

UNITED STATES NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEE ON REACTOR SAFEGUARDS WASHINGTON, DC 20555 - 0001

May 8, 2013

 MEMORANDUM TO:
 ACRS Members

 FROM:
 Mark L. Banks, Senior Staff Engineer /RA/ Technical Support Branch

 SUBJECT:
 CERTIFICATION OF THE MINUTES OF THE ACRS FUTURE PLANT DESIGNS SUBCOMMITTEE MEETING – REVIEW OF

NEXT GENERATION NUCLEAR PLANT RESEARCH AND LICENSING ISSUES, APRIL 9, 2013, ROCKVILLE, MARYLAND

The minutes for the subject meeting were certified on May 8, 2013, as the official record of the

proceedings of that meeting. A copy of the certified minutes is attached.

Attachment: Certification Letter Minutes Meeting Transcript

cc w/o Attachment: E. Hackett C. Santos

UNITED STATES NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEE ON REACTOR SAFEGUARDS WASHINGTON, DC 20555 - 0001

May 8, 2013

MEMORANDUM TO:	Mark L. Banks, Senior Staff Engineer Technical Support Branch, ACRS
FROM:	Dr. Dennis C. Bley, Chairman Future Plant Designs Subcommittee
SUBJECT:	CERTIFICATION OF THE MINUTES OF THE ACRS FUTURE PLANT DESIGNS SUBCOMMITTEE MEETING – REVIEW OF NEXT GENERATION NUCLEAR PLANT RESEARCH AND LICENSING ISSUES, APRIL 9, 2013, ROCKVILLE, MARYLAND

I hereby certify, to the best of my knowledge and belief, that the minutes of the subject meeting

on April 9, 2013, are an accurate record of the proceedings for that meeting.

/RA/

Dr. Dennis C. Bley, Chairman Date: May 8, 2013 Future Plant Designs Subcommittee

ADVISORY COMMITTEE ON REACTOR SAFEGUARDS FUTURE PLANT DESIGNS SUBCOMMITTEE MEETING MINUTES APRIL 9, 2013 ROCKVILLE, MARYLAND

INTRODUCTION

The Advisory Committee on Reactor Safeguards (ACRS) Future Plant Designs Subcommittee met in room T-2B1at the Headquarters of the U.S. Nuclear Regulatory Commission (NRC), located at 11545 Rockville Pike, Rockville, Maryland, on April 9, 2013. The Subcommittee was briefed by representatives of the U.S. Department of Energy (DOE), Idaho National Laboratory (INL), and the NRC staff regarding NGNP research and key licensing issues pertaining to DOE's Next Generation Nuclear Plant (NGNP) Project. The INL presentations also included information regarding DOE/INL's defense-in-depth approach and reactor building design alternatives.

The meeting convened at 10:00 AM and adjourned at 5:16 PM. The meeting was open to the public. No written comments were received from members of the public related to this meeting. No oral comments were received from members of the public during this meeting.

ACRS Members	Jonathon DeGange, NRC/NRO	Sardar Ahmed, NRO
Dennis Bley (Chairman)	Thomas Boyle, NRC/NRO	John McKirgan, NRO
Gordon Skillman	Jim Shea, NRC/NRO	Varoujan Kalikian, NRR
John Stetkar	Arlon Costa, NRC/NRO	Don Brittner, NRR
Michael Corradini	Michelle Hart, NRC/NRO	Other Attendees
Harold Ray	Michael Mayfield, NRC/NRO	David Hanson, INL
Joy Rempe	Mike Kania, NRC Consultant*	James Kinsey, INL
Thomas Kress (Consultant)	NRC Staff	Farshid Shahrokhi, AVEVA
ACRS Staff	Neil Ray, NRO	Tom O'Connor, DOE
Mark Banks (DFO)	Kimberly Gambone, NSIR	Janelle Zamore, DOE
Presenters	Cameron Goodwin, NRO	Thomas Hicks, INL
Carl Sink, DOE	George Thomas, NRO	John Kelly, DOE
Fred Silady, INL	Vanice Perin, NRO	Madeline Feltus, DOE
David Petti, INL	Russell Chazell, NRO	David Hanson, INL
David Alberstein, INL	Stu Magruder, NRO	Stuart Rubin, NUMARC
Mark Holbrook, INL	Sud Basu, RES	Patrick Troy, Lockheed-Martin
Anna Bradford, NRC/NRO	Matthew Humberstone, NRO	
Don Carlson, NRC/NRO	Courtney St. Peters, NRO	

ATTENDEES

* Participating by telephone

SUMMARY

The purpose of this meeting was for the ACRS Future Plant Designs Subcommittee to receive an information briefing from the NRC staff regarding its assessment of DOE/INL's positions related to NGNP key licensing issues:

- Licensing basis event selection
- Source terms
- Functional containment performance
- Emergency preparedness.

The Subcommittee also received a briefing from DOE and its lead laboratory, INL, on the NGNP Project. The DOE/INL briefing reviewed key messages from the DOE/INL January 17, 2013 Subcommittee briefing, discussed the NGNP defense-in-depth approach, and described reactor building design alternatives.

The staff viewed the DOE/INL's proposed approaches to the above NGNP key licensing issues as being generally reasonable. In regards to areas of staff concern, the staff believed that deterministic elements of licensing basis event selection should be strengthened and technical issues should be resolved through prototype testing in accordance with 10 CFR 50.43(e)(2). The staff also discussed potential policy issues which may require future Commission direction.

At the conclusion of the meeting, the Subcommittee members and their consultant commented on various aspects of the information presented by DOE/INL and the NRC staff. Several members expressed concern regarding the staff's de-emphasis of using probabilistic risk insights when determining design basis accidents. A member pointed out that there seemed to be a need of clarity between DOE/INL and the staff regarding the staff's intention to use the prototype regulation (10 CFR 50.34(e)(2)) to resolve outstanding design issues. A member mentioned the potential complexities related to operating multiple reactors from a common control room at a single site, as well as emergency planning challenges. A member expressed concern regarding the different treatments of uncertainty for anticipated events and beyond design basis events (mean), and design basis events (95%). In addition, there needed to be clarity on the definition of an event sequence and how event sequences will be used to identify and categorize licensing basis events. A member mentioned that the DOE/INL description of defense-in-depth appeared to be thorough. Also, the idea that changing the order of items in event trees could change the categorization needed additional consideration. The ACRS consultant agreed with many of the above observations and expressed concern regarding the lack of use of societal risk in the selection of accidents, the unresolved issue of air ingress, and issues with the top-level regulatory criteria (F-C curve): stair step versus vertical line and lack of how close is too close to a limit.

Finally, a table of significant issues discussed during the meeting is provided below, as a guide to the transcript.

DOCUMENTS PROVIDED TO THE COMMITTEE

<u>Historic</u>

- 1. U.S. NRC, NUREG-1338, "Draft Preapplication Safety Evaluation Report for the Modular High-Temperature Gas-Cooled Reactor," March 1989 (ML052780497)
- U.S. NRC Memorandum, "Draft Copy of Preapplication Safety Evaluation Report (PSER) for the Modular High-Temperature Gas-Cooled Reactor (MHTGR)," February 26, 1996 (ML052780519)
- U.S. NRC, SECY-93-092, "Issues Pertaining to the Advanced Reactor (PRISM, MHTGR, and PIUS) and CANDU 3 Designs and their Relationships to Current Regulatory Requirements," April 8, 1993 (ML040210725)
- U.S. NRC, SRM-SECY-93-092, "Issues Pertaining to the Advanced Reactor (PRISM, MHTGR, and PIUS) and CANDU 3 Designs and their Relationships to Current Regulatory Requirements," July 30, 1993 (ML003760774)
- U.S. NRC, SECY-98-300, "Options for Risk-Informed Revisions to 10 CFR Part 50 Domestic Licensing of Production and Utilization Facilities," December 23, 1998 (ML992870048)
- 6. U.S. NRC, SECY-03-047, "Policy Issues related to Licensing Non-Light-Water Reactor Designs," March 28, 2003 (ML030160002)
- 7. U.S. NRC, SRM-SECY-03-047, "Policy Issues related to Licensing Non-Light-Water Reactor Designs," June 26, 2003 (ML031770124)
- 8. U.S. NRC, SECY-04-157, "Status of Staff's Proposed Regulatory Structure for New Plant Licensing and Potentially New Policy Issues," August 30, 2004 (ML042370388)
- 9. U.S. NRC, SECY-05-006, "Second Status Paper on the Staff's Proposed Regulatory Structure for New Plant Licensing and Update on Policy Issues Related to New Plant Licensing," January 7, 2005 (ML042370388)
- U.S. NRC Policy Statement, "Safety Goals for Operations of Nuclear Power Plants," August 4, 1986 (ML051580401)
- 11. U.S. NRC Policy Statement, "Use of Probabilistic Risk Assessment Methods in Nuclear Regulatory Activities," August 16, 1995 (ML021980535)
- 12. U.S. NRC Policy Statement, "Regulation of Advanced Nuclear Power Plants," July 12, 1994 (ML051740661)

Recent NGNP Documents

- 1. U.S. Nuclear Regulatory Commission, SRM-SECY-08-0019, "Licensing and Regulatory Research Related to Advanced Nuclear Reactors," June 11, 2008 (ML081630507)
- 2. U.S. Nuclear Regulatory Commission, COMSECY-08-0018, "Report to Congress on Next Generation Nuclear Plant (NGNP) Licensing Strategy," May 12, 2008 (ML081330510)
- U.S. Nuclear Regulatory Commission, SECY-11-052, "Development of an Emergency Planning and Preparedness Framework for Small Modular Reactors," October 28, 2011 (ML112570439)
- 4. Gibbs, G. A, Idaho National Laboratory, INL/EXT-11-22708, "Modular HTGR Safety Basis and Approach," August 2011 (ML11251A169)

- 5. Idaho National Laboratory Letter, "Next Generation Nuclear Plant Submittal Confirmation of Requested NRC Staff Positions," July 6, 2012 (ML121910310)
- 6. Gibbs, G. A, Idaho National Laboratory, INL/EXT-10-17686, "NGNP Fuel Qualification White Paper," July 2010 (ML102040261)
- 7. Gibbs, G. A, Idaho National Laboratory, INL/EXT-10-17997, "Mechanistic Source Terms White Paper," July 2010 (ML102040260)
- 8. Gibbs, G. A, Idaho National Laboratory, INL/EXT-09-17139, "Next Generation Nuclear Plant Defense-in-Depth Approach," December 2009 (ML093490191)
- 9. Gibbs, G. A, Idaho National Laboratory, INL/EXT-10-19521, "Next Generation Nuclear Plant Licensing Basis Event Selection White Paper," September 2010 (ML102630246)
- Gibbs, G. A, Idaho National Laboratory, INL/EXT-10-19509, "Next Generation Nuclear Plant Structures, Systems, and Components Safety Classification White Paper," September 2010 (ML102660144)
- 11. Gibbs, G. A, Idaho National Laboratory, INL/EXT-11-21270, "Next Generation Nuclear Plant Probabilistic Risk Assessment White Paper," September 2011 (ML11265A082)
- 12. Gibbs, G. A, Idaho National Laboratory, INL/EXT-09-17187, "NGNP High Temperature Materials White Paper," June 2010 (ML101800221)
- Gibbs, G. A, Idaho National Laboratory, INL/EXT-10-19799, "Determining the Appropriate Emergency Planning Zone Size and Emergency Planning Attributes for an HTGR," October 2010 (ML103050268)
- 14. U.S. Nuclear Regulatory Commission, "Assessment of White Paper Submittals on Fuel Qualification and Mechanistic Source Terms," February 12, 2012 (ML120240669)
- U.S. Nuclear Regulatory Commission, "Assessment of White Paper Submittals on Defensein-Depth, Licensing Basis Event Selection, and Safety Classification of Structures, Systems, and Components," February 15, 2012 (ML120170084)
- 16. U.S. Nuclear Regulatory Commission, "Summary Feedback on Four Key Licensing Issues," (draft), March 8, 2013 (ML13002A157)
- U.S. Nuclear Regulatory Commission, "Assessment of White Paper Submittals on Fuel Qualification and Mechanistic Source Terms," Revision 1 (draft), March 11, 2013 (ML13002A168)
- U.S. Nuclear Regulatory Commission, "Assessment of White Paper Submittals on Defensein-Depth, Licensing Basis Event Selection, and Safety Classification of Structures, Systems, and Components," Revision 1 (draft) March 8, 2013 (ML13002A162)
- Gibbs, G. A, Idaho National Laboratory letter to U.S. Nuclear Regulatory Commission, "Contract No. DE-AC07-05ID14517 – Next Generation Nuclear Plant Project Submittal – Response to Nuclear Regulatory Commission Request for Additional Information Letter No. 002 Regarding Next Generation Nuclear Plant Project Fuel Qualification and Mechanistic Source Terms – NRC Project # 0748", August 10, 2011 (ML11224A060)
- Gibbs, G. A, Idaho National Laboratory letter to U.S. Nuclear Regulatory Commission, "Contract No. DE-AC07-05ID14517 – Next Generation Nuclear Plant Project Submittal – Response to Nuclear Regulatory Commission Request for Additional Information Letter No. 005 Regarding the Risk-Informed, Performance-Based Licensing Approach – NRC Project # 0748", October 14, 2011 (ML11290A188)
- Gibbs, G. A, Idaho National Laboratory letter to U.S. Nuclear Regulatory Commission, "Contract No. DE-AC07-05ID14517 – Next Generation Nuclear Plant Project Licensing White Paper – Next Generation Nuclear Plant Defense-in-Depth Approach – Response to

Nuclear Regulatory Commission Request for Additional Information Letter No. 001 – NRC Project # 0748", September 15, 2010 (ML102590481)

- 22. Gibbs, G. A, Idaho National Laboratory letter to U.S. Nuclear Regulatory Commission, "Contract No. DE-AC07-05ID14517 – Next Generation Nuclear Plant Project Submittal – Response to Nuclear Regulatory Commission Request for Additional Information Letter No. 004 Regarding Next Generation Nuclear Plant Project High Temperature Materials White Paper – NRC Project # 0748", September 27, 2011 (ML11272A067)
- Gibbs, G. A, Idaho National Laboratory letter to U.S. Nuclear Regulatory Commission, "Contract No. DE-AC07-05ID14517 – Next Generation Nuclear Plant Project Submittal – Response to Nuclear Regulatory Commission Request for Additional Information Letter No. 003 Regarding Next Generation Nuclear Plant Project Fuel Qualification and Mechanistic Source Terms – NRC Project # 0748", September 21, 2011 (ML11266A133)

Significant issues from April 9, 2013 FPD SC meeting on NGNP Issue descriptions below linked to location in attached transcript

SIGNIFICANT ISSUES		
Issue	Reference Pages in Transcript	
DOE/INL		
Next NGNP Project direction according to DOE (Corradini)	8-11	
Status of DOE/INL White Papers and Staff Assessments (Bley, Ray)	11-13	
DOE/INL's meaning of licensing framework	13	
Need for DOE/INL & NRC work to be clearly documented (Corradini)	13-14	
Technology neutral framework (Corradini)	14-15	
Discussion regarding relationship of DBEs and DBAs (Stetkar, Kress)	19-26	
Event Sequence frequency and # of modules (Kress)	27-35	
F-C curve x-axis uncertainty (Stetkar) – also addressed later	35-38	
F-C curve stair step versus horizontal line cutoff (Kress)	38-40	
Impact on analysis by differing # of units at a site (Rempe)	41-42	
Lack of use of societal risk (Kress)	44-45	
Uncertainty discussion (Stetkar)	46-49	
Fuels discussion – fuel matrix versus particles releasing (Corradini)	57-58	
DOE/INL plans to heat fuel particles in furnace	58	
Thermocouple issues during fuel testing (Bley)	59-64	
Discussion on no need for reactor building (DID) (Corradini)	67-68	
Design to EPA PAGs versus 10 CFR 50.34 (DID) (Corradini)	68-70	
Discussion on release related to dust and plate out (Corradini)	73-79	
Discussion of releases from alternative considered reactor buildings (Bley)	81-94	
Treatment of uncertainty inconsistency – mean vs. 95% (Stetkar)	106-109	
Discussion on integrated defense-in-depth (Bley)	109-111	
DOE/INL summary	112-114	
NRC Staff		
Discussion on need for Commission policy decisions (Corradini)	129-131	
Discussion on 10 CFR 50.43(e)(2) – prototype regulation	132-135	
Discussion on what is a the definition of event sequence (Stetkar)	143-148	
Staff Issue: DOE/INL event categorization (also discussion on probabilistic versus deterministic – Stetkar)	154-167	
Staff Issue: specified acceptable fuel design limits (SAFDLs)	167	
Staff Issue: DOE/INL approach regarding SSC classification	167-168	

Demarcation between use of deterministic and probabilistic (Skillman)	168-170
Staff Issue: DOE/INL approach to top-level regulatory criteria (TLRC) on F-C curve	170
Staff Issue: Frequency range based on mean event sequence frequency	174
Discussion on use of uncertainty mean value for AEs & BDBEs versus 95% for DBEs (Stetkar)	176-182
Plans for capture of DOE/INL RAI responses (Bley)	190-192
DOE/INL clarification regarding staff desire for more use of deterministic elements in determining accidents versus use of PRA	192-193
Dust-related radionuclide inventory blowdown (Ray)	198
Discussion on development of mechanistic source term for dry system (Corradini)	205-207
Crediting the reactor building (Bley, Corradini)	207-211
Siting LBEs include postulated bounding events (Stetkar)	215-219
Discussion on potential fuel issues (Corradini)	226-234
Discussion on credible events and lack of HTGR experience (Stetkar)	245-252
Discussion on reviewing Midland Nuclear Power Plant licensing documents regarding emergency planning associated with nearby industrial facilities (Stetkar, <i>et al</i>)	262-264
DOE/INL final comments	272

Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Future Plant Designs Subcommittee
Docket Number:	(n/a)
Location:	Rockville, Maryland
Date:	Tuesday, April 9, 2013

Work Order No.: NRC-4111

Pages 1-291

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + + +
7	FUTURE PLANT DESIGNS SUBCOMMITTEE
8	+ + + + +
9	TUESDAY
10	APRIL 9, 2013
11	+ + + + +
12	ROCKVILLE, MARYLAND
13	+ + + + +
14	The Subcommittee met at the Nuclear
15	Regulatory Commission, Two White Flint North, Room
16	T2B1, 11545 Rockville Pike, at 10:00 a.m., Dennis C.
17	Bley, Chairman, presiding.
18	COMMITTEE MEMBERS:
19	DENNIS C. BLEY, Chairman
20	MICHAEL L. CORRADINI, Member
21	HAROLD B. RAY, Member
22	JOY REMPE, Member
23	GORDON R. SKILLMAN, Member
24	JOHN W. STETKAR, Member
25	
ļ	I

1	ACRS CONSULTANT:
2	THOMAS S. KRESS
3	NRC STAFF PRESENT:
4	MARK BANKS, Designated Federal Official
5	ALSO PRESENT:
6	CARL SINK, DOE
7	FRED SILADY, INL
8	DAVID PETTI, INL
9	DAVID ALBERSTEIN, INL
10	MARK HOLBROOK, INL
11	JIM KINSEY, INL
12	ANNA BRADFORD, NRO
13	DON CARLSON, NRO
14	TOM BOYLE, NRO
15	JONATHAN DEGANGE, NRO
16	JIM SHEA, NRO
17	ARLON COSTA, NRO
18	MIKE MAYFIELD, NRO
19	MICHELLE HART, NRO
20	MIKE KANIA*
21	
22	
23	
24	*Present via telephone
25	
I	

2

	3
1	AGENDA
2	Opening Remarks 4
3	NGNP Introduction 6
4	Overview of Risk-informed Performance-based Licensing
5	Approach, Fuel Qualification, and Mechanistic Source
6	Terms (INL)
7	Approach to Defense-in-Depth, Including Role of
8	Reactor Building (INL) 64
9	Staff Introduction
10	Assessment of NGNP Licensing Issues - Overview
11	(NRO)
12	Licensing Basis Event Selection (NRO) 140
13	Source Terms, Containment Functional Performance, and
14	Emergency Preparedness (NRO)
15	Opportunity for Public Comment
16	Committee Discussion
17	
18	
19	
20	
21	
22	
23	
24	
25	
ļ	I

	4
1	PROCEEDINGS
2	10:00 a.m.
3	CHAIRMAN BLEY: The meeting will come to
4	order. I'm Dennis Bley, chairman of the Future Plant
5	Design Subcommittee.
6	We have with us today well, we don't.
7	We have committee members Harold Ray, John Stetkar,
8	Mike Corradini and Joy Rempe. We might have others
9	joining us as the day goes on. There's another
10	meeting that's drawing some of us there.
11	Dr. Tom Kress is here as our consultant.
12	Good morning, Tom. Mr. Mark Banks is the of the
13	ACRS staff is the designated federal official for this
14	meeting.
15	The purpose of today's meeting is to
16	receive a briefing from Idaho National Laboratory and
17	the NRC staff on the NGNP project. Department of
18	Energy, the official sponsor of NGNP is here too.
19	During the subcommittee meeting on January
20	17 we received an update from INL on the TRISO coded
21	fuel research. INL also briefed us about the work
22	they've been doing with the NRC staff on development
23	of a licensing framework for NGNP.
24	Today we expect to hear from the NRC staff
25	regarding their review of INL work on the licensing

(202) 234-4433

	5
1	framework development in addition to hearing from INL
2	this morning.
3	Member Mike Corradini, Joy Rempe, Harold
4	Ray and Dana powers have some potential conflict of
5	interest. Hence they may be limited in discussion
6	regarding their own work.
7	The rules for participation in today's
8	meeting were announced in the Federal Register on
9	March 25 of 2013 for an open meeting. This meeting is
10	open to the public.
11	We have a telephone bridge line for the
12	public and stakeholders to hear the deliberations. To
13	minimize disturbance the line will be kept in listen-
14	in mode only until the end of the meeting when we will
15	provide an opportunity for any member of the public
16	attending this meeting in person or through the bridge
17	line to make a statement or provide comments.
18	As a transcript of the meeting is being
19	kept we request that participants in this meeting use
20	the microphones located throughout the meeting room
21	when addressing the subcommittee. Participants should
22	first identify themselves and speak with sufficient
23	clarity and volume so that they can be readily heard.
24	We will now proceed to the meeting and I
25	call upon Mr. Carl Sink of the U.S. Department of

(202) 234-4433

	6
1	Energy to begin his introduction of the NGNP project.
2	Carl?
3	MR. SINK: Good morning. Thank you very
4	much for having us here again today.
5	As an introduction I'd like to just
6	briefly review how we got to where we are today.
7	Starting back in 2008 the Department and the NRC
8	jointly issued a NRC-DOE Licensing Strategy as called
9	for in the Energy Policy Act of 2005.
10	As part of that it identified that there
11	were four key licensing technical policy and
12	programmatic issues that may need Commission
13	resolution before moving forward with a licensing
14	framework. These included the acceptable basis for
15	mechanistic source term calculation, the approach for
16	using the frequency and consequence curve for
17	selecting licensing basis events, the allowable dose
18	consequences for those events, and requirements and
19	criteria for using a functional containment that was
20	anticipated for the NGNP.
21	We have continued this work and after
22	review by the Nuclear Energy Advisory Committee in
23	2011 which recommended that we continue working with
24	the NRC to develop a licensing framework Secretary Chu
25	endorsed that with his letter forwarding the NEAC's
Į	I

(202) 234-4433

	7
1	report to Congress.
2	DOE appreciates the strong level of
3	interaction that we've had with the NRC staff. We
4	published, as I said before, the licensing strategy
5	jointly. There was review and feedback on a large
6	number of white papers covering various topics related
7	to the NGNP. We've had about 18 public meetings over
8	the last 3 years which were hosted by the NRC. Review
9	of the NGNP responses to about 450 requests for
10	additional information and feedback on that.
11	And then review of technology development
12	plans specific to the NGNP project as well as approval
13	of the NGNP quality assurance program description.
14	And as we'll hear later on today they have given us
15	feedback on the highest priority licensing issues that
16	were described in a letter we sent them on July 6.
17	In that letter we specifically requested
18	that those four key areas be highlighted again,
19	licensing basis event selection, establishing
20	mechanistic source terms, the functional containment
21	performance requirements, and development of emergency
22	planning, emergency planning zone distances.
23	So DOE has been focused and continues to
24	be focused on resolution of key licensability issues
25	to enable those applicants and the commercial sector
ļ	I

(202) 234-4433

(202) 234-4433

1 to move forward under using a licensing framework. This framework which NGNP has proposed provides a 2 3 process for assuring, along with the fuel 4 qualification results which we talked about some last 5 time, may touch again on today, that there is adequate protection for the public over a wide spectrum of 6 7 internal and external events. And we look forward to today's follow-on 8 9 meeting following up on a couple of topics that where 10 additional information was requested in our January meeting and also hearing the input from the NRC staff. 11 Thank you. 12 CHAIRMAN BLEY: 13 MR. SINK: Thank you. 14 MR. SILADY: Good morning. My name is 15 Fred Silady and my task here is to provide a summary 16 MEMBER CORRADINI: Can I ask before we 17 lose Carl, just so I understand. So, I quess I want 18 19 to understand the path forward. I'm sorry. So, with the position paper -- or I don't know the proper 20 terminology for what the staff has produced. 21 That will then be used in what -- what's the next steps 22 from DOE side given that the staff has responded some 23 24 things with agreement, some with not so agreement, some with policy issues to Commission. 25 What is the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

8

	9
1	DOE going to do in response to that?
2	MR. SINK: From our reading of the actual
3	papers that were presented to us there was a
4	significant level of agreement with the positions we
5	had put forward. And we need to make sure that there
6	is clarity in that there's nothing left vague with
7	those.
8	And our understanding is that the NRC
9	staff based on the feedback they get from the ACRS may
10	make modifications to those position papers and re-
11	publish them later this year.
12	MEMBER CORRADINI: Okay. And then? I'm
13	trying to figure out is that going to be the end of it
14	from NRC's interaction with DOE on the NGNP at this
15	point in time and everything will be put on hiatus?
16	I mean I'll ask the staff the same question. I'm
17	trying to understand from your perspective where is it
18	going.
19	MR. SINK: At this point in time then that
20	will be the end of our on this particular topic.
21	The interaction on this licensing framework
22	development. We are still going to be continuing to
23	R&D and interaction with the NRC and the staff on the
24	fuels development, on the modeling, the work we're
25	doing on HTTF. Other topics that we're doing jointly
	I

(202) 234-4433

	10
1	with the NRC staff will continued.
2	But so far as these meetings on this
3	framework it was jointly agreed that we've come about
4	as far as we can come with these topics for right now
5	until an applicant comes forward.
6	MEMBER CORRADINI: Okay, so, all right.
7	So you actually got to the point I guess I want to
8	understand which is until somebody applies with a
9	specific design both NRC will stand staff will
10	stand down in discussions with you and then this
11	effort on the DOE side will essentially cease.
12	MR. SINK: That's my understanding, yes.
13	MEMBER CORRADINI: On the licensing
14	framework.
15	MR. SINK: The licensing framework, right.
16	MEMBER CORRADINI: Okay. All right. Then
17	let me ask one follow-up question. Back in some year,
18	I don't know what year, a few years ago the Commission
19	specifically pointed to the NGNP as an example of
20	exercising the technology-neutral framework process.
21	This is kind of more of a question for the staff but
22	since you're there. Has and you've seen, I think
23	it's 1860? 1260? I can't remember. Has this been
24	exercised from your perspective? In other words, has
25	the technology-neutral framework process been
ļ	I

(202) 234-4433

	11
1	exercised with this as an example to the point that it
2	actually has been advanced. Any progress?
3	MR. SINK: I think so far as NGNP
4	specifically and the high-temperature gas reactor
5	project is concerned it's not completed yet. But we
6	are anticipating moving forward with other advanced
7	reactor concepts, licensing framework efforts with the
8	NRC staff. Discussions about that are standing up
9	right now for how that would move forward on
10	additional projects.
11	MEMBER CORRADINI: Can you remind me what
12	those are?
13	MR. SINK: Such topics as a fluoride-
14	cooled high-temperature reactor, fast reactor, sodium-
15	cooled fast reactor. Topics such as that.
16	MEMBER CORRADINI: And your intention, the
17	DOE's intention is to use an approach similar to what
18	you'd use for NGNP since this has shown some or
19	this has been shown to be amenable with staff.
20	MR. SINK: Definitely. A lot of the work
21	that we've done already in these areas is going to
22	roll into that effort.
23	MEMBER CORRADINI: All right. Thank you.
24	Sorry.
25	CHAIRMAN BLEY: Let me fire that up just
	1

	12
1	a little bit. I think I understood everything you
2	said but is there a series of technical white papers
3	and assessments of those papers what are your
4	expectations? I mean we don't have an applicant, we
5	don't have a design. Is there any agreement from your
6	point of view that issues are settled at this point or
7	how do you look on these white papers and the
8	assessments of them by staff?
9	MR. SINK: I think that based on the
10	feedback that we hear today and any additional
11	feedback and questioning from the ACRS there's
12	potential that these the four key issues could be
13	settled.
14	CHAIRMAN BLEY: Okay, thank you.
15	MEMBER RAY: Well, Dennis, I think that
16	that I had a similar question which is we've used
17	the word "framework" here a great deal. I'm not sure
18	we all know what that means which is implicit in the
19	question you asked.
20	It really goes not I think to the good
21	faith effort to provide responses but to how qualified
22	the responses need to be, you know, how hedged given
23	the limited information is available at this point in
24	time.
25	So I think we shouldn't delay things here

(202) 234-4433

	13
1	now but I do think a better understanding of what is
2	meant by the Commission itself in terms of a framework
3	being established, what does that really translate
4	into is what I'm searching for here. I mean we can
5	all do our best effort to reflect an effort but it's
6	limited in its
7	MR. KINSEY: This is Jim Kinsey from the
8	INL. Just maybe to offer a point of clarification
9	that might help a little bit.
10	The other piece of the licensing strategy
11	that Carl mentioned that pointed out the four primary
12	issues was a conclusion by both DOE and the NRC staff
13	members involved with that working group that the NGNP
14	could be licensed by adapting for the most part
15	existing light water reactor regulations.
16	So when we talk about this framework we're
17	really talking about the processes that would be used
18	to work through that adaptation process. So if that
19	helps to clarify. And these four items are key
20	cornerstones or key foundations of that adaptation.
21	MEMBER CORRADINI: So here's what my
22	concern is. Maybe I'm the only one that's concerned.
23	But everything we had, there's so many issues that pop
24	up and then rise up and then fall, and rise up and
25	fall. I'm worried that when this falls it'll fall
ļ	I

(202) 234-4433

apart.

1

2

3

4

5

6

7

So I want to make sure it's very clearly documented where there are things that are -- I won't use the word "settled," I guess nothing is completely settled, but where it looks apparently things are in concert and where they're not in concert, and what are the action items to move forward.

And to me that's very important. 8 That's 9 why I was asking the questions of Carl was that -- is that if things aren't settled and there's things that 10 need to be further done in fuels like there was some 11 discussion about length of time and temperature and 12 things, then that's clearly identified 13 such as 14 something that needs to be worked on. And there are 15 certain things that are -- people seem to be okay 16 I got the impression that the way in which with. licensing basis events were identified or at least the 17 process by which they are staff seemed comfortable 18 19 Those are clearly done so that when this gets with. dropped or put on hiatus it doesn't have to reinvented 20 6 months later, 6 years later, whatever it is. 21 Yes. That's our intent as 22 MR. SINK: well. 23 24 MEMBER CORRADINI: Okay. And then my second concern is, and I'm sure the Commission did 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

14

1 this, I'm just not sure -- and I'm wanting to ask the 2 staff this. I want to make sure the staff really has responded to the Commission's directive for 1860 which 3 4 is this is an example case for technology-neutral framework application and what are their lessons 5 learned so that when you do come up with whatever the 6 7 things you said you're going to come up with next we 8 don't start from scratch. 9 We actually can say, okay, we did this 10 with the NGNP, it's on hiatus but the same process or at least we can pick up here so we don't have to start 11 from a, I don't want to say ground zero, but less 12 13 than an optimal point. 14 CHAIRMAN BLEY: Now I think we're ready. 15 MR. SILADY: Good. Let's go to the first 16 slide. At our January 17th session with you we went into some detail on these five areas. And we have a 17 couple of more items to talk about at this meeting 18 19 this morning before the staff as before. And we just wanted a summary, a very brief summary of the summary 20 if you will of the January 17th meeting. 21 And these areas are the safety approach 22 and design basis, the licensing basis event selection 23 24 process, the mechanistic source terms, the functional containment, the siting source terms and of course 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

15

16 1 fuel qualification and radionuclide retention. So I'm 2 going to briefly go through those in a number of short slides here. Next page. 3 4 One slide for the safety approach and 5 design basis summary. The top objective is not to disturb the normal day-to-day activities of the public 6 7 outside the exclusionary boundary. So our 8 quantitative requirement which is a design target of 9 the protective the project is to meet action 10 guidelines at an exclusion area boundary of roughly 400 meters. And that's for a very wide spectrum of 11 events within and beyond the design basis. 12 We believe our safety approach and design 13 14 basis summary is responsive to the advanced reactor 15 policy. You can go back to the January 17 meeting for 16 a tick by tick check-off of how we're responsive to 17 it. You obviously recall that we have a 18 19 defense-in-depth system of barriers. They are -- many of them, they're concentric or one is completely 20 inside of the other. At the level of the few 21 elements, the helium pressure boundary and the reactor 22 building they're independent. And these barriers 23 24 collectively comprise the functional containment.

The emphasis has always been since the `85

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1 time frame after Three Mile Island when we shifted 2 from large HTGRs down to the modular HTGR where we 3 deterministically said hey, we're going to size and 4 we're going to configure the reactor in a long, 5 slender, annular core. It's been on retention within the -- at the source within the radionuclide particles 6 7 and within the fuel element. So to do that we need to do the following 8 9 three sub-functions which we talked about, the passive 10 heat removal, the control of heat generation and the

11 control of chemical attack. Next page.
12 The licensing basis event s

selection summary is that we're going to determine when top-13 14 level regulatory criteria must be met. The top-level 15 regulatory criteria are the guantitative direct --16 top-level regulatory criteria are -- have three 17 things. We went through all the regulations, NRC, EPA and so on and we screened them so that we could figure 18 19 out what we needed to design to.

And if they're quantitative so that you can design to them, they're direct measures of consequence, of risk to the public, and they're technology-neutral, they're generic. So we select then during the design and licensing process with the risk insights of a full-scope PRA that considers

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	uncertainties we select these events.
2	And they fall into categories. Those that
3	you expect during the life of the plant, those that
4	you don't expect in a plant lifetime but which might
5	occur if you had a fleet of plants, like several
6	hundred, and those that aren't expected even in a
7	large fleet of plants, the beyond design basis events,
8	the events that you don't design for with conservative
9	margins but which you have the capability to respond
10	to and still meet our top requirements.
11	And there's a fourth category. This is
12	the traditional Chapter 15 events. And we derive
13	those from the design basis events by assuming only
14	safety-related SSCs respond successfully.
15	So the DBEs and the AEs and the beyond
16	design basis events, those we put on a frequency plot
17	which is the next plot. And those have the entire
18	plant responding. So we see the interplay between
19	what is safety-related, not safety-related, and so on.
20	MEMBER CORRADINI: So, just to clarify.
21	MR. SILADY: Sure.
22	MEMBER CORRADINI: So for the DBAs, all
23	the similar assumptions we're familiar with for light
24	water reactors apply.
25	MR. SILADY: I wouldn't claim to know all

(202) 234-4433

	19
1	those assumptions. But we
2	CHAIRMAN BLEY: assume a single
3	failure. The failure criterion is the one
4	MR. SILADY: If the event had single
5	failures in it, fine. If it had multiple failures in
6	it, fine. That we get from the DBEs.
7	Then we just look at it with the safety-
8	related SSC. So I think the answer is no with regards
9	to that. Not that we wouldn't pick that up in the
10	beyond design basis events, perhaps, but we take
11	multiple failures within the design basis event
12	region. And we're looking at more than one reactor as
13	you'll see.
14	MEMBER STETKAR: I wasn't here in January
15	so perhaps you covered some of this, but as I read
16	through it I had some confusion about the notion that
17	you just described. You said that the DBAs are
18	derived from the DBEs, assuming that only safety-
19	related systems are available. Is that correct?
20	MR. SILADY: Yes, that is correct.
21	MEMBER STETKAR: Okay. Suppose I have a
22	beyond design basis event scenario whose frequency is
23	in the beyond design basis event area. Because non-
24	safety related systems have been included in that
25	model. So for example, the frequency is, pick a
	I

(202) 234-4433

	20
1	number. One
2	MR. SILADY: 10^{-6} .
3	MEMBER STETKAR: 10^{-6} and of that 10^{-6} 10^{-3}
4	of that is because of non-safety related systems. If
5	I didn't take credit for those systems the frequency
6	would be 10^{-3} . Is that scenario then a candidate for
7	a design basis accident? Because it's not a design
8	basis event in the general concept.
9	MR. SILADY: We're going off a little bit
10	but I think it's a very crucial point so let me just
11	try to summarize it succinctly.
12	MEMBER STETKAR: I'm not sure we're going
13	off because I want to understand what a design basis
14	accident is.
15	MR. SILADY: Right. But we talked about
16	this in January. There are beyond design basis events
17	that have high consequences that would not be able to
18	meet the dose criteria for the design basis region,
19	the 10 C.F.R. 50.34. Just as we want to make sure
20	that the DBAs that mitigate and stay within the design
21	basis region, 10 C.F.R. 50.34, we want to make sure
22	that beyond design basis events with high consequences
23	don't float up. And so we make things safety-related
24	to have the requisite reliability to prevent those.
25	So that is how beyond design basis events
ļ	

(202) 234-4433

	21
1	can have requirements put on SSCs that then become
2	safety-related. We had a nice little chart that had
3	on the FC chart we had one area where we're mitigating
4	DBAs and one area where we're preventing beyond design
5	basis events.
6	So, because if the beyond design basis
7	event doesn't have a consequence that's going to
8	exceed 10 C.F.R. 50.34 what the fraction is of the
9	plant that responded that was safety-related and what
10	the fraction was non-safety related isn't as material
11	as it is if it would violate 10 C.F.R. 50.34.
12	MEMBER STETKAR: I'll have to go back and
13	read the transcript.
14	MEMBER CORRADINI: You're going to show
15	that curve I assume.
16	MR. SILADY: We're going to show the curve
17	but we're not going to we can pull up the backup if
18	we need I believe.
19	MR. KINSEY: I think the backup will be a
20	good idea.
21	MR. SILADY: Yes.
22	DR. KRESS: Let me ask you a question
23	about that. When you look at an SSC in one of these
24	events and look at the uncertainties associated with
25	it to see if it might move you into another frequency
Į	

(202) 234-4433

	22
1	or another consequence. You just look at one SSC?
2	MR. SILADY: We look at the sequence and
3	we look at the function. And then in that sequence
4	there are certain SSCs that are available and not
5	available. And we look then at if the event straddles
6	the design basis region let's say and the beyond
7	design basis event we say well, our certainty is not
8	sufficient to say it's in this region or in that
9	region. We'll look at the consequences of it against
10	both as if it first were in the design basis and
11	secondly it's in the beyond design basis.
12	DR. KRESS: If it takes, say, two or more
13	or three SSCs to move you in one direction or the
14	other beyond this top-level criteria would all three
15	of those or however many it took
16	MR. SILADY: That would be a design choice
17	as to one or more of them need something to be
18	tightened up in order to meet the requirements.
19	DR. KRESS: And what criteria do you use
20	for that choice?
21	MR. SILADY: Making sure that the event
22	meets the dose criteria in the design basis region or
23	the QHOs in the beyond design basis event region.
24	DR. KRESS: Yes, but suppose further or
25	the probability of one failure, say three SSCs lose
ļ	I

(202) 234-4433

	23
1	you and the two won't. Would you make all three of
2	them safety-related or?
3	MR. SILADY: If you cannot make one
4	system of a high consequence beyond design basis event
5	keep you in that low-frequency range.
6	DR. KRESS: You're looking at one at a
7	time SSC.
8	MR. SILADY: If you cannot make one
9	that would be the designer's preference, to put the
10	reliability into that. Then you go to a second one,
11	obviously.
12	DR. KRESS: But if it takes two of them to
13	move you would you make both of those SSCs?
14	MR. SILADY: Yes.
15	DR. KRESS: You know one of them won't do
16	it by itself.
17	MR. SILADY: That's right.
18	DR. KRESS: So you'd make two.
19	MR. SILADY: Yes.
20	DR. KRESS: Well, how about four of them?
21	MR. SILADY: I don't think for a given
22	function we have four heat removal systems.
23	DR. KRESS: You probably don't for a given
24	function but you may have three.
25	MR. SILADY: Yes, yes. And generally we
I	

```
(202) 234-4433
```

	24
1	find by using passive SSCs like the reactor cavity
2	cooling system we can make it sufficiently reliable
3	that we can say that one alone is sufficient.
4	In other functions such as control of heat
5	generation we may need two reactivity systems. We
6	find that generally we do for some rare events.
7	DR. KRESS: So you would make both of
8	those.
9	MR. SILADY: Yes.
10	DR. KRESS: Even though one of them won't
11	do it by itself.
12	MR. SILADY: They work in tandem to get
13	you in the successful for some sequences only one's
14	required. For other sequences maybe both are
15	required. It's not that black and white. You have to
16	look at each of the licensing basis events.
17	MEMBER REMPE: Fred, remind me because
18	I've forgotten. Is the RCCS safety-related?
19	MR. SILADY: It is. For heat removal,
20	yes. All right, well this is good. We didn't expect
21	maybe that we'd be going back to January 17 but I'll
22	be happy to answer the questions.
23	MEMBER CORRADINI: We still haven't moved
24	off of the 17th. So let me repeat the question that
25	Dennis and John asked just so I'm clear. So if it is

(202) 234-4433

	25
1	safety-related and it is going to be used as part of
2	the analysis for the DBA, the single failure criterion
3	applies.
4	MR. SILADY: I don't think we've said
5	that. We're always after getting the reliability.
6	And we don't think in some cases single failure is
7	sufficient. And that diversity may be better than
8	redundancy.
9	MEMBER CORRADINI: So can I say your
10	answer back to me a different way?
11	MR. SILADY: Yes.
12	MEMBER CORRADINI: If I have system X and
13	I have one of system X, and I have system Y and I have
14	one of system Y, your redundancy is that if X fails Y
15	is there to perform the function.
16	MR. SILADY: If needed to stay in that
17	region and meet that requirement.
18	MEMBER CORRADINI: So therefore X and Y
19	must be safety-related.
20	MR. SILADY: Yes. Yes. We have that,
21	let's say in the case of the control of heat
22	generation. We have a control rod system and it has
23	a lot of redundancy in it, banks of different rods and
24	so on and in the I&C in the protection system there's
25	redundancy. But parts of it are only single.
I	I

(202) 234-4433

	26
1	And then we have a reserve shutdown system
2	which is completely independent that also drops by
3	gravity and so on. And it has different numbers of
4	hoppers so it has redundancy. We didn't go in though
5	and say thou shalt have redundancy and take the
6	single-failure criteria. Usually those things are the
7	first thing you do in terms of reliability. And
8	they're built in for investment protection reasons and
9	so on. So you have a full plant design that's looked
10	at all your requirements for normal operation,
11	investment protection, availability as well as safety.
12	I think we'd be hard pressed to say that
13	we found any sequences that violate the single failure
14	criteria that we're not doing anything about. I mean
15	that's we're
16	MEMBER CORRADINI: Well, that's kind of
17	what I'm getting to.
18	MR. SILADY: Yes. But to take it as a
19	rule, thou shalt use the single failure criteria, is
20	kind of why I'm pushing back a little bit.
21	MEMBER CORRADINI: Okay.
22	MR. SILADY: Okay. So we've gotten off a
23	little bit into the fourth bullet. And we the
24	safety classification system focuses on mitigation for
25	a spectrum of DBAs to successfully perform required
	I

(202) 234-4433

Í	27
1	safety functions. But we were trying to keep it
2	succinct and so we didn't add also to prevent high-
3	consequence beyond design basis events which could
4	have been on the slide as well. And I think I've
5	summarized that. Let's go to the next page.
6	Now this is the top-level regulatory
7	criteria which are in solid blue that we took out of
8	the regulations. Placed on a frequency axis. And in
9	some cases it's easier to do than in others.
10	And so this was the proposal that we've
11	made. It was actually made in the eighties with the
12	DOE-sponsored MHTGR program. And it has evolved a
13	little bit in terms of terminology and so on. But
14	basically there's a region that is the anticipated.
15	And we decided to take it down to once in 100 years.
16	There's another region that goes between the lower
17	level of the anticipated event region. It goes down
18	to the 10^{-4} and so on.
19	Well, what are those numbers? What are
20	those frequencies? They're the frequency of an entire
21	event sequence, not just the initiating event. And
22	they are for an entire plant of multiple modules.
23	DR. KRESS: Let me ask the question.
24	MR. SILADY: Yes.
25	DR. KRESS: To me that means, of course,
	I

(202) 234-4433

	28
1	in order to see where things fit in that thing you
2	have to specify ahead of time how many modules you're
3	going to have.
4	MR. SILADY: Yes. You have a design.
5	DR. KRESS: You have a design, in other
6	words.
7	MR. SILADY: Yes.
8	DR. KRESS: And you have so many modules.
9	The tendency in my mind would be then, I'd want to
10	select the number of modules so that I get just about
11	as close as I want to to that top-level regulatory
12	criteria without exceeding. Do you have a criteria on
13	how close you're going to let it get by the number of
14	modules?
15	MR. SILADY: We really don't do it the way
16	you say. I mean we look at the other stakeholders in
17	terms of the users and the operators and our
18	requirements coming from them on how many modules make
19	it economic, make the O&M optimum that provide the
20	demand for the electricity, the steam nearby.
21	DR. KRESS: Even though you may end up
22	pretty close to that line. Do you have a criteria for
23	how close you're going to let it get depending on the
24	uncertainties associated with the
25	MR. SILADY: We don't have a quantity
I	I

(202) 234-4433

	29
1	requirement at this stage prior to a full conceptual
2	design. But in past projects we've seen like the
3	MHTGR that were orders of magnitude anywhere to the
4	left of the solid line and even the dashed line which
5	of course as you can see is the design target which is
6	more stringent. So we haven't had to say thou shalt
7	be a factor of 20 or a factor of 5 or whatever.
8	And that tradeoff with modules I do
9	have a backup that shows the MHTGR cases. Can we put
10	that up at this point?
11	CHAIRMAN BLEY: Slide 30?
12	MR. SILADY: Yes. This was presented.
13	MEMBER CORRADINI: I remember that
14	MR. SILADY: Yes.
15	MEMBER CORRADINI: I think we did see this
16	one, yes.
17	MR. SILADY: And we had already started to
18	talk a little bit about design basis accidents as well
19	as design basis events and how the design basis
20	accidents only have safety-related SSCs. Originally
21	this plot was just of the first three categories of
22	LBEs. They were called anticipated operational
23	occurrences. They were called design basis events as
24	they are now. And they were called emergency planning
25	basis events back then where now we're calling them
I	1

(202) 234-4433

Í	30
1	beyond design basis events.
2	DR. KRESS: How many modules does it
3	MR. SILADY: And it had four modules.
4	DR. KRESS: Four modules, okay.
5	MR. SILADY: And there have been HTGR
6	designs that have had up to 10. But no more that I'm
7	aware of. And so we saw where those events lied on
8	the diagram. And we're using this for design as well
9	as licensing. So the ones on the abscissa that have
10	zero dose were very important to us because there was
11	something keeping them inside the acceptable line that
12	if it didn't work it might fly over to the right-hand
13	side here. So we had to know which ones those were
14	and specify their capability and reliability and so
15	on.
16	The point with the green on this chart is
17	that these DBAs when you deterministically start
18	assuming from your DBEs that you don't have systems
19	they're lower frequency. There are some over there on
20	the abscissa that are pretty close to the same
21	frequency and with the uncertainty bands they were
22	DBEs.
23	But there were quite a few DBEs on the
24	high-risk, the high-consequence events that were in
25	the mud if you will, that were below that needed to
I	I

(202) 234-4433

	31
1	meet the NRC safety goals, below 5 times 10 $^{-7}$. And
2	there are some that don't even show up on this plot
3	that goes down to 10^{-8} .
4	So the DBAs are not don't come out of
5	the frequency consequence plot. The DBEs do and then
6	you use your deterministic approach that we use in
7	Chapter 15 to make sure that the safety-related alone
8	could help you meet 10 C.F.R. 50.34.
9	So these events that are way low that
10	normally would be compared to the safety goals, the
11	QHOs, the Q fatality safety goal there only have to
12	meet the 10 C.F.R. 50.34 and your Chapter 15.
13	All right, thanks for that diversion. Are
14	we good now maybe? Let's go back to my other plot and
15	see if there are any points there that just wrap up
16	with.
17	I wanted to make sure that you understood
18	that it's the event sequence, that it is per plant
19	year and it's going to have a full-scope PRA so it's
20	not just going to be reactor, it's going to be other
21	sources like spent fuel and so on. So you might have
22	spent fuel shared or you might have it per reactor
23	module. All that's in the mix here.
24	DR. KRESS: So you're going to specify up
25	front though how many modules.
ļ	I

(202) 234-4433

	32
1	MR. SILADY: Yes, yes.
2	DR. KRESS: You would let the person
3	buying the plant say we want five modules for our
4	side, and then you'll put
5	MR. SILADY: I can't predict how the
6	business arrangements might be. But we will have a
7	design that probably mock 1 is four reactor modules.
8	And then somebody comes in and say oh, I only want one
9	now. And so then we'll say, okay, well we have to
10	will you have the interest in someday having four and
11	they may say yes.
12	And so we'll build the shared things for
13	the four and we will sequentially add them. But the
14	PRA and the selection of the LBEs has to consider the
15	four because someday you're going to build that out
16	perhaps.
17	DR. KRESS: Well the way you do that is
18	just find the consequences for the one module and just
19	
20	MR. SILADY: That's not
21	DR. KRESS: multiply by the number of
22	modules.
23	MR. SILADY: No, no, no.
24	DR. KRESS: No, you can't do it?
25	MR. SILADY: You can't do that because
I	

(202) 234-4433

	33
1	you're going to have some events that affect all four
2	of them. That's the beauty of the approach.
3	DR. KRESS: How do you treat those?
4	MR. SILADY: You say, okay, I've got a
5	seismic event, or I've got
6	DR. KRESS: Station blackout.
7	MR. SILADY: station blackout and
8	that's the initiating event. And then you look at
9	what the chances are of it affecting one or more
10	modules. And you work your way across the event tree.
11	DR. KRESS: Well, let's take seismic.
12	MR. SILADY: Yes.
13	DR. KRESS: You have to say yes, it's
14	going to affect all four modules.
15	MR. SILADY: Right, but it may take out
16	let's say the main heat transport system for all four.
17	But it may not take out all the shutdown cooling
18	systems for four.
19	MEMBER CORRADINI: How do you know I
20	can almost guess Tom's next question is how do you
21	know with any certainty that it isn't anything but a
22	multiplicative on the one module effect. Is that
23	where
24	DR. KRESS: That's where I'm you could
25	read my mind. But my conclusion was that since
I	

(202) 234-4433

	34
1	there's so many SSCs that are relatively independent
2	of the initiating event that probably the way you
3	treat the initiating events that affect all of the
4	modules at the same time, you probably go ahead and
5	calculate the consequences due to one module and just
6	multiply the number of frequencies.
7	And just like you would do the internal
8	events. It's the way I think you'd probably treat
9	that.
10	MR. SILADY: If it was the example loss of
11	offsite power. We have a lot of passive systems.
12	DR. KRESS: Yes, that's what I had in
13	mind.
14	MR. SILADY: Yes. And so it might be
15	bimodal in that case in the sense that all the passive
16	systems had an independent failure because the same
17	maintenance crew did the maintenance on all of them or
18	the same manufacturer or whatever. Low-frequency
19	albeit. But you could think of things that can get
20	passive failures as well. And then you've got the
21	loss of offsite power and the loss of onsite power and
22	so on. And you end up with some failures in the low
23	frequency range.
24	But there are shades. And we have found
25	that there are events where it's like 30 or 40 percent

(202) 234-4433

(202) 234-4433

35 1 of them are all reactors are taken out. And 20 or 30 percent are just one. 2 DR. KRESS: So the consequences would be 3 4 affected --5 MR. SILADY: Yes. DR. KRESS: -- rather than just a single 6 7 - -8 MR. SILADY: Yes. 9 CHAIRMAN BLEY: I'm going to interrupt 10 because we're repeating I think a lot of what we talked about last time. And you have some new stuff 11 you're going to get to. 12 MR. SILADY: I want to. 13 14 CHAIRMAN BLEY: And all of you do. So I 15 think we're going to have to reduce the amount of 16 revisiting the old material and look for those 17 responses aimed at -- probably that were aimed at questions --18 19 MEMBER STETKAR: Can I ask one quick one? CHAIRMAN BLEY: Sure. 20 MEMBER STETKAR: And you can turn me off 21 if this was discussed in January also. 22 I read quite a bit of the study so I don't want to hear high-level 23 24 things, I want to hear details. Ι 25 understand how you're treating

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

uncertainty on the Y axis. I understand how you're doing that.

