ENCLOSURE 4

Plant Effluent Calculations for the Westinghouse SMR DCD Submittal, Alternative Approaches to GALE (Non-Proprietary)

Plant Effluent Calculations for the Westinghouse SMR DCD Submittal

Alternative Approaches to GALE

Greg A. Fischer (fischega@westinghouse.com)
Gianluca Longoni (longong@westinghouse.com)
Jim Sejvar (sejvarj@westinghouse.com)

Overview

- Introduction
- Planned Methodology for ANS 18.1 Nuclides
- Planned Methodology for Tritium & C-14
- Verification and Validation
- Discussion / Questions

Introduction

- Standard Review Plan Sections 11.2 & 11.3 First Acceptance Criterion:
 - 10 CFR 20.1302 which references
 - 10 CFR 20 Appendix B
- During design certification, compliance is demonstrated by presenting projected liquid and gaseous effluent concentrations
 - Supports DCD Sections 11.2 and 11.3.
 - 11.2 -> liquid waste management system
 - 11.3 -> gaseous waste management system

Introduction

- Regulatory Guide 1.112 further clarifies acceptable practices for demonstrating compliance
- Effluent activity has typically been predicted with the PWR-GALE Code (NUREG-0017)
- However:
 - GALE reflects operating plant data from a few plants during the initial operating period
 - GALE results generally over-estimate plant activity releases
 - GALE (1986) does not represent "best estimate" for a modern PWR

Introduction

Therefore:

- Westinghouse has undertaken a re-examination of the effluent activity projections for the SMR DCD submittal
- Effluent release projections for all isotopes except tritium will be calculated mechanistically by a new code:
 - REAP (Radioactive Effluents for Advanced Plants)
- Tritium & C-14 effluent release projections will be calculated separately
 - Tritium's chemical properties are different from other isotopes
 - Carbon-14 not included in ANS 18.1

Important caveats:

- GALE-calculated results for Westinghouse-SMR expected to be within 10CFR20 Appendix B limits
- Westinghouse-SMR DCD will include sufficient detail for NRC validation

- REAP is currently being developed by Westinghouse
 - Completely new codebase, engineered pursuant to modern best-practices of software development
 - Technical report submitted with the DCD submittal

Source Term

 REAP will apply ANSI/ANS-18.1 to determine primary and secondary side source terms during normal operation

Source Term

a,c

Nuclear Data

 Half-life and branching fraction data from the latest ORIGEN-S decay data library

Activity Transport Calculations

- Time-dependent, mechanistic treatment of radioactive liquid and gas flow between tanks and components
- Values that are currently hard-coded in GALE will be treated mechanistically

a

Activity Transport Calculations

Equations account for:

a.c.e

Activity Transport Calculations

a,c

THE STATE OF THE PARTY.

Unplanned Releases

 GALE includes an arbitrary 0.16 Ci/yr adder that is intended to account for operator error and/or unplanned release of activity

a,c,e

•

•

<u>Output</u>

Expected annual release for each radionuclide at each identified release point

- REAP will replicate or improve upon the calculations performed by GALE
 - The source term inputs will be derived from the latest version of ANS 18.1

 Calculated effluent values will be "best estimate", more consistent with relevant measured data

Planned Methodology for "Other" Nuclides

 C-14, Ar-41, and H-3 are traditionally normalized to historical data

a.c.e

Overview

Some background...

a,

- __
 - _
 - _

 - =
- -
- Development Plan Moving Forward
- Conclusions

Background

- The available methods to predict tritium discharge are:
 - Mechanistic in nature (TRICAL)
 - Focused on H-3 generation aspects
- Additional analyses have been performed to understand and improve these models by looking at the neutronnucleus interaction and cross-sections
- A study has indicated that secondary neutron sources have a significant impact on the tritium generation term

Background

- The current methods lead to overly conservative estimates of tritium activity release (as compared to measured data)
- There is a clear need to improve the comparison with measured plant data to be able to support a licensing strategy for multi-unit sites such as the Small Modular Reactor

Applicability

- H-3 production pathways in the SMR should be similar to existing PWRs:
 - Neutron capture in soluble boron
 - Production in and release from secondary source rods
 - Lesser contributors (ternary fission, reactions with neutron poison, reactions with soluble lithium, and reactions with deuterium)
- The relative importance of these pathways has not been validated

a.

a,c

a,c

•

•

•

.

ac

a.c

•

•

a.c

•

a.

•

•

Westinghouse

aho

20

•

•

•

X THE PROPERTY OF THE VEHICLE

aho

a.c

•

a

a,c

•

a.c

•

•

•

•

•

Charles And The Value

Overall REAP / ANN Verification and Conclusions

- Use of rigorous software design processes / procedures
- Plan to perform comparisons of results to
 - Operating plant data (where applicable)
 - Data from REIRS database

Discussion / Questions

