Enclosure 2

UN#13-056 The Seismic Category I Forebay and UHS Makeup Water Intake Structure are reinforced Page 58 of 105 concrete structures situated along the western shoreline of the Chesapeake Bay. As illustrated in

Figure 3.8-4, the Forebay is connected to the CWS Makeup Water Intake Structure (Seismic Category II) and the Intake Pipes (Seismic Category I) from the north (plant reference) and the UHS Makeup Water Intake Structure from the south. The two intake pipes transport water (under gravitational head) from the Chesapeake Bay to the Forebay, which supplies water to both the CWS Makeup Water Intake Structure and the UHS Makeup Water Intake Structure. The UHS Makeup Water Intake Structure houses components associated with the UHS Makeup Water System, which provides makeup water to the Essential Service Water Cooling Tower basins for extended cooling that starts 72 hours after a design basis accident. Figure 3.8-1 shows the position of the Forebay and UHS Makeup Water Intake Structure relative to the NI.

A general area drawing of the UHS Makeup Water Intake Structure, Circulating Water Makeup Intake Structure and the Forebay is shown in Figure 9.2-4. Plan views of the UHS Makeup Water Intake Structure are shown in Figure 9.2-5 and Figure 9.2-6. A section view is shown in Figure 9.2-8.

The Forebay is a below-grade open top reinforced concrete water basin, with overall dimensions of 109 ft (33.2 m) long by 89 ft (27.1 m) wide by 39 ft (11.9 m) deep, including a 5 ft (1.5 m) thick basemat. Inside dimensions of the Forebay are 100 ft (30.5 m) long by 80 ft (24.4 m) wide, with 4.5 ft (1.4 m) thick walls. The Forebay is embedded approximately 37.5 ft (11.4 m) below the nominal grade elevation of 10 ft (3.0 m), with the top of the walls at elevation 11.5 ft (3.5 m) and the top of the basemat at elevation -22.5 ft (-6.9 m).

The UHS Makeup Water Intake Structure is a reinforced concrete structure 93 ft (28.3 m) long by 58 ft (17.7 m) wide by 69 ft (21 m) high, including a 5 ft (1.5 m) thick basemat that is integrally connected with the Forebay basemat. The structure consists of a below-grade water basin 59 ft (18.0 m) long by 58 ft (17.7 m) wide by 39 ft (11.9 m) deep situated approximately 37.5 ft (11.4 m) below the nominal grade elevation of 10 ft (3.0 m) and an above-grade pump house structure situated partially above the water basin and partially over structural fill.

The five main elevations of the UHS Makeup Water Intake Structure are:

- Elevation -22.5 ft (-6.9 m): Bottom of the water basin and top of the basemat. There are four independent pump bays in the water basin, separated by reinforced concrete walls.
- Elevation 11.5 ft (3.5 m): Top of the operating deck and pump house floor, which includes four make-up water pump rooms separated by reinforced concrete walls. Each of the four make-up water pump rooms contains an air handling unit. The pump rooms are water-tight to protect against hurricane floods.
- Elevation 21.0 ft (6.4 m): Top of floor containing four makeup water traveling screens, which includes four traveling screen rooms separated by reinforced concrete walls. The rooms are elevated above probable maximum storm surge floods and the walls are water-tight to protect against hurricane floods, including surge, wave heights, and wave run-up.
- Elevation 26.5 ft (8.1 m): Top of the floor containing four UHS makeup water transformer rooms, each of which houses a transformer, and four air cooled condenser rooms, each of which houses an air cooled condenser.
- Elevation 41.5 ft (12.6 m): Top of the nominally 2 ft (0.6 m) thick, reinforced concrete roof slab.

CCNPP Unit 3	219	Revision 9
	© 2007-2013 UniStar Nuclear Services, LLC. All rights reserved.	Supplement 1
	COPYRIGHT PROTECTED	April 2013

RAI 343 03.07.02-72

Enclosure 2 1.142 (NRC, 2001)). UN#13-056 Page 59 of 105

> As noted in Section 3.8.4.1.9, buried pipes are located such that the top surface of the pipe is below the site-specific frost depth, with additional depth used to mitigate the effects of surcharge loads and tornado or turbine generated missiles. In lieu of depressing the pipes in the soil beyond that required for frost protection, i.e., to obviate the risk of tornado or turbine generated missile impacts, permanent protective steel plates, located at grade, may be designed.

Bending stresses in buried pipe due to surcharge loading are determined via manual calculations, treating the flexible pipe as a beam on an elastic foundation. Resulting stresses are combined with operational stresses, as appropriate.}

3.8.4.4.6

Design Report

{Design reports for the Forebay and UHS Makeup Water Intake Structure are presented in Appendix 3E.4. Design reports for Seismic Category I Buried Piping and Seismic Category I Buried Duct Banks are presented in Appendices 3E.5 and 3E.6, respectively.}

3.8.4.4.7 Structure

(Forebay and UHS Makeup Water Intake

This section is added as a supplement to U.S. EPR FSAR Section 3.8.4.4.

The Forebay and UHS Makeup Water Intake Structure are reinforced concrete shear wall structures. Vertical loads are transferred to the foundation basemat through the reinforced concrete walls before being transferred to the supporting soil through bearing pressure. Lateral loads, including those that are seismically induced, are transferred to the supporting soil by the foundation basemats and below-grade walls through friction, adhesion, and passive soil pressure, if necessary.

A finite element (FE) model was created for the Seismic Category I Forebay, UHS Makeup Water Intake Structure and Seismic Category II CWS Makeup Water Intake Structure, using STAAD Pro (Version 8i). The CWS Makeup Water Intake Structure is included in the FE model since it is integrally connected to the Forebay, shown in Figure 9.2-4. Since the CWS Makeup Water Intake Structure, Forebay, and UHS Makeup Water Intake Structure share a common basemat, they are also known as the Common Basemat Intake Structures (or CBIS).

RAI 343 03.07.02-74

STAAD Pro is a commercial structural engineering computer program developed by Bentley Systems, Inc. QA and QC requirements for safety-related structures are documented in the vendor's validation and verification manuals. The program is accepted for use in accordance with RIZZO's engineering department and QA procedures. The program is in compliance with the requirements of ASME NQA-1-1994 (ASME, 1994). The STAAD Pro FE model is converted to a SASSI model using RIZZO computer codeACS SASSI, version 1.3a2.3.0, to perform soil-structure interaction (SSI) analysis. SSI analysis is discussed in Section 3.7.2. Due to the SASSI limitations in node numbers of the computer code, the SASSI model has a slightly coarser mesh than the STAAD model., a symmetric plan in the FE model had to be considered for the SSI analysis.

The STAAD Pro FE model is also used to conduct static analysis under non-seismic loads to compute the structural responses, generate results for the design of reinforced concrete structural elements, and perform static stability and bearing pressure evaluations. The finite element analysis results from the SSI analysis and the static analysis are combined to determine the reinforced concrete design forces and moments under seismic load cases.

Enclosure 2

UN#13-056 The FE model is described in detail in Section 3.7.2.3. Figure 3.7-23 and Figure 3E-5 depicts the Page 60 of 105FE model for the static analysis of the CBIS. The entire CBIS is modeled, without assuming a symmetry plane, and the UHS MWIS is modelled in greater detail.

For the static analysis, the soil medium below the foundation basemat is represented by soil spring elements. The modulus of subgrade reaction for the soil spring elements is based on the site-specific soil properties presented in Section 2.5.4. Effects of the following loads are calculated from the static analysis: dead loads, live loads (including snow loads), hydrostatic loads, lateral earth pressure loads (including groundwater effects), buoyancy loads, wind loads, tornado loads (including wind pressure and differential pressure effects), SPH and PMH loads (including hydrostatic pressure, buoyancy, wave pressure, and concurrent wind pressure effects). Pipe reactions are considered by applying a blanket load of 50 psf to the structure.

During maintenance of the UHS Makeup Water Intake Structure, when stop logs are installed, interior or exterior below-grade cells may be empty. The exterior embedded walls, with the empty adjacent cell, are subject to lateral soil pressure, surcharge and hydrostatic pressure from a normal groundwater level of +3 ft (0.9 m) NVGD 29. This postulated maintenance condition is considered in the FE model for designing the side walls of the UHS Makeup Water Intake Structure.

RAI 343 03.07.02-72

Seismic induced hydrodynamic loads associated with the water contained in the CBIS are calculated according to the provisions of ACI 350.3-06 (ACI, 2006). Effects of the impulsive and convective components of the hydrodynamic loads are calculated in the SSI analysis by including the corresponding water mass and springs in the <u>ACS</u> SASSI model.

RAI 339 03.08.04-33

The accelerations determined from the SSI analysis are applied to the FE model and combined with other static analyses to generate design forces and moments for load combinations involving seismic effects, in accordance with Section 3.8.4.3.2. Seismic accelerations for a particular earthquake direction are computed by adding the accelerations of three directions at a given to action using the Square Root of the Sum of the Squares (SRSS) methodalgebraic summation method for each point in time. Accelerations are then enveloped for a particular direction for all soil profiles (i.e., UB, BE, LB described in Section 3.7.1.3.3).

Following application of the SASSI accelerations from the three components of earthquake motions to the static model, the results are combined using the Square Root of the Sum of the Squares (SRSS) method, as described in Section 3.7.2.6. The design forces and moments from seismic and non-seismic load combinations are used to design reinforced concrete shear walls and slabs according to the provisions of ACI 349-01 (ACI, 2001a) (with supplemental guidance of Regulatory Guide 1.142 (NRC, 2001)). Results of the reinforced concrete design are provided in Appendix 3E Section 3E.4.5.

The evaluation of slabs and walls for external hazards (e.g., tornado generated missiles) is performed by local analyses, following the procedure outlined in U.S. EPR FSAR Section 3.8.4.4.1. Procedures for stability evaluation and bearing pressure calculation are discussed in Section 3.8.5.4.6.}

3.8.4.5

Structural Acceptance Criteria

The U.S. EPR FSAR includes the following COL Item in Section 3.8.4.5:

A COL applicant that references the U.S. EPR design certification will confirm that site-specific conditions for Seismic Category I buried conduit, electrical duct banks, pipe, and pipe ducts satisfy the criteria specified in Section 3.8.4.4.5 and those

COPYRIGHT PROTECTED

Enclosure 2 UN#13-056 Service loads Page 61 of 105

• D + H + L + F + Fb

Severe environmental loads

- $\bullet \quad \mathbf{D} + \mathbf{H} + \mathbf{L} + \mathbf{F} + \mathbf{F}\mathbf{b} + \mathbf{W}$
- D + H + L + F + Fb + SPH

Extreme environmental loads

- D + H + L + F + Fb + Wt
- $\bullet \quad D + H + L + F + Fb + E'$
- D + H + L + F + Fb + PMH

3.8.5.4

No departures or supplements.

3.8.5.4.1 Category I Foundations

No departures or supplements.

3.8.5.4.2 Foundation Basemat

No departures or supplements.

3.8.5.4.3 Foundation Basemats

No departures or supplements.

3.8.5.4.4 Foundation Basemats

Structure Basemats

No departures or supplements.

3.8.5.4.5

3.8.5.4.6

RAI 343 03.07.02-72

{Design reports for the Forebay and UHS Makeup Water Intake Structure basemats are presented in Appendix 3E.4.}

Design Report

{Forebay and UHS Makeup Water Intake

This section is added as a supplement to U.S. EPR FSAR Section 3.8.5.4.

As shown in Figure 3.7-23, the foundation basemats are part of the finite element model used for the analysis and design of the Seismic Category I Forebay and UHS Makeup Water Intake Structure. The finite element mesh of the basemats is shown in Figure 3.8-5. Note that only half of the basemat is modeled because of symmetry. Analysis and critical section design procedures for these structures are presented in Section 3.8.4.4.7.

CCNIDE	Onit 3	
CCINII	Offic 5	

Revision 9 Supplement 1 April 2013

Design and Analysis Procedures

General Procedures Applicable to Seismic

Nuclear Island Common Basemat Structure

Emergency Power Generating Buildings

Essential Service Water Buildings

© 2007-2013 UniStar Nuclear Services, LLC. All rights reserved. COPYRIGHT PROTECTED

FSAR: Chapter 3.0

Enclosure 2

UN#13-056 To ensure the stability of the structures during various design basis events, the Common Basemat Page 62 of 105Intake Structures (CBIS) are checked for sliding, overturning, and flotation using the stability load combinations described in Section 3.8.5.3.

Static and dynamic bearing pressures are calculated and compared with the bearing capacities defined in Table 2.5-67.

For the static load combinations, the STAAD model maximum bearing pressures at each node are obtained by dividing the nodal reaction (spring force) by the nodal tributary area.

RAI 339 03.08.04-34

Both average and maximum bearing pressures are determined for the STAAD Pro FE model. The average bearing pressure is determined by summing the support node reaction forces below the CBIS basemat and dividing it by the area of the basemat. Maximum bearing pressures are calculated as follows:

- At each support node, the nodal reaction (i.e., spring force) is divided by the number of plates connected to that node and the resulting force assigned to each of the plates connected to the node.
- For each plate, the force contributions from its nodes are summed to yield a total reaction force for the plate.
- The bearing pressure for a particular plate is determined by dividing the plate reaction by the area of the plate.
- The average bearing pressure below the basemat is calculated as the average of all the bearing pressures.
- The bearing pressure below the UHS is determined as the average of the bearing pressures for the UHS basemat area only. In a similar manner, bearing pressures are determined for the Forebay and Circulating Water Makeup Intake Structure by calculating the average bearing pressure below the particular basemat area. The maximum of these three bearing pressures are referred to as a "Maximum" in order to distinguish this pressure from the average bearing pressure for the entire basemat.

Results from the SASSI analysis are used to calculate sliding forces and overturning moments for seismic loads, as described in Section 3.7.2.14.3. The loads contributing to the structural mass in the SSI analysis are used to calculate the resistance to sliding and overturning. These loads include the self weight of the structure, weight of the permanent equipment and contained water during normal operation, 25% of the design live load and 75% of the design snow load. The design model in STAAD Pro is also checked for the sliding and overturning conditions for the SSE case. The STAAD Pro model for the SSE case contains the conservatively applied acceleration obtained from the SASSI SSI analysis and it does not contain the live and snow loads. The reaction forces from the STAAD Pro SSE model are used for stability evaluation and the results are reported in Table 3.8-2.

232 © 2007-2013 UniStar Nuclear Services, LLC. All rights reserved. COPYRIGHT PROTECTED Revision 9 Supplement 1 April 2013

RAI 339

03.08.04-34

RAI 339 03.08.04-34

Enclosure 2 UN#13-056 For the non-seismic loads, basemat reactions from STAAD Pro analysis are used to calculate Page 63 of 105sliding forces and overturning moments and results are reported in Table 3.8-2. The dead load

RAI 339 03.08.04-34

used to calculate the resistance to sliding and overturning includes the self weight of the structures, permanent equipment and water inside structures during the normal operation, SPH and PMH conditions.

Flotation is checked under normal operation, SPH, and PMH conditions, including the draw-down condition during a PMH event, with the water inside the CBIS at the minimum design level of -8 ft (-2.4 m). Resistance to flotation is provided by dead load.

RAI 339 03.08.04-34

Sliding is checked at various sliding interfaces below the foundation basemats. The CBIS sits on top of a mud mat, which is placed directly on the in-situ soil stratum IIc (Chesapeake clay/silt). Therefore, resistance to sliding is provided by friction between the basemat and the mud mat and friction and adhesion between the mud mat and soil stratum IIc. Friction (traction) between the below-grade walls and structural fill is also utilized for SSE loads. Passive soil pressure is not utilized for the stability of the CBIS. The static coefficients of friction for various sliding interfaces are presented in Table 3.8-1.

Frictional resistance is reduced by the effects of any upward forces, such as upward seismic forces and buoyancy. Overturning resistance is reduced by buoyancy.

The factors of safety from aforementioned stability evaluations are compared with the minimum required factors of safety specified in U.S. EPR FSAR Table 3.8-11. The minimum required factors of safety for sliding and overturning associated with SPH and PMH are the same as those for wind and tornado, respectively. The minimum required factor of safety for flotation, including SPH and PMH conditions, is 1.1.

Results of the stability and bearing pressure evaluations are presented in Section 3.8.5.5.4.}

3.8.5.5

Structural Acceptance Criteria

The U.S. EPR FSAR includes the following COL Item in Section 3.8.5.5:

A COL applicant that references the U.S. EPR design certification will evaluate site-specific methods for shear transfer between the foundation basemats and underlying soil for site-specific soil characteristics that are not within the envelope of the soil parameters specified in Section 2.5.4.2.

This COL Item is addressed as follows:

{For the Nuclear Island (NI) common basemat structures, Emergency Power Generating Buildings (EPGBs), and Essential Service Water Building (ESWBs), U.S. EPR FSAR Section 2.5.4.2 specifies a minimum coefficient of friction of 0.5 for interfaces between the foundation basemat and soil, or for cohesive soil cases the soil will have an undrained strength equivalent to or exceeding a drained strength of 26.6 degrees yielding a friction coefficient greater than or equal to 0.5. As identified in Table 3.8-1, the coefficient of friction for underlying interfaces is typically greater than 0.5. In those instances where the coefficient of friction is less than 0.5, there is an adhesion component providing additional resistance to movement (see Table 3.8-1). As identified in Table 2.5-54, the drained strength or drained friction angle (f) is greater than 26.6 degrees.

A site-specific sliding evaluation for SSE loads is performed to confirm the sliding stability of NI common basemat structures, EPGBs, ESWBs, NAB, AB, and Turbine Island (TI). These

CCNPP	Unit	3

Enclosure 2

UN#13-056 structures are located in the powerblock area, which will be excavated and backfilled. Mud mats Page 64 of 105 are used under the basemat of each structure to facilitate construction. As described in Section

3.8.4.6.1, a waterproofing system is used to protect the NI common basemat structures, ESWBs, NAB, and AB from the low-pH groundwater, as illustrated in Figure 3.8-6. The potential sliding interfaces down to the natural soils under the NI common basemat structures, ESWBs, NAB, and AB are:

- Basemat mud mat
- Mud mat sand
- Sand waterproofing membrane
- Sand structural fill
- Structural fill soil stratum IIb

As described in Section 3.8.4.6.1, a dampproofing system is used for the EPGBs (and will also be used for the TI), as illustrated in Figure 3.8-7. EPGBs and TI are not exposed to low-pH groundwater and, therefore, do not require protective waterproofing and dampproofing systems. However, as a good construction practice and for defense in depth, waterproofing and dampproofing systems are applied to these structures in accordance with Sections 1805.2 and 1805.3 of the IBC 2009 (IBC, 2009). The potential sliding interfaces under the EPGBs and TI are:

- Basemat-mud mat
- Mud mat-dampproofing membrane
- Dampproofing membrane sand
- Sand structural fill
- Structural fill soil stratum IIb

Frictional parameters at the various sliding interfaces are presented in Table 3.8-1. Based on these frictional parameters, factors of safety against sliding and overturning associated with the site-specific SSE loads are presented in Table 3.8-4 for the NI common basemat structures, EPGBs, and ESWBs. The minimum required factor of safety of 1.1 is achieved for all the buildings. Note that passive soil pressure is not utilized for the sliding evaluation.