3 I do not understand how you're treating 4 uncertainty on the X axis. In particular, you state 5 that in the AOO region you will compare only the mean value of the consequence with the high-level goal. 6 In 7 the DBE region, whatever that means, you said you're 8 going to take the upper bound of the mean which I'm 9 assuming you really mean the 95th percentile of the 10 uncertainty because I don't know what the upper bound of the mean means. You're going to compare that with 11 your goal. 12

In the beyond design basis event you will 13 14 compare only the mean with the goal. I don't 15 understand that rationale. Because if I take a beyond 16 design basis event with an uncertainty bound in the X 17 axis and I move it up then I don't know what I'm comparing on the consequence scale. And I'll just 18 19 leave it there because maybe you discussed it in So I'd like to understand how you're 20 January. treating those uncertainties in those ranges because 21 all the high-level stuff you say sounds good until you 22 look at how it's going to be done in practice. 23 24 MR. SILADY: For all the events. MEMBER STETKAR: For all of the events. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

36

	37
1	MR. SILADY: For all the events, the AEs,
2	the DBEs, the beyond design basis events we do a
3	consequence uncertainty.
4	MEMBER STETKAR: Yes, you do.
5	MR. SILADY: And so we've got the full
6	distribution everywhere.
7	MEMBER STETKAR: Yes, you do, and I'm not
8	arguing with that. I'm saying that you're picking and
9	choosing what parameters of that uncertainty
10	distribution you want to compare with your goals.
11	MR. SILADY: We tried to follow industry
12	practice in terms of
13	MEMBER STETKAR: Picking and choosing what
14	parameters of the uncertainty you're choosing with
15	each area, period.
16	MR. SILADY: We are, yes.
17	MEMBER STETKAR: Okay. I don't know the
18	rationale behind that.
19	MR. SILADY: Okay. It is discussed in the
20	white papers.
21	MEMBER STETKAR: I read it and I didn't
22	understand it. It just says other people have done it
23	in the past.
24	MR. SILADY: Okay. I'm being told that
25	maybe in a couple of slides.
I	1

(202) 234-4433

	38
1	MEMBER STETKAR: Okay, if you're going to
2	address it then we'll get to it.
3	DR. KRESS: One other issue I have with
4	just popped out of a regulatory criteria being stair
5	step has bothered me all along.
6	MR. SILADY: Yes.
7	DR. KRESS: And I would have made straight
8	line
9	MR. SILADY: ISO risk. Or maybe it was an
10	adverse
11	DR. KRESS: Well, I mean it's maybe non-
12	risk averse. But I would have made it a straight
13	line. That way I know exactly how far away I am from
14	the boundaries. But if you're pretty close with this
15	stair step I'm never quite sure how close I am to the
16	boundaries and how to because there's some
17	arbitrariness to these stair step methods in terms of
18	the slope.
19	MR. SILADY: There is in more than in
20	probably one case for sure.
21	DR. KRESS: Yes. So I would have elected
22	to have a little conservative straight line on the
23	slow glove plot for my top-level criteria. Did you
24	consider that?
25	MR. SILADY: We took these from the
	I

(202) 234-4433

	39
1	regulations and the QHO ends up looking like a
2	straight line. And so you're happy with it.
3	DR. KRESS: yes.
4	MR. SILADY: The 10 C.F.R. 50.34, we had
5	it all of 25 rem and back in the eighties we said
6	the staff gave us feedback, oh, for a higher frequency
7	DBEs we wouldn't want to come that close. Take 10
8	percent of it. So we made that a slope based on that
9	input.
10	The 10 C.F.R. 20, we believe we have it
11	exactly the way the regulation says and we can't
12	change the regulation. It's summed over all the
13	events and you can't exceed that. So depending upon
14	what the frequency is you can have an event that
15	occurs twice a year so you only take half of it.
16	So it is what it is. We would love to
17	have something come to us that says here's the NRC
18	frequency consequence curve and here's the basis for
19	each kind of like they did for the safety goals.
20	Office of Policy Evaluation could come up with.
21	DR. KRESS: Well, you could have drawn a
22	line between the bottom points on those stair steps
23	and make a straight line through it. And it would be
24	a little bit conservative but
25	MR. SILADY: That's true.
l	I

(202) 234-4433

	40
1	DR. KRESS: it would take away all the
2	any arbitrariness.
3	MR. SILADY: You're talking about going
4	from 10 C.F.R. 50.34 out to 10 C.F.R. 20.
5	DR. KRESS: Yes.
6	MR. SILADY: This was a starting point
7	that where it's not about the specifics, it's about
8	the process. There are bigger questions than where
9	the line is.
10	DR. KRESS: Yes. Well, you know, it
11	depends on how close you get to that line as to how
12	you're selecting SSCs as to whether you cross over or
13	not. It would make a difference if you had a straight
14	line as opposed to the stair step I think as to which
15	ones might cross you over into the unacceptable
16	region. That was one of my issues. I don't know, I
17	just right now don't know how to deal with that.
18	MR. SILADY: Okay.
19	DR. KRESS: One way you can deal with it
20	is be sure you don't get very close to the stair step.
21	MR. SILADY: That in essence is what we
22	have found to this date, yes. Let me go on.
23	MEMBER REMPE: Actually, I have one quick
24	clarification too. You're saying
25	MR. SILADY: Dennis, I'm really trying to
l	I

(202) 234-4433

	41
1	go on here.
2	MEMBER REMPE: I know. If you have 10
3	versus 4 versus 2 modules you're almost implying that
4	you might have different events, you might have
5	different systems you designate as safety-related or
6	you might move the boundary.
7	MR. SILADY: No. No.
8	MEMBER REMPE: What will you do?
9	MR. SILADY: A vendor in all likelihood is
10	going to have a four-module design or X-module design.
11	He's going to offer that.
12	MEMBER REMPE: And I know of other vendors
13	who've come in and said even though we're way over the
14	safety limits we're not changing the design because
15	it's too expensive. And so what the design is is what
16	it is, and they just delete the cost because it's too
17	expensive to make modifications is why I'm asking the
18	question.
19	MR. SILADY: Well, where I was going is as
20	the market develops you might come out with a second
21	package. Instead of four you see there's a need for
22	a two-pack, or you see there's a need for a six-pack.
23	And so you offer then a selection. Do you want the
24	two or the four, you know, whichever two you select.
25	CHAIRMAN BLEY: I think Joy's point is the
	I

(202) 234-4433

	42
1	one that's been bothering me. You go down, it's no
2	big deal I think. You go up to more units on the site
3	you may have to really change the design and that
4	seems, you kind of said that, it's a pretty unlikely
5	thing to see happen.
6	MR. SILADY: Yes, yes. You
7	CHAIRMAN BLEY: So from early on
8	MR. SILADY: Early on
9	CHAIRMAN BLEY: somebody's got to
10	decide how you're going to design this thing.
11	MR. SILADY: Yes. Exactly.
12	CHAIRMAN BLEY: For the maximum number of
13	
14	MR. SILADY: Yes, that's right. And
15	there's all these questions about what if you don't
16	put it on greenfield and you put it where it has
17	existing reactors. Is there any budget, is there any
18	room for you to put yours on there and still overall
19	site-wise meet the requirements. But we're not going
20	there today, okay?
21	CHAIRMAN BLEY: Okay.
22	MR. SILADY: Next page. I did it.
23	(Laughter.)
24	MR. SILADY: We'll go back. Okay. Later.
25	The frequency took a lot of discussion but it's pretty
ļ	I

(202) 234-4433

straightforward. You're going to use the same 1 2 frequency in all cases, event sequence, mean and plant instead of a reactor. But now we're inheriting all 3 4 these different requirements out of the regulations 5 and some of them are at the EAB, some are at the LPZ, some are, you know, you can read the chart. 6 And we 7 talked about this in the earlier meeting. 8 And so just for ease of presentation we're 9 plotting everything at the EAB. And almost all the 10 regulations now have gone to the total effective dose equivalent. 11 So when it came time to do NRC safety 12 goals even though we're plotting and showing where the 13 14 points are relative to the -- at the EAB we would do 15 it per the regulation. You know, the acute to -- as shown there to 1 mile, the latent at 10 miles. And it 16 would be the complementary cumulative distribution 17 function on all the accident rule set that that comes 18 19 with that particular requirement. If you meet your EAB criteria 20 DR. KRESS: you're almost sure to meet those other two. 21 22 MR. SILADY: That's right. And that's why we did it this way. 23 24 DR. KRESS: Yes, but there's one missing 25 there.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

43

	44
1	MR. SILADY: Okay.
2	DR. KRESS: That's the societal risk. The
3	total cost of an accident. This goes up forever, or
4	maybe 50 miles. But I'm not so sure you automatically
5	meet that when you meet the EABs. But I don't see
6	anywhere where you're looking at that. The PRA
7	preliminarily looked at the total cost of an accident.
8	And taking all the events including beyond design
9	basis and everything. But I don't know where that
10	fits into your system.
11	MR. SILADY: Well, if it comes from the
12	NRC or
13	DR. KRESS: There's no requirement yet
14	from the NRC.
15	MR. SILADY: I know, that's the point. We
16	screened the current regulations. But we have from
17	our user, in the MHTGR days we had an investment
18	protection. And it had an FC chart.
19	DR. KRESS: Oh, you have one.
20	MR. SILADY: And then the C
21	DR. KRESS: It has dollars for the C?
22	MR. SILADY: Yes, exactly right.
23	DR. KRESS: Oh, wonderful. I love that.
24	MR. SILADY: We're off into another topic.
25	DR. KRESS: Okay.
I	

(202) 234-4433

	45
1	MR. SILADY: Okay. At 10 ⁻³ you couldn't
2	be down for 6 months. At 10^{-5} you couldn't have plant
3	write-off, et cetera.
4	DR. KRESS: Somewhere I'd like to see that
5	eventually.
6	MR. SILADY: Okay. I can send it. Next
7	page, please.
8	Now, we've touched on this already. We've
9	got different requirements shown in the green across.
10	We've got these categories in the column, first
11	column. They come to us with different accident rule
12	sets.
13	And so although we're doing our
14	uncertainty distributions for all the top three
15	categories we pick whatever value we need for whatever
16	the requirement is. And our understanding is on this
17	page, that for the 10 C.F.R. 20 we cume the events and
18	we look at it at the EAB for that 100 mrem.
19	And when it comes time for the DBEs or the
20	10 C.F.R. 50.34 it's just the DBEs and we look at it
21	upper bound, 95 percent. For the emergency planning
22	you want to know what the real expected, the mean
23	values are going to be to compare to your PAGs,
24	whether you have to move or shelter people.
25	For the QHOs we know that that's pretty
	I

(202) 234-4433

	46
1	well spelled out. So once we've derived there's a
2	space between the top three which can go on an FC
3	chart very neatly and the DBAs that are scattered
4	everywhere.
5	We use the upper bound against 10 C.F.R.
6	50.34 again at the EAB even though there's an LPZ.
7	And we do this typically for 30 days but we will look
8	at 2 hours of course, the worst 2 hours.
9	And all the while you have to keep in mind
10	that our design objective, what we're trying to do is
11	have that EPZ be at the EAB. Next page, please.
12	MR. KINSEY: Excuse me, Fred. Before you
13	move on. Does this help to answer the question about
14	where we do consequence uncertainty and where the
15	limits come from? And the method
16	MEMBER STETKAR: It doesn't help to answer
17	where the limits come from except that you feel that
18	your interpretation is somebody else has told you to
19	do it this way. So I'm going to ask the other people
20	that you feel have told you to do it this way.
21	MR. SILADY: Well, it's not just telling
22	us but we've looked at a lot of different sources,
23	regulatory and submittals and so on, and this is what
24	we believe is current.
25	MEMBER STETKAR: I'll ask the staff.
ļ	

(202) 234-4433

	47
1	MR. SILADY: Okay.
2	MEMBER STETKAR: See if they agree.
3	MR. SILADY: There is some disagreement on
4	this as well, so this is a good thing to bring to
5	mind.
6	MEMBER STETKAR: I didn't quite see that
7	disagreement. I'll ask the staff.
8	MR. SILADY: Okay, very good.
9	MEMBER STETKAR: Keep you going.
10	MR. SILADY: Next page.
11	MEMBER CORRADINI: So your objective I
12	just want to get to your objective.
13	MR. SILADY: Yes.
14	MEMBER CORRADINI: Your objective is to
15	make the EAB the EPZ.
16	MR. SILADY: Correct.
17	MEMBER CORRADINI: And if necessary you'd
18	have to grow the EAB to make that occur.
19	MR. SILADY: If necessary. But there's
20	lots of other things we could do. We can change the
21	design. We can do more research. We can sharpen the
22	pencil. You do all the designer tricks in order to
23	find a way to make your design such that you wouldn't
24	have to shelter or evacuate anybody offsite.
25	MEMBER CORRADINI: Okay.

(202) 234-4433

48 1 MR. SILADY: Next page. This is the 2 discussion we've already had of how we get the design 3 basis accidents from the DBEs. We don't get them out 4 of the air. We get them from the DBEs. That gives 5 them a firm, systematic, nothing's going to drop through the cracks because we're going to put all the 6 7 focus on the PRA that gave us those DBEs. 8 The DBAs are not derived from the beyond 9 design basis events. It's the events that are in that 10 frequency range in the DBEs that go into Chapter 15 that we're going to look at deterministically. 11 This is one of the major assumptions that blends the 12 probabilistic with the deterministic. Enough said on 13 14 that, let's go to the next page. 15 MEMBER STETKAR: No, not enough said. 16 That last bullet is the thing that I'm not 17 understanding. Because if I do a risk assessment and I look at I'll call them sequences. I look at a 18 19 sequence and I have a bunch of things that fail and a bunch of things that succeed. And a bunch of things 20 that fail get me down to 1 times 10^{-6} . And that's a 21 BDBE. 22 23 MR. SILADY: Yes. 24 MEMBER STETKAR: And it has some 25 consequence.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	49
1	MR. SILADY: Yes.
2	MEMBER STETKAR: So I have uncertainty
3	about that consequence. Now, if I look at the bunch
4	of things that have failed and I say, well, half of
5	that bunch is non-safety related. I'll call it non-
6	safety related. Now, if I do I assume that that
7	non-safety related stuff cannot work when I think
8	about design basis accidents?
9	MR. SILADY: In our framework we think of
10	design basis accidents in the DBE space. In the
11	beyond design basis event space we only think of those
12	that are high-consequence that would exceed 10 C.F.R.
13	50.34 that we would then need to make things safety-
14	related to keep them low-frequency.
15	So the only time in which the DBA or the
16	safety-related comes into play is either from the DBEs
17	to mitigate them, to meet the consequences, or from
18	the high-consequence BDBEs that are if we looked on
19	the chart they're over to the right that we don't want
20	to have rise up because there
21	MEMBER STETKAR: But they're still not
22	considered DBAs but they might have you might
23	define safety-related equipment because of that
24	criterion.
25	MR. SILADY: Yes. And actually
	I

(202) 234-4433

	50
1	MEMBER STETKAR: I got it.
2	MR. SILADY: Okay.
3	MEMBER STETKAR: Next slide.
4	MR. SILADY: Thank you. Good, progress.
5	Next slide, please.
6	Now the functional containment is a topic
7	that we covered on the 17th as well. Our upper tier
8	and I've already told you that it's all of those
9	barriers that are for lack of a better word concentric
10	or nested, and that there's independence and so on
11	between the helium pressure boundary and reactor
12	building and all the fuel.
13	What we do here is we set intentionally
14	that we're going to have requirements on retaining
15	radionuclides within the fuel. We really want to put
16	the focus on retention at the source.
17	But we're going to look at what the other
18	barriers do for us as well in terms of helping us have
19	additional margin to our requirements. So, the
20	standard that we're looking for performance here is
21	characterized by during normal operation retention
22	within the fuel so that we have a really relatively
23	low inventory within the helium pressure boundary.
24	Then if you have a leak in the helium
25	pressure boundary it won't exceed the requirements
I	I

(202) 234-4433

	51
1	offsite. That's the idea.
2	And then secondly we're going to limit
3	releases throughout the spectrum for the off-normal
4	events. Whether it be an early release or an early
5	and a delayed and so on.
6	Finally, our functional containment system
7	has the capability to control leakage when you think
8	of it in the full five barriers. Next page.
9	Our summary of where we are, and this is
10	largely from the MHTGR and the PBMR and some of the
11	other designs that have been before in the pre-
12	application interactions over the decades is that we
13	can release that which comes out during normal
14	operation from the helium pressure boundary and meet
15	10 C.F.R. 50.34.
16	Our limiting LBEs tend to be, the risk-
17	significant ones, have an initial release from the
18	helium pressure boundary. Because if you don't fail
19	the helium pressure boundary you aren't getting
20	anything out.
21	And there's a range of possibilities
22	there. There's leak sizes and leak locations, and
23	there's the possibility of the relief valve. And the
24	high-risk events really are not the big breaks in the
25	helium pressure boundary but it's that relief valve
	I

(202) 234-4433

	52
1	that goes off because the steam generator is at higher
2	pressure. You can have a steam generator tube leak
3	and that in certain sequences if the water keeps
4	coming that relief valve lifts. So that's the initial
5	release.
6	And then you have the larger delayed
7	release from the fuel which takes as you know 2-3
8	hours because of low power density and high heat
9	capacity.
10	The next two statements are significant.
11	We will meet 10 C.F.R. 50.34 without consideration of
12	reactor building retention. We will meet the PAGs
13	with the entire functional containment including the
14	reactor building.
15	As you're going to hear later in the day
16	the reactor building safety-related primarily for
17	structural reasons. Next page.
18	The summary on the functional containment
19	mechanistic source terms is that there's a blend.
20	We're using retention at the source and the intrinsic
21	properties and the passive features in order to meet
22	the requirements. It's consistent with the advanced
23	reactor policy. It's consistent with discussions of
24	the containment function of mechanistic source terms
25	in various SECY documents and with the approaches that
ļ	I

(202) 234-4433

	53
1	have previously been reviewed dating back to the
2	eighties. Two or three different times as we've done
3	with NGNP, we did it with the MHTGR, with PBMR Exelon
4	and with PBMR alone. Next page.
5	Here's the last page before I turn it over
6	to Dave to talk about the fuel area. The siting
7	source term is essentially our approach to it is
8	essentially the same as what we did in the eighties
9	and which the staff reviewed in NUREG-1338.
10	It's consistent with the discussions of
11	containment function and mechanistic source terms in
12	more recent SECY documents. It implements a modular
13	HTGR-appropriate interpretation of that footnote that
14	started off in 10 C.F.R. 100 and which is now in 50.34
15	and 52.79 regarding siting.
16	Limiting DBAs are what we use to evaluate,
17	to determine the SSTs. Remember our chart with the
18	blue dots? We used the big ones that are way down in
19	the mud as our source terms. Five times 10^7 , even
20	some of them below that, but above 10^{-8} .
21	Back in the eighties the staff still
22	wanted more what-ifs and deterministic flavor. So
23	they said hey, go look at these other bounding event
24	sequences is what they called them. And we had to
25	look at cross-vessel failure, double-ended guillotine.
	I

(202) 234-4433

	54
1	We had to look at all the rods being pulled and we had
2	to look at and we did it. And we intend to do that
3	again.
4	And the reason we did it is to assure
5	there were no cliff edge effects. That's how we used
6	those what-ifs, so that we know the safety terrain,
7	the topography of the land, that there's nothing
8	lurking out there both in the weeds.
9	Well, I've had fun. I hope I've covered
10	the ground. I've used way too much time and I
11	apologize but I've left a little bit for Dave I
12	believe.
13	CHAIRMAN BLEY: Not really, but it's only
14	our lunch, so.
15	MR. PETTI: So last time you heard a lot
16	about the fuel program, what we're doing to support
17	the design. So just in summary that we do have a
18	large fuel program providing data under NRC-accepted
19	QA program to really understand fuel performance and
20	fission product behavior for laying the technical
21	foundation needed to qualify the fuel made to
22	fabrication process and product specifications within
23	an envelope of operating in accident conditions that
24	we think will bound modular HTGRs.
25	The results to date that I talked about
	I

(202) 234-4433

	55
1	last time are consistent with the design assumptions
2	about fuel performance and radionuclide retention that
3	have been historically used by reactor designers. And
4	we're getting data to support model development and
5	validation.
6	And in one simple statement the results to
7	date support the design basis that you heard about
8	include the approach for functional containment and
9	mechanistic source term.
10	In terms of what are our key results, we
11	have a vastly improved understanding of TRISO fuel
12	fabrication. We spent significant effort to improve
13	our understanding over the historic German process.
14	Much better fabrication and characterization by the
15	fuel vendor largely because measurement science is
16	just better than it was in 1978 and 1980. Our ability
17	to do certain parts of the fabrication equipment is
18	better. We're actually leveraging the computer
19	industry and making chips, one of the key components
20	in the fabrication of fuel is the same component.
21	We've had an outstanding irradiation
22	performance. You have a large statistically
23	significant population in TRISO fuel particles at high
24	burnup and high temperature HTGR conditions. And we
25	have confirmed the expected superior irradiation
Į	I

(202) 234-4433

56 1 performance of uranium oxycarbide fuel at high burnup which has been a point in the fuel community for 2 decades. 3 4 We're in the middle of wrapping up our 5 post-irradiation examination of the first fuel AGR-1. And as many know silver tends to come out of this 6 7 fuel. We got a lot of silver out of the fuel in AGR-8 1. Generally consistent with the model predictions to 9 date but no cesium release from intact particles under 10 irradiation. Any cesium we see in the fuel matrix after irradiation, it was a defective particle in that 11 capsule. 12 There was no palladium attack or corrosion 13 14 of silicon carbide despite large amounts of palladium outside the silicon carbide. Percent level of 15 16 palladium went through the silicon carbide but the silicon carbide is fine as evidenced by the fact that 17 there's no cesium outside the silicon carbide. 18 19 And we have done some safety testing. Ι think we just finished number 7. Hundreds of hours at 20 16-, 17- and in red there is 1,800. We just completed 21 an 1,800 degree C test demonstrating the robustness of 22 And we'll talk about it in the next slide. 23 the fuel. 24 So the accident safety testing is well We simulate this core conduction cooldown 25 under way.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	57
1	that you see in the plot. And what we do is simple,
2	right now, isothermal testing for hundreds of hours at
3	16-, 17- and 1,800. We have done it says six
4	tests. I was losing track have been completed.
5	We will actually try to do a test sometime
6	this year, early next year that follows the purple
7	line, the actual time/temperature results for the core
8	to compare to the isothermal. And we are thinking
9	about deconsolidating the particles and just heating
10	up the particles and not the matrix because our
11	releases look like it's just material that had
12	diffused out into the matrix under irradiation and the
13	particles were not releasing under these accident
14	tests. We just want to be able to confirm that. But
15	it does look like that that's the case.
16	MEMBER CORRADINI: So can I? I'm not a
17	fuels person. I was hoping there would be somebody in
18	the committee that knows the right question to ask but
19	since so your last point, I guess I have a number
20	of questions.
21	So your last point is that you think it
22	got there from the fabrication event and during the
23	irradiation testing, or it leaked out over long time
24	spans during irradiation testing? That's what I
25	wasn't clear on.
	I

(202) 234-4433

	58
1	MR. PETTI: During irradiation depends on
2	the fission product. Some fission products will
3	diffuse through the silicon carbide.
4	MEMBER CORRADINI: The metallics.
5	MR. PETTI: Some of the carbides besides
6	silver which is not safety-significant. But europium
7	and very low levels of strontium we see in the matrix,
8	10^{-3} to 10^{-5} fractions, small levels.
9	Then we put a twin compact because that
10	one we had to destroy to get that number. Then we
11	take the one sitting right next to it and put it in
12	the furnace and the release is about the same as when
13	we dissolved it and said what's in the matrix.
14	The releases are flat over time. You put
15	it in the furnace, you get to the temperature, they
16	never increase which says it what sort of came out and
17	then just slowly, slowly on a log plot.
18	MEMBER CORRADINI: You're just essentially
19	cooking it out of the
20	MR. PETTI: Cooking it out of the matrix,
21	not out of the particles.
22	MEMBER CORRADINI: Okay.
23	MR. PETTI: So. So to absolutely confirm
24	that it would be nice just to heat some particles and
25	that's what I think we're planning to do.
l	I

(202) 234-4433

	59
1	MEMBER CORRADINI: All right. So the same
2	question is the staff in reading their document were
3	concerned about time and temperature. And are you
4	going to address that somewhere in these slides?
5	Because I want to get a feeling because I don't
6	appreciate all of this.
7	MR. PETTI: That had to do more with I
8	believe irradiation testing. I think the accident
9	testing time and temperature is well in excess.
10	I showed a plot the last time that I was
11	here that tried to capture because there's so many
12	different transplants in the irradiation capsule. How
13	much time, what fraction of the fuel spent at what
14	temperature. And we've now that we have that all
15	in place we'll do that for every capsule to show.
16	But for instance, AGR-1, 5 percent of the
17	fuel spent time above 1400 degrees C for 100 days. So
18	there is a lot of fuel that got very hot. So we're
19	trying to capture that metric because it's a hard
20	metric to capture.
21	CHAIRMAN BLEY: Your uncertainty
22	calculations, and I've just started reading the
23	reports on the temperature, thermocouple data analysis
24	and the uncertainty. You came up with, I forget,
25	something like 50 degrees.
ļ	I

(202) 234-4433

	60
1	MR. PETTI: Sixty degrees I think.
2	CHAIRMAN BLEY: Something like that, yes.
3	But there's some odd stuff in there with some a
4	large number I think of thermocouples failing and some
5	other problems. Some tests that didn't come out quite
6	the way you expected on the thermocouples. And it
7	wasn't clear to me that your analysis included all of
8	those kinds of problems. Did it? And can you point
9	me to
10	MR. PETTI: There's two ways to do the
11	uncertainty analysis.
12	CHAIRMAN BLEY: Okay.
13	MR. PETTI: Let's say you could
14	CHAIRMAN BLEY: How important is it, these
15	results?
16	MR. PETTI: Right. So you could try to
17	predict the thermocouple. The thermocouple is not in
18	the fuel, it's near the fuel. And then say okay, if
19	I hit that really well, let's say I miss it by 15
20	degrees, then I just look at the uncertainty from the
21	thermocouple to the fuel. And I add the 15 degrees as
22	a bias maybe.
23	We did not do that. We instead calculated
24	it completely from the outside of the capsule in,
25	first principles. So the thermocouples are there to
Į	1

(202) 234-4433

	61
1	help us control the experiment but the uncertainty
2	analysis is a complete propagation from the outside
3	in, all the effects that we know
4	CHAIRMAN BLEY: Based on the physics.
5	MR. PETTI: Based on the physics. Now,
6	AGR-1 happens to be unique because we borated the
7	graphite to an extent that our gaps closed, tried to
8	close. That made it very, very complicated. AGR-2,
9	we don't see that behavior. I can show you graphite
10	capsules that are just as complicated, some may argue
11	more complicated. We can predict within 30 to 40
12	degrees.
13	So we're slowly building up. We've got,
14	you know, I can show you a non-heat generating test
15	graphite. I can take all the graphite irradiation
16	effects, I can calculate that. Now with fuel I've got
17	to add heat generation, I've got to add gamma heating
18	of all the metals, all of that. That gets all folded
19	in.
20	But given that there's still concern for
21	the formal qualification we are going to do a mock-up,
22	a heated mock-up. We also have three different ways
23	to measure temperature now that we need to qualify in
24	some way before we put them in the reactor.
25	We will basically put all of the different

(202) 234-4433

	62
1	TCs we're going to use in this we've got an actual
2	sound, sonar-based wireless system that we're going to
3	try. And we will set it up in the lab. We will
4	change the gas mix like you do in irradiation and run
5	the finite element model to show sort of as a way to
6	qualify it before the irradiation.
7	CHAIRMAN BLEY: And that's in the
8	continuing work.
9	MR. PETTI: That's in the continuing work,
10	right.
11	MEMBER CORRADINI: And that's part of AGR
12	the end radiation one is AGR
13	MR. PETTI: The next one will be 5, 6, 7
14	altogether. So we're hoping to start that actually
15	later this year.
16	CHAIRMAN BLEY: Okay. I'll try to study
17	that. I'm a little vague on this stuff. I've been
18	reading it, trying to
19	MR. PETTI: AGR-1 has some oddities. I
20	think when we do the results for AGR-2 it'll be
21	better.
22	So in terms of the results in the high-
23	temperature heating we have found that releases are
24	very low and it's either fission products that diffuse
25	in the matrix, a defective particle, and we have
I	I

(202) 234-4433

	63
1	finally seen one or two particles fail at 17- and
2	1,800. We're not absolutely convinced yet till we do
3	the full PIE but the odds are it looks like the
4	particle fail in the reactor.
5	Now, just to tell you about how important
6	this is though for 1,800 degrees. If we had taken
7	German UO2 fuel and put it in the furnace at 1,800
8	degrees C we would start to see very rapid release
9	after tens of hours. UCO TRISO, it just doesn't look
10	like that. So while there are some failures the
11	physics is definitely different. And we believe it
12	has to do with oxycarbide fuel instead of UO2.
13	So that will all come out I think. We've
14	got some UO2 in our second capsule. We plan to do
15	some heating. But we're clearly beginning to see a
16	difference between the two fuel
17	MEMBER CORRADINI: So you intend to
18	essentially do as you said, take the compact, go
19	through the accident heating to show empirically what
20	you would think is the root cause of what you get in
21	terms of
22	MR. PETTI: Right, right. Now we've got
23	all this old German data that we can plot and show you
24	the two different plots but we've got to go to the
25	structural stuff.
	I

(202) 234-4433

	64
1	MEMBER CORRADINI: staff would rather
2	see.
3	MR. PETTI: Yes, we've got and it's not
4	so much the heating as much as it is we've got to go
5	in and do the detailed PIE which it requires some of
6	these advanced techniques we have. I think I know
7	what the problem is but again I won't go too far out
8	on a limb. We think we know what the problem is with
9	UO2. But 2 more years we'll know that answer.
10	So today you asked us based on last time
11	the role of the reactor building in defense-in-depth
12	and what's our approach to defense-in-depth. So we
13	have presentations on those.
14	MR. ALBERSTEIN: Okay, my name's Dave
15	Alberstein. I work for TechSource providing support
16	to INL on the NGNP project.
17	And we decided to first talk about the
18	role of the reactor building in defense-in-depth and
19	reactor building design alternatives. We had a lot of
20	questions in January regarding what if you do this to
21	the design of the reactor building, what if you do
22	that. What would a containment constitute defense-
23	in-depth whereas other design alternatives you
24	wouldn't have defense-in-depth.
25	So we decided that the best thing to do
l	1

(202) 234-4433

before we talked about the general approach to defense-in-depth which Mark Holbrook will talk about would be to give you a rundown on the role of the reactor building in defense-in-depth and what happens in regard to offsite doses if you choose other design alternatives for the reactor building.

7 The slide that's up there right now, slide 8 number 2, qives a quick review of the safety 9 attributes, key safety attributes for the modular 10 HTGR. These are listed because they have an effect on the decisions one makes with regard to how to design 11 the reactor building. The fuel coolant and moderator 12 are all chemically compatible under all conditions 13 14 that we're aware of.

The fuel has large temperature margins in normal operation and during accident conditions. Normal operating temperatures are significantly below the temperatures at which significant degradation of coated particle integrity could occur. And the same is true during accident conditions.

Safety is not dependent on maintaining helium coolant pressure. If you lose coolant pressure you're not going to transfer large amounts of energy into the reactor building the way you might with other reactor designs that you're familiar with.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

Post-accident heat removal, there's not a lot of heat that needs to be removed. In terms of the reactor building the RCCS removes the heat from the reactor system and does so passively. The response times of the reactor are long days as opposed to seconds or minutes as a result of the large amount of graphite in the core, its thermal capacity.

And lastly, there are multiple as we said concentric independent radionuclide barriers. Breaching the helium pressure boundary doesn't result in failure of the fuel or for that matter of the reactor building. So if we move to the next slide.

The role of the reactor building in safety design. The required safety function of the reactor building for the modular HTGR is to provide structural protection from both internal and external events and hazards for the passive heat removal of heat from the reactor vessel to the reactor cavity cooling system.

19 It needs to maintain the relative geometry 20 between the vessel system and the helium pressure 21 boundary and the RCCS. That's the safety-related role 22 of the reactor building.

It does other things that are not required
to meet the regulatory requirements for offsite dose.
It does provide additional radionuclide retention.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	67
1	And as was noted in one of the viewgraphs Fred
2	presented you have to have that retention taken into
3	account to meet the EPA PAGs at the exclusion area
4	boundary. However, we do not need credit and don't
5	anticipate that we ever will need to take credit for
6	the reactor building's radionuclide retention
7	capabilities to meet the regulatory requirements of 10
8	C.F.R. 50.34 for offsite dose at the exclusion area
9	boundary.
10	The building also limits air available for
11	ingress into the system after a helium pressure
12	boundary depressurization. But this again is not
13	needed to meet offsite dose requirements. Next slide.
14	MEMBER CORRADINI: You said a mouthful.
15	MR. ALBERSTEIN: Yes.
16	MEMBER CORRADINI: And so can we take the
17	first bullet so I make sure I understand? So except
18	for the fact that it keeps everything where it's
19	supposed to be in the event of any sort of internal or
20	external event you don't need the reactor building.
21	MR. ALBERSTEIN: To meet the regulatory
22	requirements for offsite dose.
23	MEMBER CORRADINI: Okay, so I want to make
24	sure I've got this right before we go on. So, I could
25	have an open structure with just a bunch of steel
I	I

(202) 234-4433

	68
1	girders to keep everything structurally in the same
2	location and life would be fine.
3	MR. ALBERSTEIN: I have a slide on that in
4	a little bit.
5	MEMBER CORRADINI: Okay.
6	MR. SILADY: The answer is yes.
7	MR. ALBERSTEIN: Yes.
8	MEMBER CORRADINI: Okay. The second
9	bullet you said something, I think I should understand
10	it but I'm a little bit confused. The EPA PAGs are
11	essentially the limiting issue. So whether or not you
12	meet 10 C.F.R. 50.34 is irrelevant because you want to
13	meet the EPA PAGs to eliminate the need for
14	evacuation.
15	MR. ALBERSTEIN: Yes.
16	MEMBER CORRADINI: But if you were not of
17	so mind to do that and you were willing to come up
18	with an emergency planning and evacuation scheme you
19	wouldn't need the reactor building for that either.
20	MR. ALBERSTEIN: To meet the offsite dose
21	requirements
22	MEMBER CORRADINI: Of 50.34.
23	MR. ALBERSTEIN: 50.34, 52.79, that's
24	correct.
25	MEMBER CORRADINI: I can't get all the
	I

(202) 234-4433

	69
1	numbers in my head.
2	MR. ALBERSTEIN: Yes.
3	MEMBER CORRADINI: Okay.
4	MR. ALBERSTEIN: Yes.
5	MEMBER CORRADINI: All right. Then the
6	only thing standing in the way of not having a reactor
7	building versus steel structure is defense-in-depth
8	which is you're putting all your eggs in the fuel
9	vessel.
10	MR. ALBERSTEIN: We still need the reactor
11	building to protect the structures that are needed for
12	passive heat removal.
13	MEMBER CORRADINI: Okay, but that's not
14	for fission product retention, that's for structural
15	support.
16	MR. ALBERSTEIN: Correct.
17	MEMBER CORRADINI: So I'm still back to my
18	original question which is you're and now maybe I'm
19	misinterpreting. You're claiming I don't need
20	defense-in-depth. The fuel is robust enough. As long
21	as I keep everything where it's supposed to be through
22	all the accident initiators in terms of structural
23	dimensionality, that I expect this to stay here and
24	that to stay there so that all those functions are
25	met, I don't need a reactor building.
I	I

(202) 234-4433

	70
1	MR. ALBERSTEIN: To meet offsite dose
2	requirements
3	MEMBER CORRADINI: Right.
4	MR. ALBERSTEIN: I don't need a reactor
5	building.
6	MEMBER CORRADINI: No. I wanted to make
7	sure I got it right. Thank you.
8	MR. KINSEY: And again, to clarify, we'll
9	talk further about the defense-in-depth aspects in a
10	few minutes. We weren't covering that at the moment.
11	MR. ALBERSTEIN: Okay. Can we move on to
12	the next slide? The reference design right now for
13	the modular HTGR that was developed by General
14	Atomics. And we're going to tend to talk in the
15	context of that design. The next modular HTGR may be
16	somewhat different. We can't speak for future
17	designers.
18	But the reference design for that
19	conceptual design was a vented reactor building. It
20	addresses several specific design issues for modular
21	HTGRs. Number one, it's compatible in terms of its
22	volume with the fact that you have a non-condensing
23	helium coolant that doesn't carry a lot of energy into
24	the reactor building in the event of depressurization.
25	It's matched to the accident behavior of
Į	I

(202) 234-4433

	71
1	the modular HTGR. You vent it early in the transient
2	when the radionuclides released from the helium
3	pressure boundary are relatively low in terms of the
4	activity. Later in these core heatup transients when
5	the delayed releases take place the building is closed
6	up where you can maintain some control over the rate
7	at which those radionuclides could be later released.
8	And overall, providing this vented
9	capability provides a more benign environment for the
10	passive reactor cavity cooling system design, be it an
11	air-cooled system or a water-cooled system. The
12	vented building provides for lower heat pressure and
13	structural loads on the RCCS all of which is
14	advantageous in the design of the HTGR.
15	Next slide shows you a couple of things
16	that are important. What this slide shows you are the
17	vent paths that the helium would have to follow in the
18	event of a helium pressure boundary breach to be
19	released from the reactor building.
20	A couple of things to note. On the figure
21	on the left at the top where it says "Operating floor
22	elevation 6 inches," that's where grade is. So most
23	of this reactor building is below grade.
24	Number two, note that the paths for
25	depressurization and venting are somewhat tortuous.
I	

(202) 234-4433

	72
1	It's not a simple matter of releasing directly to the
2	atmosphere without going through a number of cavities
3	that can have an effect on the amount of radionuclides
4	that actually get out of the building.
5	And lastly, note at the upper left the
6	final release point is about 20 feet above grade. So
7	the points here are that the paths for release are
8	tortuous. Most of the activity with regard to
9	depressurization takes place below grade. The release
10	point is at about 20 feet.
11	And then after the venting has taken place
12	and the louvers are closed back up again most of the
13	building is below grade. It's not sitting out there
14	with the wind blowing on it and all of that. It's a
15	below-grade structure.
16	So now
17	MEMBER CORRADINI: I'm sorry. So this is
18	from the `86 or I can't remember the date.
19	MR. ALBERSTEIN: That's late eighties.
20	MEMBER CORRADINI: Okay. That's the
21	MR. ALBERSTEIN: GA design.
22	MEMBER CORRADINI: Okay. And then there
23	was an upper bound calculation as to what would be the
24	radionuclide release with that approach. And that was
25	well within the EPA PAGs.
l	I

(202) 234-4433

	73
1	MR. ALBERSTEIN: I'm going to turn to Fred
2	here since he did those
3	MR. SILADY: Yes.
4	MEMBER CORRADINI: And staff issued a
5	draft, a preliminary SER and concluded the same.
6	MR. SILADY: Generally. There were some
7	asterisks
8	MEMBER CORRADINI: What does generally
9	mean?
10	MR. SILADY: There were some asterisks on
11	the first NUREG-1338 that had to do with if the R&D
12	was completed and so on. And I think the ACRS said it
13	best in the wrap-up of that series of interactions is
14	that neither the designers, the staff, nor themselves
15	had found an event that exceeded the requirements.
16	MEMBER CORRADINI: And sorry. So to bring
17	us back up to date now 25 years later or whatever it
18	is, the concern about having dust reside in little
19	nooks and crannies and that dust having radionuclides
20	with it, does it change that conclusion? About dust
21	transport during this. In other words, it's not just
22	in the active it's not just in the pressurized
23	helium but it's also in stuff that has eroded away
24	from the graphite that's sitting in nooks and crannies
25	that wouldn't have been cleaned up during the active
	1

(202) 234-4433

cleanup during its circulation. That doesn't change the conclusion?

