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Changes: v1.1 to v2.0

The following changes to FACT v1.1 have been incorporated in FACT v2.0

1.

Two-point Gauss Legendre quadrature option for the flow and transport equations.
This option is highly recommended for meshes with vertical distortion. The influence
matrix formulation is still available.

A Dual-Domain mass transfer model (mobile-immobile water phase solute transport
model) option for the transport equation with linear adsorption and first-order
irreversible reactions. The previous mobile-immobile boundary condition option has
been removed.

Streamline-Upwind Petrov-Galerkin (SUPG) weighting for the advection terms in the
transport equation.

Vertical recirculation well boundary condition option. The recirculation well is
modeled as a single pass extraction well with an extraction and injection screen. The
extracted solute is assumed to be well mixed, air-stripped (single pass extraction
efficiency factor), and injected back to the aquifer.

The vertical pumping/injection well boundary condition has been modified to work
for solute injection.
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Table of Notation

A Flow area, L2

A Seepage (conductance) matrix.

b Aquifer thickness, L.

B Hantush’s leakage factor, ,/Te’/K’ , L.

B Storage (capacitance or mass) matrix.

Bi Immobile-phase transport storage matrix.

C Solute concentration, M/L2,

¢ Mobile-phase nodal solute concentration vector, M/L?

ci Immobile-phase nodal solute concentration vector, m?

Cim Immobile-phase solute concentration, M/L>.

Cr Mobile-phase solute concentration, M/LP.

c Mass of solute sorbed per dry unit weight of solid, M/M.

c Incoming contaminant concentration at mass point source/sink, m/L?

C Specific moisture capacity, L.

D Apparent hydrodynamic dispersion tensor, 6,D,,, LYT.

D, Hydrodynamic dispersion tensor with respect to phase k, LYT.

D.. Hydrodynamic dispersion tensor with respect to water phase, LYT.

D Mobile-phase hydrodynamic dispersion tensor, L*T.

D° Apparent molecular diffusion coefficient for an unsaturated media, L/T.

D#* Bulk molecular diffusion coefficient, L*/T.

e Thickness of an aquifer, measured in a direction orthogonal to its

confining beds, L.
E Advection-dispersion matrix.
f Fraction of adsorption sites that are in contact with the mobile water
phase.

F RHS forcing function vector, L/T.

F; Boundary integral term of the RHS forcing function vector, L/T.

F, Volume integral term of the RHS forcing function vector, L/T.

g Acceleration due to gravity, L/T?.

G Residual vector of flow equation or mobile-phase radioactive decay and
first-order reaction rate matrix.

Gi Immobile-phase radioactive decay and first-order reaction rate matrix.

h Hydraulic head, L.

hgy Prescribed hydraulic head, L.

h; Nodal hydraulic head, L.

H

I

Height of rectangular prism element, L.
Interfacial mass transfer matrix.

Ja Dispersive flux of species “a”, ML>T"'

In Bessel function of the first kind of order n.
Jacobian coordinate transformation matrix.
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Intrinsic permeability tensor.

Distribution coefficient (slope of the linear sorption isotherm), L/M.
Relative permeability with respect to the water phase.

Saturated hydraulic conductivity tensor, L/T.

Length of rectangular prism element, L.

Width of rectangular prism element, L, or Picard/Newton iteration
number.

Consistent mass matrix.

Lumped mass matrix.

Vector normal to a surface, oriented outward.

Time step number.

Total flux of species “a” within phase k, ML>T"!

Number of elements in finite element mesh.

Number of nodes in finite element mesh.

Air pressure, ML'T?2

Water pressure, ML'T?2,

Capillary suction head, L.

Source/sink term matrix.

Peclet number.

Volumetric flow rate per unit volume of porous medium, T™".
Volumetric flow rate per unit length of line source/sink located at (xp,yp)-
Volumetric flow rate per unit surface area withdrawn from the aquifer, L/T
or the constant flow rate of a well, L*/T.

Volumetric flow rate contribution at node I from point sink/source located
at XB'

Distance to the origin in polar coordinates, L.,

Production of species “a” by homogeneous reactions within phase k, ML’
3p-l

Production of species “a” by homogeneous reactions within solid phase,
MLT"!

Production of species “a” by homogeneous reactions within water phase,
ML>T"!

Retardation coefficient in transport equation.

Mobile-phase retardation coefficient.

Immobile-phase retardation coefficient.

Drawdown in an aquifer, L.

Storage coefficient of a confined aquifer.

Effective water saturation

Specific storage coefficient of a confined aquifer, L™
Water saturation.
Residual (irreducible) water saturation. -
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t Time, T.

T Transmissivity of an aquifer,L*/T.

T Transmissivity tensor of an aquifer,L%/T.

u Theis’ dimensionless time, 4Tt/ r’s.

u Phasic velocity vector of a fluid, 1L/T.

uy Phasic velocity of phase k, L/T.

u’ Hantush and Thomas dimensionless time, 4T, Tt / (szy + szxﬁ .

U Darcy’s velocity vector in a porous medium (or filtration velocity vector),
L/T.

U, Normal component of Darcy velocity vector, L/T.

Wy Weight of the kth Gauss point.

W(u) Theis’ well function.

W’(u,r/B) Hantush’s well function.

X Position vector in 1, 2 or 3 dimensions, L.

X, Mass fraction of of species a.

Ya Solute “a” concentration in solid phase, M/L’

Ym Solute solid-phase mass fraction on surface in contact with the mobile
water phase, MM

Yim Solute solid-phase mass fraction on surface in contact with the immobile
water phase, MM

z Elevation above a reference datum, L.

GREEK

o van Genuchten empirical constant, compressibility of the porous media
(L'l), mass transfer coefficient (T"), or upstream weighting factor.

oy Volume fraction of phase k.

Ol Volume fraction of solid phase.

Oy Volume fraction of water phase.

Oy Longitudinal horizontal dispersivity of a porous medium, L.

oLy Longitudinal vertical dispersivity of a porous medium, L.

Oy Transverse horizontal dispersivity of a porous medium, L.

Oy Transverse vertical dispersivity of a porous medium, L.

B Compressibility of the fluid, L™

I Input of species “a” into phase k at interface by mass transfer and
heterogeneous reactions, ML>T!

I, Input of species “a” into solid phase at interface by mass transfer and
heterogeneous reactions, ML T

T, Mass transfer rate from solid surface to mobile water phase, ML*T!

sm
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T Mass transfer rate from solid surface to immobile water phase, ML>T!
6(x) Dirac delta function.
o Kronecker delta.
4 Mapping of z global coordinate into local coordinate system, —1<{ <1.
n Mapping of y global coordinate into local coordinate system, —1<n <1.
0 Water content
0., Mobile water content
Oim Immeobile water content
Am First-order reaction rate for the mobile phase, T,
Aim First-order reaction rate for the immobile phase, T
A, Solute radioactive decay constant, T"".
Wy Dynamic viscosity of water, ML'T",
3 Mapping of x global coordinate into local coordinate system, —1<E<1.
Py Bulk density of the solid, ML™.
P Particle density of the solid, ML™.
P Density of phase k, ML,
Pw Density of water, ML,
o Elevation of the aquifer base, L, or solution boundary.
T Tortuosity of the porous medium.
(0] Porosity of the porous medium.
d. Effective or drainage porosity of the porous medium.
D Fraction of water residing within the mobile phase.
Din Minimum fraction of water residing within the mobile phase.
D, Fraction of water residing within the mobile phase at saturation.
©; Basis function for the trilinear isoparametric element.
Y Pressure head, L.
W, Air entry pressure head, L.
W; Asymmetric weighting functions for advection term in transport equation.
® Time differencing parameter for transport equation, 0< ®w<1.
Wy Specific yield or drainage porosity.
Q Solution domain.
v, Gradient operator in global coordinate system, L™
Vv Gradient operator in local coordinate system, L’
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1 Introduction

T his report documents a finite element code designed to model subsurface flow and

contaminant transport, named FACT. FACT is a transient three-dimensional, finite
element code designed to simulate isothermal groundwater flow, moisture movement, and
solute transport in variably saturated and fully saturated subsurface porous media. The
code is designed specifically to handle complex multi-layer and/or heterogeneous aquifer
systems in an efficient manner and accommodates a wide range of boundary conditions.
Additionally, 1-D and 2-D (in Cartesian coordinates) problems are handled in FACT by
simply limiting the number of elements in a particular direction(s) to one. The governing
equations in FACT are formulated only in Cartesian coordinates.

Certain problems can, due to the physics, be reduced dimensionally by expressing them in
a different coordinate system (e.g., cylindrical coordinates). One such example would be
the 1-D axisymmetric flow to a single extraction well in a confined homogeneous aquifer.
In FACT this problem must be handled in Cartesian coordinates where the mesh chosen
would be one element long in the vertical z-direction and multiple elements in both
directions areally. Even though the FACT model for this basically 1-D problem will
contain a far larger number of unknowns than necessary for a given accuracy level, FACT
still remains somewhat competitive computationally due to its efficiency.

Groundwater flow and solute transport simulations can be performed in one computer run
concurrently or in two sequential computer runs, whichever is more appropriate for the
particular problem being considered. A wide range of aquifer conditions (e.g., confined,
unconfined or partially confined with storage conversion) commonly encountered in the
field can be handled. Material heterogeneity and anisotropy are handled by taking
advantage of the finite element discretization approach. Spatial discretization is either
performed automatically within FACT or read in through input. The code uses simple
rectangular (plane or brick) elements and also offers great flexibility in creating grids for
complex flow domains.

FACT handles groundwater flow and solute transport in an unconfined aquifer system
whose soil moisture retention functions and relative permeability relationships do not
exhibit hysteresis. Spatial and temporal variations of water table elevations (due to
mounding, de-watering and pumping effects) are taken into account using a variably
saturated modeling approach with user supplied soil-water retention curves. After a
converged numerical solution to the nonlinear flow problem is obtained, the position of
the water table can also be located by the code.

The groundwater flow equation is approximated using the Bubnov-Galerkin finite
element method in conjunction with an efficient symmetric PCG (Preconditioned
Conjugate Gradient, ICCG) matrix solver. The solute transport equation is approximated
using an upstream-weighted residual finite element method designed to overcome (or
alleviate) numerical oscillations. Transport mechanisms considered include: advection,
hydrodynamic dispersion, linear equilibrium adsorption, mobile/immobile first-order
mass transfer, first-order degradation and radioactive decay effects. An efficient
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asymmetric PCG (ORTHOMIN) matrix solver is employed. For both the flow and
transport equations, an efficient element matrix generation scheme (analytical) is utilized
based on the choice of simple rectangular prism elements (where vertical distortion of
each clement is allowed) where element matrices are computed from influence coefficient
formulas or computed using two-point Gauss-Legendre quadrature. For solving non-
linear flow problems Newton-Raphson linearization and Picard iteration options are
available along with under-relaxation formulas to further enhance convergence properties.

Many types of boundary conditions can be treated conveniently. For flow simulations,
the boundary conditions permitted include steady-state and/or transient prescribed values
of hydraulic head, fluid flux, pumping/injection wells, recirculation wells, head-
dependent source beds, vertical head-dependent line sources, recharge/drain combination
and groundwater recharge. For transport simulations, the boundary conditions permitted
include prescribed concentration, prescribed solute mass fluxes, pumping/injection wells,
recirculation wells, recharge/drain combination and groundwater recharge.

Many of the modules in FACT are modified versions taken from the HydroGeoLogic,
Inc. codes: :

¢ Saturated code named SAFT3D, Version 1.3, developed by Huyakorn, et. al. (1991)

¢ Variably saturated code named VAM3DCG, Version 2.4, developed by Huyakorn, et.
al. (1992)

The original FACT was a reduced version of SAFT3D that handles only three-
dimensional flow geometries. This original FACT also had numerous improvements
made in its input/output structure, as well as, internal documentation within the source
listing. The current version of FACT has incorporated a variety of improvements (e.g.,
new boundary condition options, improved numerics, dynamic memory allocation, binary
Tecplot™ files, and a physically based variably saturated model from VAM3DCG).

Comprehensive sets of verification test examples are presented to check various
formulations, aspects, and numerical schemes used in the code. The given examples
range from simple one-dimensional to complex three-dimensional and multi-layer flow
and transport problems. This document is intended for use as a theory manual, a user’s
| manual, and contains detailed information on the model performance and design
specifications, the structuring of the code, input/output organizations, input preparation
guides, as well as sample input and output files for the selected test problems. Also
included are specific instructions for problem definition, job setup, and restart procedures.

1.1  Overview of Code Capabilities and Salient Features

Multi-dimensional modeling of water flow and waste migration in variably saturated
and/or fully saturated subsurface systems can be a formidable task uniless one is equipped
with the proper code that accommodates various field conditions and does so in an
efficient manner. Recognizing this point, FACT was developed to have not only the
essential modeling capabilities, but also some salient features that help facilitate its
practical use. An overview of these aspects of FACT are:
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FACT utilizes dynamic memory allocation features of Fortran 90 (allocate and
deallocate).

FACT can perform transient analyses or single step steady-state analyses of both
variably saturated isothermal groundwater flow and isothermal solute transport
problems. If the flow and transport problems are associated, a dual simulation can be
made by solving the problems concurrently or sequentially in a single computer run.

Many of the finite element formulations and nonlinear solution procedures in FACT
are based on state-of-the-art technology designed to accommodate a wide range of
field conditions including highly nonlinear moisture characteristics, material
heterogeneity and anisotropy, and rapidly fluctuating transient boundary conditions.

FACT uses highly efficient matrix generation and matrix solution techniques.
Elemental matrix generation is performed using analytical "influence matrix
coefficients" or computed using two-point Gauss-Legendre quadrature. Global matrix
solution is obtained with Pre-conditioned Conjugate Gradient-like (PCG) solvers (i.e.,
ICCG(0) for symmetric matrices and ORTHOMIN for asymmetric matrices). These
PCG solvers are designed to efficiently handle problems with a large number of nodal
unknowns (on the order of several thousand or more).

Several iteration strategies are available for solving the nonlinear flow equations.
These equations can be solved by Picard iteration, full Newton-Raphson iteration, or
modified Newton-Raphson iteration. Under-relaxation of the solution at each
iteration is also performed to enhance convergence.

For highly heterogeneous aquifers an option to incorporate some degree of upstream
weighting of the relative permeabilities is available.

The flow simulator of FACT can handle various boundary conditions (type 1, type 2,
and type 3) and physical processes including infiltration, well pumping, seepage
faces, and varying water table conditions. Temporal variations in head, mixture flow,
and recharge flux boundary conditions can be handled conveniently using either
Heaviside, linear or cubic spline representation of input data.

FACT handles variably saturated conditions by use of user specified soil-water
retention curves. The user supplies in tabular form for each soil: (1) water
saturation as a function of pressure head, and (2) relative permeability as a function
of water saturation.

The transport simulator of FACT is designed to handle both conservative and non-
conservative solutes. Its formulation is designed to have an upstream weighting
capability as an option to help circumvent numerical oscillations typically observed at
high cell Peclet numbers for centered differencing (recommended).

FACT handles linear homogeneous and heterogeneous solute reaction rates, such as
radioactive decay and linear sorption isotherms, respectively.

The transport simulator of FACT is designed to handle the isothermal transport of a
single solute through a variably saturated porous media using a single or dual domain
(porosity) formulation with mobile/immobile first-order mass transfer. Its current
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formulation does not account for potential interactions between multiple solutes (e.g.,
the impacts associated with mother-daughter radioactive chains).

1.2  Applicability of the Code

The FACT code has many practical applications. Typical examples include the
following:

s Ground-water resource evaluation - used to predict the response of a ground-water
basin to different schemes of well pumping and recharge operations. The program
computes spatial and temporal variations of piezometric head, groundwater flow
velocities, and flow rates.

s Assessment of well performance and pumping test analysis - used to analyze flow
in the vicinity of pumped wells, to predict well performance, and to prepare type
curves for evaluation of pumping test data.

e Ground-water contamination investigations - used to predict extent of
contaminant plumes and the rate of plume migration, to aid in the design of
ground-water quality monitoring programs, and to design and assess the
effectiveness of remedial schemes for ground-water contamination.

o Hazardous waste subsurface disposal - used to perform a risk analysis by
assessing ground-water flow and potential migration from a waste site, and used
to evaluate tracer test data.

e Regional aquifer studies - because of the special design feature of the FACT code,
it is ideally suited for use in studying large regional multi-aquifer systems.

1.3 Code User Requirements

In order to apply the FACT code effectively, the user will need:
a thorough understanding of hydrogeological principles
a basic understanding of finite element techniques

an awareness of the code’s capabilities and limitations

familiarity with the editor, operating system, and file handling concepts of the
computer system used.

It is also recommended that the user run some of the test problems provided to gain
confidence and understanding in using the code.

1.4 Computer Equipment Requirements

FACT is mostly written in ANSI Standard Fortran 77 with Fortran 90 features. The
Fortran 90 features include the use of modules, procedures and dynamic memory
allocation (allocate and deallocate). The binary Tecplot™ functions require a C compiler.

The source code was developed and tested on a Silicon Graphics Indigo2 workstation and
an IBM PC. FACT was compiled on the SGI workstation using f90 and cc under [RIX
6.5. FACT was ported without source changes to the IBM PC using Microsoft® Visual
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Studio” 97 as the development environment under Windows 95. The Fortran complier is
Digital™ Visual Fortran 5.0 and the C complier is Microsoft” Visual C++ 5.0.

All memory allocation is dynamic in FACT. There are fixed array sizes, such as the 8x8
elemental matrices, which do not depend on the size of the problem. Therefore memory
requirements depend mainly on whether the chosen problem and solution technique
(Picard versus Newton) yield a symmetric or non-symmetric matrix, the number of
nodes/elements, boundary conditions and number of observation nodes and/or well
groups.
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2  Governing Mathematical Models

T he FACT code can perform three-dimensional finite element simulations of water
flow and solute (contaminant) transport in variably saturated and fully saturated
porous media. The code employs state-of-the-art numerical technology to provide
efficient steady-state and transient solutions of practical problems encountered in the
assessment, mitigation, and remediation of soil and groundwater contamination due to the
disposal or accidental releases of chemicals and/or nuclear wastes. Due to the level of
implicitness employed in solving these equations, steady-state analyses can be performed
by disregarding all storage terms of the governing equations, thus avoiding the necessity
of time marching. Transient analyses are performed by time marching until the
prescribed number of time steps is reached. For water flow simulations, FACT can
handle a variety of boundary conditions including well pumping or injection, groundwater
recharge, leakage from seepage faces, homogeneous/heterogeneous aquifer and aquitard
units, and a variety of source bed types. For solute transport simulations, FACT accounts
for advection, hydrodynamic dispersion, equilibrium linear adsorption, mobile/immobile
first-order mass transfer, first-order reaction rates and radioactive decay. Single
component transport of conservative and non-conservative solutes can be treated.

FACT employs a right-handed Cartesian coordinate system (x,y,z) to generate a three-
dimensional rectangular grid for finite element analysis. The grid is oriented such that the
z-axis points in the vertical upward direction. In the areal extent the grid is confined to be
comprised of rectangular elements, while in the vertical direction distorted elements are
handled. Based upon the formulation chosen and accuracy considerations, the level of
vertical elemental distortion from a rectangular shape should be kept to a minimum. As a
general rule of thumb, the majority of elements within the domain should maintain their

vertical angles within the range 90°£10°. In the majority of practical situations, this
limitation on mesh distortion will not be reached.

2.1 Governing and Auxiliary Equations for Variably Saturated
Groundwater Flow

The governing equation for water flow in variably saturated soils (containing water and
air) can be obtained by combining a special form of Darcy’s law (derived from the water
phasic momentum balance) and the continuity equation written for the water phase.
Darcy’s law takes the form

U=—kkrw (Vp, +p.egV2) (2.1.1)

w

where k are components of the intrinsic permeability tensor, kyy is relative permeability
with respect to the water phase, pw and [, are density and dynamic viscosity of water, p,,
is the water pressure, g is the gravitational acceleration and z is the elevation above a
reference datum.
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(or sinks) per unit volume of the porous medium.

Substituting Eq. (2.1.2) into (2.1.1), we obtain

kk d
V- _p_w__rl(va +pwgVZ)] =_(pwem)"pwq
Hy ot

Equation (2.1.3) can be written in terms of a pressure head y, defined as

Y= (pw _pa)/pwg

as
h=y+z
Substitution of Eqgs. (2.1.4) and (2.1.5) into (2.1.3) results in

d
V. [Kkrwpth]za(pwem) —Pwq
where K is the saturated hydraulic conductivity tensor, defined as

K=p,gk/n,,

derivative in Eq. (2.1.6) yields

2 00 =Pude B+, R 44,5, Lo
The compressibility of the porous media is defined as
o= ad, _ oh d¢, __1 99,
opy dpy oh  pug oh
where the second term in Eq. (2.1.8) becomes
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The continuity equation for the mobile water phase is presented in the form
2
é;(pwﬂm)w-(pwU):pwq (2.1.2)

where 0, = ¢.S,, is the mobile water content, ¢, is the effective or kinematic porosity of

the soil medium, S,, is the water saturation and q is the volumetric flow rate via sources

(2.1.3)

(2.1.4)

where p, is pressure in the air phase, assumed to be constant and equal to the

atmospheric pressure. Instead, to eliminate the spatial derivative of the elevation in Eq.
(2.1.3), we choose to define Eq. (2.1.3) in terms of piezometric or hydraulic head defined

(2.1.5)

(2.1.6)

2.1.7)

The first term of the right-hand side of Eq. (2.1.6) can be restated in terms of hydraulic
head through the vse of additional constitutive assumptions. Expansion of the time

(2.1.8)

(2.1.9)

(2.1.10)
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To evaluate the temporal change in fluid density the compressibility of the fluid defined
as

1 dp, 1 ohdp, 1 9dp,

= TFw _ = 2.1.11
Pw dpw Pw 9py, dh pig oh ( :
is invoked to give

ap ap,, oh 2, oh
== 2.1.12
a  on ot oY (112

Substitution of Eq. (2.].10) and (2.1.12) into (2.1.8) yields
(pw m) = pw¢e By P wpwg(a+¢eB)— (2.1.13)

Combination of Eq. (2.1.6) and (2.1.13) and assuming that the gradient of the fluid
density is negligible, reduces the flow equation to

V-[Kk,,Vh]= ¢e w+s WS — oh —q (2.1.14)

St
where S, =p,g(a+0¢.p) is the coefficient of specific storage. Equation (2.1.14)

contains three unknowns: h, S, , and k., . Thus to solve it, we require two auxiliary

equations. These equations depend on the soil properties and may be written in
functional form as follows:

Sy =S, (¥) (2.1.15a)
Ky =K (Sy) (2.1.15b)

By neglecting hysteresis effects in the wetting and drying of seils, S,,, and k,,, may be
considered as single-valued functions. Differentiation of Eq. (2.1.15a) with respect to
time gives

aSw das,, 81|! dh _ C ch

2.1.16
3t  dy oh ot o, 3 (2.1.162)

where C is called the specific moisture capacity, defined as
C=0.(dS,, /dy) (2.1.16b)
Substitution of Eq. (2.1.16a) into (2.1.14) yields

v [k, Vh]= (C+SWSS)%—}:—q 2.1.17)

Equations (2.1.17), (2.1.15a), and (2.1.15b) form the required governing equation and
auxiliary equations for variably saturated flow problems. Because of the highly nonlinear
nature of the relations between relative permeability, water saturation, and pressure head,
the governing equation is highly nonlinear in the unsaturated zone.
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For a complete description of a particular flow situation, Eq. (2.1.17) must be
supplemented by the appropriate initial and boundary conditions. The initial conditions
are simply

h(x,0)=h,(x) (2.1.18a)
where hy is a prescribed function of x.

The boundary conditions take the form of either prescribed head or prescribed normal
flux, and these are given by

h(x,t)=h on B (2.1.18b)
-k.,KV¥h-n=q on B, (2.1.18c)

where h and q are prescribed functions of x and t, and n is the unit outward normal
vector on Bs.

In order to solve the variably saturated flow problem, it is also necessary to specify the
relationships of relative permeability versus water saturation, and water saturation versus
pressure head. Two alternative functional expressions are widely used to describe the
relationship of relative permeability versus water saturation. These functions are given by
{Brooks and Corey, 1966):

K =SQ (2.1.192)
and van Genuchten (1980):

y 2
Kew =4fSe 1—(1—35’) (2.1.19b)

where n and vy are empirical parameters and S, is the effective water saturation defined as

~Sw Swe (2.1.19¢)

S
1-S,,

with Sy, being referred to as the residual water saturation.
The relationship of pressure head versus water saturation is described by the following
function:

[ 1

for y<y,

¥
ﬂ (2.1.19d)

1 for y2wy,

-S
had Wr _ _
FECEE [1+[0&|\|1 v,

WI
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where o and B are empirical parameters, , is the air entry pressure head. The parameters

B and 7y are usually related by ¥ = 1-1/B. The van Genuchten functions for the relative
permeability and moisture retention characteristics can be measured in the laboratory for
a given soil. The second functional expressions are called pseudo soil functions. The
pseudo soil functions are used when the relative permeability and moisture retention
functions of a soil are unknown. The pseudo soil functions given below are also used
when the water table levels are desired but the moisture behavior in the unsaturated zone
is unimportant.

k.w =S, (2.1.20a)
max l+l S for y<0

S, (w)= Lo (2.1.200)
1 for y=20

where 1y, is the approximate ramp width. The actual ramp width is r, (1-S,,).

2.2 Governing and Auxiliary Equations for Variably Saturated
Solute Transport

The governing equation describing the transport of a particular species through a variably
saturated porous media is obtained by the formal integration (i.e., space and time
averaging over a small representative volume of the porous media) of that solute's local
and instantaneous phasic transport equation for each phase, k, contained within the
porous medium. Typically, this transport equation is referred to as the scalar advection-
dispersion transport equation. In this context each immiscible fluid represents a phase
and the solid is considered a separate phase. Typically, we are concerned with at most

three phases, which we shall denote as liquid (w), gas (g), and solid (s). For species "a
in phase k we can write the (after space/time averaging) transport equation as

—aa-{(akpkxa) +V- (o, ) = 0 np, + T +q(Prxa) (2.2.1)
where
Dy, = PyX U+ (2.2.2)
Ja =Pk Dia VX, (2.2.3)
and the terms of Eq. (2.2.1) are defined as
%(akpkxa) ........ accumutlation term,
V(@ng,) e total flux of species "a" within phase k with respect to a fixed

coordinate system,
Oly Ly coernerereennrens creation of species "a" by homogeneous reactions within phase k,
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| IR input of species "a" into phase k at interface by mass transfer and
heterogeneous reactions,
GUPKX, ) ceereeeeen. source of species "a" by injection or withdrawal.

In Eq. (2.2.1), oy is the volume fraction of phase k, py the phase density, x, the mass
fraction of species "a". In Eq. (2.2.2), uy is the phasic velocity. In Eq. (2.2.3), Dy, is
the hydrodynamic dispersion tensor with respect to phase k.

Equation (2.2.1) describes the transport of species "a" through a porous media under very
general conditions. In FACT, we shall consider the transport of species "a" limited to the
following assumptions:

"t

o We shall restrict ourselves to situations where the concentration level of species "a" is
sufficiently small (typically referred to then as a solute) to have negligible effect on
the liquid’s (typically referred to then as the solvent) mixture density.

e We limit ourselves to only binary dispersion. Only diffusive and dispersive effects
associated with a binary system have been considered. The molecular diffusion
coefficient requested as input represents the system’s binary mass diffusion
coefficient.

e In FACT, there are only three phases present: a gas phase (typically atmospheric air in
the subsurface), a liquid phase (typically groundwater), and a solid phase (typically
the soil).

e We shall restrict ourselves to the transport of a single solute that is dissolved in the
liquid phase. Therefore, potential interactions that might occur between multiple
transported solutes is not addressed.

¢ We shall assume that the solute does not exist in the gas phase and that the solute has
infinite diffusive capability within the solid phase (i.e., no concentration gradients of

non

species "a" within the solid phase).

* We will assume that the solid phase is stationary (v, =0) and that the liquid phase
compressibility to be negligible.

* No energy balance calculations are performed within FACT; therefore, the transport

"wn

of solute "a" is restricted to isothermal (or nearly isothermal) conditions.

Using the general balance given by Eq. (2.2.1), and employing the listed assumptions, we
can write out for each phase its species "a" continuity (mass) balance:

f—fluid balance (we shall use the symbol w)

w rwa

)
a’(awpwxa)*’ V-(pux,0,u,)=V- (O Dyapu Vxg) + ot (2.2.4)

+Ty +4(PyXy)”

s-solid balance (we shall use y, for solute "a" concentration in solid)
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d
g(aspsya) =0T, + I (2.2.5)
g-gas balance
0=0 (2.2.6)

A mass balance for solute "a" at the interface between the liquid and solid phases
becomes (where it is assumed that no heterogeneous reactions are occurring):

L, +T =R jegero =0 (2.2.7)
An overall mass balance for solute "a" is obtained by summing up Egs. (2.2.4), (2.2.5),

and applying the constraint in Eq. (2.2.7) to give

d
g(awpwxa + aspSYa) +V.- (pwxaawuw) =V. (awaapwVXa)"'awrwa (2.2.8)
*
+ 0Ly +q(pwxa)
Redefining some terms as

o, =0, (2.2.9a)

o, =1—¢ (2.2.9b)
U=a,u, (2.2.9¢)
D, =D,, (2.2.9d)

where U is the Darcy velocity for phase w and assuming that the only homogeneous
reaction taking place within each phase is the radioactive decay of solute "a" (i.e., first
order reaction rates)

fyg == F AP WX, (2.2.10a)
Ta =—APsYa (2.2.10b)

where A, first-order reaction rate for the mobile phase and A, is the decay constant and is
defined in terms of the half-life t;/; as

A, =(ln 2)/t1/2 (2.2.10c)
we substitute Egs. (2.2.9)-(2.2.10) into Eq. (2.2.8) to obtain

d
9 1— cHV-(cU)=V-(8_D_Vc)—0_A
= [brmc+(1-0)p T} V- (cU) = V(8D V) —8yhine (2.2.11)

A fpc+1-0pc g

Qererneernenneraeeeneens volumetric flow source per unit volume of porous medium,
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C=PyXy corveererenns solute "a" conc. in w-phase, mass of "a" per unit volume of w-
phase,

[ solute "a" concentration in s-phase, mass of "a" per unit mass of s-
phase,

F e evaluated within source/sink flow term.

Equation (2.2.11) contains the two unknown concentrations, ¢ and €. Therefore, some
auxiliary equations are required to relate these two variables. We shall constrain these
concentrations through a commonly used empirical relationship for the absorption of
solute "a", the Freundlich equilibrium (sorption) isotherm

y.ﬁlf»(xa)%n or E=pwkd(xa)%“ (2.2.12a)

If m =1 then the expression becomes the linear equilibrium sorption isotherm used by
FACT

c=kye (2.2.12b)
where kg is the distribution coefficient.

For the following derivations we shall assume that Eq. (2.2.12b) applies. Substituting Eq.
(2.2.12b) into Eq. (2.2.11) yields

%(Bch) +V-(cU)=V-(DVc)-6_RA,c-0 A c+qc’ (2.2.13)

where R=1+(1-¢)p,ky/0, is the retardation coefficient and D=0_D_ is the

apparent hydrodynamic dispersion tensor. In an open laminar flow field the spreading of
a solute from the path determined by advection (e.g., along its streamline) is the result of
molecular diffusion. In a porous media an additional process referred to as mechanical
dispersion (or hydraulic dispersion) occurs and may become dominant. The sum of the
two processes, molecular diffusion and mechanical dispersion, is called hydrodynamic
dispersion.

Molecular diffusion is caused by the thermal-kinetic energy (i.e., Brownian motion of
particles) of the solute molecules within the flowing solvent mixture and is dependent on
local solute concentration gradients. This diffusion process is independent of fluid
velocity and is important only in areas of low fluid (phasic) velocity. For a binary

mixture the microscopic process of molecular diffusion results in the molecular diffusion
flux

ok

s =-D,,Vc (2.2.14a)

known as Fick’s first law of diffusion (Bird, et. al. (1960)). The molecular diffusion
coefficient is a scalar that is a function of local fluid properties.

In a porous media as the interstitial velocity (also referred to as phasic, average pore,
average linear, or seepage velocity) increases mechanical dispersion becomes dominant.
At the macroscopic level, mechanical dispersion is caused entirely by the motion of the
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fluid about the solid substrate. Dispersion is a process whereby mixing occurs due to
differing interstitial velocities at the pore level:

e Velocity profiles within pore channels exist across adjacent solid particles.
¢ Neighboring pore channel bulk velocities differ due to pore sizes.

¢ Complex pathways due to tortuosity, branching, and inter-fingering of pore channels.

The spreading of a solute in the direction of bulk flow is known as longitudinal
dispersion; while, spreading in directions perpendicular to the bulk flow is called
transverse dispersion. Typically, longitudinal dispersion is much stronger than transverse
dispersion. At the aquifer level, further dispersive effects can occur due to aquifer
heterogeneity. Overall, mechanical dispersion is dependent on interstitial velocity and in
general is a tensor quantity for an aquifer unit. Bear (1972) and Freeze and Cherry (1979)
provide additional descriptions of hydrodynamic dispersion.

The functional form for the overall dispersion tensor that is in general use is that for an
isotropic porous media that is also isotropic with respect to dispersivity. For a binary
mixture the overall process of mechanical dispersion plus molecular diffusion results in
the dispersive flux

j,=-DVc (2.2.14b)

where the functional form for the overall dispersion tensor becomes velocity dependent.

The following is a simple derivation (see Scheidegger, 1961) for the mechanical
dispersion tensor in two dimensions that can be extended to the general three dimensional
case. For the case of a three dimensional isotropic medium, the mechanical dispersion
tensor takes the following form when orientated along the principle axes of dispersion:

o lUl o 0
0 opfU] O for 3D
py L 0 0 oqfU |
o[ 0 for 2D (22.15)
L 0 OtT|U] )

If one assumes that the principle axes of dispersion coincide locally with the velocity
field, then in 2D the coordinate transformation becomes the rotation operator

cos® sinB
R= . (2.2.16a)
—sin® cosB
where
U
c0s8=S% and sinf=—Y (2.2.16b)

Ul U]
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and the above refer to Darcy velocity components.

We can obtain the local mechanical dispersion tensor from the principle axes tensor, Eq.
(2.2.15), by the coordinate tensor transformation

DM =RTDYR (2.2.17)
Substituting in the rotation operator and its direction cosine definition, results in

2
pM -y °r 7 | ezan)) Ux Uil (22.18)
0 o o] v, Ul

The extension to 3D is straight forward given the 3D rotation operator. Note that the 3D
rotation operator can be generated by three sequential 2D orthogonal operations

and when applied to Eq. (2.2.17) results in the general expression

UU;
| (2.2.20)

g
where o, and arr are longitudinal and transverse dispersivities, respectively, and &;; is the
Kronecker delta.

) L D?j" = aT|U|Sij +(ot —Oy)

The apparent molecular diffusion coefficient for an unsaturated media takes the form
D’ =(0,,1)D" (2.2.21)

where D* is the bulk molecular diffusion coefficient and 7 is the tortuosity through the .
unsaturated porous media. Milllington and Quirk (1961) provide an expression for
evaluating T given by

10 g 71
S0 =05,)* ¢ =21=(5,)° 0’ (2.2.22)

Collecting terms, the overall (“hydrodynamic™) dispersion tensor for an isotropic porous
media that is also isotropic with respect to dispersivity becomes (i.e., the sum of the
mechanical and molecular contributions)

* U.U.
D— Dij =D+ Dil}d = (OLT|U‘ +0,1D )Sij +(op _O‘T)# (2.2.23)

v

In deriving Eq. (2.2.23) the porous media was assumed to be isotropic (in addition to the
assumption of isotropic dispersion). The correct form for anisotropic systems (see Bear
and Bachmat, 1986) unfortunately requires five independent dispersivities, which may be
difficult to obtain in most field situations. In many situations the model domain will
consist of many aquifer units layered one on top of the other. To account for this limited
type of anisotropic porous media (e.g., vertically stratified porous media), and in the
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absence of any clear alternatives, Burnett and Frind (1987) suggest a slightly modified
form of the conventional dispersion tensor that at least allows the use of two transverse
dispersivities, a transverse horizontal dispersivity oy and a transverse vertical
dispersivity orv. We further modify this dispersion tensor by defining two longitudinal
dispersivities, a longitudinal horizontal dispersivity oy and a longitudinal vertical
dispersivity arv. The above approximations for the hydrodynamic dispersion tensor
components become:

. U2 Uf, U?
Dy =0,TD +0ly y T2+ Oty 7= + Oy = (2.2.24a)
U U
2 2
U? U U
Dy =0, +0tpy T2+ 0y T+ Oy 75
vy m TH U LH Ul ™V U (2.2.24b)
. U2 U; u2
D,, =0,TD +opy —+0py 7 +H0Ly (2.2.24c)
Ul U
U, U,
D,, =Dy, = (0t g —0Oy) U| (2.2.24d)
. u,U
Dy, =Dy =@ —agy) );J - (2.2.24¢)
i u,u,
Dy, =D,y =(Gy —0ry) U (2.2.24f)
where gy = HHTOLY (2.2.24g)

2

and z is the index for the vertical direction. Note that Egs. (2.2.24a) to (2.2.24f) collapse
back to Eq. (2.2.23) when

O g =0y =0 and Oty =0y =01 (2.2.24h)

Also note that Egs. (2.2.24a) to (2.2.24f) assume isotropic dispersion. The current
version of FACT does not account for anisotropic dispersion. Anisotropic dispersion
would result in dispersivities that were dependent upon the angle between the velocity
vector and the principle axes of the aniostropic media.

For the linear isotherm approximation (m=1), Eq. (2.2.12b), the "effective" retardation
coefficient is defined as

R o1+ 0790k ;1 , PoKg (2.2.25)
B, Om
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where the bulk density of the solid, py,, is defined as (1-¢)p,. When solving retardation
problems, care should be taken in applying appropriate (consistent) concentration and
adsorption units.

Equation (2.2.13) is in conservative form and the non-conservative form is considered to
be more convenient for finite element discretization. To accomplish the transformation,
use is made of the flow (mixture mass balance) equation, Eq. (2.1.2) in its incompressible
form:

¥y
- ot

Substituting Eq. (2.2.26) into (2.2.13), with expanded advective and mass accumulation
terms, yields

=-V.U+q (2.2.26)

dc  do d a0
RE+eLm 0% 0.k )+U-Ve—elom 4 gc =
Om o +°at(p" a)+U-Ve-c o e (2.2.27

V-(DVc)-0,RA c—0_ A c+qc

-Assuming that the time derivative of pykgy is negligible, Eq. (2.2.27) reduces to
BmR(% +A )+ U-Ve=V-(DVc)-0_ A c~q(c—c") (2.2.28)

which is the equation used in FACT.

In obtaining the solution of the solute transport equation, one must specify as an initial
condition the concentration distribution at some initial time, say t = 0, at all points in the
flow domain. In addition, boundary conditions must also be specified at all times. The
types of boundary conditions of practical interest include the conditions of prescribed
concentration and prescribed material flux. The initial and boundary conditions
associated with Eq. (2.2.28) are as follows:

Initial condition c(x,0) = cp(x) (2.2.29a)
Dirichlet c(x,t) = € on boundary portion B] (2.2.29b)
Neumann n-DVc = j on boundary portion B (2.2.29¢)
Cauchy n-(DVc—cU) =N, on boundary portion B, (2.2.294d)

where B is the portion of the boundary where concentration is prescribed as €, and B,
and B are portions of the boundary where the dispersive and the total solute mass fluxes
are prescribed as j, and N, respectively. Note that incoming is positive by convention.
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2.3 Governing Equations for Variably Saturated Mobile/
Immobile Solute Transport

Accurately simulating macrodispersion in field-scale solute transport applications is a
challenge. Explicitly modeling the smaller scale heterogeneities that cause
macrodispersion is often not practical due to computer and/or data limitations. A
common alternative is to employ a second-order (Fickian) dispersion term in the solute
transport formulation to deal with heterogeneity at a sub-grid level, as shown in the
previous section {e.g. Eq. (2.2.28)). With the proper selection of dispersitivies, bulk
aspects of plume behavior can often be adequately simulated. However, this
conventional advection-dispersion formulation exhibits well-known deficiencies such as
excessive upstream dispersion and the absence of heavy-tailing in simulated plumes.
These deficiencies become more pronounced with increasing natural heterogeneity.

Recent studies suggest that the mobile-immobile concept of solute transport is a more
effective alternative for dealing with heterogeneity at the sub-grid level, especially for
highly heterogeneous applications (Harvey and Gorelick, 2000; see also Nkedi-Kizza et
al., 1983 and Van Genuchten, 1976). The mobile-immobile formulation, also referred to
as a ‘dual-domain’ or ‘dual-porosity’, ts particularly effective at describing the extensive
tailing typically observed in the field and laboratory column experiments. With this
approach, the subsurface is divided into ‘mobile’ and ‘immobile’ regions corresponding
to relatively high (e.g. sand) and low (e.g. clay, silt) conductivity regions, respectively.
Only mobile groundwater advects across computational cells, while intra-cell solute mass
transfer occurs between the mobile and immobile regions.

In this section we present the mobile-immobile water phase model and derive our specific
implementation of this model for incorporating it into the FACT code.

2.3.1 Background

The following is a derivation of the implementation within FACT of the mobile-
immobile water-phase solute transport model. A listing of the assumptions comprising
this conceptual model is provided in Bear and Bachmat (1991). Our conceptual model is
shown in Fig. 2.3.1. We consider the general case of a mobile and immobile water phase
system within an unsaturated zone in the soil. We model the spatial transport of a dilute
contaminant (solute species) in the mobile water phase by advection, dispersion, and
diffusion. The immobile water phase does not transport solute spatially; instead, the
immobile phase acts as a storage tank either supplying or receiving solute (ie.,
source/sink) to or from the neighboring mobile water phase. Solid surface adsorption
based on a linear adsorption isotherm model is used to account for water-solid reactions.
Also, distributed first-order decay reactions can occur in both the mobile and immobile
water phases.

Interfacial mass transfer of solute between the mobile and immobile water phases is
handled through a linear film model where the mass transfer rate is proportional to the

¥ T

I N ]
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solute concentration difference between the two water phases. The fluid mixture density
is assumed to be constant, while the solid matrix is assumed to be rigid and stationary.

In Fig. 2.3.1, the mobile water phase is considered to be a continuous phase, while the
immobile water phase is modeled as a discrete phase. Consider for purposes of the
derivations to follow that the domain shown in Fig. 2.3.1 represents one finite element
within the elemental mesh where immobile water exists. Figure 2.3.1 represents a plan
view of this particular element (e).

L 4
advection & dispersion
>
surface kq mobile water
adsorption

phase {(m)

hase

solid phase £
.y

~

~ (s} _

. -
~ -

S surface
adsorption

kg

gas
immobile water phase

phase (i)

o

mass
transfer
¢ 9

Fig. 2.3.1. Schematic Illustrating the Various Processes Addressed in the Variably
Saturated Mobile/Immobile Transport Model at the Element Level

Algorithmically, the existence of the immobile water phase is established on an elemental
basis. Through input the user specifies which of the finite elements are to have an
immobile water phase in addition to the mobile phase. The properties associated with the
immobile water phase are considered to be constant within the domain of a finite element.
Since spatial transport of the solute through the immobile phase is prohibited, then the
specified elements having immobile water can be placed at any location within the finite
element mesh (i.e., no spatial continuity requirements are placed on their locations).

2.3.2 Parameter Definitions

The variably saturated mobile-immobile water phase transport model increases the

number of modeling input parameters. Below a definition of these additional parameters
is provided.
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The mobile-immobile transport model also conforms to and encompasses what is
typically called a dual porosity domain model in the MT3DMS transport code (see Zheng,
C., and P. P, Wang, 1998). Some of the key processes being modeled are shown in the
schematic provided in Figure 2.3.1. Material properties are defined on an elemental basis
and generally these properties are specified as elemental (centroidal) averaged values.

As shown in Figure 2.3.1, a specified fraction of the solid phase surface, f, is in direct
contact with the mobile water phase. The remaining surface area is in direct contact with
the immobile water phase. Adsorption is assumed to take place on the entire surface of
the solid material, since this surface is assumed to be in contact with water everywhere.
The parameters f and (1-f} define the fractional amount of available adsorption sites that
are in contact with the mobile and immobile water phases, respectively. To limit the
number of input parameters necessary, we shall assume that the same fractions represent
the corresponding fractions of the solid mass that interacts with the two apparent water
phases. This last assumption may under certain conditions be a limiting choice and the
user should be aware of such limitations. This parameter is defined as:

f=Yom _ Asm _ A5~ Asim @3.1)
V. A A
where
|/ volume of solid phase that is associated with mobile water phase.
| /N volume of solid phase.
Ay i interfacial surface area between solid phase and mobile phase.
Agn oo interfacial surface area between solid phase and immobile phase.
Ag e surface area of solid phase.

In the mobile-immobile conceptual model several fluid phases exist. Specifically, there
exists a mobile water phase, an immobile water phase, and a gas phase (predominantly
containing air), which occupy, together, the entire void space. To describe the size (i.e.,
volumetric magnitude) of these fluid phases in unsaturated media the following two
definitions are employed:

V(I

Yo g<e, <o, 29a=¢, (2.3.2)

0 .
o Ve

ll

which is called the fluid content (and moisture content for the particular case of water),
and

o 2
S(l = _v N 0 = S(I = 1, SC(. —1 (233)

which is called the fluid saturation (or volumetric saturation). The above two definitions
are related to each other by

0, =0S, (2.3.4)
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and ¢ is the total porosity within the element defined as
V. V.-V,
p=—X=—_5  0<¢<1 (2.3.5)
V. V.
where
Vg corrrreieenseeronens volume of o-fluid in element.
Vi s volume of voids in element.
Ve v volume of element.
/OO volume of solid phase contained within element.

In both definitions, the sum is over all the fluid phases present in the void space.
Typically, an interfacial area (i.e., surface) is formed where one fluid phase is in contact
with another phase (e.g., a liquid immiscible with the first, a gas, or a solid). Here, we
also define an interface between the mobile and immobile water phases; even though,
these two water phases are traditionally miscible. From a mass transfer perspective these
two water domains behave differently.

The above definitions can also be applied to the total water present (i.e., both mobile and
immobile water) as:

Vo +V, \/
0=06,+0;, =—2—IM and S, =S +S,, =Yt Vim (2.3.6)
[ v
where
Vi ceorrrmenenieannn volume of mobile water phase contained within element.
Vi cereererrennensnnnens volume of immobile water phase contained within element.

The fraction of water residing within the mobile phase is defined as:
=% _Sum_Vm_  Vm
g S Vo VatVin

2.3.7)

w

What is typically referred to as an “effective” (or kinematic) porosity is equivalent to a
mobile-phase porosity when under saturated conditions:

Oy = 0Dy (2.3.8)

The above definition of a mobile-phase porosity is also used under variably saturated
conditions where now this porosity becomes a function of local water saturation.

In terms of the above definitions the mobile and immobile water phase moisture contents
become, respectively:

B =D0S,, and 6, =(1-D)0S,, (2.3.9)

In general, the fraction of water contained within the mobile water phase will vary (e.g.,
proportionally more of the water resides within the immobile water phase as the residual
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water saturation is approached). To provide the user flexibility, the following linear
functional form for the mobile water fraction is required as input:

o for 0<85,, £8S,,

min
®= Mj‘ (Dsat_q)min)+(p

I_Swr min

for S, <S, <1 (2.3.10)

where a constant mobile water fraction is obtained by setting the minimum and saturated
values equal.

These porosities, moisture contents, and water saturations represent elemental averages.

2.3.3 Mobile-Solid Governing Equation for Transport

The conservative form of the solute mass balance for the mobile water-phase is

d
E(Bmcm)-i-ﬁm(?«., +A)e, +V-(Uc, )=V - (DVe )+,

(2.3.10)
—ouc,, —Cypy ) +qc”
where

Cppy erermresererennennnnes solute concentration in the mobile phase, ML

i weeerrmerersnenmsnnenen solute concentration in the immobile phase, ML

Ch e solute concentration entering the domain through sources or
leaving the domain through sinks, ML

D=0,Dg, .. apparent dispersion tensor for mobile phase, L’r!

(1 [PPOROPORRO volumetric flowrate per unit volume of aquifer representing fluid
sources (positive) and sinks (negative) in the mobile phase, T!

U e soil moisture flux in the mobile phase, LT

[+ ST mass transfer coefficient, T~

mass transfer rate from solid surface to mobile water phase,
MLT™!

Ay coovvesmennnssnesennas first-order reaction rate for the mobile phase, T~

Ap i solute radioactive decay constant, T

O i mobile water content, 33

The conservative form of the solute mass balance for the solid surface that is in direct
contact with the mobile water-phase is expressed as

%{m —¢)psym}+f A=A PsYm =T (2.3.11)

where
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O fraction of the solid surfaces in contact with the mobile phase,
L2
Vg oeeemerereeenenesenns solute solid-phase mass fraction on surface in contact with the
mobile water-phase, MM ™!
) ORI total porosity, 550 D
o solid phase density, ML

By adding Eqs. (2.3.10) and (2.3.11) together we obtain the conservative form of the
“composite” solute mass balance for the mobile water-phase plus solid phase as

0
5{ [Bmcm +f({1- ¢‘)pSYm ]+ A'r [emcm +f(1- q))pSYm ]+ \& (Ucm) = 2.3.12)
+V-(DVe)— 6 Anc,, — 0(Cy —Cipy )+
The mobile-phase linear equilibrium sorption isotherm and retardation coefficient are,
respectively

Ym =kg¢, and R, — 14 100pkg ) fPoky (2.3.13)

m Om

Substituting Eqs. (2.2.26) and (2.3.13) into (2.3.12), with expanded advective and mass
accumulation terms, yields

dc 29 d g0
o R _LEm, e Pm o gk }+U-Ve. —c. 2om =
mRm ==t Om =3 Cm 5 (fPka) m = Cm =3~ 4% (2.3.14)

V- (DVe,)—0nRpAc —0pAnCm — Q(Cy —Cim ) +GC"
Assuming that the time derivative of fp k4 is negligible, Eq. (2.3.14) reduces to

OmR m+7\.c +U-Ve, =V-(DVc )-0, A ¢,
( m) Cm =V )= (2.3.15)

—0(Cp, —Cip) —q(ey —¢™)
which is the mobile-solid governing equation for transport in FACT.

In obtaining the solution of the mobile-phase solute transport equation, one must specify
initial mobile-phase concentrations at all nodes in the flow demain. In addition, boundary
conditions must also be specified at all times. The initial and boundary conditions
associated with Eq. (2.3.15) are given in Egs. (2.2.29a) to (2.2.29d).

2.3.4 Immobile-Solid Governing Equation for Transport

The conservative form of the solute mass balance for the immobile water-phase is

éa“t'(@imcim) +0;m A, + A Yeim =T — (¢ = Cipy) (2.3.16)
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where
| (P OOUIO mass transfer rate from solid surface to immobile water phase,
ML T
Ry «oeerereeerrannernnens first-order reaction rate for the immobile phase, T
B oo immobile water content, |94 D

The conservative form of the solute mass balance for the solid surface that is in direct
contact with the immobile water-phase is expressed as

%{1 - f)(l - ¢)pSYim }+ (1 - f)(l - q));\'rPSYim = _rsi (23 17)

Vi ceeeereeeereesneenrens solute solid-phase mass fraction on surface in contact with the
immobile water-phase, MML

By adding Eqgs. (2.3.16) and (2.3.17) together we obtain the conservative form of the
“‘composite” solute mass balance for the immobile water-phase plus solid phase as

%[eimcim + A=D1 OPYim A BinCim + A~ A= 0P,y I=

C"'(Cm ~—Cim ) - 9im?\'imcim

(2.3.18)

The immobile-phase linear equilibrium sorption isotherm and retardation coefficient are,
respectively

1 U-DA-dpkg _, d-Fppky

eim im

Yim =KdCim and Ry, = (2.3.19)

Substituting Egs. {2.3.19) into (2.3.18), with expanded mass accumulation term, yields
i, ¢ Bim +Cim%[(l _f)pbkd]:

moa ™ 5
o{Cpy, —Cim ) — 9imRimA'rcim - eimlimcim

O (2.3.20)

Assuming that the time derivative of (1-f)pyky is negligible and steady-state immobile
flow 98, /dt =0, Eq. (2.3.20) reduces to

BimRim (ag%+ ACim) = 0(Cr —Cim) —BimAimCim (2.3.21)

which is the immobile-solid governing equation for transport in FACT.

In obtaining the solution of the immobile-phase solute transport equation, one must
specify initial immobile-phase concentrations at all nodes in the flow domain.
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2.4 Assumptions of Flow and Transport Models

FACT contains both groundwater flow and single-species solute transport models.

Major assumptions of the flow model are as follows:

Darcy’s law is valid and hydraulic head gradients are the only significant driving force
for fluid motion.

Water is the only flowing fluid phase (i.e., the air phase is assumed to be inactive).
The fluid is considered to be slightly compressible and homogeneous.

The soil or rock medium may be represented by a single continuum porous medium of
spatially invariant properties.

The porosity and saturated hydraulic conductivity are constant with time.

Gradients of fluid density, viscosity, and temperature do not affect the velocity
distribution.

Major assumptions of the solute transport model are as follows:

Fluid properties are independent of concentrations of contaminants.

Injected solutes (contaminants) are miscible with flowing fluid.

Interactions between solutes are negligible.

Variations in fluid properties are negligible over expected temperature range.

Diffusive/dispersive transport in the porous medium system is governed by Fick’s
law. The hydrodynamic dispersion coefficient is defined as the sum of the
coefficients of mechanical dispersion and molecular diffusion. The medium
dispersivity is assumed to correspond to that of an isotropic medium, where o and

o are the longitudinal and transverse dispersivities, respectively.

Adsorption and decay of the solute may be described by a linear equilibrium isotherm
and a first-order decay constant, respectively.

2.5 Limitations

The major limitations of FACT include:

The code is tailored to isothermal unsaturated and fully saturated porous medium
systems (solves the Richard’s equation). Flow and transport in fractured systems are
not taken into account.

In performing a variably saturated flow analysis, the code handles only single-phase
flow of the liquid (i.e., water) and ignores the flow effects from other potential phases
(i.e., air or other non-aqueous phases) which, in some instances, can be significant.

Non-Darcy flow that may occur near pumping wells is neglected.

The code simulates single-component transport only, and does not take into account
decay chain reactions.
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e In performing a solute transport analysis, the code does not take into account
variations in mixture fluid density associated with changes in solute concentration.

e The code does not take into account non-linear adsorption, non-linear biodegradation,
or kinetic sorption effects which, in some instances, may be important.

2.6 Input Data

Data required for the groundwater flow simulation include values of the saturated
hydraulic conductivity and specific storage of each aquifer and aquitard material, the
geometry and configuration of the flow region, as well as, initial and boundary conditions
associated with the flow equation. For unconfined aquifers, it is also necessary to know
specific yield and aquifer base elevation.

Data required for the simulation of solute transport include values of (longitudinal-
horizontal, longitudinal-vertical, transverse-horizontal, and transverse-vertical)
dispersivities, molecular diffusion, total porosity, retardation and decay constants, values
of Darcy velocity components, as well as, initial and boundary conditions associated with
the transport equation.

