

Sequoyah and Watts Bar Nuclear Plants

NTTF Recommendation 2.1, Flooding Hazard Reevaluation Report Extension Request

April 29, 2013

Introduction Joe Shea, VP Nuclear Licensing

Kevin Casey, Sr. Program Manager

Tennessee River Operations Overview Fukushima Response Project, Licensing

SQN and WBN Hazard Reevaluation Report Task Schedule Update Kevin Casey

TVA Dam Stability Analysis

Kevin Casey

- TVA Dam Screen Process
- PMF and Seismic Stability Analysis
- Seismic and Combined Events Evaluation Methodology
- Multiple Dam Failure Event Evaluation Methodology
- Critical Path for SQN & WBN HRR Submittal

TVA Review of Draft Dam Failure Interim Staff Guidance (ISG) Kevin Casey

Current Flood Protection Joe Shea

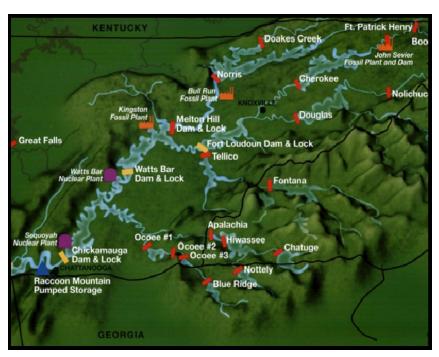
Impact to Browns Ferry Nuclear Plant Joe Shea

Impact to Watts Bar Nuclear Plant, Unit 2 Joe Shea

Closing Remarks Joe Shea

IM Introduction

- **♦** Schedule Update
 - Improve to March 2015
- **◆**Review of Draft Interim Staff Guidance
 - Stability of Guidance


TVA River Operations and Dams

TVA River Operations Managing the Rivers of the Tennessee Valley

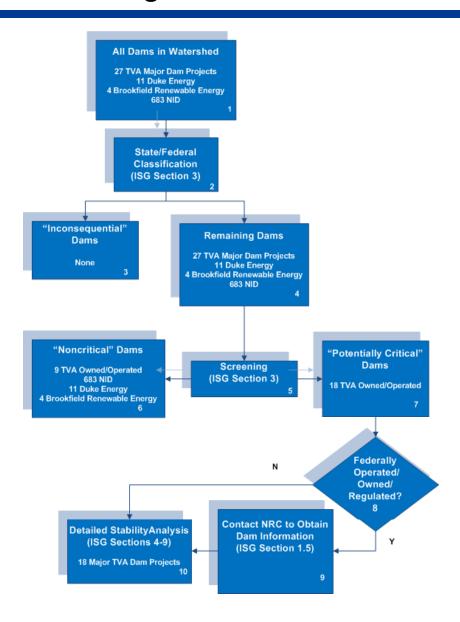
TVA is unique in its responsibility and ability to manage the Tennessee River and its major tributaries through a system of 49 major dam projects

- The Tennessee watershed is complex, draining over 40,000 square miles
- River Operations provides operational control of the reservoirs in the Tennessee River System in an integrated fashion, including:
 - Flood ControlWater Quality
 - Navigation— Water Supply
 - HydropowerRecreation
- TVA has been a leader in river forecasting for several decades
 - The Tennessee River is a well-researched and understood river system
 - Many river modeling systems in place today had origins based in part on consultation with TVA experts