3.8.5.5.1

Nuclear Island Common Basemat Structure

Foundation Basemat

The U.S. EPR FSAR included the following COL Item in Section 3.8.5.5.1:

A COL applicant that references the U.S. EPR design certification will compare the NI common basemat site-specific predicted angular distortion to the angular distortion in the relative differential settlement contours in U.S. EPR FSAR Tier 2, Figure 3.8-124 through U.S. EPR FSAR Figure 3.8-134, using methods described in U.S. Army Engineering Manual 1110-1-1904. The comparison is made through the basemat in both the east-west and north-south directions. If the predicted angular distortion of the basemat of the NI common basemat structure is less than the angular distortion shown for each of the construction steps, the site is considered acceptable. Otherwise, further analysis will be required to demonstrate that the structural design is adequate.

COPYRIGHT PROTECTED

Included for Information only

Enclosure 2 UN#13-056 The COL Item is addressed as follows: Page 65 of 105

Included for Information only {The Calvert Cliffs Unit 3 site-specific soil spring values are the same as the values used in the U.S. EPR Standard Plant settlement analysis. Due to these input values being the same as well as the construction sequence, models, methodologies, and procedures, the predicted angular distortion of the NI common basemat structure is the same for both CCNPP Unit 3 and the U.S. EPR Standard Plant.}

3.8.5.5.2 Foundation Basemats

Emergency Power Generating Buildings

The U.S. EPR FSAR includes the following COL Item in Section 3.8.5.5.2:

A COL applicant that references the U.S. EPR design certification will compare the EPGB site-specific predicted angular distortion to the angular distortion in the total differential settlement contours in Figure 3.8-135, using methods described in U.S. Engineering Manual 1110-1-1904. The comparison is made throughout the basemat in both the east-west and north-south directions. If the predicted angular distortion of the basemat of EPGB structures is less than the angular distortion shown, the site is considered acceptable. Otherwise, further analysis will be required to demonstrate that the structural design is adequate.

The COL Item is addressed as follows:

{The Calvert Cliffs Unit 3 site-specific angular distortion values were compared to the angular distortion in the total differential settlement contours in U.S. EPRTM FSAR Tier 2, Figure 3.8-135, using methods described in U.S. Army Engineering Manual 1110-1-1904. The same models, methodologies and procedures are used as with the U.S. EPRTM Standard Plant design. The basemat area is partitioned into separate slab design areas in both the east-west and north-south directions. The maximum CCNPP Unit 3 angular distortion is less than the maximum angular distortion in every slab design area for the softest soil case in U.S. EPRTM FSAR Table 3.7.1-8; thus, the U.S. EPRTM design envelops the site.}

{The following departure is taken from U.S. EPR FSAR Section 3.8.5.5.2.

Section 2.5.4.10.2 of the U.S. EPR FSAR states that:

"The design of Seismic Category I foundations for the U.S. EPR is based on a maximum differential settlement of $\frac{1}{2}$ inch per 50 ft in any direction across the basemat."

The U.S. EPR FSAR maximum allowable differential settlement of $\frac{1}{2}$ inch per 50 ft may also be expressed as a fraction, i.e., $\frac{1}{1200}$.

According to Section 2.5.4.10.2, the estimated site-specific differential settlement is 1/1166, which is about 3% higher than the allowable value described in the U.S. EPR FSAR.

A finite element analysis of the entire EPGB structure, including CCNPP Unit 3 site-specific soil springs, indicates the maximum differential settlement within the confines of the EPGB basemat is 1/2714, or substantially less than the allowable value of the U.S. EPR FSAR. The variation of the finite element analysis differential settlement (1/2714) with the estimated differential settlement value of 1/1166 is attributed to the conventional geotechnical treatment of the foundation as a flexible plate, a condition much more conservative than the actual 6 ft thick reinforced concrete basemat.

COPYRIGHT PROTECTED

Enclosure 2 UN#13-056

To verify the finite element analysis results, a manual calculation is performed for a selected Page 66 of 105beam strip (1 ft (0.3 m) wide by 6 ft (1.8 m) deep) of the EPGB basemat, plan view of which is

Included for Information only

shown in U.S. EPR FSAR Figure 3E.2-3. The beam strip is located at the centerline of the basemat and is perpendicular to the center reinforced concrete bearing wall. The selected two-span beam strip is 96 ft (29.3 m) long, with the aforementioned center wall and two parallel primary reinforced concrete bearing walls serving as pinned supports. Soil bearing pressures are applied to the beam strip and beam deflection is calculated. The calculation results confirm similar findings as the finite element analysis results, i.e., the maximum differential settlement of the EPGB basemat is substantially less than 1/1200.

To further evaluate the effects of the higher site-specific differential settlement, a finite element analysis of the entire EPGB is performed to evaluate the effect of a more conservative overall building tilt of L/550, where L is the least basemat dimension. For this analysis:

- Spring stiffnesses are adjusted until a tilt of L/550 is achieved.
- The elliptical distribution of soil springs is maintained.
- Soil spring stiffnesses along the centerline of the basemat (perpendicular to the direction of tilt) are retained.
- Adjustment is made to all other springs as a function of the distance from the basemat centerline.

The finite element analysis results show that increase in EPGB basemat design moment based on the more conservative differential settlement value of 1/550 (based on the overall tilt) is less than 3% of the U.S. EPR FSAR maximum design moment. Therefore, EPGB basemat is structurally adequate to resist the increased moments.}

3.8.5.5.3

Foundation Basemats

Essential Service Water Buildings

The U.S. EPR FSAR includes the following COL Item in Section 3.8.5.5.3:

A COL applicant that references the U.S. EPR design certification will compare the ESWB site-specific predicted angular distortion to the angular distortion in the total differential settlement contours in U.S. EPR FSAR Tier 2, Figure 3.8-136, using methods described in U.S. Army Engineering Manual 1110-1- 1904. The comparison is made throughout the basemat in both the east-west and north-south directions. If the predicted angular distortion of the basemat of ESWB structures is less than the angular distortion shown, the site is considered acceptable. Otherwise, further analysis will be required to demonstrate that the structural design is adequate.

The COL Item is addressed as follows:

{ TBD }

{The following departure is taken from U.S. EPR FSAR Section 3.8.5.5.3.

U.S. EPR FSAR Section 2.5.4.10.2 states that:

"The design of Seismic Category I foundations for the U.S. EPR is based on a maximum differential settlement of 1/2 inch per 50 ft in any direction across the basemat."

COPYRIGHT PROTECTED

Revision 9 Supplement 1 April 2013

The U.S. EPR FSAR maximum allowable differential settlement of $\frac{1}{2}$ inch per 50 ft may also be UN#13-056 Page 67 of 105 expressed as a fraction, i.e., 1/1200.

Included for Information only

According to Section 2.5.4.10.2, the maximum site-specific differential settlement is 1/845, which exceeds the allowable value specified in the U.S. EPR FSAR.

A finite element analysis of the entire ESWB structure, including CCNPP Unit 3 site-specific soil springs, indicates the maximum differential settlement within the confines of the ESWB basemat is 1/1417, or less than the allowable value of the U.S. EPR FSAR. The variation of the finite element analysis differential settlement (1/1417) with the estimated differential settlement value of 1/845 is attributed to the conventional geotechnical treatment of the foundation as a flexible plate, a condition much more conservative than the actual 6 ft thick reinforced concrete basemat.

To verify the finite element analysis results, a manual calculation is performed for a selected beam strip (1 ft (0.3 m) wide by 6 ft (1.8 m) deep) of the ESWB basemat, plan view of which is shown in U.S. EPR FSAR Figure 3E.3-3. The beam strip is located at the centerline of the basemat and is perpendicular to the reinforced concrete bearing wall separating the two cooling towers. The selected two-span beam strip extends for the length of the two cooling towers, with the aforementioned divider wall and two parallel reinforced concrete bearing walls serving as pinned supports. Soil bearing pressures are applied to the beam strip and beam deflection is calculated. The calculation results confirm similar findings as the finite element analysis results, i.e., the maximum differential settlement of the ESWB basemat is less than 1/1200.

To further evaluate the effects of the higher site-specific differential settlement, a finite element analysis of the entire ESWB is performed to evaluate the effect of a more conservative overall building tilt of L/600, where L is the least basemat dimension. For this analysis:

- Spring stiffnesses are adjusted until a tilt of L/600 is achieved.
- The elliptical distribution of soil springs is maintained.
- Soil spring stiffnesses along the centerline of the basemat (perpendicular to the direction of tilt) are retained.
- Adjustment is made to all other springs as a function of the distance from the basemat centerline.

The finite element analysis results show that increase in the ESWB basemat design moments based on the more conservative differential settlement value of 1/600 (based on the overall tilt) is less than 5% of the U.S. EPR FSAR maximum design moments. So, the ESWB basemat is structurally adequate to resist the increased moments.}

3.8.5.5.4 **Structure Basemats**

Forebay and UHS Makeup Water Intake

This section is added as a supplement to U.S. EPR FSAR Section 3.8.5.5.

Acceptance criteria for reinforced concrete design of basemat critical sections are described in Section 3.8.4.5.

Stability and bearing pressure of the CBIS are evaluated following the procedures presented in Section 3.8.5.4.6. As reported in Table 3.8-2, factors of safety from various stability load combinations show that the minimum required values are achieved. Therefore, the CBIS are stable under various design conditions.

COPYRIGHT PROTECTED

Enclosure 2 UN#13-056 Page 68 of 105

<u>The average bearing pressures across the CBIS basemat and maximum localized</u> <u>pressures for each load combination are provided in Maximum soil bearing pressures</u> <u>under the CBIS foundations are provided in</u> Table 3.8-3.

Static Load Combinations

RAI 339 03.08.04-34

The bearing pressures for the static load combinations are obtained from the STAAD model.

The bearing capacity as reported in Table 2.5-67 is associated with the global soil failure underneath the foundation (general shear failure) rather than a local failure such as the failure of a soil element at a corner of the foundation. Therefore, the local maximum bearing pressure is not comparable to the bearing capacity reported in Table 2.5-67.

In order to make a relevant comparison, the following three steps are implemented:

1) <u>Calculation of the resultant foundation load and its corresponding eccentricity that is</u> equivalent to the bearing pressure distribution each load combination

2) Determination of the reduced area (effective area) due to eccentricity.

3) <u>Computation of the increased average bearing pressure as the ratio of the total vertical load to the reduced area.</u>

The reduced area or effective area calculated based on the eccentricity is at least 65% of the overall area. To be conservative, a reduction of 50% in the area of the CBIS is considered in the calculation of the average bearing pressure. The increased average bearing pressures corresponding to the 50% reduction in the area are shown in Table 3.8-3 and these are lower than the bearing capacity.

Seismic Load Combinations

For the seismic load combination (D+L+F+E'), the static bearing pressures are summed with the seismic bearing pressures. The STAAD model is not used to evaluate seismic bearing pressures, since it is too conservative to assume maximum accelerations for all nodes to occur simultaneously. Instead, results from the SSI SASSI analysis are used to evaluate the seismic bearing pressures.

For the evaluation of seismic bearing pressures, average bearing pressures are obtained for the part of the foundation that is not subjected to uplift as follows:

1) For a given time step, the nodal net vertical pressure (seismic vertical pressure from SASSI+static vertical pressure from PLAXIS 3D) is obtained.

CCNPP Unit 3	238	Revision 9
	© 2007-2013 UniStar Nuclear Services, LLC. All rights reserved.	Supplement 1
	COPYRIGHT PROTECTED	April 2013

Enclosure 2 UN#13-056 Page 69 of 105-

Page 69 of 1052) If the nodal net pressure is compressive, the pressure is multiplied with the nodal tributary area to get the nodal compressive force; negative nodal pressures are not accounted for.

3) <u>The total compressive forces from all nodes that are in compression are summed, and divided by the area that is under compression.</u>

The seismic bearing capacity check is conducted for the following time steps:

1) <u>The time step of maximum uplift, which represents the smallest area subjected to</u> <u>compression</u>

2) The time step at which the compressive pressure as defined above is maximum.

3) The time step at which the overturning factor of safety is minimum

4) <u>The time step at which the sliding factor of safety is minimum.</u>

These time steps are the critical time steps in terms of bearing capacity check.

In addition to checking for average seismic bearing pressures, all local seismic bearing pressures are also checked at all time steps at all locations.

The SASSI simulations for all three soil cases are conducted for the operational water level and for both SSE and OBE conditions. In addition, seismic stability is checked for the maintenance and the maximum water level cases with the BE soil profile and SSE conditions.

The maximum average seismic bearing pressure is less than 4.0 ksf based on the area that is in compression. Similar to the static case, a 50% reduction to the area in compression (not the entire CBIS area) is applied to account for eccentricity, resulting in an average pressure of 8.0 ksf, which is lower than the seismic bearing capacity.

The maximum local bearing pressure, when all time steps and all cases are considered, is 18.6 ksf. For the 558 CBIS basemat solid elements checked and for more than 8000 time steps, the local bearing pressures are below 17.6 ksf except on one corner element at two time steps.

Average seismic bearing pressures the CBIS basemat (Table 3.8.3) are below the seismic bearing capacity.

The calculated maximum bearing pressures are smaller than the bearing capacities presented in Table 2.5-67 under both static and dynamic conditions.

Differential settlement across the CBIS is within the U.S. EPR FSAR differential settlement criterion of 1/1200.}

3.8.5.6 Construction Techniques

Materials, Quality Control, and Special

No departures or supplements.

COPYRIGHT PROTECTED

Revision 9 Supplement 1 April 2013

7.02-73			Factors of Safety (FOS)	
_	Load Combination (LC)	Sliding	Overturning	Flotation
	$\underline{\mathbf{D}} + \underline{\mathbf{H}} + \underline{\mathbf{W}} + \underline{\mathbf{D}} + \underline{\mathbf{H}} + \underline{\mathbf{W}}$	<u>106</u> 188	<u>2.1</u> 1.84	=
	$\underline{\mathbf{D}} + \underline{\mathbf{H}} + \underline{\mathbf{W}}\underline{\mathbf{t}}\underline{\mathbf{D}} + \underline{\mathbf{H}} + \underline{\mathbf{W}}\underline{\mathbf{t}}$	<u>11.9</u> 23.4	<u>1.6</u> 1.83	
	$\underline{\mathbf{D}} + \underline{\mathbf{H}} + \underline{\mathbf{E}} \underline{\mathbf{D}} + \underline{\mathbf{H}} + \underline{\mathbf{E}}^{t(H)2}$	<u>1.1</u> 4.41	<u>1.92</u> .83	-
	D+F'mD+H+Etter	<u>-1.29</u>	<u>-1.26</u>	<u>1.33</u> -
	$\underline{\mathbf{D}} + \underline{\mathbf{H}} + \underline{\mathbf{PMH}} \underline{\mathbf{D}} + \underline{\mathbf{F}}^{t\leftrightarrow}$	<u>28.1</u> -	<u>1.2</u> -	_1.83
	D + H + SPHD + H + PMH	66.4 7.97	1.51.69	-

(traction) between side wall and backfill is utilized.

(2) Factors of Safety computed from SASSI SSI analysis.

(3) Factors of Safety computed from STAAD analysis. Due to the conservatism in the SSE accelerations applied, the SASSI analysis results will be more accurate and should be used. The STAAD values are given for comparison purposes only.

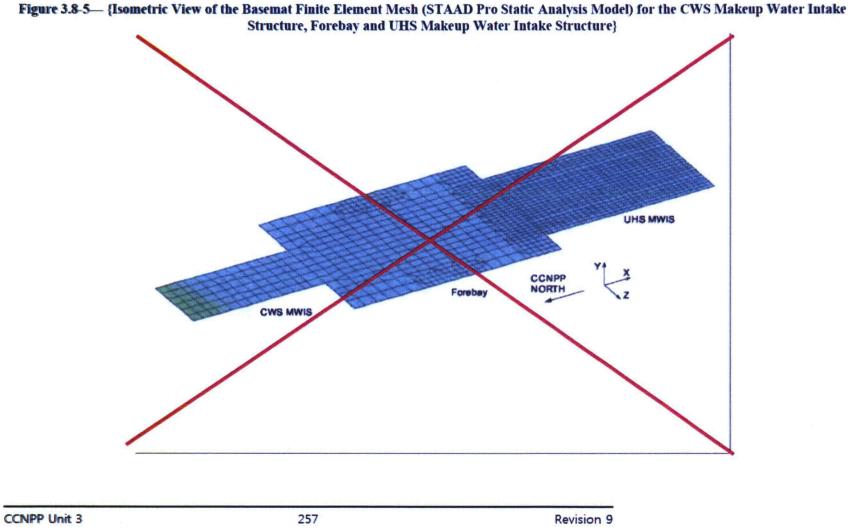
(4)(1) The factor of safety against flotation (D+F') is governed by the PMH draw-down condition.