The effects of dust need MR. ALBERSTEIN: 3 4 to be taken into account. And we believe that the 5 extent to which dust effects can affect the offsite doses differs as a function of the design. 6 In the 7 case of the prismatics there's no historic evidence of dust buildup in prismatic HTGRs. In the case of 8 pebble beds there is historical evidence of dust 9 10 buildup and that would have to be taken into account. MEMBER CORRADINI: Okay. The reason I'm 11 asking the question is I've attended enough of the 12 workshops that that answer tracks with what I've 13 14 heard. But what I'm trying to get at is the 15 uncertainty issue which is if I understand the system 16 operation you're continually cleaning up the helium such that if God forbid you have an event like this 17 there's not a lot of resident radionuclides. 18

19 Then the only place where you have a 20 potential short circuit is these -- essentially an 21 uptake of this and the dust is sitting somewhere 22 within the system that you haven't cleaned up. It's 23 not that I don't disagree with the logic, I want to 24 understand how that affects the uncertainty in the 25 estimate.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

74

	75
1	MR. SILADY: I think Dave made the
2	distinction between the reactor types. And so we'll
3	take it into account, whichever one.
4	It's not just the helium purification
5	system captures the radionuclides or it's on dust.
6	There's plateout on metallic surfaces. And it's not
7	just that there's a leak in the helium pressure
8	boundary and the helium leaves and the dust goes with
9	the helium. There are a lot of other effects in terms
10	of
11	MEMBER CORRADINI: That I'm well aware of
12	from other dealings. I'm well aware of that. On the
13	other hand, all of those pieces of physics are tough
14	to estimate. So I'm trying to understand if I had to
15	draw an uncertainty bound on this, a range, that all
16	the things that was concluded back in `86 still
17	maintain even with the uncertainty you might get from
18	it. That's why I'm asking the question. With
19	prismatic. Let's not go back to pebble for the
20	moment.
21	MR. PETTI: I think it's fair to say that.
22	MEMBER CORRADINI: Okay.
23	MR. ALBERSTEIN: There are, you may recall
24	from the mechanistic source terms white paper there
25	are design margins on both circulating activity and on
	1

(202) 234-4433

	76
1	condensable radionuclides like cesium, strontium, and
2	so on and so forth. Between the best estimate of what
3	circulating activities, for example, would be and the
4	upper bounds that are assumed as initial conditions
5	when an accident takes place.
6	The factor of 4 on the noble gases, the
7	factor of 10 on the condensable radionuclides, the
8	condensable metallics like cesium and strontium. And
9	those design margins are intended in part to account
10	for these types of phenomena.
11	MEMBER CORRADINI: Okay. So last
12	question, then I'll stop. Is there anything from a
13	testing or periodic maintenance approach to this that
14	one could check to see that you don't have a buildup.
15	Because I'm still I have this worry about this.
16	And so if I can't be sure, and I have an uncertainty,
17	is there something in periodic testing or maintenance
18	that one can check this out?
19	MEMBER REMPE: Couldn't the staff suggest
20	that a license condition be included, whether the
21	instrumentation at the startup?
22	MEMBER CORRADINI: I guess I want to know
23	I'm looking for some sort of
24	MR. KINSEY: That's an attribute of course
25	that would be specific to the design and it's
I	I

(202) 234-4433

	77
1	something that I would expect that the design
2	MEMBER CORRADINI: This is an
3	instrumentation guru who wants to solve everything in
4	instrumentation.
5	MR. KINSEY: That's right.
6	MEMBER CORRADINI: I'm looking for
7	something that I can test or surveil on some periodic
8	basis that gives me confidence that the uncertainty
9	band is not here but it's there.
10	MR. ALBERSTEIN: Circulating activity and
11	plateout activity can be monitored during operation.
12	It was done at Fort St. Vrain. Will be, yes.
13	You're asking specifically about
14	monitoring for dust levels and I'm hesitating just a
15	little bit here.
16	MEMBER CORRADINI: I'm trying to come up
17	well, I've made my point. I'll stop. I'm just
18	trying to it just seems to me that that to me is
19	this uncertainty is an important one relative to
20	everything you're saying. Because if I buy what
21	you're saying a lot of things naturally proceed from
22	it. So I'm trying to find out what the uncertainty is
23	on this.
24	DR. KRESS: I understand you have these
25	measurements for the plateout and the circulating

(202) 234-4433

	78
1	activity. My question is what are you going to do
2	with them. Do you have some plans in mind, say, oh,
3	well that's too much here, let's shut down the reactor
4	and change out the fuel?
5	MR. ALBERSTEIN: At Fort St. Vrain, good
6	example, there were actually tech spec limits on both
7	circulating and some plateout activity levels. And if
8	those limits were exceeded, yes, you'd have to shut
9	the system down.
10	DR. KRESS: So you plan on doing the same
11	sort of thing.
12	MR. ALBERSTEIN: I can't imagine not
13	having tech spec limits on similar parameters.
14	DR. KRESS: I just never saw that anywhere
15	in the white paper.
16	MR. ALBERSTEIN: Yes, and in fact we got
17	an RAI early on from NRC on that subject. And we gave
18	a lengthy response about what was done at Fort St.
19	Vrain without making specific commitments for the guy
20	that has to design and operate the next one. Because
21	we just didn't feel given where we were with the
22	design at that point in time and now that that would
23	be appropriate for us to do. But historically the
24	precedent is there.
25	DR. KRESS: It seems to me like in order
ļ	I

(202) 234-4433

	79
1	to put a tech spec on that you need to know a lot of
2	information about how the events would during
3	release plated out fission products on the primary
4	system. I haven't seen much data on that. There's an
5	how I say this but there's going to be some
6	MR. KINSEY: It's in the plan.
7	DR. KRESS: It's in the plan?
8	MR. KINSEY: There are data. There will
9	be more data. There's some data that you may not be
10	aware of.
11	MR. ALBERSTEIN: Okay, let's move onto the
12	next slide. We had a lot of questions in January as
13	I said about what if you did this to the reactor
14	building design or that.
15	What we're going to show you here to wrap
16	this up are summary results of two reactor building
17	design alternative studies that were done, one by GA
18	back in the late eighties and one by the folks at PBMR
19	roughly 10 years ago I believe, Fred? Yes, 10 years
20	ago.
21	The first slide is a summary of some
22	reactor building design alternatives that were
23	considered by GA back in the late nineteen eighties.
24	You can see five cases here that were considered.
25	The reference case, the vented building
	I

(202) 234-4433

1 with the moderate leakage rate of 100 percent per day. You can argue with the adjective "moderate" but that's 2 what we used. 3 4 Other options that were looked at 5 including putting filtration on the vents and still maintaining a 100 percent per day leak rate. 6 Next, a 7 filtered vent with a lower leak rate of 5 percent per 8 day, that was option number three. 9 A couple of variations on option number 10 four with a larger volume building to maintain relatively lower pressures during the depressurization 11 And lower leakage, one variation was with an 12 event. air-cooled RCCS, the other with a water-cooled reactor 13 14 cavity cooling system. 15 Number five, two variations on another 16 unvented, a larger volume so therefore lower-pressure 17 design, one with a leakage rate of 5 percent per day and the other with a leakage rate of 1 percent per 18 19 So these options looked at various combinations day. of filtration and building volume to assess what the 20 effects on offsite dose would be of going with these 21 containment design alternatives. 22 If you go to the next slide you see a 23 24 summary of the results here. These are whole body doses at 30 days at the exclusion area boundary which 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

80

	81
1	was 450
2	MR. SILADY: Twenty-five.
3	MR. ALBERSTEIN: Four hundred twenty-five
4	meters in this particular analysis against the
5	frequency consequence curve that was in effect in the
6	late eighties.
7	CHAIRMAN BLEY: I'm sorry, these dashed
8	curves are
9	MR. SILADY: cumulative distribution
10	functions over all the events.
11	CHAIRMAN BLEY: And the 4A, 4B are
12	different types of releases?
13	MR. SILADY: They're things on the
14	previous page.
15	CHAIRMAN BLEY: Oh, the previous page.
16	MR. ALBERSTEIN: They're the alternatives.
17	CHAIRMAN BLEY: Okay, thank you.
18	MR. ALBERSTEIN: And you can see keep
19	in mind number one, the number one there in the little
20	square, the number one is the reference design well
21	within the FC curve limits. And pretty much resulting
22	in offsite doses that are equal to what was considered
23	annual background back at the time this study was done
24	which is a little bit higher today than it would have
25	been back then.
Į	I

(202) 234-4433

	82
1	You can see that the alternatives where
2	one adds filters to the vents really didn't make much
3	of a change in terms of offsite dose.
4	MR. SILADY: Not for the whole body.
5	MR. ALBERSTEIN: For the whole body. For
6	the alternatives that have lower leak rates and higher
7	volumes to result in lower pressure you did gain quite
8	a bit on dose but you're gaining it relative to a
9	point at which you weren't going much over background
10	doses to begin with. So that raises the questions of
11	adequate protection versus perfect protection for the
12	public and whether an investment of resources to go to
13	design alternatives such as numbers four and five are
14	really buying anything of substance in terms of
15	protection of public health and safety.
16	CHAIRMAN BLEY: Let me ask a question
17	that's more aimed at Fred I think. I didn't ask this
18	before because you weren't talking about it. Is there
19	any requirement in the licensing framework for how far
20	away from the requirements curve the PRA result CCDF
21	has to form?
22	MR. SILADY: That's Tom's question
23	earlier. And I'm not aware of it.
24	CHAIRMAN BLEY: Okay.
25	DR. KRESS: So if somebody wanted to add
I	I

(202) 234-4433

	83
1	two more modules
2	CHAIRMAN BLEY: Okay, yes, it's a
3	turnaround. Yes, it's a turnaround of the same
4	question.
5	MEMBER CORRADINI: So I don't understand
6	4A and B. What does the air or the water RCCS do
7	that 4A and B is different than 5A and B? Maybe I'm
8	confused. Is it just the air and the water RCCS
9	change the pressure?
10	CHAIRMAN BLEY: 4A/B and 5A are about the
11	same; 5B is a little different.
12	MR. SILADY: They looked at it just to see
13	if there was a discriminator there. Because when you
14	go to a leak-tight building of any kind you can't have
15	the air RCCS chimneys and so on, communication, the
16	same way. So there's a different design on the air.
17	MEMBER CORRADINI: Oh. You're saying the
18	plumbing is different.
19	MR. SILADY: Yes.
20	MR. ALBERSTEIN: If you look carefully
21	here you'll see that 4A, 4B and 5A
22	MEMBER CORRADINI: They're all the same.
23	MR. ALBERSTEIN: all the same. And in
24	fact if you look at the previous slide they're all the
25	same leakage rate of 5 percent per day. It turns out
I	I

(202) 234-4433

	84
1	that's what's driving it. And then 5B, a little bit
2	lower in dose because that was a lower leakage.
3	MEMBER CORRADINI: Oh, that was my
4	interpretation. So the only difference between 1, 2
5	and 3. Well, wait a minute now. I wanted to finish
6	that. So 3 is a different leakage but yet it is
7	vented.
8	MR. SILADY: Filtered.
9	MEMBER CORRADINI: So that means what?
10	I'm sorry that I'm looking at the same time to see
11	if we have this 88.311 that I can look in detail. I'm
12	sure we've got it somewhere.
13	MR. ALBERSTEIN: Filtration doesn't buy
14	you very much for the whole body dose.
15	MEMBER CORRADINI: Okay. But okay.
16	Yes, but the devil's in the details. What do you
17	mean? You have the initial blowdown of the loss of
18	pressure.
19	MR. SILADY: We don't filter it.
20	MEMBER CORRADINI: That's what I thought.
21	MR. SILADY: Yes. But you filter it after
22	it closes.
23	MEMBER CORRADINI: So you've got some sort
24	of dual valve. This thing blows down. The damper
25	opens or whatever you call this thing, louver opens.
ļ	I

(202) 234-4433

	85
1	You let all that stuff out. This closes and
2	everything seals up against that pressure and you
3	filter everything beyond. Everything and beyond
4	MR. SILADY: There's a filter in the
5	reactor building and it's competing with the leakage
6	from the reactor building.
7	CHAIRMAN BLEY: Just for me the case
8	without the filter you talked about the tortuous path.
9	That somehow you assume some DF on the tortuous path?
10	MR. ALBERSTEIN: Yes. It depends on the
11	sequence.
12	CHAIRMAN BLEY: Or if you had a filter.
13	MR. SILADY: Yes, there's sequences with
14	water, sequences that are dry and so you've adjusted
15	the DF.
16	CHAIRMAN BLEY: Okay.
17	MR. SILADY: The point of the 4A, 4B and
18	5A were different designs of a leak-tight containment
19	and we had to think about it broadly. What's it going
20	to mean to our cost? What's it going to mean to our
21	RCCS reliability? How is it going to work? And it
22	ended up in looking at it only from the perspective of
23	public safety it had the same curve. But looking at
24	it from the perspective of cost or design margins and
25	so on it had significant impact.
ļ	I

(202) 234-4433

	86
1	MEMBER CORRADINI: But just so I'm reading
2	the numbers right, assuming all the numbers are right,
3	the difference between 1 and 5B is an order of
4	magnitude at low frequency and high dose.
5	MR. SILADY: About everywhere. It's
6	almost parallel.
7	MEMBER CORRADINI: Yes. And the
8	difference between 1 and 3 is about a factor of 2.
9	MR. SILADY: Yes, depending upon where you
10	are because of the log scale.
11	MEMBER CORRADINI: And okay.
12	MEMBER REMPE: How much do you get from
13	the deposition in the tortuous path?
14	MR. SILADY: It's nuclide-specific as you
15	well know.
16	MEMBER REMPE: Is it raised it up to
17	where you start getting close to your limits?
18	MR. SILADY: If there was no building you
19	mean?
20	MEMBER REMPE: Yes.
21	MR. SILADY: If it was a reactor on the
22	ground.
23	MEMBER REMPE: Yes. If you just released
24	it out. Have you ever done a calc to see? I mean
25	because then suddenly you are relying on the tortuous
	I

```
(202) 234-4433
```

	87
1	path for some sort of retention.
2	MR. SILADY: There's no way it's going to
3	go over towards past the PAG. I mean we've looked
4	at, you know, there's margin there.
5	We need additional tests and it's in the
6	plan for radionuclide retention mechanisms in the
7	building for our mix of helium and nuclides at these
8	very small levels. Then we've got a whole lot of
9	combinations of different releases. But surface
10	deposition and so on is important.
11	MEMBER CORRADINI: So this is I guess,
12	again, more details. And Dr. Bley will tell us to be
13	quiet.
14	CHAIRMAN BLEY: We've already eaten about
15	15 minutes into lunch.
16	MEMBER CORRADINI: So is it already at the
17	be quiet stage?
18	CHAIRMAN BLEY: It's pretty close, yes.
19	MEMBER CORRADINI: Okay, so one last
20	question because staff brought this up. These are all
21	blowdown and then long-term heatup where there is not
22	a high point vent that I don't bring in air and
23	continually heat up and oxidize. Is that correct?
24	MR. SILADY: These all all the ones
25	that have a leak in the helium pressure boundary
I	I

(202) 234-4433

	88
1	ultimately have some air that comes back into the
2	reactor. Because it cools down. We're talking 30
3	days here.
4	MEMBER CORRADINI: I understand.
5	MR. SILADY: Okay. So they all have some
6	of that. But there were no in this frequency range
7	there were no leaks.
8	MEMBER CORRADINI: Where I had a low point
9	enter and a high point exit
10	MR. SILADY: No.
11	MEMBER CORRADINI: such that I could
12	feed and continually oxidize.
13	MR. ALBERSTEIN: That's a 10 to the minus
14	double digit scenario.
15	MEMBER CORRADINI: Okay. Okay, fine.
16	I'll stop. Thank you.
17	MR. ALBERSTEIN: Let's move onto the next
18	slide. As I said, also there were studies done in the
19	last 10 years or so by the folks at PBMR and
20	Westinghouse on alternative reactor building
21	configurations for the pebble bed.
22	You can see here the list of alternatives
23	that were examined. Again, unfiltered, vented with
24	moderate leakage as the reference case. Case 1B,
25	adding blowout panels between components within the
	I

(202) 234-4433

	89
1	reactor building.
2	The next case, option number 2, partial
3	filtering. Venting again with blowout panels and a
4	moderate leak rate.
5	Then option 3A, a lower leak rate in the
6	range of 25 to 50 percent a day, again filtered, fully
7	filtered in this case with blowout panels again.
8	3B, adding an expansion volume for the gas
9	to the building. And then options 4A and B, looking
10	at a pressure-retaining system with internal blowout
11	panels and very low leakages, less than 1 percent per
12	day.
13	So again, a broad spectrum of alternative
14	designs were considered and the next slide shows you
15	the results. I said we had a slide on no reactor
16	building.
17	What we have here is a comparison of
18	thyroid dose at the exclusion area boundary against
19	the EPA PAG limit on thyroid of 5 rem. And you can
20	see in the case of alternatives 1A and 1B which is the
21	second column from the left there was substantial
22	margin relative to the PAG. So with alternatives 2 or
23	3 did further reduce the dose and increase the margins
24	relative to the PAGs.
25	CHAIRMAN BLEY: And according to our
	I

(202) 234-4433

	90
1	previous discussion these are mean values.
2	MR. SILADY: Yes. Yes.
3	MR. ALBERSTEIN: Yes. However, in some
4	cases added features can fail. And if that happens
5	late in a sequence when the delayed release is taking
6	place the gains in margin relative to alternatives 1A
7	and 1B are lost. And that's what you see in the
8	crosshatch columns.
9	The pressure retaining design, 4A, also
10	increased margin relative to the PAGs. But again if
11	late in the sequence you have late failure due, for
12	example, for a seismic aftershock you can actually get
13	higher doses offsite for the thyroid than you would
14	get from the base case alternative. And in fact
15	higher doses than you would have received if you'd had
16	no reactor building at all.
17	So the bottom line here is that one has to
18	be careful when throwing around ideas with regard to
19	reactor building design for modular HTGRs. You have
20	to be careful to understand the accident behavior of
21	the HTGR system. Bottling things up isn't necessarily
22	going to buy you the reductions in offsite dose
23	consequences that you would intuitively think you
24	would get.
25	MEMBER CORRADINI: But to get back to

(202) 234-4433

	91
1	Joy's question about the previous study, am I reading
2	this right, that I have a DF of 20 if the reactor
3	building is there?
4	MR. ALBERSTEIN: Which column are you
5	looking at?
6	MEMBER CORRADINI: I was looking at the
7	purple that's 10,000 and the next purple over which is
8	500. That's a DF of 20.
9	MR. ALBERSTEIN: For iodine.
10	MR. SILADY: For this event with thyroid.
11	MEMBER CORRADINI: Which is the limiting
12	based on something I thought you said earlier
13	that's the limiting thing for the EPA PAGs, right?
14	MR. ALBERSTEIN: We think that's the
15	harder one to meet from the whole body, yes.
16	MEMBER REMPE: So from what you're saying,
17	earlier you said well, it's only safety-related for
18	heat transfer. But then there's certain criteria
19	associated with this building for decontamination and
20	reduction and release that is relied upon. So it
21	seems like
22	MR. ALBERSTEIN: To meet the PAG.
23	MEMBER REMPE: Right.
24	MR. ALBERSTEIN: To meet the PAG but not
25	to meet the 25 rem whole body requirement.
Į	1

(202) 234-4433

ĺ	92
1	MEMBER REMPE: But since there's no
2	evacuation planning associated with this approach it
3	seems like there would need to be some sort of
4	regulatory oversight in the design of the building to
5	make sure that you don't need evacuation.
6	MR. SILADY: There obviously would be a
7	regulatory oversight on the entire plant.
8	MEMBER REMPE: But there's to be some
9	criteria like tech specs or something.
10	MEMBER CORRADINI: But can I try her
11	question differently? The building I mean I'll go
12	back to the previous one where you said it's a factor
13	of 2. So, let's say they're all the same within the
14	uncertainty of all this sort of stuff. That means the
15	building is a factor of 20, adding a filter is a
16	factor of 2 so I've gone from a factor of 20 to a
17	factor of 40 to 50 decontamination factor for the very
18	fact of the presence of the building, it in itself is
19	the filter. So you would have to have some sort of
20	performance objective for the building to perform as
21	a filter, otherwise you get you go beyond your
22	limit.
23	MR. SILADY: The reason that you see the
24	difference between the two first two columns is no
25	building, not even a tent, doesn't quite meet the PAG.
	I

(202) 234-4433

	93
1	We're getting tremendous radionuclide retention within
2	the fuel to be even that close.
3	MEMBER CORRADINI: I'm not following.
4	MR. SILADY: So now you go to the second
5	column and we say whoa, based on our best estimates of
6	the DFs this is sizable. We need a little more data
7	here to see if that 20 is real.
8	MR. ALBERSTEIN: And there's no denying
9	that a building versus a tent helps.
10	MEMBER CORRADINI: I know, I know. But
11	I'm just, I'm framing it this way because there were
12	some bullets somewhere in one of these presentations
13	that it's strictly structural. My point is this at
14	least demonstrates by sensitivity it's not strictly
15	structural. It in and of itself has to have a
16	performance objective because it's performing as you
17	call it a leak in containment, we'll call it a
18	confinement, whatever you want to call it, that you
19	now have to show performance on. Otherwise it doesn't
20	meet your objective.
21	MR. SILADY: The objective we're talking
22	about here is the design target.
23	MEMBER CORRADINI: Yes, I understand.
24	MR. SILADY: Okay.
25	MEMBER CORRADINI: I'm with you.
	1

(202) 234-4433

	94
1	MR. SILADY: So the structural and the
2	reason to make it safety-related was for 10 C.F.R.
3	50.34. That was where that statement was.
4	It's clear that we had it as a bullet.
5	To meet the PAGs we need the building.
6	MEMBER CORRADINI: Okay. All right.
7	MEMBER REMPE: But it can't just be any
8	building is what I'm
9	MR. SILADY: Right.
10	MEMBER REMPE: It's got to be a certain.
11	MR. SILADY: Yes. And PBMR had a
12	different looking building than the MHTGRs, much
13	different. Largely above grade.
14	MR. ALBERSTEIN: And their building, a
15	decontamination factor of 20 is a little bit higher
16	than what the MHTGR folks assumed.
17	CHAIRMAN BLEY: I think we can move on and
18	close this out as quickly as you can. Give Mark some
19	time although he's got enough slides to go for an hour
20	it looks like.
21	MR. ALBERSTEIN: I won't. In summary with
22	regard to reactor building alternatives. We believe
23	that the vented building, the reference design is the
24	best match for the characteristics of the HTGR.
25	For the low-frequency events a high-
Į	I

(202) 234-4433

pressure low-leakage LWR-type containment can actually 1 radionuclide release relative 2 increase to our 3 reference case. You want to add filters or active 4 HVAC systems you can get some small improvement in 5 offsite dose. But under certain low-frequency event scenarios they may not be available and again provide 6 7 you relatively little additional margin.

8 So these studies really have confirmed the 9 decision in our design approach to place the emphasis 10 on retention at the source within the fuel. There's 11 a whole lot more detail on all of this in response to 12 the RAI number FQ/MST-82 and all the references that 13 were provided with it. That is all I have.

14 CHAIRMAN BLEY: Thank you. Mark, how long 15 do you think it'll take to get through yours? The 16 ones that -- there's some that are almost repetitive. 17 MR. HOLBROOK: Yes, exactly.

CHAIRMAN BLEY: So focus on the things that are new that you're trying to tell us from the last meeting.

21 MR. HOLBROOK: My name is Mark Holbrook. 22 I work for the Idaho National Laboratory. Been 23 involved with the NGNP project for some period of 24 time.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

And as was mentioned by the chairman we

25

	96
1	have several technical points in these series of
2	slides that have been brought up before by both David
3	Alberstein and by Fred Silady. And so we'll move
4	through some of those technical points and try to
5	focus more on the higher-level structure of how we
6	want to evaluate defense-in-depth as an approach.
7	Slide number 2 provides an overview of
8	where we're headed in this presentation. So we'll
9	kind of move on. We're going to discuss very briefly
10	on the next slides a few details and then we'll get
11	into the bulk of the presentation which is in the
12	center of this slide, plant capability, programmatic
13	and risk-informed evaluation of defense-in-depth.
14	Then we have some summary slides at the end.
15	The overall intent of the approach is to
16	develop a structured system for evaluating defense-in-
17	depth adequacy. So we want to be able to define how
18	we're going to evaluate whether we have adequate
19	levels of defense-in-depth in the overall design and
20	the process that would be applied by a future
21	applicant.
22	The elements involved in this evaluation
23	process would be looking at the plant capability to
24	provide defense-in-depth, to be able to look at the

programmatic elements of defense-in-depth that would

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

97
be applied by a future applicant and to look at the
risk-informed evaluation process to be able to
determine whether we've met all the principles that
we've laid out in our white paper for defining
defense-in-depth.

If you look in Chapter 2 of the white 6 7 paper there's several discussion points and references from the regulations looking over a long period of 8 time of how people have tried to define defense-in-9 10 depth in the past. That paper was written approximately 2 years ago so we thought it would be 11 more useful maybe to look at something more recent 12 this summary of NRC's defense-in-depth 13 such as 14 strategies you see at the bottom of the slide.

This comes out from last year's order for 15 the containment fence that was issued on March 12 of 16 And you can see it on the screen there but it 17 2012. focuses on the definition of defense-in-depth in the 18 19 of prevention, mitigation and emergency context So at the end of these series of slides I'm 20 planning. presenting today I'm going to recast what our process 21 looks like within that structure. 22

The next series of slides talks about 23 24 those three principal elements, plant capability, programmatic and evaluation. On this first slide here 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

(202) 234-4433

we focus first on plant capability. In fact, the next series of slides draws in many of the physical points that have been made in the other presentations having to do with the attributes of the plant that provide defense-in-depth.

6 So you see there there's kind of a 7 triangle chart or a graphic that you might look at 8 that tries to pull together the concept. You see down 9 lefthand corner plant in the lower capability, 10 defense-in-depth, in the lower right programmatic and then risk-informed evaluation with a triangle in the 11 center that talks about the PRA results and the 12 deterministic analysis. 13

We're first focusing on that lower left triangle, plant capability, defense-in-depth, which reflects the decisions that are made by the designer to implement function structures and the SSC design and availabilities to ensure that we have defense-indepth in the plant.

So a lot of the things that have been 20 talked 21 about in previous parts of today's presentation, the inherent reactor characteristics 22 that we take advantage of. Event progression, time 23 24 cost is provided by the graphite in the core. We're going to focus a little bit in the subsequent slides 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

1 on the radionuclide barriers to prevent release of 2 radioactive material. How the passive and active SSCs 3 work together to provide us defense-in-depth. We also 4 implement some of the discussion that we've had in 5 previous meetings about SSC safety classification, All these 6 design margins, conservative approaches. 7 things are factored into what we would call plant 8 capability defense-in-depth.

9 If you look at the reactor nuclide 10 barriers we've mentioned in previous points in today's 11 presentation that the barriers are concentric, they're 12 independent, and that their performance emphasis is on 13 the performance of the fuel barriers as we look at 14 those.

Also as mentioned previously the reactor building provides defense-in-depth for meeting the top-level regulatory criteria at the EAB. However, as was previously noted we do need to rely on the building to meet the PAGs at the EAB.

20 Both active and passive SSCs are working in concert with these inherent design characteristics 21 frequency of challenges 22 reduce the to the to radionuclide barriers. And we'll talk about a series 23 24 of challenges in the subsequent slides that Fred brought up in his presentation first thing this 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	morning.
2	But our process is looking at a full
3	spectrum of events, not just a few limiting or
4	bounding events. So we're looking at all challenges
5	to barrier integrity and independence. So we're
6	looking at all the possible failures that could be
7	within the frequency range domain that we've defined
8	in our licensing basis event process and we're taking
9	into consideration all of those things.
10	Safety margins and conservative design
11	approaches will be used to address uncertainties in
12	barrier and SSC performance. And this refers back a
13	little bit to some of Tom's earlier questions about
14	how we would consider the reliability and the
15	availability of the SSCs as part of our event
16	selection and our overall approach to defense-in-
17	depth.
18	Fred mentioned this morning three key
19	functions that we've got to maintain in the plant to
20	be able to minimize the challenges that we make to our
21	integrated set of barriers.
22	The first one is control of heat
23	generation. We have a combination of inherent reactor
24	characteristics which is a plant capability issue.
25	And the available SSCs both passive and active

(202) 234-4433

(202) 234-4433

available for our consideration when we look at control of heat generation.

1

2

3 So in this case as Fred mentioned earlier 4 we have two independent and diverse systems for 5 reactivity control. And they rely on gravity. So in a loss of power control rods will shut down the plant. 6 7 We also have an independent system, the reserve shutdown system that Fred mentioned earlier. Each of 8 9 these systems is available for maintaining reactor 10 subcritical. Each of these systems available for cold shutdown during refueling. So that's one aspect of 11 plant capability. 12

Another key function that we have to maintain is removal of core heat. In this case here we have a combination of both active and passive systems. Again these have been mentioned prior.

The normal mode of removing heat from the plant of course is to use a helium transport system to be able to remove that heat out of the plant under normal operation to the steam generator and finally to the ultimate heat sink.

But we also have alternate methods. We have a shutdown cooling system that is an active system. It's typically not -- we don't see it as being safety-related but that is available during

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	102
1	shutdown periods and during planned maintenance to be
2	able to remove the heat from the helium system.
3	Again, this system that draws the helium through a
4	heat exchanger which then has its own cooling water to
5	be able to provide the ultimate heat sink.
6	However, we also have a passive system
7	that's available for off-normal events, provides heat
8	removal and investment protection. This is the
9	reactor cavity cooling system, RCCS system. In that
10	mode of operation we have the heat being radiated from
11	the reactor vessel which is uninsulated to the panels
12	that are surrounding the reactor. And then again we
13	have either a passive air system or a water system
14	available to remove the heat from the RCCS.
15	Any questions on that?
16	The third mode, third function, control of
17	chemical attack that Fred mentioned this morning. In
18	this case we have a combination of inherent reactor
19	characteristics and design features that minimize the
20	effects of chemical attack.
21	As far as inherent characteristics you can
22	see on the list there we have non-reacting helium as
23	a coolant. We have slow oxidation rates afforded by
24	the graphite that we have in the core. And again, it
25	was mentioned before, the water-graphite reaction is
I	I

	103
1	endothermic and we need to have very specific
2	conditions to be able to even postulate the kind of
3	sustainable reaction rate within the core.
4	From a design feature we have limited flow
5	area through the core. It was mentioned we have a
6	large L over D on this plant. There is a lot of flow
7	resistance in the coolant channels.
8	Reactor building is embedded so that tends
9	to minimize some of the effects of leakage from the
10	building. We also have limited sources of water. We
11	have moisture monitor, steam generator isolation and
12	dump systems to try to minimize the injection of water
13	into the plant. Again, these are all design features.
14	And then again when you look at the fuel
15	itself within the particles, within the compact,
16	within the matrix we have several layers that if we
17	did have an oxidation event it takes a long period of
18	time before you could postulate that you would be able
19	to have a direct attack on the particles themselves
20	from an oxidizing event. So these are all meant to
21	address some of the plant capability aspects of
22	defense-in-depth.
23	The second element, programmatic defense-
24	in-depth, is all those processes and procedures that
25	you would expect to be in place at any operating
	I

(202) 234-4433

5 Special treatment requirements in particular. Some of the questions we had earlier 6 7 about technical specifications. Yes, we understand there would be some design limit specifications on the 8 9 fuel. Also, it's reasonable to expect that we'd have 10 some circulating activity requirements that we need to implement through tech specs. All these kind of 11 things would be implemented. 12 And that would fall under programmatic defense-in-depth. 13

14 Now, the final part of the triangle is the risk-informed evaluation of defense-in-depth. 15 This third element provided by the evaluation process that 16 you see that's fed by information that's coming out of 17 the PRA and also from deterministic safety evaluations 18 19 that you would typically do in Chapter 15 for your plant provides a framework for performing these 20 evaluations determine 21 to how well vour plant 22 capability and programmatic strategies are being implemented. 23

24 So it provides accident prevention and 25 mitigation insights, it provides input into your

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

104

safety classification to -- when you have several sets of SSCs that are available to provide required safety function it allows you to choose wisely in the selection of those particular systems to provide the safety functions that are needed. And it also provides an opportunity to identify key sources of uncertainties.

So on the next slide we talked a little 8 bit more about risk-informed evaluation. We want to 9 10 identify credible failure modes and challenges to the barriers including dependencies and interactions along 11 the barriers and other SSC failure modes. 12 This is what I mentioned earlier is we want to challenge our 13 14 design and make sure that our PRA is looking at all 15 the possible spectrum of events and failure modes that need to considered. 16

We also identified the roles of SSCs in 17 this process in the prevention and mitigation. 18 We 19 wanted to make sure that we have a balance of prevention and mitigation in our design. 20 We want to quantify the extent to which accidents are being 21 prevented and mitigated. And we're using both the PRA 22 and our safety evaluations to do that. 23 24 And finally, we want to establish that

there are no events with significant frequency of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

7

	106
1	occurrence that rely on a single element of the design
2	or programmatic approach in protecting the public from
3	a release.
4	So again, the whole purpose of the risk-
5	informed evaluation is to be able to scrutinize the
6	effectiveness of both the plant capability of defense-
7	in-depth and the programmatic defense-in-depth.
8	In fact, this approach was called out in
9	Appendix C of NUREG-2150 which is the Risk Management
10	Task Force where they mentioned the fact that this
11	particular process that the NGNP is proposing includes
12	a concept for using risk assessment methods as a
13	measurement of effectiveness. And they called that
14	out as an paragraph that is very similar to the
15	approach or the thinking of the task group.
16	MEMBER STETKAR: Mark, before you leave
17	this, and I hate to do this because of time so I'll
18	try to make it quick. You've heard a couple of
19	questions already this morning about concerns in terms
20	of evaluating the margin to the acceptance criteria.
21	And I'll just read something out of the
22	defense-in-depth paper. It's in Section 3.3.2.2 if
23	you want to look it up. It says, "If the 95th
24	percentile of the frequency of the licensing basis
25	event is above the break point for separating the AOOs
ļ	I

(202) 234-4433

	107
1	from the DBEs, or the DBEs from the BDBEs the
2	licensing basis event is assigned to the higher
3	frequency category where more stringent dose criteria
4	apply."
5	MR. HOLBROOK: Yes.
6	MEMBER STETKAR: Vertical scale. The 95th
7	percentile from the consequence uncertainty
8	distribution is required to be within the associated
9	frequency consequence curve. That is a statement.
10	That is a measurable metric from my risk assessment to
11	give me confidence in the margins regardless of
12	whether I'm doing a single unit or a multi-unit plant
13	in consequences.
14	That's from a December 2009 paper. By the
15	time we get to the licensing basis event selection and
16	everything else we heard we've abandoned that notion
17	of 95th percentile over the whole frequency
18	consequence curve. So I'm curious about why it's
19	morphed into that.
20	And I'll ask the staff more about that
21	because you pointed that way. Because when I read the
22	defense-in-depth paper I said geez, I understand how
23	they're doing this. I understand now how I can
24	quantify my confidence in those margins both
25	vertically and horizontally, wherever I am on that
	I

(202) 234-4433

	108
1	surface. And now today I can't understand how I can
2	quantify that confidence in the margins.
3	MR. HOLBROOK: It's certainly true within
4	the DBE region. Okay. Your question really
5	MEMBER STETKAR: It's over a whole
6	surface. I'm interested in the whole surface.
7	MR. HOLBROOK: the AE region and the
8	beyond design basis event region.
9	MEMBER STETKAR: And with that because of
10	the time I'll let you finish.
11	CHAIRMAN BLEY: Kind of if I can
12	rephrase. If that one makes sense to you then why
13	aren't they all the same?
14	MEMBER STETKAR: Exactly. Yes. Because
15	if they're all the same then I understand how I can
16	measure my confidence in my margins. I might disagree
17	in terms of how confident I should be, whether that
18	should be 99th percentile or 90th percentile. But at
19	least I can measure it.
20	DR. KRESS: That depends on how good you
21	know these probabilities.
22	MEMBER STETKAR: That's okay.
23	CHAIRMAN BLEY: But all the rationales for
24	all that discussion is in the licensing basis event.
25	And Fred regurgitated that this morning.
	I

(202) 234-4433

	109
1	MEMBER STETKAR: I understood the
2	rationale I understood all of the rationales on the
3	vertical axis. I didn't understand them on the
4	horizontal.
5	MR. HOLBROOK: This slide here is just to
6	provide an integrated picture of some of the details
7	that I presented on the previous slides. So it's kind
8	of a takeaway slide if you want to look at this
9	construct and refresh your memory on what pertains to
10	what, and what insights are flowing in what direction
11	and all of that.
12	Is there any questions on that?
13	CHAIRMAN BLEY: I'm trying to remember.
14	At the last meeting your approach framework for
15	defense-in-depth is very broad. Kind of, almost
16	
	everything in the design is focused through defense-
17	everything in the design is focused through defense- in-depth. I think some people objected to that and
17 18	
	in-depth. I think some people objected to that and
18	in-depth. I think some people objected to that and were asking you hard questions about it.
18 19	in-depth. I think some people objected to that and were asking you hard questions about it. MR. HOLBROOK: I would characterize it a
18 19 20	in-depth. I think some people objected to that and were asking you hard questions about it. MR. HOLBROOK: I would characterize it a little bit different. What you see in plant
18 19 20 21	in-depth. I think some people objected to that and were asking you hard questions about it. MR. HOLBROOK: I would characterize it a little bit different. What you see in plant capability defense-in-depth and what you see in
18 19 20 21 22	<pre>in-depth. I think some people objected to that and were asking you hard questions about it.</pre>
18 19 20 21 22 23	<pre>in-depth. I think some people objected to that and were asking you hard questions about it.</pre>

(202) 234-4433

	110
1	somewhat more new is to then use the probabilistic
2	risk assessment process and the safety evaluation
3	process for your accidents in Chapter 15 to go back
4	and reassure yourself since we have the opportunity to
5	do this during the design phase, to go back and
6	convince yourself by going through additional steps
7	that we haven't presented in these slides but are
8	found in the defense-in-depth paper such as Figure 3-
9	7.
10	To systematically go back and look through
11	all the principles that we defined in that white paper
12	to convince ourselves that the plant has adequate
13	the physical plant has adequate capabilities and we
14	also have programmatic where needed and that there is
15	a reasonable balance between the two.
16	Not to have an over-reliance on
17	programmatic to cover up for some deficiency in the
18	plant. We want to have a balance and we want to have
19	a structured approach which is really what this is
20	doing is a structured approach to go back and
21	systematically convince ourselves that we have those
22	elements that are traditionally found in light water
23	reactors.
24	That's really what this process is all
25	about and I think that's what they were trying to say
l	

(202) 234-4433

(202) 234-4433

	111
1	in NUREG-2150, that we have the thing that's
2	different here is (a) we're doing it up front, (b) we
3	have a structured approach that uses risk and
4	determinism to be able to evaluate whether we have
5	adequate defense-in-depth before the plant is ever
6	built. Does that help?
7	MEMBER STETKAR: That's good, thanks.
8	DR. KRESS: The light water reactors
9	generally have diesel generators and batteries to
10	guard against loss of offsite power. You don't have
11	any of that here, right?
12	MR. HOLBROOK: Well, it depends well
13	no, the answer is no because again it comes back to
14	your plant design specifics about what is your
15	reliance on 1A with AC distribution. If you have
16	passive safety systems that don't rely on that then
17	you don't need it. Okay? So it's design-specific.
18	Okay?
19	In summary, what I wanted to do here,
20	we've got this slide then we've got one final slide
21	that kind of sums up everything that's gone on today.
22	What we wanted to do here is we wanted to
23	just translate what I talked about, some of those
24	characteristics within the context of prevention,
25	mitigation and emergency planning such as the
ļ	

(202) 234-4433

	112
1	definition that you found on slide 3 I believe it was.
2	So again we're trying to evaluate the
3	plant capability and programmatic elements with an
4	integrated risk management approach. I just explained
5	that.
6	Within the context of prevention,
7	mitigation and emergency preparedness again there is
8	several aspects and I didn't try to list them all here
9	because I wanted to keep this down to one slide, but
10	there's plant capability aspects that fall under
11	prevention, there is certainly plant capability
12	aspects that fall under mitigation, and then there's
13	also administrative or programmatic I should say
14	elements that fall under mitigation and also emergency
15	preparedness.
16	All we tried to show is that we're looking
17	at these things in a similar manner as the staff would
18	look at things, looking for prevention, mitigation and
19	emergency preparedness issues. But we're trying to do
20	it in a structured, integrated, risk management
21	approach. So, that's all I was trying to show. This
22	slide, there's really no new technical information on
23	that slide besides what we've already discussed.
24	Then finally, this is the last slide in

our presentation this morning. Again we wanted to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

<mark>25</mark>

leave you with a takeaway looking at -- maybe at the 10,000-foot level of some key attributes that we've discussed at several points this morning. Our design, our approach addresses the full spectrum of internal and external events on a per-plant year, not on a perreactor basis.

7 We've mentioned several times it includes events that could affect multiple reactor modules to 8 9 be able to assess an integrated plant risk. So we're 10 looking across all of the plants and that -- or all the reactor modules that would constitute a plant to 11 ensure that any events that would affect multiple 12 units are taken into consideration and are included 13 14 and would be displayed on a frequency consequence 15 curve.

Again we mentioned we're using ceramic fuel. It doesn't melt when challenged by a full spectrum of internal and external events.

We are looking at cliff edge effects. We want to find that safety terrain, make sure it's adequately addressed. So we're looking at events below 5 times 10⁻⁵ down into the 10⁻⁸ range to be -make sure that we don't miss something that we need to assess in our process.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

We assure that the safety is not wholly

(202) 234-4433

25

114 dependent on any single element. Again, this is part of our defense-in-depth that I've just gone through. We want to make sure that we don't have any single point kind of failure whether it's in the design, construction, maintenance, or operation of the facility. We want to provide compensatory means to make sure that prevent accidents are less than the In other words, a balance between prevention effects. and mitigation if a malfunction occurs. And finally, as we mentioned several times we have multiple, concentric, independent radioactive nuclide barriers that we want to protect. A breach into the helium pressure boundary does not result in failure of the fuel or the reactor building. In other words, we don't rely on the presence of helium to be inside the core to be able to get heat out of the core as we mentioned during some of the earlier slides in

19 the presentation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

20 So with that our presentations are 21 finished. We thank you very much for your 22 consideration. We'd take any other questions that you 23 may have.

24 CHAIRMAN BLEY: That's great. Thank you 25 and thanks for doing that quickly and effectively.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	115
1	We'd like to mention on the record that Dick Skillman,
2	member of the ACRS, has joined us during the morning.
3	We're going to take a break now for lunch.
4	I'm sorry, we are going to come back at 1 or try to as
5	close to that as we can because we have a full
6	afternoon. We could have started earlier but we
7	thought the agenda this morning would not take as long
8	as it did. And we'll recess until 1 o'clock. Thank
9	you all.
10	(Whereupon, the foregoing matter went off
11	the record at 12:16 p.m. and went back on the record
12	at 1:00 p.m.)
13	CHAIRMAN BLEY: The meeting is back in
14	session. We expect we'll have some more members this
15	afternoon as other meetings finish up but we have no
16	one yet. In fact we're missing two. I think Joy is
17	gone. Joy's gone, that's right. But Mike said he'll
18	be back after the lunchtime meeting. Sam is also
19	gone, same meeting. Sorry for the mumbling. I should
20	have done that before I opened.
21	At this time we're looking forward to
22	hearing from staff about their evaluation of these
23	white papers we've been hearing about at our last two
24	meetings. I will turn the meeting over to Anna
25	Bradford at this time and we look forward to hearing
I	1

(202) 234-4433

from the staff.

1

2

3

4

5

6

7

8

MS. BRADFORD: Thank you. We appreciate being here today. My name's Anna Bradford. I'm the chief of the Small Modular Reactor Licensing Branch II in the Office of New Reactors. And we're here today to talk to you about some work we've been doing over the last few years for the Next Generation Nuclear Plant.

9 As you heard from DOE we've been focused 10 on some very important issues such as mechanistic source term and event selection. And some of these 11 issues are being addressed in a broader sense in other 12 activities in the Agency such as Fukushima-related 13 14 activities or the small modular light water reactor 15 licensing activities. But I just want to point out 16 that today we're here to specifically talk about the 17 NGNP issues and that design-specific information and the current regulations as they apply to what we've 18 19 been thinking about.

20 So we're meeting with you today. We're on 21 the schedule to meet with the full committee in May. 22 After that we're hoping to get a letter from the 23 committee with comments that you may have on our 24 assessments and then we'll finalize our assessments. 25 And those will be sent to DOE and also made publicly

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	117
1	available.
2	So we look forward to the interactions
3	today and at this time I'll turn it over to our senior
4	project manager Dr. Don Carlson.
5	CHAIRMAN BLEY: Thank you. Don?
6	DR. CARLSON: Good afternoon and thank you
7	committee members for this chance to present our
8	assessment findings, our results for the NGNP pre-
9	application review activities on these key licensing
10	issues.
11	Again, my name is Don Carlson. I'm the PM
12	for NGNP and before the break this afternoon I will be
13	joined by Tom Boyle and Jonathan DeGange. And after
14	the break I'll be continue with help from Jim Shea and
15	Arlon Costa.
16	We have my presentation is really just
17	an overview, an introduction. So big questions about
18	our findings really should come in the presentations
19	that follow my overview. So then I will turn it over
20	to in the second part of the agenda to my partners
21	here at the table to talk licensing basis events and
22	then Jim Shea on source terms. I will give the talk
23	on functional containment performance and Arlon Costa
24	on emergency preparedness. So you have our contact
25	information there.
ļ	I

(202) 234-4433

118 1 We've had many contributors to this activity over the years. Sud Basu has been involved 2 3 in these activities from the very beginning as have I. 4 Mark Caruso, Michelle Hart. We have in the appendices 5 of two of our documents a list of contributors to 6 these activities. Stu Rubin who contributed early on 7 to these activities and has come back as a member of 8 the public after 1 and a half years of retirement, 9 he's in the audience today. We'll look forward to 10 CHAIRMAN BLEY: hearing his comments. 11 DR. CARLSON: I also have on the phone 12 today Mike Kania. Dr. Mike Kania is an expert 13 14 consultant on TRISO fuel. He has been a major player 15 in TRISO fuel R&D during his Oak Ridge career in the 16 seventies, eighties and nineties and has collaborated 17 extensively with the German TRISO fuel program over the decades. Now he is working through Brookhaven 18 19 National Lab and has been a major contributor to our recent activities on fuel qualification for TRISO 20 So I've asked him to listen in on the phone and 21 fuel. stand by to help us discuss detailed questions that 22 any members may have. 23 24 So as Anna mentioned we are requesting a letter and are on the full committee schedule in May 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	to do that.
2	I'm going to give a little overview now of
3	the project history. You're probably familiar with a
4	lot of this but the NGNP project was established by
5	the Energy Policy Act of 2005. DOE and INL were
6	tasked to demonstrate by 2021 a prototype high-
7	temperature gas-cooled reactor for co-generating
8	electricity and process heat. The NRC has licensing
9	authority for the prototype plant.
10	So as stipulated by the EPAct the DOE and
11	NRC jointly issued a licensing strategy report to
12	Congress in 2008 and selected jointly selected an
13	option 2 where option one would be a traditional
14	deterministic approach and option 4 would be a more
15	quite a risk-based approach. And so option 2 and
16	option 3 would be those two extremes.
17	And so option 2 is described as a risk-
18	informed and performance-based approach where you use
19	deterministic engineering judgment and analysis
20	complemented by PRA insights to establish the NGNP
21	licensing basis and requirements.
22	So the other major activities we've been
23	going through are what we are talking about today, a
24	series of white paper submittals that we have been
25	assessing since 2010. A year and a half ago DOE with
ļ	I

(202) 234-4433

	120
1	based on a review by the Nuclear Energy Advisory
2	Committee, some of whose members are here on the ACRS,
3	decided in a letter to Congress that DOE will not
4	proceed with the detailed design activities at this
5	time and instead will continue to focus on high-
6	temperature reactor research and development.
7	And the key item here, interactions with
8	NRC to develop a licensing framework. And then
9	establish a public-private partnership, and that was
10	the part that has really been difficult for them to
11	establish and go forward with the plan.
12	So the plan was, as you may recall, to
13	meet the 2021 demonstration target to submit an
14	application to us by 2013, this year. And we have not
15	been on track to do that.
16	So we have been using DOE-reimbursable
17	funds here in the NRC to engage within DOE on these
18	four key using four key areas. And I'll discuss
19	what those are in a minute.
20	So we issued our preliminary assessment
21	reports to DOE in February of last year. And as was
22	indicated today there was an extensive RAI process,
23	request for additional information, hundreds of those.
24	And I would like to acknowledge that DOE and INL did
25	a very thorough and prompt job of responding to those
I	1

(202) 234-4433

1

2

3

4

5

6

I'd also like to say that the staff provided some very insightful questions and comments to go with those. Together all those RAIs and RAI responses are a substantial repository of what we've learned over the last few years.

7 And if you look at the page count they 8 actually far outnumber the pages of the white paper 9 we're reviewing. So I would urge future people 10 engaging in follow-up activity of this kind to study 11 all of those materials, not just what we're presenting 12 today.

So the products that we issued last year 13 14 were basically Rev zero of the initial assessments of 15 the fuel qualification white paper and mechanistic source terms white paper, and then another report 16 assessing the contents of what we called the set of 17 describing risk-informed white papers their 18 19 performance-based approach. And those were the defense-in-depth white paper, the LBE licensing basis 20 event selection paper, safety 21 white and the classification of SSCs white paper. 22

Then also in February NRC issued a letter to DOE agreeing to focus on four issues in these four key areas, licensing basis event selection, source

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	122
1	terms, functional containment performance and
2	emergency preparedness.
3	We started engaging and then in July of
4	last year DOE provided a letter to us that clarifies
5	their approaches to the issues and exactly what staff
6	feedback they would like us to provide on those
7	issues.
8	And so we engaged in a number of public
9	meetings and conference calls through November of last
10	year. And we also reviewed a number of supporting
11	technical documents that DOE and INL submitted during
12	that time that clarified some of these issues. Again,
13	as you know in January DOE provided an information
14	briefing.
15	And now let's talk about the three
16	products. So again what we are asking the committee
17	to look at and write a letter on ultimately is these
18	three staff products.
19	Product one is what we call the issue
20	summary report. Its formal title is "Summary Feedback
21	on Four Key Licensing Issues." And those are the four
22	key issues that we talked about just now.
23	And then Rev 1 of the two assessment
24	reports. So an updated assessment report on fuel
25	qualification and mechanistic source terms and an
	I

(202) 234-4433

1 updated assessment report on the risk-informed 2 performance-based white with additional papers insights from the PRA white paper that we reviewed 3 4 during this time.

