RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION

03/29/2013

	US-APWR Design Certification
	Mitsubishi Heavy Industries
	Docket No. 52-021
RAI NO.:	NO. 960-6709 REVISION 0
SRP SECTION:	03.07.02 – Seismic System Analysis
APPLICATION SECTION:	3.7.2
DATE OF RAI ISSUE:	09/24/2012

QUESTION NO. 03.07.02-212:

The staff notes that Section 1.0 of MHI TR MUAP-12002 (R0), "Sliding Evaluation and Results," discusses structural gaps between buildings, but provides no details. To assist the staff in its evaluation of the sliding stability methodology, the staff requests the applicant to provide the following additional information related to structural gaps:

- a) In order to judge the adequacy of the gaps, to document which structures are adjacent to each other, and to document the structures that share a common basemat, the applicant is requested to provide a figure that shows those information. The figure should include all of the Seismic Category I structures and non-Seismic Category I structures at the plant site, the boundary of the separate concrete basemats, and the magnitude of the gaps between adjacent basemats (below grade and above). The structures should include those within the MHI USAPWR design certification and those that are within the COL application scope.
- b) Explain how the adequacy of gaps between the adjacent structures will be determined in view of the magnitude of sliding that may occur.
- c) Describe how the seismic building response is combined with the potential sliding displacement, and how the total response of the two adjacent structures is compared (assuming out of phase motion) to ensure sufficient gaps exist with some factor of safety.

ANSWER:

This answer revises and replaces the previous MHI answer that was transmitted by Letter UAP-HF-12292 (ML12356A069).

 a) A figure including a plan view and vertical sections for the Standard Plant structures is provided in Attachment 1. The exact locations of the structures within the Combined License (COL) Applicant's scope are site specific. Therefore these structures could not be included in the figure. Adequacy of the gaps between the site specific structures and the Standard Plant structures will be addressed by the COL Applicant.

- b) The adequacy of the gaps between adjacent structures will be addressed, in view of the potential sliding magnitude, as follows:
 - 1. The access building (AC/B) and the tank house weigh approximately 28,000 kips and 16,000 kips, respectively. The reactor building (R/B) complex weighs approximately 1,200,000 kips. Therefore, the AC/B and tank house weigh approximately 2.3 percent and 1.3 percent of the R/B complex, respectively. Thus, any sliding of the R/B complex toward the AC/B and/or the tank house will result in pushing these structures in the sliding direction of the R/B complex, with compression of the material in the gaps and subsequent reduction of the gap size. This gap size reduction is calculated as described in the answer to Question 212(c), amplified by a factor of safety of 2, added to other gap closures due to structure tilt and flexure, and verified against the initial gap opening shown in Attachment 1. The maximum expected increase in pressure in the gap induced by sliding is considered in the design of adjacent basement walls.
 - 2. The gap between the R/B complex basemat and the turbine building (T/B) basemat is much larger (see Attachment 1), so there is no danger of contact between the structures (basemats) due to gap closure. A potential issue is the increase in pressure in the backfill in the gap due to the two structures (R/B complex and T/B) sliding toward each other. The nonlinear sliding analysis provided a conservative estimate of the relative displacements of the R/B complex and the T/B and resulting gap closure (see the answer to Question c, below) that will be used to calculate the increase in pressure on the structural walls adjacent to the gap, due to compression of the backfill in the gap. These pressures will be used for the design of structural walls.
- c) Gap closure due to seismic building response including potential sliding is calculated as follows:
 - For the two lighter structures (AC/B and tank house) the maximum pressure in the gap due to R/B complex sliding toward these structures is conservatively estimated as the envelope of dynamic pressure and passive pressure. This is a conservative assessment, as mobilization of the entire passive pressure requires sliding displacements considerably larger than the maximum displacements induced by sliding. The passive pressures are calculated based on the Rankine earth pressure theory, modified to account for the presence of a rigid structure within the passive soil wedge. A series of conservative assumptions are used:
 - Use upper bounds for the strength and unit weight of the engineered fill
 - Assume low groundwater level, as passive pressures developed in unsaturated soil are larger than in saturated soil
 - Consider the effect of out of phase motion by accounting for horizontal inertia forces induced by sliding in the adjacent buildings (AC/B and tank house), acting in the direction of increasing dynamic pressure.

The gap closure due to sliding is calculated as a function of the envelope pressure acting on the backfill material in the gap. A lower bound of the gap material stiffness is conservatively used. Additional gap closure above grade level, due to structure tilt and deflection, is calculated based on the results of soil-structure interaction (SSI) analyses. A factor of safety of two is applied to the total gap closure and the resulting value is checked against the initial gap opening.

2. The gap between the R/B complex and the T/B is addressed as follows: For each of the two structures, nonlinear sliding analyses are performed for six generalized layered subgrade profiles and five acceleration time histories compatible with the certified seismic design response spectra (CSDRS). At each time instant, the total displacement for each structure is calculated as the vector sum of the sliding displacements in the X and Y directions. The nonlinear sliding analyses provide the maximum total displacements for each structure, each subgrade profile and each acceleration time history. The maximum expected sliding is calculated by statistical processing of results from different subgrade profiles and time histories, and represents the maximum value with exceedance probability of 2.5 percent (more details are provided in Section 5.4 of Technical Report MUAP-12002, Rev. 1). The gap closure is calculated as the square root of sum of squares (SRSS) of the maximum expected values for the two structures (R/B complex and T/B). The maximum total displacements occur, in general, at different time instants and in different directions for the two structures, and therefore the SRSS is a conservative addition method. This calculation accounts for the possibility of the seismic waves to arrive in any direction, and for the two structures experiencing out of phase motions.

Impact on DCD

There is no impact on the DCD.

Impact on R-COLA

There is no impact on the R-COLA.

Impact on S-COLA

There is no impact on the S-COLA.

Impact on PRA

There is no impact on the PRA.

Impact on Technical/Topical Report

There is no impact on the Technical/Topical Report.

This completes MHI's response to the NRC's question.

Security-Related Information – Withheld Under 10 CFR 2.390