TVA River Operations NA Potentially Critical TVA Dams

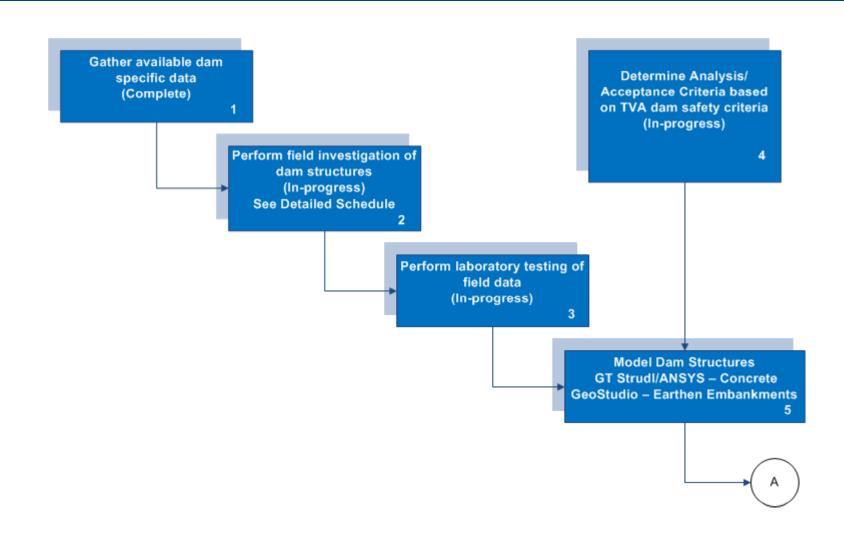
SQN and WBN HRR Status

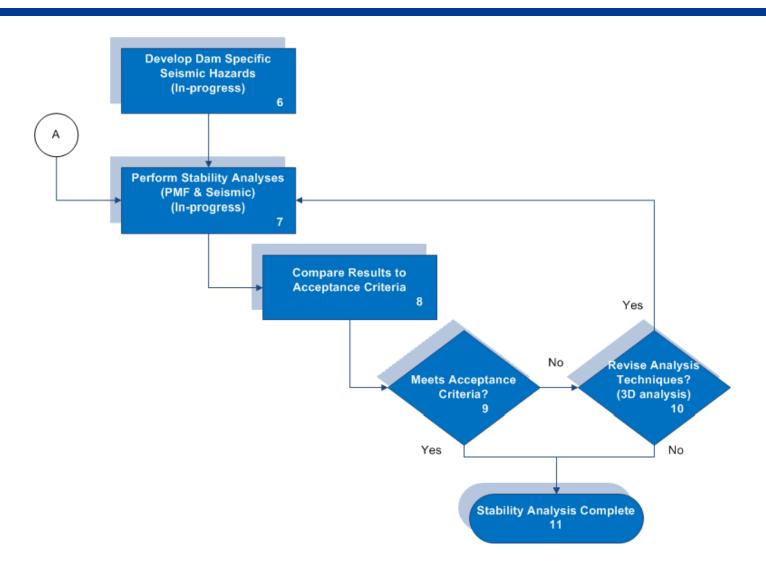
SQN and WBN HRR Status


Main Task Status Update – March 2015

	Task	Start	Finish	Status
1a	Main River Modeling Code Migration (SOCH to HEC-RAS)	May 2012	Nov 2012	Complete
1b	Tributary River Modeling Code Migration (SOCH to HEC-RAS)	March 2013	Nov 2013	In-progress
2	Confirm critical storm PMP selection	Dec 2012	Jan 2013	Complete
3	Perform local intense precipitation analysis for SQN/WBN	Sept 2012	May 2013	In-progress
4a	Sunny Day Dam Failure – WBH – east embankment failure	Jan 2013	Feb 2013	Complete
4b	Sunny Day Dam Failure - Tributary Dams	March 2013	Nov 2014	In progress
5	Perform PMF simulations - 2 storms - all dams stable	Feb 2013	March 2013	In progress
6	Evaluate Stability of 18 dams under PMF conditions	Sept 2012	March 2014	In-progress
7	Perform PMF simulations using results of stability analysis	April 2014	Dec 2014	Not Started
8	Develop dam specific seismic hazards	Feb 2013	April 2013	In-progress
9	Evaluate seismic stability of 18 dams	Sept 2012	March 2014	In-progress
10	Perform simulations using results of seismic stability analysis	April 2014	Dec 2014	Not Started
11	Perform simulations to quantify uncertainties	June 2014	Dec 2014	Not Started
12	Prepare HRRs with results and interim actions, as required	Jan 2015	March 2015	Not Started