2.6.1 Input Data for Flow Problems

Input data of the flow model include the following:

(1) System Geometry
e Horizontal and vertical dimensions including hydrostratigraphic layering

L)
(2) Porous Medium Properties (Hydraulic properties of soil)
e Saturated hydraulic conductivity component, K,, (L/T)
» Saturated hydraulic conductivity component, K, (L/T)

e Saturated hydraulic conductivity component, K, (L/T)
e Saturated hydraulic conductivity component, K, (L/T)
e Saturated hydraulic conductivity component, K, (L/T)
e Saturated hydraulic conductivity component, K, (L/T)
* Specific storage, S, (L

o Effective or kinematic porosity, ¢,

(3) Constitutive Relationships for Variably Saturated Flow
e Spline multiplier of water saturation versus pressure head
e Spline index of water saturation versus pressure head
e Spline multiplier of relative permeability versus water saturation
¢ Spline index of relative permeability versus water saturation

{(4) Initial Conditions
o Initial values of hydraulic head
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(5) Boundary Conditions

Specified head nodes

Specified mixture flow nodes
Recirculation wells
Pumping/injection wells
Head-dependent source beds
Vertical head-dependent line sources
Recharge/drain combination
Groundwater recharge

2.6.2 Input Data for Solute Transport Problems

Input data of the solute transport model include the following:

(1) System Geomqtry

e Horizontal and vertical dimensions including hydrostratigraphic layering

L)

(2) Soil-solute Transport Properties

¢ Distribution coefficient for linear adsorption, k, (L°M)

e Particle mass density, p,, (L’M™”)

» Total porosity, ¢

e Longitudinal horizontal dispersivity, o ;, (L)

¢ Longitudinal vertical dispersivity, oy, (L)

¢ Transverse horizontal dispersivity, iy, (L)

¢ Transverse vertical dispersivity, oty , (L)

e Apparent molecular diffusion coefficient, Dy, L Th

¢ Solute decay coefficient, A, (Th

» First-order reaction rate for the mobile phase, A, (ThH

¢ Minimum fraction of mobile water, @,
¢ Maximum (saturated) fraction of mobile water, @,

Fraction of adsorption sites in contact with mobile phase, f

*  First-order reaction rate for the immobile phase, A, , (T")

* Spline muitiplier of mass transfer coefficient between mobile and
immobile water, o, (T™)

¢ Spline index of mass transfer coefficient between mobile and immobile
water

(3) Water saturation and Darcy velocity components
¢ S,.U,,U,and U,(LT")

(4) Initial Conditions
* Initial values of mobile and/or immobile concentrations, c,, (x,0),c, (x,0)
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(5) Boundary Conditions

Specified concentration nodes
Specified mass flow nodes
Recirculation wells
Pumping/injection wells
Recharge/drain combination
Groundwater recharge
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3 Numerical Solution Techniques

n this chapter, numerical techniques for approximating the variably saturated flow

equation and the non-conservative solute transport equation are described. The flow
equation is treated using the traditional Bubnov-Galerkin finite element method resulting
in a set of ordinary differential equations (ODEs). This set of ODEs is finite differenced
in time generating a set of algebraic equations (AEs). In general the resulting set of AEs
are non-linear and this non-linearity is treated using either the Picard method or Newton-
Raphson iterative technique. At each iteration a set of AEs are solved (i.e., the Picard
scheme produces a symmetrical set of AEs while the Newton-Raphson technique
produces an asymmetrical set of AESs).

The solute (contaminant) transport equation (sometimes referred to as the advection-
dispersion transport equation) is treated using a modified Petrov-Galerkin finite element
method. This modified Petrov-Galerkin approach is based on an upstream-weighting of
the total flux (i.e., dispersive and advective fluxes) designed to circumvent numerical
oscillations characteristic at high cell Peclet numbers when the traditional Bubnov-
Galerkin finite element method is employed (Huyakorn et al., 1977, 1979). Our current
transport model is limited to first order homogeneous (e.g., radioactive decay) and
heterogeneous (e.g., a linear sorption isotherm) reaction rates resulting in a set of linear
ODEs. This set of ODEs is finite differenced in time generating a set of linear AEs that
are asymmetric due to the advection terms.

For both flow and transport problems, spatial discretization is performed using
rectangular or distorted brick elements. Element matrices are computed using highly
efficient influence coefficient matrix formulas (Huyakorn et al., 1986, 1987) or two-point
Gauss-Legendre quadrature. For the fully three-dimensional analysis, the resulting matrix
equations are solved efficiently using Preconditioned Conjugate Gradient (PCG)
algorithms designed to accommodate a large number of nodal unknowns.

3.1 Numerical Techniques for Variably Saturated Flow

Numerical approximations of the groundwater flow equations describing fully 3-D
problems are obtained using the Galerkin finite element technique. In the Galerkin finite
element approximation procedure, the flow region is first discretized into a network of
finite elements, and an interpolating trial function is used to represent the unknown
dependent variable (hydraulic head) over the discretized region. An integral
approximation of the flow equation is then obtained using the Galerkin weighted residual
criterion.  Spatial integration is performed piecewise over each element. Upon
assemblage of the elements and incorporation of boundary conditions, a system of nodal
equations is obtained. For a steady-state simulation, these nodal equations are algebraic
equations. For a transient simulation, the nodal equations are first-order in time ordinary
differential equations (and possibly nonlinear) that are integrated using a finite difference
approximation. For each time step, this gives rise to a system of algebraic nodal equations
that are solved using an iterative matrix solution procedure.
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3.1.1 Galerkin Formulation

Equation (2.1.17) is solved employing the Galerkin finite element method. In the
_ Galerkin procedure, the hydraulic head function is approximated as a finite linear
combination of trial (basis) functions of the form

np
h(x, )= @;(X)h;(V G3.1.1.1)

J=1

where @;(x) are basis functions, hy(t) are nodal values of hydraulic head at time t,

respectively, and np is the number of nodes in the finite element network. Applying the
Galerkin criterion to (2.1.17) yields

J (pIV-(Kkerh)dQ=j(pl{(C+SwSS)gt—h—q}dQ, for I=12,...,np (3.1.1.2)
Q Q

Since we shall choose C; continucus basis functions, ¢;, the integral on the LHS is

evaluated by applying the divergence theorem (actually, Green’s first identity, the
multidimensional equivalent of integration by parts) to obtain

jcp,V (KK, Vh)dQ = J'V - (9Kk ., Vh)dQ — jw, (K, Vh)dQ
Q Q 1§
=I¢Ikmn-(KVh)dc~JV¢l-(Kkerh)dQ (3.1.1.3)
c Q
= —I@I (ﬂ'U)dO‘—JV(pI - (Kk,, Vh)dQ
(o] Q

where £ is the solution domain with boundary o, and the Darcy velocity vector is
expressed as U=-Kk ., Vh.

Substituting Eqgs. (3.1.1.1) and (3.1.1.3) into (3.1.1.2) gives the expression

np np

} : dh
J(C+SWSS)(PI(deQ th"f‘ E jV(pI ‘Kker(deQ hJ
Q 1=l |Q

J=1 (3.1.1.4)

- I‘qudﬂ - J-‘PlUndO' =0
Q o

where the outward normal component of the Darcy velocity vector is U, =-n-U.

Equation (3.1.1.4) can be written more concisely as

BU—&MAUh,—FI:o, 1=12,...,np (3.1.1.5)
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where

Ay = j Vo, -k KVgdQ (3.1.1.62)

Q
By = I(C-!-SWSS)(pl(deQ (3.1.1.6b)

£2
K =J(plqu+J(plUnd0' (3.1.1.6¢)

Q 4]

The set of time-dependent non-linear ordinary differential equations defined by Eq
(3.1.1.5) can also be presented in its equivalent vector form as

Bﬁ+Ah—F:O (3.1.1.7)
dt
where

B .t Storage (capacitance) matrix

A Seepage (conductance) matrix

F o RHS forcing function vector

ho. o Total "hydraulic” head vector

| ST Time

Equation (3.1.1.7) represents the standard Galerkin approximation to Eq. (2.1.17) and
sometimes is referred to as the Galerkin Weak Statement to Eq. (2.1.17). Note that the
RHS forcing function contains both a volume integral, as well as a surface integral. Upon
assemblage of the elemental contributions to establish the global equation set, surface
integral contributions for internal surfaces of elements cancel out. What remains of these
surface integrals corresponds to those elemental surfaces residing on the exterior surface
of the model domain. Also note that once the contributions from the volume and surface
integrals have been allocated out to their appropriate nodes, their original source (either
volume or surface) is indistinguishable when viewed from the nodal level. How we
handle the forcing function volume and surfaces integrals may appear very similar in the
sections to follow; however, the reader should keep the subtle differences in mind.

The sign convention for U, is the same as for q. That is, U, is positive for inward flow
and negative for outward flow. F; represents all sources, sinks and other boundary
conditions. The global coefficient matrices Aj;, Bjj, and F; are assembled as a sum of the
element matrices for a general 8 noded orthogonal curvilinear element. Influence
coefficient techniques presented by Huyakorn et al. (1984) and Huyakorn el al. (1986) for
linear basis functions along the coordinate axis, can be effectively used for assembling
slightly distorted 8 noded prism elements. Since FACT allows for element distortion in
the z-direction, the 2-point Gauss-Lengendre quadrature option is recommended for
integration of the elemental matrices. The seepage (conductance) coefficients provide the
appropriate connectivity for flow between nodes of the element. The finite element
structure of 27-points has a full nearest-neighbor connectivity. The influence coefficients
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for the 27-point lattice connectivity are provided by Huyakorn et al. (1986, 1987). A fully
lumped mass matrix is used for the 27-point lattice connectivity.

3.1.2 Eight-noded Constrained Trilinear Hexahedron Element

m

5 >3
z(§) |
6 7
] H
yn) P
-~ /
~ |
X(£) 2 3

Fig. 3.1.1. Eight-noded constrained trilinear hexahedron element showing node
numbering and local and global coordinate systems.

Consider two coordinate systems, a local (§,n,5) system and a global Cartesian system
(x,y,z) that are colinear. Three-dimensional rectangular prism or constrained hexahedron
elements in (X,y,z) are mapped into cubes in local coordinates. The x-y coordinates are
assumed to be orthogonal while distortion of the brick element is allowed in the z-
direction. Furthermore, let the cube in (§n,0) be such that its corners are located at
E=+1, n==1, and {==%1. The relationship between global and local coordinates can

be established by intreducing a general expression of the form

8 8 8
xzzq’ixi’ Y:Z(Pi)’i, and ZZZ‘PiZi (3.1.2.1)
i=1 j=]

i=1

where @; are the basis functions for this trilinear isoparametric element, given in a local
coordinate system, as

& =-;-(1+§&.i A+ + L8 (3.12.2)

and x;, y;, and z; are global coordinates in X, y, and z.

The gradient of the basis (shape) function is
%(1 +nn)(1+E8)
Ve, = 38—‘(1+&&i)(1+cci) (3.1.2.3)

%(1+§§i)(1+'fmi)

L -
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with nodal parameters
él T; (;1
-1]-1]-1
1|-1]-1
1 1|-~1
(3.1.2.4)

o0 =~ N L bW N =] =
|
—
—_
I
—_

-1} 1

The gradient of the basis function evaluated at the element centroid is

Ve, (0)= n (3.1.2.5)

3.1.3 Numerical Integration

Before interpreting the first order differential terms in Eq. (3.1.1.6a) the procedures used
for integration will be outlined.

Consider a general form of Eq. (3.1.1.3) in terms of global coordinates,

‘” G(x,y,z)dxdydz (3.1.3.1)
Q

For an element this can be written, in terms of normalized curvilinear (local) coordinates,
+1 p4l o+l
J | J ! .[ L OI|dEdndg (3.1.32)

where ]J| is the determinant of the Jacobian coordinate transformation matrix. Eq.
(3.1.3.2) can be integrated using two different integration techniques in FACT.

The first integration scheme is the method of “influence coefficient matrices” developed
by Huyakorn et al. (1986) to avoid costly numerical integration. In this technique the
constrained hexahedron element is transformed to a rectangular prism element by
arithmetically averaging the z coordinates for the top and bottom face of the constrained
hexahedron element. For a rectangular prism element and constant material properties
within an element, the integrand in Eq. (3.1.3.2) for the element seepage and storage
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matrix can be integrated analytically. For example, the integrand G for the element
seepage matrix is

G= Gij = V(piK'V(pj (3.1.3.3)
where
Ko permeability tensor
TR R local node numbers, 1< (i, ) <8

For illustration, let us assume that the permeability tensor is diagonal. Equation (3.1.3.3)
becomes

99

do. 0. do. Ky 0 sz?g.

% an 9 0 O Kjj aan% (3.1.3.4)
|t
a(p, a(PJ , 00, 99; ., dg, a(P;
+ Ko el + Ky —
oe e TP an Pag o

Substituting Eq. (3.1.3.4) into (3.1.3.2) yields

+1 e+ e+ 3. AP p " "20.2
sl [ S e
+@%MJE$$@W

where ( ) implies the property is constant within the element. For a rectangular prism

element the determinant of the Jacobian is a constant, simply the volume ratio of the
element and the computational cube.

Each triple integral in Eq. (3.1.3.5) represents an 8 x 8 “influence coefficient matrix”
which can be integrated analytically. In FACT, the “influence coefficient matrices” are
stored in static 8 x 8 arrays requiring only the material properties and determinant of the
Jacobian to be computed for each element to complete element integrals.

The second numerical integration procedure available in FACT is where the sampling
points are the Gauss points. In particular the two-point Gauss-Legendre quadrature in
each dimension is used leading to a high accuracy. The Gauss-Legendre quadrature rule
leads 1o an equation of the form

+1 p4l e+ 8
[ ] cenopismna= 6@ tomdiGon.g) 6136
144 d4 =

where
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Koo number of the Gauss point

E\Mi>Cx --o.. abscissa of the k™ Gauss point

Wi cereeennecnanns weight of the k™ Gauss point

With two sampling points a polynomial of degree three could be evaluated exactly. In
practice, the integrand of the element seepage matrix is a polynomial of degree greater
than three, thereby, requiring more than two gauss points in each direction. For practical
purposes, two Gauss points was deemed adequate.

abscissas and weights is tabulated in Table 3.1.1.

The values of Gauss-Lengendre

Table 3.1.1 Gauss-Legendre Abscissas and Weights

k] & Mk Ck | Wk
1| -1/V31-1/J3|-1/43]10
2 [+1/\B | -1/3 [ -1/3 |10
3(+1/43[+1/V3|-1/¥3 |10
4|1/ +/B-1/43]10
5| -1/\3|-1/B | +1/43 |10
6| +1/\3|-1/v3 | +1/43]|10
71 +/3[+1/V3 | +1/43 ] 10
8 | -1/3 | +1/\B3|+1/\3 |10

3.1.4 Transformations for First Order Terms

If a local coordinate system is to be used then it is necessary to transform derivatives in
global coordinates to local coordinates. This is achieved through the use of the chain rule

of partial differentiation which leads to

Jp; _ 0p; 9x _ 0g; Iy | 9g; 0z

ot 9x oF 9y 9 oz ok
09; _ d9; ax+a(Pi a_y+a(Pi 9z

on  dx dn dy dn dz dn

oQ; _ 09; 90X _ 09; dy _Jg; 9z

A ox of dy 3 oz o

which maybe be re-written in matrix form as

(3.1.4.1a)

(3.1.4.1b)

(3.1.4.1c)
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99i| |9 9y 0zi[ag;] (Jg]
of of dE dE || 9x ox
oP; 9x dy oz ||9deg, o,

=l — = —R—li=J—> 3.14.2)
on{ |(dn on odn|| dy dy
9¢i| | dy 9z |1dg| |9

la¢ ) ¢ a¢ ac|loz) Loz)

Multiplying both sides of Eq. (3.1.4.2) by the inverse of J, we get the global variation in
the basis functions as

V.0 =TV, (3.1.4.3)

where J is the Jacobian matrix. Differentiation of Egs. (3.1.2.1) with respect to the local
coordinates reveals that J can be easily evaluated numerically from the relationship

2 9% 2 aq;, Z atp.

Xe Yeg Zg
" 30, a(p 8<p
J= —Lx, Ly, —tz, |=|Xq ¥Yn Z (3.14.4)
an 1 an an n n n
Xg Yo g

2 99; 2 8<p, 2 Btp,

For the special case (used by FACT) of the trilinear isoparamctric element distorted only
in the z-direction we have

X]=X4=X5=Xg (3.1.4.53)
X7 =X3=Xg =Xq (3.1.4.5b)
Y1=Y2=¥5=Ys (3.14.50)
Y3=Y4=Y1=Ys (3.1.4.5d)

1 1
=7 0n ad z =Zzzi (IM) (3.1.4.5¢)

where (IM) and (GL) refer to “influence matrix” and Gauss-Legendre numerical
quadrature, respectively. The Jacobian after substitution of Egs. (3.1.2.3) and (3.1.4.5)
into (3.1.4.4) becomes

J=| 0 yq zy (3.1.4.6)
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Xz =(xa—x1)/2=4/2 (3.1.4.7a)

Yq=(y3-¥1)/2=m/2 (3.1.4.7b)

2z =0, z,=0, zr=(z-27,)/2=H/2 (IM) (3.1.4.7c)

8 8 8
99 d9, 0
zgzzltgzi, Zfzgzi, zczzi-zi (GL)  (3.1.4.7d)

i=]
The local derivatives of z in Eq. (3.1.4.7d) are evaluated at the Gauss points.

The determinant of the Jacobian matrix is
|J] = XgYnZt (3.1.4.8)

The inverse of the Jacobian can be found by using standard matrix inversion techniques
as
| |In%e 0 —ynZe
I = 0 xgzp —Xgzy (3.1.4.9)

) |']| 0 0 Xg¥n

The transpose of the inverse of the Jacobian is
N YnZt 0 0
~¥nZg TXgZn XgYy
In addition to transforming the derivative from (x,y,z) to (§,n,5), the differential volume
must be changed using the relation

dQ = dxdydz = |J|d&dnd¢ (3.1.4.11)

3.1.5 Flow Equation Element Matrix Computation

The element matrices Ajj, Bj, and RHS vector F; resulting from the Galerkin
approximation to the variably saturated flow equation are computed using influence
matrices or Gauss-Legendre quadrature.

3.1.5.1 Element Seepage (Conductance) Matrix

From Eq. (3.1.1.6a) the expression for the element seepage coefficient matrix is obtained
as

Ay = IVX¢1 ke KV, 9;dQ, (3.1.5.1)
QX
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where the components of the saturated hydraulic conductivity tensor K are specified with
respect to the global coordinate system. Transforming the seepage matrix, A;;, from a
global to local coordinate system, yields

. A. = .Vx‘-pi kerVx(deQx
Q,
= .(J_]V&.(Pi )T Ky JTKeJ (]—1V§¢j)J|ng (3.1.5.2)

Qe

= ] (Feo T kK Veojajac
3

which implies that Ajj is invariant with respect to coordinate transformation. K, is the
saturated conductivity tensor in the local coordinate system.

In the general case the principal axes of a material (i.e., subsurface porous media) will
vary with location

KT 0 0
K"=| 0 K& o0 (3.1.5.3)
0 o0 K&

where the subscript m implies a material and its principal axes directions. To estimate
local saturated conductivity tensor values for a given material based on the material’s
principal coordinate axes (i.€., Xy, ¥Ym, Zm), @ coordinate transformation rule for a second
rank cartesian tensor must be applied. Converting a given material saturated conductivity
tensor into a tensor based on the local coordinate system becomes:

K=(ijerJm (3.1.5.4)

where J™ represents the Jacobian between the material’s principal axes and the global
coordinate system.

To illustrate how Eq. (3.1.5.4) might be used, we shall limit ourselves to where only a
transformation of rotations within the areal plane (i.e., rotation about the z axis) is
allowed. Thus, our vertical components z and z,, are assume to be parallel and stationary.
Basically we obtain the tensors

K% 0 0 K, K

0 Kpy 0 |=3|K, Ky

0 0 KZ 0 0 K,

xy 0
0 (3.1.5.5)
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where the symmetric property of the saturated conductivity tensor has been incorporated.
We obtain the above result by a rotation about the z axis from our material-to-model
coordinate system transformation given the expression

K =R(6)' K™R(B) (3.1.5.6a)
cos@ sin® O

where R(@)={-sin® cos® 0 (3.1.5.6b)
0 0 1

and O represents a counter-clockwise rotation from the material-to-model coordinate
system.

In many situations a good approximation can be made where it is assumed that a
material’s principal axes are invariant. Under such conditions it is possible to align the
global coordinate system parallel to the material’s principal axes resulting in the off-
diagonal components of the saturated conductivity tensor becoming zero

Ko O O
K=| 0 K, 0 (3.15.7)
0 0 K,

(e.g., the typical case where the x and y directions are parallel to the plane of stratification
while the z direction is normal to this stratification plane).

K, can now be determined from K using the coordinate transformation rule for a second
rank Cartesian tensor based on the elemental Jacobian matrix by

K=J'KJ = ng(]T)_]KJ“I:(J_l)TKJ“' (3.1.5.8)

In general, the saturated hydraulic conductivity tensor, K, in the local coordinate is not
known. To evaluate the element seepage matrix, we express the global gradients of the
shape functions in the local coordinate system and leave the saturated hydraulic tensor in
the global coordinate system. The resulting integral for the element seepage matrix
becomes

T
Ay = H.rlv,;(pij .ka[J_]V(g(pj JJ[dQg

2
+H ptl ot T
=J'1 J': J.](J_IV;:(pi] -ker(J_lvg(pj)ﬂdﬁdndC

To alleviate numerical difficulties which manifest themselves as oscillations in the
vacinity of sharp fronts (for example, the water table), “upstream weighting” of the
relative permeability is available as an option in FACT. The product k. K in Eq.

(3.1.5.9)

(3.1.5.9) with no upstream weighting of the relative permeability is evaluated as
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Kxx ny sz

knK=(kn ) Ky Ky Ky, (3.1.5.10)
Ky, Kyz Kz

and with upstream weighting of the relative permeability as
(kK (kn)Kyy  (Kny)Ko
KewK =| (K )Kyy (K2 )Kyy (K )K s (3.15.11)
(krw>sz (krw)Kyz (kl%\V)KZZ
where

(Kew)= D GOk 5 (v ))=%ka(sw (w) (3.1.5.12a)

i=l

(k?w)=iw?krw Gulwi) d=x,y.2 (3.1.5.12b)

i=]

Influence Coefficient Matrices

The gradient of the shape function in global coordinates and the determinant of the
Jacobian in Eq. (3.1.5.9) for the rectangular prism element are, respectively

% o 00 S

0
Voo =l 0 2 o 99/ |= 200 29¢ 299, 3.1.5.1
J Ve I |77 moam ma| O

0 O %{ acpiac
|J|=% (3.1.5.14)

Substituting Eqs. (3.1.5.13) and (3.1.5.14) into Eq. (3.1.5.9) and expanding yields the
expression for the element seepage coefficient matrix as

mH fH fm
A; =2—£(ka“ AT +—2?n—(keryy)Agy +ﬁ(kerzz)A;‘jz
(3.1.5.15)

H

¢
+?(kaXy)A;}y +%(k,,wsz)A;jz +

Z yz

: (kK y, AT

where the quantities in angle brackets correspond to values of the hydraulic properties of
the elements in Eqgs. (3.1.5.11) or (3.1.5.12); Ai’J‘-", A%y, Aizjz, Ai’?’ , Ai’jz, andA%fZ are
influence coefficient matrices with matrix elements computed as



WESTINGHOUSE SAVANNAH RIVER COMPANY Manual:  WSRC-TR-99-00282
Section: 3, Rev. 0
Date: 3/2000
FACT CODE MANUAL Page: 13 of 108
a1l p+l pt+l
AT =) ] ] @i (3.1.5.16a)
p+1 s+l p+]
A =] |, | 9in®indbdndd (3.1.5.16b)
, o+1 ptl ptl
Af=] ] ) 9iceicdeindg (3.1.5.16¢)
X o] a1 o+l
Aj' = L _]%Pi,E_,(pj,n +(Pi,n€0j,¢}i§d'ﬂdC (3.1.5.16d)
2 o+l pt+l ptl
Ay = L L _I{Pi,E_,(Pj,g"‘(Pi,g(Pj,g}i&dTldC (3.1.5.16¢)
. r+1 atl ptl
Ai? = .y _1{(Pi,n(Pj,z; +€Pi,g¢j,n}1§dﬂdc (3.1.5.16f)
where
Pig =00; /05, @i =00;/0m, @ =03;/35 (3.1.5.16g)

Substituting the expressions for the derivatives of the basis functions from Eqgs. (3.1.2.3)
into Eqs. (3.1.5.16) and performing the triple integration for each matrix element yields:

22 i [2qYY yy
AY = & 2 and AY =1 22 2 (3.1.5.17a,b)
| a* | 2a™ | 2% | 227
[ 22 7z [ Xy xy—
zz _ 1 a -—a xy 1 2a a
A 18 L__azz azz:| and A 3 W (3.1.5.17¢,d)
il I i yz | ayz]
xZ_1 a yz_ 1 a a
A% = GI:_ﬁxz _axz] and A’ = 6{?‘? (3.1.5.17¢,f)
where
2 =2 -1 1 2 1 -1 =2
-2 2 1 -1 1 2 -2 -
a® = a” = (3.1.5.18a.b)
-1 1 2 =2 -1 =2 )
1 -1 =2 2 -2 =1 1 2
4 2 1 2 1 0 -1 0
2 4 2 1 0 -1 0 1
a% = Q¥ — (3.15.18¢.d)
1 2 4 2 -1 0 1 O
2 1 2 4 0 1 0 -1
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(2 0 o0 1] (0 -2 -1 0]
g -2 -1 0 . 2 ] 0 1

a*t = aY = (3.1.5.18¢,1)
0 -1 -2 0 1 0 0 2
1 0 g 2 0 -1 -2 0
(2 1 0 o0 (0 0 -1 -2]
1 2 0 0 g 0 -2 -1

a¥* = a¥l= (3.1.5.18g,h)
0 0 -2 -1 i 2 0 0
0 0 -1 -2 2 1 0 0

Note that each influence coefficient matrix is an 8 x 8 matrix partitioned into four (4 x 4)
submatrices and that these integrals have been verified by evaluation of each using
Mathematica™. As can be seen submatrices of any individual influence matrix differ
from one another by a constant multiple. Furthermore, the submatrices are easy to
evaluate and require virtually no computational effort.

Two-point Gauss-Legendre Quadrature

For the constrained (z distorted) hexahedron element, the element seepage integral cannot
be solved analytically since the Jacobian is spatially varying. Since the integrand varies
from -1 to +1 in each direction we can employ a two-point Gauss-Legendre integration.
The element seepage matrix is computed as

1 o+l o+l T
Ajj =J: J: J: (J_IVg%J -ka[J"'V;’(pj ]Jld&dndt‘;

8 T (3.1.5.19)
=2(ngg¢i) ka[J'glvgcpj}vg|Jg'
g=1
where
- SR number of the Gauss point
Vg ................. local gradient operator evaluated at the g"‘ Gauss point
J ;1 ................ inverse Jacobian matrix evaluated at the g™ Gauss point
L R weight of the g™ Gauss point

3.1.5.2 Element Storage (Capacitance) Matrix

From Eq. (3.1.1.6b) the expression for the element storage coefficient matrix is obtained
as

By = I(C+Sst biod2, (3.1.5.20)
ge
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where C is the specific moisture capacity, S is the water saturation and S; is the specific
storage. Transforming the storage matrix, Bj;, from global to local coordinate system and
substituting the following equations

< > %2 ({ds ] Pz(d:wl (3.1521a)

i=1 i=1

SS; =(S,S;) =8 Zcp,(o)sw(q;,)—-—zsw(w, (3.1.5.21b)

yields
<¢c£+s S >MJ (3.1.5.22)
dy
where

+1 1 o+l
My=], _[ ] J-:(PiijJ |dE&dndg (3.1.5.23)
is the mass matrix. In the FACT code, for numerical considerations the mass matrix M is

lumped by adding all elements in each row of M and putting the sum on the diagonal.
The mass matrix M is then replaced by the lumped influence matrix defined by

8
_ Z.Mii 1= (3.1.5.24)
J=
0 i%j

where

8 1 et el
Y M, =J»1 J': rlcpi|J|d§dnd§ (3.1.5.25)
p R

The lumped storage matrix, B, used by FACT can now be written as
<<I>e 2y ¥ 1SS )ML (3.1.5.26)

The diagonal nature of the lumped storage matrix resembles the stencils employed by
finite difference and finite volume techniques for their temporal terms.

Influence Coefficient Matrix

Substituting the expression for the basis function from Eq. (3.1.2.2) into (3.1.5.25) and
performing the triple integration for each influence matrix element yields
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fmH
Mj =228, (3.1.5.27)
8

where &;; is the kronecker delta function.

Two-point Gauss-Legendre Quadrature

For the constrained (z distorted) hexahedron element, the lumped element storage integral
can be solved analytically since the integrand is a polynomial. Since the integrand varies
from ~1 to +1 in each direction we can employ a two-point Gauss-Legendre integration.
The element mass matrix is computed as

8
M;; =Z<Pik5ijwk|Jk| (3.1.5.28)
k=1
where
(p}‘ .................. shape function evaluated at the k™ Gauss point

3.1.5.3 RHS Forcing Function Vector

Next, we deal with the boundary integral term of the right-hand side vector in Egq.
(3.1.1.6c). For the case in which a certain boundary portion (say, the bottom rectangular
face 1-2-3-4) corresponds to the flux boundary, the boundary flux term exists, and the last
term in Eq. (3.1.1.6¢) can be written as

1 pt+I
F, = I¢iUnd° =|J|f: EPaUndédn (3.1.5.29)
o

Assume that Uy, varies linearly over the face:

4
m 1 p+l
B, =TZ{{J: J:tpi(deédn}Unj (3.1.5.30)
J:

where Uy, Uy, Ups, and Upy are the values of Uy, at nodes 1, 2, 3 and 4, respectively. As
before, it can be shown that the integral above becomes the influence matrix M. Thus,

4 2 1 2fu,
2 4 2 1|u

= fmiL n2 (3.1.5.31)
4 9|1 2 4 2|uU,
21 2 4|u,

If the normal component of the Darcy velocity is assumed to be constant over the face of
the element, then lumping of the influence matrix in Eq. (3.1.5.31) occurs to give the
form of the flux boundary vector as
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1 0 0 OfU,
. (gm 010 0]U,
f= =
4 o o1 o|u
n3 (3.1.5.32)
000 1|U,

{
=(Tm1Unl Un2 Un3 Un4:|’r
/

In a traditional finite element formulation, the user would specify the normal components
of the Darcy velocity along some boundary of the solution domain and then assemble the

global RHS vector F as
4
F = ZZM;}fUm- (3.1.5.33)
ef j=Il

where Mgf and |J efl is the mass matrix and determinant of the Jacobian for a given

element face, respectively

1 pt+l
M =J.: J:cpifpjl-lefldidn (3.1.5.34)

The FACT code requires the user to generate the global RHS vector in Eq. (3.1.5.32) and
to input the volumetric flows, F;, at each required global boundary node. A
recommendation would be to return to the traditional finite formulation of specifying the
normal component of the Darcy velocity to avoid confusion.

Finally, if point sinks or sources are present in the flow region, the sink or source term in
Eq. (3.1.1.6¢) depends on the type of sink or source function. For the case involving
point sources and sinks, the general expression for q is

q=q.3(x—xg) (3.1.5.35)
where
L ¥ TN location of point source/sink _
o J elemental volumetric flow rate at source/sink per unit volume

When Eq. (3.1.5.35) is used, the elemental source (or sink) term in Eq. (3.1.1.6c)
becomes

Fse; = I‘Pi‘]sa("_xﬁ)ige = QR 0; (E[i) (3.1.5.36)
Q

e

o, (Eﬁ) ............ basis function at node i evaluated at EB
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QB -rerenereenes volume flowrate contribution at node i in element e from point

sink/source located at EB

If the point source (or sink) is at a given node, then only that node has a contribution. Let
the node number where the point source exists be denoted as ig* (a global index) (and i*
the local index). If we evaluate Eq. (3.1.5.36) for each element within the mesh (note that
only those elements in contact with this global node contribute and only one non-zero
contribution results from the elemental matrices) and assemble the global source/sink
term matrix, we obtain for an elemental vector the members

e Qi i=i"
E = , forelemente (3.1.5.37)
‘ 0 i#i
and for the overall global (point source/sink) vector
T
F, =[QB1 Qﬁ.-g QBnp] (3.1.5.38)
where
QBig' ............. total volumetric flow rate at global node ig* for point source/sink

Thus, as expressed by Eq. (3.1.5.38), the global source/sink term vector has members that
are non-zero only for those nodes containing a point source/sink.

For the case involving distributed volume sinks (e.g. the case of water uptake by plant
roots), q is a continuous function that can be represented using linear interpolation
functions as

q=Z(ijJ' (3.1.5.39)
i
The integral term in Eq. (3.1.5.36) can be evaluated as

K, = I‘Piqdﬂ = Z{E J:IJ:ZIWPJ-IJ IdﬁdndC}q i (3.1.5.40)
Q i

As before, it can be shown that the triple integral above becomes the mass matrix M.
Thus,

E, =2Miij (3.1.541)
]

If we assume q to be a constant over the domain then

1 o+ ot
F,={ > Mj q={£ J: J:(piﬁ,-j|J|d§dT]d§}q =Mkq (3.15.42)
j
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Equation (3.1.5.42) can be integrated using influence matrix coefficients or two-point
Gauss-Legendre quadrature to obtain

_ fmH

F =——358;q (IM) (3.1.5.43a)

5

8
F, ={2¢§‘8ijwk|J kl}q (GL) (3.1.5.43b)
k=1

The FACT code does not internally support distributed volume sinks. The user must
perform the necessary quadratures outside the code and allocate the computed volumetric
flowrates to the global nodes.

3.1.6 Line Source/Sink within 3D Element

If distributed sources/sinks are present in the flow region, the source/sink term in Eq.
(3.1.1.6¢) depends on the type of source/sink applied. Above point sources/sinks were
addressed. Here distributed sources/sinks are addressed. FACT currently only handles
line sources/sinks of the following two types: (1) flux specified line strengths that are
ultimately allocated to individual nodes and appear as a line of point sources/sinks (looks
similar to type 2 BC’) and (2) head-dependent line strengths that are a function of a
specified flow resistance and external hydraulic head (looks similar to type 3 BC’s). Each
of these cases is discussed in the following two sections. The second type of line
source/sink is restricted to a vertical orientation and to extraction only from an aquifer
unit. Type 1, 2, and 3 BC’s are commonly referred to as Dirichlet, Neumann, and
Cauchy BC’s, respectively.

3.1.6.1 Flux Specified Line Source within 3D Element

For the case involving a "vertical” line source/sink where the line strength is specified
directly, the general expression for q becomes (horizontal line sources/sinks are handled
in an identical manner and are not presented below):

q=qp8(x~xp,y-yp) (3.1.6.1)
where
(XB, yB) .......... areal location where vertical line source is applied
TR volumetric flow rate per unit length (line strength)

In FACT this type of line source/sink is not handled automatically; but rather, indirectly
through user input of a series of point sources/sinks that lie along the line source/sink.
The user (external to FACT) must allocate the appropriate amount of the line source/sink
(i.e., flow rate) consistent with their assumptions as to how the line strength varies over
the line source/sink (typically assumed to be uniformly distributed) and mesh spacing.
Line source/sinks involve two or more point sources/sinks. For the examples to be
presented below we shall always assume that the source strength is uniform over each
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active portion of its line segment (note that a line segment corresponds to an edge of an
element).

Instead of taking the approach of generating the general expressions for the source/sink
term, we shall focus on particular examples that can be easily extended to the more
arbitrary cases. In this example we shall focus on a single rectangular prism element
where a vertical line source is applied to one of its vertical edges (active over its entire
length) as illustrated in Fig. 3.1.2.

8
A 5@ P 7
I
|
5 ; <
| 6
"vertical" /A |
line
source/sink |
H
s
s
P!
&

\V_
1 7
Fig. 3.1.2, 3-D Rectangular Prism Element with Vertical Line Source Along its Line

Segment between Nodes 1 and 5.

Assume a line source (or sink) with a specified source strength (assumed to be uniform
over the line segment) from node number 1 to node 5. Then, Eq. (3.1.6.1) applies over
the vertical heights zy <z<zs (if the line source/sink partially extended into this

element, then the limits of integration would reflect this). When Eq. (3.1.6.1) is used, the
source (or sink) term for node 1 in Eq. (3.1.1.6¢) becomes

E = _[tplqdﬂe = _[(plqgﬁ(x—x],y—yl)dﬂ"
QF Q (3.1.6.2)
25 H ]
=qp (Pla(x—xl’Y“Y])iZ:% B} Eﬁ(&l:ﬂp@dC
Zl -

Integration of Eq. (3.1.6.2) can be performed once the basis function for node 1 is
evaluated at the local point (¢;,m, )={~1,~1) from Eq. (3.1.2.2)

01102 @IR)-)=30-0) (.163

Performing the integration for node 1 and a similar integration for node 5 yields
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H Q

F, =F =—2_~F (3.1.6.4)
s 22

where Q, is the total volumetric flow of the source/sink over this element height, H, and
contained within this element. In the global sense, when there are up to four neighboring
elements having a common edge, Eq. (3.1.6.2) still applies where the node numbers
become the global node numbers and the source strength is the total source strength.

Application of the above example, given by Eq. (3.1.6.2), to multiple elements (or other
directions) is straightforward. The following is an example where a vertical line source
extends over two neighboring elements (e.g., a partially screened well within an aquifer
unit whose active portion extends over two elements entirely) as illustrated in Fig. 3.1.3.

Assume the node numbers presented represent global node numbers, and based upon
application of Eq. (3.1.6.2) for each line segment, we can compute the source/sink term
contributions for global nodes 1, 2, and 3. Note that we are assuming that the source
strength is uniform over both line segments (of varying lengths)

P _x+Q
H,+H, H;+H,

qp = (3.1.6.5)

where Q; =H;qg is the total volumetric flow rate of the line source/sink contained within

the ith line segment (element height). Based on these definitions the source term
contributions become:

H, ]
H,+H, +
K, =[—2 ap R 2Q2 (3.1.6.6b)
g
E, =[72 ap =%2— (3.1.6.6¢)

It is seen that for a uniform line source the source is distributed to each global node based
upon the distribution of line segment lengths.
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. ‘@ vertical well - B (XB,YB )

Y partially screened
l‘\3
AH 1
2
Y 2
I_Il
Y 1
| 0
» "
ny)
Fig. 3.1.3. Example of Vertical Line Source (specified strength) Extending over Two

Elements.

In the above examples we have limited ourselves to vertical line sources/sinks of uniform
strengths that extend over the entire length of those elements containing them. For more
general applications, Eq. (3.1.6.2) will have to be cast into the direction of interest and the
appropriate basis functions and source/sink functions must be chosen. Upon substitution,
-integration of Eq. (3.1.6.2) for the rectangular pristn or constrained hexahedron element
will establish the appropriate allocation of flow rate among the various nodes.

At this point we shall generate more general expressions for the vertical (or horizontal)
source/sink term where the active portion of the line source/sink does not extend the
entire length of the element edge. We shall focus on a single rectangular prism element
where a vertical line source is applied to one of its vertical edges as illustrated in Fig.
3.14.

Again, assume a line source (or sink) with a specified source strength (assumed to be
uniform over the active portion of the line segment and zero outside this portion) from
node number 1 to node 5. Then, Eq. (3.1.6.1) applies over the vertical heights z, <z < Zs
(due to zero contributions outside the active portion, the limits of integration reduce to
zg =z<z1). When Eq. (3.1.6.1) is used, the source (or sink) terms for nodes 1 and 5 in
Eq. (3.1.1.6¢) become

K, = %l:%]f:% (gﬁ,ﬂﬁ,g)ic (3.1.6.7a)
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H T
K, =qﬁ[5]_[; 05 (&.g,nﬁ,c)dq (3.1.6.7b)
B
8
A 5@ o 7
|
|
5 ¢ : ,
Active portion 4 ! 6
of "vertical" T?
line
source/sink
H
”
¢ s
B )
ey

Fig. 3.14. 3-D Rectangular Prism Element with Vertical Line Source along a Portion
of its Line Segment between Nodes 1 and 5.

where the normalized limits of integration are

Cp = Q[ZT;Zl ]_1
Cp =2[ZBI;ZI:|—I

and the source strength is uniform over the active portion of the line segment (zero
outside it)

where H=1z5-z, (3.1.6.8)

Qp

ZT—ZB

qp = (3.1.6.9)

Integration of Egs. (3.1.6.7) can be performed once the basis functions for nodes 1 and 3
are evaluated at the local point (E-'B’T]B ): (-1,-1) from Eq. (3.1.2.2)

cpl(-l,-l,c)=g(z)(le—c)%a—c) (3.1.6.100)

o5 (- 1,—1,:;):%(2)(2)(”@):%(1+c) (3.1.6.10b)

Performing the integrations for nodes 1 and 5 yield
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Hq

E = —£ [ (e CB)——(CT CB)} (3.1.6.11a)

E, = [ (e (CT CB)] (3.1.6.11b)

In the global sense, when there are up to four neighboring elements having a common
edge, Eqs. (3.1.6.11) still apply where the node numbers become the global node numbers
and the source strength is the total source strength.

Application of the above example, given by Egs. (3.1.6.11), to multiple elements (or
other directions) is straightforward. The following is an example where a vertical line
source extends over one element and into its nearest neighboring elements as illustrated
in Fig. 3.1.5 (i.e., the entire active portion of the line source/sink is within the range
g <z= Zr )

vertlcal well - B(x B,Y )
A &2)

partially screene

»

ny)

Fig. 3.1.5. Example of Vertical Line Source (specified strength) extending into Three
Rectanguiar Prism Elements.

Assume the node numbers presented represent global node numbers and based upon
application of Eq. (3.1.6.11) for each line segment we can compute the source/sink term
contributions for giobal nodes I, 2, 3, and 4. Note that we are assuming that the source
strength (volumetric flow rate per active length of source within a given element) may
differ between each elemental line segment but is uniform over each active portion within
that line segment. The source term contributions become:
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H 1 1
F, = 12‘I1 [E(I_QB)_Z@_L;%)] (3.1.6.12a)
H,q, Hyqil 1 2
=—=2e (1= +~1l- 3.1.6.12b
, =122 B 2 o) (- 63) (.1.6.120)
Hpqy  Hiqz| 1 1(2 }
i\ VAN bt .14 et +1)—-—5 -1 3.1.6.12c
H ] !
E, = 32q3 [E(CT +l)+Z(C% _1)] (3.1.6.12d)

For the case where the active portions say extend half way into line segments 1 and 3,
g =Cr =0, and the source strength is uniform over all three line segments, Eqgs.

{3.1.6.12) reduce to

F, =%[quﬂ] (3.1.6.13a)
E, =%[H2qﬂ]+%[ﬂlqﬁ] (3.1.6.13b)
F,, =%[H2q[3]+%[1-13q3] (3.1.6.13¢)
E, :%[ sap) (3.1.6.13d)

A more general application of the above example would be the positioning of the vertical
line source not coincident with a set of areal nodes, but internal to a set of vertically
stacked elements. At this point we shall generate these more general expressions
focusing first on a single rectangular prism element where a vertical line source is applied
(limited) to the internal areal region of an element as illustrated in Fig. 3.1.6. Application
of these equations can be easily extended to the multiple element case. As discussed in a
later section, these equations for an arbitrary located vertical line source (flux specified)
have been automated within the FACT code as an input option.
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Active portion of "vertical”
line source/sink located areally

at (Xgyp)

1

Fig. 3.1.6. 3-D Rectangular Prism Element with Vertical Line Source along a Portion
of its Line Segment between Nodes 1 and 5.

Again, assume a line source (or sink) with a specified source strength (assumed to be
uniform over the active portion of the line segment and zero outside this portion) is
located arbitrarily within a specified rectangular prism element at the areal point (x,,y,).
Then, Eg. (3.1.6.1) applies over the vertical heights zg <z<zy. When Eq. (3.1.6.1) is
used, the source (or sink) term for the i™ node in Eq. (3.1.1.6c) becomes

F: = J(piqedge = J.(pinS(X—XB,y—Yﬂ)er
o

96
He (3.1.6.14a)
ZT T
= qﬁj (Pia(x —Xp.y~ YB)iZ = QB L F O; (ﬁg,ﬂﬁ,‘:h(‘;
Zp 2 [y
where
q‘f’; .................. source strength (flow rate per unit of active length) located at the

areal point (xﬁ, yﬁ) and the allocated amount to element e.

& SR element height at areal point (xﬁ, yB).
0; (Cj,g,'r]ﬁ, C_,) shape function evaluated at local point (&B,nﬁ).

and where the normalized limits of integration are evaluated from
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Z—7Z

(=2 b1y (3.1.6.14b)
H;

and z, represents the z elevation of the lower element face defined in Eq. (3.1.4.5¢) for a
rectangular prism element.

Assuming the source strength is uniform over the active portion, Eq. (3.1.6.14a) reduces
10

[+
q .
E =[;§J[(1+&i&5)(l+nmﬁ){(h ~Go)+ 2 —C%)] (3.16.15)
Equation (3.1.6.15) is to be applied to every element in contact with the active screen
portion of a specified vertical well (i.e., line source). The elemental contributions are
then distributed out to the eight global nodes associated with those elements.

3.1.6.2 Head-Dependent Line Sink within 3D Element

In general the volumetric flow rate per unit length (line strength), q,, will vary vertically
over a well’s active screen height. Only under very special conditions will the line
strength actually be uniform. In addition, the maximum total flow rate that an aquifer can
deliver (i.e., maximum pumping rate from an extraction well) is typically unknown. The
vertical variation in line strength and the maximum pumping rate result from the
combined hydrogeologic properties of the aquifer (in the proximity of the well) and the
extraction well’s “well efficiency” (that comprises the choices made during its design and
its actual construction). However, in many situations the assumption of either a uniform
or spatially varying line strength is an adequate approximation and for those cases a flux
specified line source is appropriate (see Section 3.1.6.1 for details). For the case
involving a "vertical" line sink where the line strength’s spatial variation and/or total
strength is unknown a priori, a head-dependent line sink is required. To better handle
these types of situations in an automated way, we have developed a special head-
dependent line sink option in FACT. We have made it general enough to handle confined
and unconfined aquifer units, but limited it to the process of only extracting from the
aquifer ( the option of injecting into the aquifer is a minor upgrade slated for the future).
For an unconfined aquifer the potential existence of a seepage face at the well screen is
accounted for. The head-dependent line sink is further restricted to areally coincide with
the intersection of the x and y grid planes (i.e., coincides with the vertical edges of a stack
of brick elements). A typical line segment of one such line sink is shown in Fig. 3.1.2.
The general expression for q becomes (for a vertical head-dependent line sink located at
the areal node location, B):

q=qpd(x —xg,y - yp.2) (3.1.6.16a)

ap =Sy Kyenlhyen(z)-h(z)] (3.1.6.16b)

where
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R ereveereeneens volumetric flow rate per unit length (line strength)
Sy comrrrrrerrranen donored water saturation at aquifer/well screen interface
Kyell oreeeereens overall hydraulic conductivity of well skin, screen, and casing
Byt (Z)eeeeenne. hydraulic head distribution within well casing
31 3 JOR hydraulic head distribution within aquifer at well screen

Note that Eq. (3.1.4.16b) expresses the overall resistance to flow (resulting from the serial
composite of head losses due to skin, screen, and casing frictional processes). Also the
strength of the sink can vary over and within each of its line segments. The dominant
(limiting) process is assumed to be occurring within a laminar flow regime and thus the
overall process can be approximated as a linear process. The overall (“effective”)
hydraulic conductivity factor is a function to some degree of well efficiency. The factors
contributing to excessive drawdown in wells (inefficiency) can be grouped into two
classes: (1) design factors such as inadequate well screen flow areas and (2) construction
factors such as poor removal of fine particles resulting in reduced aquifer permeabilities
near well screens. One standard approach to estimating well efficiency for an extraction
well contained within an unconfined aquifer (see Fig. 3.1.7) is based on the formula:

(3.1.6.17)

eff oy =1 00[ drawdown outside casmg:l

drawdown inside casing

where drawdown is computed based upon the initial (static) water level prior to pump
operations. Making use of Eq. (3.1.6.17) and the results from FACT in an iterative
manner, the user can establish an overall hydraulic conductivity factor for the well (that
quantifies its skin resistance and screen losses) that is consistent with a specified well
efficiency. Note that for large values of Kyey , say greater than 100-1000 ft/day, the well
behaves ideally; while, for extremely low values the well essentially quits pumping. The
maximum pumping capacity of an aquifer unit occurs when the well is assumed to be
100% efficient (very large Ky.en) and the water level within the well is set at or below the
bottom of the active screen.

The donored water saturation becomes the water saturation value of either the local
aquifer or the well depending upon the direction of flow. Since we have limited this
option to extraction wells only, the donored water saturation is set to the local value in the
aquifer.

In FACT this type of line sink is handled automatically through user input of a series of
line segments (i.e., node point pairs that define and lie along the line sink). FACT
internally allocates the appropriate amount of flow rate per line segment over the entire
line sink consistent with the modeling assumptions listed above. Each line sink involves
user specification of: (1) one or more line sink segments, (2) a single overall hydraulic

conductivity for the line sink, and (3) a single time invariant hydraulic head for the line
sink (extraction well).

Note that no use of the Dupuit approximation (as illustrated in Fig. 3.1.7) can be taken
advantage of here. The Dupuit approximation is only valid for conditions where vertical
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velocity components are insignificant. As shown in Fig. 3.1.7, the Dupuit approximation
eliminates the presence of a seepage face at the well casing. To determine the maximum
flow rate capacity of an extraction well, the hydraulic head within the well casing must be
dropped to the bottom of the active portion of the screen. Thus, all flow being delivered
to the well crosses the well screen within a seepage face.

Extraction Well "
Initial water table

Al V/ Dupuit
‘el Assumption
=3

Fig. 3.1.7. Extraction Well Contained within an Unconfined Aquifer Unit.

In deriving our head-dependent line sink equations, we shall focus on a single element
where a vertical line sink is applied to one of its vertical edges (a line segment over its
entire length) as illustrated in Fig. 3.1.2. To further assist us, a modification is made to
Fig. 3.1.7, and shown in Fig. 3.1.8, where half of this figure is replaced with a vertical
FACT grid along with some additional helpful annotations.

/ zero pumping level
/

well
Extraction Well T casing

T

well
conduciance

i IR
=
i

]
=2
£
—
N

max pumping rate; h,=0
Fig. 3.1.8. Notation Used for Head-dependent Line Sink Model.

As before, substituting Eqs. (3.1.6.16) into (3.1.5.23) results in the line sink contribution
to the source term, F,, for the 1°th node:
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E, = j¢iqﬁ8(x —Xpg,y~ yﬁ,z):lﬂ

e (3.1.6.18)

Zs ~
= Kwell A ¢ (EJB ’nﬁ’zbw [hwcll - h}jz
1

We shall restrict our derivation to only vertical line sinks that coincide with areal node
locations. Therefore, our local basis functions reduce to their one-dimensional form. For
convenience we shall re-normalize these basis functions such that their independent
variable, {, ranges from zero to one:

(Pi(‘gB,nB,Z)= (Pﬂi@):[lgc} (3.1.6.19a)

where
z=zl+H§ and H=z5-1z, (3.1.6.19b)

We also assume (valid approximation in majority of situations) that the water
contribution to the well from flow crossing the screen in the vadose zone is negligible.
This can be accomplished by assuming that the water saturation becomes zero just above
the surface of the water table. The integral expressed by Eq. (3.1.4.18) now reduces to

Saq an
Fsi '_"Hchll b (Pﬁi (r:}lwelldC_HKwell o (pﬂi (C}ldg (3.1.6.20)

where the limits of integration correspond only to the saturated region of the aquifer and
Saq represents the fraction of vertical height within the line segment containing saturated-
aquifer conditions. For later purposes we also define a fractional saturation term, Sy,
that represents the fraction of vertical height within the line segment containing saturated
well casing conditions. Both saturation fractions are defined as:

Saq =Caq = 2ot B and Syen =Goe = th; 4 (3.1.6.21)
where for an extraction well case Saq always exceeds Sy and where
hy o height of water within well casing.
Zyy vorvesrevneneens location of water table within aquifer at the well casing surface.
y A RUUOTOION lower elevation of element edge where well is specified.
Hoe height of element edge where well is specified.

In order to evaluate the first integral term in Eq. (3.1.6.20), the spatial variation of
hydraulic head within the well casing must be specified. It is assumed that frictional
losses associated with vertical flow within the well casing is negligible and the well
casing is vented to the atmosphere. Thus, a hydrostatic pressure profile exists within the
well casing and can be expressed as
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h forz<h
Y akz)=0 = h,gq=49 " v (3.1.6.22)
wcll( ) well { z forz > hw

Setting up for the integration of the first term yields

Syen Saq
K, =HKya| hy | @i (C)dC+Z{L op; (g}pﬂj(q)jg}zj (3.1.6.23)

: well
]

Performing the integrations of Eq. (3.1.6.23), making use of the local basis functions
expressed above results in the contributions to nodes 1 and 5 as

(1)
E HK ,.cn 28 lI_S2 11
[F]} =_2we_ h,, Wesz wel |+2 E {Lij(saq)'Lij(Swen)}Zj (3.1.6.24)
S5 well i

where

1 1
x—x2+§x3 —x%-

Lij(x)E 1,
2x2_

1. 1 (3.1.6.25)
2 3

Similarly for the second term, integration results in

2 _ HKyen .
K= 22Lij(9aq)11 (3.1.6.26)
J

The total contributions to nodes 1 and 5 are obtained by adding the two terms together as

E ' @
[Fsl :l - % 1]1“, [QSwglz Siell ] + 22}.“ ﬁ-fij (Saq )— L (Swell )}J (RHS)

Sg well

~HK e Z L @aq )lj (LHS)
|

The first grouping of terms in Eq. (3.1.6.27) are loaded into the RHS forcing vector of the
governing equations, while the second grouping of terms are loaded into the LSH global
matrix. Both groups being loaded at their appropriate global number locations. Since the
actual surface level of the water table is unknown prior to its solution, the application of a
head-dependent vertical line sink introduces additional non-linearity in the same manner
as a unconfined aquifer does.

(3.1.6.27)
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Once FACT converges, the resulting hydraulic head solution can then be used to perform
post-iteration computations for determining the line sink flow rates across each of its line
segments. These calculations are performed automatically by FACT and are then printed
out.

The integrated (total) volumetric flow rate into the extraction well is obtained by
summing up the integrated contributions from all of the line segments corresponding to a
given line sink. The general expression for the integrated flow rate for each line segment
becomes

Suq Saq
Queg =HK o | ™ yendl - [ et (3.1.6.28)
Applying the same set of assumptions as employed above, Eq. (3.1.6.28) becomes
Sue ] s
Queg = HKwel,[hwjd“f;" +j B zdt;—_[ ™ hd§:| (3.1.6.29)
0 Swell 0

Expanding and performing the integration of Eq. (3.1.4.23) results in the integrated flow
rate

HKZWH [T, -T,] (3.1.6.302)

Qseg =
where

2 2 2
T] = 2hwswell +[2Saq _qu —ZSwe“ +Swe]l]zl +[Saq _chll]zs (3.1630b)

T, = [25aq —qu]hl + [sfq]hs (3.1.6.30¢)
The total flow rate into the line sink (i.e., extraction well) then is computed by

Qu = zQseg (3.1.6.31)

seq

3.1.6.3 Uniform Flux Specified Vertical Well Option

In groundwater modeling it is very common to have the need to place one or more
vertical wells within the mesh domain. And in many cases, it is inconvenient for the user
to be forced to limit their placement to only areal node locations, as well as, tedious for
the user to have to externally compute the appropriate amount of a line source/sink to be
allocated out to its surrounding nodes. In addition, these vertical wells are often
approximated as having a uniform strength over each aquifer unit that is in contact with
the active portion of the well screen.

Since uniform strength injection/extraction wells are so common place in groundwater
modeling, we have added a feature to FACT that automatically handles vertical wells
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whose source strengths are uniform and time-dependent. Given as input a vertical well’s
areal location (not limited to areal node locations), the top and bottom elevations of its
active screen (not limited to vertical grid surfaces), and its total volumetric flow rate
(positive for injection and negative for extraction), spline index of pumping time series,
FACT automatically performs the following input pre-processing:

e Limited input error checking is performed to ensure supplied input is valid and
consistent. For example, execution is terminated with a written error message if a
well location is specified outside of the areal or vertical grid domain.

e If a well is areally within a specified tolerance of either the x or y gridlines then the
well is moved such that it resides on that gridline.

e If a well is vertically within a specified tolerance of a z grid surface, then the well’s
active screen elevation (top or bottom) is moved such that it coincides with that grid
surface.

e The global node numbers who are in contact with those active elements spanned by
the active portion of the well screen are computed and stored.

e Steady-state or temporal flux BC’s (type 2 BC’s) are generated for each global node
number associated with this line source/sink. The flow rate contribution for each
element associated with these global node numbers is computed based on Egq.
(3.1.6.14a) and added to the flux BC array at the global node number.

