Case A MDA (pCi/g) Co-60	Case B MDA (pCi/g) Co-60	Case C MDA (pCi/g) Co- 60

.

Case A	Entire field of view @ 2m height 45° collimator 1.6 g/cm ³
Case B	1m ² circle edge field of view @ 2m height 45 ^o collimator 1.6 g/cm ³
Case C	1m ² circle edge field of view @ 2m height 45 ^o collimator 1.6 g/cm ³

•

Geometry Composer Report

(

Date:	Wednesday, August 17, 2011 - 09:58:45
Description:	2m Soil, Sm Collimator (I2M FOV)
Comment:	2m Soll, Sm Collimator
File Name:	C:\GENIE2K\lsocs\data\GEOMETRY\In-Situ\CIRCULAR_PLANE\2m Soil, Sm Collimator.geo
Software:	ISOCS
Template:	CIRCULAR_PLANE, Version: (default)
Detector	3920
Collimator:	25mm-90d old (oldISOCS 25mm side 90deg collimation [large hole collimator])
Environment:	Temperature = 60 °F, Pressure = 760 mm Hg, Relative Humidity = 80%
Integration:	Convergence = 1.00% , MDRPN = 2^4 (16), CRPN = 2^4 (16)

Dimensions (cm)

Noi	Description	- d.1 -	d.2.	d.3-*	d:4	dib	d.6	Material	Density	Rel. Conc.
1	Side Walls	0	400		1 March	State Har				
2	Layer 1	15	10113		1512153	888 (A)	Section 4	dirt2	1.6	, 1.00
3	Layer 2	0				S. S. S.	121.13			
4	Layer 3	0	and the start			S. M. 18	S ALL STREET			
5	Layer 4	0	Alex and the	(Paral	张 国和44	6.0.2	M. Sugar			
6	Layer 5	0	S. Contraction		教派领导	S. March &	2.7X1.34			
7	Layer 6	0								
8	Layer 7	0		Sec. 2	建立 法		6349533			
9	 Layer 8 	0			1.34-24		新設設			
10	Layer 9	0				Sec. Sec.	E States			
11	Layer 10	0			2. 8 A		State State			
12	Absorber 1				法法法法					並認得定
13	Absorber 2		a ser ser and							爆合。治疗
14	Source - Detector	200	0	0	0	0	MAR AN	的新闻的问题	公司 公司	新教授 教徒

List of energies for efficiency curve generation

10.0	20.0	30.0	45.0	58.0	59.5	60.0	61.0
70.0	80.0	100.0	150.0	200.0	300.0	400,0	600.0
660.0	661.7	662.0	663.0	800.0	1000.0	1172.0	1173.2
1174.0	1331.0	1332.5	1333.0	1500.0	2500.0		

Page 3 68 47

Geometry Composer Report

ĺ

 Date:
 Wednesday, August 17, 2011 - 09:58:45

 Description:
 2m Soll, Sm Collimator

 Comment:
 2m Soll, Sm Collimator

 File Name:
 C:\GENIE2K\/socs\data\GEOMETRY\In-Situ\CIRCULAR_PLANE\2m Soil, Sm Collimator.geo

 Software:
 ISOCS

 Template:
 CIRCULAR_PLANE, Version: (default)

. . . .

ISOCS/LabSOCS File: ISOCS/LabSOCS Time:	C:\GENIE2K\isocs\data\GEOMETRY\In-Situ\CIRCULAR_PLANE\2m Soil 08/17/11 09:37:46
Genie Cal File:	C:\GENIE2K\CALFILES\2m Soil Sm ,CAL
Gonie Cal Time:	08/17/11 10:04:05
1 plate:	CIRCULAR PLANE
Geom Description:	2m Soil Sm Shld
Comment:	ISOCS:UNITS=ACT/G 2M SOIL, SM COLLIMATOR
Detector:	3920
Collimator:	25MM-90D OLD
Convergence:	1.00 %
Area [Sq Meters]:	1.2566e+001 (C)
Mass [Grams]:	3.0159e+006 (C)
Length [Meters]:	not used ·
(C) = Value calculat	ed by ISOCS
(U) = Value modified	l by user

.

÷

Energy	Efficiency	%Uncertainty	&Convergence	Final # of Voxels
10 00	(X Mass)		0. 0.0000	0000
10.00	4.983370-020	20.0	0.765830	27220
20.00	1,62725e-015	20.0	0.022777	872925
30.00	2.82366e-006	20.0	-0.086117	218225
45.00	5.68310e-002	15.0	0.228611	436465
58.00	8.40232e-001	10.0	-0.242875	6775
59.54	1.03257e+000	10.0	-0.298996	6775
60.00	1.09605e+000	10.0	-0.303913	6775
61.00	1.20881e+000	10,0	0.333334	6775
70.00	2.50849e+000	10.0	-0.464690	6775
80.00	4.26787e+000	10.0	-0.556374	6775
100.00	6.95166e+000	10.0	-0.516969	6775
50,00	9.65846e+000	10.0	-0.548414	6775
L00.00	• 9.86728e+000	8.0	-0.530546	6775
300.00	8.84319e+000	8.0	-0.350321	6775
400.00	7.88400e+000	8.0	-0.213358	6775
600′.00	6.88428e+000	6.0	-0.091989	6775
660.00	6.69235e+000	6.0	-0.073433	6775
661.65	6.68068e+000	6.0	-0.071660	6775
662.00	6.69778e+000	6.0	-0.071590	6775
663.00	6.67896e+000	6.0	-0.071649	6775
800.00	6.31889e+000	6.0	-0.066937	6775
1000.00	5,91949e+000	4.0	-0.071232	6775
1172.00	5,66953e+000	4.0	-0.064342	6775
1173.22	5.66651e+000	4.0	-0.062582	6775
1174.00	5.66395e+000	4.0	-0.063173	6775
1331.00	5.46725e+000	4.0	-0.046045	6775
1332.49	5.46833e+000	4.0	-0.041743	6775
1333.00	5.46025e+000	4.0	-0.041392	6775
1500.00	5.19425e+000	4.0	-0.042582	6775
2500.00	3,99988e+000	4.0	-0.044001	6775

•

.