CCNPP Unit 3

245

Revision 9 Supplement 1 April 2013

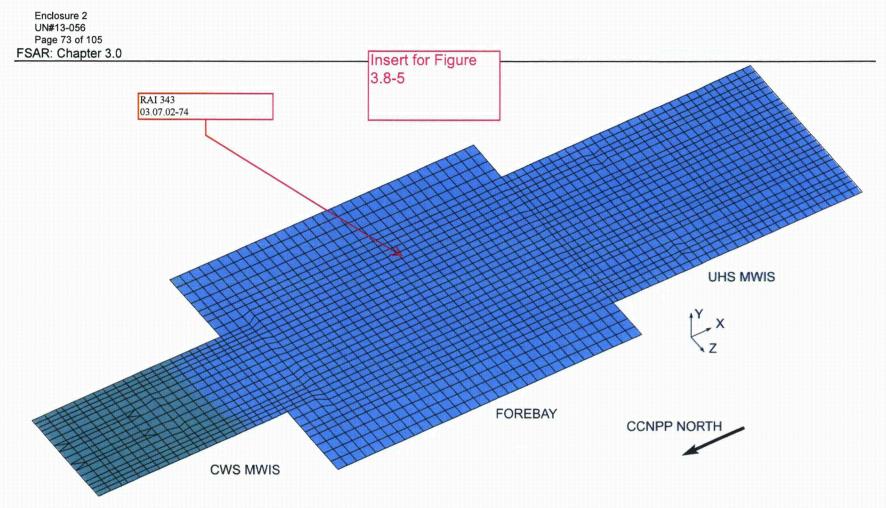
© 2007-2013 UniStar Nuclear Services, LLC. All rights reserved. COPYRIGHT PROTECTED


	1			Bearing pressure (Jun)		
<u>- 500</u>	Load Com	bination	Avera		Maximun	
	D+L		2,10		5.04	
	D + L		2.10		5.03	
	D+L+F D+L+		17		3.77	
	D+L+ D+L+F		1.72		5.67 4.94	
N	otes:					
	<u>- 3.8-3</u> {Bearing Capa LOAD <u>COMBINATION</u>	<u>Maximum</u> <u>Local</u> <u>Pressure</u>	AVERAGE BEARING PRESSURE ⁽¹⁾	IS} Bearing Capacity (KSF)		
	LOAD	MAXIMUM LOCAL	Average Bearing	BEARING CAPACITY		
	LOAD COMBINATION D+L+F	Maximum Local Pressure (KSF) 14.8	AVERAGE BEARING PRESSURE ⁽¹⁾ (KSF) <u>5.1</u>	BEARING CAPACITY		
Table	$\frac{LOAD}{COMBINATION}$ $\frac{D+L+F}{D+L+F+W}$	MAXIMUM LOCAL PRESSURE (KSF) 14.8 14.9	AVERAGE BEARING PRESSURE ⁽¹⁾ (KSF) 5.1 5.0	<u>Bearing</u> <u>Capacity</u> <u>(KSF)</u>		
	LOAD COMBINATION D+L+F	Maximum Local Pressure (KSF) 14.8	AVERAGE BEARING PRESSURE ⁽¹⁾ (KSF) <u>5.1</u>	BEARING CAPACITY		
	$\frac{LOAD}{COMBINATION}$ $\frac{D+L+F}{D+L+F+W}$	MAXIMUM LOCAL PRESSURE (KSF) 14.8 14.9	AVERAGE BEARING PRESSURE ⁽¹⁾ (KSF) 5.1 5.0	<u>Bearing</u> <u>Capacity</u> <u>(KSF)</u>		
Table	$\frac{LOAD}{COMBINATION}$ $\frac{D+L+F}{D+L+F+W}$ $\frac{D+L+F+Wt}{D+L+F+Wt}$	MAXIMUM LOCAL PRESSURE (KSF) 14.8 14.9 15.6	AVERAGE BEARING PRESSURE ⁽¹⁾ (KSF) 5.1 5.0 4.9	<u>Bearing</u> <u>Capacity</u> <u>(KSF)</u>		

COPYRIGHT PROTECTED

PXXX7270619988 1280062542503350282

Enclosure 2 UN#13-056 Page 72 of 105


FSAR: Chapter 3.0

© 2007-2013 UniStar Nuclear Services, LLC. All rights reserved. COPYRIGHT PROTECTED

April 2013

Supplement 1

Enclosure 2 UN#13-056 Page 74 of 105

FSAR: Chapter 3.0

Section	Load ^(a) Combination	Vu ^(b) (kip)	φVc ⁽ⁱ⁾ (kip)	D/C (6)
Forebay Long Wall	Normal	2987	11725	0.25
	Wind	3038	11731	0.26
	SSE	1941	11062	0.18
	Tornado	1567	11231	0.14
	PMH	2087	11161	0.19
	SPH	2267	11737	0.19
UHS MWIS Water Basin Side Wall	Normal	4129	8170	0.51
	Wind	4138	8161	0.51
	SSE	2912	7852	0.37
	Tornado	2281	7900	0.29
	РМН	3365	8127	0.28
	SPH	2304	5532	0.42
UHS MWIS Pump House Side Wall	Normal	241	819	0.29
	Wind	253	820	0.31
	SSE	447	822	0.54
	Tornado	165	801	0.21
	PMH	279	790	0.35
	SPH	44	503	0.09
combinations are defined in Section 3E.4.3				
combinations are defined in Section 3E.4.3 Mardinum in-plane shear demand Nominal in-plane shear strength due to concrete	a at defined in Section $3EAA$			

CCNPP Unit 3	18	Revision 9
	© 2007-2013 UniStar Nuclear Services, LLC. All rights reserved.	Supplement 1
	COPYRIGHT PROTECTED	April 2013

Enclosure 2 UN#13-056 Page 75 of 105

FSAR: Chapter 3.0

Section	Load ^(a) Combination	<u>Vu ^(b)</u> (kip)	<u>φVc ^(c) (kip)</u>	<u>D/C ^(d)</u>	Insert for new Table 3E-1
	Normal	<u>1006</u>	<u>40700</u>	<u>0.02</u>]
	Wind	<u>1189</u>	<u>40700</u>	<u>0.03</u>	
Forshay Long Well	<u>SSE</u>	2770	<u>40700</u>	0.07	RAI 339
Forebay Long Wall	<u>Tornado</u>	<u>441</u>	<u>40700</u>	<u>0.01</u>	03.08.04-33
	<u>PMH</u>	1208	40700	0.03	
	<u>SPH</u>	<u>1149</u>	<u>40700</u>	0.03	11
	Normal	2880	<u>13399</u>	0.22] *
	Wind	2895	<u>13402</u>	0.22	1
HIC MARC Make Deale Olde Mr. H	SSE	2725	20885	<u>0.13</u>	1
UHS MWIS Water Basin Side Wall	Tornado	2027	<u>13244</u>	<u>0.15</u>	1
	<u>PMH</u>	<u>1993</u>	<u>13342</u>	0.15]
	<u>SPH</u>	2776	<u>13403</u>	0.21]
	Normal	<u>137</u>	<u>6751</u>	0.02]
	Wind	<u>69</u>	3895	0.02]
ILIC MINIC Dump Liques Side Mail	SSE	308	<u>3895</u>	<u>0.08</u>]
JHS MWIS Pump House Side Wall	Tornado	106	<u>6751</u>	0.02	
	<u>PMH</u>	270	3895	0.07	1
	SPH	238	<u>6751</u>	0.04	1
<u>Notes:</u> (a) Load combinations are defined	in Section 3E.4.3 (b) Vu = I	Maximum i	n-plane shear d	emand	-
(c) φVc = Nominal in-plane shea	ar strength due to concrete	as defined	d in Section 3E.	<u>4.4</u>	
(d) D/C = Demand/C	apacity, i.e. Vu/φVn				
CNPP Unit 3	19				Revision 9
© 2007	-2013 UniStar Nuclear Service		rights reserved.		Supplement 1
	COPYRIGHT PROT	ECTED			April 2013