The above pre-processing sequence is performed sequentially on each user specified
vertical well. For each well appropriately allocated flow contributions are computed that
are ultimately loaded into the flux BC array. These contributions are added to the array
locations corresponding to those global nodes associated with each 3D element that the
active screen resides within. Based on this strategy, the user can specify as many vertical
wells as desired that are all co-located at the same areal location. In fact, the vertical
extents of each well can overlap each other. The net effect of having multiple wells
specified at the same areal and vertical locations is the specification of a composite well
at that location whose source strength is the sum of the individual source strengths.

In many situations a well’s source strength can vary significantly over its vertical extent
and as such can not be approximated as uniform over its entire length. In some cases this
variation is limited to a finite number of step changes in strength. For example, a well
screen that extends over multiple aquifer units. In such cases, to a good approximation
one can assume that its strength is uniform, but a different value, over a finite number of
line segments. Under such situations the user can specify several vertical wells at the
same areal location whose screen elevations coincide with the tops and bottoms of the
uniform segments. Each well would have its own unique value for source strength.

In most cases, the user probably knows the total flow rate for the well but not its variation
over these line segments {or aquifer units in the stated example). The following
discussion presents an iterative technique for obtaining estimates of these flow rates (i.e.,
the flow fractions) for each line segment of a vertical well whose source strength varies in
a step-wise fashion. By means of an example, we will consider a vertical extraction well

- whose active screen height extents over three aquifer units (aquifer A, aquitard B, and
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aquifer C). The more general case of an arbitrary number of line segments is a
straightforward extension. The example chosen is depicted in Fig. 3.1.9 where it is
assumed that the user knows the horizontal conductivity and screen height for all three
units, as well as, the total flow rate extracted from the well. Estimates of hydraulic heads
within each unit may not be available.

During the iterative process we want to estimate (allocate) the source strength on a
segment basis (i.e., flow rate per segment) over several aquifer units. Starting with the
aquifer system depicted in Fig. 3.1.9, we want to estimate the volumetric flow rates
occurring in each segment (Q,, Qy, and Q.) where

nse
; Qu, = iQi (3.1.6.31)
| =
and
Quop wererermerens specified total volumetric flow rate over entire well
(6 T volumetric flow rate for i™ segment
NSEE .oovvererennes number line segments within vertical well (3 for current example)
Q tot
T well
Extraction Well / casing
—_— | o —— e,
Aquifer A K
top of screen a
az, {
Aquitard B [_\Azb { ,\_Kb/j
. sz, { 5 <
Aqurfer c bottom of screen [ o] + r4

Fig. 3.1.9. A Vertical Well whose Screen Extends across Several Aquifer Units.

The local flow rate within a given line segment can be expressed in the form

Q; = 2nRAz;q; =%A21Khi (Hi —hw) (3.1.6.32)

where

R arbitrary radial distance from well centerline

[0 N volumetric flow rate of i™ segment

Qi eorenirennanannns volumetric flow rate per unit length (line strength)

Az e vertical height of i’th segment

| T radial distance, R —r,,

| S radial distance to outside surface of well screen
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| I horizontal hydraulic conductivity for i segment
Dy e hydraulic head within well casing
Hi ................... average hydraulic head for i™ segment

Based on Eq. (3.1.6.32) we can define a volumetric flow rate at the perimeter as

Qi z_"gi—=AZiKhiAhi (316.33)
27R )

Ar /
where Ah; =h; —h,, is the average driving head for the i segment.

A total volumetric flow rate at the perimeter, th , can be defined in a similar fashion as
was done in Eq. (3.1.6.31) resulting in

nse nse
Qo = iQ, = iAziKhiAhi (3.1.6.34)
i=1 i=l

Thus, the fraction of total volumetric flow allocated to the i segment becomes
Q _ Qi __ AzKyah

i~ =
Q Q nse:
ot Yt Az;K,Ah,

i=1

(3.1.6.35)

If the user has no prior information on hydraulic head within the segments, then the
following initial estimate (to be updated or verified once a FACT calculation is complete)
should be assumed for the first FACT run (i.e., uniform driving heads for all segments)

Ah = Ah, = Ahy, = Ah, = Ah; (3.1.6.36)

Only a few iterations should be necessary to achieve converged values for the flow rates
to each segment. Note that this approach is restricted to steady-state flow conditions
only. Fortunately, most cases of interest conform to the limitation imposed by the above
approach and should be useful to most FACT users.

3.1.6.4 Uniform Flux Specified Vertical Recirculation Well Option

Vertical recirculation wells are an innovative technology for the in-situ clean up of
groundwater contaminated with volatile compounds, most notably dissolved chlorinated
volatile organic compounds (CVOC). The vertical recirculation well is a pump and treat
system that uses a combination of existing technologies, including air stripping, air lift
pumping, and groundwater wells in on complete in-site assembly (Jackson and Looney,
1996). The system consists of an upper and lower screen zone, an air injection blower
having an associated eductor placed at the lower well screen, an optional submersible
type well pump to reinforce the pumping effect, and vacuum removal of the off-gas at the
well head. The conventional design calls for placement of the lower screen near the



WESTINGHOUSE SAVANNAH RIVER COMPANY Manual: WSRC-TR-99-00282

Section: 3,Rev. 0
Date: 3/2000
FACT CODE MANUAL Page: 36 of 108

bottom of the aquifer and the placement of the upper screen near the top of the aquifer,
just below the confining zone. During operation, air is injected using an eductor lowered
inside the well bore to the lower screen zone. As the air rises to the surface in the well,
the CVOCs are removed by air stripping. As the air bubbles rise with the well-bore, the
density of the water is decreased and an upward flow field is developed with the well-
bore. The naturally induced upward flow is often enhanced via a mechanical pump to
increase performance and capture zone. The groundwater flow pattern into the lower
screen and out of the upper screen causes development of a recirculation pattern around
the well screens. Figure 3.1.10 presents a schematic representation of a vertical
recirculation well and the resultant flow field.
contaminant
vapor

. . recirculation
recirculation ecirculatio

well / cell

aquifer c
capture %

zone

Q
Q, a
Q
VFI

&

Fig. 3.1.10.  Schematic of Basic Flow Pattern Under Vertical Recirculation Well
Operation

Groundwater flow modeling of vertical recirculation wells can be performed analytically
under certain limiting conditions and useful parametric curves can be generated for
certain numerical solutions. Classical results addressing vertical recirculation flows can
be found in the literature (Herrling et al., 1990). Application of the classical solutions to
the design of a vertical recirculation well system for the A/M Area Southern Sector has
been performed by (Jackson and Looney, 1996). These idealized solutions typically
assume the aquifer to be subject to: (1) a uniform one-dimensional head gradient field
upstream and downstream, (2) a uniform and planar confining unit, (3) a homogeneous
isotopic aquifer, and (4) well networks being perpendicular to natural groundwater flow.
These approaches provide relatively quick and typically adequate accuracy in determining
the lateral width of capture zones for simple well networks.

To eliminate many of the limiting assumptions mentioned above, assess previous
calculations, and to incorporate new hydrogeological data, the FACT code has been
modified to accommodate vertical recirculation wells consisting of two screen zones; an
extraction screen zone and an injection screen zone.

The vertical recirculation well is modeled as a vertical uniform flux specified line sink
(extraction) and line source (injection) located at the same areal location. The extracted
volumetric flow is re-injected into the injection screen zone instantaneously. The
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volumetric flowrate for each line sink/source is partitioned to the respective global nodes
using the same methodology applied to the uniform flux specied vertical well. The
recirculation well pumping rate can be time-dependent.

3.1.7 Head-Dependent Flux Boundary Conditions

FACT has the capability to accommodate a third-type boundary condition known as
"head-dependent flux condition.” Physically, this may correspond to induced infiltration
or vertical leakage conditions where fluxes transmitted through a semi-permeable bed are
head-dependent. These fluxes are controlled by the difference between the hydraulic
head at the top of the bed and the hydraulic head in the underlying aquifer. A typical
situation is illustrated in Fig. 3.1.11.

If, at the bottom of the semi-permeable bed the aquifer head hg is less than the bed
elevation zg, it is assumed that Yz =0 and locally the water table is below the point zp.
Thus the nodal leakage flux becomes

q=g=|2| an | (3.1.7.1)
A, |b
ed
ht-h; forh; 2z
Ah,=¢ T 1=7B (3.1.7.2)
hT—hB for hi <Zg
where
Qe volumetric flowrate of source bed
Aj i, flow area of source bed
(K/ b)oed ......... leakance coefficient of source bed
b4
Semipermeable

layer (bed)

Fig. 3.1.11. Typical Head-Dependent Flux Boundary Condition (River or Stream).

In the Galerkin approximation we shall assume this nodal leakage flux to be a point
source at a given node i. Thus

Ep, = jtpiqidd (3.1.7.3)
o]

Assuming a point source on a given surface
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a; =%5(x-—x,-) (3.1.7.4)

1

we get by substituting into Eq. (3.1.7.3)

i K
Fe, =j¢i%5(x-xi Jo=qQ; = A[gl A, (3.1.7.5)
o ! ed |,
The FACT code supports four types of head-dependent boundary conditions. They are

for a given source bed (note that for each source bed multiple nodal locations can exist in
contact with each source bed):

isbtyp Source bed type
0 Aquitard
1 River
2 Drain
3 General Head

Given the table of head-dependent boundary conditions above, the flow area A and
driving head term Ah; in Eq. (3.1.7.5) are given as

A;  forisbtyp=0
A= ) (3.1.7.6)
A forisbtyp=0

(hp—h; forh,>zg  isbtyp=01

hp—-zg forh; <zg

Ah; =<0 forht —h; 20 isbtyp=2 (3.1.7.7)
ht—=h; forhy-h;<0

(bt —h; allconditions  isbtyp=3

where A; is the nodal flow area computed in FACT and A4 is an effective flow area of
the source bed provided through user input.

Equation (3.1.7.5) is computed for each global head-dependent source bed node and
partitioned into the LHS global system array and RHS load vector depending on the
driving head term in Eq. (3.1.7.7) and whether the Picard or Newton-Raphson scheme is
used to solve Eq. (3.1.1.7). In the Picard scheme, Eq. (3.1.7.5) is linearized as

m
oF,,
Fyp, — ;;}i+[ a;t.)lw [h{“*‘—h{“] (3.1.7.8)
1
/

where m is the Picard iteration number. It turns out that Eq. (3.1.1.7) is solved in terms
of the change in the hydraulic head vector, therefore, (anbi /ahi)“ is added to the LHS -
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array A and F;gi is added the RHS load vector F for each source bed global node. The
following table is a summary of the contributions to the LHS and RHS global arrays.

isbtyp Condition Ah; RHS LHS

0 h; >zg hy —h; Aj %th‘hi) Ay (—]bi)
0 h; <zg ht-zp A %XhT ~2p) 0

1 h; >zp ht —h; Aefr (%IhT ~h;) Actr Pt%)
1 h; Szg ht—zg Aetr (%xh"r ~2) 0

2 hp>h; 0 0 0

2 ht <h; ht —h; Acfr (%XhT -hy) Actr %)
3 all hy —h; At (%Ih’l‘ —b;) Actt (%)

The Newton-Raphson contributions to the LHS and RHS arrays are identical to the Picard
scheme due to the linearization in Eq. (3.1.7.8).

3.1.7.1 Head-Dependent Recharge & Drain Boundary Conditions

The basic idea is to combine recharge and drainage and into a single Type 3 (Cauchy)
boundary condition. Justification for this combined boundary condition is based on the
assumption of minimal ponding of surface water. Physically, minimal ponding of surface
water should occur when one assumes that most rainfall runs off. When low permeability
zones are present at (i.e., cropout) or near the ground surface, recharge specified
uniformly over the surface can produce non-physical results in the form of very high
hydraulic heads at the points of low conductivity. In these situations, hydraulic head
should not significantly exceed the surface elevation (i.e., near zero pressure head where
pressure head is defined as hydraulic head minus elevation) and local infiltration should
be only a fraction of the regional recharge rate. In addition, the existence and location of
seeplines (i.e., contours of zero pressure head along the ground surface) are generally
unknown or unspecified a priori to a flow solution. For elevations above the seeplines
infiltration (along with negative pressure heads) can exist, while below the seeplines
seepage faces exist where drainage occurs (along with non-negative pressure heads). For
variably saturated ground water flow modeling, these features (1) complicate
implementation of surface recharge (infiltration) and drainage conditions and (2) are
typically observed for terrain with heterogeneous hillsides or engineered ground surfaces.

For a flow model with conventional "layer cake" conductivity fields, the conductivities of
the top layer of elements are relatively large because the entire layer corresponds to a
transmissive aquifer unit. In this case, recharge can be specified uniformly over the top
surface without difficulty. Simultaneously, drain boundary conditions can then be added
wherever the uppermost aquifer is known or suspected to discharge at the surface (excess
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recharge removed by drain boundary conditions). Unfortunately, this approach typically
leads to artificially inflated overall recharge/drain volumetric flowrates and for complex
terrain the locations of seepage faces are seldom known.

When seepage faces are present, Neuman et al. (1974), and later modified by Rulon
(1984) and then implemented by Huyakom et al. (1986), adopted a procedure whereby
the locations of seeplines and the non-linear flow equations were iteratively solved using
a Picard iteration strategy. Surface boundary conditions were switched from prescribed
zero pressure head (below the seeplines) to prescribed surface flux (above the seeplines)
during the iterative process. Infiltration (or evaporation) rates were limited to a
maximum potential flux rate whose value diminished to zero as the seepline was
approached (resulting in better estimates of overall regional recharge). Overall drainage
rates were then obtained by post-processing of the flow solution over the seepage faces.
To enhance overall convergence of the solution various criteria for transitioning between
boundary condition types were employed. With this method convergence difficulties may
occur for complex terrain, as well as, the additional overhead required to update boundary
conditions during the iteration process.

The difficulties expressed above can be eliminated by combining the concepts of recharge
and drainage into a single boundary condition. The basic idea is that locally the surface is
either recharging or draining the subsurface, and there should be a continuous transition
between these conditions. Infiltration should occur for negative pressure head (water
level below the ground surface) and aquifer discharge should occur for positive pressure
head. Also, to be consistent with the continuity needs of the Newton-Raphson iterative
solver employed in FACT, the overall function representing this "combined”
recharge/drain boundary condition should also be continuous in its first derivative.

 Figure 3.1.12 presents a combined recharge/drain boundary condition that meets the
above criteria and is used in the present version of FACT.

Locally, when the water level is well below the ground surface, recharge occurs at the
maximum rate permitted. As the pressure head approaches zero, recharge is smoothly
reduced to zero. For positive pressure head, the surface drains the aquifer at a rate
proportional to the pressure head. To the left of the transition zone, the combined
recharge/drain boundary condition is exactly the same as the conventional recharge
boundary condition. To the right of the transition zone, the combined recharge/drain
boundary condition is identical to a typical drain boundary condition. The transition zone
reflects a non-linear region connecting two limiting linear boundary conditions.
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<V

Fig. 3.1.12. Source Bed Boundary Condition for Simultaneous Treatment of Surface
Recharge and Drainage.

The mathematical formulation chosen for this function, as shown in Fig. 3.1.12 is

Qc(x)=%[7-2x—x2} (3.1.7.9)
where
y=h-z, (3.1.7.9a)
Qr =ApRpax : (3.1.7.9b)
Mp = AD{%JD (3.1.7.9¢)
x=2¥"¥ (3.1.7.9d)
W
- Qg
=—— 3.1.7.9¢
v M, ( )
and
| JOTURTR hydraulic head
Zo wevereeenene.n. €levation of combination boundary condition
117 pressure head '
16 JROR volumetric source or sink from combined effects of recharge and
drainage
R pax cooveverenens maximum localized recharge (input)

Ap e area available for recharge and drainage (geometric area)
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(K/b)D ........... leakance coefficient (input)

Equation (3.1.7.9) is our Cauchy (type 3) boundary condition that is C1 continuous from
y= %1’;‘; to Y= %\TI (which corresponds to x = -1 to x = 1). It is a quadratic equation in x
that satisfies the constraints

Q.=Qg and dfc=o at x =—1 (3.1.7.10a)
X
Q =-Mo¥_Qr .4 9% __x ., (3.1.7.10b)
2 2 dx

Note that in general the four constraints expressed above would result in a cubic equation
in x. The quadratic results from our choice of locations for the two transition points.

Over the entire range of pressure head the Picard and Newton-Raphson terms are given as

r 3’\
Qg for wsiw
Q =1 [7 2x-x?| for Jgcy<ly (3.1.7.11)
=13 “Y<y<o¥
~MpV for %\'[IS\U

1

for the RHS global load vector and

0 for y< %\Tf
dQc dQc QR

= =4

dy dh 2y
-Mp for

(+x) for %¢'<w< v (3.1.7.12)

for the LHS global system matrix.

Equation (3.1.7.11) represents a two-parameter model requiring the specification of the
maximum localized recharge rate and the surface leakance coefficient. The level of
ponding that occurs along a seepage face can be adjusted by varying the magnitude of the
surface leakance coefficient. This leakance coefficient represents how conductive the
flow of water normal to the surface is. It is a measure only of the ground surface’s skin
resistance (not the aquifer unit itself) and generally the head solution from FACT is not
overly sensitive to its magnitude. Typically Eq. (3.1.7.11) is applied to every node over
the entire top surface of a flow model. The locations where seeplines result are
automatically established during the iterative solution of the non-linear flow and
boundary conditions. Since average recharge over the entire region and total drainage are
very common quantities of interest, they are computed in a post-processing fashion and
written to output files.
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3.1.8 Numerical Solution of Flow Equation

For stability considerations the flow equation, Eq. (3.1.1.7), will be time differenced

using backward Euler (i.e., fully implicit) differencing to yield the new (m+1) time
solution. Equation (3.1.1.7) becomes

n+l

B;;

1 ! 1 1

G+ li [h?“ h?)' Ag+ hg” . (3.1.8.1)
A n

where G!"*! is the residual vector at the new time level.

Note that superscripts denote time levels and will be omitted for the new time level in the
derivations to follow. Since matrices B and A, as well as vector F, are in general
dependent upon hydraulic heads, Eq. (3.1.8.1) is a system of non-linear algebraic
equations that must be solved by use of an iterative strategy (sometimes referred to as our
outer iteration loop). Note that under certain limiting conditions (such as a confined
aquifer with simple boundary conditions) Eq. (3.1.8.1) reduces to a linear set of algebraic
equations whose solution is obtained during the first iteration pass.

Two basic options for solving Eq. (3.1.8.1) are currently available in FACT: (1) a Picard
iteration scheme and (2) a full (including a modified option as well) Newton-Raphson (N-
R) technique. The optimum choice of which iteration strategy to use is problem
dependent. However, a general rule of thumb is to use the more expensive per iteration
N-R technique for the more complex and difficult to converge problems. Such problems
naturally arise when the porous media becomes highly heterogeneous and/or significant
recharge through the vadose zone is occurring.  Abrupt changes in the relative
permeability or boundary conditions, which occur when the soil characteristic curves
have steep gradients or the leakage coefficient is large, may result in slow convergence.
Convergence difficulties may also occur when the residual water saturation is near zero.
The rate of convergence for a complex flow problem is very sensitive to the initial
conditions. For these types of problems making use of the upstream weighting option for
relative permeability generally improves convergence.

The following is a general derivation of our iteration strategy employing a N-R
formulation. This formulation results in an asymmetrical global coefficient matrix due to
the asymmetrical contributions coming from certain terms. The Picard scheme results
when these terms (as indicated) are omitted, thus producing a symmetrical global
coefficient matrix. It is these terms that make each iteration of the N-R technique more
expensive than that of the Picard scheme.

Application of the N-R procedure to Eq. (3.1.8.1) yields
0G;

m
k
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where superscripts now denote iteration levels and Ah“”r1 is a displacement vector,

defined as
AR = _pm (3.1.83)
The leading term of the Taylor series expansion in Eq. (3.1.8.2) is
m
G = A, [h"‘—h“J AfhT-E" (3.1.8.4)
and the Jacobian is given by
m m
: Bi:'0; dB; | hi"—h] dA;
oG; | %k, ”) L1 AS, + -—‘JW hi - of (3185)
oh, At ohy , At dh, , ahk

Substituting Eqs. (3.1.8.5) and (3.1.8.1) into (3.1.8.2) yields the following linear algebra

problem at each iteration

m m
SikXk =V

(3.1.8.6a)

where the current iterate of change in hydraulic head at the new time step is defined as

(3.1.8.6b)

and S} is a symmetric diagonally dominant matrix for the Picard scheme and an
asymmetric matrix (whose diagonal dominance may have diminished) for the full N-R

technique defined as

m (3B, Y hP—h? ;) i
ilk’r 3 - Leag+ =2 hj" - it (N-R)
m tn hk Atn ahk ahk
sm ) , (3.1.8.6¢)
m
ik, Am_ OF (Picard)
LAtn ohy
and y{" is the RHS vector
m
yM=— AL [hm-h“] APhT +E" (3.1.8.6d)

Note that for the Picard scheme the general forcing function, F, is put in a linearized form

as well.

The derivative of the storage matrix, Bj;, with respect to hydraulic head is computed as
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3B; | 2 ds
ij w L
= +S,.S. IM;; 3.1.8.7)
y,

The coefficients to the mass matrix in Eq. (3.1.8.7) are evaluated as

8 2 2
_Q_ dS_w = d_§l £ =Qg d’s,, 3.1.8.7
ahk <¢e d\ll> q’eg‘Pp(O{ dwz ](pk(p) 8 d\l}z l ( 1.0, a)
- P

a wS5)= SZ%{ J ("p)—%s(ds—“’l (3.1.8.7b)

dyr
P

The derivative of the storage matrix becomes

B; ) 55, | 3
Bii | JLlg [ ESw | g S | Lyt (3.183)
oh, 8 dy? dy

and the contribution to the Jacobian matrix is

aBy | b —h? a%s. ) L hP—h!
J . ¢e d’Sw +8, Bw M,J——— (3.1.8.9)
oh, At dy? dy At

The lumped mass malrix, Milj' is computed using Eq. (3.1.5.27) for the influence

coefficient method or Eq. (3.1.5.28) for two-point Gauss Lengendre quadrature.

The derivative of the seepage matrix, Ay, with respect to hydraulic head is computed as

[ahkw r r r [ Ve ) [al; KJ (J"lvaq’j}Jld&dndc (3.18.10)

The derivative of k., K with respect to hydraulic head with no upstream weighting of the

relative permeability is

[ak K T“ 3 ( ) Kxx ny K

. =——-i k K K K (3.1.8.11a)
oh o VU Y

. X Ky Kyz Kz

where
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3 1| dk,, ) {dS,
et (%)

.t ) 1] dk ds
(Pk(’l:.p)=§[ dS’:’ Ma‘;’—l (3.1.8.11b)

FACT has an upstream weighting of relative permeabilities option which enhances
convergence of the Picard and N-R iterations. The upstream weighting affects the

centroidal approximations, (kl’.‘“,)Kxx , <k¥w>Kyy, (ka>KzZ in seepage matrix A. The

derivative of k., K with respect to hydraulic head with upstream weighting of the
relative permeability is

m
ok K P
ER " = 1.8.12
[ dhy J ahk< l'W>ny oh, <k1‘W>Kyy oh, (krw>Kyz (3.1.8.12a)

oh, oh, oh,
and
8

0 < d > 4f dk ds A of dk ds

—(kiy = — | = = ™ol —* | (3.1.8.12b

h \ ™ ;wp as, || dw pq’“(é") Wkl a5 1y | ¢ )
where

Ao, X,y or z direction

w; , wg, wf, ... upstream weighting factors in the x, y and z direction, respectively

In order to compute w; , the average hydraulic head for face 1 (the region bound by
nodes 1,4,5,8) and face 2 (the region bound by nodes 2,3,6,7) are computed

hysss = by +hy +hg +hg Y4 (3.1.8.132)
hyser = (hy +hs+he +h, )4 (3.1.8.13b)

where by, is the hydraulic head at node p. The weighting factor wg is defined as

)8 if hyysg <h
wh = 1-n) LSBT for p=14,58 (3.1.8.14)
(1'*' H)/S if hygsg 2ho367
X (1+ H)/S if hyssg <hgzer
Wp = ] forp=23,6,7 (3.1.8.14b)
(l—u,)/S if hyysg 2 hyaey
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where 0< <1 is a user defined weighting parameter. The weighting factors wg and

z
P

full upstream weighting is used when p=1.

w? are constructed in a similar manner. Upstream weighting is not used when (1 =0 and

Finally, the contribution to the Jacobian matrix by (BAU— /ohy )"h;" is

m
dAjj m JmH o  tH /m
— y yy
[ J b ={ T WK AT + o= wiK A+ wiK A

oh, | 24
m m
dk ., ds,, pm
ds,, dy | '
based on the influence matrix formulation and

aAi. m 8 i T aker m 3 _

g=1

(3.1.8.15)

H xy m XZ E yZ

using two-point Gauss-Legendre quadrature.

The derivative of the RHS load vector, (BF, /ahk)“, is computed for head-dependent

vertical line sinks, head-dependent source beds and combination recharge/drain boundary
conditions in Sections 3.1.6.2, 3.1.7 and 3.1.7.1, respectively.

Further enhancement in convergence of the N-R method can be achieved through the use
of backtracking along the N-R direction. For some flow problems both Picard and N-R
iterations fail to converge. If the initial guess is not close to the root of

G"=0 (3.1.8.17)

the N-R iteration will wander or enter a cycle. Since the N-R method has rapid local
convergence, it is reasonable to require the residual

T
“GmH=(GmJ G™ (3.1.8.18)
to decrease for each N-R iteration. After solving equation (3.1.8.2) for Ah™*! the full N-

R iteration is given by

h™! =h™ + Ah™" (3.1.8.19)

2 2
If “Gm” <“Gm the N-R iteration is accepted and Ah™*? is computed. Otherwise,

2 2
we backtrack along the N-R direction Ah™ uniil < HG“‘H where

m-+t
G Y
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h* =h™+yAR™! 0<y<1 (3.1.8.20)

and G;“J’l is the nonlinear system (3.1.8.1) evaluated at h;"”. The parameter y is
decreased until the residual is less than the previous iteration residual. Then the
backtracking is accepted and h™! =h$’+l . The backtracking strategy in FACT performs

at most n backtracks for each iteration with

h;-n+1 =hm +2_iAhm+], i=1,...,n (3.1821)

2 2
If |IG'“+l <nGm" we accept the N-R iteration and backtracking is not performed.

2 2
Otherwise, FACT computes h™! i=1,...,k until < ||GmH and the kth backtrack

|G EH']

is accepted and h™*! =h;“+]. If

2 2
allG“‘“ , i=1...,n (3.1.8.22)
then the nth backtrack is accepted and h™ =h™*! Experience suggests that the full N-

R method should be used first. If FACT fails to converge then backtracking should be
used withn < 8.

The above outer iteration scheme (Picard or N-R) is repeated until either: (1) the
magnitude of the maximum nodal iterate value is less than a prescribed tolerance
criterton, €, or (2) the maximum allowable number of iterations is reached, nitmax.

The error criteria placed on hydraulic head is given as

max|xi| = max

hmH h}“‘ <Egurer (3.1.8.23)
i=l,np

where the error tolerance placed upon the equation solver (sometimes referred to as our
inner iteration loop) is computed based on

’ Eouter = max(l 0°° 110_4 Ehtol ) (3.1.8.24)

and €y is an input convergence tolerance for hydraulic head. The maximum number of
outer loop iterations is determined by

1 for a linear f1 bl
nitmax:{ ot a Hiflear Liow problem (3.1.8.25)

2—200 foranon -linear flow problem

Based on type of aquifer/aquitard units and boundary conditions to be analyzed, FACT
internally determines if the current flow problem constitutes a linear problem. If so,
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FACT sets the maximum number of outer loop iterations to unity and bypasses
convergence checking.

3.1.9 Darcy and Phasic Velocity Computation

After convergence of the Picard scheme or Newton-Raphson iteration technique has been
achieved, velocity components can be evaluated for output or when a subsequent analysis
of a related solute transport problem is required. For transient flow simulations, the
velocities may also have to be calculated for many time steps. Thus, it is desirable to use
algorithms that permit the velocity computations to be achieved in as cost-effective a
manner as possible. For transport calculations we require velocity components at the
element centroids; while, for graphical purposes we prefer velocity components at the
global node locations. We shall express our Darcy (or phasic) component velocities in
formulas that result in a minimum of computational effort, while maintaining
consistencies with transport and graphical requirements. The Darcy velocity vector is
related to the phasic velocity vector by

U=0_u (3.1.9.1)

The following derivations are based on Darcy velocities. For phasic velocities divide
through each equation by the liquid void fraction (i.e., mobile water content).

In FACT there are basically three coordinate systems that must be addressed:

e the local cube (€,n,0) that is (2 by 2 by 2) in size,

e the element brick (x",y’,z’) that is (I by m by H) in size where H is the arithmetic
average height of the element, and

o the actual distorted element (x,y,z) whose top and bottom faces are allowed to be non-
perpendicular to the z axis.

We need a means by which we can convert from one coordinate system to another in
terms of velocity vectors, that is, a method to perform coordinate transformations from
the local cube to the element brick and then (if necessary) to the actual distorted element.
Recall that the Darcy velocity vector can be expressed as

U=-k, KV, h (3.1.9.2a)
in global (brick or actual distorted) coordinates and as

U= K wKgVeh (3.1.9.2b)
in local (cube) elemental coordinates (note that the V operator, as well as the conductivity
tensor, are subscripted). Knowing the Darcy velocity components with respect to the

local coordinate system, global Darcy velocity components can be determined using the
following coordinate transformation rule:

u=Jv (3.1.9.3)
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where J7 is the transpose of the coordinate transformation (Jacobian) tensor for either the

brick or actual distorted element. Equation (3.1.9.3) can be obtained from the following
derivation:

U=-k, KV ,h=-k_, [JTKQJ]J_IVgh = JTPkerngh]= JTU" 3.19.9)

where use has been made of identities presented in Sections 3.1.2 and 3.1.5 above.

For a constrained trilinear hexahedron element, the centroidal values of the Darcy
velocity components along the global coordinate axes can be computed by

8 by
(0)=I"(U) =~k KIY Ve 0)0; =k, KT 7| (3.19.5)
=1 h(:

where <> implies evaluation at the elemental centroid. The inverse of the Jacobian and
the gradient of the hydraulic head are also evaluated at the element centroid. Substituting
expressions for the permeability tensor and the inverse of the Jacobian matrix from Egs.
(3.1.5.11) and (3.1.4.9), respectively, into Eq. (3.1.9.5) yields

(Ux>=_<k_’r(wKxx> 'llé'_'ﬂ _<kerxy> h_‘q__z_n_h_g_

X XeZ Z
5 8% Yn Inf (3.1.9.6a)
h
_(kerxz>Z_E
h Zz:h h z.h
_ E 2T m -
(03 )= {rme) S 258 (i) 2
5 78 noont (3.1.9.6b)
h
(kayz>i
h Z:h h z.h
_ E_“L7¢C |_ on_“n7g
(0ot 2o B2 f
noIn% (3.1.9.6¢)
h
_<kfwKzz>i

For the rectangular prism element, the Jacobian matrix becomes diagonal and Egs.
(3.1.9.6) reduce to a simpler form as
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h —h h —h
( <k K, > 1458 2367 (k K, > 1256 — 3478
h h m (3.1.9.7a)
+ (kaxz) 1234 5678

< ) (ka )hmss—hzsm (kfway>h‘256_h3478

m (3.1.9.7b)
> hjg34 — h5678

hi4s8 =h hjas6 —h
( >=(kazx> 1458 2367 <k K, > 1256 — N3478
R m (3.1.9.7¢)
+<kxz'wKzz> 1234H 5678
where the notation hpyg; is used to denote the arithmetic average of hydraulic head
values at the nodes that belong to a particular face of the rectangular prism
(e.g..hpkL =(h1+h j+hg +hL)/4). In addition, when the principal directions of the

saturated hydraulic conductivity tensor in the global coordinate system are aligned with
the global coordinate axes in the FACT code, then Eqs. (3.1.9.7) reduce further to

) hyasg —h
(Ux)=(km1<“>L£23ﬂ (3.1.9.82)
hyps—h
(Uy)= (KA K,y )28 228 (3.1.9.8b)
m
hyp34 —h
(UZ)=<kfwKzz>w (3.1.9.8¢)

Equations (3.1.9.6) and (3.1.9.7) represent the centroidal velocity components relative to
the global coordinate system of the constrained hexahedron and rectangular prism
element, respectively. Both transport and flow modeling employ the same constrained
hexahedron or rectangular prism element representation in the computation of their
elemental matrix contributions. Therefore, these velocity components are the appropriate
(i.e., consistent formalism) values to be used in any corresponding transport calculations.

For graphical purposes the Darcy (and also phasic) velocity vector at the nodes is more
desirable. By having velocity vectors at the nodes coincident with the head and
concentration results, a single mesh reflecting the actual outline of the elements is
achieved. Overlaying of velocity vectors, streamlines, and head (or concentration)
profiles is straightforward. To estimate the velocity vectors at the nodes, the Galerkin
approximation is applied to Eq. (3.1.9.2a) with Darcy velocity vectors replaced by phasic
velocity vectors using Eq. (3.1.9.1) as
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j(piemudg=—j(pikrw1<vxhdg (3.1.9.9)

As usual, Eq. (3.1.9.9) applies to each node within the mesh and is created by the sum of
the elemental contributions from every neighboring element to that node (excluding
inactive elements). Transforming from global to local coordinates and assuming the
phasic velocity vector varies linearly across an element, the left hand side of Eq. (3.1.9.9)
at the element level can be evaluated as

qu, HudQ, = {_r r r (p,(pjiJldﬁdndt‘;}

Q, (3.1.9.10)

= em)cg, [Mij]euj

where Mj; represents the mass matrix given by Eq. (3.1.5.23) and u; represents the
unknown nodal velocity vector at global node j. If we assume mass lumping for M;; then
Eq. (3.1.9.10) simplifies to

I(piemudQc =(em)e[M5] u; (3.1.9.11)
where
r fmH
[Tl )
8
Z(Pigwg|-]gl (GL)
=]

making the left hand side of Eq. (3.1.9.9) a diagonal matrix and this results in a set of de-
coupled algebraic equations that are very quick to solve. The lumping approximation is
quite adequate for our graphical purposes here. The right hand side of Eq. (3.1.9.9) at the
element level becomes

8
[ oKV, hag, = Z{E _[:1 _[:1 Ok KI V0, |J|d§dnd§}h ;
a, i1
8
= 2 [Dij]e h;
i1

Each ‘j, j) member of the Dj matrix represents a column vector with x, y and z

(3.1.9.11a)

(3.1.9.12)

components as
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D}
ﬁ%]f D} (3.1.9.13)
D}
€
where
" at] o+l o+l . 1
Di=], 1, ](pi"(ker)] Ve J|dEdndg (3.1.9.14a)
s+1 a1 p+1 . 0
Djj = E IQiJ'(ka)' Veo;|T|dédndg (3.1.9.14b)
. a1 s+1 e+l 4
Di=) 1, L, ok (kK Vg¢j|J[d§dndc (3.1.9.14c)

and i,j, and Kk are the unit vectors along the x-,y-, and z-coordinates, respectively.

The integrals in Eq. (3.1.9.9) are now replaced by sums over all active elements as

J‘q)iemudQ-—)i j(piemudﬂe =i(9m) [Mi%] u; (3.1.9.15a)
Q e=l Q, e=1 ¢ ¢
J.(plk KV th—)—Z j(p,k KV,hdQ, = ZZ[ U] h; (3.1.9.15b)
e=] Q, e=1 j=1

The summations in Eqgs. (3.1.9.15) are stored for each global node i which is a member of
element e. More specifically, we solve for the nodal phasic velocity vector as

S 5bl,

e=l j=1
i ne

S ]

e=l

ice (3.1.9.16)

]
where components of the nodal phasic velocity vector (u, v,w) are

SMILITIS »I AT

e=l j=1 __e=t j=I ice (3.1.9.17a)

U Sea] S

e=l1 e=]
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Z
-2 >[i]
e=l j=l ¢ ) 1.9.17b
Wy =— iee (3.1.9.17b)
L
Y (om), M|
e

e=l]
3.1.10 Vertical Observation Well Option

In groundwater modeling it is very common to have the need to compare the computed
hydraulic (or pressure) head results with some sort of desired target values. The
difference between the computed hydraulic head (results from FACT) and their targets
values (e.g., monitoring data) is typically referred to as a residual. The magnitude and
spatial variation of the computed residuals lend guidance to the user as to how adequate
the model represents an actual groundwater system and also provides information useful
in improving that model. In FACT, when performing a flow analysis hydraulic head
residuals are computed while for a transport analysis concentration residuals are
computed. ~

The source for possible targets varies (monitoring or compliance wells, seepage faces,
streams, drainage canals, retention basins, rainfall, etc.). However, the most common and
dominant type of target comes in the form of in-situ vertical monitoring (or compliance)
well measurements (hydraulic head or contarninant concentrations). Since this type of
target (data base) is so commonplace, we have added a special feature to FACT that
allows the user to specify a list of observation wells whose target values are used to
compute residuals that are written out for viewing.

The areal and vertical locations of these observation wells are not limited to just nodal
points. They can be placed anywhere within the model domain and FACT computes a
vertically integrated average hydraulic head (or concentration) for each well based on the
3D elemental basis functions and computed nodal head values. These calculations are
performed as a post-processing step after FACT completes its calculations at a given time
step that corresponds to the user’s requested frequency.

The vertical integration performed for an observation well ranges over the well’s active
screen height (i.e., from the bottom to the top of the well screen). Since many
observation wells have their screens extending above the water table, this integration has
been limited to only that portion of the screen below the water table. It is assumed that
vadose zone contributions to the measured value taken from the well is negligible and
that the well measurement reflects an average of the property’s variation only over its
saturated zones. Also if the user specifies an observation well that extends over or into an
inactive element, the integration is limited to only those portions of the screen contained
within active elements.

Observation points can also be defined by simply specifying the top and bottom screen
elevations equal to the same location. In this case no integration is performed, only the
interpolation process is required. Observation points that coincide with node points
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(areally and vertically) are also handle; however, it may be more computationally efficient
to place them in the observation node category as input if there are a large number of
them and group statistics is not required. Note that for observation nodes (specified
through user input) only the head or concentration values are computed and written to
_standard output.

For observation wells, steady-state overall statistical quantities such as the root mean
square (rms), are also computed based on the residuals. Since such statistical quantities
are often useful in assessing a model’s accuracy in relation to a given aquifer unit, the
user can define multiple observation well groups. In practice observation wells
containing aquifer and aquitard units are generally broken up into separate groups. The
overall statistics is performed on each group separately. In many cases the rms within
one group (e.g., a single aquifer unit) will be quite different than in another group and can
be altered without significantly effecting the other’s rms. We typically see this when
aquitards significantly decouple neighboring aquifer units.

For each observation well the user must specify its areal location, the elevation of the
screen’s top and bottom, a steady-state target value, and the group this well will be
assigned to. Given this input, FACT automatically performs the following input pre-
processing:

¢ If a well is areally within a specified tolerance of either the x or y grid lines then the
well is moved such that it resides on that grid line. However, if the well is outside the
arcal extent of the mesh, then the computations for this particular well are
disregarded.

¢ If a well is vertically within a specified tolerance of a z grid surface, then the well’s
active screen elevation (top or bottom) is moved such that it coincides with that grid
surface. If the well’s screen extends beyond the mesh domain, then its screen
boundaries are adjusted such that it is confined to the mesh domain. In addition, the
top elevation of the screen is not allowed to exceed the water table (if one exists).

e Only the active elements spanned by the active portion of the well screen are
computed, stored, and written out to standard output.

The above pre-processing sequence is performed sequentially on each user-specified
observation well. For steady-state simulations: (1) the observation well statistics file is
written and (2) individual observation well residuals and target values are written to
Tecplot™ zones within each observation well group. For transient simulations, the
simulation time and computed screen-average values are written to Tecplot™ zones
within each observation well group. Only those wells contained within active elements
contribute to each group’s overall statistics.

For each observation well the actual integration being performed within FACT is based
upon the following assumptions. In general, the average value of a fluid property
contained within a vertical segment of porous media can be computed from the volume
integrals:
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p==£ (3.1.10.1)
Idn
Q

For the observation wells it is assumed that their areal extent is negligible when compared
to element spacing and can therefore be approximated as vertical lines with zero areal
area. Also the limits of integration are confined to only the saturated zones (i.e., excludes
the vadose zone where water saturation is less than unity). Imposing these
restrictions/assumptions on Eq. (3.1.10.1) results in the simpler expression

zl.l T
J‘ ppe odz

ﬁz_ﬂawsr___ (3.1.10.2)

Zyupper
j dz
Z

lower

where the spatial variation of the fluid property over the vertical extent is based on the
same basis functions employed in the Galerkin procedures and can be expressed as

p=2<r>i (xs,yB,Z))i (3.1.10.3)

and
y APRR— upper elevation of well screen (not to exceed water table or
domain)
Zigwer woreereesees lower elevation of well screen (limited to bottom elevation of
domain)
'+ SR computed fluid property (head or concentration) within domain
[ 2R average fluid property (head or concentration) over well screen

©; (xB, ¥ z) basis function evaluated at the areal location of the well

(xB, YB) .......... areal location specified for given observation well

The actual integration is performed over each active element the well spans and then each
elemental contribution is summed resuling in the compuied average property value for
the well. Given the steady-state target value, a residual for each well is computed by

RE _hE -
of ={Me by flowanalysis =y o (3.1.10.4)
¢ —cf  transport analysis

€l eererrereiniiiris computed residual for k’th observation well of g’th well group
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XE .................. computed screen average value (x = h or ¢) for k’th observation
well of g’th well group
X§ s target value (x = h or ¢) for k’th observation well of g'th well
group

For a steady-state simulation, several statistical parameters are computed for each well
group based on the above computed residual values. For each well group the following
parameters are computed by

¢ Root-mean-square (rms) error:

1
* Average error: — E el
g
k

g
€k

1

* Average absolute error: — E
8

k

¢ Maximum error: max (ef

1<k<n g

In addition, an overall (all groups included) rms is computed by

e Overall root-mean-square error: Jﬁ E N, rms,
g
4 g

3.2 Numerical Techniques for Variably Saturated Solute Transport

Numerical approximations of the solute transport equation (for a binary system) are
performed in a similar manner to those of the groundwater flow equations. However,
special consideration must be given to the numerical solution of this partial differential
equation (PDE) when the first-order terms become significant (i.e., when the problem of
interest is advection-dominated). It is well documented that numerical solutions to this
equation are characterized by oscillations when the advection (convection) term is
dominant. As a means of alleviating this numerical difficulty at the cost of smearing the
solution profile, the traditional numerically symmetric techniques are modified to account
for the fact that the advective process is inherently directional and one-sided in nature.
One such modification known as upstream weighting, is well known when applied to
finite difference schemes and has been extended to Galerkin-like finite element
formulations by numerous authors (e.g., Huyakorn (1977, 1979) - Upstream-weighted
residual method, Heinrich and Zienkiewicz (1977) - Petrov-Galerkin method, and Hughes
and Brooks (1979) - Quadrature upwind method). Shapiro and Pinder (1979) applied a
similar methodology to the finite element orthogonal collocation method through the use
of an asymmetric basis function. Pinder and Shapirc (1981) also investigated the
propagation characteristics of several of these modified schemes employing Fourier series
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analysis. The Fourier series analysis provides quantitative insight into the role each
upstream weighting method plays in the solution of this type of PDE.

Regardless of which numerical scheme that is chosen, the issue as to how to address the
problem of excessive oscillations remains. There are basically two philosophies for
solving the problem of excessive oscillations in the solution. Gresho and Lee (1979)
argue that the oscillations tell the analyst that the model is somehow inadequate. In some
important region the mesh is not refined enough, the boundary conditions are
inappropriate, or the problem is simply too hard due to the parameter choices. If one
employs an upwinding scheme, then both the solution and the physics are smoothed, and
isolating ‘the specific cause becomes difficult. They also point out that the traditional
limitation on cell Peclet number is really a limitation on the product of the cell Peclet
number times concentration gradient of the solution, since the cell Peclet number limit
can be significantly exceeded without disasrous consequences provided the solution is not
steep at the same location. They further point out that the mass matrix should not be
lumped because that causes excessive phase errors (phase lag) and may further smooth
the solution in time more than desired.

In contrast, Brooks and Hughes (1982) argue that central-difference (typical Bubnov-
Galerkin formulations) methods provide under-diffusion (under-dispersion) while upwind
methods provide over-diffusion, and the optimal method is one that combines the two
ideas to provide just the right amount of diffusion to dampen the oscillations but not to
change the solution (similar comments can be applied to finite difference and volume
methods as well). They prefer to establish mesh refinement based upoen other means, and
not to depend on a "wiggle signal” to identify them.

The approach currently taken in FACT is to allow the user the option of specifying what
level of upstream weighting is appropriate. A Petrov-Galerkin scheme is used where the
magnitude of these weighting factors are user inputted or automatic weighting based upon
optimum choices of these weighting factors at the element level. The optimal choice of
weighting parameter is optimized for Courant number less than one. For sufficiently low
flow rates no asymmetrical (biasing) weighting (the Bubnov-Galerkin formulation) is
used. The current technique works quite well for many transport problems of interest in
groundwater systems and is reasonably efficient in terms of overall computational effort.
However, the user has the burden of determining what constituents an acceptable solution
when faced with oscillatory behavior.

3.2.1 Upstream-Weighted Residual Formulation

To overcome/minimize the above mentioned (potential) numerical oscillations, FACT
utilizes a simplified form of an upstream-weighted residual Petrov-Galerkin finite
element method. In this technique, the weighted residual integral equations are obtained
using asymmetric (upstream) weighting (test) functions (Pepper and Stephenson, 1995) to
weight certain terms of the transport equation, and the standard basis (trial) functions to
weight the remaining terms. The standard (symmetrical) basis functions are employed for
approximating the dependent variable over each finite element. The choice as to which
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terms in the PDE are to be upstream-weighted results in three basic variants: (1) all terms
in the transport equation, (2) only spatial derivative terms (i.e., the total flux terms), and
(3) only the first spatial derivative terms (i.e., the advective flux terms).

In FACT the third variant is chosen. Investigations by Pinder and Shapiro (1981) (error
analyses) suggest that the third approach out performs the first approach. When the
asymmetric weighting functions chosen are applied to the dispersive terms (as in the
second variant), to obtain satisfactory solutions it was necessary to evaluate the multi-
dimensional weighting functions and their derivatives setting certain weighting factors to
zero (i.e., those factors in the transverse directions; see Huyakorn, P.S. and G.R. Pinder,
1983, pp. 208). It can be shown that by setting these weighting factors to zero is
equivalent to making the original choice of the third variant. Since the second variant
must ultimately be reduced to the more direct third variant to achieve satisfactory
solutions, we shall limit ourselves to the third variant and describe its derivation below.

Equation (2.2.28) is solved by the upstream-weighted residual finite element method. In
this procedure, the solute concentration function is approximated as a finite linear
combination of symmetric basis (trial) functions of the form

clx,t)= icpJ (xk; () (B.2.1.1)

where (pJ(x) and cJ(t) are the basis functions and the nodal values of solute

concentration at time t, respectively, np is the number of nodes in the finite element
network. Note that the basis functions supply local support only (i.e., the basis function
for any given node is non-zero only over those neighboring elements in contact with that
node). The weighted residual integral equations are obtained by choosing weighting
functions that are asymmetrical with respect to flow direction (i.e., upstream weighted),
Wy (x,U), for the advective flux terms and symmetrical (i.e., standard trial functions),

@) (x), for the remaining terms.

Rearranging and applying the upstream-weighted residual criterion to Eq. (2.2.28) yields

J-‘P]{BmR%+ 0, (R?\.r +Am ): +q(c —c' )— V. (DVc)}dQ
2 (3.2.1.2)
+Iw[{U-Vc}iQ:0 for 1=12,...,np

Q

Since we shall choose C° continuous basis and weighting functions, ¢; and wyy, the

dispersion integral is evaluated by applying the divergence theorem (actually, Green’s first
identity, the multidimensional equivalent of integration by parts) to obtain
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J.(Piv ' (DVC)jQ = IV ' (‘PIDVC)jQ - _[V(PI ' (DVC}}Q
Q Q Q
=I(p[n-(DVc):lc5—J‘V(pI -(DVc):lQ (3.2.1.3)

c Q
= _I(PI (“ “Ja )jU_JAV(PI ‘ (DVC}iQ
o Q

where Q is the solution domain with boundary ¢, and the dispersive flux is j, =-DVc.

Substituting Egs. (3.2.1.1) and (3.2.1.3) into (3.2.1.2) gives the expression

np
j(emR)pl(deQ < +2 J.em(RA'r + Ao J1950Q ¢
I=1 |

dt
=l o
J[V(pl DV, +y,U-Vo hole,  (32.14)

np
+Z j(q)pIQJdQ cy+
= o = |9
-_-J.(qc*}pIdQ+ J (in Jods for 1=12,...,np
g

Q

np

np

where the normal component of the dispersive flux (incoming is positive by convention)
is j,=-n-j,.

Equation (3.2.1.4) can be written in the more concise form

d
By %‘*‘ [EIJ +Gy +PIJ]CJ =R, I=12,...,np (3.2.1.5)
where
By, =J.(0mR)p[(p,dQ (3.2.1.62) -
Q
Ey =J[V(p1 DV, +y,U -V, iQ (3.2.1.6b)
Q
Gy = Iem RA, + 2, Jp10,dQ (3.2.1.6¢)
Q
P, = J (@)p0d02 (3.2.1.6d)
Q

R = i(qc* }o;dﬂ+£(jn Joido (3.2.1.6¢)
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The set of time-dependent linear ordinary differential equations defined by Eq (3.2.1.4)
can also be presented in its equivalent vector form as

B%+[E+G+P]c=F (3.2.1.7)

where

J storage (capacitance or mass) matrix

E .o advection-dispersion matrix

G o radioactive and first-order decay matrix

Poeees source/sink matrix

F o RHS forcing function vector

T T solute (contaminant) concentration vector

 oereeeeneeeiinaenns time

Equation (3.2.1.7) represents the upstream-weighted residual Petrov-Galerkin
approximation to Eq. (2.2.28) and sometimes is referred to as the upstream-weighted
residual Weak Statement to Eq. (2.2.28). This equation set applies to the global set of
nodes contained within the mesh (including boundary nodes). Most of these global
matrices and vectors are generated during an assemblage process whereby the creation of
their elemental counter-parts are stuffed into their appropriate locations in the global
matrices and vectors. For convenience, those terms containing point sources/sinks and
boundary conditions are handled globally (i.e., the elemental assemblage process is
bypassed and global quantities are created directly).

The elemental assemblage process mentioned above can be described as a summation of
individual elemental matrices (over the number of elements within the mesh; excluding
all inactive elements) into a single global matrix where the connectivity matrix of the
finite element mesh is employed (i.e., local node numbers within a specific element are
associated with specific global node numbers). Assume that the elemental matrices are 8
by 8 matrices whose (64) non-zero members represent those locations where a connection
between the global nodes ig and jg (i.e., neighboring nodes) exits. For example, the
global storage matrix then becomes

B =ZBe (3.2.1.8)
e=]
where
B . np by np global storage matrix
B 8 by 8 elemental storage matrix
NE ccvrrerrrerenes number of elements within finite element mesh

The sign convection for }j,, is the same as for q. That is, j, is positive for net inward
dispersive transport and negative for net outward dispersive transport. F; represents all
sources, sinks, and other boundary conditions. The global coefficient matrices Byj, Eyj,
Gy, Pyj, and F are assembled as a sum of the element matrices for a general eight-noded
constrained hexahedron or rectangular prism element. For those sources/sinks that




WESTINGHOUSE SAVANNAH RIVER COMPANY Manual: WSRC-TR-99-00282

Section: 3,Rev.
Date: 3/2000
FACT CODE MANUAL Page: 62 of 108

coincide with node locations, the elemental assemblage process for Py and Fy can be
omitted and these terms can then be created and inserted directly into the global equation
set.

Influence coefficient techniques presented by Huyakorn et al. (1984) and Huyakorn el al.
(1986) for linear basis functions along the coordinate axis, can be effectively used for
assembling eight-noded rectangular prism elements in order to avoid costly numerical
integration of each of the elemental matrices. Two-point Gauss-Legendre quadrature is
also available for integration of the elemental matrices. The advection-dispersion
coefficients provide the appropriate connectivity for transport between nodes of the
element.

For the eight-noded constrained hexahedron or rectangular prism element, internal nodes
within the mesh consist of a maximum of 27 nearest nodal neighbors (including itself).
The dispersion "influence coefficient matrices” for the eight-noded rectangular prism
element are provided by Huyakorn et al. (1986a) (note that the general seepage influence
coefficient matrices presented in Huyakorn et al. (1986a) apply to dispersion as well). A
consistent mass matrix approach is used for the eight-noded constrained hexahedron to
rectangular prism element.

The transport equation is solved on the same geometric grid (and element type) as used
for the flow equation. The basis (trial) functions chosen are the same linear functions
employed for flow modeling and presented in Section 3.1.2 with the exception of the
asymmetric weighting functions applied to the advection matrix. These three-
dimensional basis functions are the result of a triple product of one-dimensional linear
basis functions (sometimes referred to as 1-D linear Chapeau functions or hat functions)
in each of the coordinate directions. Therefore, all the properties presented for the basis
functions in Section 3.1.2 apply for the transport formulations.

3.2.2 Eight-noded Constrained Hexahedron Element

For the upstream-weighted residual finite element method, the weighting (test) functions
are not in general equivalent to the symmetric basis functions. The chosen 1-D weighting
functions represent the sum of a symmetric part (i.e., the original 1-D basis functions) and
an asymmetric part which is a function of the dot product of the Darcy velocity and the
gradient of the shape function. For linear 1-D isoparametric finite elements, the
expressions of these asymmetric weighting functions and the general procedure for
obtaining the sign of upstreamn parameters have been presented elsewhere (Huyakom,
1977). For completeness, we shall summarize those features of the 1-D weighting
functions of interest here and then extend them to our 3-D element.




WESTINGHOUSE SAVANNAH RIVER COMPANY Manuai: WSRC-TR-99-00282

Section: 3, Rev. 0
Date: 3/2000
FACT CODE MANUAL Page: 63 of 108
5 <& . >3
z( %) |
6 7 H
I
I 4
y(n) —_ = = =
— 1
P /
~ |
2
X(E) 3

Fig. 3.2.1. Eight-noded Trilinear Hexahedron Element Showing Node Numbering in
Local and Global Coordinate Systems.

3.2.3 1-D Asymmetric Weighting Functions

Consider two 1-D coordinate systems, a local isoparametric (£) system and a global
Cartesian system (x) that are co-linear. The one-dimensional line elements in (x) are
mapped onto a standard length element in local coordinates (size AE=2) as shown in Fig.
3.2.2. Furthermore, let the local element in (§) be such that its end points are located at
1.

-4 h >
- X i 1 2
'o > o] o , 2 »—o0
X=X; X=X &1 &0 &=+
global coordinates local coordinates

Fig.3.2.2.  Linear Line Element Showing Node Numbering in Local and Global
Coordinate Systems.

A Petrov-Galerkin scheme (Brueckner and Heinrich, 1991; Yu and Heinrich, 1986) is
used to generate a weighting function v; which is different from the shape function ;.
In 1-D the weighting functions are given by

_ OAX de;
v (%)= i (x )+ o1 (3.23.1)
where
(o linear basis function
O cociiireennenens parameter obtained for each element as a function of the cell Peclet
number, 0<a <1
AX e length of the element

The 1-D asymmetric weighting functions in local coordinates become
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wi(§)= 0 (§)+9tig£g£&=%[l+§i{i+asgn(ljx)}] (3.2.32)

where sgn(Ux )-—- Ux/

UK

, & =—1and £, =+1.