.

Datasource: SN_3920

Interpolated Efficiency Calibration Curve

Datasource: SN_3920

Ć

Detector SN_3920

Report Generated On : 5/22/2012 11:38:36 AM Sample Identification : Det 3920 Sample Title : 2m LLD, FOV 12m Sample Information : : Sample Type : Sample Geometry ٠ Peak Locate Threshold 3.00 : Peak Locate Range (in channels) : 100 -4096 Peak Area Range (in channels) 100 -4096 : Identification Energy Tolerance : 1,000 keV Sample Size 1.000E+000 g : Sample Taken On : 5/17/2012 11:51:00 AM Acquisition Started : 5/17/2012 11:51:22 AM Live Time 600.0 seconds : Real Time 601.0 seconds : Dead Time 0.16 % :

> Energy Calibration Used Done On : 8/4/2011 Efficiency Calibration Used Done On : 8/17/2011 Efficiency ID : 2m Soil Sm Shld

Performed by	Date	
Reviewed by	Date	
	COPY	

18 to 47

5/22/2012 11:38:37 AM 2 Peak Locate Analysis Report Page **** **** PEAK LOCATE REPORT Detector Name: SN 3920 Sample Title: 2m LLD, FOV 12m Peak Locate Performed on: 5/22/2012 11:38:36 AM Peak Locate From Channel: 100 Peak Locate To Channel: 4096 Peak Search Sensitivity: 3,00 Peak Centroid Centroid Energy Peak No. Channel Uncertainty (keV) Significance 1 1165.13 0.3892 582.85 3.09 2 2921.16 0.2137 1460.66 7.89

? = Adjacent peak noted

Errors quoted at 1.000 sigma

***** ***** PEAK ANALYSIS REPORT Detector Name: SN 3920 Sample Title: 2m LLD, FOV 12m Peak Analysis Performed on: 5/22/2012 11:38:36 AM Peak Analysis From Channel: 100 Peak Analysis To Channel: 4096 Peak ROI ROI Peak FWHM Net Peak Net Area Continuum Energy No. start end Counts centroid (keV) (keV) Area Uncert. 1.62E+001 1 1162- 1169 1165.13 582.85 1.25 1.08E+001 7.10 2 2915- 2928 2921.16 13.37 3.04E+000 1460.66 1.54 1.71E+002 M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet

Errors quoted at 1.000 sigma

Page 4

***** NUCLIDE IDENTIFICATION REPORT ***** Sample Title: 2m LLD, FOV 12m Nuclide Library Used: C:\GENIE2K\CAMFILES\HBPP.NLB IDENTIFIED NUCLIDES Nuclide Id Energy Yield Activity Activity Name Confidence (keV) (응) (pCi/q)) Uncertainty K-40 0.996 1460.81* 10.67 1.374E+0011.207E+000 0.688 T1-208 277.35 6.80 583.14* 84.20 8.342E-002 5,491E-002 860.37 12.46 * = Energy line found in the spectrum. Energy Tolerance : 1,000 keV Nuclide confidence index threshold = 0.30 Errors quoted at 1.000 sigma ******** UNIDENTIFIED PEAKS ******* Peak Locate Performed on: 5/22/2012 11:38:36 AM Peak Locate From Channel: 100 Peak Locate To Channel: 4096 Peak Peak Size in Peak CPS Energy Peak Tol. No. (keV) Counts per Second % Uncertainty Nuclide Type All peaks were identified. M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet

