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VIBRATIONS OF A RIGID DISC ON A LAYERED VISCOELASTIC MEDIUM

J. Enrique LUCO
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Received 17 January 1976

A method of obtaining the dynamic impedance functions for a rigid circular foundation placed on a layered viscoelastic
half-space is presented. Both hysteretic and Voigt models of internal damping are considered. The results obtained indicate
that the presence of internal damping introduces important changes in the dynamic response of the foundation for vertical,

rocking and horizontal steady-state excitation.

1. Introduction

A key step in the evaluation of the effects of soil—
structure interaction on the earthquake response of a
structure is the computation of the force—displace-
ment relationship for the foundation. Several such re-
lationships, expressed in terms of impedance or com-
pliance functions, are available at the present time [1].
However, most of these studies are restricted to a
model of soil corresponding to a non-dissipative, pure-
ly elastic medium. In these studies no material or in-
ternal damping is considered and, consequently, the
only source of energy dissipation corresponds to the
geometric attenuation, also called radiation damping.

The objective of this study is to incorporate the ef-
fects of material damping in the analysis of the har-
monic response of a rigid circular foundation placed
on alayered medium. The need for incorporating the
material damping in the solution of this problem arises
from the important effects that internal damping has,
particularly when large strains are involved or when
the medium representing the soil is layered. In this
study two types of material damping are considered:
viscous Voigt-type damping and hysteretic-type damp-
ing. Three types of harmonic excitations are investi-
gated: vertical force, rocking moment and horizontal
force. In all cases relaxed conditions on the contact
between the circular foundation and the supporting
medium are assumed.

In a previous study, Veletsos and Verbic [2] con-
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sidered the harmonic response of a circular foundation
placed on a viscoelastic half-space. The procedure used
by them was based on establishing analytical approxi-
mations to the numerically obtained solutions for the
elastic problem and in extending these approximations
to the viscoelastic case by use of the correspondence
principle. Such approach cannot be extended to the
analysis of layered media for which the impedance
functions may present strong fluctuations as a func-
tion of frequency. The studies reported in refs. [3]—
[5], although more general with regard to the incorpo-
ration of material damping, are based on an assumed
stress distribution at the contact between the founda-
tion and the soil.

The method of solution employed here follows, ex-
cept for consideration of the material damping, the
procedure used by the author [6] to solve the problem
for a non-dissipative layered medium.

2. Formulation of the problem
2.1. Statement of the problem

In what follows, a study is made of the forced har-
monic vibrations of a rigid circular footing of radius a
placed on the surface of a layered viscoelastic medium.
The layered medium consists of N—1 parallel layers
resting on a viscoelastic half-space. Both the layers and
the half-space are assumed to be homogeneous and
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Fig. 1. Description of the model.

isotropic with densities p;, shear moduli G;, and Voigt-type dissipation), or, the hysteretic damping co-
Poisson’s ratios g;(i = 1,2, ..., NV), respectively. In ad- efficient £, = wG}/2G; (for hysteretic-type dissipation)
dition, depending on the type of internal friction con- are assumed to be known for each one of the media

sidered, the relative viscosity coefficient (G}/G)) (for forming the soil deposit. The geometry of the model
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and the coordinate systems used are shown in fig. 1.

A welded type of contact is assumed to exist be-
tween adjacent layers. Thus, the stresses and displace-
ments are continuous across each interface. The con-
tact between the foundation and the surface of the
top layer is assumed to be relaxed, i.e. the contact is
frictionless for vertical and rocking vibrations and pres-
sureless for horizontal vibrations.

The boundary conditions at z = 0 expressed in
terms of displacement and stress components in cylin-
drical coordinates are:

(a) vertical vibrations
u,(r,0,0)= Al 0<r<a; (la)
0,,(r,0,0)=0,

Ozr(ry 93 O)= Oze(’a 01 O) = O ’

r>a, (1b)
0<r<e; (2)
(b) rocking vibrations

u,(r, 0,0) = or cos § eiw! 0<r<a; (32)

0,(,0,0)=0, r>a, (3b)

0,(r,0,0)=0,,(r,0,0)=0, 0<r<e; (4)

(c) horizontal vibrations

u,(r,8,0)= Ay cos 6 eiwt

uy(r, 6,0) = —Ay sin 9 ele! | 0<r<a, %)

0,(r,0,0)=0,(r,0,0)=0, r>a,; ©6)

0,,(r,0,0)=0, 0<r<eo, 0]

In the above equations, A, is the amplitude of the
vertical displacement of the center of the rigid founda-
tion; & is the amplitude of the rocking angle about the
y axis (6 = m/2); Ay is the amplitude of the horizontal
displacement of the foundation in the direction of the
x axis (8 = 0); and w is the frequency of the steady-
state vibrations.

The continuity conditions at the interface z = H;
are

u(r, 0, H)=ul*'(r,0,Hy) , (8a)

ug(riesHi)=ugl(r,0’Hi)9 (8b)

ui(r,0,H)=ul"1(¢,0,H) (i=1,2,..,N-1),
(8¢c)

o (r,0,H)= 0} (r,0,H), (9a—c)

0o (r, 0, H) = ol (r, 6, Hy) ,

. e o
olzz(r599Hi)—olzz (r,eaHi) (1_1’29-"’N_1)a
where the superscript i indicates the ith layer. In ad-
dition, the displacement and stress components in the
underlying half-space must tend to zero as (r? +z2)
tends to infinity.

2.2. Types of energy dissipation

In this study two types of energy dissipation are
considered, namely, the Voigt viscous model and the
hysteretic model.

The stress—strain relationships for harmonic vibra-
tions of a solid with Voigt-type damping are of the
form [7]

0,, = (A +iwh) © +2(u +iwn')e,, , (10a)
0,y =2(u+iwp)e,, , (10b)
where

O=¢, te,, te,. (10c)

In egs. (10a) and (10b), w is the frequency of the
excitation; \ and u are Lame’s constants; and \', u'
are the viscosities. It is clear from egs. (10a) and (10b)
that the viscoelastic problem may be solved, if the
solution for the corresponding purely elastic problem
is known, by substituting in the elastic solution A and
u by the complex moduli

A =M1 +HiwN'/A) and  p* = u(l + i /u) .
(11a,b)

To simplify the problem it is assumed that

Nh=ylu. (12)

In this case the remaining complex constants are
given by

* *), %
e =GN O p1 4 i)

)\* + l-‘*
K* = 2%+ 2u% = k(1 +iow' /) , (13a,b)
o* =N*20* +p¥)] =0, (13c)
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where £, k and o are Young’s modulus, the bulk mod-
ulus, and Poisson’s ratio, respectively. The assumption
given by eq. (12) has the advantage that the Poisson’s
ratio for the viscoelastic medium is real and equal to
the Poisson’s ratio of the corresponding elastic medi-
um. One disadvantage, however, is the fact that the
bulk modulus is complex and consequently there are
losses associated with changes of volume.

Equation (10b) indicates that for shear deforma-
tions the stress—strain relationship could be described
by an ellipse. The energy loss per cycle is given by the
area of the ellipse and the corresponding ‘specific loss’
is

AW/W = 2m(wi' 1) , (14)

where W is the elastic energy stored when the strain is
a maximum. Equation (14) indicates that for a Voigt
solid the ‘specific loss’, or the energy loss per cycle, is
proportional to the frequency of the excitation. The
elliptical stress—strain loop in this case is a direct re-
sult of the viscosity of the medium.

Laboratory tests on soils indicate that the ‘specific
loss” AW/W is independent of the frequency of the ex-

citation and that the stress—strain loop is not an ellipse

[8—12]. It appears then that the mechanism of energy
loss in soils is not of the viscous type but rather is a

direct result of the anelastic behaviour of soils. In spite

of this anelastic behaviour an approximate approach
is to assume that the soil may be treated in a similar
way as a viscoelastic medium, except that in this case
the complex shear modulus u* and the ‘specific loss’
are taken to be equal to

u*=u(l +2if) and AW/W=4ng, (15,16)
where £ is a damping constant independent of fre-
quency. This model of internal damping is also called
constant hysteretic-type damping. The damping con-
stant £ is analogous to the percentage of critical damp-
ing under resonant conditions, or during free vibra-
tions [8]. The hysteretic damping constant £ is strain
dependent: values for low strain may be less than
0.02, while for high strains £ may reach values of 0.15
or 0.20.

In what follows the shear modulus u is designated
by G, and the shear viscosity u' is designated by G'.

2.3. Integral representation

A solution of the equations of motion in cylindrical
coordinates satisfying the conditions at the interface
between layers, as well as the conditions at infinity,
may be obtained by the application of the correspon-
dence principle to a representation derived by Sezawa
and reported in ref. [13] and [14].

The displacement and stress components of interest,
at z =0, are given by

u(r,0,0)=auX(") cos (nd),
ug(r,0,0)=au}(r') sin(no) ,

u,(r,0,0)=au*(r') cos(nd) , (17

0,(r,0,0) =G 0%(r") cos(nd) ,
0,5(r,0,0) =G 0% (r") sin(nd) ,
0,,(r,0,0)=G ok (r') cos(nd) , (18)

where 1 = 0 for vertical vibrations; n = | for rocking
and horizontal vibrations;r' =7/a;and

W) 2 ur) =72 [ kA (R)C; (k)
0

+ A (k)CH(K)]/Ag

F Ay3 G ()AL 41 (agkr') dk (19)

u¥r') =2 f k{[Ay; (K)Cy ()
0

+ Dyy (K)Cy ()| A}, (agkr') dk (20)

ox(r') £ a3y(r)
=220 [ [KCy(k) 7 C3(K),.q(agkr') dk , (21)
0

0% (") =2aq [ KCy(kW,,(agkr') dk . (22)
0
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In eqs. (19)—(22), ay = wa/B; is a dimensionless fre-
quency defined in terms of the shear wave velocity

B, of the top layer. The functions Ai]-(i,j =1,2), Ag,
A3 and A , appearing in eqs. (19)—(22), depend on
the properties of the soil column and are given in the
appendix. The functions Cy(k), Co(k) and C3(k) are

to be determined by the boundary conditions at z = 0.

For vertical and rocking vibrations, eqs. (2) and (4)
together with eq. (21) imply that

€1 (k)= C3(k) =0 . 23)
Similarly, for horizontal vibrations, eqs. (7) and

(22) imply that

Cy(k)=0. 24)
Before imposing the remaining boundary condi-

tions, it is convenient to introduce the following sub-

stitution [6, 14]:
(a) vertical vibrations

2

AVKI '
Cz(k) = —[m a0:| Of ¢V(t) cos(aokt) de;
(25)
(b) rocking vibrations

2
K1

_ [__29‘_ J ; .
o) =754y % Of g (¢) sin(agkt) dt ; (26)
(c) horizontal vibrations
24y K%
aw: o |
X [ {6,(0) costagkt)
0

— ¢5(t) [cos(apkt) — sin(agkt)/agkt)|}de , X))

2AHK1
C3k) = - [na(2 o )aok]

1
X [ {01(t) cos(agkt) — (1 — 07)¢5(0)
0

X [cos(agkt)— sin(agkt)/agkt]} dt , (28)

where ¢y(1), o (1), and ¢ (1), ¢,(¢) are functions to

be determined by egs (1), (3) and (5), respectively. In
eqs (25)—(28), k3 = (1 +iwG]/G,)~! for Voigt-type
damping, and K% =(1+ 2i.§1)‘1 for hysteretic-type
damping. The substitutions indicated above satisfy di-
rectly the stress boundary conditions prescribed in
egs (1b), (3b) and (6).

3. Integral equations and impedance functions

Substitution from egs. (25)—(28), together with
egs (23) and (24), into eqs (17), (19) and (20), and
imposition of the remaining displacement boundary
conditions, leads to the following integral equations
for the unknown functions ¢v(#), ¢g(?), ¢1(¢) and
$2(2):

(a) vertical vibrations

1
o+ [ K@, ey()d' =1 (0<1<1),
0
(29)
where
K, t)=Ly(t - £+ L@+ 1), (30)
=__ +1 kt) dk;
Ly()= f [(1 e 1] costagh)
(31)
(b) rocking vibrations
1
or(+ [ K@, )p()dr' =t (0<s<1),
0
(32)
where
K@, Y=L (1t -t —Li(@t+1). (33)

The function L(¢) in eq. (33) is defined by
eq. (31).

(c) Horizontal vibrations

1
010+ [ K116, )81 (1) + K 12t £)9p(e)] dt' =1
0

o<t<), (34)
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1

(1= 06 + [ [Kyy(e,8), () +
0

+Kyy(t, 1), (t)]) dt' =0 0<r<1), (35
where

1

) 1
Ky (2 t')=—:9( )f [(1 = 0)H (k) + Hy (k)]
0

2 -0
X cos(agkt) cos(agkt") dk , (36)
, 2a0 1 — 01 poy
Kp(tt)=—— (2 — 01) f [H, (k) — H, (k)]
0
. sin(agkt’)
X cos(agkt) [cos(aokt ) — ————,—j| dk, (37
aokf

oo

NN CACEYAD)

_01 o

2a)

1
Kt )= 5

sin(agkt)

X ':cos(ao kt) — B T j| cos(agkt") dk , (38)
0

, 2[10
K22(t’ t) ='—n—

(; : zi) of [H(k) + (1 — a))H, (k)]

: k . kt"
X ':cos(aokt) - w} [cos(aokt') - S—m(ﬂ—)} dk ,

(39)
and
k Aq
Hl(k)=‘—2“—‘*‘— A—_l > (40)
ki1 —gy) “R
Hy(k) =——— — 1. (41)
K14

The integral equations (29), (32), (34) and (35) are
of the Fredholm type and have a form suitable for
numerical solution. Once these integral equations have
been solved, the entire displacement and stress field
may be evaluated by substitution from eqs (2 5)—(28)
into egs (19)—(22). In particular, the total vertical
load V, the rocking moment about the y axis M, and
the total horizontal load in the x direction & may be

found to be given by

4GlaAVeiWI !
V=—-——-—2- ¢,(t) dr, (42)
(- 91 )Kl 0

861a3aei“” 1
= 5 top(2) dr, (43)
(1 —0a)k7

8G1aAHeiw[ 1
H=———2— ¢ (¢)dr . (44)
2~ 0, )Kl 0

Equations (42)—(44) constitute the force-displace-
ment relationship for the circular foundation. It should
be mentioned that in deriving these equations the
terms coupling the horizontal and rocking vibrations
have been neglected.