TVA Dam Stability Analysis


TVA Dam Stability Analysis TVA Dam Screening Process Flowchart


TVA River Operations Potentially Critical TVA Dams with Structures ID'd

Dam	Types of Dam Features					
Projects P	Embankments	Concrete	Spillways	Intake Gates	Other Features	# of Hydro Units
			-		Penstock, Lined & Unlined	
1 Apalachia	0	1	10	1	Tunnel, Surge Channel	2
2 Blue Ridge	1	0	8	2	Un-gated spillway	1
3 Boone	1	1	5	6	Sluiceway	3
4 Chatuge	4	0	50	2	Penstock	1
5 Cherokee	4	1	9	4	8 - Sluices	4
6 Chickamauga	2	1	18	6	1 - Lock	4
7 Douglas	11	1	11	4	8 - Sluices	4
8 Fontana	0	1	4	3	6 – Sluices, Emergency Spillway	3
9 Fort Loudoun	2	1	14	6	1 - Lock	4
Fort Patrick 10 Henry	0	1	5	4	None	2
11 Hiwassee	0	1	7	2	2 – Penstock, 4 – Lined Sluices	2
12 Melton Hill	0	1	3	3	1 - Lock	2
13 Norris	1	1	3	2	2 – Penstock, 8 - Sluices	2
14 Nottely	2	0	50	2	Steel Lined Tunnel	1
					Power Tunnel, Sluiceway, Lined Tunnel, Emergency	
15 South Holston	2	0	1	1	Spillway	1
16 Tellico	4	1	3	0	Emergency Spillway	0
					Power Tunnel, Sluiceway,	
17 Watauga	1	0	1	1	Lined Tunnel	2
18 Watts Bar	3	1	20	6	1 - Lock	5
TOTAL	38	13	222	52	58	43

TVA Dam Stability Analysis PMF and Seismic Stability Analysis Flowchart

TVA Dam Stability Analysis PMF and Seismic Stability Analysis Flowchart (cont'd)

TVA Dam Stability Analysis Detailed Field Investigation Status Flow Diagram

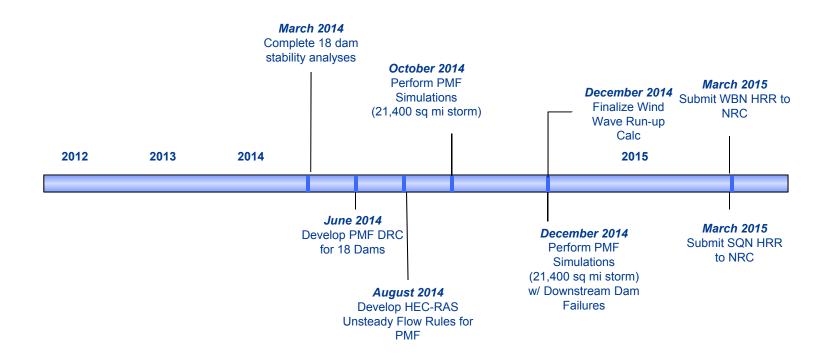
Dam Projects	Dam Structui (Complete	Status	
	Embankments	Concrete	
1 Apalachia	2/10	0/0	In-progress
2 Blue Ridge	0/0	0/0	Complete
3 Boone	15/15	0/0	Complete
4 Chatuge	51/51	0/0	Complete
5 Cherokee	42/42	0/0	Complete
6 Chickamauga	33/58	0/0	In-progress
7 Douglas	68/79	4/4	In-progress
8 Fontana	5/6	0/0	In-progress
9 Fort Loudon	48/58	13/13	In-progress

TVA Dam Stability Analysis Detailed Field Investigation Status Flow Diagram

Dam Projects	Dam Structure (Complete/	Status	
	Embankments	Concrete	
Fort Patrick 10 Henry	3/6	0/0	In-progress
11 Hiwassee	0/4	4/26	In-progress
12 Melton Hill	0/9	0/0	Not Started
13 Norris	7/17	0/0	In-progress
14 Nottely	26/49	0/0	In-progress
15 South Holston	40/40	0/0	Complete
16 Tellico	32/37	4/4	In-progress
17 Watauga	3/24	0/0	In-progress
18 Watts Bar	35/45	2/10	In-progress