In order to establish numerical stability with a minimum lost of accuracy (i.e., reduce and
perhaps eliminate solution wiggles without significantly smearing out local solution
gradients), the value of o must be carefully chosen. An optimum value of o can be
estimated based on the analytical solution from steady-state 1-D solute transport through
a media with constant properties. Taking the 1-D form of Eq. (2.2.28) and assuming

e steady-state

¢ 1o point or line sources/sinks
e constant material properties
* no radicactive decay

e no first-order reactions

¢ no solid phase absorption

results in
d? d
DL —-~u,—~=0 for 0Sx<L (3.2.33)
dx dx
where
Dy longitudinal dispersion coefficient, oty u,
Uy eronrrinnninins phasic water velocity

and the boundary conditions are
cf0)=0 and clL)=1 (3.2.3.9)
Rearranging and integrating both sides of Eq. (3.2.3.3) as

I}g?"; =j;’; dx (3.2.3.5)
dx
yields

u,.x

X

ln[fi—(i): Pe, +c; where Pe, = (3.2.3.6)

dx
4 L

Taking the exponential of both sides of Eq. (3.2.3.6) gives
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E=czepe" (3.2.3.7
dx
Perfoming the final integrations of Eq. (3.2.3.7) yields
c(x): ¢y —Biepe" +¢q (3.2.3.8)

L

Applying the first boundary condition, c(0) = 0, to Eq. (3.2.3.8) gives

¢y ==, I“)" (3.2.3.9a)
L

Applying the second boundary condition, ¢(L) = 1, results in
D !
u X cPCL — 1

cy (3.2.3.9b)

Substituting Eqs. (3.2.3.9) into (3.2.3.8) gives the exact solution of this problem as

Pe
e -1
clx )= (3.2.3.10)

Performing numerical results from an uniform mesh and computing its error using Eq.
(3.2.3.10), a parametric study (varying the value of o) can be performed to locate the
optimum o value (minimum error for a given local cell Peclet number). It can be shown
that for each value of cell Peclet number tested, there exists an optimum value of o where
complete accuracy can be achieved. An expression for this optimum o value was
theoretically derived by Christie et. al. and can be written in the form

Pe }— 2 where Pe,, = uyAx

Clop = coﬂ{ (3.2.3.11)

where for our purposes the cell Peclet number corresponds to the local elemental value
(i.e. local phasic velocity, mesh spacing, and dispersion coefficient). The non-
dimensional parameter in Eq. (3.2.3.11) is optimal in the sense that the exact solution is
obtained at the nodes when using this value, provided the Peclet number is constant and a
uniform mesh size is used. It can be demonstrated that use of Eq. (3.2.3.11) overcomes,
to a large extent, the problem of accuracy loss inherent in the upwinding process Indeed,
accurate solutions can be obtained at high values of Peclet number using relatively coarse
meshes.

Pe
J Ax

Under transient conditions, Eq. (3.2.3.11) can still be applied. But, excessive dispersion
may be experienced. To circumvent this problem, it is desirable to derive an optimal
parameter ¢ for the unsteady convective diffusive equation that is a function of cell Peclet
and Courant numbers. An upwind finite element scheme using Petrov-Galerkin
asymmetric weighting functions (Eq. 3.2.3.1) has been developed for FACT for cell
Courant numbers less than one.
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To select an optimal upwind parameter, comparisons between analytical and numerical
transient one-dimensional concentration profiles are made. The one-dimensional
unsteady advection-dispersion equation with a unit step change in concentration is solved

d% de dc

—_——u, —=— 32312

Lax2 Xdx dt ( )
The boundary and initial conditions are given by
0,t)=1 t=0

0.0 $ (3.2.3.13a)
cloo,t)=0 20

clx,0)=0 x=20 IC (3.2.3.13b)

The analytic solution to Eq. (3.2.3.12) for these condtions is (Ogata and Banks, 1961)

1 X—u,t u, X X+u,t
clx,t)=—} erfc X |+exp| —2— prfc X (3.2.3.14)
( ) 2 2,/DLt F{DL} 2,/Dyt

Equation (3.2.3.14) may be expressed in dimensionless form as

c(Pex,tr)=% erfc [1::" }l—tr) +exp(Pex)=:rfc [1:" }1+tr) (3.2.3.15)

r T

where Pe, =u,x/D; and t, =u,t/x.

The General Particle Tracking Model in 3-dimensions (GPT3) developed by
Hydrogeologic, Inc was modified to include the 1-D Petrov-Galerkin weighting functions.
GPT3 has the option to perform one-dimensional unsteady transport. The modified
GPT3 and FACT numerically solved the same transport equation in one-dimension.
Therefore, this version of GPT3 was used as the numerical solver to derive the optimal
upwind parameter for Courant number less than one.

The test problem considered is that of one-dimensional, saturated, unsteady contaminant
transport in a steady uniform flow field. Values of the basic physical parameters used in
the GPT3 simulations are presented in Table 3.2.3.1. The grid chosen consists of 501
rectangular elements uniformly sized (2 ft in length) and stacked along the x-axis. At the
column inlet boundary (left face) a first-type Dirichlet boundary condition, c(O, t)= 1.0, is
applied to the solute concentration at the two nodes. Due to the finite overall length of
our mesh, at the outflow boundary (right face) the dispersive flux is set to zero, while the
advective flux is calculated as part of the solution. Since this is a 1-D problem, solute
concentrations do not exist in the transverse direction (y direction). Therefore, the
dispersive fluxes along these two faces (top and bottom) are set to zero. The column is
modeled as being fully saturated at a water content of 0.25 (total porosity of 0.25). For
each simulation a transient calculation was performed for 200 days utilizing 400 time
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steps of 0.50 days. The mesh spacing and time step size were chosen to keep the cell
Courant numbers equal to 1. The longitunidal dispersivity was varied to produce cell
Peclet numbers from 5 to 100000. Computed column concentration profile for each
GPT3 simulation were stored every 10 days.

Table 3.2. Input and Key Computed Parameters for GPT3 Simulations

Physical parameters Value
Darcy velocity, U, 1.0 ft/day
Water saturation, S, 1.0
Total porosity , ¢ 0.25
Longitudinal dispersivity, Ol 0.4 to 0.00002
Retardation coefficient, R 1.0
Retardation coefficient, R 1.0
First-order decay coefficient, A 0.0 day™'
Boundary solute concentration, C(O, t) 1.0
Grid specifics
Element length, X 2.0ft
Element length, dy 10.0 ft
Number nodes in x-direction 501
Number nodes in y-direction 2
Time steps
Time duration 200 days
number time-steps 400
time-step size, Ot 0.5 day
Key computed parameters
Phasic velocity, 0, 4.0 ft/day
Dispersion coefficient, Dy 1.6 to 0.00008
Cell Peclet number, Pe, 5 to 100,000
Cell Courant number, Co, 1.0

The methodology by Ramakrishnan (1979) was used to derive the optimal upwind
parameter for the Petrov-Galerkin finite element scheme in FACT. The results by the
finite element method (GPT3) for each run (fixed o, Pe and t) is compared with the
analytical solution for the computation of errors and the presence of overshooting.

A simple measure of the error involved in the upwinding procedure is necessary. The
analytical solution, Eq. (3.2.3.14), is programmed to give very accurate values for various
ranges of the parameters u, and D, and the variables x and t. Thus the quantity
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Efo, t)= \/% LL bl t)-c. e.c)fae (3.2.3.16)

is taken as a measure of the root-mean-square (rms) numerical error. C(&,t) is the
numerical solution obtained by the finite element method and ce(ﬁ,t) is the analytic
(exact) solution obtained by Eq. (3.2.3.14). The integrated error, Eq (3.2.3.16), is
computed from t = 0 to 200 days, every 10 days for each finite element simulation. The
optimal choice of upwind parameter for fixed Pe must satisfy the restriction imposed on
the integrated error as

max Elo,,,.t)<1.03 3.2.3.17

0<t<200 o) ( )
A second measure is used to quantify the extent of overshoot both upstream and
downstream of the concentration front. The maximum ratio of the crest and trough
values of the magnitude of concentration is limited to lie below a specified value. A
limiting ratio of r, =1.001 was used. This is the same value used by Ramakrishnan.

Thus, the optimal choice of upwind parameter for fixed Pe must also satisfy the
restriction imposed on overshoot as

r=c./c,£1.001 0<t<200 (3.2.3.18)

where c. is the magnitude of concentration at the crest and c; is the magnitude of the
concentration at the trough.

Table 3.3 is a summary of the optimal upwind parameter as a function of Peclet number
for Courant number equal to one. The computed overshoot ratio and the integrated error
at 200 days is also tabulated.

Table 3.3. Optimal Upwind Parameters as a Function of Peclet Number

Pe Olopt r | E(0,200)
5 0.000 1.00011 0.03419
7 0.000 1.00898 0.02542
8 0.030 1.00991 0.02492
9 0.060 1.00952 0.02511
10 0.080 1.00991 0.02492
12 0.120 1.00875 0.02550
14 0.140 1.00939 0.02517
16 0.160 1.00911 0.02535
18 0.170 1.00976 0.02502

20 0.180 1.00991 0.02492

24 0.200 1.00938 (.02521
28 0.210 1.00965 0.02504

40 0.230 1.00991 0.02492
50 0.240 1.00991 0.02492
60 0.250 1.00937 0.02521
80 0.255 1.00991 0.02492

100 0.260 1.00991 0.02492
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Pe Olgpt r E(c,200)
150 0.267 1.00989 0.02494
200 0.270 1.00991 0.02492
300 0.274 1.00978 0.02497
400 0.275 1.00991 0.02492
500 0.276 1.00991 0.02492
1000 0.278 1.00991 0.02492
2000 (.280 1.00977 0.02500
4000 0.280 1.00979 0.02496
10000 0.280 1.00990 (0.02493
100000 0.280 1.00991 0.02492
A maximum likelihood fit of the optimal upwind parameters in Table 3.3 is
0 PeAx <7
Clopy = a(PeAx =7 Pey, >7 a=0.04016,b=2a/0.28 (3.2.3.19)
1+blPep, —7

where Pe,, =u,Ax/D; . The shape of Eq. (3.2.3.19) is shown in Fig. 3.2.3.
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Fig. 3.2.3. Optimal Weighting Factor for the One-Dimensional Unsteady Convection-
Diffusion Equation using Petrov-Galerkin Weighting Functions.

3.24 3-D Asymmetric Weighting Functions

In Section 3.2.3 we described the 1-D weighting functions.

In this section we shall

extend these weighting functions to the constrained hexahedron or rectangular prism

elements (see Section 3.1.2 for more details).

The Petrov-Galerkin scheme can be
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formulated in a way similar to the one-dimensional case if trilinear shape functions are
used, i.e.,

oh, -
v = +5|F(UTJ IV;;(pi] (3.24.1)

where \U' = \ﬁ i + Uf, + U% is the magnitude of the Darcy velocity vector at the element

centroid and h, is a length scale given for a general trilinear hexahedron element as

he =|hy|+[ng| +|hs| (3.2.4.2)
with
h, =|le—|(Uxh¢x + U hg + Uzhgz) (3.2.4.3a)
h, =|%l(Uthx +Uyhy, +Uzhnz) (3.2.4.3b)
hs =|—I1J|-(U,(hf;x + Uy, +Uzh§z) (3.2.4.3c)
and
1< I
hex =5 D Gixis hgy =0, hg =7k (3.2.4.3)
i=l i=1
8 8
hoe =0, hopy =%2niyi, By =%Znizi (3.2.4.3¢)
i=l1 i=1
8
he, =0, hg, =0, hy, =%‘Zgizi (3.2.4.3)
i=1

The upwind parameter is provided through input or computed for each element as a
function of cell streamline Peclet number as

0 PCSI <7
a(Pesl —7) Pe >7
l+biPesl ‘"7’

o a=0.04016,b=2a/0.28 (3.2.4.4)

opt —

where the cell streamline Peclet number is computed as Peg = |U|he / D,.

The diffusion coefficient D, is an effective diffusion in the direction of the local Darcy
velocity vector and is calculated using the components of D as
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u'DuU
De=— 7" (3.2.4.5)
Y

The Petrov-Galerkin weighting functions in Eq. (3.2.4.1) have the effect of introducing a
form of anisotropic balancing diffusion into the numerical scheme which acts along the
local streamline.

3.2.5 Transport Equation Elemental Matrix Computation

The elemental matrices Bjj, Ejj, Gjj, Pyj, and vector F; resulting from the Bubnov and
Petrov-Galerkin approximations to the transport equation can be computed using
influence coefficient matrices or Gauss-Legendre quadrature for the rectangular prism or
constrained hexahedron element, respectively.

3.2.5.1 The Elemental Storage (Capacitance) Matrix

From Eq. (3.2.1.6a) the expression for the elemental storage coefficient matrix is obtained
as

By = I(emR)(pi(pdee (3.2.5.1)
Q

(=3

where (BmR> is the centroidal value of O R, 6,, is the mobile water content, and R is

the retardation coefficient. Transforming the storage matrix, Bj;, from global to local
coordinates yields

By = <9mR)Mij (3.2.5.2)

where

M;; =j:]j:1 f} 1cpiq>J-|J|d§dnclc (3.2.5.3)

is the familiar consistent mass matrix.

One can (row sum) lump the mass matrix M by adding all elements in each row of M and
putting the sum on the diagonal. This is done in many algorithms (e.g., in fully explicit
routines) to take advantage of the computational speedup available (effectively de-
coupling the equation set). However, based on error analysis it has been shown that mass
lumping of Eq. (3.2.5.3) can degrade the solution. Therefore, in general mass lumping of
the solute transport equations is not recommended and in our case no off-setting
improvement in computational efficiency exist to warrant it. Therefore, the current
version of FACT does not give the user a lumping option.

The consistent mass matrix is computed using influence coefficient matrices or two-point
Gauss-Legendre quadrature. The elemental mass matrix of the rectangular prism element
can be evaluated using influence coefficient matrices as
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fmH
Mij = Tmu (3.254)
where
ZaZZ aZZ
— I
m; --~27|i g~ — (3.2.5.5)
a 2a

The a** matrix has already been computed in Eq. (3.1.5.18c¢) for the element seepage
matrix for flow.

For the constrained hexahedron element, the consistent mass matrix is computed using
two-point Gauss-Legendre quadrature as

8
M= Y oFgfwll,| (32.5.6)
g=1
3.2.5.2 The Elemental Advection-Dispersion Matrix

From Eq. (3.2.1.6b) the expression for the elemental advection-dispersion coefficient
matrix is obtained as

Ey = I{Vx‘Pi DV, 0;+y;U-V, ¢ }lﬂe (3.2.5.7)
Qe

where the components of the elemental dispersion tensor, D, and elemental Darcy
velocity vector, U, are specified with respect to the global coordinate system.
Transforming the advection-dispersion matrix, E;;; from a global to local coordinate
system yields

where
+1 p+1 @+l 1 T 1
EDij=L J'_I L [J Vg(pi] D[J Vgcpj\JJ|d§dndg (3.2.5.8b)
+1 a+1 atl i
EUij:J_l -L ’ quU-(J Vg(pj ]J|dE_,dndC (3.2.5.8¢c)

Substituting the expression for the 3-D asymmetric weighting functions from Eq.
(3.2.4.1) in (3.2.5.8¢) yields
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1 1 1
Ey; =J:: J: J: (PiU'[J“]Vg(Pj JJIdE.»dTIdC
(3.2.5.8d)

ah 1 1 1
+ errru( -y -)U-[“V -]ddd
o L L IV U J7'Veo; [I]dedndg

Equations (3.2.5.8b) and (3.2.5.8d) represent the dispersive and advective components,
respectively. Note that Ep is invariant with respect to coordinate transformations. The
overall dispersion tensor (shown here in the global coordinate system) is symmetric

Dy ny Dy,
D=|D, D,, D, (3.2.5.9)
Dx Dzy D,,

Influence Coefficient Matrices

The dispersive component, Eq. (3.2.5.8b), of the advection-dispersion tensor can be
rearranged as

Ep; = J:lf,] El Ve )T(J" JTDJ_IVgtpj [slagdndg (3.2.5.10)

Note that the Jacobian transformation matrix, Eq. (3.1.2.4), for the rectangular prism
element is symmetric. Therefore, its inverse is also symmetric. Performing the matrix
multiplications of the inverse Jacobian matrices and the dispersion tensor within Egq.
(3.2.5.10) results in

4 4 4
#Dx mDxy WD

| T , EZ fH XZ

- -1_| 4 4 4

(J JDJ =|#Dy XDy, 4D, (3.2.5.11)
wDx Py 37Dz

We can evaluate the dispersion matrix terms by expanding the right-hand side of Egq.
(3.2.5.10) and using the determinant of the Jacobian. The resulting equation can be
written in matrix notation and the integration over the element sub-domain can be
evaluated simply by introducing centroidal approximations to the binary dispersion
coefficients (Dyx, Dyy, D7z, Dyy, Dyz, and Dy;). The resulting expression for EDij is given

by
_mH fH yy , fm
EDij _2_f<Dxx >A]);x +E<Dyy>Aij +EE<DZZ)A%Z (325.12)

H m £
+-5(ny )A;;.y +2{D AT +5(Dyz)Agz

where the quantities in angle brackets correspond to centroidal component values of the

dispersion tensor within an element; while A, AY, A%, AY, AX

YZ
ij oo NG A A ij » andAZ" are
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influence coefficient matrices with matrix elements computed in Eqs. (3.1.5.16a) to
(3.1.5.16f)

The Darcy velocity vector (shown here in the global coordinate system) is
u=lu, u, u,|” (3.2.5.13)

Performing the matrix multiplication of the Darcy velocity vector, the inverse of the
Jacobian and the gradient of the shape function in Eq. (3.2.5.8d) results in

UV, =%<Ux)(pi,§ +%<Uy>q)m +%(Uz)q>i,§ (3.2.5.14)

We can evaluate the advection matrix terms by expanding the right-hand side of Eq.
(3.2.5.8d) and using the determinant of the Jacobian. The resulting equation can be
written in matrix notation and the integration over the element sub-domain can be
evaluated simply by introducing centroidal approximations to the Darcy velocity
components (Uy, Uy, and Uy). The resulting expression for Ey i is given by

BG PG
EUij =(EUij] +[EUij) (3.2.5.15)

where BG represents the Bubnov-Galerkin component and PG the Petrov-Galerkin
component of the element advection matrix. The Bubnov-Galerkin term is computed as

BG mH /H y /m
(s | =Ty S0 o+ p{oaey ea2si0

where the quantities in angle brackets correspond to centroidal component values of the
VX

ij
coefficient matrices with matrix components computed as

Darcy velocity vector within an element; while Ei*, E;7 and Ej* are influence

e+l o1 ptl

B = 9;0;£d&dndg (3.2.5.17a)
d—] t—-] '—]
a1 oA+l el

E;Y = 9;9; ndEdNdE (3.2.5.17b)
] o—] J-]
r+1 at+l p+l

Ej" = ¢;0;d&dndg (3.2.5.17¢c)
=] J-1 4]

Substituting the expressions for the derivatives of the basis functions from Eqs. (3.1.2.3)
into Egs. (3.2.5.17) and performing the triple integration for each matrix element yields

VX vx vy vy
Eroll2 € | pu_1 Ze” | e (3.2.5.18a,b)
e'* | 2e¥X 18
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_ vZ YZ
E”=1|=5 5 (3.2.5.18¢)
_eVZ eVZ
where
(-2 2 1 -1] [—2 -1 1 2]
-2 2 1 -1 -1 -2 2 1
e = eV = (3.2.5.19a,b)
-1 1 2 =2 -1 -2 2 1
-1 1 2 =2 -2 -1 1 ZJ
(4 2 1 2]
2 4 2 1
e'“ =a%” = (3.2.5.19¢)
1 2 4 2
21 2 4

Note that each influence coefficient matrix is an 8 x 8 matrix partitioned into four (4 x 4)
submatrices and that these integrals have been verified by evaluation of each using
Mathematica™. As can be seen submatrices of any individual influence matrix differ
from one another by a constant multiple. Furthermore, the submatrices are easy to
evaluate and require virtually no computational effort.

The Petrov-Galerkin term is computed when the upwind parameter, o, is greater than
zero. The Petrov-Galerkin term is computed as

PG gh, |mH 2\ . xx  fH yy /m 2\ 72
[Evij] =0l 22 (Ux>“‘ij *ﬁ” )A *?ﬁ(“)""ﬁ

H m ¢
+E<Uny>Ai’;y +?<UXUZ)A§Z +E(UYUZ>A3§Z}

(3.2.5.20)

where the quantities in angle brackets correspond to centroidal component products of the

Darcy velocity vector within an element; while Al’;" , Al’J’y, AEZ, A"y A,’jz , and A”z are

influence coefficient matrices with matrix elements computed in Egs. (3.1.5.16a) to
(3.1.5.16f)

Two-point Gauss-Legendre Quadrature

For the constrained trilinear hexahedron element, the components of the advection-
dispersion elemental matrix is computed as

8 T |
EDiFZ[J"glV%‘Pi] [ lng’J)W ,J ' (3.2.5.21a)

g=1
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BG : T 1
(EUij) =E<PigU (J'ngcpj)wgngl (3.2.5.21b)
g=l

PG_ahe8 Tf y-1gg T 7-1y7g
(EUij] —2|—U;U [Jngcpi}U [nggtpj]wg’Jg| (3:2.5.21c)

where
B evrereerenieineas number of the Gauss
PF s local shape function evaluated at the g™ Gauss point
V% ................. local gradient operator evaluated at the g™ Gauss point
J g] creereeeneranns inverse Jacobian matrix evaluated at the g™ Gauss point
iJ g‘ ................ determinant of the Jacobian matrix at the g™ Gauss point
Wi rorenrerminnens weight of the g™ Gauss point

3.2.5.3 The Elemental Radioactive and First-Order Decay Matrix
From Eq. (3.2.1.6¢) the expression for the elemental radioactive and first-order decay
storage matrix is obtained as
Gy = J'em(m,, + A J0i01092, (3.2.5.22)
Q

1

where 0 is the mobile water content, R is the retardation coefficient, A, is the
radioactive decay constant and A, is the first-order decay constant. Transforming the

element radioactive and first-order decay matrix, G;;, from global to local coordinates
yields

Gy = (0RA, M + (O hm M (3.2.5.23)

where ( ) represent centroidal values and

+1 a1 pt]
M;; = lﬁﬁwi¢j|J|d§dndC (3.2.5.24)

is the familiar consistent mass matrix. Note that from Eq. (3.2.5.23), radioactivity and
first-order decay are handled as uniformly distributed sinks within each element.

The consistent mass matrix is computed using influence coefficient matrices or two-point
Gauss-Legendre quadrature. The elemental mass matrix of the rectangular prism element
can be evaluated using influence coefficient matrices as
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fmH
where
ZaZZ aZZ
m;; === ——| - (3.2.5.26)
a 2a

The a** matrix has already been computed in Eq. (3.1.5.18c) for the element scepage
matrix for flow.

For the constrained hexahedron element, the consistent mass matrix is computed using
two-point Gauss-Legendre quadrature as

8
M;; = 2<pig<p§wg‘.l g‘ (3.2.5.27)
g=1

3.2.5.4 The Elemental and Global Source/Sink Matrix

If sources or sinks are present within the domain, the source/sink terms, q, in Egs.
{(3.2.1.6) depend on the type of source/sink function assumed. The source/sink term
matrix and the RHS forcing function vector, Egs. (3.2.1.6d,e), can also be evaluated in a
- simple manner: however, we must decide how the flow rate q is distributed over each
element. In the current version of FACT it is assumed that q represents a point
source/sink that resides at a global node location (line sources/sinks can also be handled
by the appropriate allocation of source strength to each global node in contact with the
line source). From the viewpoint of the flow equation, how point (or line) sources/sinks
are handled in FACT is discussed in Sections 3.1.5 and 3.1.6. The first term of Eq.
(3.2.1.6¢) is handled in a very similar way as was presented in Sections 3.1.5 and 3.1.6.

For cases involving point sources and/or sinks, the general expression for q is given by
Eq. (3.1.3.21). The point source/sink term matrix, Eq. (3.2.1.6d), can also be evaluated in
a simple manner. When Eq. (3.1.5.35) is used, the source/sink term in (3.1.1.6d) at the
element level becomes

P, = J.(q}pi(pjdﬂe = Iqsaét—xs):pi(pjdfle :Qﬁwi(‘éﬁ}pj(&ﬁ) (3.2.5.28)
Q. Q,

where QE is the elemental volumetric flow rate contribution of the source/sink (that is
associated with element e) distributed to each node of the element by the weight
factor ¢, (EB }pj (EB ) In FACT, the point source (or sink) is limited to node locations only.

The total volumetric flow rate at the point source/sink is the sum of the QE over each

element in contact with the particular global node located at the point source. Let the
node number where the point source exists be denoted as ig* (a global index) (and i* the
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local index), if we evaluate Eq. (3.2.5.28) for each element within the mesh (note that
only those elements in contact with this global node contribute and only one non-zero
contribution results from each elemental matrix) and assemble the global source/sink
term matrix, we obtain for an elemental matrix the members

e . ¥ —
P, = Qi 1= 'T ' for elemente (3.2.5.29)
0 i#i #]
and for the overall global matrix
i ]
Qg, 0O -~ 0
' : 0 0 .
Py=| 0 0 Qp 0 (3.2.5.30)
: 5 : .0
] 6 o0 0 0O QBnp"
where
QBig ............... total volumetric flow rate at global node ig (point source)

Thus, as expressed by Eq. (3.2.5.30), the global source/sink term matrix is a diagonal
matrix whose diagonal members are non-zero only for those nodes containing a point
source/sink.

3.2.5.5 The Elemental and Global RHS Forcing Function Vector

Next, we deal with the right-hand-side forcing function vector in Eq. (3.2.1.6e). The first
term in Eq. (3.2.1.6¢) represents a point source/sink of contaminant (i.e., mass flow rate
of contaminant) and the approach taken here is identical to that employed for a
volumetric flow point source/sink as presented in Section 3.1.5, Egs. (3.1.5.35) to
(3.1.5.37).

. . . . . * .
For the case involving a contaminant point source, the general expression for qc is

qc” = q,c Bk —x;) (3.2.5.31)
where as before
Qg eeververreneroncs elemental volumetric flow rate at source/sink per unit volume
€ rrrrreeneeneeee incoming contaminant concentration at mass point source/sink
Xp weerneereniracnens location of point source/sink

When Eq. (3.2.5.31) is used, the elemental source (or sink) term in Eq. (3.1.1.6¢)
becomes
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B = j‘Piqu 5(*—!&13)195 =Qfic'®; Eg) (3.2.5.32)
QC

Note that the actual value employed for the contaminant concentration depends upon
whether we are looking at a mass source (i.e., incoming mass flow, positive QE) ora

mass sink (i.e., outgoing mass flow, negative Qg). The contaminant concentration

becomes the user inputted value ¢ for incoming flows while it becomes the local
concentration value of the aquifer for outgoing flows.

Equations for the first term of Eq. (3.2.1.6¢) can be obtained by simply replacing the
volumetric flow rate with the contaminant mass flow rate in Egs. (3.1.5.36) and (3.1.5.37)
resulting in an elemental vector with members

e JQfic” i=i
F = . forelemente (3.2.5.33)
' 0 i=i
and for the overall global (mass point source/sink) vector
* * * T
FS=[QB]C Qe Qg ] (32.534)
where
Qﬁig ............... total contaminant mass flow rate at global node ig for point
source/sink

Recall that the governing solute transport equation chosen, Eq. (2.2.28), is in non-
conservative form. One feature that results from this form is the cancellation of terms on
the LHS and RHS of the global representation of Eq. (3.2.1.7) when a mass point sink
(outgoing) is specified. Basically, the mass flow rate contribution at node ig expressed in
Eq. (3.2.5.34) cancels with the same term created during the matrix multiplication of Eq.
(3.2.5.30) with the aquifer concentration vector. Therefore, application of mass point
sinks (during transport simulations) are not necessary since they are automatically
handled.

3.2.6 Numerical Solution of Transport Equation

The sect of time-dependent ordinary differential equations defined by Eq (3.2.1.7) are
integrated through time employing finite differencing. Equation (3.2.1.7) is a linear set of
equations since the coefficient matrices B, E, G, P and the forcing vector F are limited to
time dependency only. For example, FACT is currently limited to the use of a linear
equilibrium sorption isotherm model (see Section 2.2). Applying variably weighted time
differencing to Eq. (3.2.1.7) yields the new (n+1)th time solution for solute concentration:
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B n+@
{X] (c““ ~c" )4— [E+G+ P]‘*‘“(mc““ +h-0k” ]: F™® (3261
t

where the coefficient matrices and forcing vector are evaluated at the intermediate point
in time (n+®). Two basic algorithmic choices as to their evaluation can be made

(e eb-oh(e)
<)

where X can represent B, E, G, P, or F. At each new time step a set of linear algebraic
equations must be solved. Eq. (3.2.6.1) can be rearrange into the standard linear algebra
form given as:

Xl’l+0)

for 0sw=l (3.2.6.2)

n+ n+m
[—E+Q(E+G+P)] c“”=F"“”+[%+{u—lKE+G+P)} ¢ (3.263)

Due to the nature of the advection operator Eq. (3.2.6.3) represents an asymmetrical set of
algebraic equations. Various common time-stepping schemes can be obtained by varying
the magnitude of the time differencing parameter, @. Three of the more notable ones are:

e =0, fully explicit (or forward Euler) method that is first order accurate in time and
only conditionally stable (that is, the time step size is restricted below certain
magnitudes),

e ® = 1/2, centered-differencing (or Crank-Nicolson) method that is second order
accurate in time and is unconditionally stable (no time step limitation due to stability
required),

e o = 1, fully implicit (or backward Euler) method that is first order accurate in time
and is unconditionally stable (no time step limitation due to stability required).

For m less than one half the method is only conditionally stable. Generally, the explicit
scheme requires less computational effort per time step. However, for typical
groundwater transport problems the time step constraint associated with stability is
significantly smaller than that required by accuracy considerations. As a result, the total
computational effort required is significantly greater when employing the explicit
method. Therefore, it is recommended for transient transport simulations that either the
centered-differencing or fully implicit scheme be chosen. The differences in
computational effort between these two options are negligible. FACT allows the user to
specify the value of @, 0<w< 1. Without specific reasons to the contrary, it is further
recommended that the centered-differencing scheme be chosen to obtain second-order
accuracy.

In the current version of FACT, we evaluate the various matrices and vector terms at the
new time (i.e., new time velocity and water saturation are used). These simplifications
reduce computational and storage demands associated with evaluation of the matrix and
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vector terms without significant loss in accuracy. Thus, Eq. (3.2.6.3) can be further
reduced to the form

n+l n+l
[%+m(E+G+P):| c"+’=F“+°’+[%+{o-1KE+G+P)] " (3.2.6.4)

where
B n+l

i

1 __ —
B(elr‘:l-i-l } El‘l+ = E(6:1n+15 Un+l } Gn+1 = G(e;};ﬂ J

(3.2.6.5)
Pﬂ+(x) = P(tl'H-(D) Fn+(u = F[tn+&))

The computational effort required per time step in solving Eq. (3.2.6.4) can be greatly
reduced for certain transient transport simulations. For conditions where the left hand
side (LHS) of Eq. (3.2.6.4) is time-independent (e.g., for a steady-state flow field and
source/sink terms with a constant time step size), if the decompostion (from a direct
solver) of the LHS matrix is stored during the first time step further time steps require
only the updating of the RHS vector and then the forward and backward sweep operations
of a linear algebra solver. Since typically the major work load is in the decompostion
step of a direct method’s linear algebra solver, significant savings in run time can be
achieved. For pre-conditioned conjugate gradient-like solvers (that are by their nature
iterative), an incomplete decomposition of the LHS matrix is typically chosen as the pre-
conditioner. For these cases, the incomplete decomposition is stored during the first time
step and is reused during every iterative pass through the iterative solver. Sizable savings
are still achievable. During the processing of the problem statement, FACT automatically
determines if the conditions exist to take advantage of this speedup option. No external
user input is required for this feature to be activated.

3.2.7 Treatment of Transport Boundary Conditions

As discussed in Section 2.2, boundary conditions must also be specified at all times for
the transport simulation. The types of BCs of practical interest include the conditions of
prescribed concentration, prescribed material dispersive flux, and prescribed material
total flux. Application of these BC types for the nonconservative form of the transport
equation, Eq. (2.2.28), requires some further explanations.

To assist us in this discussion we shall look at a simple example where the three BC types
are considered. Eqgs. (2.2.29b-d) are rewritten below for convenience:

Dirichlet c(x, t): ¢ on boundary portion Bj (3.2.7.1a)
Neumann n-DVc = j, on boundary portion B, (3.2.7.1b)
Cauchy n- (DVc - cU)= N, on boundary portion B (3.2.7.1¢)

where B] is the portion of the boundary where concentration is prescribed as ¢, and B,
and Bj are portions of the boundary where the dispersive and the total solute mass fluxes
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are prescribed as j, and N, respectively. These BCs are sometimes referred to as type

1, type 2, and type 3 BCs, respectively. By convention we assume that incoming solute
material is positive. Also, specification of Dirichlet conditions is not limited to the
boundary of the domain. Dirichlet conditions can be specified at any active grid node and
application of it at a node supersedes any other type of BC type for that node.
Application of multiple material flux BCs to a single node (excluding a Dirichlet
specified node) is allowed and the contributions from each flux BC become additive.
Note that the transport equation is linear when one assumes a linear isotherm adsorption
model as is done in the current version of FACT.

The first-type BC, Eq. (3.2.7.1a)}, is treated by setting current concentration values at the
boundary nodes to the prescribed concentration ¢ . Physically, this BC may apply to
inflow boundary surfaces where the solute concentration of the incoming fluid-is known
and can be assumed to be approximately the same as the resident nodal solute
concentration in the porous media. Internal nodes, representing injection wells or
contaminant sources for example, may also be subject to the type 1 BC if the above stated
equilibrium assumption is adopted. However, in most cases specification of the material
flux of solute due to sources is a more valid and practical approach.

The second-type BC, Eq. (3.2.7.1b), is treated by adding the integrated nodal value of the
prescribed dispersive flux (i.e., a mass flowrate) to the right hand side of the discretized
transport equations (F; of Eq. (3.2.1.5)). This mass flowrate represents the second
integral of Eq. (3.2.1.6e). Physically, this BC may apply to impermeable boundary
surfaces where the dispersive flux is essentially zero. The resulting normal concentration
gradients then become zero. It may also apply to certain contaminated buried sources that
are placed in an undisturbed flow field, wherein the waste material is leaching solute at
the prescribed rate, j,. In order for the local flow field to be undisturbed, the net material

entering the porous media must be zero (i.e., typically referred to as equimolar counter-
diffusion transport). If the transport of material results in a net flux of material into (or
out of) the porous media (i.e., a non-zero bulk average velocity at the boundary interface),
the flow field is effected and the following BC type should be used.

The third-type BC, Eq. (3.2.7.1c), generally applies to inlet boundary surfaces or injection
wells where the solute concentration of incoming or injected fluid ¢* may be unequal to
the resident nodal concentration values. In these cases, the integrated nodal value of the
prescribed total flux (i.e., a mass flowrate) is added to the right hand side of the
discretized transport equations (F; of Eq. (3.2.1.5)). This mass flowrate represents the
first integral of Eq. (3.2.1.6e) where for the case of an inlet boundary surface flux the
volume integral becomes actually a surface integral of qc*. In addition, an integrated
nodal advective flux term (i.e., a volumetric flowrate) corresponding to the bulk (Darcy)
velocity term in Eq. (3.2.7.1c) is added to the left hand side of the discretized transport
equations (the diagonal term P of Eq. (3.2.1.5); incorporated into the coefficient matrix

along its diagonal). This volumetric flowrate represents the integral of Eq. (3.2.1.6d)
where for the case of an inlet boundary surface flux the volume integral becomes actually
a surface integral of q.
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For the special case of extraction wells (sinks), the outgoing solute concentration, c¥*,
takes on the same value as the resident nodal concentration, ¢. As noted earlier, the
nonconservative form of the transport equation, Eq. (2.2.28), is being solved and as a
result these special cases are handled automatically by the formulation used. Basically,
the BC expressed by Eq. (3.2.7.1c) then reduces to that of Eq. (3.2.7.1b) with a zero
dispersive flux value.

The case of an outflow boundary is similar to the extraction well case. Here the outflow
boundary is handled automatically if a zero (“natural”) dispersive flux assumption is
adequate. This is the natural boundary condition within the finite element framework and
requires no treatment for its bounding surfaces. If (but typically unlikely) dispersive
information at an outflow boundary exists, then application of the second-type BC should
be used. The advective transport contribution is handled based on the inputted flow field.
The current version of FACT does not allow for a non-zero dispersive flux for this case.

Boundary conditions ultimately reside at specified nodes within the mesh. A temporal
variation of a BC at any given node is accommodated in a convenient manner by
specifying the BC to be a transient BC whose transient behavior is inputted as either a
continuous piecewise cubic spline (or linear) approximation or a discontinuous (step
function) approximation. These transient approximations represent the actual graph of
solute concentration or solute flux (actually integrated nodal volumetric or mass
flowrates) versus time. Steady-state BC values are inputted as constants.

By way of example, Fig. 3.2.4 illustrates a typical situation where the above three BC
types are applied. Figure 3.2.4 represents a 2-D vertical cross-section through an aquifer
unit containing both a saturated zone and a vadose zone. The upper boundary, B,,
coincides with the ground surface topography. The lower boundary, B, coincides with
the top surface of an impermeable aquitard (i.e., the transport of solute, as well as water,
being negligible). On the left boundary, By, groundwater flows into the domain carrying
along a known concentration of the solute species of interest. On the right boundary, By,
groundwater flows out of the domain carrying along an unknown amount of the solute.

In addition to these boundary conditions, two types of sources exist. The first source of
solute results from the vertical injection well, while the second results from the leaching
out of solute from buried waste. These source terms were added to this example to
further illustrate how, in FACT, source/sinks and boundary fluxes are treated very
similarly. In FACT, once source/sink strengths and boundary fluxes have been allocated
out to their appropriate neighboring nodes, their contributions to the transport equation
are handled identically.

Looking at Fig. 3.2.4 we see that the following nodal boundary conditions apply:

e Nodes on boundary surface B, - Surface recharge containing a known solute
concentration is handled as a type 3 BC where the dispersive flux is assumed to be
Zero.

e Nodes on boundary surface By, - An inflow boundary whose solute concentration at
this surface is known is handled as a type 1 BC.
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Nodes on boundary surface B, - An impermeable boundary (both to bulk flow, as well
as species diffusion) that is handled as a type 2 BC whose dispersive flux is assumed
to be zero (i.e., this is a natural BC and it is handled automatically).

Nodes on boundary surface By - An outflow boundary whose solute concentration at
this surface is unknown is handled as a type 2 BC where the dispersive flux is
assumed to be zero (i.e., this is a natural BC and it is handled automatically [the
default BC]).

Nodes on boundary surface B, - An impermeable boundary (both to bulk flow, as well
as species diffusion) that is handled as a type 2 BC whose dispersive flux is assumed
to be zero (i.e., this is a natural BC and it is handled automatically).

Nodes on boundary surface By - An outflow boundary whose solute concentration at
this surface is unknown is handled as a type 2 BC where the dispersive flux is
assumed to be zero (i.e., this is a natural BC and it is handled automatically).

Nodes along vertical well screen - For an injection well the source term is handled
similar to a type 3 BC where the dispersive flux is assumed to be zero. For an
extraction well, no BC needs to be applied, since this case is handled by the
formulation of the governing equation.

Sutace Recharga

vy
—1 1 —

\ Leachala
- :tt

Known
Solute Ouflow
Concentration Boundary

Bourdary Bb
Boundary B a4
Activa
Screen z
Boundary Bc *
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Fig. 3.24. An example for illustrating the treatment of transport boundary conditions

and source terms.

Nodes associated with buried waste - For a buried waste form that impacts the flow
field the source term is handled similar to a type 3 BC where the dispersive flux is
assumed to be zero; otherwise, for cases where the flow field can be assumed to be
undisturbed, then a type 2 BC applies. This later case arises for example when a
small quantity of fluid highly concentrated with a solute is injected (or leached) into
the subsurface. The impact on the flow field is negligible for transport calculational
purposes and can be omitted. In this case the preliminary flow simulation would also
assume a zero volumetric flowrate injected into the subsurface.
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3.3 Numerical Technigques for Variably Saturated Mobile/Immobile
Solute Transport

The standard weak formulation of the Petrov-Galerkin weighted residual technique
(Section 3.2.1) is employed to cast the mobile-phase governing transport equation into
integral form. The mobile-phase transport equation reduces to the contaminant transport
equation in Section 3.2 when no interfacial mass transfer between mobile and immobile
solute occurs. The immobile-phase transport equation does not include advection-
dispersion terms, therefore, the standard formulation of the Bubnov-Galerkin weighted
residual technique is employed to cast the equation into integral form.

3.3.1 Upstream-Weighted Residual Formulation of the Mobile-Phase
Transport Equation

The mobile-phase governing equation for transport, Eq. (2.3.15), is solved by the
upstream-weighted residual finite element method. The mobile and immobile solute
concentrations are approximated as finite linear combinations of the symmetric basis
(trial) functions of the form

cm<x,t)=ipj(xm) cim(x,t)="z_"<p,(x>:i,(t) GaLD

where @ (x), Cy (t) and ci; (t) are the basis functions, the nodal values of mobile solute

concentration, and the nodal values of immobile solute concentration at time t,
respectively.

Rearranging and applying the upstream-weighted residual criterion to Eq. (2.3.15) yields

J(p] {BmRm a;—;“+ 0, (Rm?\.r + lm):m + q(cm —c* J— V. (Dch )}dQ

Q
+Iw1{lJ-ch}dQ+_[¢1{1(cm ~Cim Q=0 for 1=12,..np
Q Q

Since we shall choose C° continuous basis and weighting functions, ¢; and, Wy the

dispersion integral is evaluated by applying the divergence theorem (actually, Green’s first
identity, the multidimensional equivalent of integration by parts) to obtain

I(pﬁ’ . (Dch )19 = J.V : ((plDch }lQ - J.V(p[ . (Dch)iQ

(3.3.1.2)

_ J' om-(DVe,, Jio- j Vo, -DVe,, HO (33.1.3)

- s o[- Ve, b
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where Q is the solution domain with boundary o, and the dispersive flux is j, =—-DVc,,.

Substituting Eqs. (3.3.1.1) and (3.3.1.3) into (3.3.1.2) gives the expression

np np
PR B WX %HZ [8n Rt + 2 Jorosd02fcy
=l | =l g

n ’ . np
+iﬁ. @orosafe, + Y j[chl-DWpr;U-V(PJ}iQ ¢y
Q

I=l (O I=l
L \ (3.3.1.4)
np | .
+2< (U)‘PNPJdQ rCy :I(qC*}DIdQ+I(in )‘PldG
1=l | Q o

.

~

It
+i<j(a}pl(pjdﬂ>cij for I=12,...,np
LQ

where the normal component of the dispersive flux (incoming is positive by convention)
is j, =-n-j,.

Equation (3.3.1.4) can be written in the more concise form

By Sl +[By + Gy + Ty +Pyley =R+ Ty, 1=120mp (3319

where
By = J.(GmRm)p[(deQ (3.3.1.62)
Q
Ey = j[ch, DV, +y,U- Vo, JQ (3.3.1.6b)
Q
Gy = Jem(Rmkr + Ay J010,d02 (3.3.1.6¢0)
Q
Py =j(q)pl¢,dn (3.3.1.6d)
Q
F =J(qc*}p,dg+j(in Jodo (3.3.1.6¢)
Q (o
IU =J.({l)p](pjd§2 (33.1.6f)

Q
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The set of time-dependent linear ordinary differential equations defined by Eq (3.3.1.4)
can also be presented in its equivalent vector form as

B—+h+G+I+P]c F+Idi (3.3.1.7)

where

B mobile-phase storage (capacitance or mass) matrix

E i advection-dispersion matrix

G mobile-phase radioactive and first-order decay matrix

| ORI interfacial mass transfer matrix

P mobile-phase source/sink matrix

F o RHS forcing function vector

mobile solute (contaminant) concentration vector

) RO immobile solute (contaminant) concentration vector

3.3.2 Bubnov-Galerkin Weighted Residual Formulation of the Immobile-
Phase Transport Equation

The standard formulation of the Bubnov-Galerkin weighted residual technique is
employed to cast the immobile-phase governing equation into integral form. The
Galerkin integral form of Eq. (2.3.21) is

j%{ + 0y Rimhe + i Fim ~ e~ )}df.).:o,

(3.3.2.1)
I=12,...,np
Substituting Eqgs. (3.3.1.1) into Eq. (3.3.2.1) yields
- dci
2 J.(eimRim}pl(deQ dt —L +i Ielm RimAr + A, )pl(deQ Ciy
I=l |q J=1
(3.3.2.2)
n n
+i I(a}pledﬁ i =i J.(O:}p](pjdﬂ ¢; for I=12,...,np
J=l | 1= o
Equation (3.3.2.2) can be written in the more concise form
. dci . .
Biy; —(—Ci—ii+ [Glu +IIJ]CIJ =Icy, I=12,....np (3.3.2.3)
where
Biy =J.(9imRim Yo, 0,402 (3.3.2.42)

Q
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GiU = Jeim (Rimkr + 7\‘im )pl(deQ (3.3.2.4b)
Q

The set of time-dependent linear ordinary differential equations defined by Eq (3.3.2.2)
can also be presented in its equivalent vector form as

Bid ¢ [Gi+HJei=Ic (3.3.2.5)
dt
where
Bi.onn immobile-phase storage (capacitance or mass) matrix
Giovrrrrre. immobile-phase radioactive and first-order decay matrix
| RO interfacial mass transfer matrix
€ orrrrerereereenenns mobile solute (contarninant) concentration vector
[\ O immobile solute (contaminant) concentration vector

3.3.3 Mobile-Phase Transport Equation Elemental Matrix Computation

The elemental matrices Bjj, Ejj, Gj;, Ijj ,Pyj, and vector F; resulting from the Bubnov and
Petrov-Galerkin approximations to the mobile-phase transport equation can be computed
using influence coefficient matrices or Gauss-Legendre quadrature for the rectangular
prism or constrained hexahedron element, respectively.

3.3.3.1 The Mobile-Phase Elemental Storage (Capacitance) Matrix

From Eq. (3.3.1.6a) the expression for the mobile-phase elemental storage coefficient
matrix is obtained as

B, = J‘(BmRm)pi(pdee (3.33.1)
QE

where 0,, is the mobile water content, and R, is the mobile-phase retardation

coefficient. Transforming the mobile-phase elemental storage matrix, B;;, from global to
local coordinates yields

B; = (emRm>Mij (3.3.3.2)

where ( ) represent centroidal values and My; is the consistent mass matrix.

3.3.3.2 The Elemental Advection-Dispersion Matrix

The elemental advection-dispersion matrix is unchanged from the discussion in Section
3.2.5.2.
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3.3.3.3 The Mobile-Phase Elemental Radioactive and First-Order Decay Matrix

From Eq. (3.3.1.6¢) the expression for the mobile-phase elemental radioactive and first-
order decay storage matrix is obtained as

Gy = J‘em(RmA'r +7Lm}Pi(deQe (3.3.3.7)
QC
where 9,, is the mobile water content, R, is the mobile-phase retardation coefficient,

A is the radioactive decay constant and A, is the mobile-phase first-order decay

constant. Transforming the mobile-phase elemental radioactive and first-order decay
matrix, Gj;, from global to local coordinates yields

Gy =(OmR ke My +(8,nh )M (3.3.3.8)

ij
where ( > represent centroidal values and M;; is the consistent mass matrix.

3.3.3.4 The Mobile-Phase Elemental and Global Source/Sink Matrix
No change from Section 3.2.5.7.

3.3.3.5 The Mobile-Phase Elemental and Global RHS Forcing Function Vector
No change from Section 3.2.5.8

3.3.3.6 The Elemental Interfacial Mass Transfer Matrix

From Eq. (3.3.1.6f) the expression for the elemental interfacial mass transfer matrix is
obtained as

I = J.(a}Pi‘deQe (3.3.3.9)
Q

1

where o is the mass transfer coefficient between mobile and immobile solute.
Transforming the mobile-phase elemental interfacial mass transfer matrix, Ij, from global
to local coordinates yields

I = (oM (3.3.3.10)

where ( ) represent centroidal values. The mass matrix is lumped in Eq. (3.3.3.10) in

order to solve a decoupled set of algebraic equations for the new time immobile solute
concentrations. The lumped elemental interfacial mass transfer matrix becomes

1§ ={o)Mj; (3.3.3.11)
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3.3.4 Immobile-Phase Transport Equation Elemental Matrix Computation

The elemental matrices Biyj, Gij, and I resulting from the Bubnov-Galerkin
approximations to the immobile-phase transport equation can be computed using
influence coefficient matrices or Gauss-Legendre quadrature for the rectangular prism or
constrained hexahedron element, respectively.

3.3.4.1 The Immobile-Phase Elemental Storage (Capacitance) Matrix

From Eq. (3.3.2.4a) the expression for the immobile-phase elemental storage coefficient
matrix is obtained as

Bij = j(eimRim)pi(deQe (33.4.1)
QC

where 0;,, is the immobile water content, and R;,, is the immobile-phase retardation

coefficient. Transforming the immobile-phase elemental storage matrix, Bi;, from global
to local coordinates yields

Bi;; = <9imRim >Mij (3.34.2)

where ( ) represent centroidal values. The mass matrix is lumped in Eq. (3.3.4.2) in
order to solve a decoupled set of algebraic equations for the new time immobile solute
concentrations. The lumped immobile-phase elemental storage matrix becomes

Bilj = (0nR i )Mj; (3.3.4.3)

3.3.4.2 The Immobile-Phase Elemental Radioactive and First-Order Decay Matrix

From Eq. (3.3.2.4b) the expression for the immobile-phase elemental radioactive and
first-order decay storage matrix is obtained as

Giy = Jﬁim(Rimlr +him 00,02 (3.34.4)
3

€

where ©,,, is the immobile water content, R,, is the immobile-phase retardation
coefficient, A, is the radioactive decay constant and A;, is the immobile-phase first-

order decay constant. Transforming the immobile-phase elemental radioactive and first-
order decay matrix, Gijj, from global to local coordinates yields

Giij = (BmR i )My + {8k )M (3.3.4.5)

where ( > represent centroidal values. The mass matrix is lumped in Eq. (3.3.4.5) in

order to solve a decoupled set of algebraic equations for the new time immobile solute
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concentrations. The lumped immobile-phase elemental radioactive and first-order decay
matrix becomes

Giff = (BimRimhs )M + (B i, )M (3.3.4.6)

3.3.5 Numerical Solution of the Mobile/Immobile Transport Equations

The set of time-dependent ordinary differential equations defined by Eqgs. (3.3.1.7) and
(3.3.2.5) are integrated through time employing finite differencing. Applying variably
weighted time differencing (see Section 3.2.6) to Eqs. (3.3.1.7) and (3.3.2.5) yields the
new (n+1)™ time solution for mobile and immobile solute concentration, respectively

[ B ]n#“(cnn e J+ [E+G+1+ P}1+w(mcn+1 ool ]

At

(3.3.5.1)
— OO [I}Hm((:)cinH + ﬁ_m}in }
/
{E] (ci“” —ai ]+ Gi+ 1}‘+°’(wci“+‘ +{-oki® ]
At (3.3.5.2)

_ [I]1+m(mcn+l + ﬁ_w}n )
/
where the coefficient matrices and forcing vector are evaluated at the intermediate point

in time (n+m).

At each new time step a set of linear algebraic equations must be solved. Egs. (3.3.5.1)
and (3.3.5.2) can be rearranged into the standard linear algebra form given as,
respectively

B n+®
[E+ ofE +G +1+ P):] L

» (3.3.5.3)
+[%+{D—IIE+G+I+P):| ¢ +[I]‘+“’(a)ci“+1 +ﬁ—m}i“]
- o ) n+
[ﬂ+ m(Gi+I)] aim = | B, —IKGHI)] ci”
AL At (3.3.5.4)

+ [I]‘J"”(coc“+l + {1 - w}“ ]

To avoid having to solve a coupled linear algebra problem, we decouple the set of
algebraic equations in Eq. (3.3.5.4) by lumping the mass matrix.




WESTINGHOUSE SAVANNAH RIVER COMPANY Manual: WSRC-TR-95-00282

Section: 3, Rev. 0
Date: 3/2000
FACT CODE MANUAL Page: 92 of 108

Summing over all active elements and substituting Eqgs. (3.3.3.11), (3.3.4.4), and (3.3.4.6)
into Eq. (3.3.5.4) yields the new time immobile solute concentration as

ol = [w, Foci," +[L, ]‘*“‘[mc;”l +i-ok! ] (33.5.5)
where
(e R > n+am
Y _i“%Jr b-l{(eim Rimh +7\.im)>e +{a) ) [M,L,]e
[w, Jro == — (335.6)
= eimRim
z £T>e+ a{(ﬁim (Rimlr +Aim )}e +<0t>e ) [M}‘J]e
e=l
(e, | ],
Lo b= = — (3.3.5.7)
— 9imRim
; <___§,_L+<,{(9im Rimhe +him )+ (), ] [M}', L
and Jee.

Substituting Eq. (3.3.5.5) into the time-differenced mobile-phase transport equation, Eq.
(3.3.5.3) and combining like terms gives

B . n+w
[E+U{E+G+IL —mILL+P]] ¢ - prte

n+w
+[%+ {m—lIE+G+IL —n)ILL+PJ] c” (33.5.8)

+ [IL]HM(Q)[W]"“" +]- (o}};i“

In the current version of FACT, we evaluate the various matrices and vector terms at the
new time (i.c., new time velocity and water saturation are used). These simplifications
reduce computational and storage demands associated with evaluation of the matrix and
vector terms without significant loss in accuracy. Thus, Egs. (3.3.5.5) and (3.3.3.8) can
be further reduced to the form

i = [W]Hein + [L}’*‘(mc““ +{-ok" ) (335.9)
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n+l
[%+0{E+G+IL —mILL+Pﬂ Ml = e

n+l
+[A£t+{m—l{E+G+IL—mILL+PJ] c" (3.3.5.10)

n+l
+[I'“] [co[W]‘*' +<ﬁ—w}}:i“
where
Wn+1 = w[e;ur:l-l ,OL"+I } Ln+l = L(Gﬂ;l,(xnﬂ J

Bl’l-i—l = B[e?n-'-] } En+l = E(e&+1,Un+l } GIH-] = G(BE{H ) (3351 1)

In+m = I(anﬂnl Pn+m = P(tIH-(DI Fn+u) = F[tnﬂlﬁw
/ / /
The mobile-phase transport equation is solved first for the new time mobile solute
concentrations based on the old time mobile and immobile solute concentrations using
the asymmetric PCG/ORTHOMIN solver implemented in FACT. The immobile-phase
transport equation is then solved based on the old time immobile solute concentrations
and the new and old time mobile solute concentrations.

The computational effort required per time step in solving Eq. (3.3.5.10) can be greatly
reduced for cerfain transient transport simulations. For conditions where the left hand
side (LHS) of Eq. (3.3.5.10) is time-independent (e.g., for a steady-state flow field and
source/sink terms with a constant time step size), if the decompostion (from a direct
solver) of the LHS matrix is stored during the first time step further time steps require
only the updating of the RHS vector and then the forward and backward sweep operations
of a linear algebra solver. Similarly, the arrays W and L in Eq. (3.3.5.10) just have to be
built and stored once for a steady-state flow field, constant mass transfer coefficients and
time step size. During the processing of the problem statement, FACT automatically
determines if the conditions exist to take advantage of this speedup option.