It is convenient to write eqs (42)—(44) in the fol-
lowing form:

4Gla . )
Vei—% o [kyplag) tiageyy(ag)]Aet,  (45)

8G a3 4
M= 3(—1%_5 [kMM(“O) + iaOCMM(ao)]aelwt , (46)
B |
Gla i iwt
=37 gp K@) +iaochy @)l Aye e, (47)
where

1
kyy (@)= [ Re[p,(0)/k31dr,
0
1
CVV(ao)z;,l‘Oflm[¢v(f)/f<%]dt, (48)
0
1
kag @g) =3 [ Re[tgg (1)/x?]dr ,
0
1
CMM(a0)=a‘3(‘)‘ JRLIENGTHETS (49)
0
1
kuag)= [ Re[py(03]dt,
0

1
cprr @p) =a_10 Of Im[6, (r)/k2]dr . (50)
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The terms inside the square brackets in eqs. (45)—(47)
are the normalized impedance functions for vertical ,
rocking and horizontal vibrations; the factors outside
the parentheses correspond to the static values (g = 0)
of the impedance functions for an elastic half-space
having the properties of the top layer. The functions
kyy(ag), kapr(@g) and kg (ag), corresponding to the
real part of the impedance functions, will be called
‘equivalent stiffness coefficients’, while the functions
cyylag), cpp(ag) and c gy (ag), proportional to the
imaginary part of the impedance functions, will be
designated ‘equivalent damping coefficients’. Both the
equivalent stiffness and damping coefficients are func-
tions not only of the dimensionless frequency ag but
also depend on the properties of the different media
forming the soil column.

In solving the problem for horizontal vibrations, a
further approximation has been introduced by assum-
ing that ¢,(¢) is sufficiently small so that the integral
equations (34) and (35) may be reduced to

1
¢1(t)+fKll(t,t')¢1(t')dt=1 0<r<1),
0

(51

where the kernel K (¢, ¢) is given by eq. (36). The
basis for this approximation is that for the case of a
uniform half-space, the function ¢,(¢) is much smaller
than ¢, (¢); particularly for the static case ¢,(¢) = 0.
The above approximation is equivalent to the require-
ment that o,,, =0 under the foundation and thus cor-
responds to a further relaxation of the boundary con-
ditions.

4. Numerical solution

The numerical procedure used to solve the integral
equations (29), (32) and (51), consists of reducing
these equations to a system of algebraic equations that
are solved by standard methods. A key step in this
procedure is the evaluation of the kernels K(z, ") given
by eqs (30), (33) and (36). In the case of a medium
with no internal friction the functions Ag and Ap
have zeros for real values of k and consequently the
integrands in eqs (31) and (36) are singular at these
points. This situation complicates the numerical eval-
uation of the kernels. However, if there is internal

friction then the zeros of Ag and A; are complex and
consequently the numerical evaluation of the kernels
is simplified. The kernels are evaluated numerically
using Filon’s method of integration up to a sufficiently
large value of k; the rest is evaluated analytically by
using the asymptotic forms of the integrands for large
k.

5. Some numerical results

The procedure described above has been used to
obtain the rocking, horizontal and vertical impedance
functions for a rigid circular foundation placed on a
uniform viscoelastic half-space. The corresponding
equivalent stiffness and damping coefficients for a
hysteretically damped half-space are shown in figs. 2—4
versus the dimensionless frequency a( for values of
£=0.05,0.15 and 0.25 (crosses, triangles and circles,
respectively). The approximate results obtained by
Veletsos and Verbic [2] are also shown in these fig-
ures by means of segmented and continuous lines. In-
spection of figs. 2—4 indicates that both sets of results
follow the same trends although some differences in
numerical values may be observed. These differences
stem from the simplified analytic expressions used by
Veletsos and Verbic to represent the undamped stiff-
ness and damping coefficients. In general, the effect
of the hysteretic damping on the impedance functions
is represented by a marked reduction of the equiva-
lent stiffness coefficients for high frequencies, to-
gether with a marked increase of the equivalent
damping coefficients specially for low frequencies. In
particular the equivalent damping coefficients tend to
2t/a as a tends to zero.

Similar comparisons are presented in figs. 5—7 for
the case of a rigid circular foundation placed on a uni-
form viscoelastic half-space with Voigt-type damping.
The numerical results shown correspond to values of
the dimensionless viscosity 8G'/aG = 0.1, 0.3 and 0.5.
It may be seen that the Voigt model of energy dissipa-
tion leads to larger effects on the impedance functions,
particularly for high values of the dimensionless fre-
quency ag. On the other hand, the equivalent damping
coefficients tend to finite values as g tends to zero in
opposition to the behavior observed for a hysteretical-
ly damped half-space.

The effects of internal damping on the rocking,
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Fig. 2. Rocking impedance function for a hysteretically damped half-space (o = 1/3).

horizontal and vertical impedance functions for a rigid
circular foundation supported on a layered medium
are illustrated in figs. 8—10, respectively. In this case
the hysteretically damped medium representing the
soil consists of a viscoelastic layer of thickness # and
properties 3y, p1, 0y and &, resting on viscoelastic
half-space with properties 85, p;, 05 and §,. The re-

sults presented correspond to the particular values

8, =0.8 85,01 =0.85p,, 0, =0, =0.25, and

£, = &) = 0.05; comparisons are made with the corre-
sponding undamped results (¢; = £ = 0) for values of
hja = 0.5 and 33. The impedance functions shown in
figs. 8—10 have been normalized by the corresponding
static impedances for a uniform elastic half-space
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Fig. 3. Horizontal impedance function for a hysteretically damped half-space (o = 1/3).

having the properties of the top layer. The resuits 6. Conclusions

shown indicate that for this particular setting the ef-

fects of internal damping on the equivalent stiffness A procedure to obtain the dynamic impedance
coefficients are minor; however, the equivalent damp- fanctions for a rigid circular foundation placed on a
ing coefficients experience a large increase, particu- layered viscoelastic medium has been presented. The

larly for low frequencies. numerical results obtained indicate that the presence
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Fig. 4. Vertical impedance function for a hysteretically damped half-space (0 = 1/3).

of internal damping in the supporting medium leads
to marked changes in the impedance functions for a
rigid foundation. In particular, the equivalent damping
coefficients may experience large increases indicating
that the effects of internal damping in the soil should
be included when studying the dynamic response of
foundations or the dynamic interaction between struc-
tures and the ground.
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Appendix: Transfer matrices =(T})A +T},B)adi(T54 +T3,B) , (A1)
and
The functions A;(k) (7,j = 1,2) and Ag (k) entering AR =det(T3 A +T3,B), (A2)
in egs. (19) and (205 are defined by

where

—k !
[All(k) Alz(k)] ] =|: VN]’ (A3)
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G¥, —2vpk (k% — K}2V) trix T*,
5= | ] e
1

2 '
—(2k% — Ki)  2vpK

and TJ(i,j = 1,2) are the submatrices of the total

transfer matrix 7* associated with the set of layers
overlying the base half-space. The total transfer ma-

(AS)

may be obtained in terms of the transfer matrices for
each layer T;( = 1, N—1) by means of the following
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product:
[T*] = [TI] [T2] s [T]] ves [TN—I] .

The transfer matrix for the jth layer is in turn given
by

(A6)

T, 7

(7;1=| | 1 (A7)
! / /]
T21 T2

where
a2 22
T{1=——L|: 2k CH}.+(2k x].)CHP].
2 2 2 2
K 2kuj SH]. — k(2K —k ; )SHP].

—k(2k? - K].2)SH]. + 2kvj'.2SHP].

(2k? — K 2)CH, — 2K CHP, J ’

337



338 J.E. Luco / Vibrations of a rigid disc

.-
X
1.0
0.8
-0
-~
} 0.8 -
&° N =05
h/e = 3.0 ; 0.4 L - N et
0o —— £«00
o =005 oz h/s = 3.0
B e ol
1 1 1 1 Il 1 I . L Il | | | L —
et 1 2 3 4 [ 3 8 oo 1 2 3 4 3 0 7 s

or

15— h/n = 0.6

h/a = 3.0
o8

PY I T | 1 [ N |
[ B | 2 3 & s & 7 8

Fig. 9. Horizontal impedance function for a layered hysteretically damped medium.

2 2
‘ p\[ ~k2SH, + v 2SHP, K(CH, — CHP,)
B )

T = —_
12
Pi’L k(CH,~ CHP) -VJ.ZSHj + kZSHP].



J.E. Luco | Vibrations of a rigid disc 339

"VVho)

10 1 ! 1 1 1 1

L

~p

Fig. 10. Vertical impedance function for a layered hysteretically damped medium.
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—2Kk(2k% — K ].2) (CH,— CHP) ]
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. =_i|:—2k CH,+ (2k? — k})CHP,
2 2 Lk(k? - k2)SH,+ 22k SHP,

:
2ku].2SH]. — k(2K - x].Z)SHP].
(2k? - k2)CH, 2k CHP, J '

The different terms entering in eqgs. (A3)—(A8) are
defined by

212 2,24172 N NN /)
vi= (k" —vjki), v = (k= w2,

2 _ 2_ *
7]' —(1_201')/2(1_0]'): K]- "‘Glpj/Gj Py

* . ] * ) i
G]. = G].(l + 1wG]./G].) or G]. G(1 +2ig) ,

SH;= sinh(aovjk].)/ Vs SHP; = sinh(aov]'.k].)/v'.,

(A9)

CH]. = cosh(aovjx].) , CHP]. = cosh(aOVJ\].) ,

7

7\].= h]./a , ay= o.:a/B1 ,
where 0}, p;, Gj, G]f/G}-, and h; are, respectively,
Poisson’s ratio, density, shear modulus, relative viscos-
ity and thickness of the jth layer. In the last two equa-
tions of (A9), a is the radius of the circular foundation,
w is the frequency of the steady-state vibrations and
B, is the shear wave velocity of the top layer. The first
form of G]-* corresponds to the Voigt-type damping,
while the second corresponds to the hysteretic-type
damping; Ej being the hysteretic damping constant for
the jth layer.

The functions A33(k) and A, (k) entering in eq.
(19) are defined by

Dga(K) =LY + L\ GG, (A10)
Ap(K)=L3 + L3\ GG, (A11)

where L;.".(i, j =1, 2) are the elements of the transfer
matrix L*. The transfer matrix L*,

[L*] =[LT1 er], (A12)

* *
L21 L22
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is defined in terms of the transfer matrices for each
layer by

1= 1) L) o 1] o Wy ] (A13)
in which

CHP, G./G ) SHP,
[L,~]=[ / (/6D ’]. (Al14)

* 2
(G]. /Gl)Vj SHP}. CHP[.
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SEISMIC RESPONSE OF CYLINDRICAL, ZMBEDDED IOUNDATIONS
TO RAYLEIGH WAVE

L Dwe @
o 4 217

._ by Michio Iguchi® l"'
- ABSTRACT

.: : The dynemic harmonic respomse of a rigid cylindrical foundation ?‘;
= - embedded in a homogeneous elastic half-space and subjected *o Rayleigh Y
waves are studied, The numerical results indicate that increase of ambed-
ol ment depth pronouncedly decrease the amplitudes of the vertisal and
i g rocking motions. Also, the horizontal seismic forces acting on the embed-
3 ments exhibit a marked decrease with increase of frequencies.

2T
s INTRODUCTION

The dynamic response aof a rigid massless foundacion to seismic waves

[y
4]
es.

1).

nas

Vey

:al

ons

ad

ng

are—generalily referred to =5 the foundation input mo:ions or merely as

the input motions. The analysis of the input motion: becomes the key

step in evaluation of the dynamic response of structire to seismic sxoi-
f gt i

tations. In the analysis 2f the earthquake response of siructures, it
has been assumed that the seismic waves impinge vert:cally on “he founda-
tion. However, it has been reported that the analysis based on the
assumption of vertical incidence may not explain the actual observaticnal
results of seismic motions on structures (5, 12). On the other nand, iz
has been shown that the surface waves contribute %o major part of the
gseismic motions (10). Frem such a point of view, mary studies have been
conducted on the dynamie responses of foundations not only to the non-
vertically incident shear waves but to the surface waves. Most of these
studies, however, are restricted to the analysis of rigid flat founda-
tions supported on a soil surface (e.g., Kobori et al. (6), Luco and Wong
(9) and Wong and Luco (11)) and very few have been addressed to the anal-
¥sis of the three-dimensional embedded foundations (1, 2, 3, 4, 7, 8).

: This paper describes the analysis of the dynamic responses of rigid

. ©¥lindrical foundation embedded in a homogeneous elastic half-space and
. subjected to Rayleigh wave. The analysis is based on an approximate

" -Procedure proposed by Iguchi (3). In numerical caleulations, the effects
of embedment depth and mass of foundation on the dynamic rssponses are
investigated. Also, some results of the seismic forces and moment acting
on the embedments during earthquake are illustrated.