5 This update, the Rev 1, the things that 6 we've been doing since February involved additional 7 staff beyond the staff that were involved in the 8 initial phase activities that gave us the Rev zero of 9 these reports. And so we have different perspectives 10 and high-level concurrence on the staff positions 11 presented in these updated papers.

12 So let's talk a little bit about this 13 issue summary report. Again, the four issues. These 14 same four issues were highlighted in the joint DOE-NRC 15 licensing strategy report to Congress in 2008.

The same kinds of issues were considered in NRC pre-application activities for modular HTGRs. They have been packaged in various ways but they always come down to these four major issues.

And as we noted there was a lot of engagement on these issues in the late eighties and early nineties with DOE and General Atomics for the MHTGR and in about 10 years ago on the pebble bed modular reactor. In fact, the approaches proposed by DOE and General Atomics back then for modular HTGR and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	124
1	for pebble bed modular reactor are very similar to
2	what we now see for NGNP in that we have similar FC
3	curves, the event frequencies are always per reactor-
4	year so inherently account for multi-module effects.
5	And it was interesting to note that what
6	we now are wanting to call beyond design basis events
7	were at that time called emergency planning basis
8	events. So the terminology has changed a little but
9	there's a lot of similarity in the approaches.
10	So all of the issues that we are talking
11	about we have developed our feedback in view of all
12	relevant prior staff positions and all ACRS comments
13	on those staff positions and Commission direction on
14	these issues in various SECY documents. Starting most
15	notably with SECY-93-092 and the NUREG-1338 which
16	documented the preliminary safety evaluation of the
17	MHTGR.
18	And then more recently SECY-03-0047 which
19	was about the pebble bed reactor review, pebble bed
20	modular reactor, SECY-05-006 which was an information
21	policy SECY paper that talked about modular HTGRs but
22	also technology-neutral framework. And then NUREG-
23	1860 which was about the technology-neutral framework.
24	And a year and a half ago SECY-11-0152 which Arlon
25	Costa will be talking about later in the presentation
ļ	I

(202) 234-4433

	125
1	on emergency preparedness.
2	DR. KRESS: Are all of these available
3	from ADAMS?
4	DR. CARLSON: Absolutely. And I think you
5	have links to all of them that I provided to Maitri.
6	Another point to emphasize is that these
7	are risk-informed performance-based approaches that
8	have been proposed for NGNP are similar to approaches
9	that have been or may be considered for NUREG-1860.
10	NUREG-2150, a Near Term Task Force recommendation, et
11	cetera. So a revised a new framework resulting
12	from all of these other efforts may very well change
13	the staff positions that we're describing today for
14	NGNP.
15	Again as Anna emphasized we're not talking
16	here about any of those other efforts. We're talking
17	strictly about our evaluation of the proposals for
18	licensing a modular HTGR, namely the NGNP.
19	Now, Dr. Corradini had a question earlier
20	about how this relates to the notion that we were
21	going to do a pilot study test-driving the technology-
22	neutral framework NUREG-1860. And this is
23	MEMBER CORRADINI: Am I remembering some
24	Commission directive incorrectly?
25	DR. CARLSON: You're remembering it very
	1

(202) 234-4433

	126
1	correctly I believe.
2	MEMBER CORRADINI: Okay, all right.
3	DR. CARLSON: And what we said in that was
4	what we were told to do and what we committed to do
5	was to do a pilot study of that type of approach in
6	parallel with adapting existing regulations as
7	described here.
8	And so did we start doing that? No.
9	Would we start doing that sometime before expecting to
10	receive an application like this? I believe we would.
11	So.
12	CHAIRMAN BLEY: That's still in the plan
13	for expanding the guidance.
14	DR. CARLSON: That's what we committed to
15	do and until we have a different commitment that
16	remains what we
17	CHAIRMAN BLEY: But it has not begun.
18	DR. CARLSON: It has not begun because
19	there's nobody no scheduled for getting an
20	application for NGNP or any other gas-cooled reactor.
21	CHAIRMAN BLEY: Can't give the example
22	without a design.
23	MEMBER CORRADINI: So what would you
24	described it well. So what would trigger you starting
25	planning to do that? Somebody actually putting in a
I	1

(202) 234-4433

	127
1	pre-application intention with you guys?
2	DR. CARLSON: The notion of course for a
3	technology-neutral framework is to be able to handle
4	any technology so it would be applicable to a liquid
5	metal-cooled reactor.
6	MEMBER CORRADINI: Oh no, I understand
7	that.
8	DR. CARLSON: So right now
9	MEMBER CORRADINI: Planning to do it would
10	occur when?
11	DR. CARLSON: I would say a few years
12	before we expect, you know, 2 to 3 years before we
13	expect to get an application, something like that.
14	CHAIRMAN BLEY: Certainly after you have
15	a design.
16	MS. BRADFORD: If I could just clarify for
17	one second. I think what you're talking about is a
18	SECY paper from a couple of years ago where we said we
19	would do a pilot study of a technology-neutral
20	framework for the HTGR, specifically the NGNP design.
21	And in that paper we said following submittal of the
22	NGNP design application the staff would conduct a
23	limited comparison study of the application in
24	parallel with our review of the design.
25	So in terms of actually doing that work it

(202) 234-4433

	128
1	was meant to be after receiving the design
2	application. Of course we would need to prepare
3	beforehand.
4	Like Don said we do put out a RIS once a
5	year asking potential applicants or vendors when they
6	think they might come in and we take that into account
7	in our scheduling and resources. And we do plan at
8	some point to be ready to address a technology-neutral
9	framework review.
10	CHAIRMAN BLEY: Okay. But it's also in
11	that extension to the SRP. You had a Rev 1 that
12	talked about how you'd look at the small modular
13	reactors. And it was like stage 3 of that process I
14	think.
15	MR. MAYFIELD: This is Mike Mayfield from
16	
17	CHAIRMAN BLEY: Good to see you, Mike.
18	MR. MAYFIELD: Reactors. I like this
19	column. Unfortunately Dr. Kress can see me all too
20	well.
21	We did, when it looked like we were going
22	to be challenged to see an application under NGNP we
23	started looking for alternatives where we could try
24	and test drive some of it, it being the technology-
25	neutral framework.
I	I

(202) 234-4433

	129
1	And so we were going to try and use
2	NuScale as the test case. Some vagaries with their
3	schedule. They are that vendor is still committed
4	to be part of it. However, vagaries in their
5	submittal schedule coupled with current budget
6	stressors make pursuing that at this time not tenable.
7	CHAIRMAN BLEY: Fair enough.
8	MR. MAYFIELD: We haven't zeroed things
9	yet but it's getting dangerously close and likely that
10	we will not be able to proceed with that anytime soon.
11	But that's going back to Dr.
12	Corradini's question if we start getting serious
13	indicators of a submittal we'll go back to the
14	Commission and try and figure out how we could fund
15	such a thing. It would not be a trivial budget
16	impact.
17	MEMBER CORRADINI: So can I ask a kind of
18	follow-up, Mike? So, some of the conclusions in the
19	summary, in the summary report which kind of toss it
20	back to the Commission from a policy standpoint. Is
21	that one way of saying that things that are really
22	going to be tough to address the Commission is going
23	to come back with a policy decision? There are things
24	relative now I've forgotten. There were three or
25	four of them. And you really can't go forward with a
I	1

(202) 234-4433

technology-neutral framework until some of those are clarified.

MR. MAYFIELD: That's correct. And what we have talked about with some of the Commission assistants is we're not going to bring them something that's ill-defined and ask for a policy determination.

7 In fact, that's a conversation I'd had 8 with Tom O'Connor when we started talking about what 9 we could do with this assessment report was what of 10 these could we dress up as policy determinations and put in front of the Commission at this time. And the 11 dialogue with some of the Commission assistants was 12 that's just not going to take them anyplace useful 13 14 because they need to have something specific to 15 address the policy on.

So this -- we felt like the effort that 16 17 Don and the team are going to describe this afternoon was probably as far as we could push it at this stage, 18 19 recognizing that there will be issues that we will want to take to the Commission for policy 20 determination as we would move this forward based on 21 a specific design application. And being able to move 22 those forward could predate an application. 23 We'll 24 just have to see how this unfolds with a little time. Will the TVA plans on small 25 DR. KRESS:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

(202) 234-4433

130

	131
1	modular plant fit in here anywhere?
2	MR. MAYFIELD: I'm sorry, please say it
3	again?
4	DR. KRESS: Will the TVA plans on doing a
5	small modular LWR fit into this anywhere? Or do you
6	know? Maybe I'm bringing it up too soon.
7	MEMBER CORRADINI: So are you asking about
8	mPower?
9	DR. KRESS: No, I'm talking about the TVA
10	plans to use the Clinch River Breeder Reactor site.
11	MR. MAYFIELD: Well, TVA has told us that
12	they intend to put the mPower, and in fact in their
13	RIS response put mPower on the old Clinch River site.
14	DR. KRESS: Right.
15	MR. MAYFIELD: So they're moving forward
16	with that. They have been less enamored well, BMW
17	has been less enamored with being the pilot on this.
18	DR. KRESS: Yes, they're probably use the
19	normal procedure I guess.
20	MR. MAYFIELD: Normal meaning Part 52
21	where B&We and TVA continues to look at Part 50.
22	DR. KRESS: Thank you.
23	DR. CARLSON: Okay, so I'll get back to my
24	presentation. Again, we will finalize and issue these
25	to DOE as enclosures to a letter publicly after ACRS
I	I

(202) 234-4433

	132
1	review in May.
2	The presentations today are based on this
3	first product, the issue summary report, but we will
4	also dip into the more detailed white paper assessment
5	reports for certain details.
6	Major conclusions, and we'll get into the
7	details, but just very high-level. The staff used the
8	proposed approaches to these licensing issues are
9	generally reasonable with a number of caveats.
10	And at the high level the caveats are that
11	deterministic elements of the RIPB approach should be
12	strengthened. Really what that means is instead of
13	what we thought should look like an option 2 we think
14	some of it looks like option 3 in certain respects.
15	And so this is the staff's advice on how to get it
16	back more into option 2.
17	Another key element is consistent with the
18	licensing strategy report to Congress. It called for
19	licensing the NGNP within by adapting the current
20	licensing framework as a prototype specifically under
21	the prototype testing provisions of Title 10 Code of
22	Federal Regulations 50.43(e)(2).
23	Our review of some of the technical issues
24	under fuel qualification and mechanistic source terms
25	reinforced that with specific issues that would have
ļ	I

(202) 234-4433

to be resolved by prototype testing. And we'll get into that.

3 MEMBER CORRADINI: Okay. So you're going 4 to explain what all that just meant. Because early on 5 in the licensing strategy when ACRS wrote the letter saying go forth, that looks like a good strategy, 6 7 originally DOE had the option of using this as a demo. It wasn't 10 C.F.R. 50.43(e), it was another part 8 9 where it would be a test reactor and the test reactor 10 would have various power stages and they would only get an ascension from zero power to 5 percent, from 5 11 percent to 10 percent as they proved out. 12 So how is (e) different than that? DOE chose not to do that and 13 14 NRC agreed with that at that time. Is this different? 15 This sounds very similar. 16 DR. CARLSON: It is. 17 MR. MAYFIELD: This is Mike Mayfield That's essentially the prototype aqain. It is. 18 19 So through licensing conditions on the provision. design you would impose either additional trip set 20 points, a power ascension program. 21 22 MEMBER CORRADINI: And that's proven empirically --23 24 MR. MAYFIELD: As proven empirically. Then you would start to remove -- well, upon request 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

133

	134
1	you would start to remove those license conditions or
2	modify them to allow power increase, to remove some
3	more conservative trip set points, whatever conditions
4	you might have imposed to assure safe operation while
5	you were proving out the design.
6	MEMBER CORRADINI: Okay. And then you're
7	going to explain it, but just at a high level. So DOE
8	has seen this second conclusion. Have you seen any
9	response from DOE? Because this has been discussed in
10	the past, 10 years ago with DOE and this was not a
11	path chosen. So I'm kind of curious on the back and
12	forth in terms of the philosophy of this.
13	DR. CARLSON: We have had some discussion.
14	I didn't detect that there was fundamental
15	disagreement on this point.
16	MEMBER CORRADINI: Okay. Because just to
17	take you back historically, in 2003 the INL's internal
18	independent review team suggested this approach if I
19	remember correctly in 2003.
20	DR. CARLSON: That said, when we do
21	discuss these things and it's in public meeting
22	records there's an indication that the NGNP industry
23	alliance is hesitant to go to prototype depending on
24	what you mean by prototype. A prototype can look a
25	lot like the standard plant and that's what they want.
	I

(202) 234-4433

	135
1	MEMBER CORRADINI: Okay, fine.
2	DR. CARLSON: Yes.
3	MEMBER CORRADINI: All right, thank you.
4	DR. CARLSON: So, important qualifiers.
5	Of course this is pre-application review. It's for a
6	design that's pre-conceptual at best. And we haven't
7	seen any real analysis. So the staff feedback is
8	advisory and represents no regulatory decisions and no
9	final positions on any issue.
10	Our regulatory positions will be based on
11	the NGNP license application and related Commission
12	policy determinations that may be provided in the
13	future.
14	And again there were comments today and
15	back during the January 17th briefing about applying
16	this as a technology-neutral framework. And indeed
17	certain elements have been described by DOE as
18	technology-neutral. The top-level regulatory
19	criteria, the frequency consequence curve itself is,
20	in principle that's all technology-neutral.
21	We did not look at it from a technology-
22	neutral perspective. We looked at it solely as it
23	would apply to a modular HTGR design concept. If we
24	were to look at it for other technologies I'm not sure
25	we'd reach the same conclusions.
Į	I

(202) 234-4433

	136
1	So, what do we mean by modular HTGR design
2	concept? I think DOE-INL has presented that very
3	well.
4	I have been immersed in high-temperature
5	gas-cooled reactor technology off and on, mostly on,
6	since 1978 so you might guess that I have presented
7	some overviews of what an HTGR, in particular what a
8	modular HTGR is. And I've always found that there are
9	one or two slides that make people say ah, that's what
10	it's all about.
11	First of all, the early history of HTGRs.
12	There was the first generation of HTGRs, the Dragon
13	reactor in the UK 1966 to `75. Then in Germany the
14	AVR 1967 to 1988. That's a picture of the AVR taken
15	from the building where I worked from 1978 to `83. So
16	I was part of that German R&D program, very intimately
17	familiar with the AVR.
18	So it was a pebble bed reactor, 46
19	megawatts thermal. It was truly very high
20	temperature, 950 degrees C outlet temperature for much
21	of its operating life. And it had about 70 percent
22	capacity back there as a test reactor.
23	Then there was Peach Bottom 1 in the
24	United States in the same time frame, `67 to `74, a
25	block type, 115 megawatts thermal, 725 degrees C
ļ	1

(202) 234-4433

	137
1	outlet.
2	Then the second generation, Fort St. Vrain
3	and THTR. THTR was at a high level a lot like Fort
4	St. Vrain except the core was different, it was pebble
5	bed, not prismatic.
6	So this is one of those pictures that make
7	people say aha. I would like to present a version of
8	this slide that shows the AVR, the German, because
9	it's very similar. So you could replace Peach Bottom
10	with the AVR. You could replace Fort St. Vrain with
11	THTR and you could replace the large one there with
12	PNP-3000. When I worked in Germany I did a lot of
13	analysis on the PNP-3000.
14	Then TMI happened and the reaction of the
15	HTGR community in the U.S. and Germany, and there was
16	very close collaboration. The HTGR community
17	consisted of General Atomics and mostly Oak Ridge at
18	that time were having a lot of exchanges and
19	interaction with the Germans. Mike Kania certainly
20	can attest to that. He was part of that.
21	And their reaction to TMI was saying how
22	can we make this really inherently safe. So this
23	graph I think says a lot. You see on the ordinate the
24	peak fuel temperature, the maximum fuel temperature in
25	their accidents. So basically these are accidents
I	

(202) 234-4433

	138
1	where you depressurize the helium and it heats up
2	gradually to some peak temperature.
3	So you see for Fort St. Vrain with large
4	HTGRs you would get up to temperatures that would
5	sublimate the graphite and melt the fuel if you did
6	nothing. So they relied on active features to prevent
7	that.
8	The mind shift that occurred post TMI, and
9	it happened over a couple of years, and I was
10	fortunate to witness it there in Germany was through
11	a series of seminars. Ended up really in late 1981
12	with the seminal paper by Lohnert and Reutler, the
13	advantages of modular. And so that was the birth of
14	the modular concept and General Atomics was right on
15	board. So in the early eighties we saw the emergence
16	of what we now call the modular HTGR design concept.
17	And as you heard today it's lower power
18	density, different core geometry, long, slender,
19	passive conduction of decay heat through to the
20	reactor vessel to a reactor cavity cooling system so
21	that the peak temperature in the core and localized in
22	the core is below a safe temperature, well below
23	2,000. Sixteen hundred has been a limit. Dr. Petti
24	is suggesting that that limit may be 1,700 or higher
25	depending on how their fuel program works.
I	

(202) 234-4433

So, before I move onto the next slide I'd 2 also like to point out there were two factors that converged, TMI in 1979 and then in 1980-81 the Germans 3 for the first time demonstrated really hiqhperforming, high-quality TRISO fuel. So those two factors were crucial to coming up with this concept of 6 7 modular HTGR safety.

So these are modular reactors. 8 And sometimes 9 they're called small modular reactors 10 meaning low in power. But in terms of geometry the word "small" doesn't apply. 11

So this picture shows two PWR reactor 12 vessels fitting neatly in the reactor vessel of a 600 13 14 megawatt thermal prismatic HTGR design. So a key point is that that's really what low power density 15 16 means, big reactor.

17 Per-unit power, modular HTGRs are much larger than light water reactors. They have much, 18 19 much lower power density, on the order of two orders of magnitude lower. They have much less fuel in the 20 active core in terms of volume. 21

Light water reactors are 30 percent fuel, 22 HTGRs in the active core are a half percent. 23 If you 24 improve the reflectors which have a lot to do with the thermal inertia it's less than 0.2 percent. 25 So the

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

4

5

	140
1	big message here is they have tremendous thermal
2	inertia. And so with that, that's the modular HTGR
3	design concept we're talking about.
4	So, now we're going to start going through
5	our feedback on the issues. And we're going to start
6	with licensing basis event selection. And again we're
7	doing it based on the contents of our issue summary
8	report.
9	And we start with licensing basis event
10	selection because that's the most obvious thing. If
11	you're the licensing basis events that you use for
12	light water reactors don't really apply to this
13	technology and so you have to come up with a new set
14	of licensing basis events and the option 2 framework
15	is what we're trying to implement to do that.
16	So I'm going to now turn it over to Tom
17	Boyle and Jonathan DeGange, first Tom who provided our
18	feedback in response to specific requests for feedback
19	in the July 6 DOE letter. And in so doing we're going
20	to briefly paraphrase the requests and then provide
21	our feedback in summary form. So I turn it over to
22	Tom Boyle and he'll turn it over to Jonathan.
23	MR. BOYLE: My name is Thomas Boyle. I'm
24	a project manager in the Division of Advanced Reactors
25	and Rulemaking. And I'm going to begin with a brief
I	I

(202) 234-4433

	141
1	review of the licensing basis event selection material
2	that the staff reviewed when preparing these
3	assessment documents.
4	All the material on these slides and the
5	one following is in reference to the white paper
6	submitted by DOE-INL. DOE-INL proposes a process for
7	selecting, categorizing and evaluating licensing basis
8	events that combines both risk-informed and
9	deterministic outlooks.
10	This is meant to be consistent with option
11	2 of the 2008 licensing strategy report to Congress
12	which indicates that deterministic engineering
13	judgment and analysis should be complemented by NGNP
14	design-specific PRA information.
15	Additionally, in the SRM to SECY-03-0047
16	the Commission approved the staff recommendation to
17	allow the use of a probabilistic approach in the
18	identification of events to be considered in the
19	design provided there is sufficient understanding of
20	plant and fuel performance and deterministic
21	engineering judgment is used to bound uncertainties.
22	The approach proposed by DOE-INL appears
23	reasonably consistent with this guidance and would
24	yield four risk-informed event categories, the
25	anticipated events, design basis events, design basis
	I

(202) 234-4433

	142
1	accidents, and beyond design basis events.
2	MEMBER SKILLMAN: Tom, before you proceed,
3	on your bullet number 1, please. Is there a clearly
4	defined demarcation between where deterministic stops
5	and probabilistic must begin?
6	MR. BOYLE: I'm not sure about that but we
7	can when we can get into the staff evaluation of
8	these different issues we can touch on some examples
9	if that would help.
10	MEMBER SKILLMAN: We'll come back to it.
11	Thank you.
12	MR. BOYLE: And this set of design basis
13	accidents would be derived from DBEs assuming only
14	safety-related SSCs are available to mitigate the
15	consequences.
16	Offsite dose consequences of LBEs would be
17	evaluated against the top-level regulatory criteria
18	and EPA protective action guidelines. And the next
19	slide will show this on their frequency consequence
20	curve.
21	The SSCs would be classified according to
22	their safety significance, safety-related and non-
23	safety related. SSCs that are relied upon to perform
24	safety functions that prevent or mitigate the
25	consequences of DBEs or to prevent the frequency of
I	I

(202) 234-4433

	143
1	certain BDBEs from entering the DBE range would be
2	classified as safety-related. SSCs that are relied on
3	to perform functions that prevent or mitigate the
4	consequences from AEs or that prevent the frequency of
5	certain DBEs from entering the AE range would be
6	classified as non-safety related but would be subject
7	to special treatment commensurate with their safety
8	significance. All other SSCs would be classified as
9	non-safety related and would not be subject to special
10	treatment. Next slide.
11	MEMBER STETKAR: Tom, before you switch
12	that I need to understand something fundamental
13	because I've missed something somewhere. Could you
14	tell me what an event sequence is?
15	MR. BOYLE: It's the entire plant response
16	to an event. Not just the initiating event but all
17	subsequent events to go along with that.
18	MEMBER STETKAR: Okay, I've got that.
19	Could you tell me what an event sequence is in terms
20	of the way it's used in this process? Let me give you
21	an example because, you know, in the interest of time.
22	The white paper and the staff's assessment of the
23	white paper seems to bounce back and forth among the
24	concepts of an event sequence family and an event
25	sequence.
ļ	I

(202) 234-4433

	144
1	Now I will refer you to Figure 4 in the
2	white paper which is a little picture cartoon of an
3	event tree. The event tree has a couple of functions
4	in it. One is shut down the reactor. The other is
5	take heat away from the reactor.
6	The take heat away from the reactor
7	function has three top events and they are listed in
8	that event tree in a certain order with failure
9	probabilities associated with each top event.
10	Depending on the order of those top events you will
11	have different frequency assignments to each end state
12	which will give you different conclusions regarding
13	whether a particular sequence in my connotation of a
14	sequence, a path through the event tree, is either an
15	AE, a DBE or a BDBE.
16	So that the definitions of top events and
17	the sequence of those top events in this particular
18	event tree, defining a path through the event tree,
19	determine whether a particular sequence is assigned to
20	a DBE, BDBE, or AE category. So I need to understand
21	what an event sequence is.
22	MR. BOYLE: Well, when you
23	MEMBER STETKAR: Because I understand that
24	each sequence has supporting it, you know, tens of
25	thousands or billions and billions of cut sets that
I	I

(202) 234-4433

	145
1	all lead to that same failure of a top event. And in
2	that sense each failure, top-event failure is the
3	accumulation of several functionally identical cut
4	sets. And some people will call a cut set a sequence.
5	But in the context of the way the methodology is
6	presented in the white paper it is presented along the
7	lines of tracing a sequence through an event tree.
8	So I need to understand what that sequence
9	means because if I develop a sequence by just taking
10	those three heat removal top events and switching the
11	order of them I get a much different characterization
12	of AEs, DBEs and BDBEs. The BDBE is the same because
13	it's failure of everything.
14	But an event sequence is a combination of
15	successes and failures. And the intermediate success
16	states could really result in different release
17	categories, not the worst possible release category,
18	but different intermediate categories which you then
19	play against your frequency consequence curve. So
20	it's important for me to understand how those
21	successes and failures combine and have you thought
22	much about that.
23	MR. BOYLE: I'm not sure I understand the
24	problem here. So you're saying that a given
25	MEMBER STETKAR: We can in the interest
I	I

(202) 234-4433

(202) 234-4433

1 of time maybe at the break I'll show it to you graphically a bit. But the definition -- if a 2 3 sequence is a path, a functional path through an event 4 tree, combinations of successes and failures, as it's 5 presented in this Figure 4 then the order of the top events and how you define a particular top event can 6 7 change your conclusions. 8 MR. BOYLE: Right. MEMBER STETKAR: So I'm curious how that 9 10 process is going to be implemented in practice so that there's consistency from one design team doing one PRA 11 for one particular design to a different design team 12 doing a different PRA for their design. 13 And I didn't 14 see anything in your assessment paper that addressed 15 that. 16 DR. CARLSON: There were some very high-17 level statements in the licensing --MEMBER STETKAR: There are very high-level 18 19 statements. Exactly, talking about event 20 DR. CARLSON: sequence families and that they would exercise SSCs in 21 And one that would be more challenging 22 similar ways. would be representative of that family. 23 24 MEMBER STETKAR: But there are also examples in the white paper, for example, where an 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

146

event tree is developed partially and a failure branch in that event tree is not developed further because 2 3 that failure branch drops below the magic 1E frequency. And they say well, okay, there's a half a dozen other sequences out in here but because this drops below. 6

7 The problem is that some of those half a 8 dozen other sequences actually add up to more than 9 So there they're truncating on this your problem. 10 failure path through an event tree, not families of They're truncating actually on this cartoon 11 cut sets. figure path through the tree which doesn't seem to be 12 consistent with the notion of event sequence families. 13 14 It seems to be a literal interpretation of a flow path 15 through the tree.

16 DR. CARLSON: I think we understand your 17 comment in general and truly we understand that need to fully develop this concept. 18

19 MEMBER STETKAR: You can do it in practice but I was surprised that I didn't see more discussion 20 of it in the exchanges. 21

22 DR. CARLSON: It was presumed at a high level and so we didn't get beyond the high level. 23 24 MEMBER STETKAR: I get it at the high I honestly get it at the high level provided 25 level.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

4

5

	148
1	that this accumulation process, this development of
2	whatever you call an event sequence family, whether
3	it's a bucket of cut sets or whether it's similar
4	paths through an event tree is done according to the
5	high-level discussions that I can read.
6	But a lot of the specific examples that I
7	see seem contrary to that notion, or at least not
8	fully consistent with that notion let's say.
9	DR. CARLSON: Yes, we agree. There's a
10	need for a lot of specificity that we really didn't
11	get to in this process.
12	MEMBER STETKAR: Okay.
13	DR. CARLSON: We kept it at a high level.
14	But what is the event sequence family, how is it
15	defined, how is it treated. We don't have
16	MEMBER STETKAR: Okay. I've gotten a
17	little bit of my answer back so thanks. I appreciate
18	that.
19	CHAIRMAN BLEY: The paper, your paper
20	doesn't quite warn because you wrote the white
21	paper of concern in this area.
22	DR. CARLSON: It's a good point. No, it
23	doesn't. I think that's true.
24	MR. BOYLE: Anything else about this
25	slide?

(202) 234-4433

	149
1	CHAIRMAN BLEY: Not yet.
2	MR. BOYLE: Sounds good. Let's move onto
3	the next slide then.
4	I'll briefly point at some of these event
5	categories and everything on this just to kind of
6	rehash. And note that these event frequencies are
7	shown per plant year rather than per reactor year. In
8	the DOE-INL proposal event frequency cutoffs are
9	independent of the number of modules. But as a plant
10	consisting of 10 modules would have the same event
11	frequency cutoffs as a plant consisting of 1 module.
12	At the top we have the anticipated events
13	that are expected to occur within the lifetime of the
14	plant. They're expected to be more than 1 times 10^{-2}
15	per plant year. The basis for the dose consequence
16	criteria for AEs is 10 C.F.R. Part 20. The reference
17	value is 100 mrem TEDE cumulative annual dose, the
18	EAB, mechanistically modeled, realistically
19	calculated.
20	Design basis events expected to maybe
21	occur within the lifetime of a fleet of plants range
22	from 1 times 10^{-2} to 1 times 10^{-4} per plant year. And
23	the design basis accidents as we said before are
24	derived from the DBEs by assuming only safety-related
25	equipment responds.
I	I

(202) 234-4433

	150
1	The basis for the dose consequences for
2	both DBEs and DBAs is 10 C.F.R. 50.34. The reference
3	value is 25 rem TEDE at the EAB mechanistically
4	modeled and conservatively calculated.
5	Beyond design basis events are off-normal
6	events of lower frequency than DBE. They are
7	evaluated to ensure they do not pose an unacceptable
8	risk to the public. Frequency is greater than 5 times
9	10^{-7} and the dose circumstance for these DBEs are
10	based on NRC's QHOs, mechanistically
11	DR. KRESS: Did I understand you
12	correctly, that 5 times 10^{-7} is on module basis rather
13	than plant basis?
14	MR. BOYLE: That's per plant year. It's
15	per plant year.
16	DR. KRESS: It's per plant.
17	MR. BOYLE: That's correct.
18	DR. KRESS: I misunderstood.
19	DR. CARLSON: Always on the ordinate for
20	plant year. Since the late eighties.
21	DR. KRESS: I misunderstood what he said
22	about the cutoff frequency.
23	MR. BOYLE: Let's go to the next slide.
24	MEMBER STETKAR: Tom, is it appropriate to
25	ask my question about why the apparent inconsistency
I	1

(202) 234-4433

	151
1	in the use of uncertainties on the consequence scale
2	is applied in this framework? At this time or do you
3	want to address it later?
4	MR. BOYLE: I believe Mr. DeGange will get
5	to field that question.
6	MEMBER STETKAR: Okay. That's fair.
7	(Laughter.)
8	DR. KRESS: How about my comment on the
9	fact that those stair steps give some inconsistencies.
10	And that it probably would have been better to have a
11	straight line top-level regulatory criteria because
12	you get rid of those little ambiguities about when you
13	cross over one spot and another.
14	DR. CARLSON: We did have an RAI on that
15	and there was a good response to that. And where the
16	staff said we're not proposing an FC curve but what if
17	and we came up with the straight line curve and we
18	discussed that a little.
19	DR. KRESS: Okay.
20	DR. CARLSON: And we have a backup slide
21	on that too if you want to get into it a little more.
22	MEMBER CORRADINI: With various colors no
23	doubt.
24	DR. CARLSON: Of course.
25	MR. BOYLE: In general the staff feels
ļ	I

(202) 234-4433

	152
1	that the DOE-INL approach is reasonable. It appears
2	to be too risk-based in some places.
3	The LBE selection process should
4	incorporate more deterministic elements as described
5	in the coming slides. And we have a selection of
6	licensing policy technical issues related to LBE
7	selection that the staff has identified during its
8	review such as the frequency cutoffs for DBEs and
9	BDBEs, the per-plant year method of assessing multi-
10	reactor module frequencies, processing criteria used
11	for selection of DBAs and alternate TLRC and FC curves
12	for future HTGRs or technology-neutral frameworks.
13	DR. KRESS: Frequency cutoff is just to be
14	sure you're below the fatality QHO.
15	MR. BOYLE: Okay.
16	CHAIRMAN BLEY: I'm a little curious as to
17	why they're per-plant year approach requires
18	Commission policy decision. It's I don't want to
19	use the more conservative, it's more realistic than
20	what we're currently doing. Doing it for them doesn't
21	say you have to do it for everybody but it's certainly
22	something some of us have long thought ought to be
23	applied on a particular site. So I'm just curious why
24	what they're doing which is really restricting
25	themselves to meet the rules for the whole site
I	I

(202) 234-4433

	153
1	requires a policy decision.
2	MR. BOYLE: I believe it was an unresolved
3	issue in a SECY paper that never got a response. I
4	believe Mr. DeGange will talk about that a little bit
5	too.
6	CHAIRMAN BLEY: He's stuck with
7	everything.
8	(Laughter.)
9	DR. KRESS: The reason for my question
10	about the prompt fatality and safety really being the
11	reason for the cutoff value is that worries me because
12	there is such a thing as societal risk, total number
13	of deaths, land contamination, cost of all that stuff
14	which probably controls the where you're cutting off
15	the frequency on the basis of prompt fatality safety
16	goal. Are you really going to evaluate the total
17	societal risk for beyond design basis accidents?
18	MR. BOYLE: I'm not sure we're cutting off
19	the frequency based on when the consequences at the
20	QHO. They're saying
21	DR. KRESS: You'll go ahead and do the
22	level 3 no matter what the frequency is.
23	MR. DEGANGE: I think that what this
24	bullet's trying to get at is the frequency that would
25	be used for categorizing is it going to be in the
ļ	

(202) 234-4433

	154
1	design basis event region or beyond design basis event
2	region. Not looking at the actual QHO.
3	DR. KRESS: Well, okay, but that's the
4	reason if it meets the top-level regulatory
5	criteria. Pretty darn sure it meets the QHOs. Only
6	if the QHOs and the two you've got then, then I'm
7	questioning whether or not those are the right place
8	to look at. And maybe you ought to think about that.
9	DR. CARLSON: Yes, I think the staff is
10	thinking about having criteria for
11	DR. KRESS: Come up with another QHO
12	maybe? A new one?
13	DR. CARLSON: I don't think that there's
14	anything pending but it's certainly just being
15	discussed.
16	DR. KRESS: As long as you're aware of it.
17	DR. CARLSON: Yes.
18	MR. BOYLE: With that we go to the first
<mark>19</mark>	issue. This first issue is the DOE-INL's event
20	categories and proposed descriptions. Again those
21	categories are anticipated events, design basis
22	events, design basis accidents and beyond design basis
23	events.
24	These event categories and descriptions
25	appear generally reasonable. However, the staff feels
I	

(202) 234-4433

that the full selection of LBEs should include more deterministic elements.

3 For example, the definition of DBA 4 proposed in DOE-INL's LBE white paper is different 5 from the one traditionally used by the staff. To be more consistent with current regulatory practice and 6 7 to be more in keeping with option 2 in the licensing 8 strategy report the staff feels that the full set of 9 DBAs should include event sequences populated by the 10 applicant and/or the staff even if those events would otherwise fall within the BDBE frequency range or 11 below. 12

Why is that, Tom? 13 MEMBER STETKAR: I mean 14 if you -- if this is a reasonable regulatory framework 15 is developed to comprehensively if the PRA and 16 evaluate the whole spectrum of internal events, 17 external events, any hazard to the plant, why require a separate special evaluation of, as you characterize 18 19 it, postulated deterministic event sequences, or I've seen them listed as hypothetical event sequences. 20 Because the PRA should already have evaluated those 21 22 event sequences.

23 MR. BOYLE: If that's the case then we 24 won't have any additional postulated events. If the 25 PRA really does cover everything that the staff feels

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

155

	156
1	would be
2	MEMBER STETKAR: Okay, I didn't get that
3	from your assessment paper because
4	CHAIRMAN BLEY: Neither did it.
5	MEMBER STETKAR: my interpretation of
6	the PRA as has been characterized in the DOE white
7	paper is it is a full-scope, comprehensive, all
8	internal/external hazards, all modes of operation PRA.
9	That it's comprehensive. And I thought you were
10	interpreting it that way and still saying yes, but
11	even though they've quantified an event sequence at
12	10^{-100} , pick a number, I'm going to require them to
13	evaluate this because I think it's an important event.
14	DR. CARLSON: I can take a stab at that.
15	You want to go first?
16	MR. BOYLE: I'll just say that could be.
17	It's possible that the staff would want to see that
18	10^{-100} event. It's unlikely something that ridiculous.
19	But it's
20	MEMBER STETKAR: But my question is why.
21	Why. Because if you adopt this notion that the risk
22	assessment, and it addresses uncertainties so you have
23	both horizontal and vertical uncertainties quantified.
24	MR. BOYLE: I'm thinking it's just too
25	drastic a departure from what we're doing now. Like
ļ	I

(202) 234-4433

	157
1	we're switching gears very fast going from basically
2	purely deterministic to this is entirely almost risk-
3	based.
4	MEMBER STETKAR: But
5	MEMBER CORRADINI: Can I ask the question
6	differently? Just to take the gas reactor out of it.
7	If you had their backup slide and you essentially
8	mapped onto it the light water reactor instead of a
9	full-scope PRA are you trying to tell me that the
10	design basis accidents that you're requiring of
11	current reactors don't exist in that population of
12	little circles with bars and you've picked something
13	that's stylized enough that it doesn't appear in the
14	PRA? I don't think so. I'm looking at these guys
15	since I haven't had one.
16	CHAIRMAN BLEY: It would be an indication
17	that there was something wrong with the PRA.
18	MEMBER CORRADINI: Well, it infers a lack
19	of completeness. So I can understand that, that
20	there's always a lack of completeness. But on the
21	other hand I'm trying to figure out that if I took
22	away this technology I'm sorry I'm driving you back
23	to technology-neutral but it seems the logical thing
24	and you put back in the light water reactor which
25	is when we started arguing about 1860 6 years ago, I
	I

(202) 234-4433

	158
1	think you were still on the committee.
2	DR. KRESS: Yes, I was.
3	MEMBER CORRADINI: You almost do a test
4	drive on light water and ask the question how I get
5	the DBAs from the LBEs. And their approach at least
6	assuming they do all of this in a relatively complete
7	manner would be essentially what you do for light
8	water reactor. Otherwise you have to say everything
9	in the PRA for light water reactor is incomplete and
10	so we're going to invent one over here just to make
11	sure we've captured it. That strikes me as odd.
12	DR. CARLSON: I would like to take a stab
13	at answering the question why and I think it will help
14	the other questions as well.
15	The option 2 was selected for this
16	technology and not option 3. And I think a big
17	reason, a big thought process, a major thought process
18	behind selecting option 2 was we don't have a lot of
19	operating experience with this technology, we have
20	there has never been a modular HTGR design built or
21	operated. So it's going to be difficult to assess the
22	reliability of the PRA information. There's going to
23	be more than the usual amount of subjectivity in
24	determining what are the uncertainties, et cetera.
25	Whereas for light water reactors there's a
I	

(202) 234-4433

159 1 considerable database of being able to say yes, we understand the reliability of PRA information pretty 2 3 much for that technology. So perhaps if we were thinking about a 4 5 licensing approach and change out modular HTGR for some light water reactor design maybe we would say 6 7 something more like option 3. 8 MEMBER CORRADINI: Can I say it back to 9 you, what you just said? What you're telling me is 10 that not only might the PRA be immature but even the uncertainties in the PRA would be immature. So you 11 wouldn't necessarily take the upper right-hand corner 12 all their uncertainties. You'd have to add 13 of 14 something to it because you're not sure. That's what 15 I hear you just saying. One of the recommendations 16 DR. CARLSON: 17 that we'll talk about further, we mentioned it in our documents, is it's important to have a peer review of 18 19 And I can just imagine the peer review the PRA. having a lot of diverse opinions about how well you 20 characterized uncertainties. 21 CHAIRMAN BLEY: I think in this entire 22 framework, now we're just talking about licensing 23 24 basis event selection. But you also have the defensein-depth side which is framed to allow you -- them to 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 as they do their PRA consider areas where they might 2 not have a good basis for evaluating the uncertainty 3 and that would call for some deterministic defense-in-4 depth support.

5 I'm not sure why it belongs in here. Ιf it's the kind of thing that Tom was mentioning there's 6 7 a scenario they didn't consider. Well, when you 8 review the PRA it ought to be added in. If there's a 9 real scenario. The scenarios we usually use for PWRs 10 and BWRs might not be appropriate here. So that's not the place to go. So it seems to me there's a place 11 already in this structure to account for that rather 12 than saying well I had some deterministic events here. 13

And I agree with these two guys that we'll add new events seems really surprising. And if there are some that aren't in the PRA that ought to be added. But this issue of maybe there are uncertainties here that we don't fully understand might call for additional defense-in-depth to protect us.

DR. CARLSON: That is the value of course being risk-informed. It helps to identify sequences that you wouldn't identify using pure engineering judgment deterministically. And so that's the value. But, okay, how much can you rely on the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	161
1	risk information and how much do you need to
2	compensate for uncertainties with engineering
3	judgment.
4	CHAIRMAN BLEY: Of course that works both
5	ways. The PRA really would have brought engineering
6	judgment in and expanded what you might have had if
7	you hadn't done that full structure as well.
8	DR. CARLSON: So we definitely would
9	consider events that are identified from the PRA. And
10	so their LBE approach that is built around PRA would
11	be a source of licensing basis events including design
12	basis events, design basis accidents. But we think
13	that to cover uncertainties we would need to postulate
14	some deterministic events. And we'll have
15	CHAIRMAN BLEY: I guess I still fall back
16	if you come up with new event sequences, new
17	initiators, new event sequences, you shouldn't just
18	postulate them as DBAs. They ought to go back in the
19	PRA to get fully evaluated.
20	MEMBER RAY: What do you mean fully
21	evaluated?
22	CHAIRMAN BLEY: Evaluated
23	probabilistically. As part of the PRA. The complete
24	PRA.
25	MEMBER RAY: stage is that practical?

(202) 234-4433

	162
1	I mean it seems to me like it's almost a semantic
2	discussion.
3	Take for example the blowdown of the
4	helium system. Has that got a potential to interact
5	with the passive cooling system in such a way as to
6	disable it? Well, God knows.
7	CHAIRMAN BLEY: Well, we can I suspect
8	we can do a lot better than God knows on that
9	question.
10	MEMBER RAY: Well, I don't know. At this
11	stage is what I'm asking.
12	CHAIRMAN BLEY: Oh, at this stage. Of
13	course not. At the stage we have a real design
14	this only comes up when you have a real design using
15	that. This isn't being done now. This is just how
16	we'll do it when we get there.
17	MEMBER CORRADINI: But I guess just to
18	make sure at least where I'm coming from. I think
19	we're all asking kind of the same question. It's not
20	that I wouldn't disagree with your judgment that
21	things are not at the appropriate stage of maturity so
22	you're going to have to add some level of we'll call
23	it engineering judgment on top of it. That I don't
24	mind.
25	It's just the way it's characterized I
ļ	I

(202) 234-4433

would expect the reasoning is that I'm uncertain in this direction, I'm uncertain in this direction. They probably have identified some sort of set of sequences that I'm worried about. But it might be over here and it may even be more than over here because they don't

even understand the uncertainties. So I'm going to add adjustment.

8 But that's not the same thing as saying 9 I'm going to come up with a stylized thing that out of 10 the blue, blink, it's over here. Although it strikes me it's much more you've got to work within the 11 context of what they're already identifying. And then 12 you say well, because of some physical process that 13 14 we're unsure of we're going to add some judgment, some 15 That I can understand. wiggle room.

16 DR. KRESS: Let me ask a maybe related 17 question for the LWRs that determine safety categories and SSCs by using importance measures. 18 These are importance measures on the core damage frequency 19 usually. I don't see -- I'm not sure that this 20 21 process we're looking at to see if it meets the toplevel regulatory criteria is actually equivalent to 22 23 that.

DR. CARLSON: You're right. There is no level 1 PRA for this technology that we can make sense

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	164
1	of. There is no CDF in this technology. A core
2	damage state that relates to the type of core damage
3	
4	DR. KRESS: I hate to admit to that but
5	you could have an FC curve that is equivalent to the
6	core damage frequency and a LERF together. I don't
7	know if you've thought about it but you could have
8	one.
9	DR. CARLSON: For this technology you're
10	talking about.
11	DR. KRESS: Oh yes, you can for this
12	technology. It's an FC curve.
13	MEMBER CORRADINI: But Tom, can I ask Tom
14	a question? If we go back to what Dave presented
15	relative to his testing at high temperatures you're
16	looking for a release of radionuclides at some
17	temperature. That's no different than a degraded
18	state. You can have an intermediate analysis based on
19	
20	DR. KRESS: Exactly what I was thinking,
21	yes.
22	DR. CARLSON: We have talked about it will
23	be other criteria that you use in reviewing a
24	licensing basis event that engineers use. We talked
25	later about equivalent to a specified acceptable fuel
1	

(202) 234-4433

design limits for this technology hasn't been developed yet.

3 DR. KRESS: Well, talk to you about this 4 compiling the original deterministic approach I'll 5 call it to this new technology-neutral approach. Ιf just looking safety 6 you did that on at the significance of SSCs I don't think you'd get the same 7 8 integers. That's what bothers me. I think you'd get 9 different categories, different SSCs classified as 10 safety compared with the old process which just uses importance measures compared to what we're doing now. 11 I'm not sure because I haven't done any myself but it 12 just appears to me like you would. But it's just a 13 14 question.

DR. CARLSON: Well, we'll take it as a comment now and we'll try to address it later.