3.3.6 Treatment of Mobile/Immobile Transport Boundary Conditions

The treatment of mobile-phase transport boundary conditions are discussed in Section
3.2.7. The immobile-phase transport equation does not require specification of boundary
conditions; only initial conditions.

3.4 Matrix Solution Techniques

The linear algebra problems expressed by Eq. (3.1.8.6a) for flow, Eq. (3.2.6.4) for
contaminant transport, and Eq. (3.3.5.10) for mobile-phase transport are solved using
efficient pre-conditioned conjugate gradient-like (PCG) iterative solvers. Large
structurally sparse matrix equations are generated by the finite element (or finite
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difference) approximations to multi-dimensional field problems. The PCG algorithms
chosen were designed to accommodate a large number of nodal unknowns consistent with
the needs imposed by many realistic 3D field problems (e.g., these methods do not alter
the sparsity pattern of the coefficient matrix during the solution process, thus no
additional allocation of memory is required).

3.4.1 Symmetric PCG Solver

For solving large sparse symmetric matrix equations, the class of Incomplete Cholesky
Conjugate Gradient (ICCG) algorithms has emerged as one of the most promising. These
methods are guaranteed to converge for a symmetric positive-definite matrix (sometimes
referred to as a type M matrix). The symmetric PCG solver implemented into FACT is
based on a two-step procedure developed by Meijerink and van der Vorst (1977), then
extended and implemented by Kershaw (1978) and Anderson (1983). It is used in FACT
to solve the system of algebraic equations resulting from the application of the Picard
scheme to the finite element flow equations.

We wish to solve the linear algebraic problem
Sx=y (34.1.1)

where the finite element coefficient matrix, 8, is a positive diagonally dominant
symmetric matrix. The first step of this PCG algorithm involves preconditioning of S by
computing its incomplete Cholesky decomposition in the form

S ->B=LDLT (3.4.12)

where in FACT the preconditioner matrix, B, is also symmetric and employs the
following storage scheme

1

— 0 0
CI1
1
121d1 d— 0 1
2 b;=— i=Lnp
B=| . .4 1 _ d; (3.4.13)
3141 32% d3 bl] =11_]d_l i>]

Ind; lgpdy lggdy —

The actual decomposition is performed such that zero fill-in occurs yielding the
incomplete decomposition referred to as ICCG(0). During the decompostion process no
adjustments are made for pivoting; however, the process does incorporate Kershaw’s
modification to the diagonal to enhance convergence stability. The basic algorithm
employed for performing this incomplete decomposition is
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doi=1np
doj=1L1
q )
by =sj; — t{jikbjkbkk J
k=1 (3.4.1.3)
o f. . 1
if (] = l)bij = bii = —b—
ij
end do
end do

Since zero fill-in is assumed errors accumulate during the decomposition process. If the
diagonal becomes too small, Kershaw alters the diagonal to stabilize the decomposition .
The following adjustment is proposed by Kershaw and is currently implemented in FACT

(with £=2x107"%):

doi=1np
i=1
sum; =s;; — Y {bikbikbkk }

=1
n; = maxlsikT

izk
if (sum,?' < (—:T]i2 )then
1
b; =sgn > sum; 34.1.4)
en;j

else

b; = (same as basic algorithm above)

: sum;
end if
end do

The second step involves Conjugate Gradient (CG) iterations starting with the initial
guess of the solution vector set to X =Xy =0 (recall that the solution vector represents the

change in hydraulic head at each outer iteration and as one approaches steady-state
conditions the new time solution becomes invariant). The CG recursive equations are as
follows:
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X = "initial guess”
rp =y-8xg
-1
=B,
qo =8Py
dok=1,...,
-1
<l'k-1sB l'k—1>
Oy =
<pk—1an—1) 3415
Xg = Xg 0Py (3415
M =T~ Oy
-1
T+, B l‘k+1>
Bk = )
(rk ,B rk>
-1
P+ =B e +Bupy
Qi+ =SPry
end do
where
Koo inner loop counter
S symmetric LHS coefficient matrix
B .. decomposed pre-conditioner matrix of S
Xy vernenrrnrnrenens solution vector at kth iteration
Y oo RHS vector
TS residual vector kth iteration
IV search direction vector at kth iteration
Qi coeeeerereeeenens conjugate direction vector at kth iteration
Olg covvvermnrvnnnens minimization parameter for solution and residual vector at kth
iteration
By coeeeererenennas conjugate parameter for search vector at kth jteration

This scheme is repeated until either: (1) the L2 norms of the solution and residual vectors
are less than a prescribed tolerance criterion , €;..., or (2) the maximum allowable
number of iterations is reached, maxit. The relative error criteria are given as:

"":i%:‘_"lbi < (3.4.1.6a)
m i+1],
“ ri+1||z _ “ SXin ~Yi |2 < Einer (3.4.1.6b)

[br+xial, [ il

where the error tolerance placed upon the PCG solver (sometimes referred to as our inner
iteration loop) is computed based on
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€inner = max(m“6 J074E e ] (3.4.1.7)

and the maximum number of inner PCG iterations is determined by
maxit = 2*min{np,400) (3.4.1.8)

In theory the number of iterations required to achieve the exact solution will not exceed
the number of unknowns (np). However, due to finite arithmetic some number greater
than np may be required. In general, for large nodal problems the number of iterations
required becomes significantly less than the maximum expressed by Eq. (3.4.1.8). As Eq.
(3.4.1.7) indicates, we have placed a more stringent level of convergence (i.e., three
orders of magnitude) on our PCG solver (the inner loop) than on our N-R/Picard non-
linear solvers (the outer loop). The magnitude of this multiplier is somewhat arbitrary,
but experience suggests that two to three orders of magnitude is optimal.

3.4.2 Asymmetric PCG Solver

For solving large sparse asymmetric matrix equations, the PCG/ORTHOMIN algorithm
has emerged as one of the most promising. The ORTHOMIN scheme presented by Behie
and Winsome (1982) is well suited for solving these matrices and also maintains the
property of guaranteed convergence for type M matrices This version may be considered
as another variant of the standard PCG procedure described in Section (3.4.1). Indeed,
their formulations are quite similar. The full ORTHOMIN procedure is given as follows.

The asymmeiric PCG/ORTHOMIN solver implemented into FACT is based on a two-
step procedure developed by Behie and Winsome (1982). It is used in FACT to solve the
system of algebraic equations resulting from: (1) the application of the N-R technique to
the finite element flow equations and (2) the direct application to the linear set of finite
element solute transport equations .

We wish to solve the linear algebraic problem

Ax=y (3.4.2.1)

where the finite element coefficient matrix, A, is a asymmetric matrix that is diagonally
dominant under most circumstances (e.g., for solute transport diagonal dominance
becomes weak for high cell Peclet numbers). The first step of this PCG algorithm
involves preconditioning of A by computing its incomplete Crouts decomposition (i.e.,
the diagonal of the upper triangular matrix is assumed to be unity) in the form

A—-B=LU (34.2.2)

where in FACT the preconditioner matrix, B, is also asymmetric and employs the
following storage scheme
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1
i_ Uy Wy Ugy
1
1
12 T Yn Y
2
B= 1 (3.4.2.3)
I3 Iy o Us |
3
1
Iy lip 1 ™
a4

The actual decomposition is performed such that zero fill-in occurs. During the
decompostion process no adjustments are made for pivoting. It is assumed that the
diagonal dominance of A is sufficient enough such that no modification to the diagonal to
enhance stability is warranted. The basic algorithm employed for performing this
incomplete decomposition is:
doi=1Lnp
do j=1,i—1:lower triangular portion of i row

-l j-1

b=l =2a; - 2 {ikukj }= aji — 2{)ikukj}
k=1 k=1

end do

: diagonal of i™ row

i—1 i—-1
I = a; -Zﬁikuki}=aii _Z{bikuki} (3.4.2.4)
k=1 k=1
1
b;; 1

do j=i+1,np: upper triangular portion of i™ row

1 i1 i1
by =uy; = L 4~ 2 {ik“kj} =by| 2~ Z{’ik“kj}
ii k=1 k=1
end do
end do

The second step involves orthogonalization iterations starting with the initial guess of the
solution vector set to X =Xg =0 (recall that the solution vector represents the change in

hydraulic head or solute concentration at each outer iteration and as one approaches

steady-state conditions the new time solution becomes invariant). The ORTHOMIN
recursive equations are as follows
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X = "initial guess"
dok=1,...,
vi =Bl
if (k = l)then
Pk = Vx
else
doi=1k-1
i (ql ’ Avk )
By =7——"
(Qi a‘h)
end do
k-1
1
Pk = ¥x — Zkai
. =l
end if
i = Apy
(‘hvrk—l)
Ol =——i-
_(‘lk’qk) (3.4.2.5)
Xg+1 = X + Oy Py
T4 = I — Oy Py
end do
where
Koo inner loop counter
AR inner iteration index
A LHS coefficient matrix
B o, decomposed pre-conditioner matrix of A
. SR solution vector at kth iteration
Y oocciirrenennnens RHS vector
A residual vector at kth jteration
Pi ceerrereverenanes search direction vector at kth jteration
1 [ conjugate direction vector at kth jteration
| VR intermediate convenience vector for computational needs at kth
iteration
Oy covreenniinnns minimization parameter for solution and residual vector at kth
iteration
Bl covrerrererranas ith component conjugate parameter for search vector at kih
iteration

This scheme relies on the same convergence criteria logic and maximum number of inner
iterations as given above for the symmetric solver (see bottom part of Section (3.4.1)
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The above algorithm requires core memory storage of arrays p; and q; for all previous

iterations (i=1,2,....,k-1). The computational effort further increases with the number of
iterations, as well. In addition, as the number of orthogonalizations increases, round-off
errors can become unacceptable. These difficulties are circumvented by noting that in
practice not all np orthogonalizations are required. In view of this, it is advantageous to
limit the number of orthogonalizations to a prescribed value, north. In this way, the
orthogonalization procedure is restarted at every (north+1) iteration. The actual number
of orthogonalizations required to achieve good convergence is problem dependent.
Experience has shown that a value of north=40 is adequate.

As mentioned earlier for transient calculations where the LHS matrix, A, is time-
independent, the incomplete decompositon of the pre-conditioner can be stored during the
first time step/iteration and then reused during all subsequent iterations and time steps.
Sizable savings in the computational effort results since the LHS matrix no longer must
be recreated at each time step and the incomplete decomposition step has to only be
performed once.

3.5 Spatial and Temporal Discretizations

Varying levels of spatial discretization of the solution domain are performed
automatically in the FACT code. FACT uses a right-handed Cartesian coordinate system.
In the areal view a rectangular grid is used to represent the 3D model domain. The
vertical planes (i.e., the x and y planes) are constrained to be flat surfaces that are
perpendicular to each other; therefore, the resulting elements are rectangular in shape
areally and their shape remains invariant in the vertical direction. The overall 3D mesh is
structured whereby each horizontal layer of elements spans the entire areal extent.
However, the horizontal layers of nodes are not restricted to planar surfaces (ie.,
vertically distorted elements are allowed). Each element is represented by a linear (8-
noded) finite element that is rectangular in the horizontal direction. The vertical
coordinate (z-axis) is in the opposite direction relative to the gravity vector. )

As specified by the user, FACT will automatically generate a grid with nodes and
elements numbered sequentially sweeping first along the x-axis and then along the y-axis
to form a horizontal nodal/felemental plane. The first horizontal plane resides at the
bottom of the model and subsequent planes are created sequentially one stacked on top of
the next. The areal grid is specified by the user through inputting an array of x and y-axis
grid line locations. If the distance between adjacent horizontal (x and y-axes) planes is
uniform (i.e., flat planar surfaces of nodes), then the user can specify the vertical grid
spacing by only having to input an array of z-axis coordinates. For vertically distorted
meshes however, the user is required to input the entire set of nodal vertical coordinates.
A minimum of one element in length (two grid planes) is required for each of the three
(x,y,z) coordinate directions.

The 3-D model contains the entire system, which is considered as one unit where
different materials are accommodated by assigning different sets of material properties for
different elements. For example, aquifer and aquitard regions are handled by the use of
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differing material properties specified at those elements whose centroids correspond to
their locations, respectively.

An example of a vertically distorted mesh, illustrating the node and element numbering
conventions, is presented in Figs. 3.5.1 and 3.5.2. This example consists of four elements
in the x-direction, four in the y-direction, and two in the z-direction, for a total of 32
elements and 75 nodes representing the entire mesh. Figure 3.5.1 contains an areal view
of the mesh corresponding to its first horizontal plane; while, Fig. 3.5.2 contains a vertical
view of the meshing corresponding to its first y-axis plane. The actual system boundaries
are shown overlaid on the areal mesh in Fig. 3.5.1. The irregular system boundary is
accommodated by assigning a non-positive (usually set to zero) material number to
elements outside the region of interest (i.e., inactive elements) also shown in both figures
as shaded areas. Note that inactive elements can exist anywhere throughout the mesh and
do not necessarily have to extend the entire vertical extent at any given areal location
(e.g., see elements numbered 3 and 19 in Fig. 3.5.2). A more in depth example of mesh
capabilities, including boundary condition specification, will be presented in Section 5.

# - node number
# - element number

A [_]- inactive element
y 21 22 23 24 25
max —"
1 14 s ) 1
- \
= 16 17 8 20
<
' | 9 10 11 12
S 9
Y. 1 12 T3 13 5
5 6 2 8 }
7 — 10
1 2 _f 3 4
y 7]

min 1 2 3 5
_>
% min X, X max

X - axis

Fig. 3.5.1. Areal Slice through Example Mesh [lustrating Nodal and Elemental
Numbering Conventions.

In FACT, temporal discretization can also be performed either manually or automatically
if required. Under the manual option absolute time values (points) are inputted by the
user. Internally FACT computes the appropriate time step size and then marches through
time consistent with the inputted time table. Alternatively, the user can employ the
automatic time step generation option in FACT. New time step sizes and time values are
computed at the end of each time step by using the simple algorithm:
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A

# - node number
# - element number
[]- inactive element
52
8 2! 53 54
2
= 55
- 17 18
N - 19
I 20
26 =
1 5 29
-1___———— - i
2
3 4 5
* >
X - axis

Fig. 3.5.2. Vertical Slice through Example Mesh Tlustrating Nodal and Elemental
Numbering Conventions.

tmend(l )— tmst(1)

1<n< nsti(])

till
tmend&s)— tmst(2) . . .
At = nstj(i!) nst1(1)+ 1<n S nstl(l)nstl(Z) (3.5.0)

nsi-1

tmend nsi)—— tmst(nsi) ..
L (nsti(nsi) H nst1(1)+1 <n <nts

i=1

where
1113 RO number of simulation intervals
TSt .eoveeeneene starting time of simulation interval
tmend ............ ending time of simulation interval
14534 S number of time steps between tmst and tmend
101 T total number of time steps
and

t, =t,_;+At, (3.5.2)

3.6 Material Mass Balance Options

In groundwater modeling, as well as numerical modeling in general, several factors
influence the numerical accuracy obtained. At several locations in previous sections
some of these factors were alluded to and suggestions as to how to minimize them were
given. In order to estimate the overall/relative accuracy (or error) of a given simulation, a
material mass balance over the entire solution domain should be performed. In FACT
there exists such a mass balance option for either a flow or transport simulation. It is
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essential that the resulting mass balance errors be sufficiently small for the numerical
solutions to the flow and transport equations. Sufficiently small is a relative term that
may be better stated in the following way. It is desirable (a rule of thumb) to maintain
numerical errors at least one-to-two orders of magnitude lower than those errors
associated with modeling assumptions (e.g., conceptual model, source/sink terms,
boundary conditions, material properties). In many cases modeling errors are unknown
(or only known qualitatively) and under these conditions we typically try to minimize
numerical errors as much as possible given the constraints of available computer
resources and run time durations.

Since the accuracy of the numerical approximations to the flow and transport equations is
mesh dependent (i.e., a mixture of first and second order convergence rates), the mass
balance errors are affected by our choices in local/global spatial and temporal resolution.
Computing mass balance errors at every individual node requires more CPU than is
deemed necessary. Therefore, in FACT we employ a mass balance approach that
estimates the overall mass error associated with the mesh domain that is computed each
time step. This procedure generates an error norm that can be used as an indicator of the
global accuracy of the numerical solution. It is conceivable that local error contributions
from one region of the mesh could cancel out with contributions from other regions; thus,
producing a greatly reduced “computed” error norm. The likelihood of such an
occurrence is deemed to be remote and as such for efﬁc1ency we compute only a global
indicator.

A derivation of this procedure, first for the flow equation and then for the more
complicated transport equation, follows. The entire solution {mesh) domain is referred to
as £2g , while its boundary is referred to as 0. Inactive elements are outside the domain
and in many cases help in defining the domain’s boundaries. Nodes completely
surrounded by inactive elements are inactive, while any nodes adjacent to an active
element become active. The scheme employed for performing material balance
calculations is based upon the work of Huyakom and Pinder (1983, see page 209 for
additional information).

3.6.1 Flow Equation Mass Balance

An overall mass balance can be derived based on the flow equation, Eq. (2.1.17)
0=(C+SWSS)aa—l:+V-U—q (3.6.1.1)

where the Darcy velocity vector is expressed as
U=-k_ KVh (3.6.1.1a)

and the source term, q, has been included to take into account any contributions from
point sources/sinks that may exist within the solution domain. Within FACT it is more
convenient to consider specified surface recharge and surface fluxes as distributed
sources. Note that distributed sources (e.g., line sources such as wells and surface
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recharge) are ultimately allocated out to individual nodes and therefore, can for mass
balance checking purposes be considered as point sources. Grouping together all nodes
containing a point source, as well as those distributed sources that are converted, the
following expression can be used to represent them

q =qup =2{3—:}6(x—xp) (3.6.1.2)

N
P=} P=1

where n,, represents the total number of nodes containing point sources/sinks.

The mass balance over the whole domain can be obtained by integrating Eq. (3.6.1.1) and
applying Green’s (divergence) theorem to the advective term. Thus, one obtains

0= J{(C+SWSS)3—T+V-U-—q}dQR
Q

- J {(c+swss aa}:}dQR + _[(n-U):lcsB - quQR
Op Qg

Qg

(3.6.1.3)

The second integral in Eq. (3.6.1.3) represents the net material flux across the whole
boundary. The first and third integrals represent, respectively, the net rate of mass storage
and the net rate of mass production (owing to well injection or extraction, recharge, etc.)
within the entire domain.

If the exact hydraulic head solution of Eq. (3.6.1.1), consistent with imposed boundary
conditions, was known and then substituted into Eq. (3.6.1.3), that equation would be
satisfied exactly (i.e., all three integrals would sum up to zero). However, if an
approximate solution (such as the one obtained by FACT)

B=Y o (x)n, (3.6.1.4)

is substituted into Eq. (3.6.1.3), the three integrals typically sum up to a non-zero result
that corresponds to the rate of net material loss, g, over the entire domain at that instant
in time

tp=— j {(c+swss ?;: }dQR + IUnch + quQR (3.6.1.5)
QR Op QR

where the Darcy velocity normal to the boundary (incoming being positive by
convention) can be estimated from

U,=-n-U=n-k,KVh (3.6.1.52)
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The rate of net material loss, £, represents our measure of overall numerical errors

associated with the solution of the flow equation. The three integrals of Eq. (3.6.1.5)
represent the overall mass accumulation within the domain, the net transport of material
across the domain’s boundaries, and the net production of material within the domain,
respectively. Equation (3.6.1.5) expresses a global mass balance for the domain given the
boundary conditions and source terms for a specific problem. However, the integrals in
Eq. (3.6.1.5) are not in a convenient form for evaluation within the FACT framework.
Ideally, we would like to transform these integrals into forms that take advantage of the
Galerkin integrals already computed during the solution phase of FACT. Thereby,
making the mass balance checking as computationally efficient as possible. This can be
easily accomplished making use of certain properties of the basis functions.

The chosen nodal basis functions used in the Galerkin approximations have only local
support (i.e., are non-zero only over the limited range of their neighboring nodes). The
set of basis functions chosen are conformal and as such possess the following useful
properties: -

n
i(pK (x)=1 forallx on boundary o (3.6.1.6a)
K=l
11
i(p] (x)=1 forall x within domain Qg (3.6.1.6b)
I=]
where
NE v number of nodes on the whole boundary
1] o OO total number of nodes within whole solution domain

Making use of Egs. (3.6.1.6), Eq. ( 3.6.1.5) can be re-expressed in the form

éF=—iF]S+ S:FI‘EJrXFPW (3.6.1.7)
1=1 K=1 P=l

where
np
F=) j(C+swss}plcp,dQR %J- (3.6.1.82)
J=1 Qp
Fe = I(pK'UndO'B (3.6.1.8b)
Op
n n
RY = @P{%]a(x—xp)dQR = XQP (3.6.1.8¢)
P=l P P=
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Note that the indices refer to specific nodes: I and J refer to the total set of active nodes
making up the mesh domain; K refers to those nodes lying on the boundary (excluding
nodes whose flux boundary conditions have been converted to point sources); and P
refers to those nodes containing a point source or sink.

A considerable savings in CPU time can be achieved if the mass matrix in Eq. (3.6.1.8a)
is lumped. Lumping of this mass matrix is also consistent with the formulation of the
discretized set of flow equations solved by FACT. Following a similar derivation as was
done in Section 3.1.5, Eq. (3.5.1.6a), the storage term, can be integrated and mass lumped
to give the elemental contribution
S L dh;
Fl = <C+SWSS>Mii Ha'j[l_
The global array associated with the storage term is already required for the setting up of
the flow equations in FACT at each time step. This global storage array is saved for later
mass balance calculations, if requested.

(3.6.1.9)

While the evaluation of the source term integral is straightforward, the evaluation of the
boundary integral is more involved. Eq. (3.6.1.8b) is the boundary integral corresponding
to the nodal fluid flux (actually a volumetric flow rate) at the k’th boundary node. In the
finite element formulation a flux on a boundary, when allocated out to the appropriate
boundary nodes, appears identical to a point source placed at that boundary node when
viewing the discrete set of flow equations. Thus, from the viewpoint of the discrete set of
flow equations, boundary fluxes and point sources (which include distributed/line sources
and recharge) can be grouped together as implied by the brackets in Eq. (3.6.1.7). We
shall refer to the entries of this combined group as nodal fluid fluxes that can reside either
on the boundary or within the domain.

Each nodal fluid flux, say at the k’th node, can be computed by performing back
substitution of the computed hydraulic head solution into the discrete finite element flow
equation written for the k’th node. The back substitution is performed on discrete flow
equations that have not been altered by boundary conditioning (i.e., type 1, 2, or 3 BC’s).
Boundary nodal fluid fluxes computed in this manner avoid the problems of
discontinuities resulting from the potential discontinuities that arise when velocities at the
boundary nodes of individual elements are computed. In FACT after the creation (i.e.,
elemental assemblage) of the global set of discrete flow equations and prior to application

of boundary conditions we have the system of equations (see Section 3.1.1 for more
details)

BF R AFh-FF =0 (3.6.1.10)
dt
where
: L storage matrix prior to applying BC’s
AF seepage matrix prior to applying BC’s

nodal fluid flux array (actually nodal volumetric flow rates)
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Only the matrix members associated with those global nodes where nodal fluid flux
calculations are requested are stored.
Performing backward Euler (fully implicit) differencing on Eq. (3.6.1.10), as was done in

Section 3.1.8, rearranging terms, and substituting in our approximate head solution, h,
we arrive at our working equation for computing the nodal fluid fluxes at time step (n+1)

F ~ F -
FF =[AF +B—]h“+‘ —[B—}h“ (3.6.1.11)
ALY At

Since the above matrices can be time varying, for transient applications these stored terms
must be updated prior to mass balance computations. As pointed out above the nodal
fluid flux array contains both the boundary nodes, as well as any other nodes within the
domain that contains source contributions of any form. We can express this array by

T
FF = [FB,FW] (3.6.1.12)

where B refers to boundary nodes and W refers to internal nodes with sources or sinks.
This array contains nodal volumetric flow rates that are written to an output file for
potential use in material balance checking for a subsequent transport simulation.

Upon the successful completion of a time step and if mass balance checking is requested,
the nodal fluid fluxes are computed from Eq. (3.6.1.11) for all nodes. We now have an
efficient method for computing the rate of net material loss defined by Eq. (3.6.1.7) and
shown below in terms of nodal fluid fluxes as

Ep =—iF]S +iFE (3.6.1.12)
I=! K=1

In FACT, we compute nodal fluid fluxes for all active nodes. For those nodes which are
not boundary flux nodes or internal point sinks or sources, the computed nodal fluid flux
should be near zero.

For convenience, we also compute a normalized mass balance error defined as

. &

EF = n 1
)
i=i K=I

where the normalization factor is somewhat arbitrary but well behaved.

(3.6.1.13)

i

We also compute the cumulative mass balance error within the domain at each time level
as

entl = Ze‘;mk (3.6.1.14)
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3.6.2 Transport Equation Mass Balance

No transport equation mass balance performed. Mass balance algorithm not completed.
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4  Verification Tests and Results

T he numerical schemes of FACT were tested extensively using two groups of
example problems selected to represent diversified field conditions. The main
objectives of these tests are to verify the capability and demonstrate efficiency and
robustness of the numerical schemes and modules used for various solution options
offered by the code.

The first group of problems consist of ten groundwater flow problems covering a wide
range of boundary conditions in the saturated and unsaturated zones of subsurface
systems of various hydrogeologic configurations. The simulated results obtained from
the flow modules of FACT were compared with the analytical solutions and/or with other
well documented numerical codes. The test examples considered are described in Section
4.1 and listed as follows:

Steady-state, one-dimensional flow in a confined aquifer.

Steady-state, one-dimensional flow in an unconfined aquifer.

Steady-state flow through a heterogeneous subsurface system.

Unconfined aquifer subject to a combined recharge/drain boundary condition.
Radial flow to a well in a confined aquifer (Theis solution).

Radial flow to a well in an anisotropic confined aquifer.

Radial flow to a well in a leaky confined aquifer.

Radial flow to a well in an unconfined aquifer (Neuman solution).

hadib i B AN O ol a

Transient flow in an unconfined aquifer.

10. Unsaturated vertical soil column.
The second group of problems involves contaminant transport in the saturated zones of
subsurface systems of various configurations. Five problem cases were used to test the

transport modules of the FACT code. The following problem cases are described in
Sections 4.2 and 4.3:

1. One-dimensiconal saturated solute transport in a uniform flow field.
2. Two-dimensional saturated solute transport in a uniform flow field.
3. Three-dimensional saturated solute transport in a uniform flow field.
4

One-dimensional saturated solute transport in a uniform flow field with first-order
mobile/immobile mass transfer (van Genuchten and Wierenga analytical cases)

5. One-dimensional saturated solute transport in a uniform flow field with first-order
mobile/immobile mass transfer (VERSE-LC comparison)

The results for these problems were verified against the analytical and numerical transport
solutions.

In the following three sections, detailed descriptions of the test problems, physical
configurations, and hydrogeologic properties of the groundwater systems, spatial and
temporal discretizations, solution schemes used, and numerical results are presented.
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The above test examples do not generally reflect large field-scale applications of FACT.
However, FACT was designed and has been employed for numerous large field-scale
applications typically ranging in node size from 50 to 100 thousand nodes (one 200
thousand node problem has also been solved). The details of these types of field-scale
applications is too large to place in this report. The interested reader can view these types
of applications in the following references (local chosen sites at the Savannah River Site):

Old Burial Ground Application (OBG) - 63,600 nodes in size and models the flow
and transport of tritium from buried tritiated waste forms to where it outcrops at the
seepage faces of Fourmile Branch tributary. Local heterogeneity is handled by having
each active finite element within the mesh domain a unique material type. Material
type is based on detailed lithologic data in terms of mud fraction fitted over the entire
mesh domain. Alternative remedial corrective actions plans are investigated (capping
of the OBG). This model contained buried tritiated waste forms in the vadose zone
that migrated downward into the underlying water table and then migrated somewhat
horizontally in the saturated zones outcropping at Fourmile Branch. See reference: G.
P. Flach, L. L. Hamm, M. K. Harris, P. A. Thayer, }. S. Haselow and A. D. Smits,
"Groundwater Flow and Tritium Migration from the SRS Old Burial Ground to
Fourmile Branch (U)," WSRC-TR-96-0037, 1996.

TNX Area - 55,575 nodes in size and models groundwater flow throughout the TNX
complex down to the Savannah River. A proposed recovery well network for
capturing a 500 pg/L TCE plume is investigated. Vertical re-circulation well
technology is also considered. This models included both the vadose and several
saturated zones, with vertical mesh resolution in the vadose and water table zones to
adequately predict the vertical velocity field near the vertical re-circulation well. See
Reference: R. L. Nichols, L. L. Hamm and W. F. Jones, "Numerical Modeling of the
TNX Area Hybrid Groundwater Corrective Action (U)," WSRC-RP-95-787, August
1995.

A/M Area - 200,168 nodes in size and models the zone of capture for an existing
recovery well network located within the central A/M Area and for a planned
recovery well network to be located in the northern sector. A large number of
individual wells were contained within the model. The model consisted of the water
table and several underlying confining units and aquifers. The piezometric head
profile for the surface of the water table was fixed as Dirichlet boundary conditions
based on the fitting of available well data. See Reference: D. G. Jackson and S. E.
Aleman, "Three Dimensional Zone of Capture Analysis for the A/M-Area (U),"
WSRC-RP-95-0843, May 1995.

A/M Area — 318,291 nodes in size and models the zone of capture and transient
transport of TCE to assess the expected overall performance of two vertical
recirculation wells located in the Southern Sector of A/M Area. The model consists
of a 3000 ft by 3000 ft mesh of the “Lost Lake” aquifer zone. The recirculation well
boundary condition in FACT was used to model the two wells. See Reference: S. E.
Aleman and L. L. Hamm, "Capture Zone Analyses of Two Airlift Recirculation Weils
in the Southern Sector of A/M Area (U)," WSRC-TR-99-00203, July 1999.
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The above examples illustrate a variety of features that FACT performs and it is highly
recommended that the user study these references for ideas when attempting to solve a
field-scale problem with FACT.

4.1 Groundwater Flow Problems

4.1.1 Steady-state, One-Dimensional Flow in a Confined Aquifer

Figure 4.1.1.1 illustrates two confined aquifers experiencing steady, one-dimensional
flow. The test cases are designed to confirm correct implementation of the general head
and river bed boundary conditions. The problems can be easily solved analytically.

PROBLEM 1
z=40 GENERAL HEAD

boundary condition:

Confined aquifer k2 =CL(h-h.)

Myl
ho =50 ft X=

K=0.2 ﬂ/day CL = 0.001 day-'l

h = 25, 50, 100 ft
z2=0
X=0 X = 200’
PROBLEM2
z=40 RIVER
he = 140. 110 boundary condition:
0 = L] L] —
100, 90, Confined aquifer I . { CL(h-hL) hzz
75, 60, axly_ (Gl -hu) h<z
045 K =02 f/day C_ = 0.001 day"!
h = 1001t, 2| =75#
z=0
Xx=0 X = 200

Fig. 4.1.1.1. Schematic diagram of a confined aquifer with a constant head boundary
condition at x = 0 and either a general head {(Problem 1) or river (Problem
2) boundary condition at x = L.

Analytic solution: Invoking the Dupuit assumption, the following governing equation
can be developed for a confined aquifer (de Marsily, 1986, Eq. (5.3.11))
0*h 9%h Soh .Q

vih=224:22

==— 4.1.1.1
x> 9y Toa T ( )

For constant aquifer thickness, constant properties, one-dimensional steady flow and no
recharge, Eq. (4.1.1.1) becomes

i _

=0 (4.1.12)
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For the boundary conditions of Problem 1
h=h, @ x=0 (4.1.1.3a)
dh
-k =¢ fh-n) @ x=L (4.1.1.3b)
dx
x=L
the solution can be derived using direct integration as
h=h0+h‘“_£035— (4.1.1.4)
1+ — L
C. L

For the boundary conditions of Problem 2

h=h; @ x=0 (4.1.1.5a)

C.lh-h h>
I L) L x=L (4.1.1.5b)
dx| , (CrleL—hp) h<zp
the solution is
h=hg+aL=lo X 5,
K
oL
h=w h _; < (4.1.1.6)
h=hg+-Lt—-2L= h<z
K
1+——
L C,L

FACT simulation and comparison: Figure 4.1.1.2 illustrates the FACT mesh chosen
for both problems. Table 4.1.1.1 and Fig. 4.1.1.3 present the FACT results for Problem 1
in comparison with the analytic results. In order to test the river boundary condition the
Darcy velocity is computed at node 11 (x = 200°, y = 0’, z = 0’) using the volumetric flow
and the river boundary condition. The Darcy velocity is given by

U, == 4.1.1.7)

where the volumetric flow Q at node 11 is the result of the FACT mass balance
computation (Group 11, IMBAL = 1) and the effective flow area A at node 11 is 400 ft2.
The Darcy velocity is also given by

Coth-h hzz

U, = o-to) L (4.1.1.8)
Cole,-hy) h<z,

where h is hydraulic head at node 11 and hy, = 100’, z;, = 75". Table 4.1.1.2 and Fig.

4.1.1.4 present the FACT results for Problem 2 which compares the two calculations of
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Darcy velocity at node 11. FACT has excellent agreement with the analytic results for

both problems.

Hydraulic head, h (ft)

Fig. 4.1.1.3.

z (ft)

Fig. 4.1.1.2. FACT grid.

T T T T T T T T T T T

Analytical solution
70

o] 50 100 150 200
Distance, x {ft)

Comparison of analytic solution to FACT numerical results for Problem 1.
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0.020

P IR T S T

0.010 |-

I |

0.000 |-

Darcy velocity at node 11 (ft/day}

—{J— volumetric flow

———b4—— RiverB.G.

N T T RS

— e e L
-20 -10 0 10 20 30

hbed - h{200) (ft)

Fig. 4.1.1.4. FACT Darcy velocity for Problem 2.
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Table 4.1.1.1
Comparison of analytic solution and FACT numerical results for Problem 1
hp =25 ft hL =50 ft hp = 100 ft
X Analytic FACT Analytic FACT Analytic FACT
(ft (fv (ft) (v () (ft) (1)
0 50.0 50.0 50.0 50.0 50.0 50.0
20 48.8 438.8 50.0 50.0 52.5 52.5
40 47.5 47.5 50.0 50.0 55.0 55.0
60 46.3 46.3 50.0 50.0 515 57.5
80 45.0 45.0 50.0 50.0 60.0 60.0
100 43.8 43.8 50.0 50.0 62.5 62.5
120 42.5 42.5 50.0 50.0 65.0 65.0
140 41.3 41.3 50.0 50.0 67.5 67.5
160 40.0 40.0 50.0 50.0 *70.0 70.0
180 38.8 38.8 50.0 50.0 72.5 725
200 37.5 37.5 50.0 50.0 75.0 75.0
Table 4.1.1.2
FACT Darcy velocity at node 11 for Problem 2
Volumetric flow River bed B.C.
ho hr ZL, hx—[, U hy=1, U
(v (ft) (1] (ft) (f/day) (v {f/day)
140 100 75 120 -0.02 120.0 -0.0200
110 100 75 105 -0.005 105.0 -0.0050
100 100 s 100 0 100.0 0.0000
90 100 75 95 0.005 95.0 0.0050
75 100 75 8715 0.0125 8715 0.0125
60 100 75 80 0.02 80.0 0.0200
50 100 75 75 0.025 75.0 0.0250
45 100 75 70 0.025 70.0 0.0250
41 100 75 66 0.025 66.0 0.0250

4.1.2 Steady-State, One-Dimensional Flow in an Unconfined Aquifer

Figures 4.1.2.1 and 4.1.2.2 illustrate a pair of unconfined aquifers experiencing steady,
one-dimensional flow without and with recharge, respectively. The second problem is
essentially FTWORK Problem 4.1.1 (GeoTrans, 1993). Both problems can be easily
solved analytically.
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{no recharge)
z =60’
A4
hg = 40 ft hy =201
Unconfined aquifer
K=1031s
z=0
x=0 x =100
Fig. 4.1.2.1. Schematic diagram of an unconfined aquifer with no recharge and constant

head boundary conditions (Problem 1).

0.0328 ft/day recharge
1 |

ARERRRRREARE

no
ho =164 ft / . . flow
Uncenfined aquifer

K = 3.28 ft/day

z =240

z2=0
x=0 x = 1640

Fig.4.1.2.2. Schematic diagram of an unconfined aquifer with recharge and mixed
boundary conditions (Problem 2).

Analytic solutions: Invoking the Dupuit assumption (de Marsily, 1986, Eq. (5.1.1)))
gives the following general expression for flow in an unconfined aquifer

¢h dh
—q, 0 4.1.2.1
ax[.[K“d ] [IK dz y} -+Q ( )

For a horizontal confining unit (¢ = constant), constant properties and one-dimensional
steady flow, Eq. (4.1.2.1) becomes

_d_2_(§__;20 f =3§_ (4.1.2.2)

For the prescribed head boundary conditions
h=hy; @ x=0 {(4.1.2.3a)
h=h;, @ x=L (4.1.2.3b)

the solution can be derived using direct integration as

b= = bu-oF b -aF - bu-oP 2+ 2 21X | w126

where Qg = -Q. For the boundary conditions
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h=h, @ x=0 (4.1.2.52)
ﬁ=0 @ x=L (4.1.2.5b)
dx

the solution is

h-of =(h0—o)2—Q%CL2(%T%—2) 4.1.2.6)
/

/

FACT simulation and comparison: Figures 4.1.2.3 and 4.1.2.4 present the two grids
chosen for FACT simulations. Each grid is one element thick in the y-direction. The
mesh for problem 1 contains 10 X 6 elements in the x-z plane for a total of 60 elements.
The corresponding number of nodes is 11 X 2 X 7 = 154. The second mesh contains 20 X
1x 1 =20 elements and 21 X2 X 2 = 84 nodes. Table 4.1.2.1 and Figs: 4.1.2.5 and 4.1.2.6
present the analytic and FACT results for an optimal selection of the pseudo-soil property
parameters. The agreement is excellent for both problems. Figures 4.1.2.7 and 4.1.2.8
show the RMS. head difference between the FACT and analytic results for other values of
the pseudo-soil property parameters. Observe that the quality of the agreement is not
strongly dependent on these parameters selections. Notice that the best results were
obtained when UPSTR = 1.0 and Sy is smalil.

60 |-

40 |

z(ft)

20

o
[ = =)

8 ° "\
W&

80

X (i)

Fig. 4.1.2.3. FACT grid for Problem 1 shown in Fig. 4.1.2.1.
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40 ¢
35 |-
0O

() y ‘peay neipAy

25 -

20

100

80

60

40

20

Distance, x {ft}

Comparison of analytic solution and FACT results for Problem 1 shown in

Fig. 4.1.2.1 with rampw = 1.0, upstr = 1.0 and Sy = 0.05.

Fig. 4.1.2.5.
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230 5
220 |
g 210}
= [
g -
2 o200l
L [
=
© [
B 190
2 [
| Analytical solutlon ]
180 - o FACT a
170 i -
L: ] N 1 0 ) ] . s . L ] .
G 500 1000 1500

Distance, x (ft)

Fig. 4.1.2.6. Comparison of analytic solution and FACT results for Problem 2 shown in
Fig. 4.1.2.2 with rampw = 1.0, upstr = 1.0 and Swr = 0.005.

0.20

Root mean squared error (ft)

0.15

——— upstr=0.0, rampw = 1.0 R
—&— upstr=0.0, rampw = 10.0
——v— upstr=0.5, rampw = 1.0
—O—~— upstr =0.5, rampw = 10.0 r
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—%—— upstr=1.0, rampw=10.0
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004 006 0.08 0.10

Residual saturation, Swr

Fig. 4.1.2.7. Pseudo-soil property parameter study for Problem 1 shown in Fig. 4.1.2.1.
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Fig. 4.1.2.8a. Pseudo-soil property parameter study for Problem 2 shown in Fig.
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Fig. 4.1.2.8b. Pseudo-soil property parameter study for Problem 2 shown in Fig.
4.1.2.2.
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Table 4.1.2.1
Comparison of analytic solution and FACT numerical results
Problem 1 Problem 2
X Analytic FACT X Analytic FACT
(Y {f 8i3) (f £i3) ()

0. 40.000 40.000 0 164.000 164.000
10 38.471 38.365 40 167.905 167.545
20 36.878 36.712 80 171.628 171.058
30 35214 35.025 120 175.180 174.506
40 33.466 33.293 160 173.572 177.861
50 31.623 31.491 200 181.813 181.102
60 29.665 29.567 240 184.911 184.222
70 27.568 27.462 300 189.304 188.682
80 25.298 25.139 360 193.411 192.878
90 22,804 22.626 400 196.000 195.524
100 20.000 20.000 480 200.838 200.448
560 205.251 204919
640 209.265 208.999
720 212.904 212.724
800 216.185 216.086
880 219.126 219.073
960 221.739 221.701
1040 224.036 224.001
1120 226.027 225.999
1200 227.719 227.708
1290 229275 229,288
1380 230.469 230.507
1460 231.231 231.289
1550 231.756 231.829
1640 231.931 232.008

4.1.3 Steady-State, Two-Dimensional Flow Through a Heterogeneous Aquifer
System

Figure 4.1.3.1 schematically illustrates a particular problem involving steady-state
groundwater flow through a heterogeneous subsurface system. The problem shown in
Figure 4.1.3.1 was chosen as a test case to verify that FACT can correctly solve a
groundwater flow problem involving a non-uniform hydraulic conductivity field.
Problem parameters were carefully chosen to enable analytic solution. Specifically, the
boundary conditions and conductivity field were chosen to create two aquifers with a
constant head difference. A constant head difference coupled with a uniform
conductivity in the confining unit yields a uniform leakance between the two aquifers.
Assuming flow in the aquifers is essentially one-dimensional (Dupuit assumption;
typically an excellent assumption), analytical solutions can be derived for both the
unconfined and confined aquifers for a constant source/sink term. These analytical
solutions are presented below followed by FACT simulation and comparison results.



WESTINGHOUSE SAVANNAH RIVER COMPANY Manual: WSRC-TR-59-00282

Section: 4, Rev. 0
Date: 3/2000
FACT CODE MANUAL Page: 14 of 130
‘ (no recharge)
h=170ft Unconfined aquifer K =1 ft/day 100ft || h=1301t
Confining unit K = 0.001142 ft/day {5 in/yr) i0ft
h =160 ft Confined aquifer K =1 ft/day 100 ft h=1201t
- 1000 ft p
z=0
(no flow boundary)
Fig. 4.1.3.1. A heterogeneous subsurface system consisting of an unconfined aquifer,

confining unit and confined aquifer.

Unconfined aquifer analytical solution: Invoking the Dupuit assumption (de Marsily,
1986, Eq. (5.1.1)) gives the following general expression for flow in an unconfined

aquifer
J. Kxxd j Kydz— Bh =y a—h+Q (4.1.3.1)
x ot

For a horizontal confining unit (G = constant), constant properties and one-dimensional
steady flow, Eq. (4.1.3.1) becomes

d*(n - of _2Q 4.13.2)
dx K
For the prescribed head boundary conditions
h=h, @ x=0 (4.1.3.3a)
h=h; @ x=L (4.1.3.3b)

the solution can be derived using direct integration as

(b-0F =bo ~0F +[ b ~oF - o -oF |2 QS,CLZ[LTl_E] @.134)

where Q.. =-Q.

Confined aquifer analytical solution: Invoking the Dupuit assumption, the following
governing equation can be developed for a confined aquifer (de Marsily, 1986, Eq.
(5.3.11))
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0°h 9*h Soh

Vih="stZl = 42 (4.1.3.5)

x? oyl Tat T

For constant aquifer thickness, constant properties and one-dimensional steady flow, Eq.
(4.1.3.5) becomes

2
oh -Q (4.1.3.6)
ox? Ke
For the prescribed head boundary conditions
h=h, @ x=0 (4.1.3.7a)
h=h; @ x=L (4.1.3.7b)
the solution can be derived using direct integration as
2
h=h, 1—£)+hL i)-ﬁﬁ X 1—5} (4.1.3.8)
L ) L ) 2Ke | L ) L )

where Qg = -Q as before.

FACT numerical simulation and comparison: Figure 4.1.3.2 illustrates the finite
element mesh chosen for the simulation. The grid is 20x20 elements in the x-z plane and
one element thick along the y axis. The number of nodes is (20+1)x(20+1)x(1+1) = 882.
There are 8 elements vertically in each aquifer portion of the mesh and 4 elements in the
confining unit. Table 4.1.3.1 and Fig. 4.1.3.3 present the FACT results alongside the
approximate analytical results. Note that the head difference across the aquifers is indeed
constant as desired. The agreement between code and analytical solution is excellent.
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Fig. 4.1.3.2 Finite element mesh from x-z view (20x1x20 elements).
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Table 4.1.3.1

Approximate analytical and FACT hydraulic head values for the unconfined and confined
aquifer portions of the heterogeneous subsurface system shown in Fig. 4.1.1.

Unconfined aquifer head Confined aquifer head
x/L X Analytical FACT @ Analytical | FACT @ z=50°
z=160" (ft)
(ft) (v ({0 (ft)
0.00 ¢ 170.000 170.000 160.000 160.000
0.05 50 168.187 168.093 158.271 158.260
0.10 100 166.367 166.224 156.514 156.498
0.15 150 164.539 164.405 154.728 154.707
0.20 200 162701 162.631 152.913 152.889
0.25 250 160.852 160.955 151.070 151.044
0.30 300 158.993 159,145 149.199 149.170
0.35 350 157.120 157.011 147.299 147.269
.40 400 155.233 154.990 145.370 145.340
0.45 450 153.330 153.037 143.413 143.384
0.50 500 151.408 151.146 141.427 141.401
0.55 550 149.465 149.310 139.413 139.389
0.60 600 147.497 147.606 137.370 137.350
0.65 650 145.501 145.779 135.299 135.281
070 700 143.470 143.273 133.199 133.184
0.75 750 141.400 141.128 131.070 131.059
0.80 800 139.281 139.028 128.913 128.904
0.85 850 137.101 137.017 126.728 126.721
0.90 900 134.845 135.072 124,514 124.509
0.95 950 132.489 132.870 122.271 122.266
1.00 1000 130.000 130.000 120.000 120.000
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Fig. 4.1.3.3. Approximate analytical and FACT hydraulic head profiles for the

unconfined and confined aquifer portions of the heterogeneous subsurface
system shown in Fig. 4.1.3.1.

414 Unconfined Aquifer Subject to a Combined Recharge/Drain BC

Figure 4.1.4.1 schematically illustrates an unconfined aquifer experiencing both recharge
and drainage at the ground surface. The position of the seepline is unknown a priori.
This test case is designed to test the combined recharge/drain boundary condition option.
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Recharge
1 ft/year

Discharge from
~. Seepline seepage face
—>
—>» 100t Unconfined aquifer
h=801t h = 50 ft
—>> K=1ft/da -
Y 50 ft =
—
—>> 1000 ft
z=0
x=0 (no flow boundary) x=L
Fig. 4.1.4.1. Schematic illustration of an unconfined aquifer experiencing both recharge

and drainage at the ground surface; seepline unknown a priori.

Analytical solution: With the Dupuit assumption, an analytical solution can be derived
for the problem. Between the left boundary and the seepline, is an unconfined aquifer
subject to a recharge rate of 1 ft/yr. From inspection of Eq. (4.1.3.4), the analytical
solution for head is

2
h2=h(2}+(h§—h%)%+95;<"—1‘[%11—%} 0<x <L (4.1.4.1)
s s s

where the seepline is positioned at x = L, the head at the seepline is h; and ¢ = 0. The
other symbols are defined as before. Along the seepage face the drain coefficient is
assumed to be sufficiently large that the head is the same as the ground elevation. That is,

h=50{2~%} L, <x<L 4.14.2)
J
The location of the seepline is obtained by simultaneous solution of the following

nonlinear equation set:
h=5({2—5] (4.1.4.3)
L

4

dh

e L hg_h%_ercLs =hL_hs=dh
dx

h,| 2L, 2K | L-L, dx

x=L; 5

(4.1.4.4)

x=L

For the parameter values indicated in Fig. 4.1.4.1, the location of the seepline is L = 829
ft. The composite head solution is plotted in Fig. 4.1.4.2 and listed in Table 4.1.4.1.
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FACT numerical simulation and comparison: Also shown in Fig. 4.1.4.2 is the FACT
finite element mesh chosen for the simulation. The grid is 2020 elements in the x-z
plane and one element thick along the y axis. The number of nodes is
(20+1)x(20+1)x(1+1) = 882. Figure 4.1.4.2 and Table 4.1.4.1 present the FACT solution
in comparison to the analytical solution. The agreement is excellent.

100

™
- . '
[~ Analytical solution
90 [~
\\ Dr\ O FACT
[
_—
80 d~=0—4 ~
) Pl -
70 \\\\\\\\:\:Q\‘
— \"“--_.__ [l -t -.-...___\ \"\‘
— S _— S [~ [ [~ ] ~—~—
S Oy ey gy sy St S R G SR RN
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40 | \H\\\\\\\:\:\:\:ﬁb\
T s _—‘—-—_.___ ] —'""--.—._._\‘-'-.. “-—_..\‘-'-...__
30 [— O s U e S gy e e By
‘_'__‘—-—.__ Tl i ] “—'-.____‘__“'-—..
|| —~—t— ] —t ] ] ] [
T R e O N "————~____‘___‘—"'—-—_______‘“—-—-—.__:-—-—.
20— 1 | | T 7177t Tt
T
10 I e A s s
0
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x (ft)

Fig. 4.1.4.2. FACT finite element mesh with FACT and analytical water table overlain.
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Table 4.1.4.1
FACT and analytical water table comparison
Horizontal Anatytical FACT
distance, x head head
(ft) (ft) ()
0 80.000 80.000
50 79.594 79.616
100 79.099 79.067
150 78.513 78.425
200 77.835 77.717
250 77.063 76.892
300 76.193 75.950
350 75.222 74.939
400 74.145 73.828
450 72.959 12.547
500 71.658 71.182
550 70.236 69.740
600 68.684 68.129
650 66.995 66.350
700 65.000 64.403
750 62.500 62.303
800 60.000 59.999
850 57.500 57.500
900 55.000 55.000
950 52.500 52.500
1000 50.000 50.000

4.1.5 Transient, One-Dimensional Flow to a Well in a Confined Aquifer (Theis,

This problem involves radial flow to well in a confined aquifer whose well-known
solution is given by Theis (1935). The problem is illustrated in Fig. 4.1.5.1. Specifically
we consider an aquifer with the following attributes:

water is removed instantaneously from storage with a fall in head
flow is effectively horizontal (Dupuit assumption)

fully penetrates aquifer

constant pumping rate fort > ¢
infinitesimally small well diameter

A single extraction well is assumed to be present with the following characteristics:

The parameter values chosen for FACT simulations are given in Fig. 4.1.5.1 and are
equivalent to those chosen by Anderson (1993, Problem 1) for MODFLOW simulations.
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h{r,0) = hg
drawdown
h(r.t)
Confined aquifer K=23x10%m/s T
5 -1 b=10m
85=75x10"m l
Fig. 4.1.5.1. Radial flow to a pumping well in a confined aquifer.

Theis analytic solution: The governing equation for the flow problem described above
is (Freeze and Cherry, 1979, Section 8.3)

_1__8_ ra—}q:i—a—tl (4.1.5.1)
ror| or ) T ot
The initial condition is
h{r,0)=h, (4.1.5.2)

where hy is the constant initial hydraulic head.

The boundary conditions assume no drawdown in hydraulic head at the infinite boundary:

h{oe,t)=hy (4.1.5.3)
and a constant pumping rate Q at the well:
iir:(l)(r%g):% fort>0 (4.1.5.4)
Because the aquifer properties are homogeneous
S=5;b (4.1.5.5)
T=Kb : (4.1.5.6)

An analytical solution to Eq. (4.1.5.1) subject to the initial and boundary conditions of
Eqs. (4.1.5.2) through (4.1.5.4) is given by Theis (1935) in terms of drawdown as

s=hy -, )=-2 [ ar=-2 wiu) 4.1.57)

4xnT fu T 4nT
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where
4Tt
rs

and W(u) is known as the Theis well function.

Evaluations of the Theis solution for the parameter values specified in Fig. 4.1.5.1 and a
radial position of 55 meters from the well are presented in Table 4.1.5.1 for various times
(Anderson, 1993, Table 1.4).

FACT simulation and comparison: Figure 4.1.5.2 illustrates the first grid chosen for
FACT simulations. The mesh is 20 by 20 elements in the horizontal plane and 1 element
thick vertically for a total of 400 elements. The number of nodes is 21 x 21 x 2 = 882.
The mesh is non-uniform with refinement near the pumping well because steep head
gradients are expected there. Time steps were chosen to yield the same time increments
given in Table 4.1.5.1. Figure 4.1.5.3 illustrates the FACT transient results at r = 55 m
compared to the Theis solution, and Table 4.1.5.1 presents numerical values. The FACT
results are observed to agree approximately with the Theis solution. The discrepancy is
due to a relatively coarse grid and large time steps. Figure 4.1.5.4 presents drawdown at
the final time step (86,400 seconds or 1 day).

Before refining the mesh and time steps, we first recognize that radial symmetry enables a
smaller FACT grid domain. Specifically, a single quadrant of the mesh shown in Fig.
4.1.5.2 is adequate. Figure 4.1.5.5 illustrates such a mesh. Note that the mesh spacing is
the same in Figs. 4.1.5.2 and 4.1.5.5. The number of elements is 10 X 10 X 1 = 100 and
there are 11 x 11 X 2 = 242 nodes. Figure 4.1.5.6 and Table 4.1.5.1 present the FACT
solution for this quadrant mesh. The numerical results for both grids are seen to be
identical to three decimal places.

Next we refine the coarse quadrant mesh as illustrated in Fig. 4.1.5.7. The number of
elements is 18 X 18 X 1 = 324 and there are 19 X 19 X 2 = 722 nodes. In addition, an
intermediate time step is added to each time step indicated in Table 4.1.5.1 essentially
doubling the number of time steps. The FACT results are presented in Fig. 4.1.5.6 and
Table 4.1.5.1. The agreement between the code and Theis solution is significantly
improved. Further grid and time step refinement would continue to improve agreement.
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Fig. 4.1.5.2. FACT coarse full grid.
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Fig. 4.1.5.3. Theis solution and FACT coarse full grid transient results at r = 55 meters.
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Fig. 4.1.5.4. FACT drawdown at 1 day for coarse full grid.

Fig. 4.1.5.5. FACT coarse quadrant grid.
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Fig. 4.1.5.6. Theis solution and FACT quadrant grid transient results at r = 55 meters.
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Fig. 4.1.5.7. FACT fine quadrant grid.
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Table 4.1.5.1
Comparison of Theis solution and FACT numerical results

Time Theis FACT Coarse FACT Coarse FACT Fine
(sec) Solution Full Grid Quadrant Grid Quadrant Grid
(m) (m) (m) (m)
0.1371E+03 0.009 0.011 0.011 0.012
0.3153E+03 0.044 0.035 0.035 0.042
0.5471E+03 0.086 0.068 0.068 0.080
0.8486E+03 0.129 0.107 0.107 0.121
0.1240E+04 0.17¢ 0.147 0.147 0.161
0.1749E+04 0.210 0.187 0.187 0.200
0.2411E+04 0.249 0.227 0.227 0.239
0.3271E+04 0.288 0.266 0.266 0277
0.4389E+04 0.326 0.305 0.305 0.315
0.5843E+04 0.364 0.343 0.343 0.353
0.7734E+04 0.401 0.380 0.380 0.390
0.1019E+05 0.438 0.418 0.418 0.427
0.1339E+05 0.475 0.455 0.455 0.464
0.1754E+05 0.512 0.492 0.492 0.500
0.2294E+05 0.549 0.528 0.528 0.537
0.2995E+05 0.586 0.565 0.565 0.573
0.3908E+05 0.622 0.601 0.601 0.610
0.5094E+05 0.659 0.638 0.638 0.646
0.6636E+05 0.695 0674 0.674 0.683
0.8640E+05 0.731 0.709 0.709 0.718

4.1.6 Transient, One-Dimensional Flow to a Well in an Anisotropic Confined
Aquifer (Hantush and Thomas, 1966)

We next consider a confined aquifer identical to Problem 4.1.5 except that the hydraulic
conductivity is anisotropic as shown in Fig. 4.1.6.1. The principal axes of the
conductivity tensor are assumed to be aligned with the coordinate axes.