ANALYSIS OF INPUT MOTIONS

¥ o

} The coordinate system and the geametry of a cylindrical foundation

- embedded in a homogeneous elastic medium are illustrated in Fig. 1; the

; Tadius and embedment depth of the cylinder are denotec by a2 and h, respec-
f1$1V=1¥- The selsmic excitation considered here is Rayleigh wave which

L Propegates in the opposite direction of the x-axis as shown in Fig. 1.
318 formulation of the input motions, it is assumed thzt the cylindrical
k;-undation is perfectly bonded to the surrounding secil. Also, harmonic

A° “8Ponse is considered and time factor exp(iwt), with circular frequency

ps will be omitted in formulations what follows.

‘}"SOC- Prof., Paculty of Science and Engineering, Science Univ. of Tokyo.
1729 - '
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The horizontal and vertical componsnts of free-fie;d motions of
Rayleigh wave in the y- and Z-directions, denoted by w,® ana u,t resge
tively, can he expressed in terms of tha cylindrical coordinate system
(r, @, z) as follows.

{al

“rrf:'. g, z) = ﬁalz*ze“ - (262 - 1)e9%)
[=-]
[Jutkﬂ + ZZ{Jzn(kr}coa an8 - 1J,,_, (kr)sin(an-1)s|] (1)

u,f(r, 9, z) = R, (262602 _ (3.2 _ 1)e”?

[J’ofkr) - 22[‘12““‘"}“‘:3 2né - 1J2n_1(k?)sin(2n-—l,‘d)] (2)

where Ry and R, denote the horizontal and vertical amplitudes of Raylsigh
wave, respectively, on the surface of an elastic half-space and

=-k4‘;-v31x! £ p-ufl—lz;l‘ . k-:..xva (3)
in which VR is Rayleigh wave veloeity an¢

2 2 2 l - 2u 2 o~ (- -
AR s el A LR A Vg ¢V (1)

Vp and Vs denote the longitudinal angd shear wave velocities, resgectively,

and v is the Poisson's ratio of soil. It can be shown thet Ry and 3., are
correlated by following equation.

= 2 e o K2+ 1k
A7 ek LML It (s)

BRI + 1 _
And x is the real rodt of Rayleigh equatiom,

{3;2_1)2-1;;24'12_?2,!;:- - (6)

For a Poisson's ratio v = 0.25, Ry = =1.LéTg iRy and Vg = 0.919k40 Vg

may be described by two horizontal displacsments in the y- and z-direc-
tions and one rotation with respect to the X-axis, which are denoted by
d¥*. A;* and D *, respectively. These motions are defined at the center
top surface of the foundation. Based On an approximate procedure
proposed by Iguchi (3) for evaluation of the input motions, these three
components may be expressed in the following form.

" -1 r - - r.
dy A Sx ay KHH KHH Fy
] f X
a, |= A a," | - K,y 7, (1)
o " 3 J ‘@ f -K R
x x pPx x HM KNN x

where A, Sy and Jpx are the areas, the first and the second moments of
Area with respect to the x-axis, respectively, of the contact surface
between the cylinder and the soil. These are found to be given by

A = xala + ah},sx = xah(a + h"Jpx = -a[n(a2 +-§ h2} + a({}az + ha}] (8)

FHH’ L Kyma a?d Ky are the horizontal, vertical, rocking and coupling
lmpedance functions, respectively. These functions for the cylindrical
foundations have been evaluated by Day (1) for some embedment ratios h/a

- 1730 — :
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and & Poisson's ratio v = 0.25. Alsod,f, 4,% and @, f in Eq. (7) repre-
sent resultant displacements in the y- and z-directions and rotation with
respect to the x-axis, respectively, of the free-ficld motions generated
on the contact surface between the embedment and the: soil. These dis-
placements may be evaluated by following equations.

43{‘ 2 f;"[‘f:gﬂ uy!‘(a. #, 2)dz +j.:r urr(r‘, ] ,-h)-lr]d!

r o . SR a r
a = f [f azu_  (a, §, z)dz + hru_ (=, #,-h d:‘]ds
z 0 =n 2 0 z

r fzx N vaz + [ e T h'd ]da
= = ! = =0 ar
o, g [ Ihazuy (2,0, z)dz a Ty » 8

2n 1] a
+ fa [fh a’sins uzr(a. 8, z)dz +J; r’sine u:zr(r. 8.-h3tir]d9 (11)

Finally, Fyf, sz and fo in Eq. (7) represent resultant forces in tho
y- and z-directions and moment with respect to the x-axis, respectively,
of the free-field tractions generated on the contaect surface of the
embedment. These forces and moment can be evaluatec by

2n 1]
3 £ 2 t ;
= fo [f_lna[slni Top (8,8, 2) +cosd r (a0, z)xoz]de

f:u[fuar*SUll !"zrf{?.'i ,=-h) + casé rz‘r(r, § ,-h)‘dr‘]c‘.!
'j‘;z‘['[:a 'rzr(a" @, z)dz *-‘/;‘r rzzr(r’ ﬂ.-h}dr]de

n 0
fo [_[h[az(slns vrrf(a, 8§, z) + cos § rmr(a. e, zJ)

2 o
- asiné@ Mot (a, 8, a)id:]da

am a
* fg [j; [hr(sin 6 rzrr(r. 8 ,~h) + cos @ rzaf(r‘. 8 ,-h))

+ rzsina rztr(r, i ,-h)ldr ds (14%)

?'}here Trrf etc. are the stress components on the side or bottom of the
g foundation associated with the free-field motions. These stresses can
.f{ -evaluated by the well known formulas in the theory of elasticity.
‘:ﬂhese integrations are found to be expressed in the =xplicit forms and
; Bhus, the input motions can be readily calculated by Eq. (7).
.. -~ - Inspecting Eq. (7) reveals that the first term of the left hand side
.:Prrespouda to a weighted average of the free-field motions and the
:Efgcond to the effect of diffracted waves by the pres=nce of the rigid
Fooundation (3). FPor a flat foundation supported onm & soil surface, the
fll_r;'_l:r.:ﬁ'm'l term ?f Eg. (7) disappears since the tractions on a soil surface
weociated with the free-field motions become zeros. However, for an
Bbedded foundation the second term is to play an important roll in esti-
i8tion of the input motions (3). :
1y
! Fl. ANALYSIS OF DYNAMIC RESPONSE
;:fz Once the foundation input motions are obtained, the dynamic response
f*5the foundstions with consideration of effect of the mass can be evelu-
- 1731 -
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ated. Assuming that the mass of the fourdation is uniformly distributed,
and in sbsence of external forces the dyramic displacement responses in
the y- and z-directions and rocking respcnse with respect to the x-axis,
denoted by Ay, Az and @, respectively, cen be expressed in the form of

#
ay r ay

M -1
ag|= (111 = nag% Tkt M) o (15)

ﬂ.@x

' where [I] is a unit matrix, [K] is the impedance matrix already anteszrad

; in 2q. (7) and [M] is & non-dimensional mass matrix defined by

li 1 5/2

’ (M] = 1 (16)
5/2 174 + 8%/3

Mg anﬂ‘Ms_in_Eq+_ilSl—repnasen%—%he—be%ﬂi—mtss*Uf—tht—fhunﬁattuﬂ_ﬁﬁﬁ—ﬁﬁﬁ§"__

of soil of the same volume with the embednent .

L]
.EO’.

The analysis of seismic forces and moment acting on the embedment
during earthquakes will be of interest. dJenoting the seismic forezs in
the y- end z-directions by F}F and F,5 reupectively, and moment with
respect to the x-axis by st, these value:s can be expressed by

P 3
v 1 /2 J?
: 5 2
F.5 | = Mgw 1 A, (17)
I 174 + 62712
x a B.-Bx

It should be noted here that the seismic zoment is defined at the centroid
of eylinder. Combining Eqs. (15) and (17), the seismic forces and moment
can be readily calculated. '

NUMERICAL RESULTS

if‘ Input Motioms: In calculation of the input motions based on 2q.
! (7), the results of impedance functions evaluated by Day (1) for a
" Poisson's ratio of soil v = 0.25 are used. The calculated results of

modulus of normalized input motions Idy‘/HHI, iﬁz*/ﬂﬂi and |&C&'/HHI are
shown in Figs. 2(a), (b) and (c) versus the dimensionless frequency a_ =
aw/Vg for four values of embedment ratiogs 5§ = h/g = 0, 0.55 1.0 and 2.0.
Since the input motions are defined as the dynamic response of massless
rigid foundation to seismic waves, the mas: of the foundation is disre-
garded in the results. From the results saiown in Figs. 2(a) and (Bb), it
may be observed that for low frequencies the horizontal and vertical

input motions approach the amplitudes corresponding to the free-field
motions on a soil surface, As the frequenny increase, these two compo-
nente decrease remarkebly in amplitudes. Regarding the effect of embed-
ment depth, the results indicate that the vertical input motions decrease
as § becomes large in the frequency range 85 < 2. However, as to the
horizontal input motion the effect of embedment depth is not so distinct.
The results shown in Fig, 2(c) indicate that the rocking input motion is
remarkable for a flat foundation supported on a soil surface and exhibits
pronounced decrease in emplitudes with increase of §. It should be noted,
though not illustrated in figure, that the horizontal and rocking input

- 1732 -
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ibuted, motions are almost in phase, and the verticel motion is out of phase with

es in the horizontal component of free-field surface motion. It is of interest
AR to compare the results presented here with the corresponding results ta
& Ee ? the horizontally incident SE wave (4) on the condition that the horizontal

amplitudes of the free-field surface motiom are same for both waves. For
the case of horizontal input motions, the results to Rayleigh wave excita-
tions are camparable to those to the SH wave. On the other hand, as for
the rocking input motions, the results to Reyleigh wave excitation for § >
g | 0.5 are five to ten times larger than the correspoading results to SH wave.

(15)

Effect of Mass: Seismic response of the embedded foundations
with consideration of the mass can be computed with use of Eq. {15).
Numerical results of modulus of the horizontal, vesrtical and rocking
responses are showvn in Figs. 3(a), (b) and (c) versus the dimensionless
frequency &, for four values of non-dimcnsional mass ratios Mp/M; = 0,
0.5, 1.0 and 1.5, and for an embedment ratio 5 = 1. The horizontal
response shown in Fig. 3(a) is with respect to the top surface of the

foundation. The results shown in Figs. 3 indicate that the effect aof
"mass on the dynemic responses is notable “or horizontal and rocking
motions, and less for the vertical motion.

pent
?: AH Seismic Forces and Moment : Perhaps the most interesting response

of the embedded foundation is the seismic forces ard moment acting on the
embedments during earthquakes. The seismic “orces and moment are equiva-
. . lent to the inertia forces and moment of the embedrents, and can be evalu-
_ p. (1. 8ted from Eq. (17) together with Eq. (15). The calculated results of
) : . modulus of dimensionless horizontal seismic forces are shown in Figs. b
8 4 i  versus the dimensionless frequency a, for three values of embedment
i ratios M_/M; = 0.5, 1.0 and 1.5, and for & = 0.5, 1.0 and 2.0. These
normalized results may be interpreted as the conventiomal seismic coeffi-
. tlents for the embedments supposing that the horizontel accelerations on
E° the soil surface be wZRH = 980gals in all frequenciss. The results shown -
in Figs. U4 indicate that the horizontal seismic for-es decrease remark-
. 8bly with increase of frequency. One of the most iateresting character-
P- latice observed from the results shown in Figs. 4 {3 that the seismic

rentroid -
moment

ar

n Eq. coefficients are almost independent on the mass ratio My/Mg. The results
of’ dimensionless seismic moment are shown in Fig. 5 versus the non-

of dimensional frequency a, for My/Mg = 0.5, 1.0 and 1.5 and for § = 1.0.
§ 6. &k, should be noted that the embedded foundation is to be subjected to a
:ao 5 £ certain amount of seismic moment in addition to the lateral force.
1’;’;2' | §: . CONCLUSIONS
e W37, The dynamic respomses of the cylindrical ri id foundati bedded
)' it £ in L yiin c rig oundation em :
1 - 80 elastic half-space have been studied for bhorizontally propagating
1d 3 fiyleigh wave, It has been found that the horizontal, vertical and

- g Tocking motions are induced on the foundation. The horizontal and verti-
:fza- ica}'input motions exhibit a remarkable decrease with increase of frequen-
crease zgef- The embedment depth of cylinder has a marked effect on the vertical
o ﬂ?“!?0nent and no distinct effect on the horizontal motion at the top of
tinct. i"” foundation. The amplitude of rocking input motion tends to increase
on is e s the frequency range 0 < a, < 2 for a flat foundation and 0 <a_ < 1

fo °T the embedment ratio & = h/a = 2. The maximm amplitude of the
'ocking motions tend to decrease with increasing embedment ratioc. The
-{"“lts of horizontal seismic coefficients for embedied cylinder obtained
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here have indicated the Pronounced decrease in megnitudes with increase

of frequency.
embedment ratio.

The coeffici

It may be

ent tends to decrease with increase of the
also concluded that the embedded foundation

i3 to be subjected to the seismic moment in addition to the lateral
geismic farces.