I think a little bit of 17 MEMBER STETKAR: my concern is this notion of what is a postulated 18 19 deterministic event sequence. Okay, I can postulate a deterministic event sequence that says you must 20 assume that you have full core damage. 21 That's a postulated deterministic event sequence. 22 Now, you must protect the public from that. 23

24 DR. CARLSON: I don't think that that was 25 what we proposed to the Commission in past SECY papers

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

15

16

	166
1	on this topic. It was very event sequence-specific
2	mechanistic. And so you're postulating
3	MEMBER STETKAR: And if that's the case
4	then I fall back to what Dennis and Mike were saying
5	is that identifies a deficiency in the PRA which ought
6	to be resolved through the PRA process, that sequence
7	that you've identified.
8	MEMBER CORRADINI: In the meantime though
9	you would identify it's something you've got to
10	consider.
11	MEMBER STETKAR: Yes. But it's something
12	that needs to be considered in the context of the risk
13	assessment with its evaluation of the consequences,
14	the uncertainty, the frequency and its allocation
15	among the three nominal categories of events. It
16	doesn't automatically become a design basis event
17	requiring special attention simply because you've
18	identified it.
19	CHAIRMAN BLEY: But once it's in there
20	then if you're still not comfortable with the way the
21	uncertainties have been characterized and think they
22	might be greater than certainly defense-in-depth calls
23	for doing something more I suppose.
24	DR. CARLSON: So the balanced approach of
25	risk-informed and deterministic methods, basically the

(202) 234-4433

policy is use risk information and use deterministic 1 engineering judgment to bound uncertainties. 2 So I 3 think that's the spirit of our overall recommendation 4 that you need. Hard to say what the uncertainties are in the PRA for this technology because there's just 5 not a lot of -- you have to get them operating to see 6 7 what surprises there are. 8 DR. KRESS: I wasn't sure whether or not 9 the air ingress accident was part of the PRA. Ιt 10 sounded like one of these things you're talking. The air ingress. 11 We'll talk about that during DR. CARLSON: 12 my talk after the break. 13 Okay. 14 MR. BOYLE: Well, we were also -- there's also the issue of the SAFDLs. The staff noted that 15 16 INL stated that it plans to develop specified 17 acceptable fuel design limits, or SAFDLs, for the HTGR fuel since the SAFDL structure that's been established 18 19 for LWRs is not applicable to HTGR fuel. The staff would expect any SAFDLs for modular HTGR to ensure 20 substantial margin to dose limits in the AE region. 21 If you want a surrogate this 22 DR. CARLSON: might be the one you're after. 23 24 MR. BOYLE: This next issue is related to SSC classification. The staff believes that the DOE-25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

167

1 INL approach, the safety classification of SSCs, is a reasonable one. Staff believes that this approach is 2 3 consistent with NRC's policy statement on PRA and 4 expects that the applicant's selection of safety-5 related SSCs will comply with the regulations at 50.2. The SSC classifications also appeared to 6 7 reasonably address applicable traditional AOOs or 8 anticipated operational occurrences. For AOO type 9 events that fall within the AE region SSCs classified 10 as non-safety related with special treatment would be available to prevent and mitigate the consequences. 11 Should one or more of these non-safety 12 related with special treatment SSCs fail to respond to 13 14 the event then the event might now fall within the DBE 15 region where there would be safety-related SSCs to 16 prevent and mitigate the consequences. 17 The special treatments for safety-related and non-safety related with special treatment SSCs 18 19 would be in accordance with the safety significance of the functions performed by that SSC. Specific special 20 treatments would likely be determined when more design 21 information or when the application is received. 22 MEMBER SKILLMAN: Let's go to my question 23 24 from 45 minutes ago on your first bullet. Where do you see in practice this demarcation between where 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

168

	169
1	your deterministic method seems to give confidence and
2	where you need to begin to invoke probabilistic
3	thinking?
4	MR. BOYLE: I'm going to defer that to Don
5	to be on the safe side.
6	DR. CARLSON: I hope this is helpful but
7	when you look at what we traditionally do. And again
8	we're adapting the traditional framework, adding some
9	more insights of course at the option 2 but not option
10	3 level. But the traditional framework has design
11	basis accidents like large break LOCA. We have rod
12	ejection events. And so put frequency numbers on that
13	and I don't think they'll necessarily fall in what
14	they're calling the DBE range.
15	But we think that that's a reasonable way
16	to go, especially for the prototype. Until we get
17	some actual experience with the technology, see if
18	there are any surprises when they actually build the
19	prototype. Some uncertainties will be reduced by a
20	few years of operation on the prototype with of course
21	testing and surveillance, et cetera, to meet the
22	requirements of 10 C.F.R. 50.34(e). Does that help?
23	MEMBER SKILLMAN: That does. Thank you.
24	MEMBER STETKAR: You're not going to gain
25	a lot of experience for large break LOCAs, rod
I	

(202) 234-4433

	170
1	ejection events.
2	(Laughter.)
3	MEMBER STETKAR: Well, one would hope not.
4	So you'll still face that issue hundreds of years in
5	the future.
6	CHAIRMAN BLEY: Hundreds of plant years.
7	MEMBER STETKAR: Hundreds of plant years.
8	I'm sorry. Reactor years.
9	DR. CARLSON: Some of the uncertainties
10	are associated more with normal conditions or
11	potential anomalies in normal operating conditions.
12	So you can
13	MEMBER STETKAR: Those you'll get.
14	DR. CARLSON: Yes.
15	MR. BOYLE: That's all. I'll hand the
16	reins off to Mr. DeGange.
17	MR. DEGANGE: Hi, I'm Jonathan DeGange.
18	And alongside Don and Tom I also work in NRO in the
19	Division of Advanced Reactors and Rulemaking. This
20	next slide is covering the third issue pertaining to
21	licensing basis event selection regarding NRC
22	agreement with proposed placement of <mark>top-level</mark>
23	regulatory criteria on a frequency consequence curve.
24	The overall staff view on this is that the
25	approach is reasonable. The TLRC as you'll see them

(202) 234-4433

1 in the FC curve that was shown a moment ago proposed 2 to be used with the FC curve to establish limits on 3 frequencies of event sequences and their associated 4 radiological consequences. And then they would be 5 used in the categorization and evaluation of licensing 6 basis events and ultimately in categorizing the 7 treatment of SSCs.

8 Staff feels that this approach is 9 consistent with the approved recommendation found in 10 SECY-03-0047 regarding issue 4 in that it places greater emphasis on the use of risk information to be 11 considered in the licensing approach by allowing a 12 identification 13 probabilistic approach in the of 14 events.

So as Tom had previously discussed one 15 16 point about the FC curve in noting the top-level 17 regulatory criteria are effectively looking at dose. In addition to addressing dose consequences in their 18 19 associated TLRC the staff does believe that DOE-INL should pursue an appropriate regulatory limit to 20 ensure the required level of integrity of the fuel 21 barrier to assure safe operation. 22

DOE-INL has acknowledged this and the need for the development of these limits in both our interactions with them over the past few years and in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	172
1	a 2011 NGNP project status report.
2	DR. KRESS: Does that mean limit on the
3	number of failed particles that exist in a given pure
4	load? You know, the full source term comes from
5	there's some particles that aren't that are failed
6	before you load them in. And they're talking about a
7	quality assurance program to control that. And I
8	presume there must be a limit on it. Is that the one
9	that you're talking about?
10	MR. DEGANGE: I think we were talking more
11	about in the relation to SAFDLs or something along the
12	lines of that. You're looking at operating
13	temperatures and
14	DR. KRESS: I see in case of temperature
15	and the radiation and accumulation might fail
16	particles. You're talking about limit on that part.
17	MR. DEGANGE: Right. Yes, sir.
18	DR. KRESS: Okay.
19	MEMBER CORRADINI: Wouldn't it be both?
20	I mean I guess I was looking for an example. You read
21	it. I looked at it. And I'm still a bit cloudy. So
22	I thought there would be in some sense there would
23	be some manufacturing QA
24	DR. KRESS: Quality
25	MEMBER CORRADINI: requirement

(202) 234-4433

	173
1	DR. KRESS: Yes, that's what I thought.
2	MEMBER CORRADINI: And then some sort of
3	temperature limit just in case. I'm waiting for the
4	DOE to come up and say something. I'm just, I'm
5	trying to spur some
6	DR. CARLSON: We will certainly get to
7	that. We talk about the fuel performance under
8	containment functional functional containment.
9	MEMBER CORRADINI: Okay.
10	DR. CARLSON: And so I'll be talking about
11	that. And so we can continue this discussion during
12	that presentation after the break.
13	MEMBER CORRADINI: I'm just trying to
14	understand what the bullet an example of the
15	bullet. I can think of two and I wanted to mention
16	them to see if I could get the DOE staff and their
17	contractors engaged.
18	DR. CARLSON: I don't know, it's up to the
19	
20	MR. DEGANGE: I think maximum temperature.
21	MR. PETTI: Do you want me to say
22	something, Don? Do you want the DOE perspective?
23	CHAIRMAN BLEY: I'd almost rather have
24	that separately from this. The way we came in.
25	MR. DEGANGE: So yes. So finally one last
l	I

(202) 234-4433

thing is because we have never actually licensed a reactor with this approach the staff does feel that 2 future Commission consideration may be appropriate for determination of using the TLRC as dose acceptance criteria for the event categories. Go to the next slide, please. 6

7 This next slide on issue 4 is covering the fourth (issue pertaining to licensing basis event 8 9 selection which is NRC established frequency ranges 10 based on mean event sequence frequency. And overall again the staff finds that the proposed approach by 11 DOE-INL for categorizing each event sequence based on 12 mean frequency to be reasonable. 13

14 In the approach the mean frequency would 15 be used to categorize an event sequence as an AE, DBE, 16 or BDBE based on where the mean frequency falls in 17 relation to the respective event category frequency ranges. 18

19 And as several have indicated earlier, I think Fred did in his presentation, in the event that 20 -- when they're looking at uncertainties it would be 21 comparing both the upper and lower bounds of the 22 frequency uncertainty distributions. They would be 23 24 looking both at mean frequency and mean consequence of 25 event sequences.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

3

4

5

175 And so in the event that you had events 1 2 that straddled multiple regions the proposal would be to compare against the dose criteria for both of those 3 4 regions. Overall the staff has no issue with this 5 approach and in light of the remarks from the previous 6 7 slide about the licensing basis we find the approach 8 reasonable. The staff views the approach to be 9 reasonable. 10 DR. KRESS: So the straddle you're talking about would be 95 percent confidence level? 11 MR. DEGANGE: If I'm not mistaken that is 12 the proposed approach. So they would look at 95 13 14 percent confidence on the entire distribution and then 15 ultimately you'd be looking at the mean to determine 16 in the event that --17 DR. KRESS: You say you'd go ahead and put it into the other category. 18 19 MR. DEGANGE: Right. Where these can be compared against both categories. And so the one that 20 was more restricted. 21 Well, that's a defense in 22 DR. KRESS: depth concept. 23 24 MEMBER STETKAR: On the vertical scale, 25 yes.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

176 1 DR. KRESS: Well, yes, that's where I'm stuck. 2 3 MEMBER STETKAR: Yes, it is. Now do I get 4 a chance to ask you? 5 MR. DEGANGE: Oh, I don't know. I might have to defer back to Tom. 6 7 (Laughter.) 8 MEMBER STETKAR: And then they postpone 9 That's okay. you. 10 CHAIRMAN BLEY: I think we're at the point, yes. 11 MEMBER STETKAR: Should I ask? 12 CHAIRMAN BLEY: Yes. 13 MEMBER STETKAR: Thanks. And I understood 14 that. 15 You know, I understood because people 16 traditionally have thought about uncertainties and 17 frequency. Everybody's grown up by modeling pumps and pipes and valves and their frequency of core damage 18 and all of that kind of stuff. 19 20 Τn this framework there is also uncertainty in the consequences. And I'll come back 21 to my question of why in the DBE range and only that 22 range do I compare the 95th percentile of the 23 24 consequences with the FC curve but not in the AE region or the BDBE region. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	177
1	CHAIRMAN BLEY: Where do you use the mean?
2	MEMBER STETKAR: Where I only use the
3	mean. Because, for example, if I have a 30 percent
4	probability depending on my uncertainty distribution
5	if there's a 30 percent probability that I exceed the
6	acceptance criteria for a BDBE event I'm okay as long
7	as the mean is below it. Even though there's a 30
8	percent probability I don't need to necessarily
9	consider any other additional defense-in-depth
10	measures to reduce that uncertainty or to actually
11	reduce the consequences if I think of it in an
12	absolute sense. And I don't understand that. I
13	honestly don't understand why.
14	DR. CARLSON: I think Jim who's going to
15	present later has some
16	MEMBER STETKAR: If he's going to do it
17	later that's fine, I'll wait.
18	DR. CARLSON: He can help us respond to
19	that now if he'd like.
20	MR. SHEA: We can do it now or later. Or
21	both.
22	MEMBER STETKAR: Why don't we do it now
23	because we keep pushing me off.
24	MR. SHEA: One of the concepts is
25	MEMBER STETKAR: You have to identify
I	

yourself.

1

2

3

4

5

6

7

MR. SHEA: Oh, I'm sorry. This is Jim Shea of the staff. One of the things you want to think about is this frequency consequence curve is really you're looking at the mean values of all these frequencies. And then you then apply for the various regions what makes sense.

8 And for example, DBE range, I mean I 9 should say the AE range you're talking about actual 10 plant operation conditions which in real life you 11 measure the actual consequence. And so what you want 12 to do is compare that against a best estimate or 13 actual consequence type analysis.

14 And one could say for the BDBE range it's 15 similar concept is when you're advising your а 16 emergency -- I've got to make sure I'm saying this 17 right -- emergency preparedness program for your procedures to get your, for example, your best 18 estimate result of how an accident would progress you 19 would want to use more realistic evaluation versus in 20 the DBE range which actually are there to influence 21 the DBAs or even the BDBEs would influence what your 22 23 DBA is.

24 Once you've selected your DBAs out of this 25 frequency consequence curve, whether it's through PRA

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	179
1	or some deterministic selections those DBAs against a
2	top-level regulatory criteria, siting, specifically,
3	would be done on a very conservative analysis, a 95
4	percent type analysis. Does that make sense?
5	MEMBER STETKAR: No.
6	(Laughter.)
7	MEMBER STETKAR: It makes perfect sense to
8	me in the DBE range. It makes perfect sense. I
9	understand. I understand it. You know, and it is as
10	Tom's mentioned a way you can think of it in terms
11	of defense-in-depth. You can think of it in terms of
12	confidence in your margins to whatever regulatory
13	acceptance criteria you've set by whatever shape of
14	that frequency consequence curve.
15	I still don't understand why the same
16	concept does not apply in those two other regions.
17	And especially if I'm using this whole process to
18	inform the design and the licensing of the plant.
19	MEMBER CORRADINI: You're worried about
20	inconsistency being developed as you cross across
21	those lines. That's what I thought you were getting
22	
23	MEMBER STETKAR: I'm worried about yes.
24	I mean I'm worried about why in the top region I don't
25	look at the 95th percentile of the consequence and see
	I

(202) 234-4433

	180
1	where am I relative to that curve. And I don't I
2	also don't down in the bottom region on the very
3	severe accidents.
4	DR. CARLSON: I'm going to tag-team with
5	Jim on this. Jim started to explain that. I would
6	like to just amplify with regard to the AEs that that
7	10 C.F.R. 20 limit is not an event-based limit.
8	That's an annual cumulative limit. Moreover it is
9	monitored.
10	MEMBER STETKAR: I understand that. And
11	if indeed my monitoring program suddenly determines
12	that 7 years into the life of the plant I've exceeded
13	that because I hadn't thought about something that I
14	should have thought about when I designed the plant,
15	then everybody has a problem. The regulator has a
16	problem, the designer has a problem and the operator
17	has a problem. So why not think about the possibility
18	that those things might occur when I'm designing and
19	building the plant.
20	There might be uncertainties in those
21	annual cumulative releases that you've not thought
22	about simply by looking at a mean value estimate for
23	what you guess is a mean value.
24	DR. CARLSON: So you believe with by
25	using the mean values you're creating a likelihood or
I	I

(202) 234-4433

	181
1	a possibility that you would get into this situation
2	where the monitoring will show that you're outside the
3	limits.
4	MEMBER STETKAR: If you talked to
5	financial planners back in 2006 on a mean value basis
6	everybody was making an awful lot of money.
7	DR. CARLSON: Okay. So yes, Jim.
8	MR. SHEA: And when people violated the
9	law using exceeding those values they went to jail.
10	So it's almost the same concept. If you're designing
11	your plant based on a best estimate in the AE range
12	and then however you find in actual operations you're
13	exceeding your limits then, you know, that's why we
14	have those limits there. So the concept is really,
15	you know, you can think of it as a design concept.
16	But the other aspect of it is in that AE
17	range, and we struggled with this for a while till we
18	kind of the light bulb went on and that is even in
19	those range to protect the fuel limits which haven't
20	been described yet through the design. But when the
21	design comes in there will be some sort of fuel
22	limits. We've alluded to them.
23	But at that point those fuel limits, and
24	we fed back into our paper that those would also be
25	done on some conservative basis. Maybe not
Į	I

(202) 234-4433

	182
1	necessarily 95 percent confidence but on a some
2	sort of conservative level so that you have some
3	you have some margin to your limits on your fuel.
4	MR. DEGANGE: The staff has talked on
5	this. I was going to save this and talk about this a
6	little bit later on. They're all kind of related.
7	In SECY-05-0006 the staff kind of hit on
8	this point. And that did get brought up in the
9	writeup that we did I believe. But we discussed the
10	use of scenario-specific source terms for licensing
11	basis there. And there was some issue of was
12	brought up about using conservative calculations for
13	versus best estimate.
14	MEMBER STETKAR: Okay. You know, in the
15	interest of time, Dennis, I think I'll we've
16	discussed this probably enough. I'll go look up that
17	SECY if that's got a little more information in it.
18	Thanks.
19	CHAIRMAN BLEY: And the committee will
20	probably talk some about this offline.
21	MR. DEGANGE: So this slide is covering a
22	request from DOE-INL regarding endorsement from the
23	NRC staff on their proposed per plant year method for
24	addressing risk at multi-reactor module plant sites.
25	So in the approach to account for multi-
l	I

(202) 234-4433

	183
1	module plants the approach proposes expressing the
2	frequencies of licensing basis events in units of
3	events per plant year where a plant is defined as a
4	collection of reactor modules that have selected
5	shared systems.
6	Overall the staff feels that the proposed
7	per plant year method being called upon is reasonable
8	and takes no issue in its assessment. The staff
9	believes that an integrated risk approach is
10	ultimately more conservative and comprehensive than
11	the treatment of modules on an individual basis.
12	DR. KRESS: Instead of the word
13	"reasonable" I would have said "necessary."
14	(Laughter.)
15	MR. DEGANGE: It would enable the risk
16	assessment to include event sequences that involve
17	source terms from one reactor module or multiple
18	reactor modules. So the staff overall finds it
19	reasonable. The staff does believe that future
20	Commission direction may be appropriate for this
21	topic.
22	CHAIRMAN BLEY: I guess I'm still to do
23	this I don't see why you need anything special. But
24	if the Commission speaks on this then it may have
25	implications for everybody else out there.
I	I

(202) 234-4433

	184
1	MEMBER STETKAR: I mean in some sense the
2	Commission already has though in terms of the post-
3	Fukushima issue of looking at multi-unit site
4	accidents for conventional operating LWRs.
5	MR. DEGANGE: Back in SECY-03-0047 there
6	were a number of different issues that were brought to
7	the Commission to vote on. And one of those was
8	consideration of a per plant year approach. And that
9	was denied. And the reason being was that we needed
10	to go to the ACRS first on that. And we did go to the
11	ACRS with the issue. And what happened really in the
12	letter back was there was a pretty mixed review of
13	there were opinions both ways on the topic. And there
14	was really never a definitive line of thinking that
15	came out.
16	CHAIRMAN BLEY: My memory which could be
17	really faulty on this was back then the request for a
18	position from the Commission was really aimed at
19	applying it to all sites for rather than just new
20	modular reactors. But I'm not sure of that. Don, do
21	you remember?
22	DR. CARLSON: I'll have to refresh my
23	memory as well.
24	CHAIRMAN BLEY: Anyway, you don't have to
25	go further on this. That's all record we can work
I	1

(202) 234-4433

from.

1

2

3

4

5

6

MR. DEGANGE: Okay. So the next slide, issue 6, is covering a request from DOE-INL regarding agreement on frequency cutoffs being established for the design basis event and beyond design basis event regions of the proposed FC curve.

7 They provide justification for these frequency cutoffs in their RIPB white papers that we 8 have looked at thoroughly. I'd like to note that in 9 the assessment we have done we have, as Don pointed 10 out, are looking at their usage in the context of 11 modular HTGR licensing and have not been assessed in 12 terms of a technology-neutral context. 13

14 So as seen on the FC curve the proposed cutoffs for the beyond design basis event sequence 15 frequency would be between 10^{-4} and 5 times 10^{-7} per 16 plant year. And the QHO of the prompt fatality safety 17 qoal seen in NUREG-0880 limits the increase in an 18 individual's annual risk of accidental death to a 19 tenth of a percent of 10⁻⁴ per year which sizes out to 20 an incremental increase of 5 times 10^{-7} per year. 21 So consistent with this OHO the NRC staff 22 views that the lower-frequency cutoff for the beyond 23 design basis event region of 5 times 10⁻⁷ per plant 24

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25 year is reasonable.

(202) 234-4433

Regarding the DBE region with frequencies between 10⁻² and 10⁻⁴ per plant year the staff believes that the lower cutoff of 10⁻⁴ is reasonable as long as the PRA used in the LBE selection process assessed multiple failures from common cause events and as long as it accounts for both operating in shutdown modes as well as internal and external plant hazards.

8 So like some of the other issues that the 9 staff has talked about we think that future Commission 10 direction may be appropriate for deciding the actual 11 cutoff values when it comes time to actual licensing. 12 So the next slide, please.

The last issue here on LBEs is covering a 13 14 request from DOE-INL for an endorsement of the overall 15 process for performing assessments against the TLRC 16 addressing specific issues with uncertainties, 17 calculational methodologies and the adequate incorporation of determinism. 18

So as previously discussed the staff feels that the approach overall their use of engineering judgment to address uncertainties is a reasonable approach for assessing licensing basis events in a risk-informed manner.

And additionally we think that the calculational methodologies proposed to be employed,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	187
1	they assess full event sequences using best estimate
2	models with either mean or conservative analysis.
3	One potential point to point out that I
4	think we've talked about just recently here. The
5	staff position in SECY-05-0006 which discusses the use
6	of scenario-specific source terms for licensing
7	decisions.
8	In that SECY there is a discussion about
9	using source terms for compliance and the usage of
10	conservative values based on best estimate
11	calculations. And this is consistent with DOE-INL's
12	proposal for design basis events and design basis
13	accidents.
14	However, for the anticipated events and
15	beyond design basis event regions compliance with the
16	top-level regulatory criteria the staff views the
17	proposed approach of realistic source term
18	calculations as meritable but would need further
19	consideration. And notes that it would probably
20	involve new regulatory interpretations likely to
21	require consideration by the Commission.
22	Another thing to point out was the, as I
23	think Tom mentioned earlier was on the topic of design
24	basis accidents. DOE-INL proposes as you all are well
25	aware that design basis accidents would be derived
ļ	I

(202) 234-4433

188 from design basis events with only safety-related SSCs responding and being available. The staff believes that NRC approval of a complete set of design basis accidents would likely consider supplementing DOE-INL's proposed DBE-derived DBAs with deterministically postulated but physically plausible events. So like on some of the previous issues discussed certain elements of the proposed approaches are somewhat overly risk-based and deterministic should be strengthened. And future elements Commission direction may be appropriate for some of these topics. No questions I'll go to the next slide. So, overall to summarize while only looked in the context of modular HTGRs the proposed at approach is indeed a technology-neutral approach. It's comprehensive in that it considers full plant response to a wide spectrum of events. And the

19 quantitative approach does enable the adequate 20 assessment of safety margins.

The proposed approaches are generally consistent with past staff positions and Commission guidance. And I've got a few listed there, especially the advanced reactor policy statement, the MHTGR NUREG-1338, the technology-neutral framework and a few

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

	189
1	of the pertinent SECYs that have been brought up. And
2	that is all I have.
3	MEMBER SKILLMAN: Question, please.
4	CHAIRMAN BLEY: Go ahead.
5	MEMBER SKILLMAN: Jonathan, a question.
6	In each of these seven items DOE is requesting the NRC
7	staff to comment on the direction that DOE is taking.
8	Is that a fair statement?
9	MR. DEGANGE: I think that's a fair
10	statement.
11	MEMBER SKILLMAN: Okay. In these seven or
12	among the seven are there any differing professional
13	opinions within the NRC staff and what conscious
14	reflection has been given to groupthink for the
15	staff's agreement to these seven items?
16	MR. DEGANGE: Well, I would
17	MEMBER SKILLMAN: Number one, any DPOs.
18	DR. CARLSON: No, there were no DPOs.
19	There was never any non-concurrence really. I think
20	the reason is because we really haven't gone beyond
21	very much past staff positions, ACRS comments,
22	Commission-approved direction in these SECY papers, et
23	cetera. We're advancing the ball just a little by
24	providing a little more detail. We're really staying
25	where the staff has already had staff established
I	1

(202) 234-4433

	190
1	positions. So we were able to get to concurrence
2	relatively easily because of that. It was a matter of
3	how you say it more than what we're saying.
4	MEMBER SKILLMAN: Thank you.
5	CHAIRMAN BLEY: Don, I've got I didn't
6	know where to ask this so I'll ask it now. You talked
7	about and this is a concern to me because of this
8	difference. Now we have white papers and we have an
9	evaluation of white papers. The process is a lot
10	different from having an application and having an
11	SER.
12	When you have the SER, when you have all
13	these RAIs if they're important issues they get
14	reflected back in the revised application. Is there
15	and you said that the RAIs were really more
16	extensive at least in pages than the white papers
17	themselves.
18	There's no process that pushes those back
19	into the white papers. Is there anything well, I
20	guess you've just got the big pile of them. I was
21	just wondering would it make sense to somehow publish
22	precis of the RAIs would be a companion to these two
23	sets of documents.
24	I'm worried about us losing track of that
25	useful information in the interim between now and when
I	1

(202) 234-4433

191 should there ever be an application using this 1 2 approach. 3 DR. CARLSON: Yes, I think you're pointing 4 to the fact that as agreed with DOE-INL there was a 5 decision not to update the white papers as we were 6 going through this assessment process. And so the 7 proposals that we're assessing are not exactly what's 8 in the white papers. 9 CHAIRMAN BLEY: Right. 10 DR. CARLSON: In fact as one would hope through our assessment process they considered some of 11 our feedback and clarified and I think modified to 12 some degree their original proposals in the white 13 14 papers. And so capturing that would best be done by some kind of future submittal. If not a revised set 15 of white papers then a future submittal that reflects 16 the staff feedback in future submittals. 17 Of course they don't have to take all of 18 19 our feedback. It's just advisory. But they certainly should consider our feedback in developing future 20 white papers, future submittals. 21 would point 22 And Ι out that in our particularly 23 assessment reports, the fuel 24 qualification and mechanistic source terms, less so for the RIPB, we do have fairly clear linkage between 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

192 1 each topic and the related RAIs. So anybody reading those topics would do well to go back and read each 2 3 and every one of the RAIs and RAI responses associated 4 with that. 5 CHAIRMAN BLEY: Okay, thank you. Before we take a short recess, break for the afternoon, I 6 7 just wanted to turn back to the DOE and INL and ask if 8 there are any short comments or issues of -- points of 9 clarification you'd like to make at this point in 10 time. MR. KINSEY: Yes, I think we have two 11 points of clarification not so much to cover in this 12 meeting but that we'd like to see when we get the 13 14 final output. 15 One is sort of a general item. A number 16 of the bullets in the slides on event selection point to the fact that the staff feels more deterministic 17 elements need to be rolled into the process. We're a 18 19 little -- we're struggling a little bit to understand exactly what those are because the cutoff frequencies 20 and the application process including the use of 21 engineering judgment has generally been agreed to. 22 So we just need a little clarification on what those 23 24 additional elements are envisioned to be. And then the second key item is the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	193
1	question that I think you raised related to the need
2	to add design basis accidents that are
3	deterministically developed from a plausible
4	evaluation sequence. We'd like to better understand
5	how that process would work, where they would come
6	from and what regulatory limits would apply to them
7	once they're established.
8	CHAIRMAN BLEY: Okay, thank you. I think
9	at this point we'll recess, take a short break. We'll
10	be back here at 3 o'clock. Thank you all.
11	(Whereupon, the foregoing matter went off
12	the record at 2:41 p.m. and went back on the record at
13	3:00 p.m.)
14	CHAIRMAN BLEY: The meeting is back in
15	session and welcome back. I'll turn it back over to
16	Don.
17	DR. CARLSON: Yes. So we're resuming with
18	our feedback based on the feedback in the issue
19	summary report. And so we've been through the first
20	set of issues under licensing basis event selection.
21	And now we're going into the issues under mechanistic
22	source terms.
23	And Jim Shea has a very good background in
24	source terms. He's been working in a more generic
25	sense on source terms perhaps for IPWRs. He was a
Į	I

(202) 234-4433

	194
1	contributor in various phases of our work on
2	evaluating the mechanistic source terms white paper.
3	And so he's going to give his presentation.
4	CHAIRMAN BLEY: Excellent.
5	MR. SHEA: Good afternoon. My name is Jim
6	Shea of the Division of Advanced Reactors and
7	Rulemaking of the Office of New Reactors.
8	And just to clarify one point about the
9	DPO. Our little slide there, mechanistic source term,
10	I almost put a DPO in because Don wanted it to be
11	called mechanistic source terms. And I told him that
12	was wrong.
13	(Laughter.)
14	MR. SHEA: You can say that there's
15	certainly not any groupthink when it came
16	especially when it came to mechanistic source terms as
17	even Stu Rubin who was part of a working group for a
18	good part of 2 years. Those were very interesting
19	meetings and I was kind of the ringleader of that
20	circus. And a lot of disagreements and let me tell
21	you. So it all kind of boils down to what we're going
22	to show you here in the next 5 to 8 minutes. So next
23	slide, Don.
24	First we'll start with definition. A
25	mechanistic source term or MST is a best estimate
l	I

(202) 234-4433

195 1 analysis of fission product release from specific 2 sequences including the accident necessary and assurance of plant and fuel performance as well as 3 4 deterministic judgment to bound uncertainties. Now 5 Stu, don't yell at me because that's probably not your 6 definition that we came up with but it's just 7 paraphrased from what we see in the slide. It shows that in SECY-03-0047 and 93-092. 8 9 The staff and the Commission approved the 10 concept for mechanistic source term and in fact over -- since the early nineties the staff, the Commission 11 including the ACRS have been receptive to the concept 12 of mechanistic source term. 13 14 CHAIRMAN BLEY: And just for those of us who haven't followed this forever I assume what that 15 16 compares to is just assuming some fraction is released 17 without looking at any of the specific physical mechanisms or chemical mechanisms. Is that right? 18 19 MR. No. We're talking about SHEA: specifically a mechanistic source term. Deterministic 20 source term you assume a certain fraction or the 21 release from the core. 22 CHAIRMAN BLEY: You're saying the same 23 24 thing. I was saying that was the comparison. 25 MR. SHEA: Right.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	196
1	DR. CARLSON: Again, the definition of
2	mechanistic source term in this case, it's event-
3	specific.
4	MR. SHEA: Even.
5	DR. CARLSON: Yes.
6	MR. SHEA: And we'll get there. So slide
7	3. In general feedback the NRC staff believes that
8	the proposed MST for the NGNP as outlined in its white
9	paper are reasonable with some significant caveats.
10	And specifically what was requested in the
11	July 6 letter to us was three main issues regarding
12	mechanistic source term. And in addition to answering
13	those three we're going to go into a little bit of
14	what we said in the fuel qualification mechanistic
15	source term assessment paper Rev 1 because we didn't
16	want to be redundant in the summary paper. A lot of
17	the information we already had covered. So we kind of
18	briefly evaluated this feedback in the summary paper
19	and then there's some more details. And we'll go over
20	some of the details that we had in the the
21	highlights I should say in the fuel qualification and
22	MST assessment report.
23	Okay, issue 1 was the definition. The
24	NGNP MST definition: event-specific radionuclides
25	released from the reactor building to the environment.
ļ	I

(202) 234-4433

Paraphrased.

1

4

5

2 The staff believes that the DOE-INL 3 definition for NGNP mechanistic source term is reasonable and consistent with past Commission SRMs and staff SECY papers regarding the treatment for 6 advanced reactors. Next.

These are pretty actually simple issues 7 8 compared to the last stage. But issue 2, can the NGNP 9 MST be event-specific? Mechanistically modeled and 10 account for specific reactor design characteristics. The NRC staff believes that the described NGNP MST is 11 reasonable and is again consistent with past SRMs, NRC 12 and staff SECY precedents which is -- aqain was 13 14 approved both -- in both SECYs the Commission approved the use of a mechanistic source term. 15

Issue 3 has DOE-INL identified the key 16 17 NGNP fission product transport and associated The NRC staff believes the ongoing and uncertainties? 18 19 plant testing and research activities for the NGNP FQ (fuel qualification) and MST (mechanistic source term) 20 development are generally reasonable. 21

Here's where the rub is though. 22 However, we do -- the NRC staff does expect more information on 23 24 the issues of fuel qualification and accident testing and potential prototype testing as you might have seen 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

198 1 through common themes that we've been going over as the staff. 2 3 MEMBER RAY: I've got a question. Just I 4 can't put it off till the end without just becoming too distracted. Are we -- when you said mechanistic 5 I thought we would include, for example, the issue 6 7 that was brought up this morning briefly, that is, 8 dust-related inventory blowdown. Is that included 9 here? And we're going to get to 10 MR. SHEA: Yes. that very next slide. 11 MEMBER RAY: That's fine. It's just, it 12 sounded like we were diverging off into something more 13 14 narrow. 15 What we're trying to do is MR. SHEA: No. 16 we give the real big picture and then we're going to go into some little bit of the detail, what the 17 mechanistic source term is for the NGNP which is 18 19 starting the next slide. DR. KRESS: And when we did the 20 mechanistic source terms for light water reactors we 21 needed -- for the whole range of fission products we 22 needed the volatilities, the LOCA pressures as a 23 temperature. We needed affected 24 function of diffusivities through various layers of the fuel and 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	199
1	how to get out into the stream. Then we needed
2	condensation rates. And then we needed how did they
3	behave inside the containment in RCCS. That took a
4	lot of labor. Do you see that you need this kind of
5	data for the gas-cooled reactor stuff? That took
6	forever to get all that data.
7	MR. SHEA: Yes. When you think of what
8	you're talking about, referring to is really all the
9	effort that went into NUREG-1465.
10	DR. KRESS: Basically, yes.
11	MR. SHEA: Which then culminated into the
12	Reg Guide 1.183 which became the AST. And if you look
13	at that effort and my colleagues here maybe could even
14	chip in here if they want to, but if you look at that
15	effort big picture they were taking some experience
16	from TMI and they used that, and using MELCOR, et
17	cetera, and trying to model that.
18	And then they tried to homogenize it over
19	for all the different types of plant design. So
20	there are some significant deficiencies in my mind as
21	far as like plant-specific mechanistic source terms.
22	Because in some cases one could argue in that effort
23	that they were overly conservative in some aspects and
24	maybe in another aspect not conservative enough.
25	And in fact not to go too detailed but you
I	I

(202) 234-4433

might remember in that effort we basically halted the 1 core melt after 2 hours and didn't evaluate anything 2 3 further. So the strength of a real mechanistic source 4 term is to go beyond that type of like artificial 5 deterministic cut it off because obviously we can't have a meltdown more than 2 hours, right? And look at 6 7 each design and each plant individually and apply 8 these fundamental physics. 9 And you know, obviously, as you know, as 10 time has gone by MELCOR and other type plant analysis codes have gotten a lot better in characterizing this 11 type of phenomenon. 12 Do you envision staff maybe 13 DR. KRESS: 14 working on the HTGR version of MELCOR? 15 You may recall that the DR. CARLSON: 16 Office of Research has I believe reported to the 17 subcommittee about 3 years ago on their effort to adapt MELCOR and other tools to provide an independent 18 19 tool for the staff to use for a modular HTGR. And very few of those activities are continuing, just the 20 work at Oregon State, the EPTF, the collaboration with 21 22 the Japanese and that's about all. MR. SHEA: Okay, so here's a little more 23 24 detail of how NGNP would be treating its mechanistic Now I have another picture courtesy of 25 source term.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

200

	201
1	DOE on the next slide that will just go through some
2	of these attributes so we can just skip to that next
3	slide.
4	If you look at this I think they referred
5	to it as the pill model which I think I first saw that
6	when DOE-INL first came and presented the HTGR concept
7	to us. And I think it really depicts everything
8	that's going on in a mechanistic source term model.
9	So we'll start with basically the fuel
10	kernel goes through all the various multi-layered
11	coating boundaries you can see depicted there. And
12	then through the core graphite block.
13	Now, you've got to remember that the main
14	safety case obviously is that most of the fission
15	product radionuclides are all trapped within that in
16	the fuel kernels or in the actual fuel particle.
17	So 98.99 something. If you look in the white paper
18	they have it. It's a very small amount of fission
19	product actually is released.
20	And so then after the fission product
21	makes it through the core and out to the helium
22	pressure boundary which is depicted by the pill. And
23	you can see the various mechanisms that would be
24	evaluated in the model in a mechanistic source term.
25	And essentially so you'd have the model of
I	I

(202) 234-4433

	202
1	how all of that fission product got out to the helium
2	pressure boundary and then the helium pressure
3	boundary and then the helium pressure boundary is a
4	whole other problem in how it then is released.
5	And you notice some of the things we've
6	already talked about today. There's plateout. We
7	talked a little bit about the dust which is more of an
8	issue associated with the pebble bed. It doesn't seem
9	to be as much of an issue here.
10	MEMBER RAY: Why do you say that?
11	MR. SHEA: Well, DOE-INL have suggested
12	that and I can give you some anecdotal evidence from
13	some staff members who went to Fort St. Vrain after it
14	was for decommissioning and couldn't find any
15	radioactivity to clean. So that's just an anecdotal
16	evidence that there really wasn't a lot that was
17	produced even in Fort St. Vrain years of operation to
18	decontaminate.
19	DR. CARLSON: I'll put a little caveat on
20	that because as we did have a dust workshop with
21	DOE-INL. And the predominant view there was it's
22	probably not a big issue for prismatic block but there
23	was a caveat on that.
24	In particular I provided a reference to a
25	German paper, the chief chemist at the AVR, the pebble
I	I

(202) 234-4433

	203
1	bed reactor Julich had a notion that the dust
2	generated in the PBR was chemically produced. And we
3	can describe that to you. But I translated that paper
4	for the workshop.
5	And so a caveat, a note was made that that
6	mechanism potentially could apply to a prismatic block
7	reactor under certain conditions, notably if they have
8	a high partial pressure of carbon monoxide and
9	hydrogen in the helium.
10	MEMBER RAY: I've been to Fort St. Vrain
11	too but I thought that maybe it was sensitive to flow
12	velocities and the extent to which erosion might occur
13	over a longer period of time than Fort St. Vrain was
14	able to operate. Things like that.
15	In any event, any piece of information is
16	useful. I just think it needs to be demonstrated that
17	it's not an issue because the inherent presumption
18	might be well, over time you will see erosion of the
19	block prismatic forms. And if you're not, well why
20	not. It's just a little
21	DR. CARLSON: There are other mechanisms
22	of dust. I mean oil can intrude into the primary vent
23	and then that becomes dust. But where those were well
24	discussed at the workshop. And so I think that
25	provides a good basis for further review of these
I	I

(202) 234-4433

	204
1	issues.
2	MEMBER RAY: It's a big deal. I mean
3	because it's an immediate source term as opposed to
4	something spread over days and weeks.
5	DR. CARLSON: Well, I think we have given
6	due attention, we'll continue giving due attention to
7	dust. So I'll turn it back over to Jim.
8	MR. SHEA: Yes, and well, just to follow
9	up on that. I mean one of the things that DOE-INL are
10	talking about as far as a conservative use of the
11	mechanistic source term is to apply this buildup of
12	whatever dust and plateout on the helium pressure
13	boundary over the life of the plant and use that as
14	their design basis accident dose source term. So
15	that's a fairly conservative use of that whole
16	concept.
17	MEMBER RAY: Yes and the flow circuits may
18	have unique traps in them I suppose, things like that.
19	MR. SHEA: Yes.
20	MEMBER RAY: I have no idea what to
21	expect.
22	MR. SHEA: Right. And I think it also
23	falls on how would one if a plant would operate for
24	40 years how would you know that you're actually
25	meeting these design goals. Well, I think we talked

(202) 234-4433

	205
1	about it before but in the purification system and in
2	actually monitoring the radionuclides in the helium
3	pressure boundary you can get a good idea of what met
4	those goals.
5	So okay. So the concept is as so you
6	build up a source term essentially in the helium
7	pressure boundary and from there depending on the
8	event sequence, the specific event sequence that could
9	be that would have maybe separate release
10	parameters.
11	And then you notice that it gets released
12	to the reactor building. There was a lot of
13	discussion about the reactor building today. One of
14	the key concerns is that then the release to the
15	reactor building, it's the release from the reactor
16	building to the environment that is the definition for
17	their source term.
18	Now one of the treatments of the reactor
19	building that would be an issue going forward is the
20	credit for that decontamination factor that we were
21	discussing earlier. And the staff has not ever
22	credited reactor building for a decontamination
23	factor. So that would be an issue going forward.
24	MEMBER CORRADINI: Can I ask you a
25	question I guess? And maybe this has been maybe

(202) 234-4433

	206
1	when it's appropriate for DOE because there's a couple
2	of things the staff, the DOE staff and the contractors
3	may want to comment on. But in this case the thing
4	that's different about this reactor at least as I see
5	it is there is no water. So it's a dry system.
6	So is the source term, the mechanistic
7	source term that's being developed going to be
8	developed mainly empirically by the DOE tests, not by
9	any sort of calculational procedure?
10	MR. SHEA: Well, the tests are going to
11	validate the empirical. They have empirical models to
12	predict how the transport. And then there's the AGR
13	testing that's ongoing.
14	MEMBER CORRADINI: Right. But in my
15	simple mind there's enough parameters they're going to
16	tune the models to what the tests show to make sure
17	the models meet the test results.
18	DR. CARLSON: They have, in the AGR
19	program there's a distinction between there's the
20	early testing phase that focuses on providing data to
21	develop the fission product transport models. And
22	later in the phase the emphasis shifts with induced
23	separation to validation of those models.
24	MEMBER CORRADINI: Right, and that's AGR-
25	567 if I
ļ	1

(202) 234-4433

	207
1	DR. CARLSON: Yes.
2	MEMBER CORRADINI: No. I'm remembering
3	wrong. Can you at least tell me the numbers, Dr.
4	Petti?
5	MR. PETTI: Eight.
6	MEMBER CORRADINI: Eight. Okay. That's
7	the fuel qualification.
8	MR. PETTI: No, that's the validation.
9	MEMBER CORRADINI: Validation, excuse me.
10	I'm sorry. Okay.
11	MR. SHEA: Okay, getting back. The key
12	issue about the reactor building, the staff feels that
13	a license applicant would need to provide adequate
14	justification to credit the reactor building as a
15	barrier for release of the source term. So that's an
16	issue I think that's going to be ongoing for a number
17	of the advanced reactors as far as taking credit for
18	the reactor building.
19	CHAIRMAN BLEY: Have you done any work
20	along those lines? What kind of any idea what
21	they'll need to provide to justify?
22	MR. SHEA: I personally haven't done any
23	work. Michelle, do you have any thoughts on where
24	staff is heading? I promised I wouldn't pick on
25	Michelle at this point.
	I

(202) 234-4433

	208
1	MS. HART: I'm Michelle Hart from the
2	Radiation Protection and Accident Consequences Branch
3	in NRO.
4	And we haven't really done a lot of
5	thinking about what they need to do. I mean they'll
6	have to justify the paths that they're going to take,
7	the kind of flow paths through the building and the
8	deposition rates.
9	We've given credit for some holdup in some
10	buildings where they have like a secondary containment
11	where they have tech spec leak rates and they test it.
12	I don't know what it's going to look like for a
13	reactor building that may not have those kind of
14	criteria. But they'll have to justify the models as
15	far as some reasonable deposition rates.
16	MEMBER CORRADINI: Can I just ask a
17	follow-on question? So we're talking for the DBA
18	part?
19	MS. HART: For the DBA part, correct. To
20	show compliance with the siting criteria.
21	MEMBER CORRADINI: Okay. With the siting
22	criteria. And so I'm looking for an analog in the
23	LWR. In the LWR there's a required if I remember
24	correctly there's a percentage of the fuel that is
25	failed within essentially a release based on the
	1

(202) 234-4433

	209
1	alternative or the older source term, right?
2	MS. HART: That's correct. And it's
3	released to the containment and then a tech spec
4	testable release rate from the containment to the
5	environment.
6	MEMBER CORRADINI: But it's a tech spec
7	testable release rate of the stuff inside containment
8	with no decontamination of whatever. Whatever gets
9	out of the core is assumed to be in the atmosphere.
10	MS. HART: We do give credit for
11	decontamination within the containment. And also
12	spray removal.
13	MEMBER CORRADINI: Okay.
14	MS. HART: So natural
15	MEMBER CORRADINI: And all that is
16	empirically testable. I'm trying to make I heard
17	what Jim said. I'm trying to make an analog to what's
18	done currently in the DBA for the LWRs. That's what
19	I'm trying to make the analog clearly.
20	MS. HART: Right. The deposition rates
21	are do have some empirical basis but as far as
22	testing within a containment to determine the kind of
23	deposition rates it's not really that. I mean there's
24	an empirical model that actually Dr. Powers developed
25	that we use for natural deposition in containments.
I	I

(202) 234-4433

	210
1	We've used that for large light water reactors and
2	some of the current light water reactors as well.
3	MEMBER CORRADINI: And so there's some
4	MS. HART: It's correlated
5	MEMBER CORRADINI: there's some removal
6	rate.
7	MS. HART: to power. Yes. And size of
8	the containment. So it's a correlation there. It's
9	not a first principles type model. But it's based on
10	empirical data from small-scale tests.
11	MEMBER CORRADINI: Okay, fine. So just so
12	I say it differently, from a natural analog standpoint
13	given the fact that this design or these types of
14	designs would rely on some sort of decontamination
15	there would have to be a combination of testing and
16	modeling and tuning of the model to essentially get
17	some sort of credit for it.
18	MS. HART: And you may be able to build on
19	those models that we already have or that we've
20	already used in developing some of the models that we
21	use. It's just we're used to giving credit for safety
22	systems and for systems, leak-tight containments or
23	secondary containments that are testable. What would
24	that look like for this. I don't think we've quite
25	gotten there yet.
I	I

(202) 234-4433

MEMBER CORRADINI: Okay. And can I ask another question? A technical one. Which is to go back. I'm back to dust. The reason I guess I'm trying to struggle with it technically is that it seems to me at least for this sort of -- I'm kind of with Dr. Kress who had some comments from the January meeting where trying to bottle this up makes no sense in terms of a concept.

9 If you were going to have some sort of confinement 10 or I'll call it controlled leakaqe environment or containment or confinement that's 11 12 perfectly fine, but that means then the whole concept of what you have in there that you vent has to be 13 14 fairly well known. Or you have to know the 15 uncertainty band of it. So, because you're just going 16 to release it. All right. And so that kind of goes 17 back to what I think Harold was saying. Interesting in how the dust -- where it is and how much is there 18 19 that might be the source of your vented inventory. 20 DR. CARLSON: That was the subject of that

workshop that we had on dust.