Enclosure 2 UN#13-056 Page 76 of 105

Normal 6208 8154 Wind 6218 8152 SSE 3200 4198 Tornado 2411 4242 PMH 2295 4241 SPH 6815 9027 Forebay Long Wall Normal 6992 7288 Wind 7005 7285 55E 5194 7122 Forebay Long Wall Wind 7005 7285 SSE 5194 7122 7320 PMH 5893 7745 745 UHS MWIS Water Basin Side Wall Normal 1900 5336 Wind 1909 5333 SSF 0922 5235 Torhado 91 5251 PMH 1330 5322 SPH 765 5772 SSE 67 400 Tornado 60 468 5PH 92 585 SPH 92 585 585 585 585 SPH 92	6218 8152 0. 3209 4198 0. 2411 4242 0. 2295 4241 0. 6815 9/27 0. 6992 7288 0. 7005 7285 0. 5194 7122 0. 5527 7320 0. 6663 7304 0. 5893 7745 0. 1900 5336 0. 1909 5333 0. 2092 5235 0. 915 5251 0. 1330 5322 0. 81 470 0. 85 469 0. 60 468 0. 92 585 0. 92 585 0.	Section	Load ^(a) Combination	Vu 🍋 (kip)	φVc ⁽⁰⁾ (kip)	D/C
SSE 3209 4198 Tornado 2411 4242 PMH 2295 4241 SPH 6815 9727 Forebay Long Wall Normal 6992 7288 Wind 7005 7285 585 5194 7122 Forebay Long Wall Normal 6537 7320 PMH 6763 7304 597 585 UHS MWIS Water Basin Side Wall Normal 1900 5336 Wind 1900 5336 5322 SPH 653 5772 5251 PMH 1330 5322 5251 PMH 1330 5322 5251 SPH 765 5772 555 567 UHS MWIS Pump House Side Wall Normal 81 470 Wind 85 669 552 SE 67 400 5772 UHS MWIS Pump House Side Wall Normal 81 470 Wind	3209 4198 0. 2411 4242 0. 2295 4241 0. 6815 9027 0. 6992 7288 0. 7005 7285 0. 5194 7122 0. 5527 7320 0. 5527 7320 0. 5527 7320 0. 5893 7745 0. 1900 5336 0. 1909 5333 0. 0922 5235 0. 919 5251 0. 1330 5322 0. 765 5772 0. 81 470 0. 60 468 0. 92 585 0.	Common Basemat	Normal	6208	8154	9.0
Tornado 2411 4242 PMH 2295 4241 SPH 6815 927 Forebay Long Wall Normal 6992 7288 Wind 7005 7285 5SE 5194 7122 namado 5527 7320 PMH 563 7304 SPH 5893 7745 745 745 UHS MWIS Water Basin Side Wall Normal 1900 5333 SSE 092 5235 772 UHS MWIS Pump House Side Wall Normal 81 470 Wind 85 692 5251 PMH 1330 5322 521 VIHS MWIS Pump House Side Wall Normal 81 470 Wind 85 669 5SE 67 403 Tormado 60 468 5PH 92 585 Notes: (a) Londoronbinations are defined in Section 3E.4.3 5) M 92 585 Notes: (a) Londoronabin t	2411 4242 0. 2295 4241 0. 6815 9027 0. 6992 7288 0. 7005 7285 0. 5194 7122 0. 5527 7320 0. 6263 7304 0. 5893 7745 0. 1900 5336 0. 1909 5333 0. 2092 5235 0. 915 5251 0. 1330 5322 0. 765 5772 0. 81 470 0. 85 469 0. 60 468 0. 92 585 0.		Wind	6218	8152	0.70
PMH 2295 4241 SPH 6815 9927 Forebay Long Wall Normal 6992 7288 Wind 7005 7285 SSE 5194 7122 namado 5527 7320 PMH 663 7304 SPH 5893 7745 UHS MWIS Water Basin Side Wall Normal 1900 5336 Wind 1909 5333 SSE 092 5235 Tornado 91 5251 PMH 1330 5222 SPH 765 5772 SPH 765 5772 UHS MWIS Pump House Side Wall Normal 81 470 Wind 85 669 SSE 67 403 Tornado 60 468 SPH 92 585 Notes: (a) Londonbinations are defined in Section 3E.4.3 SPH 92 585 Notes: (a) Londonbinatione shear demad SPH 92 585	2295 4241 0. 6815 9427 0. 6992 7288 0. 7005 7285 0. 5194 7122 0. 5527 7320 0. 663 7304 0. 5893 7745 0. 1900 5336 0. 1909 5333 0. 092 5235 0. 919 5251 0. 1330 5322 0. 81 470 0. 85 169 0. 60 468 0. 92 585 0.		SSE	3209	4198	0.70
SPH 6815 947 Normal 6992 7288 Wind 7005 7285 SSE 5194 7122 Immado 5527 7320 PMU ce63 7304 SPH 5893 7745 UHS MWIS Water Basin Side Wall Normal 1900 5336 Wind 1909 5333 SSE SPH 655 5772 UHS MWIS Pump House Side Wall Normal 81 470 Wind 855 667 403 SPH 765 5772 UHS MWIS Pump House Side Wall Normal 81 470 Wind 855 67 403 Tormado 60 468 PMH 190 468 SPH 92 585 Notes: (a) Condention SE.4.3 (b) M= Maximum out-of-plane shear demand (b) M= Maximum out-of-plane shear demand (b) C mode in Section JE.4.4 (b) C (4) Mormal	6815 9/27 0. 6992 7288 0. 7005 7285 0. 5194 7122 0. 5527 7320 0. 6663 7304 0. 5893 7745 0. 1900 5336 0. 1909 5333 0. 092 5235 0. 919 5251 0. 1330 5322 0. 765 5772 0. 81 470 0. 85 469 0. 60 468 0. 92 585 0.		Tornado	2411	4242	0.5
Forebay Long Wall Normal 6992 7288 Wind 7005 7285 SSE 5194 7122 Immado 5527 7320 PMM ce63 7304 SPH 5893 7745 UHS MWIS Water Basin Side Wall Normal 1900 5336 Wind 1909 5333 SSE SPH 5893 7745 UHS MWIS Water Basin Side Wall Normal 1900 5336 Wind 1909 5333 SSE SPH 765 5772 UHS MWIS Pump House Side Wall Normal 81 470 Wind 85 67 403 SSE 67 403 Wind 85 58 SSE 67 403 Tornado 60 468 PMH 190 468 SPH 92 585 Notes: 1 1 59 (a	6992 7288 0. 7005 7285 0. 5194 7122 0. 5527 7320 0. 6263 7304 0. 5893 7745 0. 1900 5336 0. 1909 5333 0. 2092 5235 0. 910 5251 0. 1330 5322 0. 765 5772 0. 81 470 0. 85 469 0. 60 468 0. 92 585 0.		PMH	2295	4241	0.54
Wind 7005 7285 SSE 5194 7122 Irmado 5527 7320 PMH 6463 7304 SPH 5893 7745 UHS MWIS Water Basin Side Wall Normal 1900 5336 Wind 1909 5333 SSE 092 5235 Tornado 91 5251 PMH 1330 5322 SPH 765 5772 PMH 1330 5322 UHS MWIS Pump House Side Wall Normal 81 470 Wind 85 169 SSE 67 403 Tornado 60 468 PMH 190 468 SPH 92 585 Notes: (a) Loa defined in Section 3E.4.3 (b) Via Maximum out-of-plane shear strength due to concrete as defined in Section 3E.4.4 (d) DC = Demand/Capacity, i.e. Vu/φVc Vu (b)	7005 7285 0. 5194 7122 0. 5527 7320 0. 6663 7304 0. 5893 7745 0. 1900 5336 0. 1909 5333 0. 2092 5235 0. 919 5251 0. 1330 5322 0. 765 5772 0. 81 470 0. 85 169 0. 60 468 0. 92 585 0.		SPH	6815	9 27	0.70
SSE 5194 7122 Immado 5527 7320 PMH 6463 7304 SPH 5893 7745 UHS MWIS Water Basin Side Wall Normal 1900 5333 Wind 1909 5333 SSE 092 5235 Tennado 91 5251 PMH 1330 5322 SPH 765 5772 PMH 1330 5322 UHS MWIS Pump House Side Wall Normal 81 470 Wind 85 169 SSE 67 403 Tornado 60 468 PMH 190 468 SPH 92 585 Notes: sets 575 (a) Loa combinations are defined in Section 3E.4.3 (b) Vi = Maximum out-of-plane shear demad (c) OV c = Nominal out-of-plane shear strength due to concrete as defined in Section 3E.4.4 (d) DC = Demand/Capacity, i.e. Vu/qvC Section Load ^(b) Vi (b) QVC ^(c) (kip) D/C ^(d) Normal 5184 <u>8955 </u>	5194 7122 0. 5527 7320 0. 6663 7304 0. 5893 7745 0. 1900 5336 0. 1900 5336 0. 1909 5333 0. 092 5235 0. 915 5251 0. 1330 5322 0. 765 5772 0. 81 470 0. 85 469 0. 67 405 0. 60 468 0. 92 585 0.	Forebay Long Wall	Normal	6992	7288	0.90
Immado 5527 7320 PMH 6463 7304 SPH 5893 7745 UHS MWIS Water Basin Side Wall Normal 1900 5336 Wind 1909 5333 555 5092 5235 Tornado 910 5251 944 552 525 UHS MWIS Pump House Side Wall Normal 81 470 Wind 85 169 552 SSE 67 403 Wind 85 169 SSE 67 403 Tornado 60 468 PMH 190 468 SPH 92 585 Notes: (a) Controlo folian esterior 3E.4.3 (b) Vi = Maximum out-of-plane shear demand (a) Circle 1 (b) Vi = Maximum out-of-plane shear strength due to concrete as defined in Section 3E.4.4 (a) Circle 1 (b) Vi = Maximum out-of-plane shear strength due to concrete as defined in Section 3E.4.4 (a) Circle 1 (b) Vi = Maximum out-of-plane shear strength due to concrete as defined in Section 3E.4.4 (b	5527 7320 0. 6263 7304 0. 5893 7745 0. 1900 5336 0. 1909 5333 0. 2092 5235 0. 915 5251 0. 1330 5322 0. 765 5772 0. 81 470 0. 85 469 0. 60 468 0. 190 468 0. 92 585 0.		Wind	7005	7285	0.90
PNM 663 7304 SPH 5893 7745 UHS MWIS Water Basin Side Wall Normal 1900 5336 Wind 1909 5333 SSE 6092 5251 PMH 1330 5322 SPH 765 5772 UHS MWIS Pump House Side Wall Normal 81 470 Wind 855 669 5SE 67 403 Tornado 60 468 5PH 190 468 SPH 190 468 5PH 92 585 Notes: (a) Load combinations are defined in Section 3E.4.3 b) Va = Maximum out-of-plane shear demand (a) D'C = 0 emand/Capacity, i.e. Vu/\varpsile Section Section Vu (\varpsile) gv/c (\varpsile) D/C (\varpsile) Section Load (\varpsile) Vu (\varpsile) gv/c (\varpsile) D/C (\varpsile) Section Load (\varpsile) Vu (\varpsile) gv/c (\varpsile) D/C (\varpsile)	6263 7304 0. 5893 7745 0. 1900 5336 0. 1909 5333 0. 092 5235 0. 915 5251 0. 1330 5322 0. 765 5772 0. 81 470 0. 85 469 0. 60 468 0. 190 468 0. 92 585 0.		SSE	5194	7122	0.73
SPH 5893 7745 UHS MWIS Water Basin Side Wall Normal 1900 5336 Wind 1909 5333 SSE 0092 5251 PMH 1330 5322 SPH 765 5772 UHS MWIS Pump House Side Wall Normal 81 470 Wind 855 669 58E 67 403 Tornado 60 468 58H 190 468 SPH 92 585 585 585 585 Notes: (a) Load*combinations are defined in Section 3E.4.3 (b) Vit = Maximum out-of-plane shear demand (c) Vc = Nonninal out-of-plane shear demand (c) Vc = Demand/Capacity, i.e. Vu/\vp Vc Section Load (a) Vu (b) gVc (c) (kip) D/C (d) Section Load (a) Vu (b) gVc (c) (kip) D/C (d)	5893 7745 0. 1900 5336 0. 1909 5333 0. 2092 5235 0. 913 5251 0. 1330 5322 0. 765 5772 0. 81 470 0. 85 469 0. 67 403 0. 60 468 0. 92 585 0.		Pernado	5527	7320	0.70
UHS MWIS Water Basin Side Wall Normal 1900 5336 Wind 1909 5333 SSE 092 5235 Tornado 91 5251 PMH 1330 5322 SPH 765 5772 UHS MWIS Pump House Side Wall Normal 81 470 Wind 85 469 5SE 67 405 Tornado 60 468 PMH 190 468 SPH 92 585 585 585 585 Notes: (a) Load combinations are defined in Section 3E.4.3 (b) Va = Maximum out-of-plane shear demand (c) vC = 0 control-plane shear demand 518.4 8955 0.58 Section Load (a) V(a) (b) C (a) D/C (a) Normal 518.4 8955 0.58 58	1900 5336 0. 1909 5333 0. 2092 5235 0. 915 5251 0. 1330 5322 0. 765 5772 0. 81 470 0. 85 469 0. 60 468 0. 190 468 0. 92 585 0.		PML	6_63	7304	0.80
Wind19095333SSE0925235Tornado9155251PMH13305322SPH7655772UHS MWIS Pump House Side WallNormal81470Wind85469SSE67403Tornado60468PMH190468SPH92585Notes:(a) Load combinations are defined in Section 3E.4.3(b) Var = Maximum out-of-plane shear demand(c) QVc = Nominal out-of-plane shear demand(c) QVc = Nominal out-of-plane shear strength due to concrete as defined in Section 3E.4.4(d) D'C = Demand/Capacity, i.e. Vu/\approxSectionLoad (a)Vu (b)QVc (c) (kip)D/C (d)Normal518489550.58	1909 5333 0. 2092 5235 0. 913 5251 0. 1330 5322 0. 765 5772 0. 81 470 0. 85 169 0. 60 468 0. 190 468 0. 92 585 0.		SPH	5893	7745	0.70
SSE 0092 5235 Tenhado 915 5251 PMH 1330 5322 SPH 765 5772 UHS MWIS Pump House Side Wall Normal 81 470 Wind 85 169 5SE 67 403 SPH 190 468 5PH 92 585 Notes: (a) Load combinations are defined in Section 3E.4.3 5PH 92 585 Notes: (a) Load combinations are defined in Section 3E.4.3 b) Ma = Maximum out-of-plane shear demand (c) GV c = Nominal out-of-plane shear demand (c) GV c = Nominal out-of-plane shear demand (c) GV c = Demand/Capacity, i.e. Vu/\approv c Section Load (a) Vu (b) gVc (c) (kip) D/C (d) Normal 5184 8955 0.58	2092 5235 0. 913 5251 0. 1330 5322 0. 765 5772 0. 81 470 0. 85 469 0. 67 405 0. 60 468 0. 92 585 0.	UHS MWIS Water Basin Side Wall	Normal	1900	5336	0.30
$\begin{tabular}{ c c c c } \hline Termado & 9T & 5251 \\ \hline PMH & 1330 & 5322 \\ SPH & 765 & 5772 \\ \hline Wind & 81 & 470 \\ \hline Wind & 85 & 469 \\ SSE & 67 & 400 \\ \hline Tormado & 60 & 468 \\ \hline PMH & 190 & 468 \\ SPH & 92 & 585 \\ \hline Notes: \\ (a) Load combinations are defined in Section 3E.4.3 \\ (b) M = Maximum out-of-plane shear demand \\ (c) \end{tabular} Value (c) \end{tabular} = Section 3E.4.3 \\ \hline (b) M = Maximum out-of-plane shear strength due to concrete as defined in Section 3E.4.4 \\ (d) D/C = Demand/Capacity, i.e. Vu/ \end{tabular} = Section $	91. 5251 0. 1330 5322 0. 765 5772 0. 81 470 0. 85 469 0. 67 405 0. 60 468 0. 190 468 0. 92 585 0.		Wind	1909	5333	0.30
$\begin{array}{ c c c } \hline PMH & 1330 & 5322 \\ SPH & 765 & 5772 \\ \hline UHS MWIS Pump House Side Wall & Normal & 81 & 470 \\ \hline Wind & 85 & 469 \\ SSE & 67 & 403 \\ \hline Tomado & 60 & 468 \\ PMH & 190 & 468 \\ SPH & 92 & 585 \\ \hline Notes: \\ (a) Loar combinations are defined in Section 3E.4.3 \\ (b) Vi = Maximum out-of-plane shear demand \\ (c) \phi Vc = Nominal out-of-plane shear strength due to concrete as defined in Section 3E.4.4 \\ (d) D/C = Demand/Capacity, i.e. Vu/\phi Vc \\ \hline $	1330 5322 0. 765 5772 0. 81 470 0. 85 469 0. 67 403 0. 60 468 0. 190 468 0. 92 585 0.		SSE	2092	5235	0.40
$\begin{tabular}{ c c c c } \hline SPH & 765 & 5772 \\ \hline UHS MWIS Pump House Side Wall & Normal & 81 & 470 \\ \hline Wind & 85 & 469 \\ \hline SSE & 67 & 405 \\ \hline Tornado & 60 & 468 \\ \hline PMH & 190 & 468 \\ \hline SPH & 92 & 585 \\ \hline Notes: \\ (a) Load combinations are defined in Section 3E.4.3 \\ (b) Vit = Maximum out-of-plane shear demand \\ (c) \phi Vc = Nominal out-of-plane shear strength due to concrete as defined in Section 3E.4.4 \\ (d) D'C = Demand/Capacity, i.e. Vu/\phi Vc \\ \hline \hline \hline \hline Combination & Vu (b) & gVc (c) (kip) & D/C (d) \\ \hline Normal & 5184 & 8955 & 0.58 \\ \hline \end{tabular}$	765 5772 0. 81 470 0. 85 469 0. 67 403 0. 60 468 0. 190 468 0. 92 585 0.		Tomado	915	5251	0.1
UHS MWIS Pump House Side WillNormal81470Wind85469SSE67403Tornado60468PMH190468SPH92585Notes:(a) Load combinations are defined in Section 3E.4.3(b) Va = Maximum out-of-plane shear demand(c) ϕVc = Nominal out-of-plane shear strength due to concrete as defined in Section 3E.4.4(d) D/C = Demand/Capacity, i.e. $Vu/\phi Vc$ SectionLoad (a) Vu (b) ϕVc (c) (kip) D/C (d)Normal518489550.58	81 470 0. 85 169 0. 67 403 0. 60 468 0. 190 468 0. 92 585 0.		PMH	1330	5322	0.25
Wind 85 169 SSE 67 403 Tornado 60 468 PMH 190 468 SPH 92 585 Notes: (a) Load combinations are defined in Section 3E.4.3 (b) Va = Maximum out-of-plane shear demand (a) Va = Maximum out-of-plane shear demand (c) qVc = Nominal out-of-plane shear strength due to concrete as defined in Section 3E.4.4 (d) D/C = Demand/Capacity, i.e. Vu/qVc Section Load (a) Vu (b) g/Vc (c) (kip) D/C (d) Normal 5184 8955 0.58	85 469 0. 67 403 0. 60 468 0. 190 468 0. 92 585 0.		SPH	765	5772	0.13
$\begin{array}{c cccc} SSE & 67 & 403 \\ Tomado & 60 & 468 \\ PMH & 190 & 468 \\ SPH & 92 & 585 \end{array}$ Notes: (a) Load combinations are defined in Section 3E.4.3 (b) Va = Maximum out-of-plane shear demand (c) $\varphi Vc = Nominal out-of-plane shear strength due to concrete as defined in Section 3E.4.4$ (d) D/C = Demand/Capacity, i.e. $Vu/\varphi Vc$ $\hline \hline Section & Load^{(a)} & Vu^{(b)} & gVc^{(c)}(kip) & D/C^{(d)} \\ \hline Normal & 5184 & 8955 & 0.58 \\ \hline \end{array}$	67 403 0. 60 468 0. 190 468 0. 92 585 0. rete as defined in Section 3E.4.4 (<u>u (b)</u> <u>p/c (c) (kip)</u> <u>D/C (d)</u>	UHS MWIS Pump House Side Will	Normal	81	470	0.1
$\begin{tabular}{ c c c c c } \hline Tomado & 60 & 468 \\ PMH & 190 & 468 \\ SPH & 92 & 585 \\ \hline Notes: & & & & & & & & \\ \hline (a) Load combinations are defined in Section 3E.4.3 & & & & & & & & \\ \hline (b) Va = Maximum out-of-plane shear demand & & & & & & & & & & \\ \hline (c) \phi Vc = Nominal out-of-plane shear strength due to concrete as defined in Section 3E.4.4 & & & & & & & & & & \\ \hline (d) D'C = Demand/Capacity, i.e. Vu/\phi Vc & & & & & & & & & & & & & & \\ \hline \hline Section & \hline & Load \end{tabular} & Vu \end{tabular} & \hline & & & & & & & & & & & & & & & & & $	60 468 0. 190 468 0. 92 585 0. rete as defined in Section 3E.4.4 /(u (b) ØVc (c) (kip) D/C (d)		Wind	85	169	0.18
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	190 468 0. 92 585 0. rete as defined in Section 3E.4.4 4 (u (b)) @Vc (c) (kip) D/C (d)		SSE	67	405	0.10
SPH 92 585 Notes: (a) Load combinations are defined in Section 3E.4.3 (b) Va = Maximum out-of-plane shear demand (b) Va = Maximum out-of-plane shear demand (c) ϕVc = Nominal out-of-plane shear strength due to concrete as defined in Section 3E.4.4 (d) D/C = Demand/Capacity, i.e. $Vu/\phi Vc$ Section Load (a) (kip) Ψu (b) (kip) ΨVc (c) (kip) D/C (d) D/C (d) (kip) Normal 5184 8955 0.58	92 585 0. rete as defined in Section 3E.4.4 $\frac{(u^{(b)})}{kip} \underline{\phi Vc^{(c)}(kip)} \underline{D/C^{(d)}}$		Tornado	60	468	0.13
Notes: (a) Load combinations are defined in Section 3E.4.3 (b) $Va =$ Maximum out-of-plane shear demand (c) $\phi Vc =$ Nominal out-of-plane shear strength due to concrete as defined in Section 3E.4.4 (d) $D'C =$ Demand/Capacity, i.e. $Vu/\phi Vc$ Vu (b) $\underline{\phi Vc}$ (c) (kip) $\underline{D/C}$ (d) Section Load (a) Vu (b) $\underline{\phi Vc}$ (c) (kip) $\underline{D/C}$ (d) Normal 5184 8955 0.58	rete as defined in Section 3E.4.4 $\frac{\mu (b)}{klp} \qquad \underline{\phi Vc}^{(c)} (klp) \qquad \underline{D/C}^{(d)}$		PMH	190	468	0.41
(a) Load combinations are defined in Section 3E.4.3 (b) Va = Maximum out-of-plane shear demand (c) $\varphi Vc = Nominal out-of-plane shear strength due to concrete as defined in Section 3E.4.4 (d) D/C = Demand/Capacity, i.e. Vu/\varphi Vc Section Load (a)Combination Vu (b)(kip) \varphi Vc ^{(c)}(kip) D/C (d) Normal 5184 8955 0.58 $	<u>(u ^(b)</u> <u>φVc ^(c) (kip)</u> <u>D/C ^(d)</u>		SPH	92	585	0.10
Section Combination (kip) OVC OUC Normal 5184 8955 0.58		(a) Load combinations are defined in S (b) Va = Maximum out-of-plane shear ($\phi \phi Vc =$ Nominal out-of-plane shear s	demand strength due to conce	rete as defined in Se	ection 3E.4.4	
	104 0055 0.50	Section Lo	bination (^{'<u>u</u>^(b) kip) φVc^(c) (}	kip) <u>D/C ^(d)</u>	
Wind 5174 2055 2.59	104 8900 0.08	N	ormal 5	184 8958	0.58	
VIIIU 01/4 0900 U.58	<u>174 8955 0.58</u>		Wind 5	174 8955	0.58	T

1	0	3	1.(30	3.	0	4	-3	33	Ĺ
		-		-			-			

Cot	nmon Basemat	SSE	3262	8470	0.39
001	nition Basemat	Tornado	<u>3771</u>	<u>8792</u>	0.43
		PMH	<u>3129</u>	8752	0.36
		<u>SPH</u>	5466	8966	<u>0.61</u>
		Norma)	<u>5173</u>	7676	0.67
For	sbay Long Wall	Wind	<u>5160</u>	7674	0.67
		SSE	<u>2937</u>	7566	0.39

CCNPP Unit 3

Revision 9

Enclosure 2 UN#13-056	<u>Tornado</u>	<u>3594</u>	<u>7588</u>	<u>0.47</u>
Page 77 of 105	<u>PMH</u>	<u>2697</u>	<u>7524</u>	0.36
	<u>SPH</u>	<u>5292</u>	<u>7689</u>	0.69
inge and nel 2019 an eine Al Al an Allan a' fear Allan air Albean airdige anna an Albeanaidheanaine a'	Normal	<u>678</u>	<u>3515</u>	<u>0.19</u>
	Wind	<u>676</u>	<u>3513</u>	<u>0.19</u>
	<u>SSE</u>	<u>861</u>	<u>3437</u>	0.25
UHS MWIS Water Basin Side Wall	<u>Tornado</u>	<u>434</u>	<u>3470</u>	<u>0.13</u>
	<u>PMH</u>	<u>334</u>	<u>2075</u>	<u>0.16</u>
	<u>SPH</u>	<u>378</u>	<u>2083</u>	<u>0.18</u>
	Normal	<u>17</u>	<u>685</u>	<u>0.03</u>
	Wind	<u>18</u>	<u>700</u>	<u>0.03</u>
	<u>SSE</u>	<u>46</u>	<u>669</u>	0.07
UHS MWIS Pump House Side Wall	Tornado	<u>49</u>	<u>1181</u>	<u>0.04</u>
	<u>PMH</u>	<u>576</u>	<u>1186</u>	<u>0.49</u>
	<u>SPH</u>	<u>437</u>	<u>1200</u>	<u>0.36</u>

Notes:

(a) Load combinations are defined in Section 3E.4.3 (b) Vu = Maximum out-of-plane shear demand

(c) ϕ Vc = Nominal out-of-plane shear strength due to concrete as defined in Section 3E.4.4

(d) D/C = Demand/Capacity, i.e. Vu/φVc

	RAI 339	
Γ	03.08.04-33	Pagexissionixies
1		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Enclosure 2 UN#13-056 Page 78 of 105

FSAR: Chapter 3.0

Table 3E-3— {Demand and Capacity for Combined Moment and Axial Force}

K

Section Direction	Load ®	Mu ®	Pu 🕫	φMu ⁽⁴⁾	φPu ^(e)	D/C
	Combination	(kip-ft)	(kip)	(kip-ft)	(kip)	
		(a) CBIS Com				
				ach face is requi		
N	Normal	663	200	1079	1908	0.61
N 1	Wind	671	195	1071	1908	0.63
	SSE	358	-8	730	-183	0.49
	Tornado	397	25	693	164	0.57
	PMH	450	236	1131	1909	0.40
	SPH	482	-18	691	-6	0.70
E-W	Normal	457	62	877	1908	0.52
	Wind	456	61	876	1908	0.52
	SSE	145	44	824	1908	0.18
	Tornado	267	66	884	1908	0.30
	PMH	269	73	897	1908	0.30
	SPH	96	-148	1/3	-266	0.56
	(for area	(b) CLUS Com s where alayer		(5 ft fuick) each face is requi	red)	
N-S	Normal	663	200	1695	2103	0.39
	Wind	671	195	1690	2103	0.40
	SSE	358	-8	1432	-519	0.25
	Tornado	397		1396	501	0.28
	PMH	450	236	1731	2103	0.20
	SPH	123	255	998	2075	0.12
E-W	Normal	1069	51	1516	2101	0.71
	Wind	1070	51	1516	2101	0.71
	SSE	499	44	1507	2103	0.33
	Tornado	671	59	1526	2103	0.44
	PMH	741	68	1.38	2103	0.48
	SPH	-1070	110	1673	172	0.64
		(c) Forebay	Long Wall (4.5	ft thick)		
	(for a es			ach face is requ	red)	
Vertical	Normal	540	49	735	1737	0.74
	Wind	541	485	734	1737	0.74
	SE	205	15	685	1737	0.30
	Tomado	349	47	732	173	0.48
	РМН	362	43	727	1737	0.50
	SPH	667	79	800	95	0.83
Horizontal	Normal	333	37	607	176	0.55
	Wind	336	38	606	175	0.55
	SSE	194	42	703	1737	0.28
	Tornado	180	21	639	254	0.2
	РМН	209	21	640	239	0.33
Jnit 3		23	3			Revi
	© 2007-2013 U			rights reserved.		Supplem
		COPYRIGHT		and a second second Second second second Second second		April

April 2013

FSA	R:	Ch	ap	ter	3.0	Ŋ.