Errors quoted at 1.000 sigma

Nuclide MDA Report

****	****	********	****	*****	****	****			
****	* N	UCLI	ре мра	A REPOR	Т	****			
****	*****	******	****	****	- **********	****			
	Detector Name:	SN	3920						
	Sample Geometry	:			•				
	Sample Title:	2m	LLD, FOV	12m					
	Nuclide Library	Used: C:\	GENIE2K\C	AMFILES\HBPP.N	ĽВ				
	Nuclide	Energy	Yield	Line MDA	Nuclide MDA	Activity			
	Name	(keV)	(왕)	(pCi/g)	(pCi/g)	(pCi/g)			
				. –					
	+ K-40	1460.81*	10.67	9.5472E-001	9.55E-001	1,3739E+001			
	Co-60	1173.22	100.00	1.8273E-001	1.83E-001	-6.5896E-002			
		1332,49	100.00	1.9793E-001		4,5600E-002			
	Nb-94	702,63	100.00	1.7495E-001	1.68E-001	-4.7263E-002			
		871.10	100.00	1.6800E-001		-1,4617E-002			
	Ag-108m	79.20	7.10	1.1801E+001	2.19E-001	-1.2975E+000			
		433.93	89.90	2.2376E-001		-9,2283E-002			
		614.37	90.40	2.4723E-001		-2.0506E-001			
		722.95	90.50	2.1874E-001		9.1741E-002			
	Cs-134	569.31	15.43	1.4419E+000	2.21E-001	-3.6585E-001			
		604.70	97.60	2.2080E-001		-3.2585E-002			
		795.84	85.40	2.6160E-001		-1.2721E-002			
	Cs-137	661.65	85.12	2.9969E-001	3.00E-001	2.7738E-001			
	Eu-152	121.78	28,40	1.3258E+000	7.10E-001	1.1491E-002			
		244.69	7.49	3.3434E+000		9.8786E-001			
		344.27	26.50	7.0956E-001		-6.1133E-001			
		778.89	12.74	1.5412E+000		-3.6755E-001			
		867.32	4.16	4.7168E+000		-1.0484E+000			
		964.01	14.40	1.5175E+000		-1.3070E-001			
		1085.78	10.00	2.0568E+000		-3.6315E-001			
		1112.02	13.30	1.6850E+000		-9,5302E-001			
		1407.95	20.70	8.4534E-001		3.5688E-001			
	Eu-154	123.07	40.50	9.1728E-001	5.15E-001	3.5029E-001			
		247,94	6.60	3,7264E+000		-9.5294E-001			
		723,30	19.70	1.0339E+000		6.8229E-001			
		873.19	11.50	1,4954E+000		-7.4302E-001			
		996.32	10.30	1.5732E+000		~5.1660E-001			
		1004.76	17.90	9.7848E-001		-1.1/25E-001			
		1274.45	35.50	5.1461E-001	0.045.000	2.89136-001			
	Eu-155	105.31	20.70	2.0415E+000	2.04E+000	-1.38356-001			
	PD-206	803.10	100.00	2.15/68-001	2.16E-UUI	6.0968E-002			
	AC-228	338,32	11.40	1.89886+000	8.496-001	9.81605-001			
		911.07	21.10	8.49116-001		5.63915-001			
	m1 004	969.11	16.60	1.3370E+000	1 000.001	7.35016-001			
	Tn-234	63.29	3.80	4.5458E+001	1.08E+001	2,96805+001			
		92.59	5,41	1.083TE+001	4 000 001	4.33355+UUU			
	0-235	143.70	T0.20	3.0022E+000	4.988-001	L, 303/8-001			
		105.35	4.70	0.1955E+000		3.UZ/35-UUL			
		105,72	54.00	4.9/628-001		-S'0TQAR-00T			
	N . 000	205.31	4.70	4.83876+000	E 040 001				
	NP-237	311.98	38.60	5,9409E-001	5.946-001	T.30TIR-001			
	Am-241	59.54	35.90 _{22 t}	o47.0109E+000	0.01E+000	-Z'IPPSR4000			

Nuclide	Energy	Yield	Line MDA	Nuclide MDA	Activity
Name	(keV)	(음)	(pCi/g)	(pCi/g)	(pCi/g)

+ = Nuclide identified during the nuclide identification

- * = Energy line found in the spectrum
 > = Calculated MDA is zero due to zero counts in the region or
 the region is outside the spectrum
- @ = Half-life too short to be able to perform the decay correction

Geometry Composer Report

(

(

Date:	Thursday, May 03, 2012 - 08:53:52
Description:	3920 2m Soil (12mFOV) 1m on o/s edge of FOV Sm Collimator D1.6
Comment:	Calib. Date 5/3/12
File Name:	C:\GENIE2K\lsocs\data\GEOMETRY\In-Situ\CIRCULAR_PLANE\3920 12m FOV 1m Soll Sm Col.geo
Software:	ISOCS
Template:	CIRCULAR_PLANE, Version: (default)
Detector:	Det_3920
Collimator:	25mm-90d old (oldISOCS 25mm side 90deg collimation [large hole collimator])
Environment:	Temperature = 60 °F, Pressure = 760 mm Hg, Relative Humidity = 80%
Integration:	Convergence = 1.00% , MDRPN = 2^4 (16), CRPN = 2^4 (16)

Dimensions (cm)

No.	Description	d.1	di2	1 xd 3	di4 ,*	di5 1	d.6	Material	Density	Rel, Conc.
1	Side Walls	0	113		NAL SHE	1.1.1915	a salar			ASSESSED OF
2	Layer 1	15			新教会		CALL AND	dirt2	1.6	1.00
3	Layer 2	0		N. San M.	State 13	- AM (200	A SUSPECT			
4	Layer 3	0	Stat Car	國家認識	4.00	N. States				
5	Layer 4	0		Sec. St. P.		家大学	1.1.1.1			
6	Layer 5	0	新教的 133		Sec. 1	1124	· 新市市会社			
7	Layer 6	Ö	1. 2013年1	的资源公司	N. C. Star		A Local			
8	Layer 7	0	NA ASS	Mar Ar B	S. S. S.	No. CON			Sector Street	
9	Layer 8	0	A Carlo		Nostar.	120	87723 AN	•		
10	Layer 9	0			1 Saist					
11	Layer 10	0		252.000	ing a start	Sec. 20	N. P. Mary			
12	Absorber 1			123.234		1月(4)。[4]	a state of the second			
13	Absorber 2		182513	West Start		M. Land	191-91			
14	Source - Detector	200	0	0	144	0	建立 393	常教的教育	發展的標	教育など

List of energies for efficiency curve generation

10.0	20.0	30.0	45.0	58.0	59.5	60.0	61.0
70.0	80,0	100.0	150.0	200.0	300.0	400.0	600.0
660.0	661.7	662.0	663.0	800.0	1000.0	1172.0	1173.2
1174.0	1331.0	1332.5	1333.0	1500.0	2500.0		