22 MR. SHEA: Okay. So, next slide we'll go 23 on to. I just want to highlight some of the 24 highlights from the fuel qualification MST Rev 1 staff 25 assessment paper.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

21

	212
1	And essentially staff again believes that
2	the proposed approaches to the MST are reasonable with
3	some caveats. And we really describe most of those in
4	the fuel qualification MST paper.
5	But the highlights are the fuel
6	qualification obviously in the AGR testing is ongoing.
7	And still having plans in the future to do that.
8	Part of that AGR testing is the accident
9	testing that will go on where they fail fuel and they
10	actually test what the transport would be through some
11	failed fuel particles. Also as part of that post-
12	irradiation fuel testing as part of all that.
13	And also the idea of validating the codes
14	and the methods and the mechanistic source term after
15	a prototype reactors designs and use that as a means
16	of validating the methods and codes and the transport
17	in the mechanistic source term.
18	Another big issue obviously with this
19	concept is to is the PRA, the quality of the PRA.
20	It's going to be a little different obviously than
21	what we've done in the past where we never reviewed
22	it.
23	And we just, in our slide we talk about
24	the peer review requirement in the ASME/ANS. And in
25	addition the staff feels that the staff itself may
I	I

(202) 234-4433

	213
1	have to review that PRA if it's going to be used for
2	licensing purposes.
3	MEMBER CORRADINI: Can I ask on this one?
4	It's the DOE's plan with the contractor to finish
5	these fuels testing. So will staff come back and look
6	at the results of that and remove some of these
7	caveats? Is it the plan of the staff to
8	DR. CARLSON: We don't have any plan. If
9	there is an application for a modular HTGR then of
10	course we would expect them to look to the AGR program
11	for the technical basis for the mechanistic source
12	term. Everything has been discussed here including
13	dust.
14	MEMBER CORRADINI: Okay.
15	DR. CARLSON: And at that time then we
16	would take a very close look at that.
17	MEMBER SKILLMAN: For a peer review of a
18	PRA for an HTGR are the human resources available to
19	conduct that peer review?
20	DR. CARLSON: That's an interesting
21	question. I think we have seen that DOE-INL has
22	brought together a group of HTGR experts, some of
23	them, most of them from General Atomics. And they're
24	all rather gray-haired. So the question is that
25	hands-on expertise from actually having built and
	I

(202) 234-4433

	214
1	operated an HTGR, how much longer is that available.
2	Interesting question.
3	That said, the program Oak Ridge work
4	in the past and their recent work with INL is
5	developing new expertise. So they can fill some of
6	that gap.
7	MEMBER SKILLMAN: Okay, thank you.
8	MR. SHEA: Next slide. The last couple of
9	things I want to point out on the fuel qualification
10	MST paper are the staff feels that or I should say
11	the staff believes that the siting DBA should include
12	postulated bounding events which may include air
13	ingress and water ingress.
14	In addition, the safety train study should
15	be evaluated to inform selected LBE DBAs used in
16	establishing the EPZ and emergency preparedness
17	requirements.
18	Also, the DOE-INL research plan for air
19	and water ingress that was recently submitted we feel
20	represents a reasonable approach to addressing the
21	issue of air and water ingress and its effect on the
22	TRISO fuel particle.
23	And the last point is that the SECY-05-
24	0006, the staff there recommended that for compliance
25	source term should be based on a 95 percent confidence
l	1

(202) 234-4433

	215
1	level. And that's I think been if you notice
2	that's been a standard theme throughout all of our
3	presentations.
4	MEMBER STETKAR: Jim, back to the first
5	bullet. If I read that. That presumes that the PRA
6	would not include those types of events.
7	MR. SHEA: I'm glad I had the opportunity
8	to answer this question because I was sitting on the
9	sidelines listening to this. And the thought is that
10	the applicant, the licensee would have a complete PRA
11	that would include not only all the events that we
12	would consider for licensing which would be DBAs but
13	also they would have done the safety train studies
14	that we would be interested in seeing.
15	And I think of one specifically that the
16	Commission requested for the last effort in SECY-93-
17	092 where they requested basically a chimney effect.
18	And during the last effort they evaluated that and
19	even though the staff came back and concluded that
20	that was not required for licensing purposes, it's
21	just too incredible.
22	So, but that would be an example of where
23	safety terrain on any of these advanced reactors, it
24	would behoove the applicant to look at all those type
25	of events. And the staff then that doesn't mean
	I

(202) 234-4433

the staff when they -- when we get an application or in pre-application space wouldn't suggest that we may be missing something there to look in the safety train or maybe it's possible he has a DBA. Because you think about it, you know, and your earlier question I was thinking if you look at

7 how they do this license-based event selection it's 8 really a deterministic effort. Because they have to 9 go and actually pick the events. For example, start 10 with station blackout and then run it through the models. Start with the LOOP event. Run it through 11 the models and see how it goes and on and on. 12 Start with the flood and see where that heads or start with 13 14 -- or maybe even a safety train would be to say that 15 we're looking at a seismic event that's, you know, 0.6 16 instead of -- some seismic event that would exceed 17 licensing basis. And determine if there's a cliff edge. 18

19 MEMBER STETKAR: But in the way the PRA has been characterized at least in the white paper is 20 that they're not discrete necessarily events the way 21 They would look at the full 22 you characterize them. range of seismic events, anywhere from zero g out to 23 24 in principle 200 q if you could support that, or a couple of g for example peak ground acceleration which 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

217 1 might have very low occurrence frequency but a very high consequence. They would look at all of those. 2 3 So the scope of the PRA would indeed include all of 4 those. They would include all of the possible fires 5 in the plant regardless of the size and the location. You know, unless they were physically impossible. 6 7 MR. SHEA: I'll be getting more into the safety terrain --8 9 MEMBER STETKAR: So that's where I'm 10 getting in terms of -- you're characterizing it as safety terrain. I'm characterizing it as scope of the 11 12 risk assessment. And in that sense, you know, the risk 13 14 assessment ought to include air ingress and water 15 ingress events because one -- unless physics prohibits 16 them from ever occurring under any condition the PRA 17 ought evaluate them with the frequency of to occurrence, the consequences if they do occur both in 18 19 terms of fuel protection and the ultimate consequences in terms of releases at the EAB. 20 So one ought not to necessarily focus on 21 those events and say well you have to postulate those 22 They ought to be in there. If they're 23 separately. 24 not in there the peer review both industry-related peer review and the staff's review ought to identify 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	218
1	that as a deficiency in the PRA that should be
2	evaluated. Once it if they refuse to evaluate it
3	that's a different issue.
4	MEMBER RAY: Well, you aren't assuming
5	this has to be a Part 52 application, are you? You
6	may presume it would be. So it could be a Part 50
7	application. Any sensible applicant that's what they
8	would do. But that's just my two cents' worth.
9	MEMBER CORRADINI: How does that
10	MEMBER RAY: It has to do with what your
11	expectations are in the application.
12	CHAIRMAN BLEY: But this is that option 2
13	I guess from the paper which says it's a risk-informed
14	approach as well as the traditional approach.
15	MEMBER RAY: I saw that and I wondered at
16	the time are they meaning to exclude Part 50
17	applicants. Because that's far and away the most
18	likely application.
19	DR. CARLSON: The technical standards
20	whether it's Part 52 or Part 50 are really in Part 50.
21	MEMBER RAY: So it's whatever is required
22	for Part 50. Okay.
23	CHAIRMAN BLEY: Well, but they've modified
24	it in this licensing framework to include a number of
25	probabilistic approaches that aren't in the standard.
I	I

(202) 234-4433

	219
1	DR. CARLSON: So yes, the idea is to adapt
2	the existing framework without perturbing it
3	unnecessarily.
4	MEMBER RAY: Well, I'm just making the
5	point, Dennis, that you're not going to have the same
6	level and quality of detail in a Part 50 application
7	that you would have to have in a Part 52 where you're
8	seeking a certification.
9	DR. CARLSON: Well, by the time you grant
10	the operating license it will be the same.
11	MEMBER RAY: Oh well, operating license is
12	helmets. Start with the construction permit.
13	DR. CARLSON: Yes. You're done, okay. So
14	I will
15	CHAIRMAN BLEY: Is that all there is?
16	That's it. Unless you want another question.
17	DR. CARLSON: Well, we're going to cover
18	some of the same ground under this heading too.
19	CHAIRMAN BLEY: Okay, well let me ask a
20	question because I didn't think about it earlier. In
21	fact, if you flip back to your picture on page 30.
22	DR. CARLSON: And I said courtesy of DOE
23	and DOE got that from Dave Hansen who created that
24	many years ago.
25	(Laughter.)
l	I

(202) 234-4433

	220
1	MR. SHEA: I wasn't sure why it wasn't in
2	their presentation this morning. I was looking for
3	it.
4	CHAIRMAN BLEY: It's been there before.
5	I was thinking about Dave Petti's discussion this
6	morning about how they think a lot of the what
7	they've measured is coming out of the matrix around
8	the TRISO pellets that's accumulated during neutron
9	exposure. And they're going to do the tests without
10	having that matrix to see just what's coming out of
11	the TRISO.
12	But when the source term is developed it's
13	at least in principle to look at what's coming out of
14	the TRISO particles, what would be coming out of the
15	matrix, what would be coming out of if there's
16	anything in the graphite or in the dust. All of those
17	things contribute.
18	DR. CARLSON: Yes and when we're talking
19	about if you have a large depressurization, you
20	know, it's the circulating activity, the dust, the
21	plateout, the washout, everything that happens. But
22	then as Dave explained there's a delayed heat-up that
23	takes a day or more to develop and during that heat-up
24	you're getting you may get additional fuel particle
25	failures but a lot of what you're getting is fuel
Į	I

(202) 234-4433

	221
1	that's already fission products that are already
2	outside coated particles. Or that are in
3	CHAIRMAN BLEY: That are
4	DR. CARLSON: in kernels that don't
5	have intact coatings and just the heating dries that
6	out into the ultimately the reactor building.
7	CHAIRMAN BLEY: But even if you learn
8	nothing has come out of the particles in the accident
9	you still have this other stuff that's out in other
10	places that you have to account for.
11	DR. CARLSON: So that's actually in
12	CHAIRMAN BLEY: That accumulates
13	DR. CARLSON: it's larger than the
14	initial release from the circulating plateout and all
15	that.
16	CHAIRMAN BLEY: Okay. That was all.
17	Thank you.
18	DR. CARLSON: So, containment function
19	performance. Okay, the proposed definition of
20	functional containment, and I quote, "the collection
21	of design selections that taken together ensure that
22	first radionuclides are exchanged within the multiple
23	barriers with emphasis on retention at their source in
24	the fuel. And that ensure that NRC regulatory
25	requirements and plant design goals for release of
	I

(202) 234-4433

	222
1	radionuclides are met at the exclusion area boundary."
2	And so we considered that definition.
3	And they have also asked then for specific
4	requests, specific feedback on three elements of this
5	approach to NGNP functional containment. Feedback on
6	the AGR fuel program activities for the fuel
7	qualification.
8	On options for containment functional
9	performance standards and a little more definition on
10	how we would go about selecting events for plant
11	siting and functional containment design decisions.
12	So issue 1 is AGR fuel program activities.
13	And they have asked the staff to confirm that plans
14	being implemented in the AGR fuel program are
15	generally acceptable and provide reasonable assurance
16	that TRISO fuel can retain fission products in the
17	predictable manner. And they would like us to
18	identify any additional needs for testing for other
19	information.
20	So the overview of our feedback is that
21	the scope of the AGR activities, mainly the fuel
22	irradiation and post-irradiation testing and accident
23	heat-up testing that are being planned and carried out
24	are generally reasonable within the context of pre-
25	prototype testing. And that leads ultimately to the
I	I

(202) 234-4433

223 point that there is additional data that would be 1 needed for prototype. 2 3 The AGR program has been -- has achieved 4 very encouraging results to date. I mean Dave Petti 5 has said that for AGR-1 they irradiated 300,000 particles at high temperature, high burnup and high 6 7 fluence and got zero failures. And he's talked about the results of heat-up testing to date. That likewise 8 9 is indicating that they seem to be on target to meet or exceed the level of performance that the Germans 10 showed 30 years -- or close to 30 years ago. 11 So yes, the early AGR irradiation safety 12 testing results do show promise for demonstrating much 13 14 of the desired TRISO fuel retention capability. But 15 we would need additional data from the NGNP prototype 16 to provide reasonable assurance of targeted fission 17 product retention in the fuel. And we have particular needs. One is for 18 test data on fuel irradiated in an HTGR for effects of 19 plutonium fission products, palladium and silver in 20 particular on TRISO fuel particle coatings. 21 related to that testing 22 Also, in the prototype to confirm NGNP core operating conditions 23 24 and the ability to detect potential core hot spots and any of their affects on fission product retention and 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

fuel performance. As was said in the licensing strategy

1

2

report to Congress that we would be licensing this 3 4 under 10 C.F.R. 50.43(e)(2) such that the requirements 5 for testing would not be able to be met prior to a 6 fuel loading in the reactor and that the testing 7 requirements would have to be plated by testing and 8 surveillance in the prototype. This regulation allows 9 the staff to impose additional requirements on the 10 prototype in terms of siting, desiqn features, operating limits during the testing period to protect 11 the staff and the public during that period. 12

So, under issue 1 we have additional feedback on what constitutes a good fuel qualification and testing program. We think they have a good one but their description of it in our view could have been clearer. Under the heading of adequately deciding the fuel service conditions and performance requirements for both normal operations and accidents.

As we have seen in the TRISO fuel PIRT 20 that the NRC did, Stu Rubin was a key factor in that 21 Dr. Powers and Dr. Petti were part of 22 10 years ago. that PIRT panel. And one of the things that was noted 23 24 in the PIRT was the importance of palladium in particular for its potential to interact with the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	225
1	coating layers but in particular corrode the silicon
2	carbide layer.
3	Well, the two principal sources of
4	plutonium and silver are from plutonium fission. The
5	yields are 50 times more than from uranium fission or
6	something like that.
7	So, we feel that because of the importance
8	and Dr. Petti is developing new insights on the
9	importance of palladium, because of the importance of
10	palladium and potentially silver on performance of the
11	TRISO fuel particle coatings we think that plutonium
12	burnup should be something that is specified in your
13	testing program.
14	We also have in the FQ MST report a
15	section on potential effects of irradiation parameter
16	path dependence. And Dr. Petti in his January
17	presentation provided a scatter plot of what actual
18	irradiation testing conditions they have for the
19	various particles.
20	And you see that the emphasis is on the
21	high end of everything, the higher end of the burnup
22	range, the higher end of fluence, the higher end of
23	operating temperatures. So the question becomes is it
24	possible that if you irradiate fuel to high burnup in
25	high fluence but at a moderate temperature that that
l	I

(202) 234-4433

1 somehow affects fuel particle coating performance in a way that's not addressed by the testing. And of 2 3 course we have -- I mean Dr. Petti has developed some 4 model, the PARFUM code that would provide some insight 5 on that. And so in our discussions with DOE-INL on 6 this issue over the last year it was noted that we 7 8 really don't have a good -- a design such that we

could have a map of the parameters that an actual HTGR core would have to compare against that scatter plot. Dr. Petti did show, however, in January an

example of that and it did indicate that the -- much 12 of the fuel would be at these less extreme irradiation 13 14 conditions.

15 MEMBER CORRADINI: So, I'm sorry, maybe I 16 missed it. You're saying that they looked at two 17 extreme conditions. There could be some middle range conditions that caused -- I didn't appreciate what 18 19 your --

20 DR. CARLSON: It's a question. It's a 21 question that we don't have an answer to yet. And so thorough that 22 it's just in terms of being the presumption is in their testing program that if you 23 24 irradiate at these aggressive conditions you would have addressed all the other conditions as well. 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

9

10

11

	227
1	MEMBER CORRADINI: So there's something
2	not monotonically increasing about release rates.
3	Somehow it would go through an inflection and I get
4	more release in the middle?
5	DR. CARLSON: Just
6	CHAIRMAN BLEY: The chemistry.
7	DR. CARLSON: are very temperature-
8	dependent, right? The irradiation creep phenomena.
9	And that's an important phenomenon in their PARFUM
10	model.
11	MEMBER CORRADINI: But I have it right in
12	my head. I just want to make sure I'm not missing
13	anything. There's some set of conditions that I would
14	actually get due to chemistry and time and temperature
15	more release at a lower temperature. So I'd get some
16	sort of effect like this.
17	DR. CARLSON: What we're talking about is
18	preconditioning of the fuel for its performance during
19	accidents. So these are the normal irradiation
20	conditions.
21	MEMBER CORRADINI: Okay. So is there
22	something about irradiation at less extreme
23	conditions?
24	DR. CARLSON: Lower temperatures, for
25	example. That conditions the fuel differently. I

(202) 234-4433

	228
1	think that the popular wisdom, the conventional wisdom
2	is that the more extreme conditions cover that but we
3	need to see a technical basis for that.
4	MEMBER CORRADINI: So lead me through the
5	it was on the slide before where you said 10 C.F.R.
6	50.43(e)(2) allows the NRC to impose additional. So
7	your thinking is that potentially the prototype demo,
8	whatever word you want to call it, would have to go
9	through some sort of in-flight testing to find a
10	better word to make sure you have confidence as you
11	increase the allowable range of how it would operate.
12	DR. CARLSON: We see a potential need for
13	that.
14	MEMBER CORRADINI: Okay, fine.
15	DR. CARLSON: It will be a continuing
16	topic of review.
17	MEMBER CORRADINI: So let me reverse it.
18	Let me pretend I'm the DOE and the contractor. So is
19	there any set of tests that is finite and discrete
20	that would relieve this other than essentially
21	prototype power ascension testing?
22	DR. CARLSON: I think the overall message
23	is there are a number of issues that get you into this
24	regulation prototype testing, core operating
25	conditions.
I	1

(202) 234-4433

	229
1	MEMBER CORRADINI: But I'm trying to get
2	you you're very clever. I'm pushing you here and
3	you're over there next time. So I'm trying to
4	understand.
5	DR. CARLSON: I'm sorry, I'm sorry.
6	MEMBER CORRADINI: But what I'm kind of
7	hearing is that save that there's very little, little
8	compared to light water reactor, data you'd like to
9	see essentially I'm reading it this way, that I'd
10	like to almost see the demo built and watch it work
11	its way through a series of in-service, in-flight
12	testing to make sure you have confidence and your
13	confidence builds.
14	DR. CARLSON: In the prototype you would
15	want it's very difficult to do in core measurements
16	in HTGR. In the prototype you could do that on a
17	provisional basis.
18	Then I think the ultimate proof would be
19	you would do PIE on fuel that's been irradiated in the
20	prototype.
21	MEMBER CORRADINI: Okay.
22	DR. CARLSON: Over the full spectrum of
23	parameter path-dependent conditions.
24	MEMBER CORRADINI: Okay. Fine.
25	DR. CARLSON: Okay. So again, as I was
Į	I

(202) 234-4433

	230
1	the potential for hot spots. I've been talking about
2	hot spots a lot for years. People remember my
3	references starting 12 years ago to the AVR net wire
4	experiments and the hot spots that they revealed.
5	It's an issue that we consider applies to
6	all designs. It's been received particular
7	attention for pebble beds but we can talk about it.
8	But I do believe that there are issues to be
9	considered in this realm also for the prismatic block
10	designs.
11	Okay, also we want to adequately identify
12	fuel service conditions and performance requirements
13	for accidents. The design information is needed to
14	confirm the assumed lack of specific testing
15	requirements for reactivity excursion events.
16	So that to us would be an issue to be
17	considered once we have de-scaled design information
18	to determine whether, for example, is a rod excursion
19	indeed a plausible, credible event or is it really
20	precluded by design features such that it's not
21	credible.
22	As Jim alluded to we because some of
23	our interactions on this DOE has followed through with
24	a report, a research plan for moisture and air
25	ingress. We think it's important to implement the
l	I

(202) 234-4433

231 1 activities outlined in that plan to provide the data needs on fission product transport for -- and fuel 2 3 performance for bounding events that involve those 4 phenomena. 5 So, what are the particular issues that we identified in relation to TRISO fuel performance? 6 7 It's realtime versus accelerated testing. In 8 accelerated testing do you get the time and 9 temperature? No, you don't. It's always condensed in 10 time. And in an HTGR environment you have a 11 12 harder thermal spectrum higher neutron and а 13 epithermal neutron spectrum. The higher epithermal 14 neutron spectrum gives you more plutonium breeding. 15 The harder thermal spectrum for a given amount of plutonium gives you more fission of plutonium in 16 17 relation to breeding because the HTGR spectrum peaks near the 0.3 EB resonance, thermal resonance fission 18 -- fission resonance for plutonium-239 and -241. 19 So there was actually a report that DOE 20 and INL developed on this to actually compare the 21 plutonium burnup in the AGR-1 test. You see the AGR-1 22 tests are being performed in a water-cooled spectrum 23 24 so they don't have that prototypical spectrum. And the differences were significant but not orders of 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	232
1	magnitude.
2	Okay, another
3	MEMBER CORRADINI: If I might, just so I
4	so given the larger plutonium content we're back to
5	the palladium and the silver in terms of how it
6	affects the TRISO fuel pellet or fuel kernel?
7	DR. CARLSON: How it affects the coatings,
8	in particular the silicon carbide coating layer.
9	Palladium, there's been sporadic evidence over the
10	years particularly in the Japanese literature of
11	palladium attacking the silicon carbide layer and
12	corroding it. Dr. Kania is an expert in this area.
13	There's been some indications in the German program
14	that they might have been starting to see some of
15	those effects in the German testing. Certainly the
16	INL program, the AGR program is looking at these and
17	we think they should continue looking at these
18	effects.
19	Another, you know, it's important to
20	recognize. I was talking about hot spots earlier.
21	That in an HTGR it's the helium. So for all gases
22	viscosity increases with temperature. And these
23	reactors have downward coolant flows. So the
24	viscosity of the coolant and the buoyance effects tend
25	to exacerbate the development of hot spots during
	I

(202) 234-4433

I	233
1	normal operation. So that and the fact that you have
2	there are various pathways for bypass flow between
3	the blocks and the prismatic block. In a pebble bed
4	and a prismatic block there's increasing flow through
5	the reflectors.
6	As the reflectors over operating time
7	the effects of radiation on the reflector blocks
8	causes the blocks to shrink and so the bypass flows
9	through the reflectors tend to increase with operating
10	time. So those are all things that you consider under
11	the issue heading that I call core operating hot
12	spots, core operating anomalies.
13	Additionally you talked about in the
14	prismatic block core you have a closed core coolant.
15	You have individual coolant holes. And so you always
16	have to add wonder if there's a potential for
17	individual coolant holes to be obstructed in some way.
18	And that gives you during quasi, ostensibly normal
19	operation a hot spot. The question is can you detect
20	that with whatever's available including monitoring
21	circulating activity, plateout probes and whatnot.
22	Those would be things that you would have
23	to actually demonstrate in a prototype and in a sense
24	calibrate your plateout probes in your circulating
25	activity.
	1

(202) 234-4433

1 Another issue was evaluation of irradiation temperature uncertainty. We heard that --2 I think Dr. Petti gave a good discussion but we had an 3 4 RAI that Ι wrote actually on they're having 5 thermocouple failures during these irradiations and is that affecting the uncertainties in the 6 how 7 irradiation temperatures. And so they provided a couple of reports 8 9 noted there, especially the uncertainty that Ι 10 quantification for AGR-1 and that is evolving for the different tests Petti indicated in his 11 as Dr. presentation. 12 13 Bottom line, it's very important to 14 understand how the irradiation temperature 15 uncertainties are quantified and how they are affected 16 if at all by increasing thermocouple failures. The initial understanding from INL is that 17 once you've calibrated and validated the way you 18 19 calculate the fuel temperatures during irradiation the thermocouple failures 20 effect of is not very So that was to me counterintuitive. 21 significant. Ιt will be an area for further review. 22 Another question was it was always kind of 23 24 an article of faith that you could irradiate fuel in an HTGR or a test reactor, take it out and weeks or 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

234

	235
1	months or years later do these heat-up tests in an
2	autoclave. And that would be representative of how
3	the fuel performs in fission products transport in an
4	actual reactor accident, either at power.
5	So you do have a hot spot. So at power
6	does the fuel does the data you get on fuel
7	performance and fission product transport in these
8	delayed heat-up tests apply to at-power heating
9	conditions, overheating conditions or the delayed
10	heating that you get in the loss of core cooling
11	event.
12	And the answer was always kind of
13	qualitatively, well, it's the long-lived and stable
14	fission products that dominate. And the short-lived
15	fission products are not important.
16	And then there would be also the question
17	well, maybe there are other things that change in that
18	interim between irradiation and heat-up testing. You
19	know, phase changes, something transports.
20	So I've been in the HTGR community in and
21	out for decades and I never really saw a really
22	scrutable analysis. So if you're saying that long-
23	lived and stable isotopes dominate, that's something
24	called the ORIGIN code can calculate for you, you can
25	actually quantify that.
ļ	I

(202) 234-4433

1 And so that's what -- in response to an RAI and some discussions on that RAI they did provide 2 this report TIB-1543 by Jim Sturbens at Idaho. 3 And it 4 does actually provide quantified results. They do support the application of data from the lead fuel 5 6 heat-up testing. We described that in the summary 7 level in the FQ MST assessment report. And so we do 8 have a scrutable case that does seem to support the 9 case. 10 So issue number 2. The options for containment functional performance standards. 11 Aqain this was the subject of some SECY documents in the 12 The SRM said to ask the staff to develop 13 SRMs. 14 functional containment performance standards. 15 And the staff in an information SECY paper 05-0006 went back with the Commission to note the 16 17 functional containment or the reactor building functions in addition to those for the functions we've 18 19 been discussing under mechanistic source term. And those functions listed in SECY-05-0006 are protector 20 significant, SSC, et cetera. 21 And DOE-INL, we all seem to agree that 22 those are good functions. And we've added at the end 23 24 this important one, limiting air ingress after helium depressurization accidents. So we think we have some 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

236

	237
1	degree of convergence in general terms of what
2	functional containment performance standards should
3	look like. That said we see this as an area where
4	Commission direction may be appropriate.
5	CHAIRMAN BLEY: One thing I neglected to
6	ask you as you began all of this. Since we don't have
7	a follow-on response report from DOE are there areas
8	in these exceptions you've been going through, all of
9	you have been going through, where there's substantial
10	disagreement or is most of this you're getting
11	reasonably close and expect to see some of this in the
12	following performance testing?
13	DR. CARLSON: In my eyes I think that we
14	don't have any major divergence on this topic. I
15	think we're we don't have full convergence but it's
16	reasonable.
17	CHAIRMAN BLEY: Okay.
18	MEMBER CORRADINI: Can we ask the DOE do
19	they have the same view of the apple?
20	DR. CARLSON: I think this brings it to
21	CHAIRMAN BLEY: We'll give them a shot in
22	a minute.
23	DR. CARLSON: I think this the big
24	issue really, and Jim started talking about it during
25	his talk, but they asked about they asked us for
	I

(202) 234-4433

	238
1	feedback on event selection for plant siting. So we
2	agreed with them that the core melt accident assumed
3	for light water reactor siting may not be adequate to
4	monitor HTGRs and this is consistent with what the
5	staff thought going back to MHTGR.
6	And so of course we would have to look at
7	a detailed application, et cetera, to be sure of that
8	but it seems that, myself included, I can't come up
9	with an event that melts the fuel in an HTGR. And
10	I've been trying. And a lot of people have.
11	We think it may not be applicable to
12	modular HTGRs. That's a footnote. It's not
13	necessarily a requirement. And so it's something that
14	can be interpreted. And they have offered alternate
15	wording. It's an event that would maximize a
16	credible event that would maximize releases from the
17	fuel to the reactor from the actual helium pressure
18	boundary to the reactor building.
19	MEMBER CORRADINI: So this is can I
20	just rewind, make sure I've got it right? So this is
21	not the DBA.
22	DR. CARLSON: Well, whether you call it a
23	DBA or not it's the event that you use for the siting
24	source term.
25	MEMBER CORRADINI: In the world of 10
	I

(202) 234-4433

	239
1	C.F.R. 100 and TIB-1484 it was called the MCA, the
2	maximum credible accident.
3	DR. CARLSON: That's Jim Shea's term.
4	Maximum hypothetical accident.
5	MEMBER CORRADINI: Is that what they
6	called back in in `58 I thought it was called the
7	MCA.
8	MR. SHEA: And they used that also, both
9	those terms.
10	MEMBER CORRADINI: Okay. And it's the
11	associated source term therein.
12	DR. CARLSON: So we can talk to the
13	terminology but the ideas I think are clear.
14	MEMBER CORRADINI: So then if I might just
15	make sure that I get it. Then this is not the
16	discussion about how I select the DBAs from the
17	licensing basis events. This is how I come up with
18	some sort of stylized source term that the containment
19	function has to withstand to meet either the
20	regulation or their EPA PAG.
21	DR. CARLSON: The focus is on plant siting
22	and Jim noted that if not the identical event the same
23	kind of thinking there on these other areas.
24	MEMBER CORRADINI: Okay, all right. Fine.
25	Got it. Thank you.
ļ	I

(202) 234-4433

	240
1	DR. CARLSON: So, the history is very
2	important here. For the MHTGR and SECY-93-092 and
3	NUREG-1338 is a very good document. I think DOE-INL
4	has summarized that for you a couple of times now.
5	The staff employed some staff-selected
6	bounding events with the idea that that would
7	ultimately inform the selection of a siting source
8	term that would determine functional containment that
9	would be used in functional containment design
10	decisions.
11	Well, the SRM on SECY-93-092 approved tat
12	specific mechanistic source terms subject to adequate
13	understanding of the fuel and fission product, and
14	that's what the AGR program is all about, establishing
15	that technical basis. In a sense in terms of policy
16	the Commission says this is the way to go. Now it's
17	a technical issue assessing how well we understand the
18	fuel and fission product performance.
19	But in the SRM the Commission said your
20	bounding events were good but we want to see more.
21	And in particular they said, I'm going to read it,
22	"The Commission believes that for the MHTGR the staff
23	should also address the following type of event, the
24	loss of primary coolant pressure boundary integrity
25	whereby air ingress could occur from the chimney

(202) 234-4433

241 1 effect resulting in graphite fire and a subsequent 2 loss of integrity of the fuel particle coatings." 3 Now, people have reacted to that in 4 various ways including wow, that is an event that's so 5 improbable it's hard to put a number on it. Ι 6 characterize that as a good example of the questioning 7 attitude that we all need to bring to this. This is 8 a technology that not everybody understands and the 9 people that do understand it probably are going to 10 understand it better after all this testing is done. And so I guess, I've been talking about it 11 in terms of the safety terrain. 12 It's the questioning What would it take regardless of -- step 13 attitude. 14 back of what the PRA says and say what would it take. 15 Let's postulate things. 16 And I can go back to we started doing that 17 for the MHTGR actually before I joined the NRC. Ι picked up the reins from Pete Williams when he left 18 19 NRC and joined DOE in 1991. And I think at a presentation in this 20 room, I think it was for the PIRT that we did for PBMR 21 I presented some studies where we with Syd Ball and 22 his code in the late eighties and early nineties, we 23 24 looked at things. Well, what-ifs and what-ifs and we looked at what would happen if you had a rod 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 withdrawal accident and no SCRAM and somebody turned 2 on the helium circulators. Well, it turns out that 3 according to the models at that time you could get 4 fuel temperatures way up there.

5 Now, we're not saying that's credible, 6 we're not saying that should be a licensing basis 7 event but it's surveying the safety terrain. Out 8 there somewhere, maybe it's not a cliff edge but there 9 interesting terrain and now we need to is an 10 understand what are the SSCs, what is the plant capability, what is the programmatic DID that keeps us 11 far from there. And so we're viewing it in that 12 13 light.

Let's look at things like this extreme air ingress event, the extreme moisture air ingress event. There have been published studies in the literature. Matt Richards, former General Atomics employee, Syd Ball, Oak Ridge National Lab, published some papers in the last 4 years or so that do studies of this type, extreme air ingress events.

I would put a caveat on that that all of the studies that I've seen today use the graphite oxidation properties for pristine unirradiated graphite. And it's important to note that contaminated graphite will tend to oxidize a bit more.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Pebble graphite isn't really graphite, so that tends to be more reactive than true reactor graphite. And irradiation damage to graphite tends to increase oxidation of the graphite.

5 MEMBER RAY: If you can have extreme air 6 ingress, you've mentioned that a number of times. 7 John mentioned earlier water. This being an embedded 8 plant, a flood level sustained over some considerable 9 period of time, water ingress, it seemed to be a 10 possibility. If you're submerged for a week that's not -- it doesn't sound to me like a terribly 11 incredible event for many sites. 12

DR. CARLSON: Well, I think the water ingress that we're talking about here is that for the MHTGR and for NGNP we're talking about a helium cooled reactor that has a steam generator on it.

17 MEMBER RAY: I know that. But I'm asking about a siting question since that was the essence of 18 19 the discussion. And you talk about air ingress. Is there any reason why water ingress wouldn't be a 20 problem given what you've said about there being a 21 pathway for air ingress. What would prevent -- in a 22 flood scenario what would prevent water ingress? 23 24 DR. CARLSON: Okay, well obviously as you heard there's the ingress from the steam generator. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	244
1	Then to your question
2	MEMBER RAY: No, I understand that
3	perfectly well.
4	DR. CARLSON: To your question it's a
5	perfectly good question. I mean one of the
6	discussions that we had when Fukushima was happening
7	is well, what would it do to the reactor vessel if you
8	suddenly got a bunch of cold water from a flood.
9	MEMBER RAY: Yes. I mean we're talking
10	about that we don't need a building that is LWR
11	containment style as far as releases are concerned.
12	I'd certainly subscribe to that. But of course you're
13	giving up then, and you're embedding the thing below
14	grade. You're giving up the protection that might be
15	afforded by. I mean it's just a siting issue. It
16	perhaps isn't relevant to
17	DR. CARLSON: the safety implications
18	of having water where you don't want it in the
19	reactor.
20	MEMBER RAY: Yes, and lots of it.
21	DR. CARLSON: Yes, and lots of it. That's
22	a very good question that certainly will be
23	considered.
24	I would just point out that in talking
25	about how you mitigate an air ingress some people say
	I

(202) 234-4433

	245
1	well, maybe preventing the air ingress by flooding
2	with water.
3	MEMBER RAY: Well, that might be the
4	answer you'd give. Yes, I understand that, right.
5	But you can't only assume it's air or some limited
6	amount of water from a steam generator.
7	DR. CARLSON: If there were an event that
8	would give you moisture ingress then air ingress we
9	would evaluate that. Or vice versa.
10	So we had this is not in their white
11	paper. This is one of those things that we iterated
12	on with DOE-INL over the past year or so. And they
13	came up with the following approach which I think is
14	reasonably how we would characterize it.
15	The applicant should submit for NRC
16	consideration a risk-informed selection of siting
17	events building on the types of bounding events
18	considered by the staff in NUREG-1338 for mhtgr. And
19	they've been presented to you by DOE-INL.
20	And to get to the SRM, the SECY-93-092
21	safety terrain studies if you want to call it that to
22	assure that there are no cliff edge effects. Credible
23	events. And let's not talk about probabilities, let's
24	just look for the cliff edges. Credible events with
25	high dose consequences. That's what a cliff edge
I	I

(202) 234-4433

	246
1	effect is.
2	And to understand the ultimate safety
3	capability we look at bounding event selection to be
4	further informed by these exploratory studies of
5	postulated extreme events. The rules of these
6	exploratory studies should be that the events are
7	physically plausible. You don't suspend the laws of
8	physics. You do take credit for the inherent features
9	of the modular HTGR design, the inherent behavior.
10	We think that is a path to informing the
11	selection of the siting event. Does it give you the
12	siting event? No, that depends on a lot of detail and
13	a lot more discussion and possibly Commission
14	direction.
15	MEMBER STETKAR: So are we hoping, by
16	doing this though, the HTGR, the NGNP to a much, much,
17	much more restricted standard than we do any
18	considerable light water reactor that's either
19	operating or being licensed today?
20	DR. CARLSON: That's an underlying thought
21	that we've all
22	MEMBER STETKAR: Here you go. I have to
23	say this in every meeting. We don't require existing
24	light water reactors to postulate a physically
25	plausible event that I'll call an asteroid. Call it
Į	

(202) 234-4433

	247
1	a meteorite. It's an external event. I've seen them.
2	I know what their frequencies are. We don't require
3	them to do that.
4	It's a physically plausible event that
5	could result in a catastrophic set of consequences.
6	We don't require them to do that because we say well,
7	that's an acceptable level of risk on a frequency
8	basis. So why we heard that frequency argument in
9	the context of this particular design.
10	DR. CARLSON: Well, a light water reactor,
11	certainly current generation light water reactor,
12	there's no mystery about that. We know that the fuel
13	will melt in those kinds of extreme events.
14	MEMBER STETKAR: I just use that as kind
15	of an absurd example of extending that thought
16	process.
17	DR. CARLSON: But the point here is we
18	don't have that level of understanding. The modular
19	HTGR design concept is basically an attempt to make it
20	meltdown-proof. And so people naturally say hey, it's
21	our job. We're the NRC. If there's a way to melt
22	this or if there's a way to get a massive release,
23	particularly one that doesn't take a lot of time to
24	develop, it's our job to identify that.
25	And so does PRA the way we normally think
	I

(202) 234-4433

	248
1	of it with we don't go below certain frequencies, does
2	that really give you that insight? To some degree
3	maybe yes but I think to really understand the safety
4	terrain you have to just say what if I didn't have
5	whatever, a reactor building. What if somebody did
6	turn on the helium circulator after you had a rod
7	withdrawal event. What if somebody turned on the
8	helium circulator, Stu Rubin will remember this, after
9	a large break. That would be a way to get very rapid
10	graphite corrosion, right?
11	And we had NRC delegations going to China
12	to visit their HTR-10, their small pebble bed reactor.
13	And in one of those visits Stu Rubin went in the
14	control room, with the delegation went in the control
15	room and Stu Rubin asked the host to ask the operators
16	what they would do if they had a rapid
17	depressurization and they saw the temperatures going
18	up. And their response was we'd turn on the helium
19	circulators. Wrong answer.
20	Actually that's what happened at
21	Windscale. They saw the temperatures going up and
22	what did they do? Well, that was an air-cooled
23	production reactor. They blew more air on it.
24	By the way, if we were to update NUREG-
25	1338 1989 version today I think we would want to
I	

(202) 234-4433

(202) 234-4433

	249
1	correct a couple of things. There's a chapter in
2	NUREG-1338 called graphite fires. And in that chapter
3	they describe Windscale as a graphite fire. And I
4	think you heard from Dr. Srinivasan among other
5	people, probably Dr. Petti also that they actually
6	looked inside the Windscale reactor about 6-7 years
7	ago, have pictures, and most of the graphite is still
8	there which reinforces the interpretation the experts
9	had over the years that that was predominantly a metal
10	fire and it did take some graphite with it. Likewise,
11	the role of graphite oxidation in Chernobyl was not
12	significant.
13	So I think by writing that section the way
14	we did in NUREG-1338 we exacerbated this false
15	perception that graphite and coal are the same thing.
16	Dr. Srinivasan and others have shown you that it's
17	very hard to get graphite to oxidize. That said, when
18	you do have air ingress or oxygen ingress, hey, we're
19	talking about cogeneration. One of the things that
20	our PIRT panel for cogeneration identified was the
21	potential for ground-hugging plumes, potentially
22	oxygen.
23	So oxygen ingress can we're not going
24	to say burn oxidize graphite. It's an exothermic
25	reaction. And if you don't do something eventually it
I	I

(202) 234-4433

(202) 234-4433

	250
1	gets to the point perhaps if it's an extreme event
2	where but it takes a long time to develop, where
3	you could get increasing releases. So that's what
4	SECY-93-092 SRM was asking us to do. We need to
5	understand that better and I agree. The staff agrees.
6	MEMBER CORRADINI: So can I take John's
7	point? Since he started so I won't give up on it. If
8	I went back to the MCA and the originally TIB-1484 now
9	where we are, now not in `58 but in 2013 I can run a
10	MELCOR calculation and with the right knob adjusting
11	I can create a source term inside containment that
12	looks a whole lot like that first source term, right?
13	DR. CARLSON: Yes.
14	MEMBER CORRADINI: Okay. And then now by
15	turning the knobs I have a sequence of events that
16	gets me there which means I can actually compute a
17	probability, a likelihood of getting it.
18	But your point is, I'm just trying to
19	repeat your point, that we have no we have no MCA
20	for this sort of design. You want to come up with one
21	and you want to relieve yourself of the worry how I
22	got there probabilistically, just how can I get there
23	mechanistically. So I don't have I got it
24	approximately right?
25	DR. CARLSON: Yes. Somewhere we don't
ļ	I

(202) 234-4433

	251
1	want to use probability cutoff necessarily. But we
2	don't want to go to something that's beyond credible.
3	So where is it? Well, we'll be informed by these
4	cliff edge effect studies. And like you say, once you
5	identify all the design features inherent.
6	MEMBER CORRADINI: So has DOE suggested
7	something in this regard? Because I think I know now
8	what you're getting at. And I see why the fuels
9	testing program of INL is important to that because
10	it'll tell you what really is physically possible
11	given some sort of temperature thresholds. But has
12	there been a suggestion as to what you'd use as
13	essentially the equivalent of the MCA by the DOE?
14	DR. CARLSON: Their original proposal
15	would be that it would be more risk-informed. What
16	we've been talking about is well that's not what the
17	SRM to SECY-93-092 says. And I think it was
18	reasonable that they said what they said. We need to
19	understand the cliff edges.
20	MEMBER CORRADINI: Okay.
21	DR. CARLSON: And so once we have that
22	that will inform the selection of something that's
23	credible. And where it is in PRA space may be very
24	MEMBER CORRADINI: So let me take you a
25	totally different place. When staff I think issued
ļ	I

(202) 234-4433

	252
1	the equivalent of the SER for Clinch River that never
2	got built the equivalent was a sodium fire for
3	containment and an HCDA for the core. Is that what
4	we're getting at? It's essentially because there
5	was no we didn't suspend the laws of physics. On
6	the other hand we didn't do a probability estimate of
7	what would be essentially the Clinch River had to
8	contend with for essentially siting. So that's what
9	we're talking about. I hate pick another
10	technology because this is going to come up again.
11	DR. CARLSON: Yes, I think we're talking
12	about the same language here.
13	MEMBER CORRADINI: Okay.
14	DR. CARLSON: So, with that we can turn it
15	over to Arlon Costa on emergency preparedness if there
16	are no more questions.
17	CHAIRMAN BLEY: Okay.
18	MR. COSTA: My name is Arlon Costa. I'm
19	a senior reactor project manager with NRO, the
20	Division of Advanced Reactors and Rulemaking. I'll be
21	addressing emergency preparedness as one of the major
22	issues referred to in the DOE-INL draft summary
23	document shared previously with ACRS.
24	I will follow a similar format as that of
25	my colleagues where I'll discuss only NGNP pertinent
	I

(202) 234-4433

	253
1	background information, a summary of the staff's
2	feedback on the issues and then I'll presents practice
3	feedback on the issues.
4	The issues are related to DOE-INL's
5	request for NRC to propose new policy or revised
6	regulations and establish guidance on emergency
7	preparedness requirements for emergency response plans
8	and related issues such as emergency planning zones.
9	So I'll start with a background. We
10	received this white paper that's in bullet 1 there
11	that described that was submitted by DOE-INL in
12	2010. And it contains important information obviously
13	addressing emergency preparedness, specifically
14	information on the modular HTGR core.
15	It provides information as we've seen
16	extensively today on the TRISO barriers that are
17	associated with radiological releases and many other
18	important information. All that is in support of a
19	smaller size emergency planning zone when compared to
20	current EPZ's required for light water reactors.
21	The NRC did not provide a formal feedback

to DOE-INL on this white paper submittal but emergency preparedness framework issues were addressed in various public meetings. And the main reason for the postponement of the formal review was that key EP

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	254
1	staff resources were prioritized for other projects
2	and later on to Fukushima.
3	But 1 year later in October 2011 the staff
4	issued the policy information SECY paper mentioned
5	there, SECY-11-0152 titled "Development of an
6	Emergency Planning and Preparedness Framework for
7	Small Modular Reactors."
8	During the development of this SECY paper
9	the staff considered information as outlined in the
10	above described DOE-INL white paper. And also before
11	issuing the SECY the staff had discussions with
12	various governmental and private sector stakeholders
13	in discussions related to alternative EP frameworks.
14	So regarding the SECY it focused on an EP
15	framework that describes a general approach to
16	scalable emergency planning zones. And we'll talk
17	about that a little bit later.
18	So but let me give you now a short summary
19	because we don't have time on the described EPZ
20	categories that the SECY states. It states that EPZs
21	could be based on a radio distance from the source and
22	that the use of conservative calculations of the
23	postulated accident dose can be defined by the
24	actionable lower limit of the EPA PAGs which is 1 rem.
25	The SECY also contains discussion from
ļ	I

(202) 234-4433

other critical interrelated issues impacting EPA
 requirements such as we discussed today a little bit
 on source term and also it takes about modularity and
 process heat applications.

5 So just quickly as a past historical 6 perspective I would like to mention that emergency 7 preparedness and planning included small reactors that 8 operated in the U.S. And we are all aware that they 9 had 5-mile EPZ. And they were obviously Fort St. 10 Vrain which was an HTGR but the other two were BWRs, 11 Big Rock Point and La Crosse.

But what is important to state here is that the fact that the regulations in 10 C.F.R. 50.47(c)(2) allows for an emergency planning zone size for gas-cooled reactors to be considered on a case-bycase basis.

17 I'll discuss further in my presentation but just a quick summary. And maybe I can use the 18 19 favorite word of the day before addressing the EP issues which were presented to the NRC, DOE, INL by 20 21 saving that DOE-INL's proposed approaches are So that's the favorite word of the day. 22 reasonable. You've heard this probably 90 times today. 23

And also that the proposed approaches are responsive to the Commission's policy statement on

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 advanced reactor. Now, that doesn't mean that there 2 aren't policy implications. So plain and simple we're 3 basically saying that it's important to emphasize that 4 modular HTGR issues could have policy implications 5 that would require future direction from the 6 Commission as appropriate.

As far as alternative to EP requirements as a feedback the staff is open to considering alternatives. EP requirements and framework for advanced reactors and in fact the SECY that we wrote was for small modular reactor facilities. And we kind of included NGNP in some of the writing in there.

But here's a key feedback on the DOE-INL's request. And their request was that NRC establishes new policies, guidance, or revised regulation related to NGNP EP. Here's the feedback.

The staff does not plan to propose additional new EP policies or to revise the existing guidance for addressing NGNP EP requirements at this time. And I'll discuss this a little bit further.