(1)

(2)
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DYNAMIC RESPONSE OF RECTANGULAR FOUNDATIONS
TO OBLIQUELY INCIDENT SEISMIC WAVES
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AND
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SUMMARY

A study is made of the harmonic response of a rigid massless rectangular foundation bonded to an elastic half-space
and subjected to the action of both external forces and obliquely incident plane seismic waves. The associated
mixed boundary value problem is discretized and solved numerically. The results obtained indicate that the angle
of incidence of the seismic wave has a marked effect on the nature and magnitude of the foundation response.

INTRODUCTION

Most studies of the interaction between structures and the soil during earthquakes are based on the assumption
of vertically incident seismic waves. This assumption is generally justified on the grounds that the refraction
of the seismic waves by the softer layers of soil closer to the soil surface would lead to essentially vertically
incident waves. It is possible to think of circumstances under which such justification is not valid, e.g. hard
s'oi} deposits, shallow earthquake sources. Also, recent analyses of strong-motion records have shown that
surface waves contribute in a significant amount to the earthquake motions recorded at intermediate and long
epicentral distances.’® Under such circumstances, it becomes important to study the effects of non-vertically
incident seismic waves.

This study is directed at the evaluation of the dynamic response of a rigid massless rectangular foundation
perfectly bonded to an clastic half-space and subjected to the action of both external forces and obliquely
incident seismic waves. The external forces may correspond in a complete soil-structure interaction problem
to the forces and moments that the superstructure and the foundation exert on the soil. The seismic excitation
will be represented by plane compressional and shear waves impinging on the foundation with the angles of
incidence shown in Figure 1. Both types of excitation will be assumed to have harmonic time dependence.

The evaluation of the response of the rigid foundation to external forces involves the determination of the
compliance matrix for the foundation-soil system. Similarly, the evaluation of the response of the rigid
massless foundation to plane seismic waves involves the determination of the ‘input motion’ matrix for the
foundation.® The compliance and input motion matrices constitute a complete characterization of the
interaction between the rigid foundation and the supporting soil. Once these matrices have been determined
the complete soil-structure interaction problem for non-vertically incident seismic waves and for any
configuration of the superstructure may then be formulated and solved.?

While a large number of publications dealing with the dynamic response of rigid foundations to external
forces has appeared in the literature,® very few studies have been conducted on the related problem of
diffraction of seismic waves by rigid movable foundations. A transient solution for the diffraction of an
incident wave by a smooth rigid strip in contact with an elastic half-space has been presented by Flitman,®

0098-8847/78/0106-0003$01.00° Received 24 February 1976
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The corresponding harmonic problem under bonded contact conditions has been studied by Oien.® Thau and
Umek™® and Dravinski and Thau®!® have studied the response of a two-dimensional rigid foundation
embedded in an elastic half-space and excited by non-vertically incident plane waves. Kobori ef al.1! have
analysed the harmonic response of a rigid circular disc placed on an elastic half-space and subjected to the
action of non-vertically incident plane SH-waves. A study of the torsional response of a rigid circular disc and
a rigid semi-spherical foundation generated by harmonic plane SH-waves has been presented by Luco.1%13
Approximate evaluations of the response of rigid foundations to non-vertically incident seismic waves have
been presented by Newmark,™ Tani ef /' and Iguchi.!® The effects of non-vertically incident waves on the
earthquake response of structures have been studied by Newmark,** Kobori ef @/, Iguchi’® and Luco.1%13

2 T ASH, P, SV
Figure 1, Description of the system and co-ordinates

The procedure employed here to determine the response of rigid foundations is based on formulating the
corresponding dynamic mixed-boundary value problem by means of the Green’s functions for the elastic
half-space. Discretization of the integral equations representing the boundary condition is used to obtain
approximate values for the tractions acting at the contact between the foundation and the soil.%#!® Once the
surface tractions have been determined the other quantities of interest are easily obtained. One of the
advantages of this procedure is that it is equally applicable to arbitrarily shaped flat foundations,

FORMULATION OF THE PROBLEM

Consider the vector displacement field in the elastic half-space z >0 when excited by a plarie compressional or
shear wave in absence of the rigid rectangular foundation. If the plane incident wave is characterized by the
vertical and horizontal angles of incidence, @, and 6, respectively, as shown in Figure 1, then the total
displacement field, including the reflection of the incident wave on the free surface, may be expressed in the
form

{ug(3)} exp(iwt) = {UB}exp [iw (t HJ—; sin O — % cos 91_;) ] ,'(:1)

on the surface z = 0. In equation (1), w is the frequency of the plane wave excitation, {Ug} = (US, Ue us)T
is the amplitude vector of the free-field motion {u8} at the origin of the co-ordinate system and ¢ is the apparent
velocity of the incident wave as observed on the free-surface and along the direction of propagation of the
wave. The apparent velocity ¢ takes the form ¢ = «/cos 8, or ¢ = pJcos 8, where a and f are the compressional
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and shear-wave velocities in the elastic medinm, depending on whether the incident waves are.compressional
or shear waves.. The free-field motion {u8(:)}.gives rise to no surface tractions on z = 0. For brevity the
harmonic time factor exp(lwr) will be omitted in the following work. :

Now consider the case in which a ng}d recta.ngular foundation is bonded: to the elastic half-space in the

region |x|<a, |p|<b, z=0.
In this case the total dxsplacement field may be wntten in the form

' {CD} = (02} + {0} _ o 2
where {uﬂ(x)} represents the scattered field generated by the ngld foundation, The surface traction
{T8(X)} = — (0,4(X), 0,,(X), 0,,(X))T associated with the scattered field must vanish on the free surface exterior
to the foundation. Also, the total displacement field: {u(%)} in the contact region between the foundation and
the half-space must be equal to the rigid-body motion of the foundation, i.e.

WD) = [A@IDIU, 2=0, |x|<a, |y]<b @)
whcre [A(a—lx)] is the 3 x 6 matrxx deﬁned by * . .
1 0 0 0 -_0_ —yla
[Ala1®)]=[0 100 0 xla ' 4
G100 1 ya —xla 0
and {U} is the 6 x 1 vector e Y '

{U} Fra (am Aey: Az! a‘?sx, aﬁbw a‘?sa)T (5)
descnbmg the rigid-body motion of the foundation. In equation (5), A,, A, and A, are the displacement
components of the centre of the rigid foundation, while-¢,, ¢, and ¢, rcpresent the small angles of rotation
about the x, y and z axes, respectively, as shown in Figure 1. '

Introducing the Green’s function'for the elastic half-space it is possible to express the scattered field
{u?(X)} in terms of the contact tractions {T%(%)} by means of the fo]lowing relation

R g A _
e R ¢ f [i66-2: wileienas’ ©

where [G(x x P represents the 3x3 matrix -of Green’s funcnons for the elastic half-space.#18 In
equation (6),, K= - w/P, v is the Poisson rat:lo for the elastic medmm and S represents the contact area | x|<a,.
|y|<b, z=0. Substitution from equations (1) and (6) into the displacement boundary conditions (3) and
rcarrangmg leads to. the following integral equation for i L

N f [GE—Z; a0 I{T(E} S

__—_—[A(&)]{ll}ﬂxp[—wf(fsm9H+ncosan)}{US}, \£1<1; [nl<bla ©

where € = (£,7,0) = (x/a,y/a,0), a,= wa/B and S’ represents the region |€]<1, |n|<bla. In deriving
equation (7) the relationship [G(x; «,v)] = a[G(a% x; ax,»)] has been used.
Since the integral equation (7) is lmear, the snrface traction {T¢} may be decomposed into

{T“(acf)} pa[Tad)] {U} M‘IFI"D(-GE)] {Ue} ®
where [TR] and [TP] are 3 x 6 and 3 x 3 matrices, respecﬂv::ly, defined by the integral equations
[ ﬁG(s 2 I TaE)ds’ =~ A D] ©

,mf ﬁG(g f’ ao,v)][TD(af)]dS' ~ Mexp(~ lauE(fsmgﬂ+-qcosEH), |€<1, |n|<bla(10)
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In equation (10), [I] is the 3x 3 identity matrix. The first term of the right-hand side of equation (8)
corresponds to the surface tractions generated by the rigid-body motion of the rectangular foundation in the
absence of incident waves; the second term corresponds to the surface tractions that are produced when the
foundation is kept fixed while under the effects of the incident waves. This decomposition first suggested by
Thau' has the advantage of allowing the evaluation of [T®] and [TP] without regard to the amplitudes of the
rigid-body motion and of the free-field motion, :

Postponing the discussion of the solution of equations (9) and (10), it may be said that once these equations
are solved it is possible to evaluate the total forces and moments that the rigid foundation exerts on the soil
by means of the following expression

®=a [ [W@rmees (1)
8 . .
in which, {Fs} is the 6 % 1 vector
{¥%} = (P, Py, P, M/a, M, [a, M,/a)T 12)

representing the total forces P,, P, P, and the total moments M,, M, s+ M, acting on the soil. The sign conven-
tion for these forces and moments is illustrated in Figure 1.
Substitution from equation (8) into equation (11) leads to the force-displacement relationship

{F°} = pa[K] {U}— pa[K*) {Ug} (13)
where [K] is the 6x 6 impedance matrix for the rigid foundation defined by
1= [[ @ reayas (14)

and, [K*] is the 6 x 3 ‘driving force’ matrix given by
&= [ [ @ moeeas (15)

The force-displacement relationship for the rigid rectangular foundation given by equation (13) plays a key
role in the study of the dynamic interaction between structures and the supporting soil. In equation (13), the
term pa[K]{U} represents the forces and moments that the rigid foundation exerts on the soil when moving
with rigid-body motion {U} in absence of seismic excitation ({Ug} = 0). The term ua[K*]{Ug} corresponds to
the forces and moments that the soil exerts on the rigid foundation when the foundation is kept fixed {U}=0)
while under the effects of the seismic excitation.

The factor (ua) appearing on the right-hand side of equation (13) has been introduced to render the
matrices [K] and [K*] dimensionless. The impedance matrix [K] defined by equation (14) depends on the
geometry of the rigid foundation, the elastic properties of the soil and on the frequency of the excitation. The
‘driving force’ matrix [K*] given by equation (15) depends, in addition, on the vertical and horizontal angles
of incidence of the seismic waves.

An alternative form of the force-displacement relationship may be obtained by premultiplying both sides of
equation (13) by (ua)~ [K]2, leading to

{U} = (pa)~* [C){F} + [S*]{U#} (16)
where [C] is the 6 x 6 compliance matrix for the rigid rectangular foundation
[C] = [K]™* (17)
“and [8*] is the 6x 3 ‘input motion’ matrix defined by
[5*] = [C] [K*] (18)

Equation (16) indicates that the total displacement of the rigid foundation {U} may be decomposed into two
terms: the first term (u@)~* [C]{F*} corresponds to the displacement of the foundation associated with the
forces {F*} that the foundation exerts on the soil: the second term corresponds to the effecis of the seismic

M S e =
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waves. In particular, [S*]{U#} represents the motion of a rigid massless foundation free from external forces
({F%} = 0) when excited by the free-field motion {U®}. - :

The compliance matrix [C] for a rigid rectangular foundation depends on the geometry of the foundation
(b/a), on the Poisson’s ratio » of the soil and on the dimensionless frequency @, = wa/p. The ‘input motion’
matrix [S*] defined by equation (18) depends in addition on the relative phase velocity ¢/f and on the
horizontal angle of incidence . Once the matrices [C] and [S*] have been obtained the motion of the rigid
foundation can be easily computed for any combination of inettial properties of the foundation. For instance,
for a rigid foundation having a mass matrix [M,] (referred to the centre of the base of the foundation), the
- force {F%} that the foundation exerts on the soil is given by

{F%) = WM, 1{U} | C9)

Substitution from equation (19) into eqpation (16) leads to the response
y w? -1 I e
0 = (M- 1)) 541009 e

where [I] is the 6 x 6 identity matrix. If a superstructure is attached to the foundation, equation (20) is still
valid, except that in this case the matrix [M,] is frequency-dependent and involves not only the inertial
properties of the foundation but also the inertial and elastic propeities of the superstructure.

Equation (20) shows the importance of the ‘input motion’ matrix [S*] in determining the response at the
level of the foundation. Due to the lack of information of the ‘input motion’ matrix most previous studies on
the interaction between structures and the soil were restricted to the case of vertically incident seismic waves
for which '

[S*]{Us} = (US, Ug, UE, 0,0,0)™ (21)

Such an assumption excludes all the rocking and torsional components of the input motion.

NUMERICAL EVALUATION OF THE SURFACE TRACTIONS

Tl‘fe numerical procedure used here to solve the integral equations (9) and (10) is based upon sub-dividing the
contact area into a number N of smaller square sub-regions and in assuming that the contact tractions {TP}
and {T%} within each sub-region may be considered to be constant, Imposition of the boundary conditions
at the centres of the N sub-regions reduces the integral equations (9) and (10) into systems of linear
algebraic equations having for unknowns the constant values of the contact tractions within each of the
N sub-regions. Once these equations have been solved, the impedance matrix [K], and the ‘driving force’
matrix [K*] may be evaluated by numerical integration of the integrals appearing in equations (14) and (15).
The compliance matrix [C] and the ‘input motion® matrix [S*] may then be easily evaluated. Further details
on this numerical procedure may be found elsewhere,*18

COMPLIANCE MATRIX FOR A SQUARE FOUNDATION

The procedure described in the previous section has been used to determine the compliance matrix [C] for a
rigid square foundation (a = b) bonded to an elastic half-space. Because of the symmetry of the square
foundation, the compliance matrix reduces in this case to

Bt 0 |~ 0
D e W =0 & 0
O P S e S
i | e g o B8 A
oz, B 9, " B e
pid MR S gl SO
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where the coupling compliances Cyy. and Cypy are equal. Thus, only five functions determiné the complete
compliance matrix in the case under consideration. These functions are the horizontal, vertical, rocking,
torsion and coupling compliances denoted respectively by Cgg, Cpp, Canys Cpp and Cyr = Crry The real
and imaginary parts of these compliances for an elastic half-space with a Poisson’s ratio of } are presented in
Figure 2 for values of the dimensionless frequency a, = wa/B ranging from 0 to 4. It may be noticed in
Figure 2 that the coupling compliances have values considerably lower than those for the other compliance
functions. It should be emphasized that the compliance matrix as defined here has been rendered dimension-
less in such a way that the force-displacement relationship in the absence of seismic wave excitation is given by

(A3, Ay Ay 0y, ady, ad,)™ = (pa)* [C](P,, Py, P, M,/a, M, ja, M,/a)* (23)
~ The results presented in Figure 2 for the bonded square foundation differ from those obtained previously
for a square foundation under relaxed boundary conditions.* 8 The bonded compliances are in general lower
than the corresponding relaxed functions. Differences of less than 2 per cent are obtained for values of a,
less than two; for higher values of a, larger differences may be observed.