TVA Dam Stability Analysis Seismic and Combined Events Evaluation Methodology

TVA assumed the following in development of the SQN and WBN HRR proposed schedule:


- ◆ Develop probabilistic seismic hazard analysis (PSHA) 1 x 10⁻³, 10⁻⁴, 10⁻⁵ uniform hazard response spectra for each potentially critical dam including deaggregation plots for use in multiple dam failure evaluations due to a single seismic event
 - 2012 EPRI CEUS source model
 - 2004/2006 EPRI attenuation model
 - Site amplification using dam specific geologic profiles
- Perform combined events (seismic + flood) stability evaluations of dams
 - 1 x 10⁻⁴ uniform hazard response spectra and 25 year flood inflows
 - ½ of 1 x 10⁻⁴ uniform hazard response spectra and 500 year flood inflows
 - Based on draft NEI white paper and several previous public meeting discussions

TVA Dam Stability Analysis Multiple Dam Failure Event Evaluation Methodology

TVA is developing evaluation methodologies to address multiple dam failure evaluations due to a single seismic event and will consider the draft ISG

- Utilizing outside resources through Jack R. Benjamin & Associates, Inc.
- ◆ TVA will present details of its multiple dam failure methodology to the NRC on or before June 30, 2013 as stated in the SQN and WBN HRR extension request letter

TVA Dam Stability Analysis Critical Path Tasks for SQN & WBN HRR Submittal

TVA Review of Draft ISG

TVA has begun a thorough review of the draft ISG and has identified the following areas as impacting current analysis assumptions:

- Use of USBR risk based analysis methods vs TVA dam stability deterministic methods
- ◆ Requirement for 10⁻⁶ annual exceedance probability of combined events (seismic + flood)
- Detailed seismic analysis of spillways, gates, outlet works, and other appurtenances.
- Consideration for potential impact from barges on navigable waterways
- ◆ At least one turbine should always be assumed to be down (e.g. for maintenance or other reasons) in performing flood routings.

TVA will continue to review the guidance and TVA will submit formal comments on the draft ISG as requested in the Federal Register Notice.

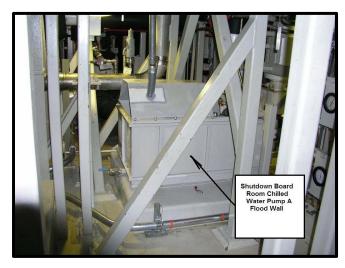
Joe Shea, VP Nuclear Licensing

TVA -Current Flood Protection Hydrology Actions Taken by TVA

TVA has taken several actions to mitigate flood risk:

- Comprehensive review and updating of TVA Hydrology modeling and calculations (Complete)
- Fukushima Response
 - Conducted walkdowns to review impacted systems, structures and components and identify physical margins
- Ran simulation to show feasibility of closing HESCO barrier openings (Complete)
- Perform monthly inspections of HESCO flood barriers until permanent modification complete (Continuous)
- Flood Mode preparation procedure improvements including reasonable simulation by December 31, 2013 (Scheduled)
- Modifications to address flood mode operations
 - Diesel Generator barriers (SQN) (Complete)
 - Essential Raw Cooling Water (ERCW) barrier (SQN) (Complete)
 - Flood Mode Spool Piece Reduction (SQN and WBN) (In Design)
 - Intake Pumping Station (IPS) barrier (WBN) (In Design)
 - Thermal Barrier Booster Pump (TBBP) barrier (WBN) (Complete)
 - Main Control Room / Shutdown Board Room chiller barriers (WBN) (Complete)
 - Spent Fuel Pool Pumps and Skimmer pumps barrier (WBN) (Complete)




TVA has committed to complete permanent modifications to replace HESCO barriers at four dams upstream of SQN and WBN by October 2015