Page too47

Geometry Composer Report

,

Date:Thursday, May 03, 2012 - 08:53:52Description:3920 2m Soll (12mFOV) 1m on o/s edge of FOV Sm Collimator D1.6Comment:Calib. Date 5/3/12File Name:C:\GENIE2K\isocs\data\GEOMETRY\In-Situ\CIRCULAR_PLANE\3920 12m FOV 1m Soll Sm Col.geoSoftware:ISOCSTemplate:CIRCULAR_PLANE, Version: (default)

ISOCS/LABSOCS RESULTS

ISOCS/LabSOCS File: ISOCS/LabSOCS Time:	C:\GENIE2K\isocs\data\GEOMETRY\In-Situ\CIRCULAR_PLANE\3920 1; 05/03/12 08:46:38
Genie Cal File:	C: GENIE2K CALFILES 3920 12m FOV 1m SC d1.6.CAL
f hie Cal Time:	05/03/12 09:01:38
i .iplate:	CIRCULAR PLANE
Geom Description:	2m Soil 1m Dl.6
Comment:	ISOCS:UNITS=ACT/G CALIB. DATE 5/3/12
Detector:	DET 3920
Collimator:	25MM-90D OLD
Convergence:	1.00 %
Area [Sq Meters]:	1,0029e+000 (C)
Mass [Grams]:	2.4069e+005 (C)
Length [Meters]:	not used
(C) = Value calcula	ted by ISOCS

÷

,

۰.

Energy	Efficiency (X Mass)	&Uncertainty	&Convergence	Final # of Voxels
10.00	7.07653e-021	20.0	-0.574994	4070
20.00	2.31320e-016	20.0	-0.683346	128670
30.00	2.56578e-007	20.0	-0,670869	128670
45.00	5.04790e-003	15.0	-0.792136	8090
58.00	8,22524e-002	10.0	-0.379550	8090
59.54	1.01969e-001	1.0.0	~0.366892	8090
60.00	1.08470e-001	10.0	-0.362993	8090
61.00	1.20183e-001	10.0	-0.355210	8090
70.00	2.57866e-001	10.0	-0.152227	4070
80.00	4.46745e-001	10.0	-0.188625	4070
100.00	7.39453e-001	10.0	-0.280100	4070
(50.00	1.01161e+000	10.0	-0.302081	4070
200.00	1.01221e+000	8.0	-0.314004	4070
300.00	8.78829e-001	8.0	-0.319394	4070
400.00	7.69240e-001	8.0	-0.278667	4070
600.00	6.60629e-001	6.0	-0.188318	4070
660.00	6.41513e-001	` 6.0	-0.171501	4070
661.65	6.40543e-001	6.0	-0.171032	4070
662.00	6.42180e-001	6.0	-0.170946	4070
663.00	6.40235e~001	6.0	-0.170934	4070
800.00	6.07348e-001	6.0	-0.147361	4070
1000.00	5.70982e-001	4.0	-0.129219	4070
1172.00	5.47952e-001	4.0	-0.118688	4070
1173.22	5.48706e-001	4.0	-0.118499	4070
1174.00	5.47969e-001	4.0 .	-0.119254	4070
1331.00	5.29867e-001	4.0	-0.114092	4070
1332.49	5.30880e-001	4.0	-0.114327	4070
1333.00	5.30972e-001	4.0	-0.114317	4070
1500.00	5.06349e-001	4.0	-0.110963	4070
2500.00	3.91114e-001	4.0	-0,107900	4070

⁽U) = Value modified by user

Datasource: SN_3920

ĺ

Interpolated Efficiency Calibration Curve

Datasource: SN_3920

(

***** ***** SPECTRUM ANALYSIS GAMMA Detector SN 3920 : 5/22/2012 11:26:05 AM Report Generated On : Det 3920 Sample Identification : 1m on Edge-Of-View LLD Sample Title Sample Information 1 ż Sample Type : Sample Geometry 1 3.00 Peak Locate Threshold : 100 -Peak Locate Range (in channels) : 4096 Peak Area Range (in channels) 100 -4096 : 1.000 keV Identification Energy Tolerance : Sample Size : 1.000E+000 g 11:51:00 AM Sample Taken On : 5/17/2012 Acquisition Started : 5/17/2012 11:51:22 AM 600.0 seconds Live Time : Real Time 601.0 seconds : Dead Time : 0.16 %

Energy Calibration Used Done On	: 8/4/2011
Efficiency Calibration Used Done On	: 5/3/2012
Efficiency ID	: 2m Soil 1m D1.6

Performed by	Date
Reviewed by	Date
	COPY

29 to 47

Peak Locate Analysis Report

***** **** PEAK LOCATE REPORT Detector Name: SN 3920 Sample Title: 1m on Edge-Of-View LLD Peak Locate Performed on: 5/22/2012 11:26:05 AM Peak Locate From Channel: 100 Peak Locate To Channel: 4096 Peak Search Sensitivity: 3.00 Peak Centroid Centroid Energy Peak No. Channel Uncertainty (keV) Significance 1 1165.13 0.3892 582.85 3.09 7.89 2 2921.16

1460.66

0.2137.