The numerical results just presented were obtained by sub-dividing the square foundation into 64 equal
square elements. The symmetry or the skew-symmetry of the problem was also employed. .
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Figure 2. Compliance functions for a rigid square foundation bonded to an elastic half-space (v = 4)

INPUT MOTION MATRIX

It has been mentioned that the ‘input motion’ matrix [S*] depends on the geometry of the rectangular
foundation (b/a), the value of the Poisson’s ratio » for the soil, the horizontal angle of incidence fg of the
seismic waves, the relative phase velocity ¢/f and on the dimensionless frequency a,. For brevity, a detailed
discussion will be presented only for the case of a square foundation (b/a = 1) subjected to plane waves with
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wavefronts perpendicular to the plane x = 0, i.e. for 6 = 0. Also numencal results will be presented only for

the case v = 4.
The ‘input motion’ matrix [S*(ay, B/c, 65)] for a square foundanon subjected to plane waves with horizontal
angles of incidence 8y = 0 takes the form -

" S,.(ag, B/c, 0) 0 - 0 !

0 S, ml(aﬁs B/ Cy 0) 1 Sys(.al]’ ﬁ/ Cs 0)
g 0) S ,0)
S| 0 D S0 S
: 0 R::y(ao: Ble,0) R,.(dy, ﬁ/ c,0)
Ry(ag, Ble;0) 0 0
| Ruanfle®) 0 AR

Thus, for 6 =0, the ‘input motion’ matrix has only nine non-zero elements. Numerical values for the
non-zero elements as a function of the dimensionless frequency a, are presented in Figures 3-7 for different
values of the parameter B/c reflecting the vertical angle of incidence.

1.00 —== : :
: }\\ \—ﬁfc=0 (8,=907
: , i Yk =450
B{c 1.0 (8y=0°)
5 xR <
< 0.500-
o <&
i s \ 9
= 0.251- \ N \\
0.00 '\
‘N_ '\\.
~.
“‘"-.,__
-0.25.— [ | |
v 0 | 2 3 4
L]

* Figure 3. Input motion coefficient S, (@, Bfc, 0), (v = 3)

To give a physical interpretation to the different elements appearing in the ‘input motion’ matrix [S*],
consider first the case of a rigid massless foundation free from external forces ([F¥} = 0) and subjected to the
action of an incident plane SH-wave of amplitude #, with particle motion polarized along the x-axis and with
vertical angle of incidence f,. In this.case, the amplitude of the free-field motion at the centre of the foun-
dationis (US, U, U%) = (2u°,0 0), and the apparent velocity is ¢ = B/cos 8. The response of the rigid massless
foundation as obtamed from equations (16) and (24) is then

U= Sm(aev B/ ¢,0) 2y,

aqS,, — Rsz(aﬂs ﬁfﬁ'- 0) 2”0 (25)
a¢y = Ryz_(aﬂ! IB[c) 0) 2”0

Uy=U=a¢,=0
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Thus, for the case under consideration, the response of the massless foundation consists of translation along
the x-axis plus torsion about the vertical z-axis. A small rocking component about the y-axis is also obtained.
Equation (25) shows that S, ,(ay, B/c, 0) corresponds to the ratio between the amplitude of the response along
the x-axis and the amplitude 2u, of the free-field motion, The results presented in Figure 3 indicate that the
real part of S, is dominant implying that at low frequencies the translational response is essentially in phase
with the free-field motion at the centre of the foundation. For vertical incidence (8, = 90 degrees), S,, =1
for all frequencies; however, for other angles of incidence S, exhibits a marked decrease with frequency, the
associated decrease in response being largest for horizontally propagating waves (8, = 0 degrees). It is
interesting to point out that studies of the response of the Hollywood Storage Building show for intermediate
and high frequencies a strong reduction of the basement motion as compared with the free-field motion for
both the Arvin-Tehachapi earthquake of 1952 and the San Fernando earthquake of 1971.20-2 Housner® and
Crouse® have suggested that such a reduction may be explained by non-vertically incident seismic waves.
Such an explanation is in agreement with the resuits presented in Figure 3.

Equation (25) indicates that R, (a,, B/c, 0) defines the torsional response of the rigid massless foundation for
SH excitation. In particular, R,, is equal to the ratio between the amplitude ag, of the tangential displacements
associated with the forsional response at the points (+a,0,0) and (0, +,0) and the amplitude 2u, of the
free-field motion. The results presented in Figure 4(a) show that R,, is complex, the imaginary part being
dominant. Thus the torsional response is essentially 90 degrees out of phase with the free-field motion at the
centre of the foundation. The torsional response is zero for vertically incident waves (8, = 90 degrees) and it
reaches its highest values for horizontally incident waves (6, = 0 degrees). In particular, for horizontally
propagating waves the maximum torsional response occurs at @,~1-9, i.e. when the wavelength is almost
about 1-5 times the width of the foundation. In this case, the amplitude a¢, of the induced tangential motion
at the points (+a,0,0) and (0, + @, 0) may be as high as 60 per cent of the free-field amplitude 2u,. The results
presented in Figure 4(a) are consistent with those obtained by Kobori et al.! and Luco? for a rigid circular
foundation. It is important to mention that for some massive structures, such as.those in nuclear power
plants, the value of g; at the fundamental fixed-base torsional frequency may be in the range of one to two
indicating that large torsional effects can be expected for SH waves with shallow angles of incidence.1%13

The term R, (ay, B/c,0), shown in Figure 4(b), defines the rocking response about the y-axis as indicated in
equation (25). In particular, R, corresponds to the ratio of the rocking induced vertical displacement ad,
along the edges x = + a of the foundation to the amplitude of the free-field motion. The results presented in
Figure 4(b) indicate that this rocking response is quite small and may be neglected for most practical purposes.

To interpret the last two columns of the ‘input motion’” matrix [S*(a,, B/¢,0)] consider the case of a rigid
massless foundation free from external léads ({F<} = 0) and subjected to the action of a non-vertically
incident plane P-wave of amplitude p, vertical angle of incidence 6, = e, and particle motion polarized in the
plane x =0, i.e. §y = 0. In this case the amplitude of the free-field motion (UE, Ug, U®) at the centre of the
foundation is given by®?

vgE=0
Ut = pcose[l + Ry, — Ry tanf] (26)
Ug =—psine[l—R,,— Ry, tane]

where tanfis defined by " , _
L +tan?f= [2(1—=#)/(1-2)] (1 + tan®e) 27)
and . : . r
R,, = [4tanetanf—(tan?f—1)%]/R
Ry, =—[4tanf (tan®f—1)I/R (28)
R =4tanetanf+ (tan?f—1).

The relative amplitudes Ug/p and UE/p of the free-field motion are shown in Figure 8 for different angles of
incidence f; = e and for different values of Poisson’s ratio v. Figure 8 indicates that for shallow angles of
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incidence the horizontal component of the free-field motion is more pronounced, while for angles of incidence
close to 90 degrees the vertical component becomes prcdommant The phase velocity ¢ associated with the
non—vertlcally incident P-waves is given by - .

c= m/cose =201 —)/(1 —-2::)]* B/cose _ : (29)
Values of Ble, U Slp and U =/p for a few selected angles of incidence 8, = e are hsted in Table I.

Figure 8. Free-field motion generated by noh-ﬁertica.l]x incident P waves

Table I. Values of B/, Ug, Ug for
1n<:1de.nt P- waves (v =

i Ble Oy=e  Uslp Uslp
0-00 20° 0-00 —2:00
025  60° . 096 —1-74
0-40 36'9° 1-38 —1-28
0-50° 0° 000 0-00

For the case under consideration, the response of the l’lgld massless foundation may be obtained by use of
equations (16), (24) and (26), leading to

A, =8, U+S,, Ut
Cd,=8y Ug+S,,Ug
a¢y = Ry U +R,, US
Ay =ap,=ap, =0

Equation (30) indicates that the response of the massless foundation consists of translations along the y- and
z-axes and of rocking about the x-axis. The role of the ‘input motion’ coefficients Sw, Syas Seyr Sy Ry and
R,, is clearly determined by equation (30). In particular, Sy(@q, Bc,0) determines the contnbutzon of the
honznntal component of the free-field motion Ug to the horizontal response A, of the foundation, while
Sy(ag, BJc,0) determines the contribution of the vertical component of the frae-ﬁeld motion UE to the
horizontal response. Similar roles are played by S,,(a,, B/c,0) and S,,(ay, B/c, 0) with respect to the vertical
component of response A,. The coefficients R,,, and R,, determine the rocking response ag, associated with
the horizontal and vertical components of the free-field motion. Numerical values for these coefficients

plotted vs the dimensionless frequency a, = wa/f are presented in Figures 5-7 for different values of f/c.

(30)
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Only the results shown for 0 < B/c<0-5 have a physical meaning for P-wave excitation and for a soil character-
ized by v = 4, as indicated by equation (29) and Table L.

One of the interesting results obtained is that the coefficients S,, and S, are essentially real and that their
behaviour is similar to that of S,,. For vertical incidence, f/c =0 and S, = S,, = 1 for all frequencies; for
non-vertical incidence S, and S,, show a decrease in amplitude with increasing frequency as illustrated in
Figures 5(a) and 6(a).

The coefficients S,,, §,, and R, are complex as shown in Figures 5-7, respectively, and their amplitudes
are considerably lower than the amplitudes of S, S,, and R,,. It follows that for all practical purposes the
influence of these terms may be neglected allowing equation (30) to be written in the simplified form

A,=S,Us A=xS,US ad,~R,UE (3D

It has been mentioned that the coefficient R, (a,, B/c,0) is associated with the rocking response generated
. by non-vertically incident P-waves. In particular, R, is equal to the ratio of the vertical response a¢, at the
i points (0, + a,0) due to rocking about the x-axis and the amplitude of the vertical component of the free-field
motion UE. Inspection of Figure 7(a) shows that R_, is in general complex and that the imaginary part of
R, is dominant. For vertical incidence (B/c =0) R,, is zero, while for other angles of incidence R, is
considerably different from zero. Considering that a¢, =~ R,, UE, it results from Figures 7 and 8 that the
maximum rocking response is obtained for P-waves with angles of incidence between 30 and 60 degrees (8/c
between 0-25 and 0-4).

The last two columns of the ‘input motion’ matrix [S*(a,, f/c,0)] are also helpful in determining the
response of the rigid foundation to non-vertically incident plane SV-waves. Consider a plane SV-wave of
amplitude s, vertical angle of incidence 8, = fand particle motion polarized in the plane x =0, i.e. 5 = 0.
In this case the response of the rigid massless foundation is also given by equation (30), except that for §V-
waves the free-field motion is characterized by ]

g R .

Ug=0
Ug = ssinf[l1—R,, — Ry tanf) (32) ]
i Uf=scosf[l+R,,—R,tane]

where tane, Ry, and Ry, are defined by equations (27) and (28), respectively. The relative amplitudes Ug/s
and Ug/s of the free-field motion are shown in Figure 9 for different angles of incidence 0, = f for the case
! v = §. Notice that if f< 60 degrees, i.e. if fis less than the critical angle for SV waves, the amplitudes of U§

ug

g y
6,=f
v E ud

Re(U3/s)

Figure 9. Free-field motion generated by non-vertically incident SV waves (» = 1)
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and UE are complex. In the case of incident SV-waves, the phase velocity ¢ is ¢ = B/cosf. Values of /e, UE
and U# are summarized in Table II for some particular values of @, = /. Since the elements of the ‘input
motion’ matrix presented in Figures 5-7 depend only on B/ec they may also be used to determine the response
for non-vertically incident SV-waves, The results presented in Figures 7 and 9 indicate, for instance, that
SV-waves impinging on the foundation with angles of incidence of 30-60 degrees (B/c = 0:5-0-9) will cause a
considerable amount of rocking about the x-axis.

The results presented above for the ‘input motion’ matrix. [S*(a,, B/c, )] are strictly valid only for plane
waves with horizontal angles of incidence of 6z = 0. The same procedure described herein may be used to
determine the ‘input motion’ matrix for other horizontal angles of incidence and for other types of excitation
such as Rayleigh waves,2*

Table II. Values of /e, US, US for
incident SV-waves (v = })

Ble b, =f  USs USs
0:00 90° 200  0:00
025 755° 195 048
0-40 66-4° 1:95 069
0-50 60° 346 000
080 369° 000 000

CONCLUSIONS

The problem of the forced vibrations of a rigid rectangular foundation bonded to an elastic half-space and
subjected to the action of external forces and non-vertically incident seismic waves has been analysed. It has
been shown that the solution of the problem under general loading conditions reduces to the determination of
the compliance and ‘input motion’ matrices. Numerical values for the elements of these matrices have been
presented for the particular case of a square foundation.