Starting with what we call issue 1 DOE-INL requests that NRC proposes a new policy or revised regulation on how EPZ size can be scalable. And this is also seen today and throughout this presentation that their goal is to justify a 400 meter exclusion

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	257
1	area boundary for the EPZ.
2	The feedback that the staff is providing
3	is consistent with the policy information SECY paper
4	that I just described. Let me additional a little bit
5	more on the SECY paper that we wrote. As a broad
6	summary the staff focused it on small modular
7	reactors, namely integral pressurized water reactors.
8	But obviously appropriate information was provided
9	there in the discussions that were relevant to NGNP.
10	And reiterating once again the policy
11	information SECY describes a dose distance scalable
12	approach to determining emergency planning zones.
13	This paper also discusses how emergency preparedness
14	requirements can be simplified by applying a graded
15	approach to addressing guidance used in demonstrating
16	compliance with existing regulatory requirements.
17	So, the staff does not intend to offer
18	anything further. And let me repeat the words in the
19	summary report that we sent. It says that the staff
20	does not plan to propose additional new EP policy or
21	to revise guidance for specific changes to EP
22	requirements at this time.
23	But as far as future proposals is
24	concerned in the other bullets the staff is open to
25	considering further proposal from industry or

(202) 234-4433

(202) 234-4433

1 established pre-applicants. So topics for inclusion the NGNP proposal are described in the 2 in last 3 bullets. Actually the dash is there and which is 4 related to PRA approach. I'm not going to read it to 5 And the other one is the risk-informed criteria you. associated with the EPA PAG values which is talking 6 7 about an acceptably low value. So this way of looking into these future 8 9 proposals is consistent with a purported reduced risk 10 associated with modular reactor HTGR design. CHAIRMAN BLEY: So this is really not 11 saying anything new. It's just saying if you want to 12 submit something that's new we'll look at it. 13 Right? 14 MR. COSTA: That's a good way to say it. 15 CHAIRMAN BLEY: Okay. 16 MR. COSTA: Okay. On issue 2 DOE-INL's 17 request that NRC establishes -- and these are key words -- establish specific guidance on EPZ graded 18 19 approaches to applying to EPZ requirements in relation to the EPA PAGs. So the staff assessment is that NRC 20 expects proposal from an NGNP applicant just like you 21 just finished saying. But the proposed approaches 22 should include -- and now we're talking about the 23 24 considerations to be supported by the details of the 25 design, the site and co-location use of facility.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

258

	259
1	We'll talk about co-location a little bit later.
2	And also considerations on how potential
3	emergency preparedness basis events may be influenced
4	by co-location and external events impacting the site.
5	Another consideration, and we mentioned
6	prototype earlier, is that an EPZ graded approach may
7	be different from an NGNP prototype plant as compared
8	to subsequent standard plants. So the staff also
9	makes it clear that NGNP EP approach addressing the
10	EPA PAGs must be developed by the site applicant.
11	That is because emergency preparedness is an operating
12	license and a combined license issue holder.
13	And I also want to make it clear that
14	obviously future Commission direction may be
15	appropriate to address these NGNP frameworks. As you
16	said, as they come to us.
17	CHAIRMAN BLEY: A question not related to
18	NGNP but related to the other work you're doing which
19	you put on hold unless you get an application for an
20	SMR. When you do that I guess that would fall the
21	same way. When you look at establishing review
22	criteria for an SMR using the technology-neutral sort
23	of approach would this still apply for EP that it's
24	only if they include something on EP that you would
25	look at, or might there be a review of those issues
ļ	I

(202) 234-4433

	260
1	more generically to support that work? Is that
2	something you can talk about now?
3	MR. COSTA: Oh no, in general EP is a
4	defense-in-depth program. You know, so as far as the
5	SECY paper we mentioned that in the SECY paper about
6	technology-neutral. And I think Don also mentioned
7	something about association with Nuscale.
8	The real point is that it's open. I mean
9	the EP emergency preparedness is here to stay and
10	we're basically providing an opportunity for this
11	scalable approach that they can come and present to us
12	to address emergency planning zones. But keeping in
13	mind that emergency preparedness requirements is an
14	overall has an overall umbrella into all the
15	programs of preparedness, response and everything else
16	that comes with the defense-in-depth program.
17	But this, the last issue is the issue that
18	has to do with co-location and DOE I know requested
19	that NRC propose guidance on how this works out for
20	multi-module plants.
21	The staff responded to this request to
22	propose guidance by noting the co-location similarity
23	to existing water reactor plants. And noteworthy, I'd
24	like to mention, Waterford which is located near an
25	industrial park in Killona, Louisiana.
	I

(202) 234-4433

	261
1	So in this case, and I'm separating the
2	two cases here. My thoughts will come through right
3	here. That emergency preparedness co-locations for
4	current light water reactors are largely applicable
5	for NGNP. And in case that the plant is solely
6	designed to produce electricity and that it's co-
7	located by nearby facilities. So that's one way of
8	looking at it. So in this case regulatory guidance
9	are already incorporating incorporated into
10	existing emergency preparedness plans.
11	Now the other case, and you can see
12	probably in your minds you've seen the NGNP cartoon of
13	the steam or the power going in different directions.
14	So that's what I'm calling here the coupled mode for
15	cogeneration. This mode implies that co-located NGNP
16	modules are utilizing nuclear heat byproducts such as
17	steam to be subsequently used by industrial
18	facilities. In this mode it can potentially produce
19	electricity as well.
20	This NGNP cogeneration coupled mode
21	carries a different regulatory nexus for emergency
22	preparedness. And so therefore emergency preparedness
23	must consider challenges and issues arising from the
24	modular HTGR being coupled to the industrial facility.
25	Let me just mention some challenges that
I	I

(202) 234-4433

	262
1	are related to this. For example, shared industrial
2	facility SSCS, standoff considerations, potential
3	explosions and missiles or fires, external events, the
4	effect of chemical gases and radioactive hazards from
5	industrial facilities.
6	And here are other interesting challenges
7	that are related to this. Response coordination with
8	the co-located industrial facility with the state,
9	federal and county agency. And here's another one
10	related to the resolution of jurisdiction issues
11	associated with radioactive material monitoring and
12	plant security. So you can see there is a gamut of
13	challenges that could be there.
14	MEMBER STETKAR: Arlon, how did the Agency
15	address all of those issues back in the mid-eighties
16	when the Midland Plant was being licensed? Midland,
17	Michigan.
18	MEMBER CORRADINI: And was operating.
19	MEMBER STETKAR: No, it never operated.
20	But it was being evaluated to be licensed. It was a
21	nuclear plant that
22	MEMBER CORRADINI: steam to
23	MEMBER STETKAR: Supplied steam to Dow
24	Chemical, exactly your second sub-bullet under there.
25	MEMBER CORRADINI: In fact
Į	

(202) 234-4433

	263
1	MEMBER STETKAR: It was that's what it
2	was designed to do, Unit 1 anyway. Co-located is
3	Dow was across the river but Dow was the biggest
4	chemical plant I've ever seen in my life. I'm sure
5	there are bigger ones elsewhere in the world.
6	But my own point is that in principle the
7	Agency has addressed or should have thought about that
8	issue anyway 30 years ago. And I was wondering
9	whether you looked at any of that history in
10	relationship to this current discussion. Or whether
11	those concerns were even addressed at that time.
12	MR. COSTA: That's a good point and I must
13	admit that I'm not familiar totally with I know
14	what you're talking about, I have a recollection of
15	it, but I did not
16	MEMBER STETKAR: What happened was it
17	basically was a B&We plant and they were delayed so
18	long that Dow eventually figured a different way to
19	get heat.
20	DR. CARLSON: If I remember correctly in
21	our PIRT report for the one that was developed.
22	There were several PIRTs that were done about 5 or 6
23	years ago DOE and NRC together, and I facilitated a
24	panel on co-generation and NGNP. I believe there's
25	discussion of that in there as kind of background
I	I

(202) 234-4433

	264
1	information.
2	MEMBER STETKAR: I'm just curious because
3	it would seem that there would at least be some
4	regulatory discussion anyway if not a firm precedent.
5	CHAIRMAN BLEY: Can you remember the name
6	of the river?
7	MEMBER STETKAR: Tittabawassee.
8	CHAIRMAN BLEY: Yes, me too.
9	MR. COSTA: So, but the two different
10	views as you can see, one of them is pretty clear and
11	the other ones we need to look into it.
12	You know, in fact in summary for NGNP co-
13	location we need to expect staff considerations of new
14	regulations. Especially as we look into lessons that
15	we could have learned from the past, hazards
16	assessments, accident evaluations, and security
17	issues, all these things may come up.
18	In fact, we have an example in our SECY-
19	11-0112. And there's a section there that we write on
20	industrial facilities using nuclear-generated process
21	heat.
22	And it states that any effects of the
23	industrial facility on the reactor will be addressed
24	as part of the NRC staff's review as part of the
25	offsite hazards analysis. So we're not totally
I	

(202) 234-4433

	265
1	unaware of what's going on.
2	And then in fact on SECY-11-0152 we do
3	mention NGNP and a statement related to that. It says
4	that the staff does not have sufficient information at
5	this time to determine who to propose emergency
6	preparedness frameworks. They might need to be
7	adjusted. So it's one of those things that we need to
8	wait for that applicant.
9	MEMBER RAY: Well, but the applicant is
10	waiting for some better idea of what the NRC is going
11	to require. And so you've got a chicken and an egg
12	situation here for which there seems to be no
13	solution.
14	Is the problem that there isn't an
15	applicant, or is the problem that you don't have
16	specifics sufficient to answer the questions that DOE
17	is trying to answer?
18	MR. COSTA: It's both. It has to do with
19	the design, the specificity on the design and
20	obviously it's chicken and an egg. They need to
21	MEMBER RAY: Well, we have criteria
22	otherwise that don't depend on having an applicant or
23	a specific site. But they depend on
24	MR. COSTA: Right.
25	MEMBER RAY: They state what the
	I

(202) 234-4433

	266
1	requirements are to provide adequate assurance.
2	MR. COSTA: Right. Well, there is an
3	element of timing here also as I stated before. Since
4	this is an issue for operating license or a combined
5	license it's something we can look into the future.
6	MEMBER RAY: Why do you say that, by the
7	way?
8	MR. COSTA: Because that's the nature of
9	emergency preparedness.
10	MEMBER RAY: Okay. So I mean this
11	wouldn't be, you know, basically what you're saying is
12	that you can't address these criteria just with a Part
13	50 application that has a site but doesn't satisfy all
14	the information requirements for an operating license.
15	MR. COSTA: Well, an applicant has an
16	opportunity to provide emergency preparedness
17	information even during an ESP application.
18	MEMBER RAY: That's right.
19	MR. COSTA: So, but the staff would need
20	information in order to assess the design and the
21	specificity on the designs in order to understand
22	things as we discussed. In fact the whole meeting
23	today came to this point of emergency preparedness,
24	everything that was set up to now enforces the issue
25	of emergency preparedness. And we need to understand
ļ	I

(202) 234-4433

	267
1	all that in order to come up with emergencies.
2	Especially if you want to have a scalable emergency
3	planning zone and then you want to be meeting the EPA
4	PAGs. So it's pretty challenging.
5	MS. BRADFORD: This is Anna Bradford. I
6	would just make one point about the chicken and the
7	egg situation. I don't think it's quite a chicken and
8	egg just because we do have EP regulations and
9	guidance on the books. If they wanted to just meet
10	those we wouldn't even need to have the discussion.
11	They want to do something different. So if you want
12	to do something different tell us what you want to do.
13	MEMBER RAY: Well, precisely.
14	MS. BRADFORD: Right, and we'll evaluate
15	that in the context of our regulatory framework.
16	MEMBER RAY: Yes, well they have tried to
17	do that I guess and it falls short of what you need is
18	the best I can figure out. But the point is that,
19	yes, there are requirements so why can't we have
20	requirements that apply to something other than what
21	the existing frameworks were developed for.
22	And you know I realize you have to have a
23	certain amount of information in order to do that.
24	But on the other hand it almost seems as if we're not
25	prepared to do anything until somebody appears in the
I	I

(202) 234-4433

	268
1	form of an applicant. But that's not going to happen
2	until they have some better assurance of what the
3	answer's going to be. And that's why I called it a
4	chicken and an egg.
5	MS. BRADFORD: I think I would argue it
6	the other way and say I'm not sure we would spend our
7	resources to develop a proposed alternative, and that
8	alternative might not be what the applicant wants to
9	do either.
10	MEMBER RAY: That's, you know, that's
11	fair. I mean it does take time and effort to do this.
12	That's why we're all sitting here instead of my being
13	at home or en route here as I would otherwise be. But
14	the upshot turns out to be that we're basically not
15	achieving anything productive. And I guess that's the
16	conclusion you have to draw from it.
17	MR. COSTA: well, there is a path. One of
18	the things that we coded was the case-by-case basis.
19	So that was always there available.
20	And then as part of this progression we
21	credited the white paper that they wrote and then
22	after we considered that in public meetings we also
23	provided to the applicant an approach that can be
24	scalable specifically for EPZ. And then what we're
25	basically said is reinforcing what Anna's saying. I
Į	I

(202) 234-4433

	269
1	mean we do have regulations that we can license in
2	HTGR but there is possibly a better way. So just come
3	and tell us and we'll be ready to listen.
4	CHAIRMAN BLEY: Well, I think, you know,
5	when this whole business came out of the law saying
6	DOE and NRC work together on this. And in most of the
7	areas you've taken a look at their proposed framework
8	and said yes, we kind of agree with this with a few
9	exceptions for you to fill in.
10	In this area you kind of said well, submit
11	an application and then we'll look at it. So it seems
12	like you treated it a little bit differently than you
13	did all the other issues on the table. Am I missing
14	the boat on that?
15	DR. CARLSON: We didn't say submit an
16	application because the advanced reactor policy
17	statement says you engage before they submit an
18	application. Pre-application review. So when we're
19	in a pre-application review whether it's we expect
20	a submittal and some plant item at a time. That's the
21	time to engage. But that does require some level of
22	design information, some specific proposals.
23	MEMBER RAY: Well, that's what I guess I'm
24	saying is that you don't have enough that you can
25	respond to even hypothetically. And it may be that
ļ	I

(202) 234-4433

	270
1	your hypothesis would be not suit the applicant.
2	But anyway, as I say, the aim here, the SECY
3	requirements are probably if not the most important,
4	one of the most as you know. For this thing to get
5	any prospect of going forward.
6	And I still, I'll stick with my chicken
7	and egg metaphor.
8	CHAIRMAN BLEY: But at this point why
9	don't we go ahead.
10	MR. COSTA: Okay. I turn it over to you,
11	Don.
12	DR. CARLSON: So that's all we had. Of
13	course if you have other questions we have backup
14	slides but I think we've gone through everything that
15	we planned to present.
16	CHAIRMAN BLEY: Thank you. At this point
17	I'll ask if there's anyone, a member of the public or
18	otherwise here in the room who would like to make a
19	comment. We'll listen to you at this point. And
20	we're checking to see if there's anybody left on the
21	line and if anyone else has comments.
22	DR. CARLSON: We didn't ask Mike Kania for
23	his expert insights but I appreciate his being
24	available and I hope he found it a good meeting.
25	CHAIRMAN BLEY: Okay. Mike, are you there
Į	I

(202) 234-4433

	271
1	on the line? Can you hear us and can we hear you?
2	MR. KANIA: Yes, I am on the line. I
3	appreciate it. Thank you.
4	DR. CARLSON: If you feel that we failed
5	to say something essential you can say it now.
6	MR. KANIA: The only comment I wanted to
7	make is that you were asked earlier on that you know,
8	all these RAIs were generated such and there was
9	interaction between NRC and INL, DOE and INL, on
10	these. But I think there was an excellent
11	interaction.
12	And where you see the changes kind of
13	effect is in the program plan that the DOE is looking
14	at. I mean they're doing things nowadays that just
15	wasn't possible 20-30 years ago. They're
16	systematically doing the math balances, they're using
17	techniques that were never applied before. The amount
18	of mileage we're getting out of the R&D nowadays is
19	just, it's just orders of magnitude more than what we
20	got previously.
21	CHAIRMAN BLEY: Okay, thanks Mike.
22	Anybody else on the line care to make any
23	comments? Then at this point I'll ask members of the
24	subcommittee to offer up any of their comments. I'll
25	start with Mike Corradini. Oh, I'm sorry.
l	

(202) 234-4433

	272
1	MEMBER CORRADINI: So I cede some of my
2	time to DOE and their contractors about some of the
3	questions we asked.
4	CHAIRMAN BLEY: You don't need to cede
5	time.
6	MEMBER CORRADINI: I know, I'm just
7	joking.
8	CHAIRMAN BLEY: I did say I wanted to give
9	you folks a chance to make any closing comments you'd
10	like if you want to make them.
11	MR. KINSEY: I don't have anything. I
12	think Dr. Petti may have a couple of.
13	MR. PETTI: Just I did not get into
14	details but some of the issues that you have raised
15	about path dependence and temperatures, the
16	irradiation. Unfortunately you won't be able to
17	attend our R&D meeting but you'll see that we have
18	incorporated those in AGR-5/6/7 that's going to have
19	a much broader irradiation envelope than say I think
20	10 years ago when we started. Stay tuned. It's very
21	active and interactive.
22	DR. CARLSON: So I don't know how much
23	that would reduce the scope of prototype testing but
24	that would be good information.
25	CHAIRMAN BLEY: Okay, thank you.
	I

(202) 234-4433

MEMBER CORRADINI: So I have two things. The first one, first of all I think DOE and their contractors have done a nice job of reminding us what we heard in January. And staff, I appreciate their responses, very specific responses to some of what the DOE had asked.

7 I guess there's two things that came out 8 of this that I hadn't put it in perspective but I'm 9 looking at the chairman for the intent of something to 10 put in the letter. So two things.

So first, provocative which is it seems to 11 me with all due respect staff is back in 1958. 12 You're basically saying I've got a siting study, I've got an 13 14 MCA for the siting study and I don't know how I got the numbers but show me an MCA. And now if I now move 15 16 forward 55 years to where we are we don't want to use 17 any sort of risk insights as to the probability of these events to rank-order or think through this. 18 To 19 me that's interesting, surprising, not appropriate. 20 Okay?

And the reason I'm saying that is if I put the same sort of argument for light water reactors and I went back to the TIB-1484 and I said what did I ask licensees at the beginning of their light water reactor generation to do. And then I now have the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	274
1	ability to calculate and see what's the frequency of
2	that accident sequence that gave me that it would be
3	at some number.
4	And I'd be willing to bet the frequency to
5	get an engineering judgment extreme event for the
6	HTGR, whatever it's called, the gas reactor is going
7	to be a frequency not at that same frequency level but
8	much lower. And to say that we're not going to at
9	least acknowledge the fact that it's less frequent, of
10	lower probability or at least have something as that
11	as part of the mix surprises the heck out of me.
12	So I thinks somehow in the letter we have
13	got to express the need to say we ought to have pretty
14	much of a fair comparison to what we can analyze
15	relative to both the consequence as well as the
16	probability. Because I do think staff is right, there
17	is not as mature as the light water reactors today,
18	but I don't think we have to go back to an approach
19	where we kind of just use engineering judgment without
20	calculational expertise as to what the frequency of
21	some of these events are that lead us to these.
22	That's one. Two.
23	The second thing I think the staff said
24	that I still don't completely appreciate but it really
25	is something that I think DOE has got to worry about
I	I

(202) 234-4433

is that if the fuels testing program is very good or extremely good but still is lacking in some area I hear staff saying, I could be misinterpreting, that you're going to have to do some sort of ascension testing with the first one of these which makes some plausible sense.

7 But it seems to me that's got to be 8 discussed with DOE now or otherwise they're going to leave here when we close all of this because of lack 9 10 of funding going forward and they're going to expect X and staff is going to expect Y and there's going to 11 be a divide there. And anybody that comes back to 12 this that actually wants to build one of these as a 13 14 prototype are going to have to do a whole series of 15 ascension testing.

And I just sense a bigger gap there than maybe I first expected. And it may be just as I wasn't paying close enough attention.

19 CARLSON: I would like to say DR. something if it's okay that I probably should have 20 said early on. Mike Mayfield has been very clear 21 about this whenever he has a chance to say something. 22 MEMBER CORRADINI: I'm sure he has. 23 Ι know him. 24 CARLSON: And the vision is let's 25 DR.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	276
1	figure out how to get the prototype to exist. So as
2	far as we're talking about the first of the kind
3	prototype, whatever you want to call it, the lack of
4	maturity, the PRA technology, it's something we have
5	to keep in mind.
6	And once you get the prototype up and
7	running that and there are no huge surprises. And
8	you learn something by doing actual measurements and
9	testing. Well, maybe we can back off on some of these
10	conservatisms.
11	Like I said before, if we were talking
12	applying similar ideas to a light water reactor then
13	maybe something like an option 3 would be appropriate.
14	So again, Mike Mayfield says over and over again let's
15	figure out how to license the prototype. And then the
16	licensing basis for the standard plant may be adjusted
17	based on those insights.
18	MEMBER RAY: Yes. I'd make the prototype
19	of Part 50 application. But who's going to pay for it
20	is still an open question.
21	MR. SHEA: I just want to address another
22	issue brought up about the source term in 1958. I
23	actually think we're probably closer to 1972. I've
24	got my bell bottoms on. But in reality in 1958 we
25	assumed the core melted without a lot of knowledge on
ļ	I

(202) 234-4433

	277
1	how and it was a safety case that designed a
2	containment so that you would protect the public.
3	So if you look at what they're proposing
4	here and that the staff is accepting is a mechanistic
5	source term that says there's no way that we can melt
6	the core. That's a tremendous fast-forward. That's
7	definitely an advance of thinking over the years.
8	So, and combine that with the fact that
9	we're not saying the PRA can't be used. In fact no,
10	we're saying that in fact the PRA is a strength
11	because what it does in reality is it does not buy us
12	the defense-in-depth in terms of all prevention. It
13	puts some into mitigation.
14	In the past, in 1958 we put all the eggs
15	into prevention. And we got a lot of accidents
16	because of simple things like the loss of offsite
17	power that could have been if it was evaluated
18	under PRA and saw the strengths in both the prevention
19	and mitigation those things might have been prevented.
20	So no, I think it's definitely a modern look at how to
21	evaluate reactors.
22	And I'd also comment that I think what we
23	have outlined in our assessment given that there's a
24	lot of like, you know, of course words where there's
25	no policies, et cetera. However, if you look at it
	I

(202) 234-4433

(202) 234-4433

1 we've provided a clear path in my mind on how to 2 license one of these reactors any advanced or 3 reactors. 4 CHAIRMAN BLEY: Okay, thank you. Mr. 5 Skillman. MEMBER SKILLMAN: The concerns that I had 6 7 were pretty much addressed when we went through the discussion about the strength of the probabilistic and 8 9 deterministic methods being used. Your example of the rod ejection and actually needing to get a design up 10 and operating in order to have greater understanding 11 of how the machine is going to behave. 12 Ι think that 13 there are some real

14 challenges that lie ahead and that is seeing how the 15 TRISO fuel operates in a real situation. And I think that the complexities of operating multiple reactors 16 17 at a single site brings with it operational issues concerning staffing and attention to detail, 18 how 19 multiple units might behave individually and together. I believe the emergency planning problems 20 -- I shouldn't say problems. The emergency planning 21 challenges will be new for this new type of reactor. 22 We continue to discover new issues even in the current 23 fleet relative to emergency preparedness and emergency

planning and interaction with the state and local and

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

	279
1	federal authorities.
2	This will be a brand new learning
3	experience should one of these ever be built or should
4	a group of these ever be built. And so I think there
5	needs to be extreme attention to detail because in a
6	way this is introducing a new reactor thank you to
7	civilian users.
8	I believe that even though there have been
9	prototypes, there have been other gas reactors, this
10	will be new. And so there needs to be a sense of
11	caution that accompanies progress for this reactor
12	type. Thank you.
13	CHAIRMAN BLEY: Thank you. Mr. Stetkar.
14	MEMBER STETKAR: Yes. I'd echo Mike's
15	concerns about however you want to characterize
16	deterministic versus probabilistic approaches to
17	maximum credible accidents. He's much more eloquent
18	about these things than I am.
19	A couple of other things, and I mentioned
20	them earlier, just to kind of reiterate. And that is
21	a bit of a concern about what I still believe is an
22	inconsistent approach to addressing the effects of
23	uncertainty and the consequences among the three or
24	four depending on whether you consider DBAs a
25	different category of licensing basis events.
I	

(202) 234-4433

And something I mentioned pretty quickly because it gets into a lot of details but I think there's some need for improved clarity on the notion of what event sequences are and how that notion of event sequences is and will be used to identify and categorize licensing basis events. Because there seems to be I don't want to call it a disconnect. There seems to be a gap there. Because I can read words that sound like they say the right things but I see examples that might not implement those words. So with that that's basically what I have. Okay, Harold. CHAIRMAN BLEY: MEMBER RAY: Well, I certainly buy the idea that the best path forward is a prototype that doesn't have to solve all of the problems as if they were being solved for all time and that isn't dependent upon the usual commercial considerations in order to move ahead. That may be the only way that we can deal with some of these issues.

I think there's a general feeling that 21 there are inherent safety advantages that should be 22 recognized and particularly with respect to 23 the 24 ability to site a plant like this. But there are also obviously unanswered questions as well. 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

	281
1	And at this point in time to be committed
2	as the regulator to recognize those advantages without
3	knowing more of the details is probably a bridge too
4	far. So I hope DOE feels like it's been a worthwhile
5	exercise to this point. But it certainly falls short
6	of what some had hoped we'd be able to accomplish.
7	Having said that I can't suggest what we
8	might put in the letter. I'll have to think about.
9	CHAIRMAN BLEY: I'd appreciate any
10	thoughts. Tom, I know you're going to send us a
11	report but if you want to summarize those vast number
12	of comments I'd appreciate it now.
13	DR. KRESS: I would like to say that I'm
14	glad to see this exercise going on because I consider
15	the approach an improvement in the way we regulate
16	licensed reactors. And that it's superior to what
17	we've been doing.
18	And I think it's more what's I see it
19	is more closely associated with option 3 in terms of
20	probabilistic versus deterministic. That doesn't
21	bother me because as best I recall the ACRS letter we
22	recommended option 3.
23	But anyway, it really doesn't bother me.
24	I don't know how to separate out deterministic versus
25	probabilistic too well anyway.
	1

(202) 234-4433

	282
1	I do agree with a number of comments,
2	Corradini's and Gordon, but especially Gordon. I
3	worry about one control room and one operating people
4	for modular reactors. I don't know if that's a
5	problem or not but it's something we're not used to
6	and it could give operational problems. I don't know
7	what they are and I don't know if we'll ever find out.
8	But I kind of agree.
9	I particularly agree with John Stetkar's
10	issues with the questions of inconsistencies in using
11	the uncertainties. And also the clarifying what
12	actually is a sequence is. When I first read all this
13	I thought the sequences were every sequence I'd get
14	out of a PRA. That's a lot of sequences and I don't
15	know if they bundled them or not. But for gas-cooled
16	reactors you don't really have that many sequences.
17	You might be able to just look at all of them.
18	But I had some questions about the top-
19	level regulatory criteria. Because you do have to
20	specify up front how many modules you're going to have
21	before you can see whether you're approaching the top-
22	level criteria.
23	And I think the tendency would be maybe to
24	choose those number of modules that keeps you below
25	the criteria but gets you up close enough to it. And
Į	I

(202) 234-4433

	283
1	I don't see any criteria on how close we ought to
2	allow in terms of uncertainties.
3	There was some on selecting SSCs. And I
4	also worry about that because I think having a stair
5	step top-level regulatory criteria can affect the SSCs
6	you come up with depending on how close you are to
7	that line. I would much prefer a straight line non-
8	risk averse thing. I think Tom had talked about
9	before.
10	I also thought, and I'm not sure I got the
11	answer right, I looked at the effect of the dropping
12	and SSC to see what its effect was on both risk and
13	consequence. I got the impression that you looked at
14	those SSCs one at a time.
15	I had the same problem that John had. It
16	depends on what order you do the safety function as to
17	what kind of answer you would get. Plus, I see that
18	maybe one SSC puts you into a different frequency
19	category or consequence.
20	But if you did two of them even if they're
21	not in the same safety function if you're separating
22	down the line on the thing then those two together
23	might put you in the unacceptable regions of a top-
24	level criteria. And I was wondering why those
25	being the safety-related. But they're relatively
	I

(202) 234-4433

	284
1	independent. Maybe that's the issue.
2	So, the one thing that I keep harping on
3	every time because it's an issue I've had back when I
4	was on the ACRS was we're still using the prompt
5	fatality safety goal as our risk acceptance criteria
6	for all the building all the PRA events.
7	I'm still saying that's not the control
8	room, it's the societal risk of total deaths and all
9	the dollars. And I'm glad to hear Tom mention that.
10	That has been looked at to some extent. But we don't
11	have any acceptance criteria for societal risk to
12	compare it to. Or we don't maybe we need some.
13	I think this is appropriate for these new
14	reactors because even though meeting the PAGs at the
15	EAB probably means they're going to meet the two QHOs
16	very well, but you may not meet the societal risk
17	because we don't know what it is and it's bigger and
18	doesn't take as much release to get a pretty good
19	amount. So that's been one of my issues. I think we
20	need to think about the total effects of the release.
21	I think there's going to be a lot of work
22	to and I think some of it's going on to get good
23	fission product release in transport models,
24	particularly issues with the plateout and re-
25	vaporization from primary systems, and effects of
	I

(202) 234-4433

dust. How do we know how much dust is going to be there.

3 And I think there's still some issues on 4 how you address air ingress. Every time I talked 5 about qas-cooled reactors when I used to work, that's 6 before I quit working, I always asked how about 7 dropping a vein with air in there. You know, we had Chernobyl with all that burning going on. I don't 8 9 think burning of this graphite with air ingress is a big issue but I think it needs to be put to bed and 10 say oh, we're really not going to have that kind of 11 frequency of air ingress or I don't think you're going 12 to have -- with this kind of graphite I don't think 13 14 you're going to have so much of a problem with the 15 burning of it.

But I do think you need to address the issue. You need to know what the effects of air ingress and the graphite interaction are. I'm not sure I saw that in the proposed research program.

And I'd also think that -- I would support one of these operational processes where you raise the power up in steps. Because I'm worried about -- I mean the fuel quality has to be so good that it doesn't take much of a mistake to not have the fuel quality you think.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

285

286 1 I think one of the things you're going to need to do is be able to assess the fuel quality as 2 you operate. And I was glad to hear there's 3 4 intentions to putting in instrumentation and measuring 5 reactivity, plateout and airborne, in the RCCS as you 6 go along. But I think, I haven't seen any criteria 7 8 yet on what would you do when you start getting too 9 much activity, and what is too much, and when do you 10 decide on when to shut down. I would like to see more on that. 11 And I think the issue with PRA being not 12 quite as mature as we'd like is an issue. I think you 13 14 address it with trying to determine what the uncertainties are. And I don't know if we have 15 16 programs or ways to get the uncertainties. You know, 17 you look at all the safety functions and the failure of SSCs and how they lead to the final product in both 18 19 frequency -- frequency is easier to get consequences. But I think you need a lot of data to get a mature 20 PRA. 21 Let's see. And I don't know how to -- I 22 think to do with modular reactors my feeling is it's 23 24 probably sufficient to use consequences for one module

25 and just deal with the frequencies for multiple

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	287
1	modules. But I haven't thought through the issues of
2	simultaneous initiating events. Even those I think
3	it's probably all right to do it that way but maybe
4	not. I haven't thought that one through yet.
5	But I think we need to do a little more
6	thinking about what actually defense-in-depth is, how
7	we define it. When is it we have sufficient how do
8	we deal with it in terms of uncertainties and
9	confidence levels. And how we deal with it in terms
10	of redundancy and that sort of stuff.
11	In general, you know, in spite of the fact
12	that I'm throwing up things like this I like what I've
13	heard. I think the staff's doing a good job. I think
14	that the applicant or whatever, the DOE-INL people, I
15	think it's a good piece of work. I'm glad to see it
16	going on.
17	CHAIRMAN BLEY: Thank you. And I just
18	have a few comments. I said most of the things I
19	wanted to during the session.
20	I dwelled a lot on an issue of the
21	deterministic DBAs. And I think that's probably not
22	a big issue because to my thinking when they go
23	through building the best PRA they can with all the
24	scenarios they can think of. They use the same kind
25	of process you're talking about. If one generates new
ļ	I

(202) 234-4433

sequences they didn't think about they must get reflected back into the PRA and get evaluated.

1

2

3

4

5

6

7

8

9

In the end I think the format they laid out, the framework for defense-in-depth is perhaps more thorough than most I've seen and gives a good way to require additional protection in areas where we're not completely confident on the uncertainties that have been evaluated or any of the technology issues that we'd hope to get to see through the prototype.

10 We keep hearing credible events, and we're only going to look at credible events, we look at 11 It's an ill-defined term and it gets 12 credible events. us into trouble every time. You look at things that 13 14 are physically possible and once you do that you 15 either take care of them because you're not sure if 16 not, or you look at them they can occur or 17 probabilistically and evaluate them. I just get uncomfortable with that phrase tossed around so much. 18 19 It's really ill-defined.

same vein Т don't think a 20 Τn the deterministic look solves our problems. I mean, where 21 we started way back when was we had a bunch of smart 22 guys think up everything they could think of that 23 24 would happen as judgment. Well, we've now got a bunch of guys trying to think up everybody they can account 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	289
1	for and maybe analyze them a little more thoroughly.
2	But I don't see those as separate things.
3	You need that same process to come up with the events.
4	If you come up with more than people thought of you
5	incorporate that in the process.
6	The one interesting thing about what John
7	brought up, and I haven't gone back and looked
8	carefully enough because I didn't notice it, and Tom
9	did too, this idea that when you change the ordering
10	of the things in the event trees and you get into a
11	different category so that what you've really got is
12	a model that's not coherent for some reason. And
13	there are lots of reasons that can happen. So I think
14	it would behoove everyone to go back and look at that
15	and see what's going on and find a way to account for
16	it.
17	It needs to be done and there's a whole
18	source of technical issues that can be involved in
19	that and they range from shadowing of one thing with
20	the other to incorporating the effects of one and the
21	other. And if you think of it as conditional, you
22	have to look at that whole set as conditional and make
23	sure we get it right.
24	Having a system that lets you come out
25	with different categorizations depending on the whim
ļ	I

(202) 234-4433

290 1 of the analyst and how they break out their model or how they order it is something you've got to find a 2 That could be a really significant 3 way around. 4 problem. And I'd throw out the PRAs when they 5 finally come in for a real design need to incorporate 6 7 all those external events, the whole group of them. But they also need to incorporate human actions 8 including what's historically been called errors of 9 But the kind of things you brought up, 10 commission. turning on the circulators. 11 If that's a big deal that needs to be in 12 the model as a possible thing that could happen. 13 And 14 it eventually gets worked into the training and 15 everything else to make it much less likely that they 16 take the wrong action. 17 But you can't just look at operators doing what you expect them to do. You have to look at what 18 19 they might do to get us into trouble. And the thinking process you talked through is what has to be 20 there and has to be in the PRA as well. 21 22 Anyway, thanks everyone. I was very impressed with the presentations and the discussions 23 24 and how this went on. I don't know what happens in We're interested in hearing how the fuel 25 the future.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

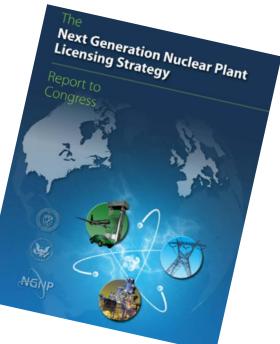
(202) 234-4433

	291
1	work continues. I wish more were continuing in other
2	areas but I guess it won't for some time.
3	Thanks everyone and my compliments to you.
4	And at this point the meeting is adjourned.
5	(Whereupon, the foregoing matter went off
6	the record at 5:16 p.m.)
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
l	I

ACRS Future Plant Designs Subcommittee Meeting

NGNP Introduction

Carl J. Sink NGNP Program Manager Office of Nuclear Energy U.S. Department of Energy


April 9, 2013

NRC-DOE Licensing Strategy – 2008 (Report to Congress)

Nuclear Energy

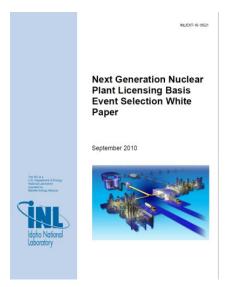
- "It will be necessary to resolve the following NRC licensing technical, policy, and programmatic issues and obtain Commission decisions on these matters"
 - Acceptable basis for event-specific mechanistic source term calculation, including the siting source term
 - Approach for using frequency and consequence to select licensing-basis events
 - Allowable dose consequences for the licensingbasis event categories
 - Requirements and criteria for functional performance of the NGNP containment as a radiological barrier

Continued DOE Focus on Licensing Framework

Nuclear Energy

Secretary Chu letter to Congress in October, 2011 reinforces the priority that DOE places on establishing the HTGR licensing framework, based on the related NEAC recommendation

• "The NEAC also recommends that the Department continue research and development, as well as interactions with the Nuclear Regulatory Commission, to develop a licensing framework for high temperature gas-cooled reactors."



Licensing Framework Interactions with NRC

Nuclear Energy

DOE appreciates NRC's support of the significant level of interaction that has taken place within the NGNP program for licensing framework development:

- Jointly established Licensing Strategy for adaptation of existing regulations
- Review and feedback on NGNP white papers covering various licensing framework topics
- Significant number of public meetings (18 total) over the past 3 years
- Review of the NGNP responses to approx. 450 requests for additional information
- Review of technology development plans
- Approval of the applicable portions of the NGNP Quality Assurance Program Description
- Feedback on the highest priority licensing issues, as described in NGNP's July 6, 2012 letter

NRC Staff Positions Requested by DOE

Nuclear Energy

NGNP transmitted a letter to NRC on July 6, 2012 reinforcing areas of priority for licensing framework development

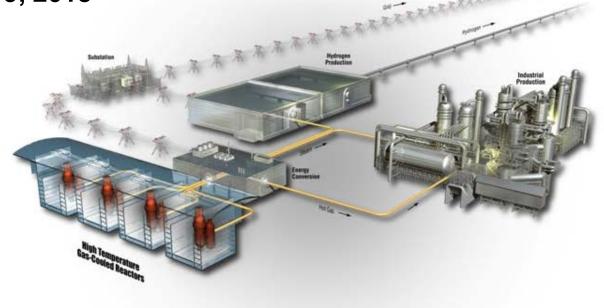
 Consistent with focus areas summarized in NRC to DOE letter dated February 15, 2012

NRC staff positions have been requested in four key areas

- Licensing Basis Event Selection
- Establishing Mechanistic Source Terms
- Functional Containment Performance Requirements
- Development of Emergency Planning and Emergency Planning Zone Distances

Reducing Regulatory Uncertainty for HTGRs

Nuclear Energy


- DOE is focused on the resolution of long-standing HTGR licensability issues, and the establishment of key parts of the NGNP licensing framework
- The proposed NGNP framework provides a process for assuring, with associated fuel qualification program results to date, adequate protection of the public over a wide spectrum of internal and external events at a multi-reactor module plant facility, with significant margin to the regulatory requirements for offsite dose
- DOE looks forward to today's follow-on meeting regarding the most significant topics affecting the licensing framework for NGNP

Summary of January 17 NGNP Presentations

ACRS Future Plant Designs Subcommittee Meeting

April 9, 2013

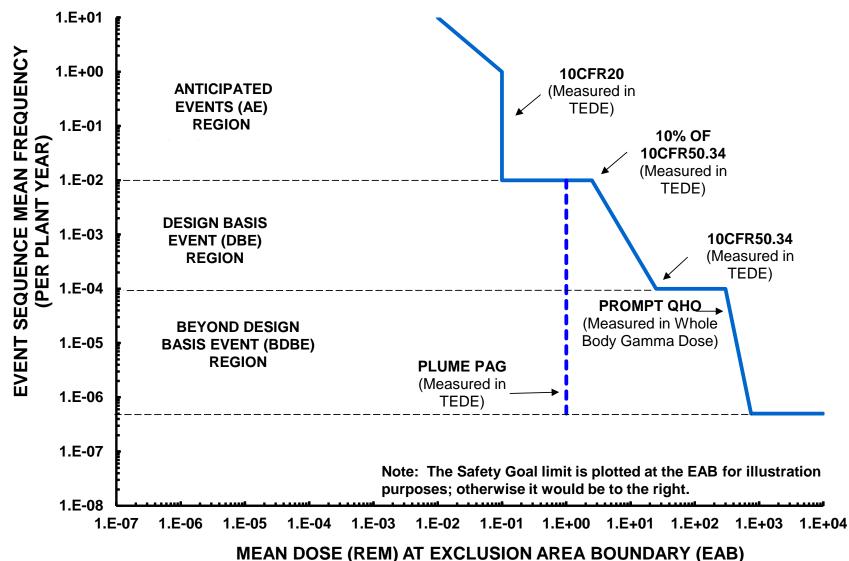
www.inl.gov

NGNP January 17 Presentations to the Subcommittee Addressed Five Areas

- High Temperature Gas-Cooled Reactor (HTGR) Safety Approach and Design Basis
- Licensing Basis Event (LBE) Selection Process
- Functional Containment and Mechanistic Source Terms
- Siting Source Terms (SST)
- Fuel Qualification and Radionuclide Retention

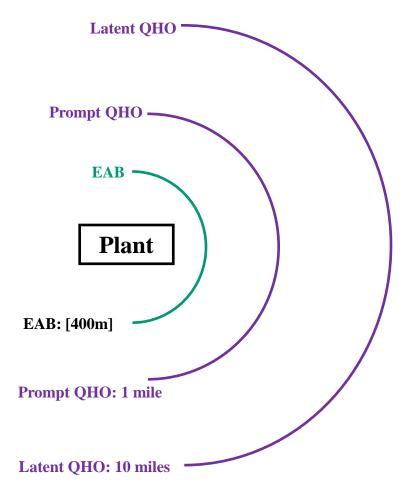
Safety Approach and Design Basis Summary

- Top objective is to meet the NRC offsite dose requirements and EPA Protective Action Guides (PAGs) at the Exclusion Area Boundary (EAB) for spectrum of events within and beyond the design basis
- Responsive to Advanced Reactor Policy
- Modular HTGR designs employ multiple concentric, independent barriers to meet radionuclide retention requirements – these barriers comprise the Functional Containment
 - Fuel Elements
 - Fuel kernels
 - Particle coatings (most important barrier)
 - Compact matrix and fuel element graphite
 - Helium Pressure Boundary
 - Reactor Building
- Emphasis is on radionuclide retention at the source within the TRISO fuel coatings
 - Passive heat removal
 - Control of heat generation
 - Control of chemical attack


LBE Selection Summary

- Licensing Basis Events determine when Top Level Regulatory Criteria (TLRC) must be met
- Selected during design and licensing process with risk insights from comprehensive full scope PRA that considers uncertainties
- Include anticipated events (AEs) (expected in life of plant), design basis events (DBEs) (not expected in plant lifetime), beyond design basis event (BDBEs) (not expected in fleet of plant lifetimes), and design basis accidents (DBAs) (Ch 15 events derived from DBEs with only safety related structures, systems, and components [SSCs] available)
- Safety classification focuses on examining SSCs available and sufficient to successfully perform required safety functions to mitigate spectrum of DBAs

ho National Laboratory


NGNP Frequency-Consequence Curve

Selection of TEDE and EAB for TLRC Dose Limits

- Mean total effective dose equivalent (TEDE) selected for consequence measure
- The EAB was selected based on the following considerations:
 - It is the distance specified for the 10CFR20 and one of the 10CFR50.34 dose limits
 - Design objective is to meet the PAGs at the EAB to avoid public sheltering during offnormal events, with the goal of having the LPZ and EPZs at the same distance as the EAB (approximately 400m)
 - If met, the plant will have large margins to the average individual risk Quantitative Health Objective (QHOs) as measured within annular regions from the EAB to 1 and 10 miles, respectively
 - Supports co-location with industrial facilities

Licensing Basis Event Evaluation Structure

Event Category/Type	10CFR20 – 0.1 rem	10CFR50.34 – 25 rem	EP PAGs – 1 rem	QHOs – Individual Risks
AEs	Mean Cumulative @ EAB			Mean Cumulative @ 1 and 10 miles
DBEs		Upper Bound @ EAB	Mean @ EPZ*	Mean Cumulative @ 1 and 10 miles
BDBEs			Mean @ EPZ*	Mean Cumulative @ 1 and 10 miles

DBAs	Upper Bound	
	@ EAB	

*Design Objective: EPZ = EAB

Design Basis Accident Derivation and Dose Limits

- DBAs (analyzed in Chapter 15 of SARs) are deterministically derived from DBEs by assuming that only safety-related SSCs are available
- The event sequence frequency for some DBAs is expected to fall in or below the BDBE region
- Consistent with traditional practice, DBAs must meet the DBE dose limits based on conservative (upper 95%) analyses, including those with event sequence frequencies in or below the BDBE region
- DBAs are not derived from BDBEs. BDBEs must meet the NRC QHO on a cumulative basis based on an expected (mean) analysis

Performance Standard for Functional Containment

NGNP's upper tier performance standard for the functional containment ensures the integrity of the fuel particle barriers rather than allowing significant fuel particle failures and then relying extensively on other mechanistic barriers (e.g., the helium pressure boundary and the reactor building). This standard is characterized by the following:

- Ensure radionuclide retention within fuel during normal operation with relatively low inventory released into the helium pressure boundary.
- Limit radionuclide releases to the environs to meet the onsite and offsite radionuclide dose acceptance criteria at the EAB with margin for a wide spectrum of off-normal events.
- Maintain the capability to establish controlled leakage and controlled release of delayed accident source term radionuclides.

Idaho National Laboratory

Functional Containment Performance Summary

- Radionuclide retention within fuel during normal operation with relatively low inventory released to helium pressure boundary (HPB)
- Limiting LBEs characterized by
 - an initial release from the HPB depending on leak/break/pressure relief size
 - a larger, delayed release from the fuel
- Functional containment will meet 10CFR50.34 (10 CFR 52.79) at the EAB with margin for the wide spectrum of DBEs and DBAs without consideration of reactor building retention
- Functional containment (including reactor building) will meet EPA PAGs at the EAB with margin for wide spectrum of off-normal events

Functional Containment and Mechanistic Source Terms Approach Summary

- Mechanistic models of fission product generation and transport that account for reactor inherent and passive design features and the performance of the radionuclide barriers that comprise the functional containment
- Event specific and applied to the full range of licensing basis events affecting one or more modules
- Consistent with the NRC Advanced Reactor Policy Statement
- Consistent with discussions of containment function and mechanistic source terms in various NRC SECY documents and with approaches previously reviewed by the NRC staff for modular HTGRs

Siting Source Term Summary

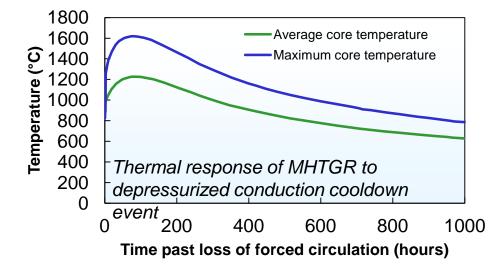
- The NGNP approach to SSTs is essentially the same as that proposed by DOE in the MHTGR PSID and accepted by the NRC staff in NUREG-1338
- The approach is consistent with discussions of containment function and mechanistic source terms in more recent NRC SECY documents and with approaches previously reviewed by the NRC staff for modular HTGRs
- The approach implements a modular HTGR-appropriate interpretation of the 10CFR50.34 (10CFR52.79) footnote regarding siting evaluation
- Limiting DBAs are evaluated to determine SSTs
- Further, to ensure that there are no cliff edge effects, physically plausible Bounding Event Sequences (with frequencies below the BDBE region), including those involving graphite oxidation, are considered

Fuel Qualification and Radionuclide Retention Summary

- The Fuel Development and Qualification Program is providing data, under an NRC-accepted QA program, necessary to better understand fuel performance and fission product behavior for modular HTGRs
- The Fuel Program is laying the technical foundation needed to qualify UCO TRISO fuel made to fabrication process and product specifications within an envelope of operating and accident conditions that are expected to be bounding for modular HTGRs
- Results to date are consistent with current design assumptions about fuel performance and radionuclide retention. The program is obtaining additional data to support model development and validation
- Results to date support the safety design basis, including the functional containment and mechanistic source term approaches

Key Results of On-going Fuel Research

- Improved understanding of TRISO fuel fabrication process
- Improved fabrication and characterization of TRISO fuel produced by fuel vendor
- Outstanding irradiation performance of a large statistically significant population of TRISO fuel particles under high burnup, high temperature HTGR conditions
- Expected superior irradiation performance of UCO at high burnup has been confirmed
- Post-Irradiation examination of AGR-1 indicates:
 - Ag release consistent with model predictions
 - No Cs release from intact particles under irradiation
 - No Pd attack or corrosion of SiC despite large amounts of Pd outside SiC
- Initial safety testing for hundreds of hours at 1600, 1700, and 1800°C demonstrating robustness of UCO TRISO under depressurized conduction cooldown conditions



aho National Laboratory

Accident Safety Testing of TRISO Fuel

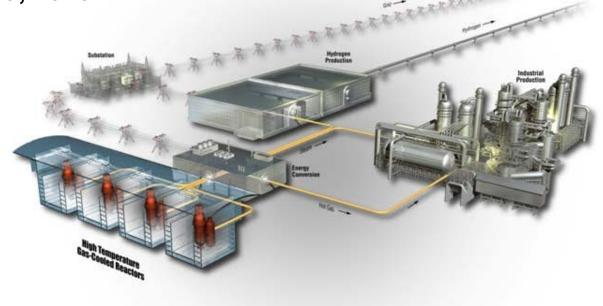
- Simulate heatup of fuel compacts following depressurized conduction cooldown event
- Isothermal testing for hundreds of hours at 1600, 1700, and 1800°C
- Six isothermal 1600, 1700, and 1800°C tests have been completed
- Actual time-temperature test to be performed this year
- Testing of deconsolidated particles will occur in late 2013 or early 2014

KEY RESULTS

- Releases not seen from the intact TRISO particles during the high temperature heating
- Releases that have occurred are very low and are from one or more of the following:
 - Fission products that diffused into the matrix during irradiation
 - Presence of a defective particle
 - A particle that fails during safety testing

The Subcommittee Asked Questions in Two Areas to be Addressed at Today's Meeting

- What is the role of the reactor building in defense-in-depth?
- What is NGNP's approach to defense-in-depth?