? = Adjacent peak noted

Errors quoted at 2.000 sigma

Peak Analysis Report

-

*****	* * * *	*******	******	*****	* * * * * * * * * * *	******	********
* * * * *	ΡE	АК А	ANALYS	SIS	REPO	RТ	****
* * * * * * * * * * * * * * * *	****	********	********	*****	* * * * * * * * * * *	*****	********
Detector N Sample Tit Peak Analy	ame: le: sis Peak Peak	SN_3920 1m on H Performed Analysis Analysis) Edge-Of-Vie 1 on: 5/22 3 From Chan 8 To Channe	ew LLD 2/2012 nnel: el:	11:26:05 100 4096	AM	
Peak ROI R No. start e	0I nd	Peak centroid	Energy (keV)	FWHM (keV)	Net Peak Area	Net Area Uncert.	Continuum Counts
1 1162- 11 2 2915- 29	69 28	1165.13 2921.16	582.85 1460.66	1.25 1.54	1.08E+001 1.71E+002	14.21 26,74	1.62E+001 3.04E+000
M = First peak m = Other peak F = Fitted sing	in a in a let	multiple multiple	et region et region				

Errors quoted at 2.000 sigma

Interference Corrected Activity Report 5/22/2012 11:26:05 AM Page 4

1m on Edge-Of-View LLD Sample Title: Nuclide Library Used: C:\GENIE2K\CAMFILES\HBPP.NLB IDENTIFIED NUCLIDES Activity Nuclide Energy Yield Activity Id (pCi/g) Uncertainty Name Confidence (keV) (8) К~40 0.996 1460.81* 10.67 1.41018E+002 2.47734E+001 T1-208 0.686 277,35 6.80 583.14* 84.20 8.68281E-001 1.14305E+000860.37 12.46

* = Energy line found in the spectrum. @ = Energy line not used for Weighted Mean Activity Energy Tolerance : 1.000 keV Nuclide confidence index threshold = 0,30 Errors quoted at 2.000 sigma

Nuclide Name	Nuclide Id Confidence	Wt mean Activity (pCi/g)	Wt mean Activity Uncertainty
K-40	0.996	1.410184E+002	2.477343E+001
T1-208	0.686	8.682807E-001	1.143055E+000

? = nuclide is part of an undetermined solution X = nuclide rejected by the interference analysis @ = nuclide contains energy lines not used in Weighted Mean Activity

e - nucliue concains chergy times not about in nergineed near .

Errors quoted at 2,000 sigma

***** PEAKS ******* UNIDENTIFIED Peak Locate Performed on: 5/22/2012 11:26:05 AM Peak Locate From Channel: 100 4096 Peak Locate To Channel: Peak Energy Peak Size in Peak CPS Peak Tol. Nuclide Counts per Second % Uncertainty Type No. (keV)

All peaks were identified.

.

****	* N	UCLI	DE MD	A REPOR	т	* * * * *
****	* * * * * * * * * * * * * * * * *	*******	*******	*****	*****	****
	Detector Name:	SN_	_3920			
	Sample Geometry					
	Sample Title:	1m	on Edge-C)f-View LLD		
	Nuclide Library	Used: C:	GENIE2K\C	CAMFILES\HBPP.N	LB	
	Nuclida	Enover	Viald	Time MDA	Nuclish MDD	D
	Name	Litergy (koV)	11610 (%)	Line MDA		ACLIVILY
	Name	(Kev)	(8)	(per/g)	(berid)	(berid)
-1	К-40	1460.81*	10.67	9.7992E+000	9.80E+000	1.4102E+002
	Co-60	1173.22	100.00	1.8871E+000	1.89E+000	-6.8051E-001
		1332,49	100.00	2.0387E+000 ·	• •	4.6970E-001
	Nb-94	702.63	100.00	1.8236E+000	1.75E+000	-4.9265E-001
		871.10	100.00	1.7455E+000		-1.5187E-001
	Ag-108m	79.20	7.10	1.1289E+002	2.28E+000	-1.2412E+001
	2	433.93	89.90	2.3010E+000		-9.4897E-001
		614.37	90.40	2.5770E+000		-2.1375E+000
		722.95	90.50	2.2791E+000		9.5586E-001
	Cs-134	569.31	15.43	1.4993E+001	2.30E+000	-3.8042E+000
		604.70	97.60	2.3011E+000		-3.3959E-001
		795.84	85.40	2.7219E+000		-1.3236E-001
	Cs-137	661.65	85.12	3.1257E+000	3.13E+ÒOO	2.8930E+000
	Eu-152	121.78	28.40	1.2558E+001	7.20E+000	1.0884E-001
		244.69	7.49	3.3111E+001		9.7831E+000
	•	344.27	26.50	7.2030E+000		-6.2058E+000
		778.89	12.74	1.6041E+001		-3.8255E+000
		867.32	4.16	4.9011E+001		-1.0894E+001
		964.01	14.40	1.5741E+001		-1.3558E+000
		1085.78	10.00	2.1301E+001		-3.7610E+000
		1112.02	13.30	1.7445E+001		-9.8671E+000
		1407.95	20.70	8.6832E+000		3.6658E+000
	Eu-154	123.07	40.50	8.6920E+000	5.31E+000	3.3192E+000
		247.94	6.60	3.6941E+001		-9.4470E+000
		723.30	19.70	1.0772E+001		7,1088E+000
		873.19	11.50	1.5537E+001		-7.7197E+000
		996.32	10.30	1.6311E+001		-5.3560E+000
		1004.76	17.90	1.0144E+001		-1.2154E+000
	D. 155	1274.45	35.50	5.3131E+000	1 000.001	2,9851E+000
	EU-155	105.31	20.70	1.92306+001	1.926+001	~1.3032E+000
	PD-206	803.10	100.00	2.24465+000	2,246+000	6.34276-001
	AC-228	338.32	11.40	1.925464001	8.826+000	9,95346+000
		911.07	21.10	8,81596+000 1,20078,001		- 5.8540E+000
	mh 024	909.11	10.00	1,300/54001	1 000,000	1.0Z305+000
	11-234	03.29	5.80	4,531554002	1.026+002	2.908654002
	11-002	32.39 113 76	5.41 10 50	1,UZ3954UUZ	4 0000000	4.09005+001 1 50060±000
	0~233	163.10	10.20	2,00105+UUL	4,02B+UUU	T'2020D+000
		105.33	4./0	9.9210E+001		4.0ZYOB4UUU
		103.72 205 21	54.00	4.023084000 1 726681001		-1,90/05+000 1705+001
	Nin. 227	203.31	4.70	4./2005+UU1 6.0020m/000	5 0001000	-4.91/257001 1 272081000
	NP-237	20 CV 2TT'20	30.00	5.99305+000 C 00C0B:001	J, JJL+UUU	1.3/305T000
	Am-241	59.54	35.9034	to 47.00086+001	0.02E+00T	-5.13300+001