Enclosure 2 UN#13-056 Page 79 of 1

tion Direction	Load (*)	Mu 🕪	Pu (9)	φMu ⁽⁴⁾	φPn (*)	D/C @
	Combination	(kip-ft)	(kip)	(kip-ft)	(kip)	
	SPH	347	-39	542	-60	0.6
\mathbf{N}	(for areas		Long Wall (4.5 of #11 @ 6" ea	i ft thick) ach face are requ	ired)	
Vertical	Normal	1106	57	1341	1803	0.82
	Wind	1106	56	1341	1803	0.82
	SSE	473	18	1299	1932	0.36
	Tornado	696	55	1339	1937	0.52
	РМН	754	50	1334	1932	0.56
	SPH	1104	95	1354	116	0.82
Horizontal	Normal	775	252	814	274	0.95
	Wind	782	254	811	270	0.96
	SSE	285	-91	1113	-538	0.26
	Tornado	441	211	891	454	0.50
	PMH	544	245	8_8	398	0.66
	SPH	4.5	-359	498	-430	0.83
	(e) U		ter Basin Side f #11 @ 9" eac	Wall (4 ft thick) face)		
Vertical	Normal	170	37	337	136	0.50
	Wind	170	38	336	136	0.50
	SSE	172	-91	264	-135	0.65
	Tomado	132	3	360	157	0.37
	PMH	103	32	345	172	0.30
	SPH	96	17	543	96	0.18
Horizontal	Normal	48	80	266	200	0.40
	Wind	49	81	264	200	0.41
	SSE	114	-34	342	-166	0.33
	Tornado	63	48	318	193	0.25
	PMH	40	54	309	205	0.26
	SPH	184	-53	270	-78	0.68

ъp. (1 layer #9 @ 9" each face)

	Vertical	Normal	13	-18	109	-131	0.17
		y ind	13	-20	107	- 30	0.18
		SSE	15	-56	81	-12	0.18
		Tornado	36	-15	111	-107	0.32
	/	РМН	29	-34	98	-114	0.30
		SPH	27	-26	71	-67	0.38
	Horizon al	Normal	6	-74	66	-138	0.53
		Wind	6	-75	64	-138	0.55
		SSE	10	-68	71	-134	0.51
	/	Tomado	24	-46	89	-119	0.38
CCNPP Unit 3		an an ann an an an an ann an ann an ann an a	2	4			Revision 9
		© 2007-2013 Un	iStar Nuclear S	services, LLC. All r	ights reserved.		Supplement 1

© 2007-2013 UniStar Nuclear Services, LLC. All rights reserved. COPYRIGHT PROTECTED

April 2013

FSAF	t: Ch	apt	er 3.	0

Section Direction

φMu 🕫

D/C @

φPn (*)

Enclosure 2 UN#13-056 Page 80 of 105

	Combination	(kip-ft)	(kip)	(kip-ft)	(kip)	
	PMH	16	-57	80	-128	
	SPH	7	-76	12	-131	
	(g)	UHS MWIS W (2 layers of #1)		alls (4 ft thick)		
Vertical	Normal	175	-41	1603	-378	/
	Wind	175	-42	1594	-384	
	SSE	20	-144	218	1237	
	Iomado	105	-26	1582	-192	
	PMH	116	-35	1498	-446	
	SPH	117	-46	1561	-405	
Horizontal	Normal	923	-443	1215	-583	
	Wind	928	-447	1213	-585	
	SSE	180	-73	1299	-528	
	Tomado	570	-272	1719	-581	
	PMH	617	-306	1207	-589	
	SPH	942	-459	1207	-589	
	espanj, mga s	f Mu/φMn and F	Pu/gPn			
		t Mu/φMn and F	Pu/gPn			
		t Mu/φMn and F	Pu/gPn			
		t Mu/φMn and F	Pu/gPn			
		t Mu/φMn and F	Pu/gPn			
		t Mu/øMn and F	Pu/gPn			
it 3		25	5			
t 3	© 2007-2013 Un	25	5 ervices, LLC. All	rights reserved.		Sut

Table 3E-3--- {Demand and Capacity for Combined Moment and Axial Force}

Pu ®

Mu 🕅

Load (*)

FSAR:	Cha	pter	3.0

Enclosure 2 UN#13-056 Page 81 of 105

Table 3E-3--- {Demand and Capacity for Combined Moment and Axial Force}

Section	Load ^(a)	<u>Mu (B)</u>	Pu (c)	$\frac{\phi Mn^{(d)}}{(him ft)}$	<u>oPn</u>	D/C (*)
Direction	Combination	<u>(KID-II)</u>	(KID)	<u>(KID-IU</u>	<u>(kip)</u>	

(a) CBIS Common Basemat (5 ft thick)

(for areas where 1 layer of #11 @ 6" each face is required)

<u>N-S</u>	Normal	<u>-277</u>	<u>31</u>	<u>-798</u>	<u>1909</u>	0.35
	Wind	<u>-276</u>	<u>31</u>	<u>-798</u>	<u>1909</u>	0.35
	<u>SSE</u>	<u>-273</u>	<u>0</u>	<u>-747</u>	-223	0.37
	Tornado	<u>-247</u>	<u>84</u>	<u>-889</u>	<u>1909</u>	0.28
	<u>PMH</u>	<u>-21</u>	<u>-255</u>	<u>-199</u>	<u>-329</u>	0.78
	<u>SPH</u>	<u>-331</u>	<u>76</u>	<u>-875</u>	<u>1909</u>	0.38
<u>E-W</u>	Normal	<u>-474</u>	<u>322</u>	<u>-1734</u>	2104	0.27
	Wind	<u>19</u>	<u>-178</u>	<u>371</u>	<u>-330</u>	0.54
	<u>SSE</u>	<u>-5</u>	<u>-109</u>	<u>-523</u>	<u>-335</u>	0.33
	Tornado	<u>303</u>	<u>74</u>	<u>894</u>	<u>1909</u>	0.34
	<u>PMH</u>	<u>-5</u>	<u>-109</u>	<u>-523</u>	<u>-335</u>	0.33
	<u>SPH</u>	<u>19</u>	<u>-171</u>	<u>387</u>	-329	0.52

(b) CBIS Common Basemat (5 ft thick)

(for areas where 2 layers of #11 @ 6" each face is required)

<u>N-S</u>	Normal	<u>19</u>	<u>-176</u>	<u>374</u>	<u>-330</u>	0.54
	Wind	<u>-446</u>	<u>290</u>	<u>-1714</u>	<u>2104</u>	0.26
-	SSE	<u>-122</u>	<u>-6</u>	<u>-1399</u>	<u>-625</u>	<u>0.09</u>
	Tornado	<u>-367</u>	<u>238</u>	<u>-1673</u>	<u>2104</u>	0.22
	<u>PMH</u>	<u>-148</u>	<u>-375</u>	<u>-666</u>	<u>-614</u>	<u>0.61</u>
	<u>SPH</u>	<u>-506</u>	<u>249</u>	<u>-1684</u>	<u>2104</u>	0.30
<u>E-W</u>	Normal	<u>885</u>	<u>104</u>	<u>1590</u>	<u>2098</u>	<u>0.56</u>
	Wind	<u>883</u>	<u>104</u>	<u>1590</u>	<u>2099</u>	<u>0.56</u>
	<u>SSE</u>	<u>689</u>	<u>0</u>	<u>1460</u>	2104	<u>0.47</u>
	Tornado	<u>641</u>	<u>68</u>	<u>1545</u>	2104	<u>0.42</u>
	<u>PMH</u>	<u>216</u>	<u>-494</u>	<u>417</u>	<u>-584</u>	<u>0.85</u>
	<u>SPH</u>	<u>941</u>	<u>107</u>	<u>1593</u>	2089	<u>0.59</u>

(c) Forebay Walls (4.5 ft thick)

(for areas where 2 layers of #11 @ 6" each face is required)

Vertical	Normal	<u>-907</u>	82	<u>-1321</u>	1878	0.69
F	Wind	<u>901</u>	77	1316	1880	0.68
-	SSE	<u>662</u>	<u>49</u>	1289	<u>1932</u>	0.51
	Tornado	<u>-664</u>	59	-1298	<u>1932</u>	0.51
	PMH	506	33	1273	1932	0.40

CCNPP Unit 3

26

Revision 9 Supplement 1 April 2013

© 2007-2013 UniStar Nuclear Services, LLC. All rights reserved. COPYRIGHT PROTECTED FSAR: Chapter 3.0

Enclosure 2 UN#13-056 Page 82 of 105

Table 3E-3- {Demand and Capacity for Combined Moment and Axial Force}

	<u>SPH</u>	<u>959</u>	<u>78</u>	<u>1317</u>	1858	<u>0.73</u>
Horizontal	Normal	<u>184</u>	-262	<u>814</u>	-589	0.45
	Wind	<u>184</u>	-262	<u>814</u>	-589	0.45
-	SSE	-533	55	<u>-1347</u>	<u>1932</u>	0,40
	Tornado	<u>122</u>	<u>-193</u>	<u>940</u>	<u>-619</u>	0.31
-	<u>PMH</u>	<u>100</u>	<u>-174</u>	<u>976</u>	<u>-629</u>	0.28
	<u>SPH</u>	<u>206</u>	-275	<u>791</u>	-578	0.48
	(1)	Earshau Mal		(als)		

(d) Forebay Walls (4.5 ft thick)

(for areas where 3H+2V layers of #11 @ 6" each face are required)(9)

<u>Vertical</u>	Normal	<u>-441</u>	<u>69</u>	<u>-1308</u>	<u>1932</u>	0.34
-	Wind	<u>-443</u>	<u>70</u>	<u>-1309</u>	<u>1932</u>	0.34
-	SSE	<u>242</u>	<u>42</u>	<u>1282</u>	<u>1932</u>	<u>0.19</u>
-	Tornado	<u>324</u>	<u>43</u>	<u>1283</u>	<u>1932</u>	0.25
	<u>PMH</u>	<u>254</u>	<u>30</u>	<u>1271</u>	<u>1932</u>	0.20
-	<u>SPH</u>	<u>-462</u>	<u>73</u>	<u>-1312</u>	<u>1932</u>	<u>0.35</u>
Horizontal	Normal	<u>169</u>	<u>-152</u>	<u>1588</u>	<u>-933</u>	<u>0.16</u>
-	Wind	<u>172</u>	<u>-154</u>	<u>1584</u>	<u>-932</u>	<u>0.17</u>
	<u>SSE</u>	<u>462</u>	<u>49</u>	<u>1868</u>	<u>2127</u>	<u>0.25</u>
	Tornado	<u>122</u>	<u>-107</u>	<u>1663</u>	<u>-956</u>	<u>0.11</u>
	<u>PMH</u>	<u>192</u>	<u>-531</u>	<u>939</u>	<u>-922</u>	<u>0.58</u>
	<u>SPH</u>	<u>181</u>	<u>-172</u>	<u>1555</u>	<u>-928</u>	<u>0.19</u>

(e) UHS MWIS Water Basin Walls and and EI+11.5' Floor (4 ft thick)

(1 layer of #11 @ 9" each face)

Vertical	Normal	<u>72</u>	<u>1407</u>	<u>731</u>	<u>1501</u>	<u>0.94</u>
or E-W	Wind	<u>80</u>	<u>1332</u>	<u>814</u>	<u>1501</u>	<u>0.89</u>
-	SSE	<u>106</u>	1034	<u>1034</u>	<u>1501</u>	0.69
-	Tornado	<u>50</u>	<u>974</u>	<u>1062</u>	<u>1501</u>	0.65
-	<u>PMH</u>	<u>306</u>	<u>814</u>	<u>1113</u>	<u>1501</u>	0.54
	<u>SPH</u>	<u>39</u>	<u>1208</u>	<u>923</u>	<u>1501</u>	0.80
Horizontal	Normal	<u>40</u>	<u>-164</u>	<u>119</u>	-204	0.80
or N-S	Wind	<u>34</u>	<u>-153</u>	<u>139</u>	-208	0.74
	SSE	<u>6</u>	<u>-128</u>	<u>185</u>	-222	0.58
	Tornado	<u>28</u>	<u>-113</u>	<u>212</u>	<u>-211</u>	0.54
	PMH	-276	<u>-60</u>	<u>-299</u>	<u>-74</u>	0.92
	<u>SPH</u>	<u>41</u>	<u>-133</u>	<u>177</u>	-204	0.65
		MMIS Water B		lle (A ft thick)		

(f) UHS MWIS Water Basin Walls (4 ft thick)

(2 layers of #11 @ 6" in pairs each face)

Norman	-40	-403	-1301	-1335	0.30
Wind	-25	-468	<u>-1383</u>	-1337	0.35
	Wind	Wind -25	Wind -25 -468	Wind -25 -468 -1383	Wind -25 -468 -1383 -1337

CCNPP Unit 3

Revision 9 Supplement 1 April 2013

© 2007-2013 UniStar Nuclear Services, LLC. All rights reserved. COPYRIGHT PROTECTED

RAI 339 03.08.04-33

Enclosure 2 UN#13-056 Page 83 of 105

FSAR: Chapter 3.0

Table 3E-3- {Demand and Capacity for Combined Moment and Axial Force}

	SSE	<u>-29</u>	-411	<u>-1466</u>	<u>-1334</u>	0.31
-	Tornado	<u>-19</u>	<u>-332</u>	<u>-1581</u>	<u>-1339</u>	0.25
	<u>PMH</u>	<u>-36</u>	-513	<u>-1317</u>	<u>-1331</u>	0.39
	<u>SPH</u>	-21	-439	<u>-1426</u>	-1338	0.33
Horizontal	Normal	<u>809</u>	<u>-159</u>	<u>1944</u>	-884	0.42
	Wind	<u>784</u>	<u>-150</u>	<u>1957</u>	-898	0.40
	SSE	<u>-4</u>	<u>-150</u>	<u>-1958</u>	<u>-1347</u>	0.11
	Tornado	<u>650</u>	<u>-136</u>	<u>1979</u>	<u>-979</u>	0.33
-	<u>PMH</u>	<u>478</u>	-80	2065	<u>-1079</u>	0.23
-	<u>SPH</u>	<u>885</u>	<u>-175</u>	<u>1919</u>	-838	0.46
l	(-) 1110 MM		and De	- 6 /0 64 41-1-		

(g) UHS MWIS Walls, Floors and Roof (2 ft thick)

(1 layer #9 @ 9" each face)

Vertical	Normal	<u>-28</u>	<u>10</u>	<u>-128</u>	<u>769</u>	0.22
or E-W	Wind	<u>-29</u>	<u>9</u>	<u>-127</u>	<u>769</u>	<u>0.23</u>
	SSE	<u>11</u>	<u>-27</u>	<u>102</u>	<u>-132</u>	0.20
	<u>Tornado</u>	<u>-19</u>	1	<u>-123</u>	<u>769</u>	<u>0.16</u>
	<u>PMH</u>	<u>42</u>	<u>16</u>	<u>131</u>	<u>769</u>	<u>0.32</u>
	<u>SPH</u>	<u>-34</u>	<u>41</u>	<u>-146</u>	<u>769</u>	<u>0.23</u>
Horizontal	Normal	<u>-116</u>	<u>226</u>	<u>-231</u>	<u>768</u>	<u>0.50</u>
or N-S	Wind	<u>-113</u>	<u>224</u>	<u>-230</u>	<u>768</u>	<u>0.49</u>
	SSE	<u>-3</u>	<u>-40</u>	<u>-93</u>	<u>-141</u>	<u>0.28</u>
	<u>Tornado</u>	<u>-89</u>	<u>166</u>	<u>-201</u>	<u>769</u>	<u>0.45</u>
	<u>PMH</u>	<u>0</u>	<u>-51</u>	<u>-85</u>	<u>-144</u>	<u>0.36</u>
	<u>SPH</u>	<u>-121</u>	<u>246</u>	<u>-239</u>	<u>767</u>	<u>0.51</u>

Notes:

(a) Load combinations are defined in Section 3E.4.3

(b) Mu = Bending moment demand

(c) Pu = Axial force demand (positive for compression)

(d) ϕ Mn = Bending moment capacity

(e) φPn = Axial force capacity

COPYRIGHT PROTECTED

FSAR: Chapter 3.0	RAI 339 03.08.04-33
Enclosure 2 UN#13-056	
Page 84 of 105	Table 3E-4— {Demand and Capacity for Shear Friction}

Section	Load ⁽⁰⁾	Nu ®	Vu (9)	φVn ⁽⁴⁾	D/C *
	Combination	(kip)	(kip)	(kip)	
Forebay Long Wall	Normal	3929	2987	44294	0.07
(2 layers of #11@6")	Wind	3878	3650	44204	0.08
	SSE	856.4	1974	44204	0.04
	Tornado	4521	567	44204	0.04
	PMH	4218	2087	44204	0.05
	SPH	-7868	2267	44204	0.05
UHS MWIS Water Basin Side	Normal	3108	4129	32710	0.13
Wall	Wind	3107	4138	32710	0.13
(2 layers of #11@9")	SSE	1239	2979	32710	0.09
	Tomado	1572	2281	32710	0.07
	РМН	2910	2265	32710	0.07
	SPH	-5257	4285	31078	0.14
UHS MWIS Pump House Side	Normal	202	241	2250	0.11
Wall	Wind	184	253	2250	0.11
(1 layer of #9@9")	SSE	-258	447	2250	0.20
	Tornado	154	165	2250	0.07
	РМН	-151	279	2250	0.12
	SPH	-332	327	2250	0.15
Notes: (a) Load combinations are defined i	an an anti-ann an				
(b) Nu Normal force on friction in		1)			
(c) I'u = Shear demand, vector sum	of in-plane and out-of-plan				
(d) $\varphi Vn = Nominal shear friction st$	-				~
(e) D/C = Demand/Capacity, i.e. Vu	-				

Section	Load ^(a) Combination	<u>Nu (6)</u> (kip)	<u>Vu</u> ^(c) (kip)	<u>φVn ^(α)</u> (kip)	D/C (e)
Forebay Long Wall	Normal	<u>-68</u>	2010	<u>16083</u>	<u>0.13</u>
(2 layers of #11@6")	Wind	<u>-65</u>	<u>2010</u>	16083	<u>0.13</u>
	SSE	<u>-387</u>	1364	16083	<u>80.0</u>
	Tornado	<u>13</u>	<u>1389</u>	<u>16083</u>	<u>0.09</u>
	PMH	<u>70</u>	1550	16083	<u>0.10</u>
	<u>SPH</u>	<u>-14</u>	2201	16083	0.14
UHS MWIS Water Basin Side	Normal	-2295	2279	<u>9921</u>	0.23
<u>Wall</u> (1 layers of #11@9")	Wind	-2317	2285	<u>9921</u>	0.23
	SSE	-1498	760	<u>5618</u>	0.14
<i>4</i> .	Tornado	<u>-1481</u>	1550	<u>9921</u>	<u>0.16</u>
	PMH	<u>-1822</u>	1110	9921	<u>0.11</u>
	SPH	-2226	2156	<u>9921</u>	0.22
UHS MWIS Walls	Normal	-958	<u>140</u>	7067	0.02

CCNPP Unit 3

Revision 9 Supplement 1 April 2013

© 2007-2013 UniStar Nuclear Services, LLC. All rights reserved. COPYRIGHT PROTECTED