TVA – Current Flood Protection

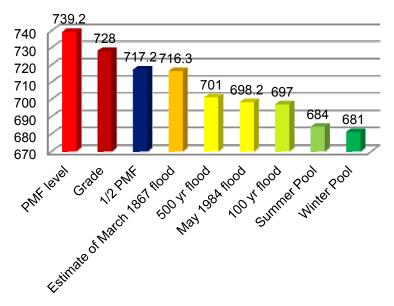
Wall Hydrology Actions Taken by TVA (Cont'd)

TVA

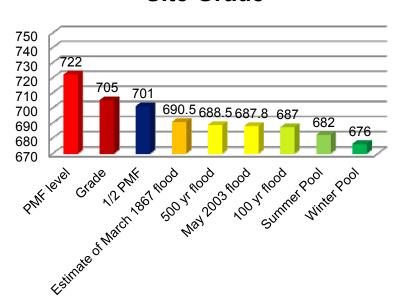
TVA -Current Flood Protection

Coordination between NPG and River Operations

River Operations' ability to control river flows, reservoir storage levels, river temperatures and levels presents TVA with unique advantages to enhance and protect nuclear plant operations, including:


- One vision and mission
- Owns river system operations and nuclear plants
- Dam release coordination
- Shared Responsibility for Nuclear and Dam Safety
- The River Forecast Center (RFC) staff utilizes forecasts of significant precipitation events, allowing for implementation of actions that can be taken to mitigate hydrothermal and flood challenges

- The RFC operates 24 hours a day, 365 days a year
 - Monitors 200+ rain gauges, 60+ stream flow gauges, reservoir headwater, tailwater and discharge at 49 dams
 - Reviews and revises river discharge schedule 2-4 times a day, and provides flood warning notification based on pre-determined conditions
 - Utilizes procedures that require NPG review of any changes and assumptions used to model river conditions to determine impact to site licensing basis (e.g., Intergroup Agreement: Nuclear Operations and River Operations; Coordination of Hydrology Issues)
 - NPG and RO&R procedures require early communication with sites to identify any potential flooding conditions based on predicted precipitation volumes not measured volumes


TVA - Current Flood Protection History of Recorded Floods

The TN valley has not experienced a flood in recorded history which has exceeded plant grade at either SQN and WBN.

WBN Flooding Elevations vs Site Grade

SQN Flooding Elevations vs Site Grade

It is TVA's position that the likelihood of such an event occurring within the extension request timeframe is very low.

M Impact to Browns Ferry Nuclear Plant

- BFN identified as "Priority 2" site, hazard reevaluation report due March 2014
- In addition to the 18 dams impacting SQN and WBN, 4 additional dams required to be analyzed for BFN

NICKAJACK

GUNTERSVILLE

TIMS FORD

WHEELER

- BFN HRR cannot be competed prior to completion of SQN/WBN HRR analysis work
- BFN Recommendation 2.1 Project has started

M Impact to Watts Bar Nuclear Plant, Unit 2

Watts Bar Unit 2 Licensing Basis

- SECY-07-0096 established the considerations for WBN Units 1 and 2 having the same licensing basis
- The WBN Unit 1 licensing basis, as modified by the License Amendment Request currently under review by the Staff is appropriate for Unit 2
- Fukushima Orders for FLEX and Spent Fuel Pool Instrumentation will be implemented
- WBN 2 will follow the WBN Unit 1 lead in the Flood Hazard Reevaluation and Actions
- WBN 2 will propose a license condition to track the Flood Hazard Reevaluation commitments
- WBN2 will implement the Improved Flood Mitigation Capabilities discussed in TVA's April 16, 2013, letter to NRC

TVA considers the current licensing approach to external flood hazards as described in the WBN Unit 2 FSAR as supplemented by the improvements described in TVA's letter dated June 13, 2012, as providing sufficient basis for supporting a finding that the licensing basis will provide adequate protection against design basis external floods.

Closing Remarks

Joe Shea, Vice President, Nuclear Licensing