.

.

Nuclide	Energy	Yield	Line MDA	Nuclide MDA	Activity
Name	(keV)	(8)	(pCi/g)	(pCi/g)	(pCi/g)

+ = Nuclide identified during the nuclide identification

* = Energy line found in the spectrum
> = Calculated MDA is zero due to zero counts in the region or the region is outside the spectrum

@ = Half-life too short to be able to perform the decay correction

Geometry Composer Report

, 🔆 Date:	Thursday, May 03, 2012 - 15:43:51
Description:	3920 2m Soll (12mFOV) 1m on o/s edge of FOV Sm Collimator D2.0
Comment:	Callb. Date 5/3/12
File Name:	C:\GENIE2K\Isocs\data\GEOMETRY\In-Situ\CIRCULAR_PLANE\3920 12m FOV 1m Soll Sm Col D2.geo
Software:	ISOCS
Template:	CIRCULAR_PLANE, Version: (default)
Detector:	Det_3920
Collimator:	25mm-90d old (oldISOCS 25mm side 90deg collimation [large hole collimator])
Environment:	Temperature = 60 °F, Pressure = 760 mm Hg, Relative Humidity = 80%
Integration:	Convergence = 1.00%, MDRPN = 2^4 (16), CRPN = 2^4 (16)

Dimensions (cm)

No	Description	d.1	di2'	d 3	d.4	d 5 🕾	d(6)	Material	Density	Rel. Conc.
1	Side Walls	0	113	Sar 28452	122.20	The life of	14 (A) (A)			
• 2	Layer 1	15	The first	Sec. A.	28. C.S. P	Par land and	N. H. W.	dirt5	2	1.00
3	Layer 2	0	112 251 3	Sec. Sec.	X CALLS	1100年1月1日 121日 - 121日 121日 - 121日 - 121日				
4	Layer 3	0	100 B 1000	1 AND THE		a straight	Ser Linger			
5	Layer 4	0	1. A. A. A. A.	國際的	11 11	Sec. Bart	1887 - 1744 - 1744 - 1744 - 1744 - 1744 - 1744 - 1744 - 1744 - 1744 - 1744 - 1744 - 1744 - 1744 - 1744 - 1744 -			
6	Layer 5	0		A. OF A SA						
7	Layer 6	0		State State		and the	(Crief State)			
8	Layer 7	0				84 Q				
9	Layer 8	0		國家政策		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	And the second			
10	Layer 9	0	Part Control		社会になる	198 2. 3	a think a start			
11	Layer 10	0		1993 (N)			Sec. Part			
12	Absorber 1					《大汉》	Ma a as			and the second
13	Absorber 2		Sale and	12 Jan 20		442	T. S. Carl			派令公司
14	Source - Detector	200	0	0	144	0	家業時本	Same a ser for	States	和短期的问题

List of energies for efficiency curve generation

10.0	20.0	30.0	45.0	58.0	59.5	60.0	61.0
70.0	80.0	100.0	150.0	200.0	300.0	400.0	600.0
660.0	661.7	662.0	663.0	800.0	1000.0	1172.0	1173,2
1174.0	1331.0	1332.5	1333.0	1500.0	2500.0		

Page 18 47

Geometry Composer Report

Date:Thursday, May 03, 2012 - 15:43:51Description:3920 2m Soil (12mFOV) 1m on o/s edge of FOV Sm Collimator D2.0Comment:Calib. Date 5/3/12File Name:C:\GENIE2K\isocs\data\GEOMETRY\In-Situ\CIRCULAR_PLANE\3920 12m FOV 1m Soil Sm Col D2.geoSoftware:ISOCSTemplate:CIRCULAR_PLANE, Version: (default)

ISOCS/LabSOCS File: ISOCS/LabSOCS Time:	C:\GENIE2K\isocs\data\GEOMETRY\In-Situ\CIRCULAR_PLANE\3920 1: 05/03/12 08:52:44
Genie Cal File:	C:\GENIE2K\CALFILES\3920 12m FOV 1m SC d2.0.CAL
[nie Cal Time:	05/03/12 09:24:51
nplate:	CIRCULAR PLANE
Geom Description:	2m Soil 1m D2.0
Comment:	ISOCS;UNITS=ACT/G CALIB. DATE 5/3/12
Detector:	DET 3920
Collimator:	25MM-90D OLD
Convergence:	1.00 % -
Area [Sq Meters]:	1.0029e+000 (C)
Mass [Grams]:	3.0086e+005 (C)
Length [Meters]:	not used
(C) = Value calcula	ted by ISOCS
· · · · · · · · · · · · · · · · · · ·	

(U) = Value modified by user

.