THe results obtained indicate that the dynamic response of a rigid massless foundation subjected to non-
vertically incident seismic waves differs both in magnitude and nature from the corresponding response for
vertically incident waves. In particular, non-vertically incident SH waves generate a marked torsional
response, while non-vertically incident P and SV-waves may cause a considerable amount of rocking of the
foundation. These components of motion are not excited by vertically incident waves. The non-vertical
incidence of the seismic waves also causes a notable decrease of the translational response for high frequencies.
The results presented here suggest that soil-structure interaction studies should not be limited to seismic
excitations with vertical incidence.
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RESPONSE OF A RIGID FOUNDATION TO A SPATIALLY
RANDOM GROUND MOTION

I E, LUCO
Department of Applied Mechunics and Engineering Sciences, University of California, San Diego, La Jolla, California 92093, U .5.A.

AND

H. L. WONG
Department of Civil Engineering, University of Southern California, Los Angeles, California, U5 A,

SUMMARY

A method to obtain the dynamic response of an extended rigid foundation supported on an elastic half-space when
subjected to a spatially varying ground motion including both random and deterministic effects is presented. The method
relies on an integral representation of the response of the foundation in terms of the free-feld ground motion. Numerical
results for a rigid square foundation and for a ground motion characterized by a particular spatial coherence function are
described. The results obtained indicate that the spatial randomness of the ground motion produces effects similar to the
deterministic effects of wave passage including reduction of the translational components of the response at high
frequencies and creation of rocking and torsional response components. The possibility of defining an effective apparent
horizontal velocity which produces effects equivalent to those from a given spatial randomness is explored.

INTRODUCTION

Strong motion records obtained in dense arrays (Tamura et al.,' Tsuchida et al.,? Bycroft,* Smith er al.,’
King,? King and Tucker,” Bolt et al.* ~'° Hoshiya and Ishii,'""'?) reveal a somewhat unexpected degree of
variability over short distances. The observed spatial variation of the free-field motion over short distances
may have important implications for the seismic response of structures supported on extended foundations or
multiple supports and for various types of pipelines. In particular, for structures supported on sufficiently rigid
extended foundations the inclusion of the effects associated with the spatial variation of ground motion may
I lead to a reduction of the translational response at foundation level and to some increase in the rocking and
1. torsional response. For structures supported on flexible foundations or multiple supports, and, for pipelines,
the spatial variation of the free-field ground motion may cause increased localized deformations and strains.

Comparisons of records obtained in buildings with those recorded on the free-field show some filtering of
high frequencies which can be explained only in part by inertial soil-structure interaction effects (Housner,!?
Duke et al.,'* Yamahara,'® Shioya and Yamahara,'® Ishii ef al,,'"). The rest of the filtering must be attributed
to embedment effects and to the lateral spatial variation of the free-field ground motion. The free-field motion
on the ground surface varies from point to point as a result of non-vertical incidence of body-wave energy,
surface-wave propagation, waves arriving from different points on an extended source, and amplitude changes
and time delays due to inhomogeneities along the propagation path. The effects that the first two factors, iLe.
non-vertical incidence of body-wave energy and surface-wave energy, have on the response of foundations and
structures are relatively well documented (e.g. Newmark,'® Luco,'**° Luco and Wong,*'-*> Wong and
Luco,** Luco and Sotiropoulos®*). The information obtained from dense arrays suggests that, under certain
conditions, the variability of ground motion resulting from inhomogeneities along the path and fromincidence
from different directions may be equally or even more significant than the variability associated with non-
vertically incident waves from a fixed azimuth.
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- Several approaches have been proposed to estimate the effects of spatial va{iation of the free-field groun,
mation on the response of extended foundations. One approach is purely empirical and relies on observatio;
of the motion of light foundations and on comparisons with observed free-field ground motion. A secon
approach, typically used to estimate the effects on the translational response (_)f the foundation, consists i1
using spatial averages of observed free-field ground motion directly, or, of functionals of the observed groun.
motion such as response or Fourier spectra. Smith er al.” used the ratio of the pseudo-velocity respons
spectrum of the spatial average of the recorded accelerations to the corresponding average spectrum. King
and King and Tucker” used the same type of ratio except for the use of Fourier amplitude spectra instead o
response spectra and for the introduction of weights to account for unequal spacing of the stations. Loh er al.®
in an analysis of a structure supporied at two points have considered the ratio of the pseudo-acceleratio
response spectrum for a linear combination of the acceleration recorded at the two points to the correspondin;
average spectrum. Hoshiya and Ishii'* have used the ratio of 1he Fourier amplitude spectrum of the spatial .
average of the recorded accelerations to the spectrum of the recorded acceleration at a central point in the:
array. All of these measures indicate a reduction in translational response which increases with frequency and
with the overall spatial dimension over which the average is taken. The major difficulties with this second
approach are: (i) the spatial averages are usually calculated over a line while most foundations are two
dimensional in plan, (ii) the spatial dimensions are controlled by the geometry of the arrays which, in many
cases, have minimum spacing larger than the length of interest for many foundations, and, (iii) a simpleaverage
may not properly represent the contact problem between a rigid foundation and the elastic soil.

A third approach to estimate the effects of spatial variation of the free-field ground motion on the response -
of extended foundations relies on an analytic representation of the spatial variation of ground motion in the
frequency domain and on the use of spatial weighted averages including weights which are, typically, linear
functions of position. In the case of wave passage effects, the spatial variation of ground motion is typically
represented in the form of plane waves. For random spatial variation, the stochastic spatial characteristics of.
the ground motion are represented by the cross-correlation or coherence function between the motion at two
points. For wave passage effects this approach has been used, among others, by Iguchi,*® Scanlan?®” and Luco
and Sotiropoulos.*® For random spatial variation this approach has been utilized by Matsushima®® and
Hoshiya and Ishii.'* The procedure is simple and can accommodate foundations of different geometries. The
limitations are: (i) the results depend on the appropriateness of the assumed spatial variation of the ground
motion, and (i) weighted averages may not account for the actual contact problem between the foundation and
the soil,

A fourth approach also relies on an analytic representation of the spatial variation of ground motion but
addresses the contact problem between the foundation and the soil as a mixed boundary-value problem. For
wave passage effects, this approach have been used, among others, by Luco,'??° Luco and Wong?! and Wong
and Luco.?? '

The objective of this study is to determine the response of a rigid foundation bonded to a visco-elastic half-
space when subjected to a spatially varying ground motion including both random and deterministic effects,
The proposed method follows the fourth approach described above and relies on the use of a coherence
function. Special emphasis is given to the effects of spatial randomness on the translational and rocking
components of the response and on the correlation between the various response components. The
relationship between wave passage and spatial randomness effects is examined and a procedure to account for
the interaction effects due to the presence of a superstructure is also described.

CHARACTERIZATION OF THE FREE-FIELD GROUND MOTION

A Cartesian coordinate system x,x,x, located on the surface (x3 = 0) of the half-space (x; < 0) representing
the soil is utilized to describe the free-field ground motion (Figure 1), The complex Fourier amplitude of the
free-field ground motion vector at a point X = (x,, x,, 0) on the ground surface is represented by

g (%, 0)} = (Ugy(x, ), Uyl(x, w), Ugsy(x, w)” (1)

in which e is the frequency and Ugm(x, w) represents the component of motion along the x,,-axis (m = i,23).
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The superscript 7 denotes transposition. The components of the free-field ground motion are considered 1o be
random functions of position x such that

EfUpxo)]=0 (m=1,2,3) (2)

in which E['] denotes expected value.
The second order properties of the random field are described by the covariance matrix

[B(x,x', w)] = E[{U(x, o)} {U,(x', 0)}7] 3)
in which the tilde denotes complex conjugate, The components B,,, of the matrix [B] are given by
Bpn(%, X', 0) = E[U (%, @) Upy(x', w)]  (myn=1,2,3), “)

In the derivation which follows it is assumed that the covariance functions B,,, can be expressed in the form
an{.xa x’a ﬂJ] e #gmﬂgnﬂgmnfm (lx — X' [: ("J) cxXp t = iw(xifcm = x{h‘"‘:nl] (5}

in which the variances
Hgm (@) = E[|U,(x, w)[*] (6)

and the normalized correlation coefficients

_ E[U,,(x, @)U, (x, )] exp [iwox, (et — e )] (7)

Pam Hn

are considered to be independent of x. Clearly, Pyl = Py = Pyyy = 1. The spatial coherence functions f,, for
two points x and X’ on the ground surface are assumed to depend only on the distance |x — x'| between the two
points. These functions are such that f,,,(0, w) = 1.

The exponential factor appearing in equation (5) represents a deterministic spatial variation of ground
motion due to wave passage. The form of this factor is based on the assumptions that: (i) the x,-axis has been
selectg_d in the direction from the source to the site, (ii) the local variation of ground motion due to wave
passage effects can be described by the simple phase shift for plane waves, and, (iii) the U, component of
motion is characterized by the apparent horizontal velocity c,,. The exponential factor appearing in equation
(7) represents a correction for deterministic wave passage effects.

A major difficulty in the use of the characterization given by equation (5)is that the functional dependence of
the coherence functions f,,, on distance and frequency has not been fully established. Analyses of array data
indicate that f,,. (m = 1,2, 3) are decreasing functions of distance and also decreasing functions of frequency
for frequencies above 1-2 Hz (Smith et al.’ King and Tucker,” Hoshiya and Ishii,!* Harichandran and
Vanmarcke®®). Matsushima®* and Hoshiya and Ishii'? have suggested exponentially decreasing functions of
distance for f,., and, in particular, Hoshiya and Ishii'? have used the form £, = exp [~(@ +bw)|x—x'|/f] in
which @' and b’ are constants and f is a representative shear wave velocity in the soil. Harichandran and
Vanmarcke?® have found it necessary to use a weighted sum of two exponential functions. No information is
available on the cross coherence functions ,,, (m # n). Given this uncertain situation, which will only be settled
when sufficient data have accumulated, it is convenient to use as guidance the functional forms resulti ng [rom
theoretical models. For (scalar) shear waves propagating a distance H through a random medium, the
coherence function is given by (Uscinski®?)

Pamn = ﬁynm

J(Ix=x'[, w) = exp{—I[1—exp(—[x —x'|*/r§)]} (8)
where 7, is the scale length of the random inhomogeneities along the path, and
| ~ wrgHp? /> (9)

in which B is an estimate of the elastic wave velocity and ;2 is a measure of the relative variation of elastic
properties, For [x —x'| < rg, equation (8) can be approximated by

flIx—=x'|, w) =exp[ - (yo|x —x'|/B)*] (10)
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‘in which y = u(H/ro)!/*. Crude comparisons with data indicate that y/f ~ (2—3)x 10"*m™'s may be a
reasonable value for this ratio. The numerical results presented below are based on the simplifying assumption:
Jmn =Jf(m,n=1,2,3) and on the use of the functional dependence given by equation (10). :

The data on the correlation coefficients p,,, (m # n;m,n = 1,2, 3) are also scarce. Hadjian*" has found that.
the orientation of axes which minimizes the correlation between two perpendicular horizontal compaonent
corresponds approximately to the source—station direction. For this orientation, the correlation between the:
azimuthal and vertical components is minimized while the correlation between the radial and verti
components is maximized.

RESPONSE OF A FLAT RIGID FOUNDATION

To quantify the effects of the spatial variation of ground motion on the dynamic response of foundations, th
case of a flat massless rigid foundation bonded to a uniform viscoelastic half-space is considered. The free-fiel
ground motion is assumed to involve both deterministic and random variations with respect to space. Th
response of the rigid foundation, in the frequency domain, can be represented by the 6 x 1 generalized:
displacement vector

{Uﬁlw}} = (U#1, Uz, U3, Uy, Us, Uge) (11

where (U§,, U%,, U§;)correspond to the three translational components of molion at a point of reference o
the foundation and (U3s, Ufs, Uke) = (af3,, afd,, ab%,), in which a is a characteristic length of th
foundation, correspond to normalized rotations about the Xy -, Xz- and xj-axes, respectively. :

The deterministic relation between the response of the foundation {U%} and the free-field ground motio;
{U,(x, w)} is given by the integral representation (Bycroft,*? Luco®*-%)

Us} = [C[w)]'[ [T {U,(x, w)}dS(x) (12

valid for flat foundations in which [C(w)] is the symmetric 6 x 6 compliance matrix for the foundation anc
[T(x)]isa 3 x 6 traction matrix in which each column corresponds to the traction vector on the contact area
between the foundation and the soil for unit rigid-body motions of the foundation in the orde;
(Uoss Uga, Ugs, ably,, aloy, ablys). The matrix [ T(x)], which also depends on frequency, can be obtained by
numerical solution of an integral equation as presented by Wong and Luco.?’ For later use it is convenient t0
write equation (12) in the form

3
U= Y | Fuplx,)U,,(x)dS®)  (p=1,2,...,6)
m=1 \g
in which F,,, (m=1,2,3; p=1,2,..., 6) is an element of the 3 x 6 matrix [F(x, w)] defined by
[F]=[Tx)][C(w)]

Each column of the matrix [F] corresponds to the traction vector at a point x on S for unit generalized for
and moments applied to the rigid foundation in the order (F,, F,, F5, M,/a, M,/a, M ,/a).