Analytic solution: The governing equation for the flow problem described above can be
written as

3. an) 3 ah1 oh
ax[,(ax}ay Y3y Sat+Q (xﬁ(y) <x< <y<ee (4.1.6.1)

Y,
The initial condition is

hix,y,0)=h, (4.1.6.2)
Because the aquifer properties are homogeneous, Eq. (4.1.5.5) holds and
T, =K;b (4.1.6.3)

The solution to the governing equation is given by Hantush and Thomas (1966) as
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-1
e
s=hy —hff,t)s—2 dr=— 2 _w(w) 4.1.6.4)

am [T, T, ' = _41t\/TxTy
where
4T, Tt
A 2
(x T, +y Ty 18
J

and W(u') is the well function. Note that for Ty = Ty, the above solution reduces to the
Theis solution presented in Section 4.1.5.

(4.1.6.5)

Evaluations of the analytic solution for the parameter values specified in Fig. 4.1.6.1 and
(x,y) coordinate positions of (55 m, 0), (0, 55 m) and (55 m, 55m) are presented in Tables
4.1.6.1 through 4.1.6.3 for various times (Anderson, 1993, Tables 2.3-2.5).

FACT simulation and comparison: The same three grids considered in Section 4.1.5
are used for FACT simulations in this problem. These are termed the full’ (Fig. 4.1.5.2),
‘coarse quadrant’ (Fig. 4.1.5.5) and fine quadrant’ (Fig. 4.1.5.7) grids as before. Figure
4.1.6.2 illustrates the drawdown at 1 day computed using the FACT full grid. The effect
of anisotropy in transmissivity is clear from inspection of its counterpart, Fig. 4.1.5.4.
Figures 4.1.6.3 through 4.1.6.8 and Tables 4.1.6.1 through 4.1.6.3 summarize the
transient analytic solution and FACT numerical results.

y

L x
Ky = Ky/10
T——) Ky =2.3x 1074 m/s

Fig. 4.1.6.1. Anisotropic confined aquifer with K,/Ky = 10.
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Fig. 4.1.6.2. FACT drawdown at 1 day for full grid.
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Fig. 4.1.6.3. Analytic solution and FACT full grid results at x = 55 m.
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Fig. 4.1.6.4. Analytic solution and FACT full grid results at y = 55 m.
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Fig. 4.1.6.5. Analytic solution and FACT full grid results at x =55 m, y =55 m.
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Fig. 4.1.6.6. Analytic solution and FACT quadrant grid results at x = 55 m.
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Fig. 4.1.6.7. Analytic solution and FACT quadrant grid results at y = 55 m.
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Theis solution
e} FACT with coarse grid
& FACT with finer grid

Drawdown 77.8 m from well along 45° angle {m}
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Fig. 4.1.6.8. Analytic solution and FACT quadrant grid results at x =55 m, y = 55 m.
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Table 4.1.6.1
Comparison of analytic solution and FACT numerical results at x = 55 m
Time Analytic FACT Coarse FACT Coarse FACT Fine
Solution Full Grid Quadrant Grid Quadrant Grid
(sec) (m) (m) (m) (m)
0.1371E+03 0.028 0.025 0.025 0.036
0.3153E+03 0.140 0.086 0.086 0.130
0.5471E+03 0.273 0.185 0.185 0.253
0.8486E+03 0.407 0.311 0.311 0.382
0.1240E+04 0.537 0.451 0.451 0.510
0.1749E+04 0.664 0.595 0.595 0.636
0.2411E+04 0.789 0.736 0.736 0.760
0.3271E+04 0.911 0.872 0.872 0.882
0.4389E+04 1.032 1.003 1.003 1.003
0.5843E+04 1.151 1.129 1.129 1.122
0.7734E+04 1.269 1.253 1.253 1.240
0.1019E+05 1.387 1.374 1.374 1.356
0.1339E+05 1.503 1.494 1.494 1.472
0.1754E+05 1.620 1.612 1.612 1.587
0.2294E+05 1.736 1.729 1.729 1.702
0.2995E+05 1.852 1.845 1.845 1.817
0.3908E+035 1.967 1.961 1.961 1.932
0.5094E+05 2.082 2.077 2.077 2.047
0.6636E+05 2.198 2.192 2.192 2.161
0.8640E+05 2.313 2.306 2.306 2275
Table 4.1.6.2
Comparison of analytic solution and FACT numerical results at y = 55 m
Time Analytic FACT Coarse FACT Coarse FACT Fine
Solution Full Grid Quadrant Grid Quadrant Grid
(sec) (m) (m) (m) (m)
0.1371E+03 0.000 0.005 0.005 0.000
0.3153E+03 0.000 0.013 0.013 0.000
0.5471E+03 0.001 0.022 0.022 0.003
0.8486E+03 0.006 0.033 0.033 0.009
0.1240E+04 0.022 0.048 0.048 0.024
0.1749E+04 0.050 0.069 0.069 0.050
0.2411E+04 0.092 0.101 0.101 0.088
0.3271E+04 0.148 0.144 0.144 0.140
0.4389E+04 0.215 0.201 0.201 0.203
0.5843E+04 0.292 0.269 0.269 0.276
0.7734E+04 0.377 0.348 0.348 0.357
0.1019E+05 0.468 0.435 0.435 0.445
0.1339E+05 0.565 0.528 0.528 0.539
0.1754E+05 (.665 0.627 0.627 0.637
0.2294E+05 0.769 0.729 0.729 0.740
0.2995E+05 0.876 0.835 0.835 0.844
0.3908E+05 0.984 0.942 0.942 0.952
0.5094E+05 1.094 1.051 1.051 1.061
0.6636E+05 1.204 1.161 1.161 1.171
0.8640E+05 1.316 1.271 1.271 1.281
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Table 4.1.6.3
Comparison of analytic solution and FACT numerical results at x =y =55 m
Time Analytic FACT Coarse FACT Coarse FACT Fine
Solution Full Grid Quadrant Grid Quadrant Grid

(sec) (m) () (m} (m)
0.1371E+03 0.000 0.000 0.000 0.000
0.3153E+03 0.000 0.001 0.001 0.000
0.5471E+03 0.001 0.002 0.002 0.002
0.8486E+03 0.004 0.006 0.006 0.007
0.1240E+04 0.017 0.016 0.016 0.019
0.1749E+04 0.041 0.033 0.033 0.041
0.2411E+04 0.078 0.062 0.062 0.075
0.3271E+04 0.129 0101 0.101 0.122
0.4389E+04 0.192 0.154 0.154 0.181
0.5843E+04 0.265 0.219 0.219 0.251
0.7734E+04 0.347 0.295 0.295 0.329
0.1019E+05 0.436 0.379 0.379 0415
0.1339E+05 0.530 0471 0.471 0.506
0.1754E+05 0.629 0.568 0.568 0.603
0.2294E+405 0.732 0.669 0.669 0.704
0.2995E+05 0.837 0.773 0.773 0.808
0.3908E+05 0.945 0.879 0.879 0914
0.5094E+05 1.054 0.588 | 0.988 1.022
0.6636E+05 1.164 1.097 1.097 1.132
0.8640E+05 1.276 1.207 1.207 1.242

4.1.7 Transient, One-Dimensional Flow to a Well in a Leaky Confined Aquifer
(Hantush and Jacob, 1955)

We next consider a confined aquifer identical to Problem 4.1.5 except that the aquifer is
recharged from an overlying constant head aquifer through an aquitard separating them,
as shown in Fig. 4.1.7.1. The aquitard is assumed to have uniform thickness and vertical
conductivity. Flow through the aquitard is assumed to be vertical and proportional to the
head difference between the adjoining aquifers (storage capacity assumed to be zero).
Parameter values are taken from a GeoTrans (1993) problem.
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/Q =04 ft¥s
Constant head aquifer
| | bh'=20ft
Aquitard Kre' = 106 51
Confined aquifer K=5x10"3ft/s T
e=1ft
Sg=1x 10411 J,
hg =20 ft
2 2=0
Fig. 4.1.7.1. Schematic diagram of a leaky confined aquifer with constant discharge

from a single, fully-penetrating well.

Analytic solution: The governing equation for the flow problem described above is

%%(r%}=%aa_l;+ﬁ .1.7.1)
The initial condition is
h(,0)=h, (4.1.7.2)
The boundary conditions assume no drawdown in hydraulic head at the infinite boundary:
hies,t)=h, (4.1.7.3)
and a constant pumping rate Q at the well:
li_r:a[r%%}=5?t’f fort>0 (4.1.7.4)

where F; represents leakance from the overlying aquifer. The leakage flux is given by
F == (~h) (4.1.7.5)
e

where K7e’ is the aquitard leakance coefficient. The solution to Eq. (4.1.7.1) is given by
Hantush and Jacob (1955) as

—1—r2/4821
s=hy—h{,)=—2 [ dr=-Lw u,i] (4.1.7.6)
T 1 47T B

where the Hantush leakage factor B = [Te’/K’
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Note that for B = « (no leakance} the above solution reduces to the Theis solution
presented in Section 4.1.5.

" Evaluations of the analytic solution for the parameter values specified in Fig. 4.1.7.1 and
r = 60 ft are presented in Table 4.1.7.1 and Fig. 4.1.7.2 for various times (GeoTrans,
1993, Table 4.8).

FACT simulation and comparison: Figures 4.1.7.3 and 4.1.7.4 present the two grids
chosen for FACT simulations. Only one quadrant has been modeled because of
azimuthal symmetry. The coarse mesh contains 14 X 14 elements in the X-y plane and is
1 element thick vertically for a total of 196 elements. The corresponding number of
nodes is 15 x 15 X 2 =450. The fine mesh contains 23 x 23 x 1 = 529 elements and 24 X
24 x 2 = 1152 nodes. Table 4.1.7.1 and Fig. 4.1.7.2 present the FACT numerical
drawdown predictions.

Hantush solution
< FACT with coarse grid
& FACT with finer grid

Drawdown 60 ft from observation well {ft)

0’....:....|....:..,.|
50 100 150 200

Time (seconds)

Fig. 4.1.7.2. Comparison of Hantush and Jacob (1955) analytic drawdown solution and
FACT numerical results for two grids.
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Fig. 4.1.7.3. FACT coarse grid.

Fig. 4.1.7.4. FACT fine grid.
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Table 4.1.7.1
Comparison of analytic solution and FACT numerical results at r = 60 ft
Time Analytic FACT FACT
Solution Coarse Grid Fine Grid
(sec) {ft) (ft) (ft)
0.5 - 0.00004 0.00003
.10 - 0.0003 0.0002
1.5 - 0.0009 0.0008
2.0 - 0.002 0.002
3.0 - 0.012 0.012
4.4 - 0.043 0.047
6.0 0.08 0.108 0.118
8.0 - 0.229 0.248
10.0 - 0.381 0411
14.5 0.85 0.796 0.842
16.0 - 0.939 0.991
20.0 - 1.326 1.387
26.5 2.1 1.906 1.980
35.0 - 2.556 2.646
43.5 341 3.100 3.208
55.0 - 3.683 3.816
67.5 4.57 4,179 4.337
80.0 - 4.5 4751
101.0 547 5.039 5.246
120.0 - 5.353 5.578
149.0 6.1 5.675 5917
170.0 - 5.849 6.100
200.0 - 6.021 6.2777
217.0 6.46 6.099 6.357

4.1.8 Transient, Two-Dimensional Flow to a Well in an Unconfined Aquifer

(Neuman, 1975)

We consider a problem involving radial flow to well in an unconfined aquifer whose
solution is given by Neuman (1975).
Specifically we consider an aquifer with the following attributes:

horizontal
unconfined

infinite in horizontal extent

The problem is illustrated in Fig. 4.1.8.1.

initial uniform thickness
homogeneous properties
uniform head att=0

A single extraction well is assumed to be present with the following characteristics:
e constant pumping rate fort >0
¢ infinitesimally small well diameter
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The parameter values chosen for the FACT simulation are given in Fig. 4.1.8.1. These
parameter values were chosen to match the unconfined pumping tests performed by

Nichols {1992).
/ Q = 3657.6 ft5/d
h(r,0) = 40 ft
drawdown
N’_
Unconfined aquiter K=21t/d
Sg =1.2x 104 #t1
Sy =0.1324
Fig. 4.1.8.1. Radial flow to a pumping well in an unconfined aquifer.

Analytic solution: The equations and boundary conditions used are, see (Fig. 4.1.8.1) in
the aquifer,

3% K, os 9% Js
K,—+—F—+K,—=S.—, 0<z<b 4.1.8.1
"ar2 r or zaz2 Sat z ¢ )

drawdown at the water table

ds ds
K, —(r,b,t) =—w; —(1,b,t 4.1.8.2
25, (r,b,t) 43 (r,b,t) ( )
at the impervious bottom
jai(r,O, t)=0 (4.1.8.3)
oz
along the well
lim r§}=— Q 4.1.84)
r—0| or 2nK,. b
at infinity
sleo,2,t)=0 (4.1.8.5)

initial condition

s(r,z,0)=0 4.1.8.6)




WESTINGHOUSE SAVANNAH RIVER COMPANY Manual: WSRC-TR-99-002382

Section: 4, Rev. 0
Date: 3/2000
FACT CODE MANUAL Page: 40 0f 130

with K., K, the horizontal and vertical hydraulic conductivity in the aquifer.

The drawdown in the aquifer is given by

oo

_Q 2
s= 41tTJ:4yJ0(yB )[uo(y)+n§=}un(y)1dy 4.18.7)
where
{1—exp[-tB(y* —¥3))} cosh(y,z/b)
o(¥)=-—3 2 _ o2 _ 232
{y“+(1+0)yg—(y" —vp)" /c}cosh(yy)
{l—exp[—tSB(y2+Y,2,)]}cos('ynz/b)
U () =" 32, .22
{y"=(+0)y; —(y" +7v,)" /G}cosh(yy)
and
T=K,b
t, =Tt/Sr?

B=(K,/K,)r*/b?)
0=S/(Dd

The terms g and 7, are roots of the following
oY, sinh(Yo)—(y2 —¥g)cosh(yp) =0 v < y? (4.1.8.8)

oY, sin(y, ) +(y2 +¥2)cos(y,) =0 (4.1.8.9)
(2n-1)(n/2) <y, <nm nx1

FACT simulation and comparison: Figure 4.1.8.2 illustrates the grid chosen for FACT
simulations. The mesh is 24 by 24 elements in the horizontal plane and 26 elements thick
vertically for a total of 14976 elements. The number of nodes is 25 x 25 x 27 = 16875.
The mesh is non-uniform with refinement near the pumping well, because steep head
gradients are expected there. For water movement above the water table, the pseudo-soil
is used. Pumping in an unconfined aquifer results in an unsaturated region near the well.
Since FACT simulates an extraction well with nodal sinks in a saturated region, the nodal
sinks must remain below the water table throughout the simulation. In order to determine
the maximum water table drawdown at the well, FACT is used solve a steady state
problem with a vertical line sink at the well location. After assigning the appropriate
nodal sinks at the well location, FACT is used to solve the transient problem. Figure
4.1.8.3 illustrates the FACT transient results at r = 31 ft, z = 23 ft compared to the
Neuman solution and pump test data, and Tables 4.1.8.1 - 4.1.8.3 present numerical
values. Figure 4.1.8.4 presents drawdown at z = 23 ft, t = 6.94 days, and Tables 4.1.8.4 -
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4.1.8.5 present numerical values. The FACT results are observed to agree approximately
with the Neuman solution.

z (ft)

i I ' 1 M 1 S
100 ]
[ j
£ [
B
=
[ s 4
2 A
: >
Q
7] o
g o
wi0' k- A i
g ° ]
s o ]
3 Neuman solution ]
© A Pump test data
[} (s FACT
[«
A
| L ot " Lo el " TR |
10* 10°® 10" 10°
Time (days)

Fig. 4.1.8.3. Neuman solution, pump test data and FACT results at r = 31 ft, z = 23 ft.
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Fig. 4.1.8.4. Neuman solution and FACT results at z = 23 ft, t = 6.94 days.
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Table 4.1.8.1 Table 4.1.8.2
Neuman solution atr =31 ft,z=23 ft Pump test data
Time Neuman solution Time Pump test data
(days) (fe) (days) (ft}
A94E-03 S29E-02 9.259E-04 1.600E-02
.694E-03 .139E-01 1.215E-03 3.500E-02
.194E-02 JTTE-01 2.083E-03 8.100E-02
394E-02 135 3.819E-03 0.1100
.694E-02 169 8.333E-03 0.1820
.194E-01 205 1.527E-02 0.2150
.394E-01 241 3.611E-02 0.2600
694E-01 292 7.638E-02 0.3320
194 464 0.1458 0.4330
394 .648 0.3194 0.5659
694 .822 0.6666 0.7670
1.94 1.16 1.805 1.149
3.94 1.40 3.888 1.250
6.94 1.60
Table 4.1.8.3 Table 4.1.8.4
FACT numerical results Neuman solution at z = 23 ft, t = 6.94 days
Time FACT drawdown T Neuman solution
(days) (fty (ft) (fty
.694E-03 .123E-01 250 5.14
.139E-02 .322E-01 500 4.79
.239E-02 622E-01 50 4.40
347E-02 .896E-01 1.00 4,10
694E-02 135 1.50 3.83
939E-02 154 2.00 3.61
.139E-01 174 2.50 342
.247E-01 201 3.00 3.30
347E-01 222 4.00 3.08
447E-01 .242 5.00 2.90
694E-01 .287 7.00 2.65
939E-01 329 9.00 247
.139 396 11.0 232
247 519 16.0 2.05
347 .611 31.0 1.60
447 .686 51.0 1.26
.694 817 64.0 1.10
.939 916 128. 644
1.39 1.04 256. 253
2.47 1.23 512. .340E-01
3.47 1.35
4.47 1.44
6.94 1.59
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Table 4.1.8.5
FACT numerical resuits
4 FACT drawdown
(f) (ft)
500 4.75
1.00 4.26
2.00 372
4.00 3.17
8.00 2.63
16.0 2.09
31.0 1.60
64.0 1.09
128. 641
256. 253
512. 420E-01

4.1.9 Transient, Two-Dimensional Flow in an Unconfined Aquifer

Figure 4.1.9.1 illustrates an unconfined aquifer experiencing transient, two-dimensional
flow. The test problem is designed to confirm correct implementation of the drain
boundary condition. The drain boundary condition is examined at

(x,2)=(20,30) 4.1.9.1)

no recharge
-

z=60

h{x,t) Unconfined aquifer
N\ Drain b.c.

Transient v

prescribed z=30

h{x,0) = 30 ft _ -6 4-1
h .C. = Se=5x10°ft
ead b.c K = 4 {t/day s No flow b.c.
$=03
z=0
x=0 - x=20

Fig. 4.1.9.1. Schematic diagram of an unconfined aquifer with a transient prescribed

head boundary condition at x = 0 and a combination of drain and no flow
boundary conditions at x = 20.

Problem description: The variably saturated flow equation is solved with the prescribed
head boundary conditions,

h=h(t) @ x=0, 0<y<10, 0<£z<60 4.1.9.2)
the drain boundary condition,

B a_h_{cL(h—hL) h>h 4.193)

o h<h,

@ x=20, 0<y<10, 30<z<60, and Cp =25 h; =z

and the no flow boundary condition elsewhere.
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FACT simulation and comparison: Figure 4.1.9.2 illustrates the FACT mesh chosen.
The grid is 10x12 elements in the x-z plane and one element thick along the y axis. The
number of nodes is (10+1)x(12+1)x(1+1) = 286. The transient prescribed head at x=0
rapidly increases from 30 ft to 50 ft during the simulation. Figure 4.1.9.3 presents the
FACT transient water table height. In order to test the drain boundary condition the
Darcy velocity is computed at node 143 (x = 20°, y = 0, z = 30’) using the volumetric flow
and the drain boundary condition. The Darcy velocity is given by

U, =2 (4.1.9.4)

where the volumetric flow Q at node 143 is the result of the FACT mass balance
computation (Group 11, IMBAL = 1) and the effective flow area A at node 143 is 12.5
ft2. The Darcy velocity is also given by

Cp(h—h;) h=h
sz{L( L) h2hy

4.1.9.5
0 h<hg ( )

where h is hydraulic head at node 143 and hy, = 30”. Table 4.1.9.1 and Fig. 4.1.9.4 present
the two calculations of Darcy velocity at node 143.

z (ft)

Fig. 4.1.9.2. FACT grid.
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Fig. 4.1.9.3. FACT water table height.
T T — oy
—{}— volumetrc flow
10 ——&—— DlnB. C. .

Darcy velocity at node 143 (ft/day)

il N IR | L
10° 10’ 10°

et R W N o = ] I
10 10° 102 107
Time {days)

Fig. 4.1.9.4. FACT Darcy velocity at x =20°, z = 30"
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Table 4.1.9.1
FACT Darcy velocity at x = 20°, z = 30°
Time Volumetric flux Drain Flux
(day) (ft/day) (ft/day)

0.00006944 0.00000007 0.00000007
0.00010000 0.00000012 0.00000012
0.00015000 0.00000031 0.00000031
0.00020000 0.00000067 0.00000067
0.00030000 0.00000272 0.00000272
0.00050000 0.00001773 0.00001773
0.00110000 0.00033194 0.00033192
0.00140000 0.00058052 0.00058053
0.00150000 0.00067454 0.00067454
0.00160000 0.00078063 0.00078063
0.00170000 0.00089978 0.00089978
0.00175000 0.00096272 0.00096275
0.00177000 0.00098848 0.00098848
0.00210000 0.00160783 0.00160774
0.00347222 0.13836838 0.13836833
0.00450000 0.24007208 0.24007204
0.00600000 0.37976824 0.37976822
0.00800000 0.55747641 0.55747641
0.01000000 0.73170317 0.73170314
0.01388889 1.07367627 1.07367603
0.01900000 1.46455484 1.46455482
0.02500000 1.87545203 1.87545202
0.03200000 2.31563815 2.31563803
0.04000000 2.79200611 2.79200609
0.05000000 3.35594935 3.35593853
0.06944444 4,38032886 4.38032884
0.09000000 5.23714952 5.23714956
0.12000000 6.25780281 6.25779629
0.16000000 7.43950587 7.43950621
0.20000000 8.53664630 8.53667607
0.30000000 10.80022826 10.80022805
0.34722222 11.32561859 11.32561852
0.38000000 11.58367136 11.58366935
0.41000000 11.79758758 11.79758694
0.50000000 12.17662248 12.17662198
0.60000000 12.50513109 12.50513099
0.70000000 12.77659993 12.77659907
0.80000000 12.94880157 12.94880421
1.00000000 13.07833772 13.07833568
2.00000000 13.26144369 13.26144338
3.00000000 13.31916598 13.31916712
6.00000000 13.34981163 13.34981354
10.00000000 13.35694070 13.35694326
100.00000000 13.35857379 13.35857354
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4.1.10 Unsaturated Vertical Soil Column

Figure 4.1.10.1 illustrates the FACT mesh chosen for two unsaturated test cases also
shown in the figure. The test cases are designed to confirm cotrect implementation of
soil characteristic curves and Richard’s equation. The first test case essentially
reproduces the water retention curve in the FACT output. The second case involves
steady-state unsaturated flow which invokes relative permeability. The soil characteristic
curves chosen are for "Silt Loam G.E. 3" and taken from van Genuchten (1980). Figure
4.1.10.2 shows the characteristic curves. The van Genuchten models for capillary
suction-water retention and relative permeability are

1

S = — (4.1.10.1}

1

1+ (aP )™
SR
K =s}!2[1—(1—s},_/mJ } (4.1.10.2)
where S; is the ‘effective saturation’ defined by

S, :-SIW"% (4.1.10.3)

—wr

with empirical parameters o and m.
For Silt Loam G.E. 3 the empirical parameters take on the values
S, =0.331

o=0.129ft"!

m=0.515
The saturated conductivity is K = 0.163 ft/day (van Genuchten, 1980).

Water retention profile case: Because the steady-state head is zero along the column,
there is no flow in the column. Figure 4.1.10.2 and Table 4.1.10.1 show the exact and
code predicted saturation profile within the column. The agreement is excellent.

Steady-state unsaturated flow at constant saturation case: For a saturation of 75%,
the capillary pressure is 0.005125952 ft and the relative permeability is 0.043098523. For
boundary conditions of 75% saturation applied to both ends of the column, the Darcy
velocity should be

U=k,K Ab = (0.043098523)(0. 163—ﬂ~—)£fE =0.007025 ft
Az ay 50ft

4.1.104
q ( )

day

The FACT code reproduces this value as expected.
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Sail Column Water retention Steady-state
Mesh profile (no flow) unsaturated flow
at constant saturation
10 h=0
elements {unsaturated) y=-9.377711175 ft
z2=50 ] ™ u
] 75% saturation
soft | K unsaturated
— U = 0.007025 ft/day
z=0 ] -
h=0 v =-9.377711175f
{saturated)
Fig. 4.1.10.1. Schematic illustration of FACT mesh and unsaturated test cases.
Soil Characteristic Curves for Silt Loam G.E. 3 {(van Genuchten, 1980)
L] I L] : I L] I L I L
S : ———— Capillary pressure 1
: = = = = = Relative permeability f
80 F : 1 FACT capillary pressure =08
£ A ; /] o
o : q D
a : ! 2
® 60 : H063
= N [
] : ! o
a ' ! o
o :
= 40 E !l q04 %
g : 7 =
(&) R : s i =
» s
‘ )
H 7
20 |- ' ,f -10.2
H #
L : e 4
E -
: 1 A — )= ! .
0.2 c4 0.6 0.8
Water Saturation, Sw
Fig. 4.1.10.2. Soil characteristic curves for Silt Loam G.E. 3 (van Genuchten, 1980)

_with FACT code results overlain.
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Table 4.1.10.1
Water retention curve and FACT comparison of saturation
Water
Analytical Retention FACT FACT
pressure head Curve Saturation Saturation
Element Elevation v (ft) Saturation (10 elem) Element {250 elem)
No. z (ft) Sw Sw No. Sw
1 2.5 -25 0.9689 0.9463 13 0.9688
2 1.5 7.5 0.8073 0.8127 38 0.8073
3 12.5 -12.5 0.6731 0.6795 63 0.6731
4 17.5 -17.5 0.5890 0.5928 88 0.5891
5 22.5 -22.5 0.5354 0.5375 113 0.5354
6 27.5 -21.5 0.4991 0.5004 138 0.4991
7 325 -32.5 0.4733 0.4741 163 0.4733
8 37.5 -37.5 0.4540 0.4546 188 0.4540
9 42.5 -42.5 0.4392 0.4396 213 0.4392
10 47.5 -47.5 0.4274 0.4277 238 0.4275




WESTINGHOUSE SAVANNAH RIVER COMPANY Manual: WSRC-TR-99-00282

Section: 4, Rev, 0
Date: 372000
FACT CODE MANUAL Page: 51 of 130

4.2 Solute Transport Problems

In the following three sections we present one, two, and three dimensional solute
transport examples, respectively. They are classical cases ideal for studying the basic
behavior of an advection-dispersion equation solver. In the one-dimensional case we
shall test the equation solver in various ways by varying its control parameters over a
wide range of values. This enables users to see the inherent weaknesses of this solver and
hopefully will help the users to minimize such weaknesses in their own problems. The
majority of behaviors presented below are observed in all advection-dispersion solvers.
Ultimately, the users must rely on their own experience and it is highly recommended that
several transport simulations of the same problem be performed. Comparisons to these
simulations will provide excellent insight into how adequate and optimal their solution is.
The test cases selected all have analytic solutions for a clear picture as to how well FACT
handles these transport conditions. As the users will see, oscillations about a point source
typically occurs; however, in many field-scale applications such limited oscillations can
have negligible effects beyond the close proximity of point sources:.

4.2.1 One-Dimensional Saturated Solute Transport in a Uniform Flow Field

This problem deals with one-dimensional advection-dispersion of a non-conservative
solute species through a semi-infinite porous medium and is used to demonstrate the
impact that various FACT options (i.e., numerical approximations) have on its solution.
The 1D advection-dispersion equation is ideal for testing an algorithm’s behavior over a
wide range of conditions. A physical schematic of this problem is shown in Fig. 4.2.1.1.
As illustrated, a non-conservative contaminant is continuously released from a fully
penetrating channel into a shallow confined aquifer unit whose groundwater flow is
assumed to be uniform. Both hydrodynamic dispersion and molecular diffusion are
allowed, as well as, the possibility of radioactive decay and/or adsorption of the species. It
is assumed that the contaminant concentration level in the neighboring reservoir remains
constant, the aquifer’s flow rate is uniform and constant, and the homogeneous aquifer’s
properties (such as porosity, soil type, water saturation} are uniform and constant.

Analytic solution: Equation (2.2.28) represents the non-conservative form of the multi-
dimensional advection-dispersion equation for solute transport through a variably
saturated porous media. Taking the 1-D form of Eq. (2.2.28) and assuming that no point
or line sources/sinks exist within the domain, constant water saturation level, and that
material coefficients are constants, results in

ac D’ 0% , dc

5= DS 3k e “.2.1.1)
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cO)=c 51

Piezometric Head

| .

0 406 m X
Fig. 4.2.1.1. Schematic diagram for 1D solute transport in a confined aquifer.
where
D,, =0 gqu, + ,iD° (hydrodynamic dispersion coef.}
D), = %‘— (retarded longitudinal dispersion coef.)
u, = —l;—"— (retarded phasic water velocity)
U, : .
u, = (phasic water velocity)
em
Pukg .
R=1+2%5 (retardation factor)
m
Py, =ps(1-0) (bulk soil density)
For our semi-infinite confined aquifer the initial conditions are:
¢(x,0)=0 (4.2.1.2a)
and the boundary conditions are:
c(0,t)=¢g (4.2.1.2b)
c(e0,1)=0 (4.2.1.2¢)

For the first boundary condition we are assuming that at x=0 the contaminant
concentration reaches its ultimate value ¢, immediately upon commencement of flow and
remains at that value throughout all positive times (x=0 boundary represents an inflow
boundary). The second boundary condition is equivalent to assuming that the dispersive
flux of solute is zero at plus infinity or

X —yoal

X

lim (a—c 1: 0 (4.2.1.2d)
J/
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For finite times there exists a finite value of x where Eq. (4.2.1.2d) remains valid.

Equation (4.2.1.1), a linear partial differential equation subject to the initial and boundary
conditions given by Egs. (4.2.1.2a,b,c), can be solved by applying the Laplace transform
technique. The general solution has been derived by Grobner and Hofreiter (1950) and
takes the form:

7

Xx+ot

1 u,.x X—0Ot
c(x,ty==c¢pex X— | exp(—xP)erfc] ——= |+exp(xP)erfc| ——— 4.2.1.3)
20 p(szx pCxBlerte o7+ [FePGP) 2 /Dt

where

I

2 .
u, A ’ ’
Bz =[ J "D, and 02 = (ux)2 +4erxx (4'2‘ 1.33)

2D’ D)

XX

When there is no radioactive decay (A, =0) present Eq. (4.2.1.3) reduces to

c(x,t)=ico erfc x_—li"t +exp —l—l’,‘—x rfc —E-tu,—"t- (4.2.1.4)
2 2./D Dy 2Dt

xR
derived also by Ogata and Banks (1961). The absence of adsorption is achieved by
setting the retardation factor to unity (R =1). Note that the original derivation by
Grobner and Hofreiter was performed on the limited case of a saturated media in the
absence of adsorption. The more general case presented here results in the same solution
but are based upon retarded material coefficients (highlighted with carrots). The
evaluation of the analytic expression Eq. (4.2.1.3) for a specific problem is performed
numerically and has been placed in an algorithm named ATI1D.

FACT numerical simulation and comparison: Values of the physical parameters used
in the verification simulations are presented in Table 4.2.1.1. The base case grid chosen
for this problem consists of 40 rectangular brick elements uniformly sized (10 m in
length) and stacked along the x-axis. Figure 4.2.1.2 illustrates the finite element mesh
chosen and the boundary conditions applied along the six outer domain surfaces. At the
channel inlet boundary (left face), the concentration of solute in the incoming water is set
to 1.0 kg/m>. Due to the finite overall length of our mesh, at the outflow boundary (right
face) the dispersive flux is set to zero, while the advective flux is calculated as part of the
solution. Since this is a 1-D problem, solute concentration gradients do not exist in the
transverse directions (y and z directions). Therefore, the dispersive fluxes along these
four faces (top, bottom, front, and back) are set to zero. By default, in the standard finite
element formulation zero dispersive fluxes are automatically applied to all outer domain
surfaces unless otherwise specified. The aquifer is assumed to be compietely saturated.
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Table 4.2.1.1

Values of the physical parameters, the finite element grid, time-step data, and some key
parameters used in the one-dimensional transport problem (base case and its variations)

Physical parameters Base case Range tested
Darcy velocity, Uy 1.0 m/d -
Porosity , ¢ 0.25 -
Longitudinal horizontal dispersivity, o g 50m 0.01,5.0
Apparent molecular dispersion coefficient, 0.0 m¥/d -
Gm‘cD*
Water saturation, Sy, 1.0 -
radioactive decay coef., A, 0.0d! 0.0,0.01
Soil density, pg 1.0 kg/m?® -
Solute distribution coefficient, ky 0.0 m¥/kg 0.0,0.3333
Boundary solute concentration, ¢, 1.0 kg/m? -
Grid specifics
Element length, Ax 2m 2,20,40,80
Element width, Ay 2m -
Element height, Az 2m -
Number nodes in x-dir 201 201,21,11.6
Number nodes in y-dir 2 -
Number nodes in z-dir 2 -
Longitudinal length 400 m -
Time steps
Time duration 50d -
number time-steps 500 20,10,5,2
time-step size, At 0.1d 2.5,5,10,25
Key computed parameters
Retardation factor, R 1.0 1.0,2.0
Bulk soil density, pp, 0.75 kg/n? -
Phasic velocity, U, 4.0 m/d -
Retarded phasic velocity, u'x 4.0 m/d 4.0,2.0
Retarded longitudinal dispersion 20.0 m¥d 20.0,10.0
coefficient, D'xx
Cell Fourier number, Foy 0.5 0.5,0.0078125,
0.03125,0.125,0.5, 1.0,2.0,5.0
Cell Courant number, Coy 0.2 0.2,0.125,0.25,0.5,
10,20,50
Cell Peclet number, Pey 0.4 0.4,4.0,8.0,16.0, 1000.0

For this problem several simulations were performed. As summarized in Table 4.2.1.2,
simulations were performed for a base case and then fifteen runs were made varying
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certain key physical parameters and FACT options to demonstrate their impact on the
final results. For each simulation a transient calculation was performed for a 50 day
duration and the results from FACT at two points in time (25 and 50 days) are compared
to the analytical solution given by Eq. (4.2.1.3). As shown in Table 4.2.1.1, a broad range
of cell Peclet, cell material Courant, and cell Fourier numbers were tested. For
understanding behavior, stability, and accuracy issues, these are very important quantities
to consider,

grid spedifics:  nx=41; ny=2; nz=2 diffusive flux zero along
Ax=Ay=AZ=10m top, bottom, front,
back, and right faces
conc one along
left face groundwater flow
\ direction
30 L T —T T T
20 E -z
WE T II T T I I I T I T T II T T T T T T I I I I T T T 1T -
=10
.20 I RN EE S S
0 100 200 300 400

Distance parallel to flow direction, x(m)

Fig. 4.2.1.2. FACT mesh and boundary conditions for 1D transport.

The results of all the simulations (both numerical and analytical) are shown in Figs.
4.2.1.3 through 4.2.1.14. Each figure corresponds to a different combination of
parameters (e.g., spatial and temporal approximations). These results are also presented
in tabular form for comparison in Tables 4.2.1.3 through 4.2.1.14. The analytical results
were computed from the computer code AT1D. The FACT numerical results are labeled
"FACT" for the base case and have additional nomenclature for the other runs (e.g.,
"FACT (A, =0.01)" represents the run where all parameters were at their base case

values except for the radioactive decay parameter that was set to 0.01).

The results presented in Fig. 4.2.1.3 represent our base case. The concentration profiles
at both time shots compare very close to the analytical profiles. Once the simulation time
has reached 50 days, sufficient time has elapsed such that the concentration profile’s
shape is unaffected by the inlet boundary condition and the mean transport distance
(location of 50% of the solute) corresponds to the retarded velocity times elapsed time.
For the base case at 50 days the mean distance is 200 m (i.e., 4.0 m/d x 50 d).
Characteristic oscillatory overshoot or undershoot, exhibited by second-order accurate
centered spatial differencing, is not observed for the base case due to the fact that the
local cell Peclet number does not exceed two.
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By adjusting the solute distribution coefficient such that the retardation factor becomes
2.0 (case A), the retarded dispersion and velocity are halved. These results can be seen in
Fig. 4.2.1.4 where (1) the mean transport distance at 50 days is now 100 m and (2) the
spread of the plume has been greatly reduced. Compare the results in Fig. 4.2.1.4 to
4.2.1.3.

Table 4.2.1.2

Summary of simulations performed (base case and its variations) on the one-dimensional
transport problem

FACT Options Base (A BCDEYF¥F¥F GHI J KL MN O
case
temporal differencing X XX XXX X} X|X|X}X XXX
central [Crank-Nicolson], @=0.5
backward [Euler] =1.0 x| x
spatial differencing X XXX XXX XXX X X
[Bubnov], aa =0
optimum, ¢ = 0.27 X

full upstream, o = 1.0 X X X
Mesh Sizes

Element length, Ax =2 m X x|l x|x x[x|x]x|x]x|x[|x|x
Ax=20m X
Ax=40m X
Ax=80m X

time-step size, At=0.1d X x[xjx]|x]x]|x x|xbx| x| x| x
At=5d X

At=10d X

At=25d X

Physical Parameters

Longitudinal horizontal X x| x1x|x|x|x|[x]x]x|x]x]|x
dispersivity, o y=5m

g =9001m X | x
radioactive decay coef., X X x|xpxx|x|x[x|[x]x
Ar=0.04d"!
Ap=0.014d! x| x
Solute distribution coef., X X x| x|x]x|x|xtx|x]xx|x}x
kg = 0.0 m/kg
kq=0.3333 mkg X

X

By employing a non-zero radioactive decay coefficient such that the solute now becomes
a non-conservative transport species (case B), the solute concentration profiles are
reduced especially at the higher concentration levels. These results can be seen in Fig.
4.2.1.5 when compared to Fig. 4.2.1.3.

By applying both retardation and radioactive decay coefficients simultaneously (case C),
we observe the composite effect as shown in Fig. 4.2.1.6. These results show (1) the
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mean transport distance at 50 days is now less than 100 m and (2) the concentration
profile has been reduced at the higher concentration levels.

The effect of varying the grid size (cases D, E, and F) can be seen in Fig. 4.2.1.7. As
shown, the "effective” (i.e., artificial plus actual) dispersion coefficient continues to
increase as the grid spacing increases. Thus, resolution of the concentration front
diminishes. At the grid spacing Ax = 80 m, the cell Peclet number is 16 and we can begin
to see overshoot and undershoot occurring.

The effect of varying the time-step size (cases G, H, and I} can be seen in Fig. 4.2.1.8. As
shown, the "effective" (i.e., artificial plus actual) dispersion coefficient continues to
increase as the time-step size increases. Thus, resolution of the concentration front
diminishes. At the time-step sizes At = 10 and 25 days, the cell material Courant and
Fourier numbers are exceeding unity and we can begin to see significant overshoot and
undershoot occurring.

The effect of upstream spatial weighting (case J) can be seen in Fig. 4.2.1.9 when
compared to Fig. 4.2.1.3. As shown, the "effective” (i.e., artificial plus actual) dispersion
coefficient increases when full upstream weighting is applied. Note that the full upstream
weighting scheme employed is only first-order accurate. In theory when the cell Peclet
number is less than two, second-order accurate central spatial differencing (Bubnov-
Galerkin scheme) is preferable. In practice this cutoff point can generally be raised to
approximately ten. Beyond this value, some level of upstream weighting (Petrov-
Galerkin scheme) is recommended to minimize overshoot and undershoot near steep
concentration gradients. In FACT the degree of upstream weighting is control by input
parameters or computed optimally (assuming streamline Courant number less than one)
for each element as a function of streamline Peclet number.

The effect of temporal differencing (case K) can be seen in Fig. 4.2.1.10 when compared
to Fig. 4.2.1.3. As shown, the "effective” (i.c., artificial plus actual) dispersion coefficient
increases when backward (Euler) differencing is applied. Note that the backward (Euler)
differencing scheme employed is only first-order accurate. The second-order accurate
central (Crank-Nicolson) differencing is preferable. In FACT the option of temporal
differencing for solute transport is control by an input parameter that is applied
throughout the entire computational domain. The combined effect of spatial and
temporal differencing (case L) can be seen in Fig. 4.2.1.11 when compared to Fig. 4.2.1.3.
further increase in the "effective” dispersion coefficient occurs.

The above cases all were at a cell Peclet number of two. To see a strong effect of
oscillation near the concentration front several case runs (cases M, N, and O) were
performed at a cell Peclet number of a thousand. This high a cell Peclet number results in
the transport of nearly square wave (i.e., plug flow) over the time and distance ranges of
interest here. Using the optimum spatial and temporal differencing settings for our base
case (case M) we see significant oscillatory behavior illustrated in Fig. 4.2.12. The
central spatial differencing scheme attempt to capture the very steep concentration
resulted in upstream oscillations. These oscillations can be minimized or eliminated by:
(1) varying the degree of upstream weighting employed and/or (2) refining the grid




WESTINGHOUSE SAVANNAH RIVER COMPANY Manual: WSRC-TR-99-00282

Section: 4, Rev. 0
Date: 372000
FACT CODE MANUAL Page: 58 of 130

spacing. We will restrict ourselves to the grid spacing use in the base case. Applying full
upstream weighting (case N) eliminates the oscillations but results in a significant
increase in artificial dispersion. We can minimize the oscillations and artificial
dispersion by appropriately setting the partial upstream weighting factor to o =0.27 (case
0).

Based upon these calculations, some general guidance came be given for performing
solute transport with FACT:

e Use the second-order accurate central temporal differencing (Crank-Nicolson)
scheme.

e Apply the second-order accurate central spatial differencing (Bubnov-Galerkin)
scheme.

e Estimate from the results the maximum cell Peclet number within the computational
grid. Refine the grid such that the maximum value in each direction is less than ten
(preferably less than two).

e [If meeting the Peclet number constraint results in too fine of a grid for your current
hardware (storage limits or run-times), then apply increasing amounts of upstream
weighting until the oscillatory behavior becomes acceptable.

¢ In some cases grid refinement will be mandatory to meet acceptable results.
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Fig. 4.2.1.3. Concentration profiles for 1D transport of the base case.
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o

@
@ T T T T T T
prev,
= 1.0 1D transport (time-step siza) T
=]

o o alytical (AT1D}
% . o © FACT

] o v a FACT (At= 5.0}

o - v FACT (At=10.0)

g o D FACT (At=25.0)

Q 5]

o 05 o
- o

3

o

w
©

Q
N
©

S

o 0.0 - -3

3] 100 200 300 400

Longitudinal distance, x (m)
Fig. 4.2.1.8. Concentration profiles for 1D transport showing effect of time-step size.




WESTINGHOUSE SAVANNAH RIVER COMPANY Manual: WSRC-TR-99-({()282
Section: 4, Rev. 0
Date: 3/2000
FACT CODE MANUAL Page: 62 of 130
)
::é 104 1D transpart (spatial differencing}
: ~
-~ L2 AN, —---- Analytical {AT10)
8 o ) FACT (w=1.0)
a * Anatytical (AT1D)
o e FACT (a=1.0)
c \
%] .
[&) \
[4)) 0.5 - \\.
% \® 25 days
W N
? e
N e
:
c oor T~ 3
Z i . N i 1 1 " n L " 1
o 100 200 300 a00
Longitudinal distance, x (m)
Fig. 4.2.1.9. Concentration profiles for 1D transport showing effect of spatial
differencing.
w
@ 7 T
:E 104 1D transport {tamporal ditferencing)
=)
~ N O N il Analytical (AT1D)
% o ° FACT (8=1.0)
- Y Analytical (AT1D)
8’ . | FACT (9=1.0)
8 . N 1=25 days
@ 0.5 - L
— v
= 'Y
AY
] .
=) \\.
3 \\.
= .
g AN \' .
o o o~ p
Z 1 i L i " i ]
0 100 200 300 200

Longitudinal distance, x {m)

Fig. 4.2.1.10. Concentration profiles for 1D transport showing effect of temporal
differencing.




WESTINGHOUSE SAVANNAH RIVER COMPANY Manual:

WSRC-TR-99-00282

Section: 4,Rev. 0
Date: 372000
FACT CODE MANUAL Page: 63 of 130
£

———

w

g T T T — T T T ¥ T T

= 104 ] — . -|

c D transport {temporal and spatial differencing)

2 ]

oo “““ Analytical (AT1D)

S o . L FACT (9=1.0,m=1.0)

- P 4 Analytical (AT1D)

2 o . FACT (8=1.0,u=1.0)

8 \. t=25 days

o 95 |— \ . ]

§ '\ . a t=50days

0 AY

B ‘L.

g v e

N \\ * .

© N

= h

o oof e

= ;

¢} 100 200 300 400

Longitudinal distance, x (m)

Fig. 4.2.1.11. Concentration profiles for 1D transport showing combined effect of

temporal and spatial differencing.

=50 days

2
=]
T

Normalized solute conc., c/c_ (unitless)
o
(4]
"

1 " 1 N J—— 1 L L L . 1

1D transport (dispersion)

————— Analytical (AT1D)
——®—— FACT (0,=0.01)
Analytical (AT1D)
——&—— FACT {55, =0.01)

o) 100 200 300

Longitudinal distance, x (m)

400

Fig. 4.2.1.12. Concentration profiles for 1D transport at high Peclet number showing

effect of dispersion.




WESTINGHOUSE SAVANNAH RIVER COMPANY Manual: WSRC-TR-99-00282

Section:
Date:
FACT CODE MANUAL Page:
o
w
@ —_——————
= 104 1D transport {dispersion and spatial differencing)
= .
=
e .
s | w4 N ! T Analytical (AT1D)
g —8—— FACT (0,=0.01,0=1.0)
- Analytical (AT1D)
] | —-s—— FACT (&, =0.01,00=1.0)
c
o] ] t=25 days
o
o O°5f 1 1=50 days
— I
= 1
Q s
[3] 1
-] 1
m 1
N :
s )
E |
s %0  ter----—- ]
Z N L L " s, L n i N L L " L N 1 L N L N
0 100 200 300 400

Fig. 4.2.1.13. Concentration profiles for 1D transport at high Peclet number showing

Normalized solute conc., c/c, (unitless)

Fig. 4.2.1.14. Concentration profiles for 1D transport at high Peclet number showing

1.04

Longitudinal distance, x (m)

effect of complete upstream spatial differencing.

T T T T T T T T T T T T T " T
1D transport {dispersion and spatial differencing}

————— Analytical (AT1D}
—®— FACT (¢, =0.01.0=0.2)
Analytical (AT1D)
—4— FACT {0, =0.01,=0.2)

1=50 days

0 I ‘ I I100l ‘ I ‘200‘ ‘ . I3DDI I I I400
Longitudinal distance, x (m)

effect of optimal upstream spatial differencing.




WESTINGHQOUSE SAVANNAH RIVER COMPANY Manual: WSRC-TR-99-00282
Section: 4, Rev. 0
Date: 3/2000
FACT CODE MANUAL Page: 65 of 130

Table 4.2.1.3

Comparison of analytical and numerical concentration (kg/m3) results for the transient
1D transport problem (base case)

Distance downstrearn x Analytical Numerical Analytical Numerical
(m) {(G&H) (FACT) (G&H) (FACT)
(t= 25 days) (t =25 days) (t = 50 days) (t = 50 days)
0.0 1.0000 1.0000 1.0000 1.0000
10.0 0.9996 0.9996 1.0000 1.0000
20.0 0.9983 0.9983 1.0000 1.0000
300 (0.9945 0.9945 1.0000 1.0000
40.0 0.9853 0.9852 0.9999 1.0000
50.0 0.9662 0.9658 0.9999 0.9999
60.0 0.9312 0.9305 0.9996 0.9996
70.0 0.8744 0.8732 0.9991 0.9991
80.0 0.7922 0.7905 0.9981 0.9980
90.0 0.6856 0.6834 0.9960 0.9959
100.0 0.5616 0.5591 0.9921 0.9920
110.0 0.4318 0.4293 0.9854 0.9852
120.0 0.3096 0.3072 0.9742 0.9740
130.0 0.2057 0.2037 0.9568 0.9565
140.0 0.1262 0.1246 0.9311 09306
150.0 0.0712 0.0701 0.8951 0.8943
160.0 0.0368 0.0361 0.8472 0.8462
170.0 0.0174 0.0170 0.7868 0.7855
180.0 0.0075 0.0073 0.7146 0.7131
190.0 0.0030 0.0029 0.6325 0.6308
200.0 0.0011 0.0010 0.5441 0.5423
210.0 0.0003 0.0003 0.4535 0.4517
220.0 0.0001 0.0001 0.3654 0.3636
230.0 0.0000 0.0000 0.2840 0.2824
240.0 0.0000 0.0000 0.2125 02111
250.0 0.0000 0.0000 0.1528 0.1516
260.0 0.0000 0.0000 0.1055 0.1046
270.0 0.0000 0.0000 0.0698 0.06951
280.0 0.0000 0.0000 0.0443 0.0438
290.0 0.0000 0.0000 0.0269 0.0265
300.0 0.0000 0.0000 0.0156 0.0153
310.0 0.0000 0.0000 0.0086 0.0085
320.0 0.0000 0.0000 0.0046 0.0045
330.0 0.0000 0.0000 0.0023 0.0023
340.0 0.0000 0.0000 0.0011 0.0011
350.0 0.0000 0.0000 0.0005 0.0005
360.0 0.0000 0.0000 0.0002 0.0002
370.0 0.0000 0.0000 0.0001 0.0001
380.0 0.0000 0.0000 0.0000 0.0000
390.0 0.0000 0.0000 0.0000 0.0000
400.0 0.0000 0.0000 0.0000 0.0000
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Table 4.2.1.4

Comparison of analytical and numerical concentration (kg/m3) results for the transient
1D transport problem (retardation R=2.0)

Distance downstream x Analytical Numerical Analytical Numerical
(m) (G&H) (FACT) (G&H) (FACT)
(t =25 days) (t =25 days} (t = 50 days) (t = 50 days)
0.0 1.0000 1.0000 1.0000 1.0000
10.0 0.9901 0.9900 0.9996 0.9996
20.0 0.9578 (09574 0.9983 0.9983
30.0 0.8844 0.8836 0.9945 0.9945
40.0 0.7576 0.7562 0.9853 0.9853
50.0 0.5853 0.5836 0.9662 0.9660
60.0 0.3980 03963 0.9312 0.9308
70.0 0.2338 0.2323 0.8744 0.8738
80.0 0.1170 0.1159 0.7922 0.7913
90.0 0.0494 0.0487 0.6856 0.6845
100.0 0.0175 0.0171 0.5616 0.5604
110.0 0.0051 0.0050 0.4318 0.4306
120.0 0.0013 0.0012 0.3096 0.3084
130.0 0.0003 0.0002 0.2057 0.2048
140.0 0.0000 0.0000 0.1262 0.1254
150.0 0.0000 (.0000 0.0712 0.0706
160.0 0.0000 0.0000 0.0368 0.0364
170.0 0.0000 0.0000 00174 0.0172
180.0 0.0000 0.0000 0.0075 0.0074
190.0 0.0000 0.0000 0.0030 0.0029
200.0 0.0000 0.0000 0.0011 0.0010
210.0 0.0000 0.0000 0.0003 0.0003
220.0 0.0000 0.0000 0.0001 0.0001
230.0 0.0000 0.0000 0.0000 0.0000
240.0 0.0000 0.0000 0.0000 0.0000
250.0 0.0000 0.0000 0.0000 0.0000
260.0 0.0000 0.0000 0.0000 0.0000
270.0 0.0000 0.0000 0.0000 0.0000
280.0 0.0000 0.0000 0.0000 0.0000
290.0 0.0000 0.0000 0.0000 0.0000
300.0 0.0000 0.0000 0.0000 0.0000
3100 0.0000 0.0000 0.0000 0.0000
320.0 0.0000 0.0000 0.0000 0.0000
330.0 0.0000 0.0000 0.0000 0.0000
340.0 0.0000 0.0000 0.0000 0.0000
350.0 0.0000 0.0000 0.0000 0.0000
360.0 (.0000 0.0000 0.0000 0.0000
370.0 0.0000 0.0000 0.0000 0.0000
380.0 0.0000 0.0000 0.0000 0.0000
390.0 0.0000 0.0000 0.0000 0.0000
400.0 0.0660 0.0000 0.0000 0.0000
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1D transport problem (radioactive decay A, = 0.01)

Table 4.2.1.5
Comparison of analytical and numerical concentration (kg/m3) results for the transient

Distance downstream X Analytical Numerical Analytical Numerical
{m) {G&H) (FACT) (G&H) (FACT)
(t=25 days) (t = 25 days) {t = 50 days) (t = 50 days)
0.0 1.0000 1.0000 1.0000 1.0000
10.0 0.9753 0.9753 0.9756 0.9756
20.0 0.9506 0.9506 0.9518 09518
30.0 0.9245 0.9245 0.9286 0.9286
40.0 0.8950 0.8949 0.9059 0.9059
50.0 0.8587 0.8584 0.8838 0.8838
60.0 0.8112 0.8107 0.8621 0.8621
70.0 0.7484 0.7474 0.8407 0.8407
80.0 0.6677 0.6664 0.8196 0.8196
90.0 0.5705 0.5688 0.7984 0.7984
100.0 0.4623 0.4604 0.7766 0.7766
110.0 0.3524 0.3504 0.7537 0.7536
120.0 0.2508 0.2490 0.7288 0.7286
130.0 0.1657 0.1642 0.7007 0.7005
140.0 0.1012 0.1000 0.6684 0.6681
150.0 0.0568 0.0560 0.6308 0.6304
160.0 0.0293 0.0288 05871 0.5865
170.0 0.0138 0.0135 0.5371 0.5363
180.0 0.0060 0.0058 0.4812 0.4804
190.0 0.0023 0.0023 0.4210 0.4200
200.0 0.0008 0.0008 0.3584 0.3573
210.0 0.0003 0.0003 0.2960 0.2949
2200 0.0001 0.0001 0.2366 0.2356
230.0 0.0000 0.0000 0.1826 0.1817
240.0 0.0000 0.0000 0.1358 0.1350
250.0 0.0000 0.0000 0.0972 0.0965
260.0 0.0000 0.0000 0.0668 0.0662
270.0 0.0000 0.0000 0.0440 0.0436
280.0 0.0000 0.0000 0.0278 0.0275
290.0 0.0000 0.0000 0.0168 0.0166
300.0 0.0000 0.0000 0.0097 0.0096
310.0 0.0000 0.0000 0.0054 0.0053
320.0 0.0000 0.0000 0.0028 0.0028
330.0 0.0000 0.0000 0.0014 0.0014
340.0 0.0000 0.0000 0.0007 0.0007
350.0 0.0000 0.0000 0.0003 0.0003
360.0 0.0000 0.0000 0.0001 0.0001
370.0 0.0000 0.0000 0.0001 0.0001
380.0 0.0000 0.0000 0.0000 0.0000
390.0 0.0000 0.0000 0.0000 0.0000
400.0 0.0000 0.0000 0.0000 0.0000
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Table 4.2.1.6
Comparison of analytical and numerical concentration (kg/m3) results for the transient
1D transport problem (retardation R=2.0, radioactive decay A, = 0.01)
Distance downstream x Analytical Numerical Analytical Numerical
(m) {G&H) (FACT) (G&H) (FACT)
(t =25 days) (t =25 days) (t =50 days) (t = 50 days)