FSAR: Chapter 3.0

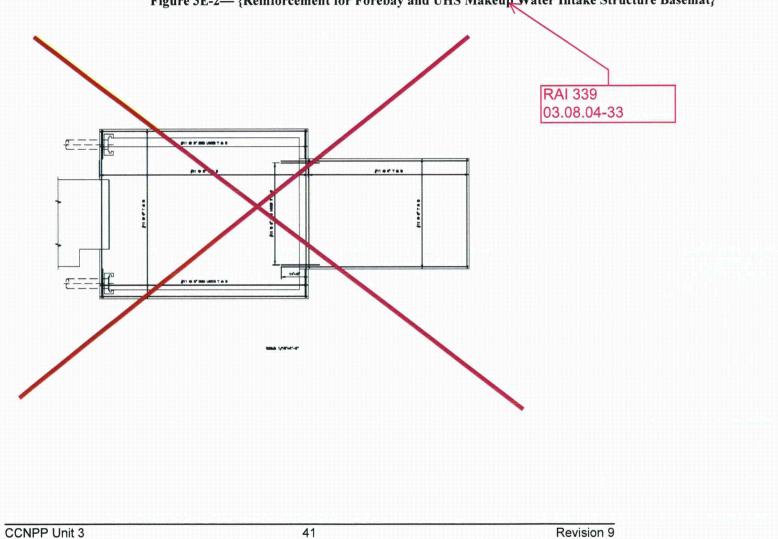
Enclosure 2 UN#13-056 Page 85 of 105

2' Thick	Wind	<u>-337</u>	<u>75</u>	4077	0.02
<u>(1 laver of #9@9")</u>	SSE	<u>-686</u>	<u>312</u>	4077	<u>0.08</u>
	Tornado	<u>-619</u>	<u>113</u>	7067	0.02
	<u>PMH</u>	<u>-775</u>	<u>267</u>	4077	0.07
	<u>SPH</u>	<u>-731</u>	<u>190</u>	<u>7067</u>	<u>0.03</u>

Notes:

(a) Load combinations are defined in Section 3E.4.3

(b) Nu = Normal force on friction interface (positive for tension)


(c) Vu = Shear demand, vector sum of in-plane and out-of-plane shear


(d) φVn = Nominal shear friction strength

(e) D/C = Demand/Capacity, i.e. Vu/qVn

30

Enclosure 2 UN#13-056 Page 86 of 105 FSAR: Chapter 3.0

41	Revision 9
© 2007-2013 UniStar Nuclear Services, LLC. All rights reserved.	Supplement 1
COPYRIGHT PROTECTED	April 2013

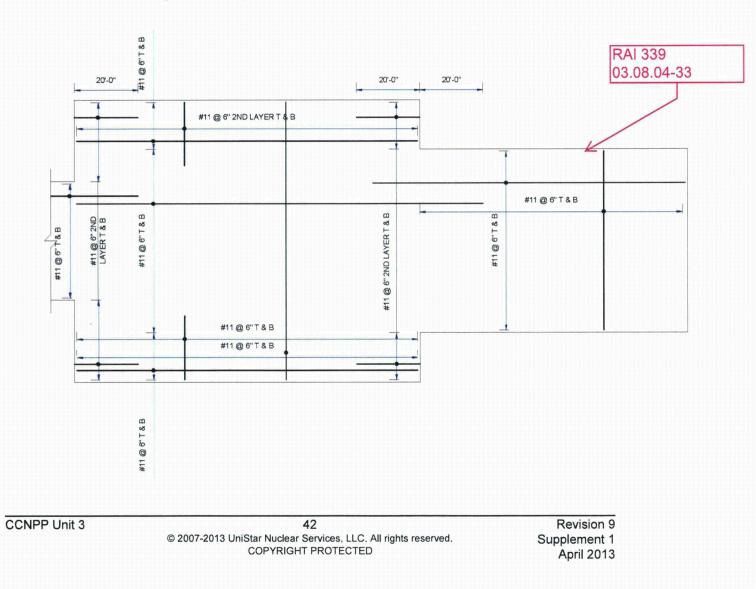
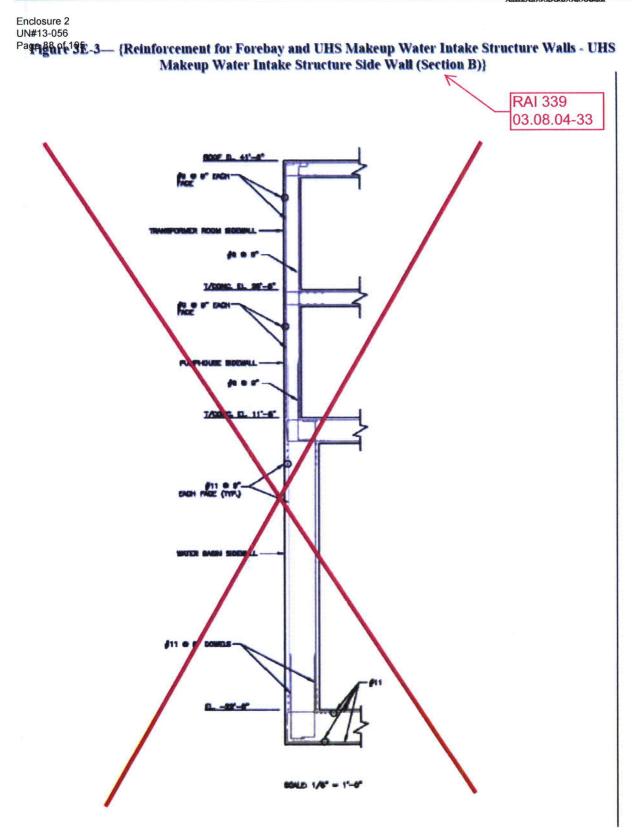
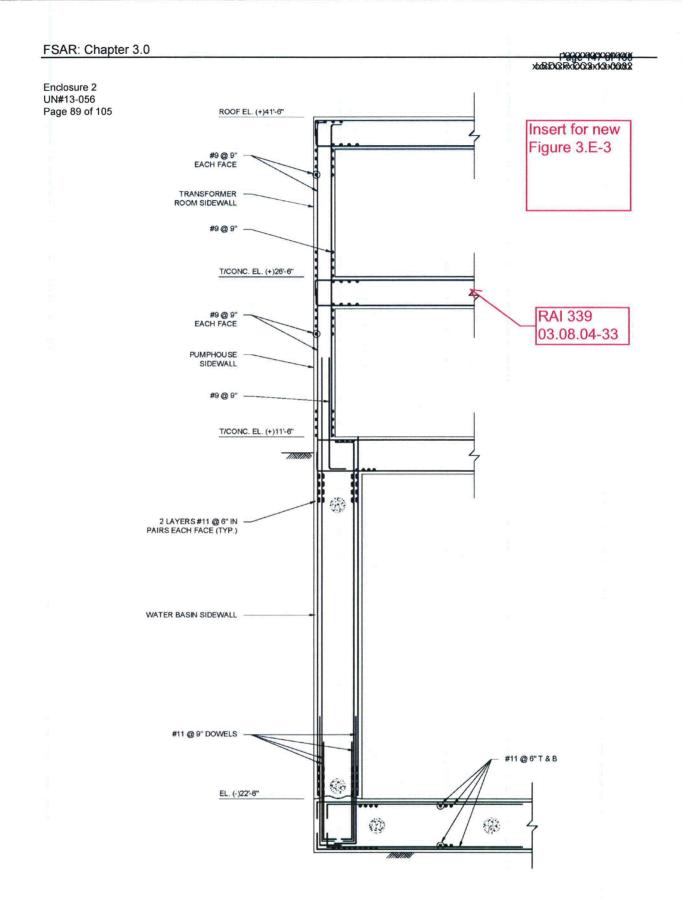
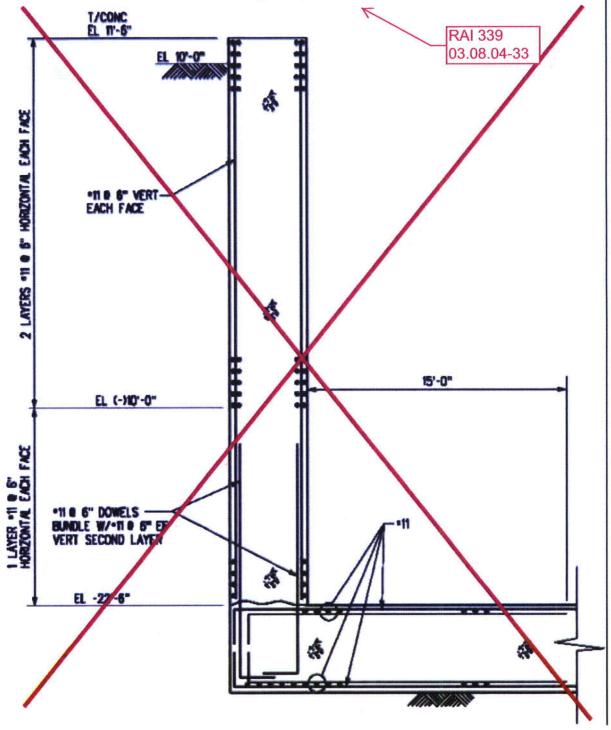
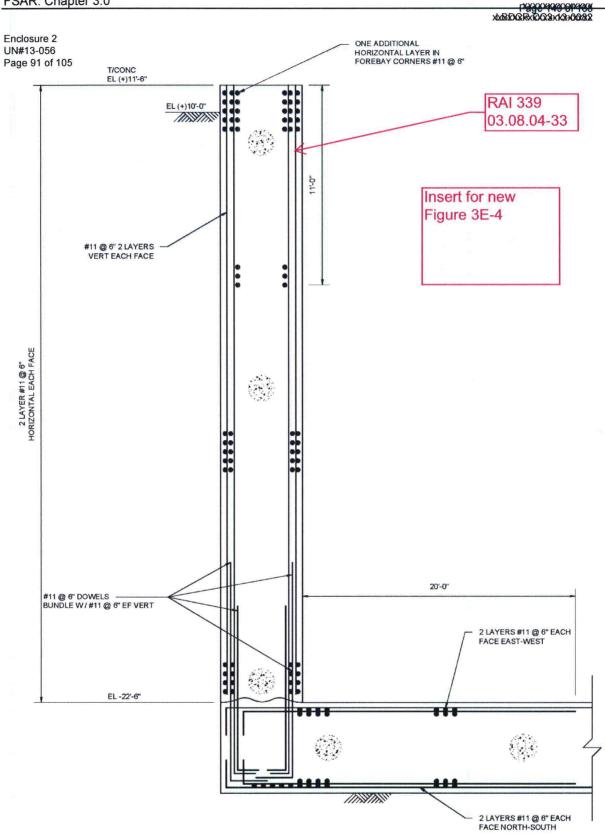
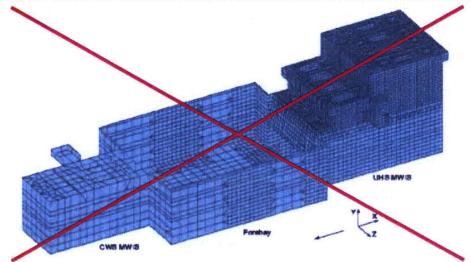




Figure 3E-2— {Reinforcement for Forebay and UHS Makeup Water Intake Structure Basemat}

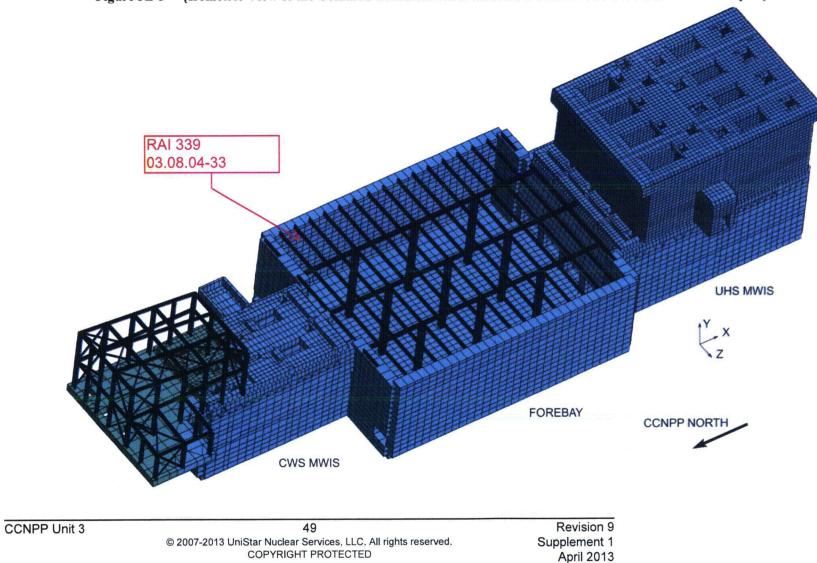


Revision 9 Supplement 1 April 2013


CCNPP Unit 3



Enclosure 2 UN#13-056 Page 92 of 105


FSAR: Chapter 3.0

CCNPP Unit 3	48	Revision 9
	© 2007-2013 UniStar Nuclear Services, LLC. All rights reserved.	Supplement 1
	COPYRIGHT PROTECTED	April 2013

Enclosure 2 UN#13-056 Page 93 of 105 FSAR: Chapter 3.0

Enclosure 2 UN#13-056 Page 94 of 105

Table 3F-6--- {Best Estimate Site SSE Strain-Compatible Profiles for the Intake Area}

	Layer	Thickness	Top Depth	Unit Weight	S-Wave Vel.	P-Wave Vel.	Damping
1 339	No.7	[ft]	[ft]	[kef]	[ft/sec]	[ft/sec]	[%6]
08.04-33		3.5	0.0	0.145	666.6	1387.6	2.13
	2	3.5	3.5	0.145	629.4	1310.1	3.46
	3	3.0	7.0	0.145	596.9	3043.7	4.12
	4	4.5	10.0	0.145	590.5	3010.8	5.49
	5	3.5	14.5	0.145	587.0	2993.0	6.13
	6	2.5	18.0	0.145	590.5	3011.2	6.51
	7	1.0	20.5	0.145	606.9	3094.7	6.89
	8	4.0	24.5	0.145	631.8	3221.5	7.03
	9	4.0	28.5	0.145	634.8	3236 6	7.25
	10	5.0	32.5	0.145	632.0	3222.4	7.53
	11	3.5	37.5	0.115	1118.4	5125.2	2.10
	12	4.0	41.0	0.115	1116.4	5116.0	2.13
	13	4.0	45.0	0.115	1114.2	5106.0	2.16
	14	4.0	49.0	0.115	1112.1	5096.4	2.19
	15	5.0	53.0	0.105	1097.1	5027.4	2.01
	16	5.0	58.0	0.105	1097.0	5008.8	2.08
	17	5.0	63.0	0.105	1,190.6	4997.9	2.13
	18	7.0	68.0	0.105	1088.0	4985.9	2.19
	19	10.0	75.0	0.105	1084.7	4970.7	2.26
	20	10.0	85.0	0.105	1081.3	4955.0	2.33
	21	10.0	95.0	0.105	1078.2	4941.1	2.39
	22	10.0	105.0	0.10	1072.1	4913.1	2.29
	23	10.0	115.0	0./13	1031.5	4800.0	1.53
	24	8.0	125.0	0.115	1021.3	4800.0	1.39
	25	8.0	133.0	0.113	1027.8	4800.0	1.39
	26	9.0	141.0	0.107	1053.2	4826.4	1.39
	27	10.0	150.0	0.105	1009.2	4858.4	1.38
	28	10.0	160.0	0.105	1058.2	4849.4	1.39
	29	10.0	170 0	0.105	1056.2	4840.3	1.40
	30	10.0	1.50.0	0.105	1054.3	4831.2	1.41
	31	10.0	190.0	0.105	1060.3	4858.8	1.43
	32	10.0	200.0	0.108	1133.4	194.0	1.55
	33	10.0	210.0	0.119	1415.0	4800.0	1.90
	34	10.0	220.0	0.125	1700.6	56403	2.09
	35	10.0	230.0	0.125	2049.2	5517.6	1.88
	36	19.0	240.0	0.125	2083.2	5944.6	1.90
	37	10.0	250.0	0.125	2001.5	5711.4	1.95
	38	10.0	260.0	0.125	1992.0	5684.3	1.98
	39	10.0	270.0	0.125	1966.5	5611.5	1,04
	40	10.0	280.0	0.125	1889.1	5771.4	2.1
CCNPP Unit				27			Revision

© 2007-2013 UniStar Nuclear Services, LLC. All rights reserved. COPYRIGHT PROTECTED

Enclosure 2
UN#13-056
Page 95 of 105

Table 3F-6- {Best Estimate Site SSE Strain-Compatible Profiles for the Intake Area}

	Layer No.	Thickness [ft]	Top Depth [ft]	Unit Weight [kef]	S-Wave Vel. [ft/sec]	P-Wave Vel. [ft/sec]	Damping [%]
	-	10.0	290.0	0.125	1877.8	5736.7	2.09
	42	10.0	300.0	0.125	1876.4	5732.4	2.10
	43	10.0	310.0	0.125	1885.0	5758 9	2.09
	44	7.0	320.0	0.123	1915.2	5851.0	2.07
	45	6.0	327.0	0.118	2034.5	4983.4	2.00
	46	7.0	333.0	9.116	2098.4	5140.0	1.99
	47	10.0	340.0	0.115	2114.0	5178.2	2.01
	48	10.0	350.0	0.115	2113.4	5196 7	2.02
AI 339	49	10.0	360.0	0.115	2112.8	5175.2	2.03
3.08.04-33	50	10.0	370.0	0.115	2112.2	5173.8	2.03