. . .

Energy	Efficiency	&Uncertainty	&Convergence	Final # of Voxels
	(X Mass)			
10.00	3.65168e-021	20.0	-0.249542	2030
20.00	1.13302e-016	20,0 ·	-0.145776	514940
30.00	1.30428e-007	20.0	-0.543440	514940
45.00	2.90801e-003	15.0	-0.765265	128670
58.00	5.54817e-002	10.0	-0.422703	128670
59.54	6.99465e-002	10.0	-0.399607	128670
60.00	7.47832e-002	10.0	-0.393034	128670
61.00	8.65387e-002	. 10.0	-0.798743	8090
70.00	2.00474e-001	10.0	-0.609316	8090
80.00	3.72482e-001	10.0	-0.525756	8090
100.00	6.76365e-001	10.0	0.386913	8090
(50.00	1.01649e+000	10.0	-0.193214	4070
200.00	1.04683e+000	8.0	-0.242543	4070
300.00	9.28692e-001	8.0	-0.287338	4070
400.00	8.21726e-001	8.0	-0.262956	4070
600.00	7,15922e-001	6.0	-0.178655	4070
660.00	6.97567e-001	6.0	-0.162301	4070
661.65	6.96619e-001	6.0	-0.161874	4070
662.00	6.98412e-001	6.0	-0.161790	4070
663.00	6.96381e-001	6.0	-0.161834	4070
800.00	6.65188e-001	6.0	-0.139595	4070
1000.00	6.30763e-001	4.0	-0.123062	4070
1172.00	6.09146e-001	4.0	-0,113856	4070
1173,22	6.10046e-001	4.0	-0.113665	4070
1174.00	6.09176e-001	4.0	-0.114523	4070
1331.00	5.91997e-001	4.0	-0.110425	4070
1332.49	5.93125e-001	4.0	-0.110654	4070
1333.00	5.93234e-001	4.0	-0.110646	4070
1500.00	5.68268e-001	4.0	-0.108198	4070
2500.00	4.46362e-001	4.0	-0.108020	4070

Interpolated Efficiency Calibration Curve

Datasource: SN_3920

l

1

Datasource: SN_3920

(

ŧ

Detector SN 3920

: 5/22/2012 11:27:11 AM Report Generated On : Det 3920 Sample Identification : 1m on Edge-Of-View LLD Sample Title Sample Information : Sample Type Sample Geometry 3.00 Peak Locate Threshold ; Peak Locate Range (in channels) : 100 -4096 Peak Area Range (in channels) : 100 - 4096 Identification Energy Tolerance : 1.000 keV : 1,000E+000 q Sample Size : 5/17/2012 11:51:00 AM Sample Taken On Acquisition Started : 5/17/2012 11:51:22 AM 600.0 seconds Live Time : 601.0 seconds Real Time : Dead Time 0.16 % :

> Energy Calibration Used Done On : 8/4/2011 Efficiency Calibration Used Done On : 5/3/2012 Efficiency ID : 2m Soil 1m D2.0

Performed	bv	Date
		······

Reviewed by _____

Date____

'Peak'Locate Analysis Report

Page 2

***** ***** ****	*****	********* P	**** E A ****	**** K ****	**** L ****	**** 0 (***: CA ***:	*** T ***	**** E ****	*** R ***	**: E ***	*** P ***	** 0 **	** R ***	*** T ***	***	***	* *	** **	** **	*** ***	* * * * * * * *	** ** **	* * *
D S	etecto ample	or Name: Title: Peak Peak Peak Peak	SN 1m Loca Loca Seat	_392 on ate ate ate ch	0 Edge Peri From To (Sens	e-Of form n Cl Chan sit	f-V: ned nani nne: Lvii	iev or nel l: ty:	4 LL 1: L:	D 5/2 1 40 3	2/2 00 96	201 D	2	1	1:	27	7:13	1.	АМ					
P	eak No	Centroi Channe	d 1 (Cen Jnce	troi rtai	ld .nty	ł	Er ()	nerg (eV)	У	S	Lgn	Pe if	a) ic	c car	DCe	2							
	1 2	1165.1 2921.1	3 6	0 0	.389 .213)2 }7		5 14	582. 160.	85 66			3 7)9 }9								•	

? = Adjacent peak noted

Errors quoted at 2.000 sigma

.

**** ***** PEAK ANALYSIS REPORT Detector Name: SN 3920 Sample Title: 1m on Edge-Of-View LLD Peak Analysis Performed on: 5/22/2012 11:27:11 AM Peak Analysis From Channel: 100 4096 Peak Analysis To Channel: Peak ROI ROI Peak FWHM Net Peak Net Area Continuum Energy No. start end (keV) Uncert. Counts centroid (keV) Area 1.62E+001 1 1162- 1169 1165.13 582.85 1,25 1.08E+001 14.21 2915- 2928 1.54 26.74 3.04E+000 2 2921.16 1460.66 1.71E+002 M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet.