0.0 1.0000 1.0000 1.0000 1.0000
10.0 0.9452 0.9451 0.9522 0.9522
20.0 0.8764 0.8762 0.9061 0.9061
30.0 0.7805 0.7799 0.8607 0.8607
40.0 0.6495 0.6484 0.8145 0.8144
50.0 0.4907 0.4894 0.7647 0.7646
60.0 0.3282 0.3269 0.7082 0.7079
70.0 0.1905 0.1893 0.6417 0.6413
80.0 0.0944 0.0936 0.5637 0.5632
90.0 0.0396 0.0390 0.4754 0.4747
100.0 0.0139 0.0136 0.3811 0.3803
110.0 0.0041 0.0039 0.2879 0.2871
120.0 0.0010 0.0009 0.2034 0.2027
130.0 0.0002 0.0002 0.1336 0.1330
140.0 0.0000 0.0000 0.0812 0.0807
150.0 0.0000 0.0000 0.0454 0.0451
160.0 0.0000 0.0000 0.0233 0.0231
170.0 0.0000 0.0000 0.0110 0.0108
180.0 0.0000 0.0000 0.0047 0.0046
190.0 0.0000 0.0000 0.0019 0.0018
200.0 0.0000 0.0000 0.0007 0.0006
2100 0.0000 0.0000 0.0002 0.0002
220.0 0.0000 (.0000 0.0001 0.0001
2300 0.0000 0.0000 0.0000 0.0000
240.0 0.0000 0.0000 0.0000 0.0000
250.0 0.0000 0.0000 0.0000 0.0000
260.0 0.0000 0.0000 0.0000 0.0000
270.0 (.0000 0.0000 0.0000 0.0000
280.0 0.0000 0.0000 0.0000 0.0000
290.0 0.0000 0.0000 0.0000 0.0000
300.0 0.0000 0.0000 0.0000 0.0000
310.0 0.0000 0.0000 0.0000 0.0000
320.0 0.0000 0.0000 0.0000 0.0000
330.0 0.0000 0.0000 0.0000 0.0000
340.0 0.0000 0.0000 0.0000 0.0000
350.0 0.0000 0.0000 0.0000 0.0000
360.0 0.0000 0.0000 0.0000 0.0000
370.0 0.0000 0.0000 0.0000 0.0000
380.0 0.0000 0.0000 0.0000 0.0000
390.0 0.0000 0.0000 0.0000 0.0000
400.0 0.0000 0.0000 0.0000 0.0000
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Table 4.2.1.7

Effect grid size (Ax) has on the numerical concentration (kg/m3) results for the transient
1D transport problem (time t=50 days)

Distance | Analytical | Numerical  Numerical  Numerical  Numerical
downstream | (G&H) (FACT) (FACT) (FACT) (FACT)
X (m)
(Ax=2m) (Ax=20m) (Ax=40m) (Ax=80m)
0.0 1.0000 1.0000 1.0000 1.0000 1.0000
10.0 1.0000 1.0000 - - -
200 1.0000 1.0000 1.0000 - -
30.0 1.0000 1.0000 - - -
40.0 0.9999 1.0000 1.0000 0.9992 -
50.0 0.9999 0.9999 - - -
60.0 0.9996 0.9996 0.9998 - -
70.0 0.9991 0.9991 - - -
80.0 0.9981 0.9980 0.9985 1.0017 1.0166
90.0 0.9960 0.9959 - - -
100.0 0.9921 0.9920 0.9927 - .
110.0 0.9854 0.9852 - - -
120.0 0.9742 0.9740 0.9741 0.9769 -
130.0 0.9568 0.9565 - - -
140.0 0.9311 0.9306 0.9290 - -
150.0 0.8951 0.8943 - - -
160.0 0.8472 0.8462 0.8428 0.8296 0.7702
170.0 0.7868 0.7855 - - -
180.0 0.7146 0.7131 0.7100 - -
190.0 0.6325 0.6308 - - -
200.0 0.5441 0.5423 0.5323 0.5366 _
210.0 0.4535 0.4517 - - -
220.0 0.3654 0.3636 0.3674 - -
230.0 0.2840 0.2824 - - -
240.0 0.2125 02111 0.2160 0.2316 0.2783
250.0 0.1528 0.1516 - - -
260.0 0.1055 0.1046 0.1075 - -
270.0 0.0698 0.0691 - - -
280.0 0.0443 0.0438 0.0437 0.0511 .
290.0 0.0269 0.0265 - - -
300.0 0.0156 0.0153 0.0136 - -
3100 0.0086 0.0085 - - -
320.0 0.0046 0.0045 0.0028 -0.0029 0.0087
330.0 0.0023 0.0023 - - .
340.0 0.0011 0.0011 0.0001 - -
350.0 0.0005 0.0005 - - -
360.0 0.0002 0.0002 -0.0002 -0.0039 ;
370.0 0.0001 0.0001 - - -
380.0 0.0000 0.0000 0.0000 - .
390.0 0.0000 0.0000 - - -
400.0 0.0000 0.0000 0.0000 -0.0005 -0.0228
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Table 4.2.1.8

Effect time-step size (At) has on the numerical concentration (kg/m3) results for the
transient 1D transport problem (time t=50 days)

Distance | Analytical | Numerical Numerical Numerical Numerical
downstream | (G&H) (FACT) (FACT) (FACT) (FACT)
X (m) (M=0.1d) (At=5d) (At=10d) (At=254d)
0.0 1.0000 1.0000 1.0000 1.0000 1.0000
10.0 1.0000 1.0000 0.9942 0.9889 1.1141
20.0 1.0000 1.0000 1.0028 1.0280 1.1619
30.0 1.0000 1.0000 0.9985 1.0115 1.1625
40.0 0.9999 1.0000 1.0001 0.9788 1.1303
50.0 0.9999 0.9999 1.0007 0.9664 1.0764
60.0 0.99%6 0.9996 0.9992 0.9825 1.0038
700 0.9991 0.9991 0.9990 1.0155 0.9337
80.0 0.9981 0.9980 0.9991 1.0481 0.8554
90.0 0.9960 0.9959 (0.9971 1.0654 0.7772
1060.0 0.9921 0.9920 0.9925 1.0588 0.7012
110.0 0.9854 0.9852 0.9853 1.0262 0.6289
120.0 0.9742 0.9740 0.9732 0.9698 - 0.5611
130.0 0.9568 0.9565 0.9514 0.8950 0.4984
140.0 0.9311 0.9306 0.9147 0.8080 0.4410
150.0 0.8951 0.8943 0.8601 0.7152 0.3888
160.0 0.8472 0.8462 0.7879 0.6217 0.3417
170.0 0.7868 0.7855 0.7017 0.5318 0.2995
180.0 0.7146 0.7131 0.6073 (.4483 0.2619
190.0 0.6325 0.6308 (0.5110 0.3729 0.2284
200.0 0.5441 0.5423 0.4185 0.3066 0.1989
2100 0.4535 04517 0.3341 0.2493 0.1728
2200 0.3654 0.3636 0.2605 0.2008 0.1499
230.0 0.2840 0.2824 0.1986 0.1602 0.1298
240.0 0.2125 0.211! 0.1483 0.1268 0.1122
250.0 0.1528 0.1516 0.1087 0.0996 0.0969
260.0 0.1055 0.1046 0.0782 0.0777 0.0835
270.0 0.0698 0.0691 0.0554 0.0602 0.0720
280.0 0.0443 0.0438 0.0386 0.0464 0.0619
290.0 0.0269 0.0265 0.0266 0.0355 0.0532
300.0 0.0156 0.0153 0.0180 0.0271 0.0457
310.0 0.0086 0.0085 0.0121 0.0205 0.0392
320.0 0.0046 0.0045 0.0080 0.0155 0.0336
3300 0.0023 0.0023 0.0052 0.0117 0.0288
340.0 0.0011 0.0011 0.0034 0.0087 0.0246
350.0 0.0005 0.0005 0.0022 0.0065 0.0211
360.0 0.0002 0.0002 0.0014 0.0048 0.0180
370.0 0.0001 0.0001 0.0009 0.0036 0.0154
380.0 0.0000 0.0000 0.0006 0.0027 0.0131
390.0 0.0000 0.0000 0.0003 0.0020 0.0113
400.0 0.0000 0.0000 0.0003 0.0016 0.0102
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Table 4.2.1.9

Effect upwind differencing has on the numerical concentration (kg/m3) results for the
transient 1D transport problem (spatial differencing o =1.0)

Distance downstream x Analytical Numerical Analytical Numerical
{m) (G&H) (FACT) (G&H) (FACT)
(t =25 days) (t = 25 days) (t =50 days) {t = 50 days)
0.0 1.0000 1.0000 1.0000 1.0000
10.0 0.9996 0.9993 1.0000 1.0000
200 0.9983 0.9970 1.0000 1.0000
300 0.9945 09912 1.0000 0.9999
40.0 0.9853 0.9790 0.9999 0.9998
50.0 0.9662 0.9561 0.9999 0.9996
60.0 0.9312 09177 0.9996 0.9991
70.0 0.8744 0.8594 0.9991 0.9981
80.0 0.7922 0.7793 0.9981 0.9962
90.0 0.6856 0.6792 0.9960 0.9928
100.0 0.5616 0.5649 0.9921 0.9872
110.0 0.4318 0.4456 0.9854 0.9781
120.0 0.3096 0.3315 0.9742 0.9642
130.0 0.2057 0.2317 0.9568 0.9440
140.0 0.1262 0.1515 0.9311 0.9157
150.0 0.0712 0.0924 0.8951 0.8781
160.0 0.0368 0.0525 0.8472 0.8301
170.0 0.0174 0.0277 0.7868 0.7717
180.0 0.0075 0.0135 0.7146 0.7036
190.0 0.0030 0.0061 0.6325 0.6277
200.0 0.0011 0.0026 0.5441 0.5465
210.0 0.0003 0.0010 0.4535 0.4635
220.0 0.0001 0.0004 0.3654 0.3822
2300 0.0000 0.0001 0.2840 0.3058
240.0 0.0000 0.0000 0.2125 02372
250.0 0.0000 0.0000 0.1528 0.1780
260.0 0.0000 0.0000 0.1055 0.1292
270.0 0.0000 0.0000 0.0698 0.0906
280.0 0.0000 0.0000 0.0443 0.0613
290.0 0.0000 0.0000 0.0269 0.0400
300.0 0.0000 0.0000 0.0156 0.0251
310.0 0.0000 0.0000 0.0086 0.0152
320.0 0.0000 0.0000 0.0046 0.0089
330.0 0.0000 0.0000 0.0023 0.0050
340.0 0.0000 0.0000 0.0011 0.0027
350.0 0.0000 0.0000 0.0005 0.0014
360.0 0.0000 0.0000 0.0002 0.0007
370.0 0.0000 0.0000 0.0001 0.0003
380.0 0.0000 0.0000 0.0000 0.0002
390.0 0.0000 0.0000 0.0000 0.0001
400.0 0.0000 0.0000 0.0000 0.0000
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Table 4.2.1.10

Effect backward Euler has on the numerical concentration (kg/m3) results for the
transient 1D transport problem (temporal differencing @ =1.0)

Distance downstream x Analytical Numerical Analytical Numerical
(m) (G&H) (FACT) (G&H) (FACT)
(t = 25 days) {t = 25 days) {t = 50 days) (t =50 days)
0.0 1.0000 1.0000 1.0000 1.0000
10.0 0.9996 0.9996 1.0000 1.0000
20.0 0.9983 0.9982 1.0000 1.0000
30.0 0.9945 0.9941 1.0000 1.0000
40.0 (.9853 0.9844 0.9999 0.9999
50.0 0.9662 0.9643 0.9999 0.9998
60.0 0.9312 0.9280 0.9996 0.9996
70.0 0.8744 0.8698 0.9991 0.9990
80.0 0.7922 0.7868 0.9981 0.9979
90.0 0.6856 0.6804 0.9960 0.9956
100.0 0.5616 0.5580 0.9921 0.9914
110.0 0.4318 0.4308 0.9854 0.9842
120.0 0.3096 03114 0.9742 0.9725
130.0 0.2057 0.2098 0.9568 0.9543
140.0 0.1262 0.1313 0.9311 0.9278
150.0 0.0712 0.0762 0.8951 0.8909
160.0 0.0368 0.0409 0.8472 0.8423
170.0 0.0174 0.0203 0.7868 0.7817
180.0 0.0075 0.0093 0.7146 0.7097
190.0 0.0030 0.0040 0.6325 0.6285
200.0 0.0011 0.0016 0.5441 0.5415
210.0 0.0003 0.0006 0.4535 0.4527
220.0 0.0001 0.0002 0.3654 0.3665
230.0 0.0000 0.0001 0.2840 0.2867
240.0 0.0000 0.0000 0.2125 0.2165
250.0 0.0000 0.0000 0.1528 0.1576
260.0 0.0000 0.0000 0.1055 0.1105
270.0 0.0000 0.0000 0.0698 0.0745
280.0 0.0000 0.0000 0.0443 0.0483
290.0 0.0000 0.0000 0.0269 0.030t
300.0 0.0000 0.0000 0.0156 0.0180
310.0 0.0000 0.0000 0.0086 0.0103
320.0 0.0000 0.0000 0.0046 0.0057
330.0 0.0000 0.0000 0.0023 0.0030
340.0 0.0000 0.0000 0.0011 0.0015
350.0 0.0000 0.0000 0.0005 0.0007
360.0 0.0000 0.0000 0.0002 0.0004
370.0 0.0000 0.0000 0.0001 0.0002
380.0 0.0000 0.0000 0.0000 0.0001
390.0 0.0000 0.0000 0.0000 0.0000
400.0 0.0000 0.0000 0.0000 0.0000
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Table 4.2.1.11

Effect backward Euler plus upwind differencing has on the numerical concentration
(kg/m3) results for the transient 1D transport problem (temporal differencing ® =1.0,

spatial differencing o =1.0)

Distance downstream x Analytical Numerical Analytical Numerical
(m) (G&H) (FACT) (G&H) (FACT)
(t= 123 days) (t =25 days) (t = 50 days) (t =50 days)
0.0 1.0000 1.0000 1.0000 1.0000
10.0 0.9996 0.9992 1.0000 1.0000
20.0 0.9983 0.9968 1.0000 1.0000
30.0 0.9945 0.9908 1.0000 0.999%
40.0 0.9853 0.9782 0.9999 0.9998
50.0 0.9662 0.9546 0.9999 0.9996
60.0 0.9312 0.9154 0.9996 0.9990
70.0 0.8744 0.8565 0.9991 0.9979
80.0 0.7922 0.7763 0.9981 0.9959
90.0 0.6856 0.6767 0.9960 0.9924
100.0 0.5616 0.5638 0.9921 0.9865
110.0 0.4318 0.4465 0.9854 0.9771
120.0 0.3096 0.3346 0.9742 0.9627
130.0 0.2057 0.2365 0.9568 09419
140.0 0.1262 0.1572 0.9311 0.9132
150.0 0.0712 (.0980 0.8951 0.8751
160.0 0.0368 0.0573 0.8472 0.8269
170.0 0.0174 0.0314 0.7868 0.7686
180.0 0.0075 0.0161 0.7146 0.7009
190.0 0.0030 0.0077 0.6325 0.6258
200.0 0.0011 0.0035 0.5441 0.5458
210.0 0.0003 0.0015 0.4535 0.4641
220.0 0.0001 0.0006 0.3654 0.3842
230.0 0.0000 0.0002 0.2840 0.3092
240.0 0.0000 0.001 0.2125 0.2415
250.0 0.0000 0.0000 0.1528 0.1830
260.0 0.0000 0.0000 0.1055 0.1344
270.0 0.0000 0.0000 0.0698 0.0955
280.0 0.0000 0.0000 ,0.0443 0.0657
290.0 0.0000 0.0000 0.0269 0.0437
300.0 0.0000 0.0000 0.0156 0.0281
310.0 0.0000 0.0000 0.0086 0.0175
320.0 0.0000 0.0000 0.0046 0.0105
330.0 0.0000 0.0000 0.0023 0.0061
340.0 0.0000 0.0000 0.0011 0.0034
350.0 0.0000 0.0000 0.0005 0.0019
360.0 0.0000 0.0000 0.0002 0.0010
370.0 0.0000 0.0000 0.000t 0.0005
380.0 0.0000 0.0000 0.0000 0.0002
390.0 0.0000 0.0000 0.0000 0.0001
400.0 0.0000 0.0000 0.0000 0.0001
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Table 4.2.1.12

Effect low longitudinal dispersivity has on the numerical concentration (kg/m3) results
for the transient 1D transport problem (longitudinal horizontal dispersivity ¢ jy =0.01)

Distance downstream x Analytical Numerical Analytical Numerical
(m) (G&H) (FACT) (G&H) (FACT)
{t =25 days) (t = 25 days) {t = 50 days) (t = 50 days)
0.0 1.0000 1.0000 1.0000 1.0000
10.0 1.0000 0.9990 1.0000 1.0001
20.0 1.0000 1.0026 1.0000 0.9998
30.0 1.0000 0.9961 1.0000 1.0003
40.0 1.0000 1.0056 1.0000 0.9997
50.0 1.0000 0.9902 1.0000 1.0002
60.0 1.0000 1.0168 1.0000 1.0001
70.0 1.0000 0.9899 1.0000 0.9996
80.0 1.0000 0.9573 1.0000 1.0006
90.0 1.0000 0.9461 1.0000 0.9995
100.0 0.5000 0.3924 1.0000 0.9999
110.0 0.0000 -0.0024 1.0000 1.0019
120.0 0.0000 0.0000 1.0000 0.9954
130.0 0.0000 0.0000 1.0000 1.0051
140.0 0.0000 0.0000 1.0000 1.0023
150.0 0.0000 0.0000 1.0000 0.9885
160.0 0.0000 0.0000 1.0000 0.9919
170.0 0.0000 0.0000 1.0000 1.0089
180.0 0.0000 0.0000 1.0000 1.0272
190.0 0.0000 0.0000 1.0000 1.0258
200.0 0.0000 0.0000 0.5000 0.4017
210.0 0.0000 0.0000 0.0000 -0.0042
220.0 0.0000 0.0000 0.3000 0.0030
230.0 0.0000 0.0000 0.0000 0.0000
240.0 0.0000 0.0000 0.0000 0.0000
250.0 0.0000 0.0000 0.0000 0.0000
260.0 0.0000 0.0000 0.0000 0.0000
270.0 0.0000 0.0000 0.0000 0.0000 |
280.0 0.0000 0.0000 0.0000 0.0000 |
290.0 0.0000 0.0000 0.0000 0.0000
300.0 0.0000 0.0000 0.0000 0.0000
310.0 0.0000 0.0000 0.0000 0.0000
320.0 0.0000 0.0000 0.0000 0.0000
330.0 0.0000 0.0000 0.0000 0.0000
340.0 0.0000 0.0000 (.0000 0.0000
350.0 0.0000 0.0000 0.0000 0.0000
360.0 0.0000 (.0000 0.0000 0.0000
370.0 0.0000 0.0000 0.0000 0.0000
380.0 0.0000 0.0000 0.0000 0.0000
390.0 0.0000 0.0000 0.0000 0.0000
400.0 0.0000 0.0000 0.0000 0.0000
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Table 4.2.1.13

Effect low longitudinal dispersivity plus upwind differencing has on the numerical
concentration (kg/m3) results for the transient 1D transport problem (longitudinal
horizontal dispersivity o j =0.01, spatial differencing o =1.0)

Distance downstream x Analytical Numerical Analytical Numerical
(m) (G&H) (FACT) (G&H) (FACT)
(t = 25 days) {t =25 days} (t = 50 days) (t =50 days)
0.0 1.0000 1.0000 1.0000 1.0000
10.0 1.0000 1.0000 1.0000 1.0000
20.0 1.0000 1.0000 1.0000 1.0000
30.0 1.0000 1.0000 1.0000 1.0000
40.0 1.0000 1.0000 1.0000 1.0000
50.0 1.0000 0.9999 1.0000 1.0000
60.0 1.0000 0.9982 1.0000 1.0000
70.0 1.0000 0.9859 1.0000 1.0000
80.0 1.0000 0.9302 1.0000 1.0000
90.0 1.0000 “0.7779 1.0000 1.0000
100.0 0.5000 0.5225 1.0000 1.0000
1100 0.0000 0.2574 1.0000 1.0000
120.0 0.0000 0.0870 1.0000 1.0000
130.0 0.0000 0.0192 1.0000 0.9998
140.0 0.0000 0.0027 1.0000 0.9989
150.0 0.0000 0.0002 1.0000 0.9945
160.0 0.0000 0.0000 1.0000 0.9794
170.0 0.0000 0.0000 1.0000 0.9382
180.0 0.0000 0.0000 1.0000 0.8506
190.0 0.0000 0.0000 1.0000 0.7051
200.0 0.0000 0.0000 0.5000 05159
210.0 0.0000 0.0000 0.0000 0.323t
220.0 0.0000 0.0000 0.0000 0.1690
230.0 0.0000 0.0000 0.0000 0.0725
240.0 0.0000 0.0000 0.0000 0.0252
250.0 0.0000 0.0000 0.0000 0.0070
260.0 0.0000 0.0000 0.0000 0.0015
270.0 0.0000 0.0000 0.0000 0.0003
280.0 0.0000 0.0000 0.0000 0.0000
290.0 0.0000 0.0000 0.0000 0.0000
300.0 0.0000 0.0000 0.0000 0.0000
310.0 0.0000 0.0000 0.0000 0.0000
320.0 0.0000 0.0000 0.0000 0.0000
330.0 0.0000 0.0000 0.0000 0.0000
340.0 0.0000 0.0000 0.0000 0.0000
350.0 0.0000 0.0000 0.0000 0.0000
360.0 0.0000 0.0000 0.0000 0.0000
370.0 0.0000 0.0000 0.0000 0.0000
380.0 0.0000 0.0000 0.0000 0.0000
390.0 (.0000 0.0000 0.0000 0.0000
- 400.0 0.0000 0.0000 0.0000 0.0000
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Table 4.2.1.14

Effect low longitudinal dispersivity plus partial (optimal) upwind differencing has on the
numerical concentration (kg/m3) results for the transient 1D transport problem
(longitudinal horizontal dispersivity o iy =0.01, spatial differencing o =0.27)

Distance downstream X Analytical Numerical Analytical Numerical
(m) (G&H) (FACT) (G&H) (FACT)
(t =25 days) {t = 25 days) (t = 50 days) (t = 50 days)
0.0 1.0000 1.0000 1.0000 1.0000
10.0 1.0000 1.0000 1.0000 1.0000
20.0 1.0000 1.0000 1.0000 1.0000
30.0 1.0000 1.0000 1.0000 1.0000
40.0 1.0000 1.0000 1.0000 1.0000
50.0 1.0000 1.0000 1.0000 1.0000
60.0 1.0000 1.0000 1.0000 1.0000
70.0 1.0000 1.0000 1.0000 1.0000
80.0 1.0000 0.9969 1.0000 1.0000
90.0 1.0000 09114 1.0000 1.0000
100.0 0.5000 0.5028 1.0000 1.0000
110.0 0.0000 0.0933 1.0000 1.0000
120.0 0.0000 0.0036 1.0000 1.0000
130.0 0.0000 0.0000 1.0000 1.0000
140.0 0.0000 (.0000 1.0000 1.0000
150.0 0.0000 0.0000 1.0000 1.0000
160.0 0.0000 0.0000 1.0000 0.9999
170.0 0.0000 0.0000 1.0000 (.9980
180.0 0.0000 0.0000 1.0000 0.9717
190.0 0.0000 0.0000 1.0000 0.8291
200.0 0.0000 0.0000 0.5000 0.5021
210.0 0.0000 0.0000 0.0000 0.1747
220.0 0.0000 0.0000 0.0000 0.0301
230.0 0.0000 0.0000 0.0000 0.0023
240.0 0.0000 0.0000 0.0000 0.0001
250.0 0.0000 0.0000 0.0000 0.0000
260.0 0.0000 0.0000 0.0000 0.0000
270.0 0.0000 0.0000 0.0000 0.0000
280.0 0.0000 0.0000 0.0000 0.0000
290.0 0.0000 0.0000 0.0000 0.0000
300.0 0.0000 0.0000 0.0000 0.0000
310.0 0.0000 0.0000 0.0000 0.0000
320.0 0.0000 0.0000 0.0000 0.0000
330.0 0.0000 0.0000 0.0000 0.0000
340.0 0.0000 0.0000 0.0000 0.0000
350.0 0.0000 0.0000 0.0000 0.0000
360.0 0.0000 0.0000 0.0000 0.0000
370.0 0.0000 0.0000 0.0000 0.0000
380.0 0.0000 0.0000 0.0000 0.0000
390.0 0.0000 0.0000 0.0000 0.0000
400.0 0.0000 0.0000 0.0000 0.0000
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4.2.2 Two-Dimensional Saturated Solute Transport in a Uniform Flow Field

This problem deals with two-dimensional (areal) advection-dispersion of a non-
conservative solute species from a point source through an infinite porous medium. It is
used to demonstrate the impact that grid orientation with transverse dispersion has on the
solution from FACT. A physical schematic of this problem is shown in Fig. 4.2.2.1(a).
In practice, the idealized conditions are analogous to continual leakage or injection of a
contaminant into a shallow confined aquifer from a small leaking landfill or an
improperly sealed fully penetrating injection well (gradients in the vertical direction are
assumed to be negligible). It is assumed that the total rate of fluid leakage or injection
into the aquifer is negligible and does not disturb the ambient groundwater flow regime.
Analytically the problem is treated as a point source in the 2-D areal plane.

° y oint source
o
E \
2]
£
g / X
5
o groundwater flow
direction
(@)
A
270 m 50
_ oy -0
/ point source (X = 0)
0 -
oc
c=0 5% = 0
ac
<=0
-270 oy
-270 0 960 m
(b}

Fig. 4.2.2.1. Schematic diagram for 2D areal solute transport in a confined aquifer.

As illustrated in Fig. 4.2.2.1(b), a non-conservative contaminant is continuously released
from a point source downstream of an inflow boundary (containing zero contaminant)
into a shallow confined aquifer unit whose groundwater flow is assumed to be uniform.
Both hydrodynamic dispersion and molecular diffusion are allowed, as well as, the
possibility of radioactive decay and/or adsorption of the transported species. It is
assumed that the contaminant mass flow rate at the point source remains constant, the
aquifer’s flow rate is uniform and constant, and the homogeneous aquifer’s properties
(such as porosity, soil type, water saturation) are uniform and constant.
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Analytic solution: Equation (2.2.13) represents the conservative form of the multi-
dimensional advection-dispersion equation for solute transport through a variably
saturated porous media. Taking the 2-D form of Eq. (2.2.13) and assuming that one point
source exists at the areal location x =y=0, constant water saturation level, and that

material coefficients are constants, results in

%: o gjg +D, g;g v, —g-)-c(-+ Ae+ (;]:R 4.2.2.1)
with D}, =0y yuj, and D), = otryuy,.
For our infinite (areally) confined aquifer the initial conditions are:
c(x,y,00=0 (4.2.2.2a)
and the boundary conditions are:
C(Feo,y,t) =0 (4.2.2.2b)
c(X,to0,1)=0 (4.2.2.2¢)

These boundary conditions are equivalent to assuming that the dispersive flux of solute is
zero at plus or minus infinity or

)
lim a—‘:):o (4.2.2.2d)
X~3too ax

\ J
lim -aﬁ]=o (4.2.2.2¢)
y—rteo ay

For finite times there exists finite values of x and y where Eqs. (4.2.2.2d,e) remain valid.

As mentioned above, it is assumed that the total rate of fluid flow, q, into the aquifer due
to the source is negligible and does not disturb the ambient groundwater flow regime. In
order to have a finite mass flow rate of contaminant requires

lim(gc ) <ee = lim(c )=+ (4.2.2.26)
q—0 g—=0
Therefore, analytically the concentration of solute entering the aquifer at the point source
becomes infinite.

Equation (4.2.2.1), a linear partial differential equation subject to the initial and boundary
conditions given by Egs. (4.2.2.2a,b,c), can be solved by employing an appropriate
Green’s function for the point source and applying the Laplace and Fourier transform
techniques. For details see Yeh (1981). The general solution for a continuous point
source takes the form:

*¥ ot
c(x,y,0) = %Lc(x &y In;tlT)de (4.2.2.3a)
m
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where G(x 1€,y Im;t11) is the Green’s function over the domain space. For our analytical

problem we shall limit our flow field to flow parallel to the x-axis only. This results in a
dispersion tensor that is diagonal and a separable Green’s function. It can be shown that
for simple geometry such as separable coordinate system, Green’s function, G, can be
expressed as:

G(x1&y It =G (xIELITG,(yIn;tlT) (4.2.2.3b)
where for a point source in the x-direction (infinite domain, parallel to flow):

. 2
exp _{(x—i)’—ux(tﬂ)}
{4 (t-T) 4D (t—1)

G,(xIEtIT)= “A(t—-T)| (4.2.2.3c)

and for a point source in the y-direction (infinite domain, transverse to flow):

(y—m)?
4D’yy(t-1:)

Gz(yln;tl‘c)=\f exp| — (4.2.2.3d)

41tD’yy (t—-1)

The evaluation of the analytic expressions, Eqgs. (4.2.2.3a,b,c,d), for a specific problem is
performed numerically and has been performed using the computer code, AT123D by
Yeh (1981).

FACT numerical simulation and comparison: In FACT we will model this 2-D areal
problem using a finite element mesh containing many elements in the horizontal plane
that is only one element deep in the vertical direction. The point source given above now
becomes a line source that extends the entire vertical distance of the elements whose
strength per unit length is
* qC“=
(gc ) =———8(x)é(y) 4.2.2.4)

element

and is located at the same areal location (in FACT point and line sources are limited to
node locations only). Zero diffusive flux boundary conditions at the vertical faces of the
mesh domain will ensure that no concentration gradients appear in the vertical direction.

Even though we are considering an aquifer unit with infinite extent in the areal directions,
our numerical model has finite size. At our inflow boundary we shall assume that the
incoming fluid remains contaminant free (i.e., the contaminant concentration immediately
upstream of the source does not extend back up to the inflow boundary). For the
parameters chosen (i.e., longitudinal dispersivity, Darcy velocity, and source location),
the above assumption remains valid over the time period of interest.

Also, FACT requires knowledge about both the total volumetric flow rate, q, and its
solute concentration entering the aquifer at the line source. An arbitrarily small but finite
value for q was chosen to maintain computed solute concentration values near the source
to acceptable values. Steep concentration gradients near a source can result in oscillatory
behavior unless the local grid is sufficiently refined. For demonstration purposes, we
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have chosen uniform coarse grids and are primarily interested in results away from the
source location. The simulations are done by specifying a velocity field and running the
solute transport option only. In this way, the flow rate entering the aquifer due to the line
source does not alter the aquifer flow field.

Values of the physical parameters used in the verification simulations are presented in
Table 4.2.2.1. For the conservative solute transport cases the parameters were selected
based on data from a field investigation on hexavalent chromium contamination reported
by Perlumutter and Lieber (1970) and Wilson and Miller (1978). An analytical solution
to this problem is also available from Wilson and Miller (1978). For the non-
conservative solute transport cases the values of retardation and decay constants were
chosen arbitrarily to test the performance of FACT transport modules.
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Table 4.2.2.1

Values of the physical parameters, the finite element grid, time-step data, and some key
parameters used in the two-dimensional transport problem (base case and its variations)

Physical parameters Base case Range tested
Darcy velocity, Uy 0.161 m/d -
Porosity , ¢ 0.35 -
Longitudinal dispersivity, o g 213 m -
Transverse dispersivity, o g 43 m -
Apparent molecular dispersion coefficient, 0.0 m%d -
Bm'tD*
Water saturation, Sy, 1.0 -
radioactive decay coef., A, 0.0d! 0.0,0.005
Soil density, pg 1.23077 kg/m? -
Solute distribution coefficient, kg 0.0 m¥/kg 0.0,0.4375
Boundary solute concentration, c,, 0.0 kg/m? -
Water total volumetric flowrate (line 0.2 m3/d -
source), q
Contaminant total mass flowrate (line 0.235844 kg/d -
source), qc¥
Grid specifics
Element lengths, Ax = Ay 30m -
Element height, Az 335m -
Number nodes in x-dir 42 -
Number nodes in y-dir 19 (parallel grid) -
42 (diagonal grid)
Number nodes in z-dir 2 -
Time steps
Time duration 1400 d -
number time-steps 14 -

time-step size, At 100 d -
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Table 4.2.2.1
{Continued)
Key computed parameters
Retardation factor, R 1.0 1.0,2.0
Bulk soil density, pp, 0.8 kg/m? -
Phasic velocity, U, 0.46 m/d -
Retarded phasic velocity, U’ 0.46 m/d 0.46,0.23
Retarded longitudinal dispersion 9.798 m*/d 9.7898,4.899
coefficient, Dy
Retarded transverse dispersion coefficient, 1.978 m?Ad 1.978,0.989
Diyy
Retarded cross dispersion coefficient, D;y 0.0 m¥/d -
Cell Fourier number, Fox;Foy 1.0887,0.2198 1.0887,0.5443; 0.2198,0.1099
Cell Courant number, Co,;Co, 1.533;0.0 1.533,0.767;0.0
Cell Peclet number, Pe, ;Pe, 1.4085;0.0 1.4085,0.7042,2.8169;0.0

In 1-D transport only longitudinal dispersion is active; while, in a 2-D transport problem
both longitudinal and transverse dispersion can occur. In a general 2-D transport problem
the off-diagonal terms of the dispersion coefficient tensor are typically non-zero. In
FACT the resulting dispersive flux cross-term products (see Eq. (2.2.20), such as

d dc
™ D,, 3 (4.2.2.5)
are handled consistently and are not "lumped". The lumping approximation is more
commonly used in finite difference algorithms (see Faust, et. al., 1993) to accommodate
their matrix solution requirements, none of which is required in FACT. Typically,
lumping greatly over estimates transverse dispersion. Also for many algorithms, grid
orientation effects occur even though the these cross-product terms are handled in a
consistent formulation.

To examine these grid orientation effects in FACT, two base case grids were chosen for
this problem: (1) a grid aligned parallel to the aquifer flow direction consisting of 738
rectangular brick elements uniformly sized (30 m in length) with 41 elements along the x-
axis and 18 alone the y-axis and (2) a grid aligned at a 45° diagonal to the aquifer flow
direction consisting of 1681 rectangular brick elements uniformly sized (30 m in length)
with 41 elements along the x-axis and y-axis. Figures 4.2.2.2 and 4.2.2.3 illustrate the
finite element grids chosen and the boundary conditions applied along the six outer
domain surfaces, respectively. At the channel inlet boundary(s} (left; left and front), the
concentration of solute in the incoming water is set to 0.0 kg/m®. Due to the finite overall
length of our mesh, at the outflow boundary(s) (right; right and back) the dispersive flux
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is set to zero, while the advective flux is calculated as part of the solution. In addition,
for the parallel grid the dispersive flux is set to zero at the transverse faces (front and
back). The element sizes for both grid orientations are the same and the results shown
should represent grid orientation effects only.

Since this is a 2-D problem, solute concentration gradients do not exist in the vertical
direction (z direction). Therefore, the dispersive fluxes along these two faces (top and
bottom) are set to zero. By default, in the standard finite element formulation zero
dispersive fluxes are automatically applied to all outer domain surfaces unless otherwise
specified. The aquifer is assumed to be completely saturated.

For this problem several simulations were performed. As summarized in Table 4.2.2.2,
simulations were performed for both base cases (parallel and diagonal grids) and then
four additional runs were made varying certain key physical parameters and FACT
options to demonstrate their impact on the final results. For each simulation a transient
calculation was performed for a 1400 day duration and the results from FACT at this end
time are compared to the analytical solution given by Eq. (4.2.2.3). As shown in Table
4.2.2.1, a range of cell Peclet, cell material Courant, and cell Fourier numbers were
tested.

conc zero along grid specifics: o, 40 iny=19; nz=2
left face Ax =Ay =30m; Az=33.5m
400 ——— ——mnr———1r———— T
- vertical line source groundwater flow
o - / at onigin direction -
o i » -
B = 200 [ .
e - L /1 E
g :
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Fig. 4.2.2,2. FACT parallel mesh and boundary conditions for 2D transport.
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Fig. 4.2.2.3. FACT diagonal mesh and boundary conditions for 2D transport.

The results of all the simulations (both numerical and analytical) are shown in Figs.
4.2.2.4 through 4.2.2.13. These results are also presented in tabular form for comparison
in Tables 4.2.2.3 through 4.2.2.7. The analytical results were computed from the
computer code AT123D (Yeh, 1981). The FACT numerical results are labeled either
"FACT Parallel grid" or "FACT Diagonal grid" for the base cases and have additional
nomenclature for the other runs (e.g., "FACT Parallel grid (A, =0.005)" represents the

run where all parameters were at their base case values for the parallel grid model except
for the radioactive decay parameter that was set to 0.005).
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Table 4.2.2.2

Summary of simulations performed (base cases and their variations) on the two-
dimensional transport problem

FACT Options Base case Base case A B CD
(paratiel) (diagonal)
spatial differencing x X x| x

centered [Bubnov], o =0
upstream [Petrov], =1 x| x
Mesh Options
parallel grid X X XX
diagonal grid X X
Physical Parameters

radioactive decay coef., A, = X X x| x|x
0.04d?

Ar=0.005d"! X

Solute distribution coef., kq = X X X | x X
0.0 m¥/kg

kq = 0.4375 m¥/kg x

The results presented in Figs. 4.2.2.4 and 4.2.2.5 represent our base case (parallel and
diagonal) simulations. The concentration contours at 1400 days exhibit slight oscillatory
behavior near the leading and outer edge of the source plume and transverse to the aquifer
flow direction. These results are also compared to the analytical solution in Figs. 4.2.2.6
through 4.2.2.8. The computed concentration profiles in the direction of groundwater
flow along a line through the source are shown in Fig. 4.2.2.6. Figures 4.2.2.7 and 4.2.2.8
show computed concentration profiles perpendicular to the groundwater flow direction at
the source and approximately 420 m downstream of the source location for the two
alternative grids, respectively. The results away from the source show good comparison
between the analytical solution and the numerical results for both grid orientations. Many
algorithms would show noticeable differences between these results based upon grid
orientation effects not shown here by FACT. For such codes aligning the grid in the
direction of dominant groundwater flow is strongly recommended. For FACT no
significant grid orientation effects occur; therefore, one should base their grid alignment
on other features of the conceptual model (e.g., principle directions of the hydraulic
conductivity tensor).

As mentioned early, the analytic solution yields an infinite solute concentration as one
approaches the location of the point source. Note that the FACT simulations presented
here employed a small, but finite, flow rate at the point source. Thus the solute
concentration of the incoming source was (see Table 4.2.2.1 for parameter values):

s qc __)0.235844kg/d

¢ = =1.17922kg/m? (4.2.2.6)
q 02m*/d /
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which still represents a fairly large concentration level. In an attempt to predict the very
steep concentration gradients near the peint source, FACT exhibits on our coarse mesh
oscillations as shown in Fig. 4.2.2.8. These oscillations were large enough to produce
negative solute concentrations near the point source. We also failed to predict the high
concentration at the point source (i.e., compare 1.17922 to 0.0015 kg/m3 given in Table
4.2.2.5).

One might be tempted to correct these oscillations by employing fully upstream spatial
weighting as was successfully done in the 1-D transport problem discussed earlier. A
comparison between central (base cases) and fully upstream spatial weighting (cases A
and B) simulation runs are shown in Fig. 4.2.2.9. Figure 4.2.2.9 shows computed
concentration profiles perpendicular to the groundwater flow direction at the source
location for the two alternative grids with and without upstream spatial weighting. As
shown, upstream weighting can reduce these oscillations such that only positive solute
concentrations exist (i.e., minimize our undershoot); however, the basic oscillations still
exist and can only be omitted by mesh refinement. Figures 4.2.2.10 and 4.2.2.11 show
concentration carpet plots on the diagonal grid, where the lower contour value was set to
zero, for the central and upstream weighting options, respectively.  Negative
concentration regions will show up as black zones. As indicated, the fully upstream
weighting option results show no negative concentration levels (case B).

By adjusting the solute distribution coefficient such that the retardation factor becomes
2.0 (case C), the retarded dispersion and velocity are halved. These results can be
compared to the un-retarded base case (parallel grid) in Fig. 4.2.2.12 where the spread of
the plume has been greatly reduced.

By employing a non-zero radioactive decay coefficient such that the solute now becomes
a non-conservative transport species {cases D), the solute concentration profiles are
reduced especially at the higher concentration levels. These results can be compared to
the base case (parallel grid) in Fig. 4.2.2.13.

Based upon these calculations, some general guidance and observations came be given
when performing solute transport with FACT:

e Grid orientation effects are not present in the current formulation of FACT,; therefore,
one should base their grid alignment on other features of the conceptual model .

e Point/line sources with high solute concentrations will exhibit steep concentration
gradients near the source location. A physical concentration values (resulting from
significant undershoot) can be reduced by applying upstream spatial weighting;
however, to eliminate the oscillatory behavior near the point/line source mesh
refinement must be performed.

e Excelient solute concentration profile predictions can be achieved on coarse meshes;
even though, oscillations may be present near the point/line sources.
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Fig. 4.2.2.7. Concentration profiles for 2D transport of the base case transverse to
plume centerline located 420 m downstream of the source.
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Fig. 4.2.2.8. Concentration profiles for 2D transport of the base case transverse to
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Fig. 4.2.2.9. Effect of complete upstream spatial differencing on concentration profiles
for 2D transport transverse to plume centerline located 0 m downstream of
the source.
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Fig. 4.2.2.11. FACT concentration profile (carpet plot) for 2D transport of the base case
showing the effect of complete upstream spatial differencing.
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Table 4.2.2.3
Effect grid orientation has on the numerical concentration (kg/m3) results along the
plume centerline for the transient 2D transport problem (base case, t=1400 days)
Distance  Analytical  Numerical Distance  Analytical Numerical
down- (AT123D) (FACT) down- (AT123D) (FACT)
stream, X ) stream, (m) ) )
(m) (parallel grid) (diagonal grid)
-270.0 0.1099E-08 0.8976E-08 -381.8 0.4655E-11 0.1491E-09
-240.0 04777E-08 0.1029E-07 -3394 0.2703E-10 0.1707E-09
-210.0 0.2088E-07 0.1956E-07 -297.0 0.2938E-09 0.4155E-09
-180.0 0.9208E-07 0.6621E-07 -254.6 0.2340E-08 (.2487E-08
-150.0 (.4109E-06 0.2916E-06 -212.1 0.1880E-07 0.1973E-07
-120.0 0.1867E-05 0.1391E-05 -169.7 0.1536E-06 (0.1656E-06
-90.0 0.8724E-05 0.6905E-05 -127.3 0.1290E-05 0.1443E-05
-60.0 0.4284E-04 0.3614E-04 -84.9 0.1141E-04 0.1339E-04
-30.0 0.2359E-03 0.2134E-03 -42.4 0.1137E-03 0.1406E-03
0.0 oo 0.2012E-02 0.0 oo 0.1853E-02
30.0 0.9648E-03 0.1010E-02 424 0.8336E-03 0.8326E-03
60.0 0.7165E-03 0.7317E-03 84.9 0.6130E-03 0.6102E-03
90.0 0.5967E-03 0.6038E-03 127.3 0.5080E-03 0.5059E-03
120.0 0.5223E-03 0.5264E-03 169.7 0.4432E-03 0.4415E-03
150.0 0.4701E-03 0.4729E-03 212.1 0.3976E-03 0.3962E-03
180.0 0.4308E-03 0.4328E-03 254.6 0.3626E-03 0.3614E-03
210.0 0.3996E-03 0.4010E-03 297.0 0.3338E-03 0.3327E-03
240.0 0.3737E-03 0.3749E-03 3394 (.3083E-03 0.3073E-03
270.0 0.3516E-03 0.3525E-03 381.8 0.2841E-03 0.2832E-03
300.0 0.3319E-03 0.3326E-03 4243 0.2598E-03 0.2590E-03
330.0 0.3137E-03 0.3143E-03 466.7 0.2343E-03 0.2337E-03
360.0 0.2964E-03 0.2969E-03 505.1 0.2074E-03 0.2068E-03
390.0 0.2794E-03 0.2798E-03 551.5 0.1790E-03 0.1785E-03
420.0 0.2622E-03 0.2626E-03 594.0 0.1500E-03 0.1496E-03
450.0 0.2445E-03 0.2448E-03 636.4 0.1213E-03 0.1210E-03
480.0 0.2261E-03 0.2263E-03 678.8 (.9429E-(4 0.9411E-04
5100 0.2068E-03 0.2070E-03 721.2 0.7021E-04 0.7012E-04
540.0 0.1869E-03 (.1870E-03 763.7 0.4992E-04 0.4989E-04
570.0 0.1664E-03 0.1665E-03 806.1 0.3379E-04 0.3381E-04
600.0 0.1458E-03 0.1459E-03 848.5 0.2173E-04 0.2177E-04
630.0 0.1255E-03 0.1255E-03 891.0 0.1325E-04 0.1329E-04
660.0 0.1060E-03 0.1060E-03 933.4 0.7645E-05 0.7687E-05
690.0 0.8762E-04 0.8760E-04 975.8 0.4170E-05 0.4204E-05
720.0 0.7087E-04 0.7084E-04 1018.2 0.2148E-05 0.2172E-05
750.0 0.5601E-04 0.5597E-04 1060.7 - 0.1044E-05 0.1059E-05
780.0 0.4322E-04 04317E-04 1103.1 0.4780E-06 0.4870E-06
810.0 0.3252E-04 0.3247E-04 1145.5 0.2062E-06 0.2111E-06
840.0 0.2385E-04 0.2380E-04 1187.9 0.8371E-07 0.8624E-07
870.0 0.1703E-04 0.1699E-04 1230.4 0.3198E-07 0.3318E-07
900.0 0.1184E-04 0.1182E-04 1272.8 0.1149E-07 0.1202E-07
930.0 0.8003E-05 0.8154E-05 1315.2 0.3879E-08 0.4139E-08
960.0 0.5262E-05 0.6510E-05 1357.6 0.1231E-08 0.2153E-08
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Table 4.2.2.4

Effect grid orientation has on the numerical concentration (kg/m3) results transverse to
the plume centerline (located 420 m downstream of the source) for the transient 2D

transport problem (base case, t=1400 days)

Distance  Analytical = Numerical Distance Analytical Numerical
transverse, (ATI123D) (FACT) transverse, (AT123D) (FACT)
y (m) : (m) . :
(parallel grid) {diagonal grid)
0.0 0.2622E-03 0.2626E-03 0.0 0.2598E-03 0.2590E-03
30.0 0.2290E-03 0.2296E-03 42.4 0.1988E-03 0.1993E-03
60.0 0.1538E-03 0.1543E-03 84.9 0.9190E-04 0.9252E-04
90.0 0.8117E-04 0.8102E-04 127.3 0.2753E-04 0.2705E-04
120.0 0.3464E-04 0.3391E-(4 169.7 0.5741E-05 0.5204E-05
150.0 0.1228E-04 0.1157E-04 212.1 0.8746E-06 0.6699E-06
180.0 0.3686E-05 0.3273E-05 254.6 0.9966E-07 0.5596E-07
210.0 0.9510E-06 0.7732E-06 297.0 0.8553E-08 0.2710E-08
240.0 0.2123E-06 0.1553E-06 3394 0.5521E-09 0.5224E-10
270.0 0.4116E-07 0.4927E-07 381.8 0.2666E-10 -0.5468E-12
Table 4.2,2.5

Effect grid orientation has on the numerical concentration (kg/m3) results transverse to

the plume centerline (located 0 m downstream of the source) for the transient 2D
transport problem (base case, t=1400 days)

Distance  Analytical  Numerical Distance  Analytical Numerical
transverse, (ATI123D) (FACT) transverse, (ATI23D) (FACT)
m m
y () (paraliel (m) (diagonal grid)
grid)

0.0 oo 0.2012E-02 0.0 oo 0.1853E-02
30.0 0.1425E-03 0.1405E-03 42.4 0.6361E-04 0.5108E-04
60.0 0.2161E-04 0.1862E-04 849 0.4999E-05 0.3182E-05
90.0 0.3712E-05 0.2971E-05 127.3 0.4435E-06 0.2218E-06

120.0 .6695E-06 0.5062E-06 169.7 0.4040E-07 0.1535E-07
150.0 0.1230E-06 0.8795E-07 2121 0.3551E-08 0.9302E-09
180.0 0.2252E-07 0.1510E-07 254.6 0.2828E-09 0.4045E-10
210.0 0.4020E-08 0.2484E-08 297.0 0.1923E-10 0.5959E-12
240.0 0.6839E-09 0.3828E-09 3394 0.1066E-11 -0.6391E-13
270.0 {.1086E-09 0.1014E-09 381.8 0.4645E-13 0.1541E-14
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Table 4.2.2.6

Effect grid orientation and complete upstream spatial differencing has on the numerical
concentration (kg/m3) results transverse to the plume centerline (located 0 m downstream
of the source) for the transient 2D transport problem (spatial differencing o =1.0, t=1400

days)
Distance  Analytical  Numerical Distance Analytical Numerical
transverse, (AT123D) (FACT) transverse, (ATI123D) (FACT)
m m
y (m) (parallel (m) (diagonal grid)
grid)

0.0 oo 0.1838E-02 0.0 oo 0.1565E-02
30.0 0.1425E-03 0.1631E-03 42.4 0.6361E-04 0.7687E-04
60.0 0.2161E-04 0.2789E-04 84.9 0.4999E-05 0.7745E-05
90.0 0.3712E-05 0.5678E-05 127.3 0.4435E-06 0.8447E-06

120.0 0.6695E-06 0.1218E-05 169.7 0.4040E-07 0.8602E-07
150.0 0.1230E-06 0.2615E-06 212.1 0.3551E-08 0.7076E-08
180.0 0.2252E-07 0.5419E-07 254.6 0.2828E-09 0.3410E-09
210.0 0.4020E-08 0.1045E-07 297.0 0.1923E-10 -0.1091E-10
240.0 0.6839E-09 0.1837E-08 339.4 0.1066E-11 -0.2200E-11
270.0 0.1086E-09 0.5381E-09 381.8 0.4645E-13 0.2419E-12
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Table 4.2.2.7
Effect retardation or radioactive decay has on the numerical concentration (kg/m3) results
along the plume centerline for the transient 2D transport problem (retardation R=2.0 or

radicactive decay A, =0.005, t=1400 days)

Distance Analytical Numertical Analytical Numerical
downstream, | (AT123D) (FACT) (AT123D) (FACT)
X (m) (R=2.0) (A=0.005)
(parallel grid) (parallel grid)
-270.0 0.7491E-09 0.2168E-08 0.8109E-10 0.2086E-09
-240.0 0.3666E-08 0.3235E-08 0.4615E-09 (0.3312E-09
-210.0 0.1753E-07 0.1111E-07 0.2646E-08 0.1370E-08
-180.0 0.8242E-07 0.5294E-07 (.1532E-07 0.8191E-08
-150.0 0.3846E-06 0.2643E-06 0.8986E-07 0.5242E-07
-120.0 0.1799E-05 0.1326E-05 0.5370E-06 (.3441E-06
-90.0 (.8556E-05 0.6749E-05 0.3305E-05 0.2328E-05
-60.0 0.4245E-04 0.3578E-04 0.2141E-04 0.1661E-04
-30.0 0.2351E-03 0.2126E-03 0.1564E-03 0.1344E-03
0.0 oo 0.2010E-02 o 0.1760E-02
30.0 0.9613E-03 0.1006E-02 0.6396E-03 0.6723E-03
60.0 0.7100E-03 0.7253E-03 0.3581E-03 0.3664E-03
90.0 0.5852E-03 0.5924E-03 0.2260E-03 0.2286E-03
1200 0.5032E-03 0.5074E-03 0.1302E-03 0.1512E-03
150.0 0.4400E-03 0.4428E-03 0.1028E-03 0.1032E-03
180.0 0.3856E-03 0.3876E-03 0.7167E-04 0.7185E-(4
210.0 0.3353E-03 0.3368E-03 0.5063E-04 0.5070E-04
240.0 0.2869E-03 0.2879E-03 0.3611E-04 0.3613E-04
270.0 0.2397E-03 0.2404E-03 0.2595E-04 0.2595E-04
300.0 0.1945E-03 0.1950E-03 0.1876E-(4 0.1874E-04
330.0 0.1523E-03 0.1527E-03 0.1362E-04 0.1361E-04
360.0 0.1147E-03 0.1149E-03 0.9931E-05 0.9917E-05
390.0 0.8272E-04 0.8280E-04 0.7263E-05 0.7250E-05
420.0 0.5694E-04 0.5693E-04 0.5325E-05 0.5314E-05
450.0 0.3730E-04 0.3724E-04 0.3911E-05 0.3902E-05
480.0 0.2321E-04 0.2312E-04 0.2876E-05 0.2869E-05
510.0 0.1369E-04 0.1359E-04 0.2116E-05 0.2110E-05
540.0 0.7646E-05 0.7550E-05 (. 1556E-05 0.1551E-05
570.0 0.4035E-05 0.3957E-05 0.1143E-05 0.1139E-05
600.0 0.2011E-05 0.1953E-05 0.3369E-06 0.8341E-06
630.0 0.9454E-06 0.9065E-06 0.6105E-06 0.6083E-06
660.0 0.4189E-06 0.3950E-06 0.4428E-06 0.4411E-06
690.0 0.1748E-06 0.1614E-06 0.3189E-06 0.3176E-06
720.0 0.6869E-07 0.6175E-07 0.2276E-06 0.2265E-06
7500 0.2539E-07 0.2208E-07 0.1606E-06 0.1598E-06
780.0 0.8829E-08 0.7372E-08 G.1119E-06 0.1113E-06
810.0 0.2886E-08 0.2293E-08 0.7690E-07 0.7640E-07
840.0 0.8865E-09 0.6639E-09 0.5197E-07 0.5158E-07
870.0 0.2559E-09 0.1785E-09 0.3450E-07 0.3420E-07
900.0 0.6938E-10 0.4449E-10 0.2246E-07 0.2227E-07
930.0 0.1766E-10 0.1029E-10 0.1433E-07 0.1447E-07
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| 960.0 |  0.4220E-11 0.3373E-11 | 0.8939E-08 0.11136-07 |

4.2.3 Three-Dimensional Saturated Solute Transport in a Uniform Flow Field

This problem deals with three-dimensional advection-dispersion of a conservative solute
species from a point source through an infinite porous medium. Based upon the problem
definition, this problem results in an analytic solution that is axisymmetric in solute
concentrations. However, the problem will be solved analytically and numerically in 3-D
Cartesian coordinates. It is used to demonstrate FACT’s capability to solve 3-D transport
problems and to yield 3-D results that are indeed axisymmetric. This problem also tests
FACT’s formuiation of transverse dispersion in more than one dimension. The physical
schematic of this problem is essentially the same as for the 2-D transport problem
discussed in Section 4.2.2 and shown in Fig. 4.2.2.1(a). In practice, the idealized
conditions are analogous to continual leakage, leaching, or injection of a contaminant into
a large confined aquifer from buried waste in a landfill or an improperly sealed partially
penetrating injection well. It is assumed that the total rate of fluid leakage, leaching, or
injection into the aquifer is negligible and does not disturb the ambient groundwater flow
regime. Analytically and numerically the problem is treated as a point source in 3-D
Cartesian coerdinates.

As illustrated in Fig. 4.2.2.1(b), a conservative contaminant is continuocusly released from
a point source downstream of an inflow boundary (containing zero contaminant} into a
large aquifer unit whose groundwater flow is assumed to be uniform. The point source is
located at a depth such that end effects at the top and bottom of the aquifer unit are
negligible. Both hydrodynamic dispersion and molecular diffusion are allowed for the
transported species. It is assumed that the contaminant mass flow rate at the point source
remains constant, the aquifer’s flow rate is uniform and constant, the aguifer is
sufficiently large to neglect end effects, and the homogeneous aquifer’s properties (such
as porosity, soil type, water saturation) are uniform and constant.