Laver	Thickness	Top-Depth	<u>Unit Weight</u>	<u>S-Wave Vel.</u>	<u>P-Wave Vel.</u>	Damping
No.	<u>[ft]</u>	Iftl	[kcf]	[ft/sec]	[ft/sec]	[%]
1	<u>3.50</u>	<u>0.00</u>	<u>0.145</u>	<u>660.1</u>	<u>1374.2</u>	2.23
2	3.50	3.50	<u>0.145</u>	<u>613.9</u>	<u>1277.9</u>	<u>3.72</u>
3	<u>3.00</u>	<u>7.00</u>	<u>0.145</u>	<u>571.0</u>	<u>2911.6</u>	<u>5.05</u>
4	4.50	10.00	<u>0.145</u>	<u>554.8</u>	2828.8	<u>6.08</u>
5	<u>3.50</u>	<u>14.50</u>	0.145	<u>540.3</u>	2755.0	<u>6.88</u>
<u>6</u>	2.50	<u>18.00</u>	0.145	<u>539.1</u>	<u>2748.6</u>	7.36
7	<u>4.00</u>	20.50	<u>0.145</u>	<u>547.0</u>	<u>2789.0</u>	<u>7.79</u>
<u>8</u>	4.00	<u>24.50</u>	0.145	<u>562.0</u>	2865.7	<u>8.08</u>
<u>9</u>	<u>4.00</u>	28.50	<u>0.145</u>	<u>561.0</u>	2860.5	<u>8.38</u>
<u>10</u>	5.00	32.50	<u>0.145</u>	<u>552.1</u>	2815.2	<u>8.79</u>
11	<u>3.50</u>	<u>37.50</u>	<u>0.115</u>	<u>1109.2</u>	<u>5083.2</u>	<u>2.22</u>
12	<u>4.00</u>	<u>41.00</u>	0.115	<u>1106.5</u>	<u>5070.7</u>	2.26
<u>13</u>	<u>4.00</u>	<u>45.00</u>	0.115	<u>1103.4</u>	<u>5056.3</u>	<u>2.30</u>
<u>14</u>	<u>4.00</u>	<u>49.00</u>	0.115	<u>1100.3</u>	<u>5042.0</u>	<u>2.34</u>
<u>15</u>	<u>5.00</u>	<u>53.00</u>	0.105	<u>1083.1</u>	<u>4963.6</u>	<u>2.30</u>
<u>16</u>	<u>5.00</u>	<u>58.00</u>	<u>0.105</u>	<u>1078.2</u>	<u>4941.1</u>	<u>2.39</u>
<u>17</u>	<u>5.00</u>	<u>63.00</u>	<u>0.105</u>	<u>1075.2</u>	<u>4927.2</u>	<u>2.46</u>
<u>18</u>	7.00	<u>68.00</u>	0.105	<u>1072.0</u>	<u>4912.4</u>	<u>2.52</u>
<u>19</u>	<u>10.00</u>	75.00	0.105	<u>1067.9</u>	<u>4893.7</u>	<u>2.61</u>
<u>20</u>	10.00	85.00	0.105	1063.7	4874.7	2.69
<u>21</u>	10.00	<u>95.00</u>	0.105	<u>1060.1</u>	<u>4858.1</u>	<u>2.77</u>
22	10.00	105.00	0.106	1053.2	4826.4	2.63
23	10.00	115.00	<u>0.113</u>	<u>1010.4</u>	4800.0	<u>1.65</u>
24	8.00	125.00	0.115	<u>999.1</u>	4800.0	1.47
<u>25</u>	8.00	133.00	<u>0.113</u>	<u>1005.4</u>	<u>4800.0</u>	<u>1.49</u>
26	<u>9.00</u>	141.00	<u>0.107</u>	<u>1030.7</u>	<u>4800.0</u>	1.51
27	10.00	150.00	<u>0.105</u>	<u>1037.5</u>	<u>4800.0</u>	<u>1.50</u>
28	10.00	160.00	<u>0.105</u>	<u>1034.8</u>	<u>4800.0</u>	1.52
<u>29</u>	10.00	<u>170.00</u>	<u>0.105</u>	<u>1032.1</u>	<u>4800.0</u>	<u>1.53</u>
<u>30</u>	<u>10.00</u>	180.00	0.105	<u>1029.2</u>	<u>4800.0</u>	<u>1.55</u>

CCNPP Unit 3

Revision 9 Supplement 1 April 2013

Enclosure UN#13-05	6 10.00	190.00	0.105	1034.4	<u>4800.0</u>	1.57
Page 96 c	f 105 <u>0.00</u>	200.00	0.108	<u>1107.0</u>	<u>5073.0</u>	1.70
<u>33</u>	10.00	210.00	0.119	<u>1389.7</u>	<u>4800.0</u>	2.09
<u>34</u>	<u>10.00</u>	220.00	0.125	<u>1681.3</u>	<u>5576.3</u>	2.28
<u>35</u>	<u>10.00</u>	230.00	<u>0.125</u>	2033.5	<u>5475.4</u>	2.02
<u>36</u>	10.00	240.00	0.125	2069.7	<u>5906.1</u>	2.05
<u>37</u>	<u>10.00</u>	250.00	<u>0.125</u>	<u>1985.2</u>	<u>5665.0</u>	2.11
<u>38</u>	<u>10.00</u>	<u>260.00</u>	<u>0.125</u>	<u>1974.3</u>	<u>5633.9</u>	2.13
<u>39</u>	10.00	<u>270.00</u>	0.125	<u>1947.2</u>	<u>5556.4</u>	2.22
<u>40</u>	<u>10.00</u>	280.00	<u>0.125</u>	<u>1866.8</u>	<u>5703.2</u>	2.32
<u>41</u>	<u>10.00</u>	<u>290.00</u>	<u>0.125</u>	<u>1854.2</u>	<u>5664.8</u>	2.30
<u>42</u>	<u>10.00</u>	<u>300.00</u>	<u>0.125</u>	<u>1851.7</u>	<u>5656.9</u>	2.31
<u>43</u>	<u>10.00</u>	<u>310.00</u>	<u>0.125</u>	<u>1859.5</u>	<u>5680.8</u>	<u>2.30</u>
<u>44</u>	<u>7.00</u>	<u>320.00</u>	<u>0.123</u>	<u>1889.2</u>	<u>5771.4</u>	<u>2.29</u>
<u>45</u>	<u>6.00</u>	<u>327.00</u>	<u>0.118</u>	<u>2009.9</u>	<u>4923.3</u>	<u>2.20</u>
<u>46</u>	<u>7.00</u>	<u>333.00</u>	<u>0.116</u>	<u>2073.9</u>	<u>5079.9</u>	<u>2.19</u>
<u>47</u>	<u>10.00</u>	<u>340.00</u>	<u>0.115</u>	<u>2089.2</u>	<u>5117.4</u>	2.22
<u>48</u>	<u>10.00</u>	350.00	<u>0.115</u>	<u>2087.5</u>	<u>5113.2</u>	<u>2.23</u>
<u>49</u>	<u>10.00</u>	360.00	<u>0.115</u>	<u>2085.8</u>	<u>5109.2</u>	2.24
<u>50</u>	<u>10.00</u>	<u>370.00</u>	0.115	2084.3	<u>5105.4</u>	2.25

CCNPP Unit 3

 $\hfill \ensuremath{\mathbb{C}}$ 2007-2013 UniStar Nuclear Services, LLC. All rights reserved. COPYRIGHT PROTECTED

29

Revision 9 Supplement 1 April 2013

Enclosure 2 UN#13-056 Page 97 of 105

^{7 of 105} Table 3F-7— {Lower Bound Site SSE Strain-Compatible Profiles for the Intake Area}

	Layer No.	Thickness	Top Depth	Unit Weight	S-Wave Vel.	P-Wave Vel.	Damping
RAI 339		<u>[1]</u>	[ft]	[kcf]	[ft/sec]	[ft/sec]	[%]
	1	3.5	0.0	0.145	535.8	1115.4	3.19
3.08.04-33	2	3.5	3.5	0.145	462.2	962.1	5.78
	3	3.0	7.0	0.145	418.3	2132.9	7 6
	4	4.5	10.0	0.145	395.2	2014.9	9.44
	5	3.5	14.5	0.145	374.3	1908.5	10.57
	6	2.5	18.0	0.145	373.1	1902.6	11.12
	7	4.0	20.5	0.145	384.5	1960.6	11.53
	8	4.0	24.5	0.145	412.0	2100.5	11.52
	9	4.0	28.5	0.145	403.9	2059.7	11.88
	10	30	32.5	0.145	405.0	2065.1	12.19
	11	3.5	37.5	0.115	913.2	4656.3	2.62
	12	4.0	41.0	0.115	911.5	4648.0	2.67
	13	4.0	45.0	0.115	909.7	4638.8	2.72
	14	4.0	49.0	0.115	908.0	4630.1	2.77
	15	5,0	53.0	0.105	891.8	4567.5	2.66
	16	5.0	58.0	0.105	892.4	4550.6	2.79
	17	5.0	63 0	0.105	890.5	4540.6	2.85
	18	7.0	68.0	0.105	888.4	4529.7	2.92
	19	10.0	75.0	0.105	885.6	4515.9	3.01
	20	10.0	85.0	0.105	882.9	4501.7	3.11
	21	10.0	95.0	0.105	880.4	4489.1	3.19
	22	10.0	105.0	X 106	875.4	4463.6	3.16
	23	10.0	115.0	0.113	842.2	4294.4	2.22
	24	8.0	125.0	0.115	833.9	4251.9	1.76
	25	8.0	133.0	0.113	839.2	4279.2	1.75
	26	9.0	141.0	0.107	859.9	4384.8	1.79
	27	10.0	159.0	0.105	865.6	4414.0	1.78
	28	10.0	60.0	0.105	864.0	4405.7	1.79
	29	10.0	170.0	0.105	862.4	4397.5	1.80
	30	10.0	180.0	0.105	860.8	4389.2	1.82
	31	10.0	190.0	0.105	865.7	4414.3	1.86
	32	10.0	200.0	0.108	925.4	4718.9	2.14
	33	10.0	210.0	0.119	1093.3	4800.0	2.51
	34	19.0	220.0	0.125	1388.5	4800.0	2.51
	35	10.0	230.0	0.125	1659.2	4800.0	2.28
	36	10.0	240.0	0.125	1700.9	4853.7	2.22
	37	10.0	250.0	0.125	1634.2	4800.0	2.30
	38	10.0	260.0	0.125	1626.5	4800.0	2.37
	39	10.0	270.0	0.125	1605.6	4800.0	2.44
	40	10.0	280.0	0.125	1542.5	4800.0	2 49

Revision 9 Supplement 1

© 2007-2013 UniStar Nuclear Services, LLC. All rights reserved. COPYRIGHT PROTECTED

April 2013

Enclosure 2 UN#13-056

Page 98 of 105 Table 3F-7- {Lower Bound Site SSE Strain-Compatible Profiles for the Intake Area}

	Layer No.	Thickness [ft]	Top Depth [ft]	Unit Weight [kcf]	S-Wave Vel. [ft/sec]	P-Wave Vel. [ft/sec]	Damping [%]
	41	10.0	290.0	0.125	1533.2	4800.0	2.46
	42	10.0	300.0	0.125	1532.0	4800.0	2.48
	43	10.0	310.0	0.125	1539.1	4800.0	2.40
	44	7.9	320.0	0.123	1563.7	4800.0	2.43
	45	6.0	327.0	0.118	1661.1	4800.0	2.35
	46	7.0	333.0	0.116	1713.3	4800.0	2.33
	47	10.0	340.0	0.115	1726.1	4800.0	2.32
	48	10.0	350.0	0.115	1725.6	4800.0	2.33
AI 339	49	10.0	360.0	0.115	1725.1	4800.0	2.35
3.08.04-33	50	10.0	370.0	0.115	1724.6	4800.0	2.35

Laver	Thickness	<u>Top-Depth</u>	<u>Unit Weight</u>	S-Wave Vel.	P-Wave Vel.	Damping
No.	Ini	IUI	<u>lkcfl</u>	[ft/sec]	[ft/sec]	[%]
1	3.50	0.00	0.145	<u>527.3</u>	1097.7	3.38
2	3.50	3.50	0.145	<u>440.8</u>	<u>917.7</u>	<u>6.34</u>
3	3.00	7.00	0.145	382.2	<u>1948.8</u>	<u>8.91</u>
4	4.50	10.00	0.145	<u>350.7</u>	1788.2	<u>10.63</u>
5	3.50	14.50	<u>0.145</u>	<u>320.4</u>	<u>1633.8</u>	<u>11.98</u>
<u>6</u>	2.50	18.00	0.145	316.5	<u>1613.8</u>	12.65
7	4.00	20.50	0.145	<u>318.8</u>	1625.5	13.23
8	4.00	24.50	0.145	<u>334.1</u>	1703.4	13.44
<u>9</u>	4.00	28.50	0.145	<u>327.2</u>	1668.3	13.87
10	5.00	32.50	0.145	321.7	1640.2	14.23
11	3.50	37.50	0.115	905.7	4618.2	2.81
12	4.00	<u>41.00</u>	<u>0.115</u>	<u>903.5</u>	<u>4606.8</u>	<u>2.88</u>
<u>13</u>	4.00	45.00	0.115	<u>900.9</u>	<u>4593.7</u>	2.94
14	<u>4.00</u>	49.00	0.115	<u>898.4</u>	4580.7	3.00
15	5.00	53.00	0.105	884.4	4509.5	3.09
<u>16</u>	5.00	<u>58.00</u>	0.105	880.4	4489.0	3.22
17	5.00	<u>63.00</u>	<u>0.105</u>	<u>877.9</u>	4476.5	<u>3.30</u>
<u>18</u>	7.00	68.00	0.105	875.3	4463.0	3.39
<u>19</u>	10.00	75.00	<u>0.105</u>	<u>871.9</u>	<u>4446.0</u>	<u>3.49</u>
20	10.00	85.00	0.105	868.5	4428.7	3.60
<u>21</u>	10.00	<u>95.00</u>	<u>0.105</u>	865.6	<u>4413.6</u>	3.69
22	10,00	105.00	0.106	<u>859.9</u>	4384.8	3.69
23	10.00	<u>115.00</u>	<u>0.113</u>	824.9	4206.4	2.47
24	8.00	125.00	0.115	<u>815,7</u>	4159.4	<u>1.91</u>
25	8.00	133.00	<u>0.113</u>	820.9	4185.9	<u>1.92</u>
26	<u>9.00</u>	141.00	<u>0.107</u>	<u>841.6</u>	4291.4	1.98
27	10.00	150.00	0.105	<u>847.1</u>	4319.4	1.97
28	10.00	160.00	0.105	<u>844,9</u>	4308.2	2.01
<u>29</u>	10.00	170.00	<u>0.105</u>	<u>842.7</u>	4296.8	2.03
<u>30</u>	10.00	180.00	0.105	840.3	4285.0	2.07

32

Revision	9
Supplement	1
April 201	3

Enclosure 2 UN#13-056	31	10.00	190.00	0.105	<u>844.6</u>	4306.6	2.12
Page 99 of 10	5 32	10.00	200.00	0.108	<u>897.6</u>	4576.8	2.42
	33	10.00	210.00	<u>0.119</u>	<u>1058.7</u>	<u>4800.0</u>	2.81
[<u>34</u>	<u>10.00</u>	<u>220.00</u>	<u>0.125</u>	<u>1372.8</u>	<u>4800.0</u>	2.81
[<u>35</u>	<u>10.00</u>	230.00	<u>0.125</u>	<u>1636.6</u>	<u>4800.0</u>	2.50
	<u>36</u>	<u>10.00</u>	240.00	<u>0.125</u>	<u>1689.9</u>	<u>4822.4</u>	2,42
	<u>37</u>	<u>10.00</u>	250.00	0.125	<u>1620.9</u>	<u>4800.0</u>	2.56
[<u>38</u>	<u>10.00</u>	260.00	<u>0.125</u>	<u>1612.0</u>	<u>4800.0</u>	2.61
	<u>39</u>	<u>10.00</u>	<u>270.00</u>	<u>0.125</u>	<u>1589.9</u>	<u>4800.0</u>	2.73
[<u>40</u>	<u>10.00</u>	<u>280.00</u>	<u>0.125</u>	<u>1524.2</u>	<u>4800.0</u>	<u>2.83</u>
	<u>41</u>	<u>10.00</u>	<u>290.00</u>	<u>0.125</u>	<u>1514.0</u>	<u>4800.0</u>	<u>2.80</u>
	<u>42</u>	<u>10.00</u>	<u>300.00</u>	<u>0.125</u>	<u>1511.9</u>	<u>4800.0</u>	<u>2.85</u>
	<u>43</u>	<u>10.00</u>	<u>310.00</u>	<u>0.125</u>	<u>1518.2</u>	<u>4800.0</u>	<u>2.81</u>
	<u>44</u>	<u>7.00</u>	<u>320.00</u>	<u>0.123</u>	<u>1542.5</u>	<u>4800.0</u>	<u>2.79</u>
	<u>45</u>	<u>6.00</u>	<u>327.00</u>	<u>0.118</u>	<u>1641.1</u>	<u>4800.0</u>	<u>2.67</u>
	<u>46</u>	<u>7.00</u>	<u>333.00</u>	<u>0.116</u>	<u>1693.3</u>	<u>4800.0</u>	<u>2.63</u>
	<u>47</u>	<u>10.00</u>	<u>340.00</u>	<u>0.115</u>	<u>1705.8</u>	<u>4800.0</u>	<u>2.65</u>
	<u>48</u>	<u>10.00</u>	<u>350.00</u>	<u>0.115</u>	<u>1704.4</u>	<u>4800.0</u>	<u>2.66</u>
1	<u>49</u>	<u>10.00</u>	360.00	0.115	<u>1703.1</u>	<u>4800.0</u>	<u>2.67</u>
	<u>50</u>	10.00	<u>370.00</u>	0.115	<u>1701.8</u>	<u>4800.0</u>	2.69

Page 402 09408 xxBIXIRxXXXXXXXXXXXXXXX

ure 2

RAI 339 03.08.04-33

-056

00 of 105 Table 3F-8- {Upper Bound Site SSE Strain-Compatible Profiles for the Intake Area

Layer No.	Thickness	Top Depth	Unit Weight	S-Wave Vel.	P-Wave Vel.	Dampin
	[ft]	[ft]	[kcf]	[ft/sec]	[ft/sec]	[%]
	3.5	0.0	0.145	829.2	1726.1	1.42
2	3.5	3.5	0.145	857.0	1784.0	2.0
3	3.0	7.0	0.145	851.8	4343.4	7.68
4	4.5	10.0	0.145	882.3	4498.9	3.19
5	3.5	14.5	0.145	920.5	4693.8	3.56
6	2.5	18.0	0.145	934.6	4765.8	3.81
7	4.0	20.5	0.145	958.0	4800.0	4.12
8	40	24.5	0.145	968.9	4809.0	4.29
9	4.0	28.5	0.145	997.5	4900.0	4.43
10	5.0	32.5	0.145	986.1	4800.0	4.65
11	3.5	37.5	0.115	1369.8	6277.0	1.68
12	4.0	41.0	0.115	1367.3	6265.8	1.70
13	4.0	45.0	0.115	1364.6	6253.5	1.72
14	4.0	49.0	0.115	1362/1	6241.8	1.73
15	5.0	53 0	0.105	1343.6	6157.3	1.52
16	5.0	58.0	0.105	1338.7	6134.5	1.55
17	5.0	63.0	0.105	1335.7	6121.1	1.59
18	7.0	68.0	0.105	1332.5	6106.4	1.64
19	10.0	75.0	0.105	1328.5	6087.8	1.70
20	10.0	85.0	0.105	1324.3	6068.6	1.75
21	10.0	95.0	0.05	1320.6	6051.6	1.79
22	10.0	105.0	0.100	1313.1	6017.3	1.66
23	10.0	115.0	0.113	1263.3	5789.2	1.05
24	8.0	125.0	0.115	1250.8	5731.8	1.10
25	8.0	133.0	0.113	1258.8	5768.7	1.11
26	9.0	141.0	0.107	1289.9	5911.1	1.08
27	10.0	1/0.0	0.105	1298.5	5950.3	1.07
28	10.0	160.0	0.105	12961	5939.3	1.08
29	10.0	170.0	0.105	1293.6	5928.2	1.09
30	10.0	180.0	0.105	1291.2	5917.0	1.09
31	10.0	190.0	0.105	1298.6	5950.8	1.10
32	10.0	200.0	0.108	1388.2	6361.4	1.12
33	10,5	210.0	0.119	1831.2	6073.3	1.44
34	0.0	220.0	0.125	2082.8	6901.9	1.74
35	10.0	230.0	0.125	2530.8	6814.4	1.55
36	10.0	240.0	0.125	2551.4	7280.6	1.63
37	10.0	250.0	0.125	2451.3	6995.0	1.65
38	10.0	260.0	0.125	2439.7	6961.8	1.66
39	10.0	270.0	0.125	2408.4	6872.7	1.71
4	10.0	280.0	0.125	2313.7	7068.5	1. 9

