

CHAPTER 4— REACTOR LIST OF FIGURES

Figure 4.2-1	U.S. EPR Fuel Assembly	4.2-65
Figure 4.2-2	Fuel Rod Assembly	4.2-66
Figure 4.2-3	Instrument Lance Position	4.2-67
Figure 4.2-4	Intermediate HTP Spacer Grid Cross-Section	4.2-68
Figure 4.2-5	HTP Spacer Grid Characteristics	4.2-69
Figure 4.2-6	HMP End Grid Assembly	4.2-70
Figure 4.2-7	Guide Tube QD Connection with Top Nozzle	4.2-71
Figure 4.2-8	MONOBLOC™ Guide Tube Assembly	4.2-72
Figure 4.2-9	QD Top Nozzle Assembly	4.2-73
Figure 4.2-10	FUELGUARD™ Lower Nozzle Arrangement	4.2-74
Figure 4.2-11	Guide Tube Screw Connection at Bottom Nozzle	4.2-75
Figure 4.2-12	Rod Cluster Control Assembly	4.2-76
Figure 4.2-13	RCCA Control Rod	4.2-77
Figure 4.2-14	RCCA Spider	4.2-78
Figure 4.2-15	Thimble Plug Assembly	4.2-79
Figure 4.2-16	TPA Spider Showing the Guide Ring Positions	4.2-80
Figure 4.2-17	Primary Source Assembly	4.2-81
Figure 4.2-18	Secondary Source Assembly	4.2-82
Figure 4.2-19	Primary Neutron Source Rod	4.2-83
Figure 4.2-20	Secondary Neutron Source Rod	4.2-84
Figure 4.2-21	Control Template	4.2-85
Figure 4.3-1	Cross Section of the U.S. EPR High Thermal Performance Fue Assembly	
Figure 4.3-2	U.S. EPR Rod Group Insertion Limits Versus Thermal Power	4.3-56
Figure 4.3-3	Typical Initial Core Loading Map	4.3-57
Figure 4.3-4	Uranium Consumption and Plutonium Production Versus Burnu	p4.3-58
Figure 4.3-5	Boron Concentration Versus Burnup for a First Core	4.3-59
Figure 4.3-6	Fuel Assembly Designs A1 and A2	4.3-60
Figure 4.3-7	Fuel Assembly Designs B1 and B2	4.3-61

Figure 4.3-8	Fuel Assembly Designs C1 and C2	62
Figure 4.3-9	Fuel Assembly Design C34.3-	63
Figure 4.3-10	Quarter Core Relative Assembly Radial Power Distribution (HFP at BO ARO, No Xenon)4.3-	
Figure 4.3-11	Quarter Core Relative Assembly Radial Power Distribution (HFP Nea BOL, ARO, Equilibrium Xenon Power Distribution)	
Figure 4.3-12	Quarter Core Relative Assembly Radial Power Distribution (HFP Near BOL, Bank D at PDIL, Equilibrium Xenon Power Distribution 4.3-66	n)
Figure 4.3-13	Quarter Core Relative Assembly Radial Power Distribution (HFP Nea MOL, ARO, Equilibrium Xenon Power Distribution)	
Figure 4.3-14	Quarter Core Relative Assembly Radial Power Distribution (HFP Near MOL, Bank D at PDIL, Equilibrium Xenon Power Distribution)4.3-	68
Figure 4.3-15	Quarter Core Relative Assembly Radial Power Distribution (HFP Nea EOL, ARO, Equilibrium Xenon Power Distribution)	
Figure 4.3-16	Quarter Core Relative Assembly Radial Power Distribution (HFP Near EOL, Bank D at PDIL, Equilibrium Xenon Power Distribution 4.3-70	n)
Figure 4.3-17	Fuel Assembly (½ Assembly Symmetry) Power Distribution (HFP New BOL, ARO, Equilibrium Xenon Power Distribution)	
Figure 4.3-18	Fuel Assembly (½ Assembly Symmetry) Power Distribution (HFP Net EOL, ARO, Equilibrium Xenon Power Distribution)	
Figure 4.3-19	Typical Axial Power Shape at Beginning of Life4.3-	73
Figure 4.3-20	Typical Axial Power Shape at Middle of Life4.3-	74
Figure 4.3-21	Typical Axial Power Shape at End of Life4.3-	75
Figure 4.3-22	Comparison of Typical Fuel Assembly Axial Power Distributions with Core Average Axial Power Distribution and Bank D Slightly Inserted . 4.3-76	
Figure 4.3-23	Maximum $F_{\mathcal{Q}}$ as a Function of Core Height4.3-	77
Figure 4.3-24	Measured Values of $F_{\mathcal{Q}}$ for Steady State Full Power Rod Configuratio 4.3-78	ns
Figure 4.3-25	Typical Doppler Temperature Coefficient4.3-	79
Figure 4.3-26	Typical Doppler-Only Power Coefficient at BOL and EOL4.3-	80
Figure 4.3-27	Typical Doppler-Only Power Defect at BOL and EOL 4.3-	81
Figure 4.3-28	Typical Zero Power Moderator Temperature Coefficient at BOL 4.3-	82

Figure 4.3-29	Typical Zero Power Moderator Temperature Coefficient as a Function Boron Concentration at BOL	
Figure 4.3-30	Typical Zero Power Moderator Temperature Coefficient at EOL 4.3	8-84
Figure 4.3-31	Typical Hot Full Power Moderator Temperature Coefficient 4.3	8-85
Figure 4.3-32	Typical Total Power Coefficient at BOL and EOL4.3	8-86
Figure 4.3-33	Typical Total Power Defect at BOL and EOL4.3	8-87
Figure 4.3-34	Rod Cluster Control Assembly Pattern4.3	8-88
Figure 4.3-35	Differential Bank Worth with Two Banks in Overlap4.3	8-89
Figure 4.3-36	Rod Position versus Time of Travel after Rod Release 4.3	3-90
Figure 4.3-37	Reactivity Worth versus Rod Position4.3	3-91
Figure 4.3-38	Typical Damped Xenon Oscillation4.3	3-92
Figure 4.3-39	Typical Layout of the Reflector4.3	3-93
Figure 4.3-40	U.S. EPR Reflector Geometry4.3	3-94
Figure 4.4-1	Axial Distribution of Quality and Void Fraction in the Limiting Subchar 4.4-29	nnel
Figure 4.4-2	Radial Distribution of Quality and Void Fraction at the Core Exit 4.4	l-30
Figure 4.4-3	Assembly Average Flow and Enthalpy Distribution at Core Inlet (1/8 core)4.4	
Figure 4.4-4	Assembly Average Flow and Enthalpy Distribution at Core Mid-Plane 8 Core)	e (1/ I-32
Figure 4.4-5	Assembly Average Flow and Enthalpy Distribution at Core Exit (1/8 Core)4.4	I-33
Figure 4.4-6	Location of Flow Distribution Device Beneath the Core 4.4	-34
Figure 4.4-7	Average RCS Temperature vs. Core Power4.4	-35
Figure 4.4-8	Arrangement of Incore Instrumentation (Top View)4.4	I-36
Figure 4.4-9	Overview of the Aeroball Measurement System 4.4	l-37
Figure 4.4-10	Arrangement of Incore Instrumentation (Side View)4.4	I-38
Figure 4.4-11	Aeroball Probe4.4	l-39