Errors quoted at 2.000 sigma

***** **** NUCLIDE IDENTIFICATION REPORT Sample Title: 1m on Edge-Of-View LLD Nuclide Library Used: C:\GENIE2K\CAMFILES\HBPP.NLB IDENTIFIED NUCLIDES Nuclide Activity Activity Id Energy Yield Name Confidence (keV) (%) (pCi/g Uncertainty) K-40 0,996 1460.81* 10.67 1.25780E+002 2.20964E+001 T1-208 0.687 277.35 6.80 583.14* 84.20 8.02044E-001 1,05586E+000 860.37 12.46 * = Energy line found in the spectrum. @ = Energy line not used for Weighted Mean Activity Energy Tolerance : 1.000 keV Nuclide confidence index threshold = 0.30

Errors quoted at 2.000 sigma

44 to 47

	Nuclide Name	Nuclide Id Confidence	Wt mean Activity (pCi/g)	Wt me Activ Uncert	an ity ainty		
	K-40 T1-208	0.996 0.687	1.257799E+00 8.020444E-00)2 2.20964)1 1.05585	1E+001 8E+000		
	? = nucl X = nucl @ = nucl Errors g	ide is part o ide rejected ide contains uoted at 2.0	f an undeterm by the interf energy lines 00 sigma	nined soluti Terence anal not used in	on ysis Weighted	Mean	Activity
****	·****	UNIDEN	TIFIED	PEAKS	******	* *	
		Peak Locate E Peak Locate E Peak Locate 'I	erformed on: rom Channel: o Channel:	5/22/2012 100 4096	11:27:11	АМ	

PeakEnergyPeakSize inPeakCOUNTSNo.(keV)Counts per Second% UncertaintyTypeNuclide

٢

All peaks were identified.

*****	k N	UCLI	DE MD	A REPOR	Т	****
*****	******	********	********	*****	****	****
			2222			
	Detector Name:	SN	_3920			
	Sample Geometry	1.	on Edma (A VIOLITE		
	Sample Title:	III III	ON LOGE-C	N GOOL PACEW PTD W		
	MUCLICE HIDDALY	Used: Ci	CENTESV/C	AMET DES / UDEE , M	L'D	
	Nuclide	Energy	Yield	Line MDA	Nuclide MDA	Activity
	Name	(keV)	(୫)	(pCi/g)	(pCi/g)	(pCi/g)
ł	- К-40	1460.81*	10.67	8,7403E+000	8.74E+000	1.2578E+002
	Co-60	1173.22	100.00	1.6973E+000	1.70E+000	-6.1208E-001
		1332.49	100.00	1.8248E+000		4.2041E-001
	Nb-94	702.63	100.00	1.6730E+000	1.59E+000	-4.5196E-001
		871.10	100.00	1.5885E+000		-1.3821E-001
	Aq-108m	79.20	7.10	1.3611E+002	2.09E+000	-1.4965E+001
		433.93	89.90	2.1478E+000		-8.8580E-001
		614.37	90.40	2.3760E+000		-1.9708E+000
		722.95	90.50	2.0886E+000		8.7600E-001
	Cs-134	569,31	15.43	1.3861E+001	2,12E+000	-3.5169E+000
		604.70	97.60	2.1228E+000		-3.1327E-001
		795.84	85.40	2.4857E+000		-1.2088E-001
	Cs-137	661,65	85,12	2.8741E+000	2.87E+000	2.6601E+000
	Eu-152	121.78	28.40	1.3116E+001	6.78E+000	1.1368E-001
		244.69	7.49	3.1674E+001		9.3587E+000
		344.27	26.50	6.7810E+000		-5.8423E+000
		778.89	12.74	1.4661E+001		-3.4963E+000
		867.32	4.16	4.4610E+001		-9.9158E+000
		964.01	14.40	1.4270E+001		-1.2290E+000
		1085.78	10.00	1.9219E+001		-3.3934E+000
		1112.02	13.30	1.5725E+001		-8.8944E+000
		1407.95	20,70	7.7557E+000		3.2743E+000
	Eu-154	123.07	40.50	9.0563E+000	4.76E+000	3.4584E+000
		247.94	6.60	3.5314E+001		-9.0309E+000
		723.30	19.70	9.8721E+000		6.5148E+000
		873.19	11,50	1.4138E+001		-7.0247E+000
		996.32	10.30	1.4767E+001		-4.8491E+000
		1004.76	17.90	9.1804E+000		-1.1000E+000
		1274.45	35.50	4.7637E+000		2.6764E+000
	Eu~155	105.31	20.70	2.0773E+001	2.08E+001	-1.4078E+000
	Pb-206	803,10	100.00	2.0491E+000	2.05E+000	5.7904E-001
	Ac-228	338.32	11.40	1.8138E+001	8.01E+000	9.3765E+000
	•	911.07	27.70	8.0091E+000		5.3190E+000
	m) 004	969.11	16.60	1.2568E+001		6.9096E+000
	Th-234	63.29	3.80	6.1653E+002	1.16E+002	4.0254E+002
	7 005	92.59	5.41	1.15576+002	4 00-000	4.6241E+001
	U-235	143.76	10.50	2.8762E+001	4,70E+000	1.5172E+000
	•	105,35	4.70	5.8729E+001		4.7657E+000
		182.72	54.00	4./0UZE+000		-1.9069E+000
	M. 007	205.31	4./0	4.5639E+001	F CC- 000	-4./48UE+UU1
•	NP-23/	311.98	38.60	5.66298+000	5.66E+000	1,29/45+000
	Am-241	59.54	35.9046	to 47.8/34E+001	8.8/E+001	-3.13/36+001
						•

Nuclide	Energy	Yield	Line MDA	Nuclide MDA	Activity
Name	(keV)	(응)	(pCi/g)	(pCi/g)	(pCi/g)

- + = Nuclide identified during the nuclide identification
 * = Energy line found in the spectrum
 > = Calculated MDA is zero due to zero counts in the region or the region is outside the spectrum
 @ = Half-life too short to be able to perform the decay correction