Enclosure 2 UN#13-056

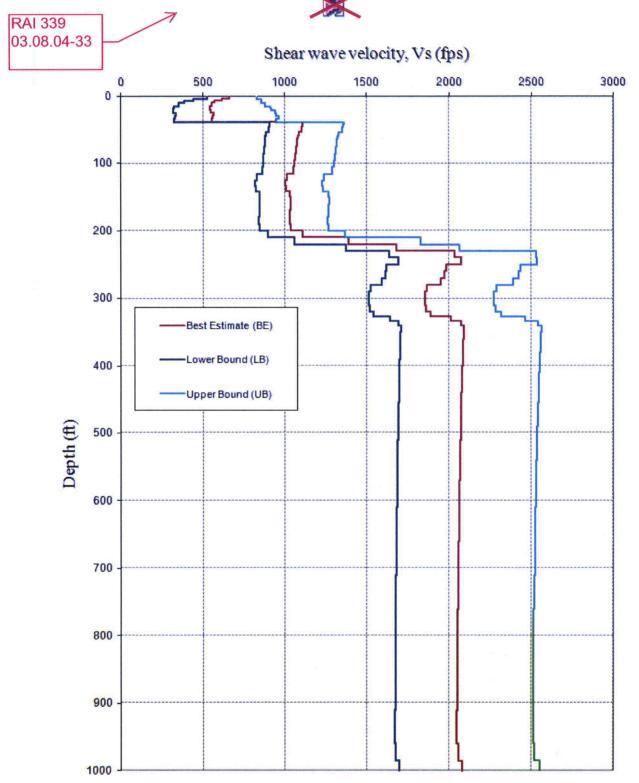
Page 101 of 105 Table 3F-8— {Upper Bound Site SSE Strain-Compatible Profiles for the Intake Area

	Layer No.	Thickness [ft]	Top Depth [ft]	Unit Weight [kcf]	S-Wave Vel. [ft/sec]	P-Wave Vel. [ft/sec]	Damping [%]
	41	10.0	290.0	0.125	2299.8	7026.0	1.77
	42	10.0	300.0	0.125	2298.1	7020.7	1.78
	43	10.0	310.0	0.125	2308.7	7053.1	1.78
	44	7.0	320.0	0.123	2345.6	7165.9	1.76
	45	6.0	327.0	0.118	2491.7	6103.4	1.70
	46	7.0	333.0	0110	2570.0	6295.2	1.70
	47	10.0	340.9	0.115	2589.1	6342.0	1.74
RAI 339	48	10.0	350.0	0.115	2588.4	6340.1	1.75
3.08.04-33	49	10.0	360.0	0.115	2587.6	6338.3	1.75
	.0	10.0	370.0	0.115	2586.9	6336.5	1.75

Laver	Thickness	Top-Depth	Unit Weight	<u>S-Wave Vel.</u>	P-Wave Vel.	Damping
No.	m	<u>m</u>	<u>íkcfi</u>	[ft/sec]	[ft/sec]	[%]
1	<u>3.50</u>	0.00	<u>0.145</u>	<u>826.4</u>	<u>1720.2</u>	1.47
2	3.50	3.50	0.145	<u>854.8</u>	<u>1779.4</u>	2.18
3	3.00	7.00	0.145	<u>853.1</u>	4350.2	2.86
4	<u>4.50</u>	10.00	0.145	<u>877.6</u>	<u>4474.9</u>	3.48
5	<u>3.50</u>	14.50	<u>0.145</u>	<u>911.1</u>	4645.6	<u>3.95</u>
<u>6</u>	2.50	18.00	0.145	<u>918.1</u>	<u>4681.5</u>	4.28
<u>7</u>	4.00	20.50	<u>0.145</u>	<u>938.5</u>	4785.3	4.59
<u>8</u>	4.00	24.50	<u>0.145</u>	<u>945.5</u>	<u>4800.0</u>	<u>4.86</u>
2	<u>4.00</u>	<u>28.50</u>	<u>0.145</u>	<u>961.9</u>	4800.0	<u>5.06</u>
<u>10</u>	<u>5.00</u>	<u>32.50</u>	<u>0.145</u>	<u>947.6</u>	<u>4800.0</u>	<u>5.43</u>
<u>11</u>	3.50	<u>37.50</u>	<u>0.115</u>	<u>1358.5</u>	<u>6225.6</u>	<u>1.75</u>
12	4.00	41.00	0.115	<u>1355.2</u>	<u>6210.3</u>	1.77
<u>13</u>	<u>4.00</u>	45.00	0.115	<u>1351.4</u>	<u>6192.7</u>	<u>1.80</u>
14	<u>4.00</u>	<u>49.00</u>	0.115	1347.5	<u>6175,1</u>	1.83
<u>15</u>	5.00	<u>53.00</u>	0.105	<u>1326.6</u>	<u>6079.1</u>	<u>1.71</u>
<u>16</u>	5.00	<u>58.00</u>	<u>0.105</u>	<u>1320.6</u>	<u>6051.5</u>	<u>1.78</u>
17	<u>5.00</u>	<u>63.00</u>	<u>0.105</u>	<u>1316.9</u>	<u>6034.6</u>	<u>1.83</u>
<u>18</u>	7.00	<u>68.00</u>	<u>0.105</u>	<u>1312.9</u>	<u>6016.4</u>	<u>1.87</u>
<u>19</u>	<u>10.00</u>	75.00	<u>0.105</u>	<u>1307.9</u>	<u>5993.6</u>	<u>1.95</u>
20	10.00	85.00	<u>0.105</u>	1302.8	<u>5970.2</u>	<u>2.01</u>
<u>21</u>	<u>10.00</u>	<u>95.00</u>	<u>0.105</u>	<u>1298.4</u>	<u>5949.9</u>	<u>2.08</u>
22	10.00	105.00	<u>0.106</u>	<u>1289.9</u>	<u>5911.1</u>	1.88
23	10.00	115.00	<u>0.113</u>	<u>1237.4</u>	<u>5670.6</u>	<u>1.10</u>
24	<u>8.00</u>	125.00	<u>0.115</u>	1223.6	5607.2	1.13
25	<u>8.00</u>	133.00	0.113	<u>1231.4</u>	5643.0	<u>1.16</u>
26	<u>9.00</u>	141.00	0.107	1262.4	5785.1	21.12
27	10.00	150.00	0.105	1270.7	<u>5822.9</u>	1.14
28	10.00	160.00	0.105	<u>1267.4</u>	<u>5807.8</u>	1.15
29	10.00	170.00	0.105	<u>1264.0</u>	<u>5792.5</u>	1.15
<u>30</u>	10.00	180.00	<u>0.105</u>	<u>1260.5</u>	<u>5776.4</u>	1,16

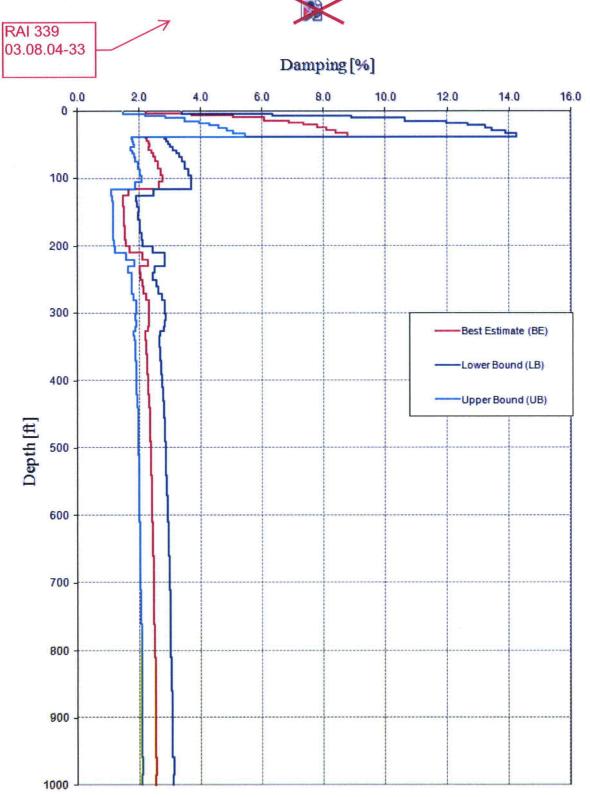
CCNPP Unit 3

Revision 9

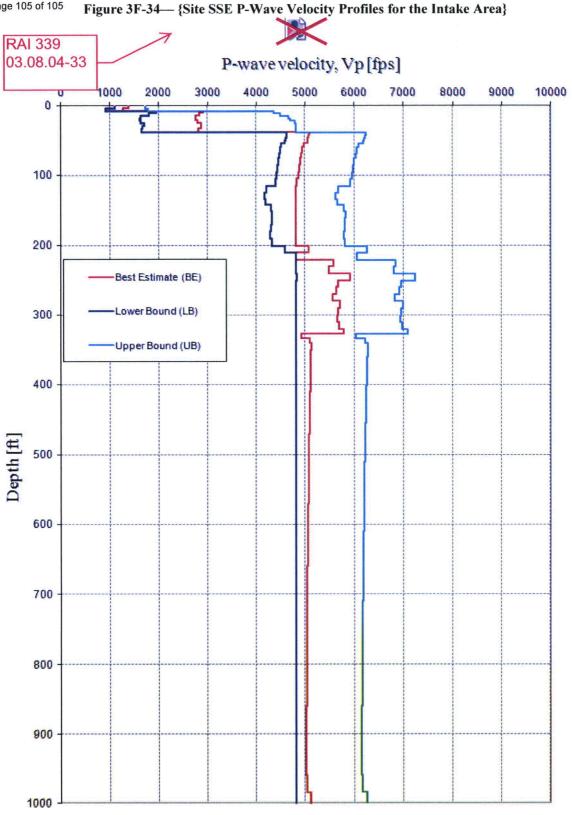

35

Enclosure 2	i			i		i
UN#13-056 <u>31</u>	<u>10.00</u>	<u>190.00</u>	<u>0.105</u>	<u>1266.9</u>	<u>5805.7</u>	<u>1,16</u>
Page 102 of 105 32	<u>10.00</u>	200.00	<u>0.108</u>	<u>1365.3</u>	6256.8	<u>1.20</u>
<u>33</u>	<u>10.00</u>	210.00	0.119	<u>1824.2</u>	<u>6050.2</u>	<u>1.55</u>
<u>34</u>	<u>10.00</u>	220.00	<u>0.125</u>	2059.2	<u>6829.5</u>	1.85
35	<u>10.00</u>	230.00	<u>0.125</u>	2526.7	<u>6803.4</u>	1.63
<u>36</u>	<u>10.00</u>	240.00	0.125	2534.9	<u>7233.5</u>	<u>1.74</u>
37	<u>10.00</u>	250.00	0.125	2431.4	<u>6938.2</u>	<u>1.74</u>
<u>38</u>	10.00	<u>260.00</u>	<u>0.125</u>	2418.0	<u>6900.0</u>	<u>1.74</u>
<u>39</u>	<u>10.00</u>	<u>270.00</u>	0.125	2384.8	<u>6805.2</u>	<u>1.80</u>
<u>40</u>	10.00	280.00	0.125	2286.4	<u>6985.0</u>	<u>1.90</u>
<u>41</u>	10.00	<u>290.00</u>	0.125	<u>2271.0</u>	<u>6938.0</u>	<u>1.89</u>
<u>42</u>	10.00	300.00	0.125	2267.8	<u>6928.3</u>	<u>1.88</u>
<u>43</u>	<u>10.00</u>	<u>310.00</u>	0.125	<u>2277.4</u>	<u>6957.5</u>	<u>1.89</u>
44	7.00	320.00	0.123	2313.7	<u>7068.6</u>	<u>1.88</u>
45	6.00	327.00	0.118	2461.6	<u>6029.8</u>	<u>1.81</u>
<u>46</u>	7.00	<u>333.00</u>	0.116	2540.0	<u>6221.6</u>	<u>1.82</u>
47	10.00	<u>340.00</u>	0.115	2558.7	<u>6267.5</u>	<u>1.86</u>
48	<u>10.00</u>	350.00	0.115	2556.6	<u>6262.4</u>	<u>1.87</u>
49	10.00	360.00	0.115	2554.6	<u>6257.5</u>	<u>1.88</u>
50	10.00	370.00	0.115	2552.7	6252.9	1.88

FSAR: Chapter 3.0



Papigure 319532- {Shear Wave Velocity Profiles Strain-Compatible with Site SSE for the Intake Area}



Page 104 Pigure 3F-33— {Damping Profiles Strain-Compatible with Site SSE for the Intake Area}

Enclosure 3

Table of Changes to CCNPP Unit 3 COLA Associated with the Response to RAI 315, Question 03.07.02-64 (Part C), Calvert Cliffs Nuclear Power Plant, Unit 3

Table of Changes to CCNPP Unit 3 COLA

Associated with the Response to RAI No. 315

Change ID #	Subsection	Type of Change	Description of Change
Part 2 - F	SAR		
CC3-12- 0241	3.7.2.2.3	Incorporate COLA markups associated with the response to RAI 330, Question 09.02.05-20 ² .	The response to RAI 330, Question 09.02.05-20 involves updating the UHS Makeup Water traveling screen classification to Safety-Related and Seismic Category I in the applicable CCNPP Unit 3 Part 2, FSAR sections and Part 10, ITAAC Tables.
CC3-13- 0019	3.7.2.3.2	Incorporate COLA markups associated with the response to RAI 304, Question 03.07.02-56 ³ .	The response to RAI 304, Question 03.07.02-56 includes a change in the third to last paragraph in Section 3.7.2.3.2 involving normal water level corresponding to MSL. The second to last paragraph in Section 3.7.2.3.2 is also revised to provide new maximum sloshing heights for the UHS Makeup Water Intake Structure and the Forebay.
CC3-10- 0302	3.8.4.1.11	Incorporate COLA markups associated with the response to RAI 253, Questions 03.07.02-42, 43, 44, 47, 48, 52, and 53 ⁴ .	The second bullet was modified and the third bullet was added as part of the response to RAI 253, Questions 03.07.02-42, 43, 44, 47, 48, 52, and 53.

²UniStar Nuclear Energy Letter UN#12-153, from Mark T. Finley to Document Control Desk, U.S. NRC, Response to Request for Additional Information for the Calvert Cliffs Nuclear Power Plant, Unit 3, RAI 330, Ultimate Heat Sink, dated December 20, 2012.

³UniStar Nuclear Energy Letter UN#13-008, from Mark T. Finley to Document Control Desk, U.S. NRC, Response to Request for Additional Information for the Calvert Cliffs Nuclear Power Plant, Unit 3, RAI 304, Seismic System Analysis, dated January 23, 2013.

⁴UniStar Nuclear Energy Letter UN#10-285, from Greg Gibson to Document Control Desk, U.S. NRC, Response to Request for Additional Information for the Calvert Cliffs Nuclear Power Plant, Unit 3, RAI 253, Seismic System Analysis, dated November 16, 2010.

Enclosure 3 UN#13-056 Page 3 of 3

Change ID #	Subsection	Type of Change	Description of Change
CC3-12- 0241	3.8.4.1.11	Incorporate COLA markups associated with the response to RAI 330, Question 09.02.05-20 ² .	The response to RAI 330, Question 09.02.05-20 involves updating the UHS Makeup Water traveling screen classification to Safety-Related and Seismic Category I in the applicable CCNPP Unit 3 Part 2, FSAR sections and Part 10, ITAAC Tables.
CC3-13- 0082	3.7.1.3.3, 3.7.2.1.3, 3.7.2.2.3, 3.7.2.3.2, 3.7.2.4.2.3, 3.7.2.4.2.3, 3.7.2.4.3.3, 3.7.2.4.5.3, 3.7.2.4.6.3, 3.7.2.4.7, 3.7.2.6, 3.7.2.14.3, 3.7.2.16, Table 3.7-5, Table 3.7-6, Table 3.7-7, Table 3.7-10, Figure 3.7-16, Figure 3.7-7, Table 3.7-10, Figure 3.7-22, Figure 3.7-23, Figure 3.7-24, Figures 3.7-22, Figure 3.7-23, Figure 3.7-24, Figures 3.7-73 through 3.7-81, 3.8.4.1.11, 3.8.4.4.7, 3.8.5.4.6, 3.8.5.5.4, Table 3.8-2, Table 3.8-3, Figure 3.8-5, Table 3E-1, Table 3.8-2, Table 3E-3, Table 3E-4, Figure 3E-1, Figure 3E-3, Figure 3E-3, Figure 3E-4, Figure 3E-5, Figure 3F-6, Figure 3F-7, Figure 3F-8, Figure 3F-32, Figure 3F-33, Figure 3F-34	Incorporate COLA markups associated with the response to RAI 315, Question 3.07.02-64 (this response), the RAI 339 Questions 03.08.04-33 and - 34 response ¹ , and the RAI 343 Questions 03.07.02-71 through -74 response ⁵ .	Text, Figure, and Table changes in Sections 3.7 and 3.8 required as part of the response to RAI 315, Question 3.07.02-64 (this response) the RAI 339 Questions 03.08.04-33 and - 34 response ¹ , and the RAI 343 Questions 03.07.02-71 through -74 response ⁵ .

⁵UniStar Nuclear Energy Letter UN#13-058, from Mark T. Finley to Document Control Desk, U.S. NRC, Response to Request for Additional Information for the Calvert Cliffs Nuclear Power Plant, Unit 3, RAI 343, Seismic System Analyses, dated April 30, 2013.