The linear relation between the response of the foundation and the free-field motion given by equatio
(12) and (13), and the zero-mean assumption [equation (2)] for the free-field ground motion, indicate that

E[U§(w)]=0 (p=1,2,...,6) _
The second order characteristics of the response of the foundation are described by the covariance matrix
(4] = E[{Us}{U3)7]
which has for elements
Ay =E[US,08,]=utndeply  (oa=12...,6)
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in which u¢?(p=1,2, ..., 6)are the variances and Pdpe(Psq,=1,2, ..., 6)are the correlation coefficients

(.00*”:1,?=1,2,...,6). _
Substitution from equations (13) and (4) into equation (17) leads to

3 3
HOpl8sP8p = 3, 2 I J Frnp(%, @)B,,, (%, X', 0)F (X', ) dS(x)dS(x") (18)
m=1n=1JJS§ 5
which when combined with equation (5) results in
3 3
W= Y Y ABOWgbyPym  P=1,2...,6) (19)
m=1ln=1
and
3 3
Ploa= 2 X AR (OMgnbenPomi/ibonly, P+ @Gpg=1,2...,6 (20)
m=1n=1
in which

Aﬁ,({‘.ﬂ) = J. -[ Fmp(x! ﬂ))F,,q(X', m)fmn(lx = L (J'J)
8 &

x exp [ —iw(x, /e, —x1/c)1dS(x)dS(x) (p,q=12,...,6;mn=1,2,3) (21)

are frequency dependent covariance coefficients. Equations (19) and (20) give the relation between the second
order characteristics of the response of the foundation and the characteristics of the free-field ground motion.
This relation involves the coefficients 4% (w) (p,g=1,2,.. ., 6; m, n =1, 2, 3) which also depend on the
coherence functions f,,,, the apparent velocities c,,, the geometrical characteristics of the foundation and on the
soil properties. From equation (21), and from the assumption that the functions f,,(|x — x’ |, @) = fiml(|x —x'],
w) are real, it can be shown that

Afr = A (22)

which indicates that these coefficients are Hermitian with respect to the subscripts mand n for p=g.Form=n
and p'= g, the coefficients A%¢ are real (and non-negative).
Given the properties of AZ%, equation (19) can be written in the form

HBp = ATE i + ABE s+ AT gy + 2Re AT pyga] g

+2Re[AB p T b +2RE[AB o Thittyy  (P=1,2,...,6) 23)

which, as expected, reveals that uj, is real.

To illustrate the physical interpretation of the coefficients A%% consider the case in which the free-field
ground motion has only one non-zero component along the x,-axis, ie. {Ugt = (Ug, 0, 0)T. In this case,
fgy # 0, gy = ptp3 = 0, and from equations (19) and (20) it is found that

uEi /g = A%(@ (p=1,2,...,6) (24)
and

AN (@) =
PSpq"m PFaprg=12...,6 (23)

Equation (25) indicates that, in this case, 4%} (p # q) determine the correlation between the p- and g-
components of the response of the foundation, Equation (24) indicates that 4%? determines the amplitude of
the p-component of the foundation response. In particular, if the free-field ground motion can be represented
as a stationary random process with respect to time then tg and p’can be interpreted as the power spectral
density of the ground motion and of the p-component of the foundation response, respectively. In this case,
equation (24) indicates that A{§ represents the ratio of the power spectral density of the p-component of the
foundation response to the power spectral density of the free-field ground motion. Similar interpretations can
be given to the terms 485 and A%3 by considering the cases {Ugh=(0,Uy, 0)" and {U,} = (0,0, Ug)'
respectively.
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Equations (19) and (20) indicate that the terms 442 for m # nneed to be calculated only if the corresponding
free-field correlation coefficients Pgmn ar€ non-zero. The terms A5, for m #+ n are associated with the effect tha
the correlation between the m- and n-components of the free-field ground motion has on the response of the
rigid foundation.

ESTIMATES OF THE COVARIANCE COEFFICIENTS 42¢

To gain insight into the characteristics of the covariance coefficients A2% it is desirable to obtain simpl
approximate expressions for these coefficients. Such estimates can be obtained by approximating the actua
contact tractions [F] defined by equation (14) and appearing in equation (21) by linear functions of position
For a rectangular foundation (—a < x; < a, —b < x; < b, x3 = 0), the approximation to [F] is

| [ 0 Gan |

0
1
) (%)
a (26
0 0 =32
a
a? X3 a* X,
‘3(52‘1?)(?) 3(";?)(—) i

To obtain further simplicity it is_assumed that f,,, = film, n = 1, 2, 3) in which [ is th; coherence functio
defined by equation (10). In addition, only terms up to second order in (ywa/f) and (wa/c,,) (m = 1,2, 3) arg

0 1
0 0
0 0

ol ~)

1
T s
[F] = 4ab

Ugz

Ups=06gz

LE

Figure 1. Description of the foundation and soil model, and coordinate systems
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included. The resulting non-vanishing coefficients 422 (p=1,2, ..., 6;m, n=1, 2, 3) are

11 _ g 2 (@ +b*\ (wa\? wa\?

Au—l—'3?( =3 BICRE, (27)
2

&

wa\?

g
“’in
\...,.__'__/
(5]
|
Ll | = LI e L] e

2
A3 =27 —5) (30)
B
) 2
435 = 22 %) L 3
33=2y (ﬁ = (31)
bz 2 wa 2.
A?? =i 2}’2 az+bz) (‘B") (32}

2 2 2 2 2 2
88y puaf 0 Y [0 AT, nfes
Aga =2 (a’+b2) (ﬁ) +(a2+b2 P (33)

The corresponding estimates for the coupling covariance coefficients A2 (p # g) are listed in the Appendix.

NUMERICAL RESULTS FOR A SQUARE FOUNDATION

The covariance coefficients A%, (w) defined by equation (21) (p,g = 1,2,..., 6;mn = 1, 2, 3) for a massless
rigid square foundation (—a < x; <4, —a < x, < @, x5 = 0) bonded to a viscoelastic half-space have been
calculated for a range of frequencies. The viscoelastic half-space was characterized by a Poisson’s ratio v = 1/3
and by material damping ratios &, = &, =001 (Q; = @, = 50). In the calculations it was assumed that the
coherence functions were defined by f,,, =/ (m, n = 1, 2, 3) in which f'is the coherence function defined by
equation (10). The contact tractions Fp,(x, ) (m = 1,2, 3;p=1,2, . .., 6) appearing in equation (21) were
obtained by numerical solution of the contact integral equations following a procedure similar to that
described by Wong and Luco.’® The foundation was discretized into 256 equal subregions, the contact
tractions were assumed to be constant within each of the subregions and the displacement conditions were
imposed on the average displacement in each subregion, The double integrals over the contact area S of the
resulting contact tractions were calculated by Gaussian quadrature. The covariance coefficients Akr# depend on
the dimensionless parameters y, fi/c,, fi/c,, f/c; and ay = wa/f where fis the (real) shear wave velocity in the
half-space. In the calculations it was assumed that f/c, = f/c, = fi/c; = Ble.

Results for the variance (or power spectral density) of the response
The case fijc, = fijc; = B/c; = f/c =0 is considered first. In this case, 422 = 0 for m # n and p=l,
2, ..., 6. Based on this result, equation (23) can be written in the form

uop = AR ph +ARuL+AB LG (P=1,2...,6) 34)

which indicates that, in this case, the variance of the p-component of the response depends on the coefficients
Afq . A%5 and A%5.

Numerical values for the square root of the coefficients A2 are shown in Figures 2 and 3 versus the
dimensionless frequency a, = wa/f for values of the incoherence parameter y = 0,0-1,0-2, 0-3,0-4and 0-5. It is
noted that /428 (p=1,2,...,6;m=1, 2, 3)can be interpreted as the amplitude of a transfer function
between the m-component of the excitation and the p-component of the response. Inspection of Figures 2(a),
2(b)and 2(c) for p = 1 indicates that the translational response along the x,-axis is mostly associated with the
component of the free-field excitation along the x,-axis. The x;- and x3-components of the excitation induce

£
i
II::
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Figure 2. Squareroot of thecovariance coefficients AR5, (p = 1,2, 3m = 1,2,3)fory = 0,0-1,0.2,03,0-4 and 0-5 plotted versus a, = wa/f"
(filey = Bley = Ples = 0)

extremely small responses in the x;-direction [Figures 2(b) and 2(c)]. Given the symmetry of the squar
foundation, Figures 2(a), 2(b) and 2(c) also show that the translational response along the x,-axis is mostly due-
to the x;-component of the free-field excitation. Figures 2(d), 2(¢) and 2(f) show that the dominant
contribution to the translational response along the x;-axis results from the x;-component of the excitatiom.
These results indicate that equation (34) for p = 1, 2 and 3 can be approximated by

ust = At |
ud? = A3iu, (35)
uid = A3 ud
The most significant characteristic of the coefficients A]! = 433 and A33 is that they are decreasing functions:
of frequency for y # 0. The reduction at a given frequency increases with the degree of incoherence of the free-
field ground motion as measured by the parameter y. This result indicates that the variance (or the power:
spectral density) of the translational response components can be lower than the variance (or power spectra;

density) of the corresponding component of the free-field ground motion. This loss of power is due to th
kinematic constraint imposed by the rigid foundation. The extent of the loss of power depends on y and ag-
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= wa/p. For low values of @, and y, the coefficients A{} = 422 and A33 can be approximated by the
expressions given by equations (27), (28) and (29), respectively.

The square root of the coefficients A7, = A5 and A55 (m = 1,2,3) associated with the rotational
components of the foundation response are shown in Figure 3. The term /A5 can be interpreted as the
amplitude of the transfer function between U, the m-component of the free-field ground motion, and U #;
= af$,, the normalized rocking response about the x,-axis. The terms ./A4%% and ,/A45¢, have similar
interpretations. The results in Figure 3 indicate that the rocking responses about the x; and x;-axis are mostly
associated with the vertical component of the free-field ground motion, while the torsional response about the
x3-axis is associated with the x, and x;-components of the ground motion. Given these results, equation (34)
for p =4, 5 and 6 can be approximated by
He
My
g +AS

128

=
o%

[}

(36)

=

=23
Dk W bps
b -
=0 Lelh e
O I e

B

%

-
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Therotational response components induced by the spatial variation of the ground motion are quite large, and, -
at least for low frequencies, increase with frequency and with the degree of incoherence of the ground motion
as measured by y. For low values of ao and 7:, the expressions given by equations (30), (31), (32)and (33) are good
approximations to 433, 433, A%¢ and ASS

The effects of spatial randomness and wave passage on the response of rigid foundations are qualitatively
similar in that both involve a reduction in the translational response of the foundation together with the
creation of rocking and torsional response components. A more detailed comparison can be made by
inspection of the results in Figures 2 and 3 for fi/c, = f/c; = ffc; = B/e = 0and y # 0 with those in Figure 4
fory =0and f/e = 0,01,0-2,03,0:4 and 0-5. The results in Figure 4 are for waves propagating along the x,
axis with apparent velocity c. The most significant differences are that, while under spatial randomness both the
x,- and x;-<components of the excitation generate torsional response (49§ = 32 # 0 for y # 0) and the
vertical component induces rocking about both the x,- and x;-axes (433 = 433 # 0 for y + 0), for wave
passage in the x;-direction only the x;-component of the ground motion induc5s torsion (A55+0,A458=0
for f/c # 0)and the vertical component induces rocking only about the x, -axis (433 # 0, 43% = O for f/c = 0)

The case in which random spatial variation and wave passage effects occur simultaneously is considered
next. The wave passage effects are for propagation in the direction of the x,-axis with apparent velocities
¢1/B = c2/B = ¢3/B = ¢/p. Inthiscase, A5 = A% = Oand A5 = A5 = Oforp = 1,2, .. ., 6. Consequently,
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Figure 4. Square root of the non-vanishing coefficients 422 (p = 1,2, .., 6;m =1,2,3)fory = Gand fijc = 0,0:1,0:2,03, 04, and 05
plotted versus a; = wa/fi (ﬂ,fc, = fije; = L, = i)
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equation (23) can be written in the form
Ul = AR pg + AB pL + AB us+2Re[ABp, 3l (p=12,...,6) (37)

which differs from equation (34) for the case fi/c = 0 by the presence of the last term. This term makes uE
dependent on the correlation pg; between the x,- and x;-components of the free-field ground motion.
Calculation of the terms 484 (p = 1,2, . .., 6)for f/c = 0-1and y = 0,0:1,02,0-3,0-4 and 0-5 shows that these
terms are much smaller than the corresponding dominant terms 41}, 432, 433, 44%, 433, 45% and A5¢, and
consequently the contribution of the last term in equation (37) is small.

Comparisonof theterms A7%. (p = 1,2, . .., 6;m = 1,2,3) for f/c = 0-1 with those for f/c = 0fory = 0,01,
0-2,0-3,0-4 and (-5 indicates that the additional effects due to wave passage are significant fory = Oandy = 0-1,
small for y = 0-2, and negligible for y = 0-3,0-4 and 0-5. For small values of ag, y and f/c the combination of the
two effects is well described by equations (27) to (33).