Analytic solution: Equation (2.2.13) represents the conservative form of the multi-
dimensional advection-dispersion equation for solute transport through a variably
saturated porous media. Taking the 2-D form of Eq. (2.2.13) and assuming that one point
source exists at the location x =y =2z=0, constant water saturation level, and that

matenial coefficients are constants, results in

oc D’ 9% ., 9% 820* , dc qc’

—a—tz x 8X2+Dyy P +D, o ux§;+lrc+ - (4.2.3.1)
where D}, =0y yuy, Dy, =agyu}y and D, =opyu;.
For our infinite aquifer the initial conditions are:
c(x,y,z,0)=0 : (4.2.3.2a)

and the boundary conditions are:

c(o0,y,2,1) =0 (4.2.3.2b)
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c(X,te0,2,1) =0 (4.2.3.2¢)

c(X,y,Feo,t) =0 (4.2.3.2d)

These boundary conditions are equivalent to assuming that the dispersive flux of solute is
zero at plus or minus infinity or

’

lim g'_:_ =0 4.2.2.2¢)
X—ted| OX
\ /

tim | 2 |=0 (4.2.2.21)
y-—3too ay
/

lim EE =0 (4.2.2.2g)
z——)ioo\azj

For finite times there exists finite values of x, y, and z where Eqgs. (4.2.3.2e.f,g) remain
valid.

As mentioned above, it is assumed that the total rate of fluid flow, q, into the aquifer due
to the source is negligible and does not disturb the ambient groundwater flow regime. In
order to have a finite mass flow rate of contaminant requires
lim(ge ) <o = lim(c’ )=+ (4.2.2.2)
q—0 g—0
Therefore, analytically the concentration of solute entering the aquifer at the point source
becomes infinite.

Equation (4.2.3.1), a linear partial differential equation subject to the initial and boundary
conditions given by Egs. (4.2.3.2a,b,c,d), can be solved by employing an appropriate
Green’s function for the point source and applying the Laplace and Fourier transform
techniques. For details see Yeh (1981). The general solution for a continuous point
source takes the form:

*om
c(x,y,z,t)=g§— J; G(x & yImzl Gttt (4.2.3.3a)
m

where G(x1&;yIn;zIC;tl1) is the Green's function over the domain space. For our

analytical problem we shall limit our flow field to flow parallel to the x-axis only. This
results in a dispersion tensor that is diagonal and a separable Green’s function. It can be
shown that for simple geometry such as separable coordinate system, Green’s function, G,
can be expressed as:

G(x1&y Izl {11 =G (x 1& I DG, (Y IN;t DG (zI§t1T)  (4.2.3.3b)

where for a point source in the x-direction (infinite domain, parallel to flow):
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’ 2
—_ — t —_
G, (xI&tit)= = exp _l& &), ux (-0} A (t—-T)| (4.2.3.3c)
J4nDl (t=1) 4D, (t—1)

and for a point source in the y-direction (infinite domain, transverse to flow):

2
RSP L k) (4.233d)
(=D | 4Dy (t—)

G Imtlo)=
2(yIn;ti7) J41tD

and for a point source in the z-direction (infinite domain, transverse to flow):

T e 1 @b’
G3(ZI§’“T)_.J4TED;Z(t—T) exp D (-1 (4.2.3.3¢)

The evaluation of the analytic expressions, Egs. (4.2.3.3a,b,c,d,e), for a specific problem
is performed numerically and has been performed using the computer code AT123D by
Yeh (1981).

FACT numerical simulation and comparison: In FACT we will model this
axisymmetric problem using a 3-D finite element mesh containing many elements in all
three directions. The point source given above will be located at the mid-plane of our
mesh (in FACT point and line sources are limited to node locations only).

Even though we are considering an aquifer unit with infinite extent in the areal and
vertical directions, our numerical model has finite size. At our inflow boundary we shall
assume that the incoming fluid remains contaminant free (i.e., the contaminant
concentration immediately upstream of the source does not extend back up to the inflow
boundary). We also assume that the vertical extent of the top and bottom faces of our
mesh from the point source is sufficient distance that negligible amounts of contaminant
reaches these boundary faces. For the parameters chosen (i.e., longitudinal dispersivity,
Darcy velocity, and source location), the above assumption remains valid over the time
period of interest.

Also, FACT requires knowledge about both the total volumetric flow rate, q, and its
solute concentration entering the aquifer at the line source. An arbitrarily small but finite
value for q was chosen to maintain computed solute concentration values near the source
to acceptable values. Steep concentration gradients near a source can result in oscillatory
behavior unless the local grid is sufficiently refined. For demonstration purposes, we
have chosen uniform coarse grids and are primarily interested in results away from the
source location. The simulations are done by specifying a velocity field and running the
solute transport option only. In this way, the flow rate entering the aquifer due to the line
source does not alter the aquifer flow field.

Values of the physical parameters used in the verification simulations are presented in
Table 4.2.3.1. For the conservative solute transport case the parameters were selected
based on data from a field investigation on hexavalent chromium contamination reported
by Perlumutter and Lieber (1970) and Wilson and Miller (1978).
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In 1-D transport only longitudinal dispersion is active; while, in a 2-D transport problem
both longitudinal and transverse dispersion can occur. In 3-D transport transverse
dispersion occurs throughout the plane perpendicular to the flow direction. In a general
3-D transport problem the off-diagonal terms of the dispersion coefficient tensor are
typically non-zero. If the grid is aligned parallel to the groundwater flow direction, then
only the diagonal terms of the hydrodynamic dispersion tensor are non-zero (see Eq.
(2.2.20).
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Table 4.2.3.1

Values of the physical parameters, the finite element grid, time-step data, and some key
parameters used in the three-dimensional transport problem (base case}

Physical parameters Base case
Darcy velocity, Uy 0.161 m/d
Porosity , ¢ 0.35
Longitudinal dispersivity, 0 g 213 m
Transverse dispersivity, OTH, TV 43 m
Apparent molecular dispersion coefficient, 0.0 m?/d
8, 1D
Water saturation, Sy, 1.0
radioactive decay coef., A; 0.0d!
Soil density, pg 1.23077 kg/m?
Solute distribution coefficient, ky 0.0 m*/kg
Boundary solute concentration, ¢ 0.0 kg/m?
Water total volumetric flowrate (point 0.1 m?/d

source), q
Contaminant total mass flowrate (point
source), qc*

0.117922 kg/d

Grid specifics
Element lengths, Ax = Ay = Az 30 m
Number nodes in x-dir 83
Number nodes in y-dir 37 (parallel grid)
Number nodes in z-dir 37
Time steps
Time duration 1400 d
number time-steps 140
time-step size, At 10d
Key computed parameters
Retardation factor, R 1.0
Bulk soil density, py, 0.8 kg/m?
Phasic velocity, 0, 0.46 m/d
Retarded phasic velocity, u'x 0.46 m/d
Retarded longitudinal dispersion 9.798 m*d
coefficient, D',
Retarded transverse dispersion coefficients, 1.978 m?/d
D, =D
yy ~ 2z
Retarded cross dispersion coefficients, 0.0 m%d
’ r r
ny = DXZ. = Dyz
Cell Fourier number, Fo, ;FOy =Fo, 0.435:0.088
Cell Courant number, Co, ;Coy =Co, 0.307;0.0
Cell Peclet number, Pe, ;Pe, =Pe, 0.704,0.0
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To examine in FACT transverse dispersion into a plane perpendicular to groundwater
flow without the added complication of cross-term products resulting from the dispersion
tensor, a base case grid was chosen for this problem that is aligned parallel to the aquifer
flow direction. This grid consists of 106,272 rectangular brick elements uniformly sized
(15 m in length) with 82 elements along the x-axis and 36 along the y- and z-axes,
respectively.

grid specifics: nx=42 ; ny=19 ;n2=19
Ax =Ay =Az = 30 m

point Source 24 m downstream
at origin of source

z
4
X
diffusive flux zero along

2 |
conc zero along top, bottom, front,

leftfaca ——=

back, and right faces
K60
groundwater flow
direction %)
———
o
5+ 5
o -Tog
-,
L2 .
:; 200
2 ne )
o =}¢ directions {ransverse
D'. sta =i to plume centerline
n, i
So [

Fig. 4.2.3.1. FACT parallel mesh and boundary conditions for 3D transport. A 3D
perspective was chosen where a section of the domain has been cut out to
highlight the plume centerline.

Figure 4.2.3.1 illustrates the finite element grid chosen and the boundary conditions
applied along the six outer domain surfaces. At the channel inlet boundary (left), the
concentration of solute in the incoming water is set to 0.0 kg/m®. Due to the finite overall
length of our mesh, at the outflow boundary (right) the dispersive flux is set to zero, while
the advective flux is calculated as part of the solution. In addition, the dispersive flux is
set to zero at the transverse faces (front, back, top, and bottom). By default, in the
standard finite element formulation zero dispersive fluxes are automatically applied to all
outer domain surfaces unless otherwise specified. The aquifer is assumed to be
completely saturated. A cut-away of the 3-D mesh was performed in Fig. 4.2.3.1 to help
illustrate the actual location of the point source. The point source was placed at the mid-
point of a x plane where the x plane chosen was located 300 m upstream of the inflow
boundary. Also shown in Fig. 4.2.3.1 are two arrows 120 m downstream of the source
indicating the location (along each line) where results were tabulated in Table 4.2.3.2.

For this problem only the base case simulation was performed. For this simulation a
transient calculation was performed for a 1400 day duration and the results from FACT at
this end time are compared to the analytical solution given by Eq. (4.2.3.3).

The results from the simulations (both numerical and analytical) are shown in Figs.
4.2.3.2 through 4.2.3.4. These results are also presented in tabular form for comparison
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in Table 4.2.3.2. The analytical resuits were computed from the computer code AT123D
(Yeh, 1981). The FACT numerical results are labeled "FACT Parallel grid" and have
additional nomenclature to represent which transverse direction is being considered (e.g.,
|l(y axis)").

The results of the simulation at 1400 days duration are presented in Fig. 4.2.3.2 in the
form of a contour plot. A section of the domain has been cut out to highlight the plume
centerline and its basic axisymmetric behavior.

These resuits are also compared to the analytical solution in Figs. 4.2.3.3 and 4.2.3.4.
The computed concentration profiles in the direction of groundwater flow along a line
through the source and plume centerline are shown in Fig. 4.2.3.3. Figure 4.2.3.4 shows
computed concentration profiles perpendicular to the groundwater flow direction and
plume centerline (i.e., y-axis and z-axis) 120 m downstream of the source. The results
away from the source show good comparison between the analytical solution and the
numerical results for both transverse directions. These results indicate that the
concentration plume predicted by FACT is axisymmetric as well.

Based upon these calculations, the following observation came be given when performing
solute transport with FACT:

¢ FACT accurately handles axisymmetric problems employing its 3-D Cartesian
coordinate system. Run times are longer, but not excessive.

3D transport point source 210 m downstream
FACT Parallel grid at origin of source z
t= 1400 days

Er'\
X
ditfusive flux zero along

top, bottom, front,
back, and right faces

conc zero along
lefttace ——=

200
100
—~—
10 E
e
N
-109
ISEAN
directions transverse
to plune centerline

/

groundwater flow
direction

-100

100

4 (Q\
”

Dj =
toy, g
Ow 2

» X(m)

Fig. 4.2.3.2. FACT concentration profile for 3D transport of the base case on a parallel
grid where a section of the domain has been cut out to highlight the plume
centerline and its axisymmetric behavior.
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Fig. 4.2.3.3. Concentration profile for 3D transport of the base case along plume

centerline.
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Fig. 4.2.3.4. Concentration profiles for 3D transport of the base case transverse to
plume centerline (in both y and z directions) located 210 m downstream of
the source.
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Table 4.2.3.2

Comparison of analytical and numerical concentration (kg/m3) resulis for the transient
3D transport problem (base case, t=1400 days)

Distance | Analytical  Numerical Analytical  Numerical Numerical
downstream | (AT123D) (FACT) (AT123D) (FACT) (FACT)
X (m) and (along  (parallel grid) (120 m {120 m (120 m
transverse y plume (along plume | downstream, downstream, downstream,
or z(m) centerline)  centerline) transverse) transverse y) transverse z)
-270.0 0.1559E-09 0.1033E-08 - - -
-240.0 0.7192E-09 0.1232E-08 - - -
-210.0 0.3367E-08 0.2604E-08 - - -
-180.0 0.1608E-07 0.1060E-07 - - -
-150.0 0.7895E-07 0.5253E-07 - - -
-120.0 0.4037E-06 0.2827E-06 - - -
-90.0 0.2202E-05 0.1633E-06 - - -
-60.0 0.1351E-04 0.1057E-04 - - -
-30.0 0.1105E-03 0.9005E-04 - - -

0.0 infinity 0.2345E-02 0.1129E-03 0.1151E-03 0.1151E-03
30.0 0.4518E-03 0.5021E-03 0.6570E-04 0.6739E-04 0.6739E-04
60.0 0.2259E-03 0.2379E-03 0.1865E-04 0.1773E-04 0.1773E-04
90.0 0.1506E-03 0.1549E-03 0.4030E-05 0.3477E-05 0.3477E-05

120.0 0.1129E-03 0.1151E-03 0.7937E-06 0.6339E-06 0.6339E-06
150.0 0.9032E-04 0.9161E-04 0.1504E-06 0.1120E-07 0.1120E-07
180.0 0.7523E-04 0.7608E-(4 0.2771E-07 0.1918E-07 0.1918E-07
210.0 0.6442E-04 0.6501E-04 0.4926E-08 0.3120E-08 0.3120E-08
240.0 0.5627E-04 0.5671E-04 0.8318E-09 0.4741E-09 0.4741E-09
270.0 0.4988E-04 0.5021E-(4 0.1310E-09 (.1240E-09 0.1240E-09
300.0 0.4468E-04 0.4494E-04

330.0 0.4033E-04 0.4054E-04

360.0 0.3658E-04 0.3675E-04

390.0 0.3325E-04 0.3339E-04

420.0 0.3021E-04 0.3033E-04

450.0 0.2738E-04 0.2747E-04

480.0 0.2469E-04 0.2476E-04

510.0 0.2209E-04 0.2215E-04

540.0 0.1958E-04 0.1963E-04

570.0 0.1714E-04 0.1718E-04

600.0 0.1480E-04 0.1483E-04

630.0 0.1258E-04 0.1260E-04

660.0 0.1050E-04 0.1050E-04

690.0 0.8596E-05 0.8607E-05

720.0 0.6893E-05 0.6500E-05

750.0 0.5407E-05 0.5411E-05

780.0 0.4144E-05 0.4146E-05

810.0 0.3101E-05 0.3100E-05

840.0 0.2262E-05 0.2260E-05

870.0 0.1608E-05 0.1606E-05

900.0 0.1113E-05 0.1113E-05

930.0 0.7501E-06 0.7647E-06

960.0 0.4915E-06 0.6092E-06
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4.3 Dual-Domain (Mobile/Immobile) Transport Problems

In the following two sections we present two one-dimensional solute transport problems
that test the implementation of the dual-domain mass transfer model in FACT. The first
set of problems is a direct comparison to the five analytical cases computed by van
Genuchten and Wierenga (1976). The second problem set is a code-to-code comparison
of FACT and the chromatography program, VERSE-LC (Whitley et al., 1998).

4.3.1 One-Dimensional Saturated Solute Transport in a Uniform Flow Field with
First-Order Mobile/Immobile Mass Transfer (van Genuchten and Wierenga
analytical cases)

This problem deals with one-dimensional advection-dispersion of a non-conservative
solute species from a pulse input of solute through a semi-infinite column with first-order
mobile/immobile mass transfer and linear adsorption. The implementation of the first-
order mobile/immobile mass transfer model into the FACT finite element framework is
tested by comparison to analytical solutions derived by van Genuchten and Wierenga
(1976).

Analytic solution: For linear adsorption, the governing transport equations for the
mobile and immobile water phases, Eqs. (15) and (16) of van Genuchten and Wierenga,
are

C 2
(8 +pr)aC—m+ 6., + (1-f)pK]a—Jﬂ = emD-a—Cmemem Cn (4.3.1.1)
ot ot oz Jz
dCip
[eim + (1 —f ))K]_a—t— = O!'(Cm - Cim ) (4.3.1.2)
where
Cryoerrrenreennes solute concentration in the mobile phase, ML™
Cim coereremreenens solute concentration in the immobile phase, ML™
Do dispersion coefficient, L*T!
RO fraction of the solid surfaces in contact with the mobile phase,
dimensionless

K. adsorption constant, LM
| TSRO time, T
Z oeeeeeeerrnnnenenns distance, L
0 AT mass transfer coefficient, T
Vi severesresinnens soil moisture flux in the mobile phase, LT~
¢ SN water content, 8=0,, +6,, 1)
s SO mobile water content, 33

immaobile water content, | 850 D
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[+ JOUOUROORON: bulk density, ML

For a semi-infinite column and a pulse input of solute, the boundary and initial conditions
are

: dC vmCo 0=t<ty
lim|v C, —D—=0 |={"™ 43.1.3
zl)rg+[ S ] {0 t=y ( )
lim[C,,(z,t)]=0 (4.3.1.4)
Z-=yoo
C,,(z,0)=C;, (z,0)=0. (4.3.1.5)

Egs. (4.3.1.1) and (4.3.1.2) are cast in non-dimensional form by introducing the following
dimensionless variables

T=vgt/L=v,t¢/L (4.3.1.6)
x=z/L (4.3.1.7)
$=9,/0=0./0,,+6,,) (4.3.1.8)
Cm =Cm/C0, Cim =Cim/CO (4319)
P=v,L/D (4.3.1.10)
o =0l/q (4.3.1.11)
as
_ 1%, o
1- o 4.3.1.12
m aT ( q))le aT P aX ax ( )
aclm _
(- ¢)le =0 = Cim) (4.3.1.13)
where the mobile and immobile phase retardation factors are
R, =1+PK (4.3.1.14)
m
Rim = 1+ U=fRK (4.3.1.15)
eim
The average retardation fact R for linear adsorption is defined as
rR=1+2K (4.3.1.16)

Define further the dimensionless parameter, 3, as




WESTINGHOUSE SAVANNAHR RIVER COMPANY Manual: WSRC-TR-99-00282

Section: 4, Rev. 0
Date: 3/2000
FACT CODE MANUAL Page: 107 of 130
p=dmtpPK _, Ry 4.3.1.17)
0+pK R
Substituting Eqgs. (4.3.1.16) and (4.3.1.17) into Egs. (4.3.1.12) and (4.3.1.13) yields
ac 10%,, _dc
R-—m 1- m = mn 4.3.1.18
B S s ( )
acim red '
(1—;3)Ra—T=a(cm—cim) (4.3.1.19)
The boundary and initial conditions in dimensionless form are
1 O0<T<T
tim (¢, —L%m ) ! (4.3.1.20)
x—0* P odx 0 T2T,
lim e (x,T))=0 (4.3.1.21)
X—hoo
cm(x,0)=c;, (x,0)=0 (4.3.1.22)

van Genuchte'n has shown that the solutions of Egs. (4.3.1.18) and (4.3.1.19) become

e (0 T)= c;(x,T) 0<T<T,
me ¢, (x,T)-¢;(x,T-Ty} T2T,

c (x T): Cz(x,T) OST<T1
' ¢y (x, T)—c,(x,T-T;) T2T,

where

. )= Gl Thesol-ar/pR ) £ [ Gl . b
T)— EJ(;E}(x,t)—IZ(T,t}h

Glx,T)= %[erfc{PMBRT)/ 2(BRx —T)}
- % (1-+Px + PT/BR Jexp(Px )srfc{P/4BRT)/ 2(BRx + T)}
+{PT/npR ) exp{~P(BRx —Tp /4BRTH

H, (T, T)= exp(— u- V){Io(é)/ﬁ +1; (&XU/V)]/Z/(I - B)Jl
H, (T, ) = exp(—u~ v)lo €/ - B)+ LEXv/u )2 /B

(4.3.1.23)

(4.3.1.24)

(4.3.1.25)

(4.3.1.26)

(4.3.1.27)

(4.3.1.28)

(4.3.1.29)
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Equation (4.3.1.23) was solved numerically using the IMSL™ libraries to evaluate the
various functions (e.g. erfc) and to perform numerical quadrature of the time-dependent
integrals. The van Genuchten paper has several errors including the expression for Eq.
(4.3.1.27). The solution to Eqs. (4.3.1.18) and (4.3.1.19) have not been independently

confirmed.

The parameter settings for the five van Genuchten analytical cases, Figs. 2 to 6 of van

Genuchten and Wierenga (1976), are given in Tables 4.3.1.1 to 4.3.1.5.

Table 4.3.1.1
Parameters for van Genuchten ¢ Analytical Case
Physical parameters Value
Volumetric flow velocity, q 10 cm/day
Water content, 9 0.4
Bulk density , p 1.30 g/ cm?
Dispersion coefficient, D 30 cm’/day
Fraction of mobile water, ¢ 0.35, 0.50, 0.65, 0.85,
0.999
Fraction of adsorption sites in contact with 0.40
mobile water, T
Adsorption constant, K 0.5 cm’/g
Mass transfer coefficient , O 0.15 day"
Dimensionless pulse period , T} 3
Soil column length, L 30 cm

Key dimensionless parameters

Mobile water content, 8

Average retardation factor, R

Dimensionless parameter, [3

Dimensionless parameter, 00

Dimensionless parameter, P

0.14, 0.2, 0.26, 0.34,
0.3996

2.625

0.381, 0.438, 0.495,
0.571, 0.628

0.45

71.4,50.0, 38.5, 294,
25.0
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Table 4.3.1.2
Parameters for van Genuchten f Analytical Case
Physical parameters Value
Volumetric flow velocity, q 10 cm/day
Water content, 6 0.4
Bulk density , p 1.30 g/ cm3
Dispersion coefficient, D 30 cm’/day
Fraction of mobile water, ¢ 0.65

Fraction of adsorption sites in contact with | 0.25, 0.40, .55, 0.70
mobile water, T ~

Adsorption constant, K 0.5 cm®/g
Mass transfer coefficient , O 0.15 day™
Dimensionless pulse period , T| 3
Soil column length , L. 30cm
Key dimensionless parameters
Mobile water content, 0, 0.26
Average retardation factor, R 2.625
Dimensionless parameter, B 0.402, 0.495, 0.588,
0.681
Dimensionless parameter, O 0.45

Dimensionless parameter, P 38.5
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Table 4.3.1.3
Parameters for van Genuchten o Analytical Case
Physical parameters Value
Volumetric flow velocity, q 10 cm/day
Water content, 0 0.4
Bulk density , p 1.30 g/ cm?
Dispersion coefficient, D 30 cm*/day
Fraction of mobile water, ¢ 0.65
Fraction of adsorption sites in contact with 0.40
mobile water, f
Adsorption constant, K 0.5 cmi/g
Mass transfer coefficient , O 0.0, 0.05, 0.15, 0.50,
2.0, o day™
Dimensionless pulse period , T} 3
Soil cotumn length , L 30 cm
Key dimensionless parameters
Mobile water content, O, 0.26
Average retardation factor, R 2.625
Dimensionless parameter, [3 0.495
Dimensionless parameter, O 0.0, 0.16560.45, 1.5,

Dimensionless parameter, P 385
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Table 4.3.1.4
Parameters for van Genuchten D) Analytical Case
Physical parameters Valune
Volumetric flow velocity, q 10 cm/day
Water content, 8 0.4
Bulk density , p 1.30 g/ cm?®
Dispersion coefficient, D 0,5, 302, 50, 100
cm’/day
Fraction of mobile water, ¢ 0.65
Fraction of adsorption sites in contact with 0.40
mobile water,
Adsorption constant, K 0.5 cm’/g
Mass transfer coefficient , O 0.15 day™
Dimensionless pulse period , Tj 3
Soil column length , L 30cm
Key dimensionless parameters
Mobile water content, 0, 0.26
Average retardation factor, R 2.625
Dimensionless parameter, B 0.495
Dimensionless parameter, O 0.45
Dimensionless parameter, P oo, 230.81, 132.5, 23.1,
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Table 4.3.1.5
Parameters for van Genuchten K Analytical Case
Physical parameters Value
Volumetric flow velocity, q 10 c/day
Water content, 0 0.4
Bulk density , p 1.30 g/ cm?
Dispersion coefficient, D 30 cm*/day
Fraction of mobile water, ¢ 0.65
Fraction of adsorption sites in contact with 0.40

mobile water,

Adsorption constant, K

0.0, 0.25, 0.50, 0.75,
10,20 em’fg

Mass transfer coefficient , O 0.15 day”
Dimensionless pulse period , Tj 3
Soil column length , L A0 cm
Key dimensionless parameters
Mobile water content, Bm 0.26
Average retardation factor, R 1.0, 1.813, 2.625,
3.438,4.25,7.5

Dimensionless parameter, B

Dimensionless parameter, O

Dimensionless parameter, P

0.65, 0.538, 0.495,
0.473, 0.459, 0.433

0.45
38.5

FACT numerical simulation and comparison: Values of the basic physical parameters
used in the verification simulations are presented in Table 4.3.1.6. The grid chosen
consists of 101 rectangular brick elements uniformly sized (0.3 cm in length) and stacked
along the x-axis. At the column inlet boundary (left face) a third-type boundary condition
is applied which represents a surface integral of qc* (q = 10 cm/day, c* = 1 pg/day )
equally distributed among the four nodes at x = 0. The column is leached with 3 pore
volumes (3.6 secs) of solute at a constant flux (q) of 10 cm/day. Due to the finite overall
length of our mesh, at the outflow boundary (right face) the dispersive flux is set to zero,
while the advective flux is calculated as part of the solution. - Since this is a 1-D problem,
solute concentrations do not exist in the transverse directions (y and z directions).
Therefore, the dispersive fluxes along these four faces (top, bottom, front and back) are
set to zero. The column is modeled as being fully saturated at a water content of 0.40
(total porosity of 0.40). For each simulation a transient calculation was performed for an
8 pore volume duration (9.6 secs) utilizing 9600 time steps of 0.01 days. The mesh
spacing and time step size were chosen to keep the cell Peclet and Courant numbers less
than 1 (if possible). Five different parameters (8,,/6, f, o, D and ky) were varied to

compute column effluent (breakthrough) curves for each FACT simulation and then
compared to the analytical cases in (van Genuchten and Wierenga, 1976).
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Figure 4.3.1.1 shows the influence of the fraction of mobile water (8,,,/8) on the shape of

the breakthrough concentration curve. Values of the different parameters used in the
simulations are given in Table 4.3.1.7. The FACT results are in good agreement with
analytical results. When the amount of immobile liquid increases (i.e. 6,/0 decreases),

advective transfer is increasingly confined to a smaller flow area of the column, resulting
in a higher solute velocity in the mobile liquid and hence leading to an earlier
breakthrough of the solute in the effluent. Also, the slope of the breakthrough curve at
higher concentrations is influenced by a change in 6,,/6. However, as long as some

immobile liquid is present (8,,/8=0.999) extensive tailing will occur, since

approximately 60% (f = 0.40) of the solute has to diffuse to those sorption sites which are
in equilibrium with the immobile liquid.

Approximately the same set of curves as shown in Fig. 4.3.1.1 is obtained when the
parameter f is allowed to vary (Fig. 4.3.1.2). This parameter describes the amount of
adsorption taking place inside the region of the soil in contact with the mobile liquid, as a
fraction of total adsorption. Values of the different parameters used in the simulations are
given in Table 4.3.1.8. The FACT results are in good agreement with analytical results.
When f increases, i.e. when relatively more adsorption occurs in the region of soil in
contact with mobile liquid, the solute will appear later in the effluent. When f = 1,
adsorption takes place only in the region of soil in contact with the mobile liquid. The
solute can only be stored in the immobile liquid. Both f and 8,, /6 have the same effect
on the shape of the breakthrough curves. They both determine the fraction of the
retardation occuring the region of soil in contact with the mobile liquid.

Figure 4.3.1.3 shows the influence of the mass transfer coefficient o. Values of the
different parameters used in the simulations are given in Table 4.3.1.9. The FACT results
are in good agreement with analytical results. When o = §, there is no diffusion of solute
into the immobile liquid. The breakthrough curve acquires a more or less symmetrical
shape. When « is small, a slow exchange of solute between mobile and immobile liquid
takes place, causing a significant decrease in peak concentration and considerable tailing.
With increasing values of the mass transfer coefficient, the rate of exchange between the
mobile and immobile liquid increases, eventually leading to an equilibrium state where
the concentrations in both mobile and immobile liquid are identical.

The influence of the dispersion coefficient D on the breakthrough curves is shown in Fig.
4.3.1.4. Values of the difference parameters used in the simulations are given in Table
4.3.1.10. The FACT results are in good agreement with the analytical results except at
low values of dispersion coefficient (i.e. high Peclet numbers). The influence of D on the
shape of the calculated breakthrough curves is not very large. There are discontinuities in
the breakthrough curve at both 1.3 and 4.3 pore volumes for the limiting case when D
becomes zero (i.e. infinite Peclet number). We can conclude from Fig. 4.3.1.4 that an
estimated dispersion coefficient may be adequate for predicting breakthrough curves.

Figure 4.3.1.5 finally shows the influence of the distribution coefficient K on the shape
and position of the breakthrough curves. Values of the different parameters used in the
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simulations are given in Table 4.3.1.11. The FACT results are in good agreement with
analytical results. The curve K = 0 represents the solution for a nonsorbing medium with
no retardation. When K increases, the solute appears later in the effluent, while the peak
concentration decreases somewhat. . Also the tailing becomes more pronounced with
increasing values of K. This is to be expected since more and more solute is allowed to
diffuse into and be adsorbed by the region of soil in contact with the immobile liquid.
After passage of the solute pulse the selute slowly diffuses back into the mobile liguid,
resulting in extensive tailing.
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Table 4.3.1.6
Base Parameters in FACT simulation of van Genuchten Analytical Cases
Physical parameters Value
Darcy velocity, 10 cm/day
Water saturation, S, 1.0
Particle mass density, D 2.166666 g/om?
Total porosity , ¢ 0.40
Longitudinal vertical, transverse horizonal 0.0 cm
and transverse vertical dispersivities,
OlLy, Oy, Gty
Apparent molecular dispersion coefficient, 0.0 cm?/d
$S,,TD"
Radioactive decay coefficient, A, 0.0 day!
1st-order reaction rate (mobile), lm 0.0 day”!
1st-order reaction rate (immobile), A, 0.0 day'!
Boundary solute concentration, Cy 1.0 ngfem?
Water volumetric flowrate (per point 0.225 cm?/day
source), q
Contaminant mass flowr“z‘ite (per point 0.225 ng/day
source), qC
Pulse period, t; 3.6 days
Grid specifics
Element lengths, ox = 8y =90z 0.3cm
Number nodes in x-direction 101
Number nodes in y-direction 2
Number nodes in z-direction 2
Time steps
Time duration 9.6 days
number time-steps 960
time-step size, Ot 0.01 day
Key computed parameters
Water content, 6 0.40
Bulk soil density, Py, 1.30 glem®
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Table 4.3.1.7
Parameter Settings in FACT simulation of van Genuchten ¢ Analytical Case
Physical parameters Value
Distribution coefficient, k4 0.5 cm’/pg
Dispersion coefficient, D 30 cm?/day
Longitudinal horizontal dispersivity, OLH 042,0.6,0.78 1.02,
1.1988 cm
Fraction of mobile water, 8, /0 0.35, 0.50, 0.65, 0.85,
0.999
Fraction of adsorption sites in contact with 0.40
mobile water,
Mass transfer coefficient , O 0.15 da)r'1

Key computed parameters

Mobile water content, 8,
Immobile water content, 0;,
Mobile retardation factor, R,
Immobile retardation factor, R;,
Phasic velocity, U,

. . !
Retarded phasic velocity, U,

Retarded dispersion coefficient, D'xx
Cell Peclet number, Pe,

Cell Courant number, Co,

0.14,0.2, 0.26, 0.34,
0.3996

0.26, 0.2, 0.14, 0.06,
0.0004

2.86,2.30,2.00, 1.76,
1.65

2.50, 2.95, 3.79, 7.50,
976

71.4, 50.0, 38.5, 294,
25.0 cm/day

25.0,21.7,19.2,16.7,
15.2 cm/day

10.5,13.0, 15.0, 17.0,
18.2 cm*day

0.71, 0.50, 0.38, 0.29,
0.25

0.83,0.72, 0.64, 0.56,
0.51
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Table 4.3.1.8
Parameter Settings in FACT simulation of van Genuchten f Analytical Case
Physical parameters Value
Distribution coefficient, k 4 0.5 cm®/ug
Dispersion coefficient, D 30 cm’/day
Longitudinal horizontal dispersivity, Ol y4 0.78 cm
Fraction of mobile water, 0, /0 0.65
Fraction of adsorption sites in contact with .25, 0.40, 0.55, 0.70
mobile water,
Mass transfer coefficient , O 0.15 day™
Key computed parameters
Mobile water content, 8, 0.26
Immobile water content, 8;, 0.14

Mobile retardation factor, R,
Immobile retardation factor, R,
Phasic velocity, U,

Retarded phasic velocity, u;

Retarded dispersion coefficient, D',

Cell Peclet number, Pe,
Cell Courant number, Co,

1.63, 2.00, 2.38, 2.75
4.48,3.79, 3.09, 2.39
38.5 cm/day

23.7,19.2,16.2, 14.0
cm/day

18.5,15.0, 12.6, 10.9
cm?/day

0.38
0.79, 0.64, 0.54, 0.47
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Table 4.3.1.9
Parameter Settings in FACT simulation of van Genuchten ot Analytical Case
Physical parameters Value
Distribution coefficient, K4 0.5 cm*/ug
Dispersion coefficient, D 30 cm’/day
Longitudinal horizontal dispersivity, 0} i 0.78 cm
Fraction of mobile water, 6, /0 0.65
Fraction of adsorption sites in contact with .40
mobile water, f
Mass transfer coefficient , O 0.0, 0.05, 0.15 0.50,
2.0, co day™
Key computed parameters
Mobile water content, 8, : 0.26
Immobile water content, 8, 0.14
Mobile retardation factor, R 2.0
Immobile retardation factor, R, 3.79
Phasic velocity, U, 38,5 cm/day
Retarded phasic velocity, u; 19.2 cm/day
Retarded dispersion coefficient, D’xx 15.0 cm?/day
Cell Peclet number, Pe, 0.38
Cell Courant number, Co, 0.64
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Table 4.3.1.10
Parameter Settings in FACT simulation of van Genuchten D Analytical Case
Physical parameters Value
Distribution coefficient, k4 0.5 cm3/ug
Dispersion coefficient, D 0,5, 302, 50, 100
cm’/day
Longitudinal horizontal dispersivity, Ol iy | 0.0, 0.13, 0.78, 1.3, 2.6
cm
Fraction of mobile water, 8 / 6 0.65
Fraction of adsorption sites in contact with 0.40
mobile water, T
Mass transfer coefficient , O 0.15 day
Key computed parameters
Mobile water content, 8 0.26
Immobile water content, 0, 0.14
Mobile retardation factor, R 20
Immobile retardation factor, R, 3.79
Phasic velocity, u, 38.5 cm/day
Retarded phasic velocity, l.l; 19.2 em/day
Retarded dispersion coefficient, D', 0.0, 2.5, 15.0,25, 50
cm?/day
Cell Peclet number, Pe, oo, 2.31,()088, 0.23,

Cell Courant number, Co, 0.64
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Table 4.3.1.11

Parameter Settings in FACT simulation of van Genuchten K Analytical Case

Physical parameters Value
Distribution coefficient, k4 0.0, 0.25, 0.5, 0.75,
1.0, 2.0 em?/pg
Dispersion coefficient, D 30 cm’/day
Longitudinal horizontal dispersivity, Oy y 0.78 cm
Fraction of mobile water, 0., /6 0.65
Fraction of adsorption sites in contact with 0.40
mobile water, f
Mass transfer coefficient , O 0.15 day'1
Key computed parameters
Mobile water content, 8, 0.26
Immobile water content, 8, 0.14
Mobile retardation factor, R, 1.0,1.5,2.0,2.5,3.0,
5.0
Immobile retardation factor, R 1.0,2.39,3.79, 5.18,
6.57,12.14
Phasic velocity, U, 38.5 cm/day
Retarded phasic velocity, U 38.5,25.6,19.2,15.4,
12.8, 7.7 cm/day
Retarded dispersion coefficient, D, 30,20,15,12, 10,6
cm?/day
Cell Peclet number, Pe, 0.38
Cell Courant number, Co, 1.28,0.85, 0.64, 0.51,
(0.43,0.26
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Fig. 4.3.14 Calculated breakthrough curves for a sorbing medium as influenced by the
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Fig. 4.3.1.5 Calculated breakthrough curves for a sorbing medium as influenced by the
adsorption coefficient, K

4.3.2 One-Dimensional Saturated Solute Transport in a Uniform Flow Field with
First-Order Mobile/Immobile Mass Transfer (VERSE-LC Comparison)

This problem deals with one-dimensional advection-dispersion of a non-conservative
solute species with a unit step change in concentration at the inlet through a semi-infinite
column with first-order mobile/immobile mass transfer and linear adsorption. The
implementation of the first-order mobile/immobile mass transfer model into the FACT
finite element framework is tested by making a code-to-code comparison to VERSE-LC.

VERSE-LC solution: The rate model equations in VERSE-LC (Whitley et al., 1998)
consider mass transfer effects such as axial dispersion, convection, film mass transfer,
intraparticle diffusion, and surface diffusion. Various equilibrium and non-equilibrium
isotherms are available in the model. Non-equilibrium isotherms are used when
adsorption/desorption rates are slower than mass transfer rates. Modes of operation
include frontal, isocratic and gradient elution, and displacement chromatography.
Processes with step functions (ideal or dispersed), flow rate changes, and forward and
reverse flow can be simulated. In addition to fixed beds, fluidized beds and moving beds
can also be simulated. VERSE-LC is not sorbent specific; any ion exchange, hydrophobic
interaction, reverse phase, or affinity sorbent system can be treated.

The non-dimensional mobile phase equation with mass transfer between the flowing bed
fluid and the non-porous particles is
3cb _ 1 azcb _aCh
dT  Pe, 9x* dx

~N¢leo—c,) (4.32.1)
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where the dimensionless axial dispersion is defined as
1
LBy (4.3.2.2)
Peb UOL
The dimensionless film mass transfer 1s
N, = 3[5](1—_8—@i (43.2.3)
R Eplg
The boundary and initial conditions are
x=0, L _pe,(c,—c(6))
aax
x=1, -a"—b = (4.3.2.4)
X
0=0, cp=c,(x,0)
The non-dimensional particle surface equation is
3Lk; Cyp
Cp —~Cp =1 — Y 4325
[Ru0i|(b p) I:Cejl ¢ ( )
where Y, represents the equilibrium adsorption term
dc, dc
Y, =—2—-L 4326
¢ dc, 99 ( )
The initial condition is
8=0, t,=c,0) (4.3.2.7)
The multicomponent Langmuir isotherm is given as
— aCp
C,= (4.3.2.8)
1+bC,
Using the definitions for the scaled mobile and solid phase concentrations
= EP Cp
¢, == and c,=— {4.3.2.9)
CT Ce
respectively, into Eq. (4.3.2.8) with b = 0 to yield a linear isotherm gives
C, = [—_Ci]acp (4.3.2.10)
Cr

Substituting the derivative of Eq. (4.3.2.10) into Eq. (4.3.2.6) and rearranging Eq.

(4.3.2.5) gives
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de, 3Lk
p f
a—= Cp —C 432.11
aT [ RUO ( b p) ( )
Multiplying both sides of Eq. (4.3.2.11) by (1—¢, )/ g, yields
(1—g, Ja Oc,
— 2~ =Nlg, —¢ 4.3.2.12)

The Langmuir coefficient “a” in Eq. (4.3.2.8) for a linear isotherm is given as

= Aaoqyal) = Psky (4.3.2.13)

However, inside VERSE-LC the Langmuir coefficient “a” is divided by volume fractions
depending on whether the porous or nonporous modeling option is chosen. VERSE-LC
assumes as input that Eq. (4.3.2.13) is

ps(t—g, M- e, kg  porous model

43214
Ps (1 — £}, )kd nonporous model ( )

a(versg) = Ppkg = {

For these set of simulations, we are using the nonporous model in VERSE-LC.
Therefore, the Langmuir coefficient “a” based on Egs. (4.3.2.13) and (4.3.2.14) is

_ 4(VERSE)

= ewa) =~ (4.3.2.15)

Substituting Eq. (4.3.2.15) into (4.3.2.12) yields the particle surface (immobile) equation

A(VERSE) 9¢p

N =N¢lep—c,) (4.3.2.16)

Equations (4.3.2.1) and (4.3.2.16) represent the mobile phase and particle surface
(immobile) equations solved by VERSE-LC for these simulations.

The parameter settings used in the VERSE-LC simulations are given in Table 4.3.2.1.
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Table 4.3.2.1
Parameter Settings for the VERSE-LC Simulations
Physical parameters Value
Axial dispersion coefficient, E}, 20.0 cm?/min
Particle radius, R 100.0 pm
Volumetric flow, Q 157.08 ml/min
Interparticle void fraction, &, 03
Intraparticle void fraction, €p 0.0
Particle mass density, P 1.0 g/ml
Film mass transfer parameter , kf 0.0, 0.00001, 0.0001,
0.001, 3.0 c;/min
Langmuir coefficient, A(actual) 0.42857
Langmuir coefficient, A(VERSE) 03
Langmuir coefficient, b(VERSE) 0.0
Initial concentration, Cy, (x,OJ 0.0
Inlet solute concentration, Cy, (0, T) 1.0
Grid specifics
Column length, L 500.0 cm
Column diameter, D 10.0cm
Time specifics
Time duration, t .. 250.0 min
Key computed parameters
Cross-sectional area, A 78.5398 cm?
Interstitial velocity, Uy 6.66668 cm/min
LR 50000
Peclet number, Pe}, 166.67
Film mass transfer, N¢ 0.0, 0.525, 5.25, 52.5,
157500.0

In order to perform a term by term comparison to the FACT transport equations, we must
convert Eqs. (4.3.2.1) and (4.3.2.16) to their dimensional form as

) 92 p)
ebﬁzebEb aZCZb TEplo " Cb ( h e K¢ (oo - C) (4.3.2.17)

a(VERSE) at ( h e ke len—c) (4.32.18)

The governing transport equations for the mobile and immobile water phase in FACT are,
respectively

{9m+f( }3de a3t —Daaz Uaaz a(cm_cim) (4.3.2.19)
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ac;

i + A= X1-0)p Ky }? =ofCn —Cim) (4.3.2.20)

The following is a term by term comparison of the FACT and VERSE-LC transport
equations.

Cm =Cp> Cim =Cp concentrations (4.3.2.21)
0, +f(l—-d)p.ky =g, mobilephase time term (4.3.2.22)
0., +(1—-fX1-d)p.ky = a(VERS,;_) immobile phase time term  (4.3.2.23)

D=oyU=¢,E, dispersion term (4.3.2.24)
q=¢€yu;y advection term (4.3.2.25)
3
o= (E kl —& )kf (cb - cp) mass transfer term (4.3.2.26)
J

FACT numerical simulation and comparison: Values of the basic physical parameters
used in the verification simulations are presented in Table 4.3.2.2. The grid chosen
consists of 501 rectangular brick elements uniformly sized (1.0 cm in length) and stacked
along the x-axis. At the column inlet boundary (left face) a first-type Dirichlet boundary
condition, c,,,(0,t)=1.0, is applied to the mobile solute concentration at the four nodes.
Due to the finite overall length of our mesh, at the outflow boundary (right face) the
dispersive flux is set to zero, while the advective flux is calculated as part of the solution.
Since this is a 1-D problem, solute concentrations do not exist in the transverse directions
(y and z directions). Therefore, the dispersive fluxes along these four faces (top, bottom,
front and back) are set to zero. The column is modeled as being fully saturated at a water
content of 0.30 (total porosity of 0.30). For each simulation a transient calculation was
performed for 250 min utilizing 2500 time steps of 0.1 min. The mesh spacing and time
step size were chosen to keep the cell Peclet and Courant numbers less than 1 (if
possible). The first-order mass transfer coefficient, ¢, was varied from 0 to 630 min™"
The two limits chosen adequately establish the no adsorption and adsorption equilibrium
conditions. The column concentration profiles at 50 min (Fig. 4.3.2.1) and the effluent
(breakthrough) curves (Fig. 4.3.2.2) are computed for each FACT simulation and then
compared to the VERSE-LC results. The agreement between FACT and VERSE-LC is
excellent.
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Table 4.3.2.2

Parameter Settings in FACT simulation of VERSE-LC Test Case

Physical parameters

Value

Darcy velocity, q

Water saturation, S,

2 cm/min
1.0

Distribution coefficient, k4
Particle mass density, pPg
Total porosity , ¢

0.42857 ml/g
1.0 g/ml
0.30

Longitudinal horizontal dispersivity, O y

Longitudinal vertical, transverse horizonal
and transverse vertical dispersivities,

Opy. Oy, Oy
Apparent molecular dispersion coefficient,
¢S, D"

Radioactive decay coefficient, 7\.r
Ist-order reaction rate (mobile), A,
1st-order reaction rate (immobile), 7Lim
Boundary solute concentration, C, (0, t)
Fraction of mobile water, 0, / 0

Fraction of adsorption sites in contact with
mobile water, T

Mass transfer coefficient , O

30cm
0.0cm

0.0 cm?/min

0.0 min’!

0.0 min’!

0.0 min’!
1.0
0.3
0.0

0.0, 0.0021, 0.021,

0.21, 630 min"’

Grid specifics

Element lengths, 8x = 8y = 0z
Number nodes in x-direction
Number nodes in y-direction

Number nodes in z-direction

1.0cm
. 501
2
2

Time steps

Time duration
number time-steps

time-step size, Ot

250 min
2500

0.1 min

Key computed parameters

Water content, O
Mobile water content, 9,

Immobile water content, 6,
Bulk soil density, Py,
Mobile retardation factor, R,

Immobile retardation factor, R,

Phasic velocity, u,

0.3
03

0.0
0.7 g/ml
1.0

(=)

6.66668 cm/min
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Physical parameters Value
Retarded phasic velocity, u’, 6.66668 cm/min

Retarded dispersion coefficient, D',

Cell Peclet number, Pe,

Cell Courant number, Co,

20.0 cm*/min

0.333
0.660
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5 Problem Definition and Simulation Procedure

A general procedure for using FACT to simulate groundwater flow and/or solute

transport in subsurface systems is outlined below. The procedure (which is broken
up into five major steps) is concurrently applied as needed to an example problem to
further illustrate the process.

5.1 Conceptual Model

Develop a conceptual model of the physical application. Prepare a schematic description
of the problem, its geometry, and the important features such as shown in Fig. 5.1. The
diagram should identify zones of different material properties and potential boundary
conditions, as well as locations of wells, contamination sources, surface water, etc.
Determine whether flow, transport or both flow and transport simulation is desired, and
whether the simulations will be steady-state, transient or both (e.g. steady-state flow and
transient solute transport). Determine whether the system is confined or unconfined. For
unconfined systems, decide whether detailed knowledge of unsaturated zone behavior is
important. If so, then ’real’ soil characteristic curves should be supplied to FACT.
Otherwise, pseudo-soil characteristic curves should be supplied. In many circumstances
pseudo-soil properties are quite adequate. Physical phenomena important to the problem
should be identified so that these effects can be included in the simulation.

Next assemble the information and data needed to quantitatively define the conceptual
model and/or calibrate the model. Example data requirements for groundwater flow
problems include well head data, elevations and thickness of hydrostratigraphic units,
hydraulic properties such as conductivities, source bed areas, and leakance coefficients,
groundwater recharge and withdrawal. Example data inputs for solute transport problems
include longitudinal and transverse dispersivities, solute properties {e.g., retardation and
decay coefficients), contaminant source characteristics (location, geometry, concentration,
fluxes, and decay constants), and groundwater velocities.

5.2 Model Grid

Define model coordinate system and create finite element mesh. The grid coordinate axes
form a right hand Cartesian system with the z axis pointing in the upward vertical
direction. In general, proper areal orientation of the mesh coordinate system is dependent
on the principal axes of the hydraulic conductivity tensor and, to a lesser extent,
orientation of any known no-flow surfaces (or other boundary conditions such as river
BC’s). If the application involves an anisotropic conductivity field, then the finite
element grid should be aligned with the principal axes of the hydraulic conductivity
tensor to be consistent with the FACT governing equation for groundwater flow. The
current version of FACT assumes that the principle axes of the anisotropic behavior is
spatially invariant. Therefore, an average orientation must be determined. Mesh
boundaries should generally be aligned with no-flow surfaces whenever possible to
simplify boundary condition specification and minimize data requirements.
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The overall mesh dimensions should envelope the physical region of interest at a
minimum. It is frequently desirable to expand the mesh beyond this region of interest in
order to take advantage of convenient physical features for boundary condition
specification, such as groundwater divides (no-flow B.C.) and rivers (river B.C.) and
wells (prescribed head and/or concentration B.C.). Some of these concepts are illustrated
in Fig. 5.2 which shows a finite element mesh superimposed upon the schematic diagram
of Fig. 5.1. The left boundary in the plan view was positioned to be coincident with a
pair of wells for which the head is known. The lower plan view boundary is aligned with
a flow line. The bottom of the mesh in the cross-sectional view is aligned with an
impermeable layer.

Once the orientation and overall mesh dimensions have been decided, the computational
domain is discretized in each of the coordinate directions. Although FACT 1s based on a
three-dimensional Cartesian formulation, one- and two-dimensional Cartesian models can
be created by specifying only one element along the ‘absent’ coordinate axes or axis,
respectively. The proper number of elements/nodes for ’present’ coordinate axes depends
on the physical phenomena being simulated, hydrostratigraphy and other geometric
features, desired accuracy, and the computer resources available to the user. Significant
user judgment and/or trial-and-error experimentation may be required to determine the
proper grid resolution. Regarding accuracy, the verification problems presented in
Section 4 can be used to develop a feel for accuracy as a function of spatial discretization.
Verification Problem 4.2.1 is especially instructive for solute transport applications and
contains some general guidelines for grid spacing. In particular, the cell Peclet number
should be less than 2 ideally and no more than about 10 in practice. The cell Peclet
number (dimensionless grouping) is defined as wAxy/D; where Ax; is the element
dimension for the i’th coordinate direction, u; is the local pore velocity in that direction,

Ui/¢, and D; is the local dispersion coefficient.

FACT utilizes eight-noded trilinear hexahedron finite elements which may be fully
orthogonal, or areally orthogonal but vertically deformed as shown in Fig. 5.4. The
vertical deformation is restricted to a permissible variation in the element depth and the
areal coordinates of the deformed 8-node element must be the same at the top and bottom
of each corner. Deformed elements enable the user to accurately model stratigraphic
surfaces which are generally non-planar, and/or to conform the grid to layers of varying
thickness. These concepts are illustrated in Fig. 5.2. For the lower portion of the mesh,
each hydrostratigraphic layer has been assigned one computational mesh layer. However
in the upper portion of the mesh, the mesh conforms to the entire thickness between the
ground surface and a deep confining unit. The mesh does not align with intermediate low
permeability layers. Deformed elements do introduce an added degree of numerical
approximation in the influence matrix formulation of the flow and transport equations
since the numerical scheme computationally assumes the elements to be entirely
orthogonal. To properly handle deformed elements, two-point Gauss-Legendre
quadrature is available. See verification Problem 4.1.4 for an example involving
deformed elements.
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Any element may be made inactive by the user. No calculations are performed for
inactive elements and no flow occurs normal to their six faces. Inactive elements are
effectively deleted from the physical simulation and can be used to model irregular
geometries with little impact on overall computation work load. See Fig. 5.2 for a
specific example.

Mesh nodes are globally numbered sequentially as
ig =ix + (iy —nnx + (iz - nnxy

where
ix - node position along x-axis (ix = 1, ..., nnx)
iy - node position along y-axis (iy = 1, ..., nny)
iz - node position along z-axis (iz = 1, ..., nnz)
nnx - number of nodes in x direction
nnxy - number of nodes in xy plane

Mesh elements are globally numbered similarly as

ie =ix +(iy — nex +(iz — nexy

where
ix - element position along x-axis (ix = 1, ..., nex)
iy - element position along y-axis (iy = 1, ..., ney)
iz - element position along z-axis (iz = 1, ..., nez)
nex - number of elements in x direction
nexy - number of elements in Xy plane

This numbering scheme is illustrated in Fig. 5.3 for the example problem.

For transient simulations the time domain must also be discretized. The proper temporal
discretization depends on the physical phenomena being simulated, desired accuracy and
the computer resources available to the user. The (linear) transport governing equations
have been discretized in the time domain with enough implicitness to make the resulting
numerical equation set unconditionally stable. The flow equations are unconditionally
stability when linear (i.e. properties do not depend on head and boundary conditions are
linear). There is no time step constraint for these cases. For a nonlinear flow equation
resulting from head-dependent properties (and/or non-linear boundary conditions)
encountered in an unsaturated flow, unconditional stability cannot generally be rigorously
shown. If stability problems are encountered due to strong nonlinearities, the time step
should be reduced. Time steps which yield a cell Courant number less than 1 throughout
the mesh for each coordinate direction will usually result in a stable simulation. The
dimensionless Courant number is defined as Co = u;At/Ax; where Ax; is the elemnent
dimension for the i’th coordinate direction, u; is the local retarted pore velocity in that
direction, U/6R, and At the time step. Stability aside, time steps satisfying Co < 1 may
be needed to achieve sufficient accuracy regardless of the linearity of the equation set.
See verification Problem 4.2.1 for an illustrative example.
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5.3 Material Properties and Boundary Conditions

Define hydraulic properties, boundary conditions, and initial conditions. Hydraulic
properties, such as conductivity and specific storage, are assigned to elements. For small
grids and simple conceptual models, property assignments can be done by hand. For
sufficiently large grids or complex conceptual models, a user-developed automated or
semi-automated process for specifying element properties will be required.

Boundary conditions, sources and sinks, and initial conditions are defined on a nodal
basis. The flow boundary condition and source/sink options at a node are

specified head

specified mixture flow

pumping/injection well

recirculation well

head-dependent source bed (aquitard, river, drain or general head)

vertical head-dependent line source

combined recharge/drain (head-dependent)

recharge

The recharge boundary condition is a special case of the more general prescribed flow
B.C. which allows the user to easily specify recharge in the uppermost plane of nodes.
The head-dependent boundary conditions are defined in Section 3.1.7. The transport
boundary condition and source/sink options at a node are

+ specified concentration
specified solute mass flow
pumping/injection well
recirculation well
combined recharge/drain
recharge

Figure 5.2 illustrates how these boundary condition options might be applied to the
application shown schematically in Fig. 5.1. Boundary conditions may be steady-state or
transient. For transient boundary conditions, the transient function may be represented as
a step function, a first-degree spline or a cubic spline.

The initial value of head and/or concentration must be specified at each node. In general,
the user supplies a default value for all nodes or specifies the values on a node by node
basis. The output from a simulation can be conveniently used as the initial conditions for
a subsequent run through FACT I/O options.

For simulations involving only transport, the steady-state velocity in each coordinate
direction must be specified at each element. As with the initial conditions, the user
generally supplies a default value and then overrides the default specification on an
element by element basis. The velocity output from a simulation can be conveniently
used as input to a subsequent run through FACT I/O options.




WESTINGHOUSE SAVANNAH RIVER COMPANY Manual: WSRC-TR-99-00282

Section: 5,Rev. 0
Date: 3/2000
FACT CODE MANUAL Page: S50f8

5.4 FACT Input Files

Create the necessary FACT input file(s). Detailed instructions for creating a FACT input
file(s) are presented in Section 7. Using Section 7, translate the conceptual model into a
FACT input file(s).

5.5 FACT Execution

Execute the FACT code and analyze output file(s). FACT output files are described in
detail in Section 7.
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Fig. 5.1. Schematic drawing of an example groundwater flow and solute transport
problem.
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Fig. 5.4. Deformed eight-noded hexahedron element.