Reactor Building Design Alternatives

ACRS Future Plant Designs Subcommittee Meeting

April 9, 2013

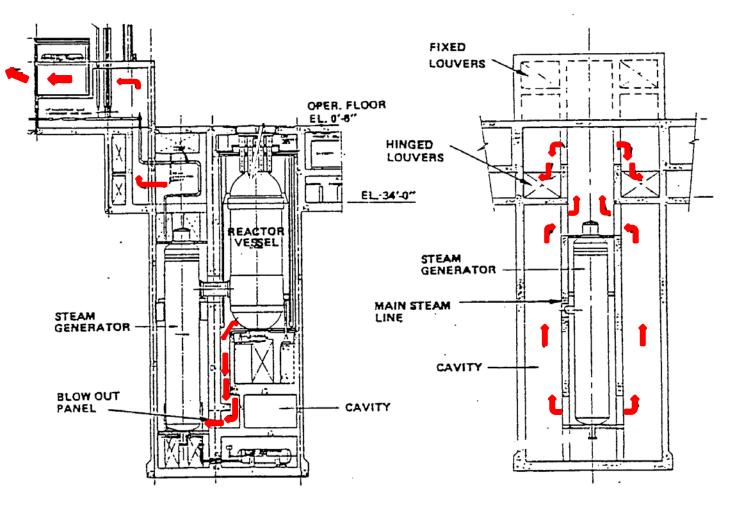
www.inl.gov

Key Modular HTGR Safety Attributes

- The fuel, helium coolant, and graphite moderator are chemically compatible under all conditions
- The fuel has very large temperature margins in normal operation and during accident conditions
- Safety is not dependent on maintaining the helium coolant pressure, and loss of coolant pressure does not transfer large amounts of energy into the reactor building
- Post accident heat removal is accomplished by passive means
- Response times of the reactor are very long (days as opposed to seconds or minutes)
- The HTGR has multiple, concentric, independent radionuclide barriers. A breach of the helium pressure boundary does not result in failure of the fuel or the reactor building

Role of the Reactor Building (RB) in Safety Design

- Required safety function of the RB is to provide structural protection, from internal and external events and hazards, for passive heat removal from Reactor Vessel to Reactor Cavity Cooling System (RCCS)
 - Maintain Vessel System/Helium Pressure Boundary (HPB) geometry
 - Maintain RCCS geometry
- The RB provides other functions not required to meet regulatory requirements for offsite dose
 - Provides additional radionuclide retention (needed to meet EPA PAGs at EAB)
 - Limits air available for ingress after HPB depressurization


Vented Reactor Building Addresses Several Modular HTGR Specific Design Issues

- Compatible with non-condensing helium coolant
- Matched to modular HTGR accident behavior
 - Vented early in transient when radionuclides released from helium pressure boundary are relatively low
 - Closed later in transient when radionuclides released from fuel are relatively high
- Provides a more benign environment (e.g., heat, pressure, and structural loads) for passive Reactor Cavity Cooling System

MHTGR Reactor Building Vent Path from Reactor or Steam Generator Cavities

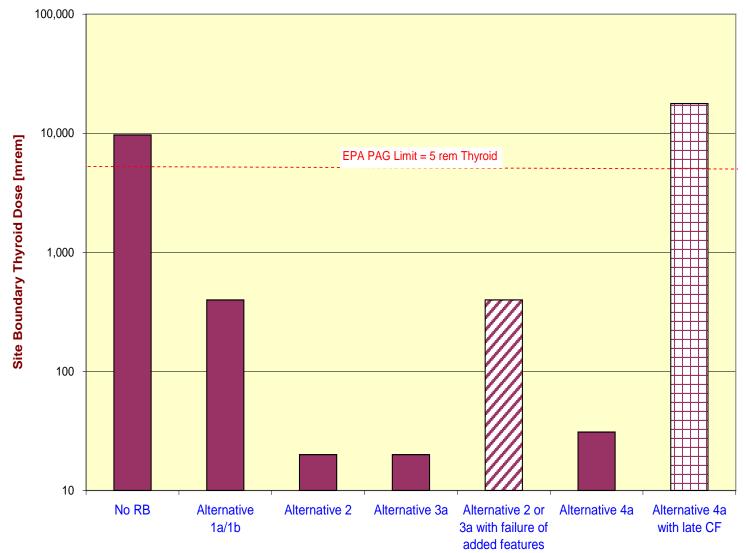
Alternative RBs Considered in Containment Study for MHTGR*

- 1. Vented, moderate leakage (100%/day) (Reference)
- 2. Vented, filtered, moderate leakage (100%/day)
- 3. Vented, filtered, low leakage (5%/day)
- 4A. Unvented, moderate pressure, low leakage (5%/day) air RCCS
- 4B. Unvented, moderate pressure, low leakage (5%/day) water RCCS
- 5A. Unvented, low pressure, low leakage (5%/day)
- 5B. Unvented, low pressure, low leakage (1%/day)

* "Containment Study for MHTGR," General Atomics Report, DOE-HTGR-88311, November 1989

All Alternative Reactor Buildings Considered for MHTGR Met the TLRC with Substantial Margin

Alternative PBMR RB Design Configurations

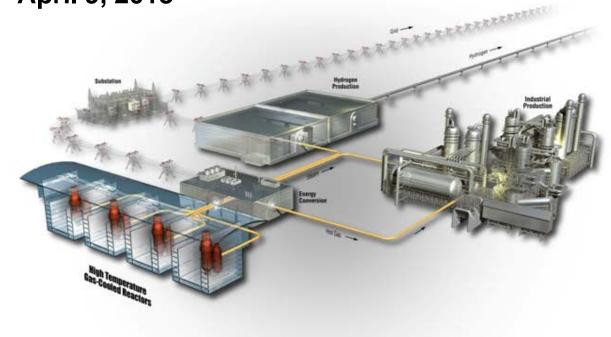

- 1a. Unfiltered, vented, moderate leakage (50-100%/day)
- 1b. Unfiltered, vented with blowout panels, moderate leakage (50-100%/day)
- Partially filtered, vented with blowout panels, moderate leakage (50-100%/day)
- 3A. Filtered, vented with blowout panels, lower leakage (25-50%/day)
- 3B. Filtered, vented with blowout panels and expansion volume, lower leakage (25-50%/day)
- 4A. Pressure retaining with internal blowout panels, low leakage (<1%/day)
- 4B. Pressure retaining with internal blowout panels and expansion volume, low leakage (<1%/day)</p>

* "Reactor Building Functional and Technical Requirements and Evaluation of Reactor Embedment," NGNP-NHS 100-RXBLDG, Rev 0, Westinghouse PBMR Team Report, September, 2008.

PBMR Reactor Building Alternatives 1a thru 4a Met the EPA PAG at the EAB with Substantial Margin

Summary of Findings from MHTGR and PBMR Alternative RB Evaluations

- Vented building provides best match for modular HTGR characteristics and passive design
- For modular HTGRs, high pressure, low leakage LWR-type containment designs increase radionuclide release in low frequency events
- Added filters and/or active HVAC systems that may not be available for low frequency events (e.g., seismic or station blackout) provide little additional margin relative to the TLRC
- Confirmed decision to place emphasis on retention at the source within the fuel
- More detail can be found in the response to RAI FQ/MST-82 and in its references



NGNP Defense-in-Depth Approach

ACRS Future Plant Designs Subcommittee Meeting

April 9, 2013

Presentation Agenda

- Defense-in-Depth (DID) Overview
 - DID Approach
 - DID Elements
 - NRC's DID Strategy
- NGNP DID Approach
 - Plant Capability DID
 - Programmatic DID
 - Risk-Informed Evaluation of DID
- Integrated DID Framework
- NGNP DID Approach Summary
- Key NGNP Attributes

DID Approach

• Develop a structured system for evaluating DID adequacy for licensing

DID Elements

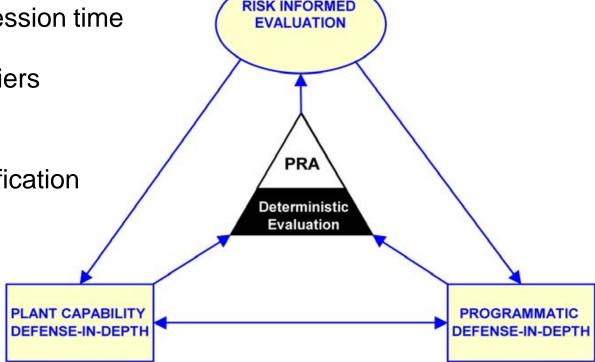
- Plant Capability DID
- Programmatic DID
- Risk-Informed Evaluation of DID

Nuclear Plant

Recent Summary of NRC's DID Strategy

"To protect public health and safety from the inadvertent release of radioactive materials, the NRC's defense-in-depth strategy includes multiple layers of protection:

- (1) prevention of accidents by virtue of the design, construction and operation of the plant,
- (2) mitigation features to prevent radioactive releases should an accident occur, and
- (3) emergency preparedness programs that include measures such as sheltering and evacuation.

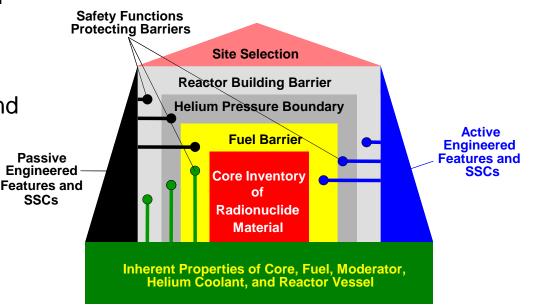

The defense-in-depth strategy also provides for multiple physical barriers to contain the radioactive materials in the event of an accident."

EA-12-050, "Issuance of Order to Modify Licenses with Regard to Reliable Hardened Containment Vents," Page 6, March 12, 2012.

Idaho National Laboratory

Plant Capability DID

- Reflects the decisions made by the designer in the selection of functions, structures, systems and components (SSC) for the design that assure defense-in-depth in the physical plant
- Examples:
 - Inherent reactor characteristics
 - Long event progression time constants
 - Radionuclide barriers
 - Passive SSCs
 - Active SSCs
 - SSC safety classification
 - Design margins



Radionuclide Barriers

Use multiple barriers for radionuclide retention

- The radionuclide barriers are concentric and independent
- Emphasis is on the performance of the fuel barriers
- Reactor Building provides DID for meeting top level regulatory criteria (TLRC)
- Active (typically non-safety related) SSCs and passive (typically safety related) SSCs work in concert with the inherent design characteristics to reduce the frequency of challenges to radionuclide barriers
- Challenges to barrier integrity and independence are considered
- Safety margins and conservative design approaches are used to address uncertainties in barrier and SSC performance

aho National Laboratory

Control of Core Heat Generation

- Large negative temperature coefficient intrinsically shuts reactor down
- Two independent and diverse systems of reactivity control for reactor shutdown drop by gravity on loss of power
 - Control rods
 - Reserve shutdown system
- Each system capable of maintaining reactor subcritical
- Either system capable of maintaining cold shutdown during refueling

Idaho National Laboratory

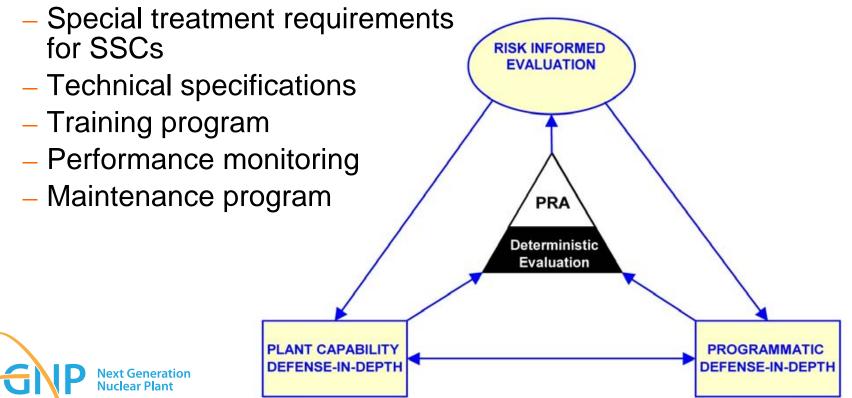
Removal of Core Heat

- Heat Transport System (active)
 - Used for process steam/cogeneration during normal operations
 - Residual heat removal with forced cooling of pressurized or depressurized helium from core to steam generator to secondary heat sink
- Shutdown Cooling System (active)
 - Provides heat removal during planned maintenance and unplanned events for investment protection
 - Residual heat removal with forced cooling of pressurized or depressurized helium from core to shutdown cooling water system
- Reactor Cavity Cooling System (passive)
 - Provides heat removal for investment and public protection during offnormal events
 - Residual heat removal from low power density, high heat capacity annular core with convection, conduction, and radiation to reactor vessel with helium pressurized or depressurized
 - Radiation from uninsulated reactor vessel to natural convection system in reactor cavity (air or water)

Control of Chemical Attack

- Air Ingress
 - Non-reacting coolant (helium)
 - High integrity nuclear grade pressure vessels make a large break exceedingly unlikely
 - Slow oxidation rate (high purity nuclear grade graphite)
 - Limited by core flow area and friction losses
 - Reactor building embedment and vents that close after venting limit potential air ingress

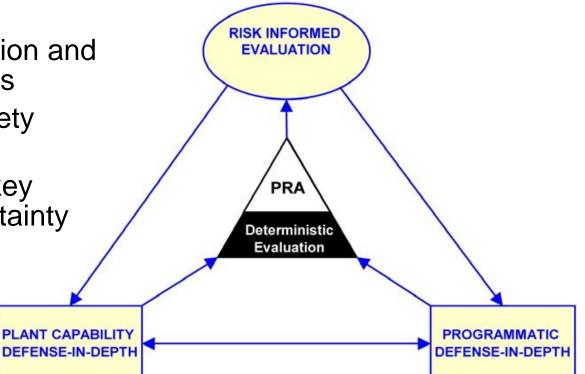
Water Ingress


- Non-reacting coolant (helium)
- Limited sources of water with moisture monitors, steam generator isolation (does not require AC power) and steam generator dump system
- Water-graphite reaction is endothermic, requires temperatures > normal operation, and has a slow reaction rate
- Graphite fuel element, fuel compact matrix, and ceramic coatings protect fuel particles

Idaho National Laboratory

Programmatic DID

- Processes of manufacturing, constructing, operating, maintaining, testing, and inspecting the plant that assure plant safety throughout the lifetime of the plant
- Examples:

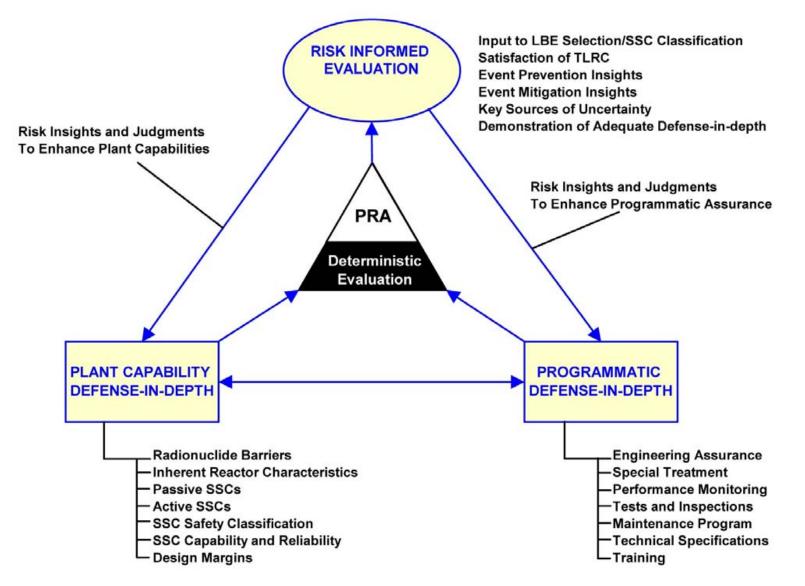


Risk-Informed Evaluation of DID

- Provides the framework for performing deterministic safety evaluations and risk assessment evaluations to determine how well various Plant Capability and Programmatic DID strategies have been implemented
- Provides:
 - Accident prevention and mitigation insights
 - Input to SSC safety classification

Next Generation

 Identification of key sources of uncertainty


Risk-Informed Evaluation of DID

- Identify credible failure modes and challenges to the radionuclide barriers; include dependencies and interactions among barrier and other SSC failure modes
- Identify the roles of SSCs in the prevention and mitigation of accident sequences and quantify the extent to which the accidents are prevented and mitigated
- Establish that there are no events with a significant frequency of occurrence that rely on a single element of design or programmatic approach in protecting the public from a release whose dose would exceed the TLRC

Integrated DID Framework

NGNP DID Approach Summary

Evaluates plant design capability features and programmatic elements in an integrated risk management approach to identify opportunities to reduce risk and to ensure that an adequate treatment of DID has been achieved after considering a full spectrum of events

Prevention

- Ceramic fuel resistance to melting
- Long event progression time constants
- Low power density; high heat capacity; slender, annular core geometry for heat transfer

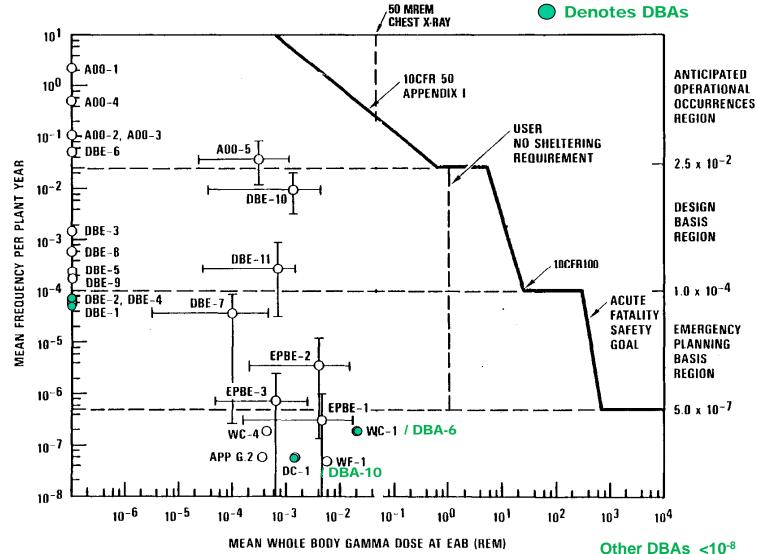
Mitigation

- Multiple (independent) barrier approach against radionuclide releases
- Active SSCs and passive SSCs work in concert with the reactor's inherent characteristics to protect the public
- Addresses uncertainty by employing safety margins and special treatments to ensure SSC capability and reliability

Emergency Preparedness

 Design goal to meet the PAGs at the site boundary (EPZ) for DBEs and BDBEs provides margin to the TLRC

Key NGNP Attributes


- Addresses a full-spectrum of internal and external events on a per plant-year basis
- Includes events that could affect multiple reactor modules to assess plant risk
- Uses ceramic fuel that will not melt when challenged by a full-spectrum of internal and external events
- Includes a "cliff edge" review to assure that the safety landscape is adequately addressed
- Assures that safety will not be wholly dependent on any single element of the design, construction, maintenance, or operation of the facility
- Provides successive compensatory means to prevent accidents or lessen the effects of damage if a malfunction or accident occurs
- Uses multiple, concentric, independent radionuclide barriers; breach of the helium pressure boundary does not result in failure of the fuel or the reactor building

aho National Laboratory

MHTGR DBEs, DBAs, and BDBEs (aka EPBEs) on F-C Plot (circa 1987)

Staff Assessment of Next Generation Nuclear Plant (NGNP) Key Licensing Issues

Advisory Committee on Reactor Safeguards (ACRS) Future Plant Designs Subcommittee Meeting April 9, 2013

> Donald Carlson, James Shea, Arlon Costa Thomas Boyle, Jonathan DeGange

Office of New Reactors (NRO) Division of Advanced Reactors and Rulemaking (DARR)

ASSESSMENT OF NGNP LICENSING ISSUES – OVERVIEW

- Project Background, History, and Status
- Assessment Process and Staff Products

ASSESSMENT OF ISSUES IN 4 KEY AREAS

- Licensing Basis Event Selection
- Source Terms
- Functional Containment Performance
- Emergency Preparedness

STAFF PRESENTERS

- Don Carlson: 301-415-0109, Donald.Carlson@nrc.gov
- Jim Shea: 301-415-1388, James.Shea@nrc.gov
- Arlon Costa: 301-415-6402, Arlon.Costa@nrc.gov
- Tom Boyle: 301-415-7673, Thomas.Boyle@nrc.gov
- Jonathan DeGange: 301-415-6992, Jonathan.DeGange@nrc.gov

NGNP Project Mission, Energy Policy Act of 2005:

- Department of Energy (DOE) and Idaho National Laboratory (INL) will demonstrate by 2021 a prototype modular high temperature gas-cooled reactor (HTGR) for cogenerating electricity and process heat
- NRC has licensing and regulatory authority for the prototype plant

Major NGNP Pre-Application Activities to Date

- Joint DOE-NRC Licensing Strategy Report to Congress, 2008: <u>Option 2</u> risk-informed and performance based approach: Use deterministic engineering judgment and analysis, complemented by PRA insights, to establish NGNP licensing basis
- NRC assessment of DOE/INL white paper submittals, 2010-present

DOE decision in letter to Congress, October 2011:

- DOE will not proceed with NGNP detailed design activities at this time
- NGNP Project will continue to focus on high temperature reactor R&D, <u>interactions with</u> <u>NRC to develop a licensing framework</u>, and establishment of a public-private partnership

RESOURCES

 NRC has been using DOE reimbursable funds to assess NGNP licensing issues in 4 key areas

NRC issued preliminary assessment reports to DOE, February 2012

- Assessment of Fuel Qualification and Mechanistic Source Terms (Rev. 0)
 - NGNP Fuel Qualification (FQ) White Paper
 - NGNP Mechanistic Source Terms (MST) White Paper
- Assessment of Risk-Informed and Performance-Based (RIPB) Approach (Rev. 0)
 - NGNP Defense-in-Depth Approach (DID) White Paper
 - NGNP Licensing Basis Event Selection (LBE) White Paper
 - NGNP Safety Classification of Structures, Systems, and Components (SSC) White Paper

NRC issued letter to DOE, February 2012

• Focus remaining NGNP interactions on issues in four key areas

(1) Licensing Basis Event Selection (2) Source Terms

(3) Functional Containment Performance (4) Emergency Preparedness

DOE/INL letter clarified approaches to key issues, July 6, 2012

- Public meetings and conference calls between NRC and DOE/INL, thru Nov 2012
- NRC staff review of supporting technical documents submitted by DOE/INL

DOE/INL provided information briefing to ACRS, January 17, 2013

ISSUE SUMMARY REPORT

• Staff report: "Summary Feedback on Four Key Licensing Issues"

FQ-MST ASSESSMENT REPORT (REV. 1)

 Updated staff report: "Assessment of White Papers Submittals on Fuel Qualification (FQ) and Mechanistic Source Terms (MST)."

RIPB ASSESSMENT REPORT (REV. 1)

 Updated staff report: "Assessment of White Paper Submittals on Defense-in-Depth (DID), Licensing Basis Event (LBE) Selection, and Safety Classification of Structures, Systems, and Components (SSC)."

Issue Summary Report

Protecting People and the Environment

SUMMARY FEEDBACK ON FOUR KEY LICENSING ISSUES

- i. Licensing Basis Event Selection
- ii. Source Terms
- iii. Functional Containment Performance
- iv. Emergency Preparedness
- Issues highlighted in DOE-NRC NGNP Licensing Strategy Report to Congress (2008)
- Considered key issues in earlier NRC pre-application activities for proposed modular HTGRs, i.e., MHTGR (DOE/General Atomics, 1986-1995) and Pebble Bed Modular Reactor (Exelon, PMBR Pty, 2001-05)
- All issues are considered in view of relevant prior staff positions, ACRS comments, and Commission direction (e.g., SECY-93-092, NUREG-1338, SECY-03-0047, SECY-05-0006, NUREG-1860, SECY-11-0152).
- The RIPB approach proposed for NGNP is similar to RIPB approaches that have been or may be considered for NUREG-1860, NUREG-2150, and NTTF Recommendation 1. A revised or new framework resulting from these other efforts may change the current NRC staff positions for NGNP.

OVERVIEW

- After ACRS review, NRO will finalize the three staff products and publicly issue them to DOE
- Presentations today are based on the staff's Issue Summary Report

MAJOR CONCLUSIONS

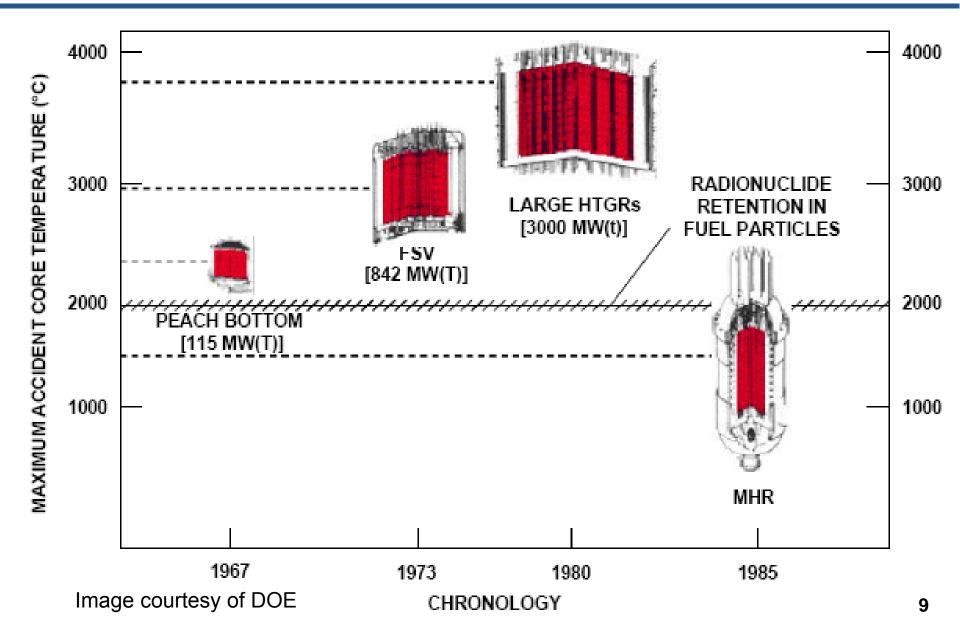
- Staff views DOE/INL's proposed approaches to NGNP licensing issues as being generally reasonable, with caveats
 - Deterministic elements should be strengthened
 - Technical issues should be resolved through prototype testing under 10 CFR 50.43(e)(2)

QUALIFIERS

- Staff feedback is advisory; regulatory decisions will be based on NGNP license application and related Commission policy determinations
- Staff has assessed the proposed approaches solely as they apply to the modular HTGR design concept (next slides)

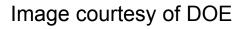
Early History of HTGRs

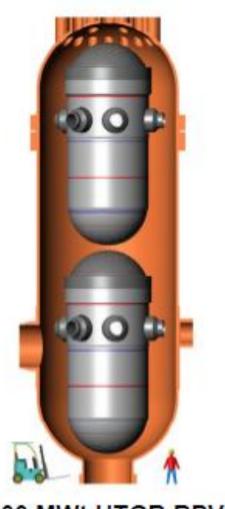
- Dragon United Kingdom, 1966-75
 Block type, 20 MWt, 750 °C Outlet
- AVR West Germany, 1967-88 →→
 Pebble bed, 46 MWt (15 MWe), 950 °C



- Peach Bottom 1 United States, 1967-74
 Block type, 115 MWt (40 MWe), 725 °C Outlet
- Fort St. Vrain United States, 1976-89
 Block type, 840 MWt (330 MWe), 785 °C Outlet
- THTR West Germany, 1985-89
 Pebble bed, 750 MWt (300 MWe), 750 °C Outlet

HTGR Design Evolution (U.S. & Germany) Post-TMI Shift to Modular HTGR Safety Concept


Protecting People and the Environment



Size Comparison

- Per unit power output, modular HTGRs are much larger than LWRs
- Relative to LWRs, modular HTGRs have
 - Much lower core power density
 - Much lower fuel volume fraction in active core
 - LWRs ~30%
 - HTGRs ~0.5%
 - Much greater thermal inertia

600 MWt HTGR RPV vs PWR RPV

LICENSING BASIS EVENT SELECTION

SUMMARY OF DOE/INL PROPOSAL

- DOE/INL proposes a process for selecting and evaluating NGNP licensing basis event sequences (LBEs) that seeks to blend the strengths of probabilistic and deterministic methods
- The process would yield LBEs categorized as Anticipated Events, Design Basis Events, Design Basis Accidents, and Beyond Design Basis Events
- Offsite dose consequences of LBEs would be evaluated and assessed against Top Level Regulatory Criteria (TLRC) and EPA Protective Action Guidelines (PAGs) placed on a Frequency-Consequence (F-C) curve
- The LBE process would incorporate a risk-informed approach to safety classification of structures, systems, and components (SSCs)

Licensing Basis Event Selection

Protecting People and the Environment

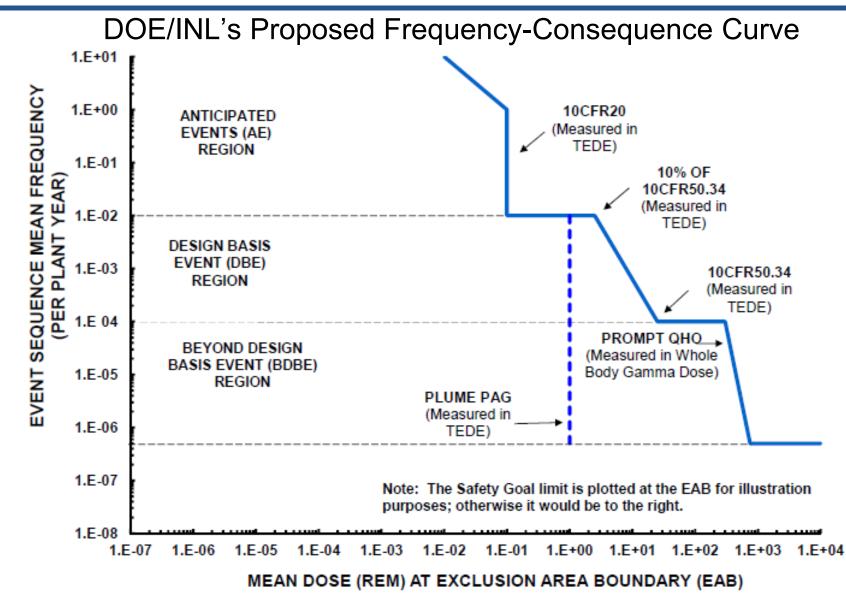


Image courtesy of DOE

SUMMARY OF STAFF FEEDBACK ON LBE SELECTION

- Proposed LBE selection approach is generally reasonable but overly riskbased in some respects. Deterministic elements should be strengthened
- Future Commission direction may be appropriate for issues such as:
 - Frequency cutoffs for Design Basis and Beyond Design Basis Events
 - "Per-plant-year" method for addressing risk at multi-reactor module plant sites
 - Process and criteria used for selection of DBAs to demonstrate regulatory compliance
 - Consideration of alternate TLRC and F-C curves (e.g., NUREG-1860) in the contexts of
 - Future licensing of NGNP or other modular HTGRs
 - Developing a Technology Neutral Framework, etc.

<u>Issue 1</u>: DOE/INL requests NRC agreement on key terminology and naming conventions for its proposed event categories.

- Proposed event category names and descriptions are reasonable
- Full set of approved LBEs may have to include more deterministic events
 - Postulated DBAs and BDBE-derived DBAs in addition to DBAs derived from DBEs
 - AEs evaluated against specified acceptable fuel/core design limits (SAFDLs) for HTGR
- Final selection of DBAs may need to include postulated deterministic event sequences

<u>Issue 2</u>: DOE/INL requests that NRC endorse the proposed process and categorizations for SSC classification.

- Approach blends the strengths of probabilistic and deterministic methods in accordance with the NRC's policy statement on PRA
- Applies a risk-informed approach while addressing traditional deterministic definition of safety-related SSCs in 10 CFR 50.2
- Special treatments for the safety-related and non-safety-related with special treatment (NSRST) categories of SSC classification commensurate with ensuring that SSCs can perform required safety functions for LBEs, provide DID
- Processes and categorizations for SSC safety classification are reasonable

<u>Issue 3</u>: DOE/INL requests NRC agreement with its proposed placement of TLRC on an F-C curve.

- The selected TLRC and their placement on an F-C curve are reasonable
- DOE/INL should pursue an appropriate regulatory limit to ensure the required level of integrity of the fuel barrier
- Deterministic elements of the proposed approach should be strengthened.
- Future Commission direction may be appropriate for determination of dose acceptance criteria for various event categories

<u>Issue 4</u>: DOE/INL requests that NRC establish frequency ranges based on mean event sequence frequency.

- The approach for categorizing each event sequence based on mean frequency is reasonable
 - Uncertainties would be considered in deriving both mean frequency and mean consequence of event sequences
 - Upper (95%) and lower (5%) bounds of the event frequency uncertainty distribution will be compared against the frequency boundaries of the LBE categories
 - If the upper or lower bounds of confidence intervals straddle frequency boundaries between LBE categories, the consequences of the event sequence will be compared against the criteria for each LBE category

<u>Issue 5</u>: DOE/INL requests that NRC endorse the "per-plant-year" method for addressing risk at multi-reactor module plant sites.

- Proposed "per plant-year" method for addressing risk at multi-module plants is reasonable
- The staff believes that an integrated risk approach is more conservative and comprehensive than the treatment of modules on an individual basis
- Proposed method would appropriately address event sequences that involve source terms from one reactor module or multiple reactor modules
- Future Commission direction may be appropriate for this topic

<u>Issue 6</u>: DOE/INL requests that NRC agree on the frequency cutoffs for the DBE and BDBE regions.

- Top design objective is to meet the EPA PAGs at the site boundary for all event sequences more frequent than 5E-7 per plant year
- DOE/INL provide justification for frequency cutoffs in their LBE white paper
- Uncertainties would be considered in deriving both the mean frequency and mean consequence of event sequence
- Staff believes frequency cutoffs are reasonable for modular HTGRs as long as the PRA used in the LBE selection process:
 - assesses multiple failures from common-cause events
 - account for both operating and shutdown modes, internal and external plant hazards
- Future Commission direction may be appropriate for deciding frequency cutoffs for modular HTGR licensing

<u>Issue 7</u>: DOE/INL requests that NRC endorse the overall process for performing assessments against TLRC such as issues with uncertainties and PRA, calculational methodologies employed, and adequate incorporation of deterministic elements.

- DOE/INL's proposed approach to using engineering judgment to address uncertainties is a reasonable approach for assessing LBEs in a risk-informed manner
 - LBEs with frequency uncertainty distributions that straddle two event category regions at the 95% confidence level would be analyzed using the dose acceptance criteria of each region
 - Calculational methodologies to be employed assess full event sequences using best-estimate models with mean or conservative analysis (95% confidence)
- For AE and BDBE compliance with the TLRC, the proposed approach of realistic source term calculations needs further consideration and would involve new regulatory interpretations for potential future consideration by the Commission
- Certain elements of the proposed approaches are overly risk-based. Deterministic elements should be strengthened

NRC Staff Feedback cont'd

The process is described by DOE/INL as:

- Technology neutral
- Comprehensive; considers full plant response to a wide spectrum of events
- Quantitative; so safety margins can be assessed
- Proposed approaches are generally consistent with relevant past staff positions and Commission guidance such as:
 - Advanced Reactor Policy Statement
 - NUREG-1338 MHTGR PSER
 - NUREG-1860 Feasibility Study for Performance-Based Reg. Structure
 - SECY-93-092, SECY-95-299, SECY-98-0300
 - SECY-03-0047, SECY-04-0157, SECY-05-006

MECHANISTIC SOURCE TERM

BACKGROUND

 Commission approved the use of event-specific mechanistic source term (MST) as proposed in SECY-93-092 and SECY-03-0047

A mechanistic source term is the result of an <u>analysis of fission</u> <u>product release</u> based on the amount of cladding damage, fuel damage, and core damage resulting <u>from the specific accident</u> <u>sequences</u> being evaluated. It is developed using best-estimate phenomenological models of the transport of the fission products from the fuel through the reactor coolant system, through all holdup volumes and barriers, taking into account mitigation features, and finally, into the environs. [SECY-93-092]

[T]he use of scenario-specific source terms [is allowable], provided there is sufficient understanding and assurance of plant and fuel performance and deterministic engineering judgment is used to bound uncertainties. [SECY-03-0047]

SUMMARY OF STAFF FEEDBACK

 The NRC staff's overall assessment is that the proposed approaches to mechanistic source terms are generally reasonable, with some potentially significant caveats

<u>Issue 1</u>: Endorse the proposed NGNP mechanistic source terms definition - the quantities of radionuclides released from the reactor building to the environment during the spectrum of LBEs, including timing, physical and chemical forms, and thermal energy of the release.

- Consistent with SRMs to SECY-93-092 and SECY-03-0047
- The NRC staff concludes that DOE/INL's proposed definition of NGNP mechanistic source terms aligns with the current staff position on the treatment of advanced reactor mechanistic source terms and is thus reasonable for use in DOE/INL's proposed approach to determining licensing parameters for modular HTGRs

<u>Issue 2</u>: Agree that NGNP source terms are event specific and determined mechanistically using models of radionuclide generation and for transport that account fuel and reactor design characteristics, passive features, and the radionuclide release barriers.

- Consistent with SRMs to SECY-93-092 and SECY-03-0047
- DOE/INL's proposed approaches to developing event-specific mechanistic source terms are reasonable

<u>Issue 3</u>: Agree that NGNP has adequately identified the key HTGR fission product transport phenomena and has established acceptable plans for evaluating and characterizing those phenomena and associated uncertainties.

- Ongoing and planned testing and research activities for NGNP fuel qualification and mechanistic source terms development are generally reasonable
- Staff expects more information on release and transport phenomena through event-specific pathways to be developed as DOE/INL's activities in these areas proceed
- Data from NGNP prototype tests would be needed to verify and supplement the technical basis for NGNP fission product transport modeling and validation

DOE/INL proposes to include in their fission product transport models:

- Transport of radionuclides from their point of origin through the fuel to the circulating helium
- Circulating activity in the helium pressure boundary (HPB)
- Distribution of condensable radionuclides in the HPB (plateout and dust)
- Radionuclide release from HPB and distribution in the reactor building (i.e., circulating activity, lift-off, wash-off; heat-up)
- Radionuclide release from the reactor building to the environment (source term)
- In addition to providing source terms, these calculations provide radionuclide inventories throughout the plant.

Mechanistic Source Term

Protecting People and the Environment

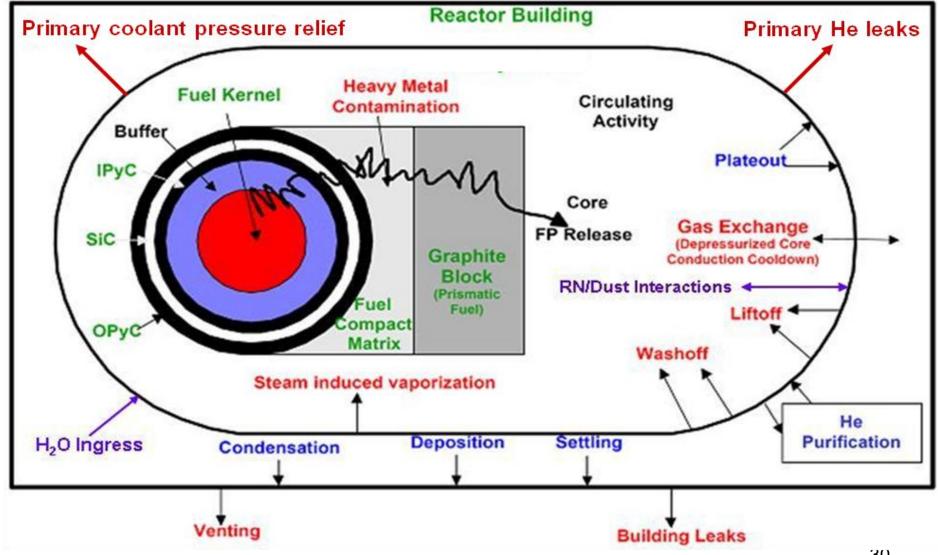


Image courtesy of DOE

ADDITIONAL NRC STAFF FEEDBACK

- The NRC staff's overall assessment is that the proposed approaches to mechanistic source terms are generally reasonable, with some potentially significant caveats.
- Staff's preliminary view is that some fuel qualification elements should to be supplemented to support the MST and the NGNP safety case
- The NRC staff believes satisfactory completion of a post-irradiation fuel inspection and testing program including fuel from an NGNP prototype is necessary to verify and supplement the technical basis for NGNP MST code validation
- The draft ASME/ANS PRA standard states that it is required that all PRA elements (including the mechanistic source term element) have a peer review. The staff views such peer review as having particular importance for the implementation of riskinformed approaches to NGNP licensing

ADDITIONAL NRC STAFF FEEDBACK

- LBEs for siting should include postulated bounding events that adequately challenge all available barriers in the assessment of event-specific mechanistic source terms. Postulated events could include:
 - Bounding events with air ingress
 - Bounding events with water ingress
- Safety terrain studies related to BDBEs of low probability should be evaluated to inform the selection of LBEs used in establishing the EPZ and EP requirements
- Staff believes that DOE/INL's Research Plan for Moisture and Air Ingress (PLN-4086, April 2012) presents a reasonable approach for providing data needed for developing and validating models for predicting the effects of air and moisture ingress on NGNP TRISO fuel performance and fission product transport
- In SECY 05-0006, the staff recommends that source terms for compliance should be 95% confidence level values based on best-estimate calculations

FUNCTIONAL CONTAINMENT PERFORMANCE

OVERVIEW OF DOE/INL PROPOSAL

- Proposed definition of Functional Containment: The collection of design selections that, taken together, ensure that
 - Radionuclides are retained within multiple barriers, with emphasis on retention at their source in the fuel
 - NRC regulatory requirements and plant design goals for release of radionuclides are met at the Exclusion Area Boundary
- DOE/INL requests NRC feedback on three elements of its approach to NGNP functional containment:
 - AGR Fuel Program activities
 - Options for containment functional performance standards
 - Event selection for plant siting and functional containment design decisions

Issue 1: AGR Fuel Program Activities

Confirm that plans being implemented in AGR Fuel Program are generally acceptable and provide reasonable assurance that TRISO fuel can retain fission products in predictable manner. Identify any additional information or testing needs.

NRC Staff Feedback - Overview

- Scope of AGR activities is generally reasonable in context of pre-prototype testing
- Early AGR irradiation and safety testing results show promise for demonstrating much of desired TRISO fuel retention capability
- Additional data are needed from fuel and core testing in NGNP Prototype to provide reasonable assurance of targeted fission product retention in fuel
 - Test data on fuel irradiated in HTGR for effects of plutonium fission products (Pd, Ag) on TRISO particle coatings
 - Testing in prototype to confirm NGNP core operating conditions and ability to detect potential core "hot spot" operating anomalies
- 10 CFR 50.43(e)(2) allows NRC to impose additional requirements on prototype plant during testing period

Issue 1: AGR Fuel Program Activities (cont.)

Additional Staff Feedback

- Adequately define fuel service conditions and performance requirements
 - Normal operations
 - Pu burnup for potential effects of Pu fission products (Pd, Ag) on TRISO fuel particle coatings
 - Potential effects of irradiation parameter path dependence
 - NGNP core operating condition uncertainties and anomalies (hot spots)
 - Accidents
 - Design information is needed to confirm DOE/INL's assumed lack of specific fuel testing requirements for reactivity excursion events
 - DOE/INL's Research Plan for Moisture and Air Ingress (April 2012) should be implemented to address data needs for fuel performance and fission product transport in bounding events
- Supplement AGR data with data from fuel irradiated in NGNP prototype
 - Real-time versus accelerated testing
 - Prototypic plutonium burnup

Issue 1: AGR Fuel Program Activities (cont.) Additional Staff Feedback

- Evaluation of irradiation test temperature uncertainties
 - Additional information provided in two INL submittals
 - "AGR-1 Thermocouple Analysis," May 2012
 - "Uncertainty Quantification of Calculated Temperatures for AGR-1 Experiment," June 2012
 - Important to understand how AGR irradiation temperature uncertainties are quantified and affected by increasing thermocouple failures
- Assessment of applicability of delayed fuel heatup testing
 - DOE/INL report (TEV-1543, June 2012) analyzes potential changes in fuel composition during the interim between irradiation and heatup testing. Results support application of data from delayed fuel heatup tests to the modeling of fuel performance and fission product transport in NGNP accidents.

Issue 2: Options for Containment Functional Performance Standards

- Proposed approach presents a reasonable option for establishing modular HTGR functional containment performance standards (per SRM to SECY-03-0047)
 - Radionuclide containment function: reduce releases to the environs
 - Other "containment" functions as discussed in SECY-05-0006
 - Protect risk-significant SSCs from internal and external events
 - Physically support risk-significant SSCs
 - Protect onsite workers from radiation
 - Remove heat to keep risk-significant SSCs within design and safety limits
 - Provide physical protection (i.e., security) for risk-significant SSCs
 - Reduce radionuclide releases to environs (including limiting core damage)
 - Limit air ingress after helium depressurization accidents
- Future Commission policy direction may be appropriate for determining specific criteria applied to modular HTGR functional containment

<u>Issue 3</u>: Event selection for plant siting and functional containment design decisions

- Core melt accident assumed for LWRs may not be applicable to modular HTGRs
- Proposed approach to event selection for siting source terms is generally reasonable when supplemented with insights from "safety terrain" studies
 - Applicant should submit for NRC consideration a risk-informed selection of siting events, building on the types of bounding events considered by staff in NUREG-1338 for MHTGR
 - To assure there are no "cliff-edge effects" [credible events with high dose consequences] and to understand ultimate safety capability, bounding event selection should be further informed by exploratory studies of postulated extreme events, including bounding events with air oxidation of graphite per the SRM to SECY-93-092. Such exploratory events should be physically plausible, may have estimated frequencies below the BDBE region (< 5E-7), and will consider inherent behavior of the modular HTGR design
- Future Commission direction may be appropriate for the selection of siting source term events for functional containment criteria

EMERGENCY PREPAREDNESS

BACKGROUND

- In October 2010, DOE/INL submitted a white paper on "Determining the Appropriate Emergency Planning Zone Size and Emergency Planning Attributes for an HTGR"
 - NRC staff did not formally review this white paper submittal and provided no formal feedback to DOE/INL on its contents
 - DOE/INL participated in NRC public meetings in 2011 on emergency preparedness framework issues for small modular reactors (SMRs)
- In October 2011, NRC staff issued SECY-11-0152, Development of an Emergency Planning and Preparedness Framework for Small Modular Reactors
 - Described a general approach to scalable EPZs
- 10 CFR 50.47(c)(2) allows Emergency Planning Zone (EPZ) size for gascooled reactors to be considered on a case-by-case basis

SUMMARY OF STAFF FEEDBACK

- DOE/INL's proposed approaches are generally reasonable and are responsive to the Commission's Policy Statement on Advanced Reactors
- Future Commission direction may be appropriate for this area
- The staff is open to considering alternative EP requirements and frameworks for advanced reactors and SMR facilities
- The staff does not plan to propose additional new EP policies or to revise the existing guidance for addressing EP requirements at this time

<u>Issue 1</u>: DOE/INL requests that NRC propose a new policy or revised regulations on EPZ sizing. NGNP goal is to justify EPZ at 400-meter Exclusion Area Boundary.

NRC Staff Feedback:

Consistent with SECY-11-0152

- Describes dose-distance scalable EPZ approach
- Staff will more fully address EP issues in the context of site-specific preapplication reviews
- Staff would be open to considering future proposals from industry or established pre-applicants on such topics as:
 - PRA-informed approach that includes dose assessment versus distance
 - Risk-informed criteria for determining the point at which the probability of exceeding the PAG values is acceptably low

<u>Issue 2</u>: DOE/INL requests that NRC establish specific guidance on graded approaches to applying EP requirements in relation to the PAGs.

- NRC expects specific proposals from NGNP pre-applicant to be supported by details of the NGNP design, site, and co-located user facilities
- Proposed EP approaches for NGNP should include consideration of how potential EP basis events may be influenced by co-location and external events impacting the site
- NGNP EP approach addressing PAGs must be developed by the site applicant
- Graded EP may be different for NGNP prototype plant versus subsequent standard plants

<u>Issue 3</u>: DOE/INL requests that NRC propose guidance on how issues related to modularity of the designs and the co-location of multi-module plants near industrial facilities should be considered in EP.

- Co-location considerations for current LWRs are largely applicable
 - Regulatory guidance already incorporated in existing EP plans
- Co-generation implying co-located utilization of nuclear heat sources
 - Different regulatory nexus
 - Safety strategy must consider challenges and issues arising from the modular HTGR being coupled to the industrial facility
- Expect staff considerations of new regulations, hazards assessments, accident evaluations, and security issues

Assessment of NGNP Licensing Issues

THANK YOU