Results for the correlation between the components of the response

The correlation between the p- and g~components of the response of the foundation given by equation (20)
involves the coefficients 422 (p #q;p,q = 1,2, ..., 6;m,n = 1, 2, 3). These coefficients have been calculated
for various values of y and f/c. Given the large number of such coefficients it is possible to describe the
properties of only a few. As an example, consider the case of a square foundation (a = b), f/c, = fi/e; = e,
= 0and py3 = fyy, # 0 whileall other correlation coefficients of the free-field ground motion are zero. In this
case, the non-zero correlation coefficients of the response given by equation (20) are

P13 = Phn= (A13 g3+ AT Pg3i g1 By /18y 1ba

piis = bisy = (A1 pd + A pgy+ AS3 pk)ud ubs

Plaa = plaz = (AT g + A3 1l + A3 ugs) nE ula

P86 = Plez = (Afgﬂgu 15 Ag?ﬂgﬂ)#glﬂg/!‘gz#?ﬁs

Plss = Plss = (A13 pgus+ A3 Py ) gy Mg/ 1ks 18

Pas = Plea = (A3 Py + ASL Pya) ) gy sl s s (38)

in which u3, (p = 1,2, ., . ., 6)are given by equation (34). For a square foundation and f/c =0, 42¢ = — 415,
A3 = —Aii, A3 = —A4}j and pis = —plaa.

The numerical values for the real and imaginary parts of AZ% (p + g) presented in Figures 5, 6 and 7 have
1/2

3 Y2 3
been divided by LE Aﬁ"] [ ) Aﬁ"’] and are shown versus the dimensionless frequency a, for five
=1 =1

values of y. The amplitudes of the normalized terms A {7, 4}3 and 413 shown in Figure 5 are small suggesting
that p¥,s = — p24 ~ 0. The results for 4{3 and A3} presented in Figure 6 and equation (38) indicate that
P13 & pgy; while the values for the normalized coefficients 41§ and A4 shown in Figure 7 and equation (38)
indicate that pfse = — 0707 p,y, for p, = p,. Finally, the calculated values for 475, 43§, 473 and 43} (not
shown) reveal that p¥,¢ =~ 0 and p}35s ~ 0. These characteristics are consistent with the estimates for P85
(p # q) presented in the Appendix,

When the wave passage and spatial randomness effects are considered simultaneously (f/c + 0,y # 0), the
correlation coefficients for the response p§,, differ from those for the case f/c = Oand y # 0. In particular, for
the case in which py,; = B, # 0 while all other correlation coefficients of the free-field ground motion are
zero, the non-zero correlation coefficients of the response are given by

Pl = [ATT pgy +ATS gy + AT 33+ (AT Pgrs + AT Py ity s 13 112 (39)

for the combinations of (m, n) = (1,3), (1,5), (2,4), (2,6), (3,5) and (4, 6) and its reciprocals. These expressions
differ from equation (38) for fi/c = 0. Approximate expressions for pf,, for y # 0 and f/c # 0 are given in the
Appendix.
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EFFECTIVE APPARENT VELOCITY

It has been mentioned that the effects of wave passage and spatial randomness on the response of rigid
foundations are qualitatively similar. Two questions of interest arise: (1) which of the two effects is stronger, and
(1i) is it possible to find an effective apparent velocity such that the corresponding wave passage effects mimic
the spatial randomness effects for a given spatial incoherence? Consider first the coefficients 422 (y, f/c,, w)
(p = 1,2,3) which control the translational response of the foundation. The effective apparent velocity ¢, along
the x,-axis of the p-component of free-field motion can be defined by

AZE(O, Bley, w) = AZR(1,0,0) (p=123) (40)

Based on the estimates of A} for rectangular foundations given by equations (27), (28) and (29) it is found that

2 2
cﬁzﬁ \/(“ L )v (p=1,23) (41)

at

valid for small values of (ywa/p) and (wa/c,). For a square foundation (a = b), the estimate given by equation
(41) leads to fi/c, = 2y. The effective apparent velocity ¢, based on equation (40) for p = 2 and on the results
presented in Figures 2 and 4 is shown in Figure 8(a) versus the incoherence parameter y for different values of
ag = wa/f.Forag < 2ory < (+15, the approximation ff/c, = 2y appears to give excellent results. The effective
velocities ¢, and c; based on equation (40) for p = 1 and 3, respectively, have values similar to ¢;.

The apparent velocity ¢, necessary to produce an equivalent torsional effect can be defined by

e

i

i
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Figure 8. Effective apparent velocities along the x,-axis for a square foundation subjected to a random free-field ground motion with-
spatial incoherence parameter y: (a) f/c; based on translational response along x;-axis; (b) f/c; based on torsional response about x;-axi ]
and (c) f/c; based on rocking about x;-axis :

To eliminate y,,, /1., from the definition of the effective velocity ¢, it is convenient to assume that u a=H él, in
which case :

A%3(0, Blez, w) = AT (7,0, w) + A35(y, 0, w) (43)

Based on the estimates for A77 and 435 for a rectangular formation given by equation (32) and (33) it can be

shown that equation (43) leads to
a*+b*
ﬁ/c==ﬁ\/( 5 )y (44)

a

valid for small values of (ywa/B) and (wa/c;). For a square foundation, f/c; = 2y, which coincides with the
effective velocity based on the x,-component of the translational response. The values of the ratio f§/c, based
on the equivalence given by equation (43) and on the results presented in Figures 3 and 4 for a square
foundation are shown in Figure 8(b) versus the incoherence parameter y for various values of a,. Fora, < 1 or
y < 0-1, the approximation f/c, = 2y appears to give excellent results.

Finally, the apparent velocity ¢; along the x,-axis of the x,-component of free-field ground motion
necessary to generate the same rocking response about the x,-axis can be defined by

A33(0, Bles, w) = A33(y, 0, @) (43)

Values of the ratio f/c; for a square foundation are shown in Figure 8(c) versus y for various values of ay. In

this case, the approximation fifc;y = ﬂy based on the estimate given by equation (31) appears to be valid for
ag <1 ory<0l.

The previous results indicate that wave passage with velocities ¢, = ¢; = c; = (f/2y) along the x,-axis
produces effects on the variance (or power spectral density) of the translational and torsional response of the
foundation similar to those resulting from spatial randomness with parameter y. This choice of the effective
apparent velocity c; leads to overestimation of the rocking response about the x,-axis. On the other hand, wave
passage along the x,-axis does not excite a rocking response about the x,-axis, while the spatially random
vertical free-field component does create a significant rocking component about that axis. The partial
equivalence just discussed gives a rational basis to compare the importance of the wave passage and spatial
randomness effects. In general, if ¢ > §/2y then the spatial randomness effects are stronger than the wave
passage effects. Based on the limited information available it appears that y/f ~ (2-3) x 10~ * m ™' sec, leading
to /2y ~ (1:'7-2-5) km/s. Analyses of array data (Tamura et al.,' Tsuchida et al..> O’Rourke et al.,*® O'Rourke
and Dobry,”” Spudich and Cranswick,*® Harichandran and Vanmarcke?®) as well as theoretical analyses
(Luco and Sotiropoulos,** Hadjian and Hadley,*® Bouchon and Aki,*® Campillo and Bouchon,*!) suggest
that the apparent horizontal velocity ¢ in the source-site direction for the predominant motion is in the range ¢
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~ (2-5) km/s. Based on limited data it appears that the effects of wave passage and spatial randomness on the
response of rigid foundations are of comparable importance with the spatial randomness effects being perhaps

slightly stronger.

SOIL-STRUCTURE INTERACTION EFFECTS

The previous discussion considered a rigid massless foundation in the absence of a superstructure. If the mass
of the foundation and the presence of the superstructure are considered, then the 6 x 1 generalized total
displacement vector {Ug(w)}, in the frequency domain, at a point of reference on the foundation can be related
to the foundation input motion {U#} (defined as the response of the massless foundation to the seismic
excitation) through the equation (Luco and Wong??)

{Uo} = [L(@)]{U3} (46)
in which
[L(w)] = ([I] = w* [C(@)] ([Mo] + [M,(w)])) ! (47)

where [[] is the 6 x 6 identity matrix, [C(w)] is the compliance matrix, [M] is the mass matrix for the
foundation and [M,(w)] is an equivalent frequency-dependent mass matrix for the superstructure.

From equations (46) and (16) it is found that E[{U,}] = 0. The second order characteristics of the total
response of the foundation are given by the covariance matrix

E[{Uo}{U4}"] = [L(w)] [A][L(w)]" (48)

in which [ A] is the covariance matrix of the foundation input motion {U#} defined by equations (16), (17), (19),
(20)and (21), Equation (48) and similar expressions for the superstructure can be used to obtain the effects of
spatial randomness on the total response of the foundation and on the response of the superstructure.

> CONCLUSIONS

A method to obtain the dynamic response of a massless rigid foundation bonded to a viscoelastic half-space
when subjected to a spatially varying ground motion including both random and deterministic effects has been
presented. The method relies on an integral representation of the response of the foundation in terms of the
free-field ground motion and the contact tractions for rigid-body motions of the foundation. The formulation
involves a representation of the random spatial variation of the ground motion in terms of a coherence
function and considers a possible correlation between the three components of the free-field ground motion.
Numerical results describing the effects of random spatial variation of ground motion on the six components
of the foundation response and on the correlation between response components have been presented for a
square rigid foundation and for a particular spatial coherence function. Approximate analytical expressions
describing these effects have been presented as well. The results obtained indicate that the spatial randomness
of the ground motion produces effects similar to the deterministic effects of wave passage including reduction
of the translational components of the response at high frequencies and creation of rocking and torsional
response components. The extent of the effects is highly dependent on the degree of spatial incoherence of the
free-field ground motion. The effects of random spatial variation and wave passage are additive (in a sense)
only for small spatial incoherence and small apparent slowness of the wave. If the spatial incoherence is large
the additional effect of wave passage 1s extremely small.

The possibility of defining an effective apparent horizontal velocity which would produce effects similar to
those from a given random spatial variation was explored. It was found that it is not possible to find a unique
effective velocity that would produce similarity of effects on all components of the response. For low
frequencies and small spatial incoherence an effective apparent velocity was found for which the effects on the
variance (orpower spectral densities) of the three components of the translational response and the torsional
response are similar. Since the effective apparent velocities appear to be similar or somewhat lower than
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observed apparent velocities it appears that the effects of spatial randomness are of the same order or
somewhat stronger than those resulting from wave passage.

Finally, the basic equations required to incorporate the effects of the mass of the foundations as well as those =
resulting from the presence of a superstructure were presented.

The numerical results obtained which show a strong dependency on the extent of the incoherence of the free
field ground motion suggest that practical applications of these results must wait until empirical data on the -
degree of incoherence and on its dependence on site and path conditions is fully established.
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APPENDIX

Approximate expressions for the coupling coefficients AZ% (p #g;p,g=1,2,. .., 6;m,n = 1,2,3) defined by
equation (21) and for the correlation coefficients p3,, (p # g) defined by equation (20) are given in this
Appendix. The estimates for a rectangular foundation (—a < x; < a, —b < x; < b, x3 = 0)are based on the -
linear approximation to [F] given by equation (26), assuming that f,, = f (m, n = 1.2,3) in which fis the _
coherence function defined by equation (10) and including only up to second order terms in (ywa/f) and
(wafey,) (m = 1,2,3). The resulting approximations to the non-vanishing coupling terms A% (p # g) are

2 L fa*+ b6\ [wa\ 1[[/wa\? [wa)?
(B A p 2 ol e o LoRA Y
=13 () (7)) +(%) ]
2 fa*+b\ [ wa\* 1[[/wa wa\?
13 [ Lo % T Iy 5 o
ati=1-5 () () =l (5)+(5) ]

AL = —(/D(wales)
A1§ = (2@ +b*)] (wa/cy) (A1) -
A3 =44
TPRCS s al T L R L LAy
A5 =1 3]]2( a* B 6|\ c, ¥i cs

A3 = —(i/2) (wa/c;)

[l

A3s = (/2)[4*/1a® + b*)] (wa/cy) (A2)
A =A13, A¥ =43

A3l = —(i/2) (wafcs) :
A38 = (i/2) [@*/(a® +b%)] (wa/cy) (A3)
A% = = 2*[b*/(a* + b*)] (wa/B)* (A4)
A3l =413, A3j=41, 43i=43%

2 2 2
Al =— ('azi_ bz) [727’2 (EUBE) % (:::)3 :l ¥

AS3= A3 (A6)

The estimates of the correlation coefficients pf,, (p#¢; p, g=1, 2,..., 6) between the p- and g-
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components of the response of the foundation are
P12 = Pgizs PB13 = Pgi3r PE1a =0

* _*(_1_) (B/es)
o= T3 JBleF + 27T/ AT P

_(i (B/ez)a* ug
9316 — (2)Q(ﬁ/52, Y: ugl‘ :u-gz)\/A}!l pglz [A?,
P21 = Pgars P82 = Pgy3s P24 =0
ot A 1‘) (Bles)
P = "\2) JLBres? + 271 JAR P
_ (i (Bles)a* ugy
PhaE= (5 gBlez, 1r Mgrs Hep)/ATS (A8)

P831 = Pgny PB3z = Pg3as P33 =0

= N 1‘ (B/cl)
Po3s = 7\2 ) VL B/es) + 2971 /A S

i (Bc)a* ug

i A9
(Z)Q(ﬂa’fz, Te Hgts Bgl) /A3 P L
pai = Plaz = Pdaz = plas =0

/2vb iy |

— Al0

g(ﬁ/cla Vs I|ug| k] psz} pgll ( J
Psy = P1s, PBsz = Pozs, Poss = Phas, phsa =0

P83

plic =

*/(cae3) +2y*]a?
e _\/[{ﬁ/c[:s}z/i S e O3H}
Pbe1 = Plis» Posz = Plzer Ples = Pl36, Psa = Plas, Ples = Pose (Al2)
in which
9Blezs ¥, b i) = </ [(BleaVa sy + 29 @y + b2y )] (A13)

and A}, A3Z, A33 are given by equations (27) to (33).
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