MACCS2 Analyses Supporting Filtered Containment Venting Systems Commission Raper

Tha Ghosh

Office of Nyckar Regulatory Research

Nathan Bixler

Sandia National Laboratories

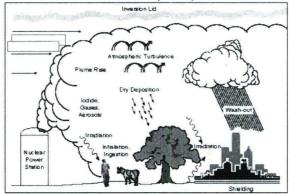
1

Outline

- Overview of MACCS2
 - MACCS2 Modules
 - ATMOS: Atmospheric Modeling
 - EARLY: Emergency Phase Modeling
 - CHRONC: Long Term Phase Modeling
 - MACCS2 Uses
 - References
- MACCS2 analysis for filtered containment venting systems
 - Scope of analysis
 - Inputs
 - Results of calculations, venting with and without filter

2

Overview of MACCS2


- MACCS2: MELCOR Accident Consequence Code System 2
 - Level-3 PRA tool to assess the risk and consequence associated with a hypothetical release of radioactive material into the atmosphere
 - Released in 1997
 - Evolved from series of codes: CRAC, CRAC2, MACCS, MACCS2
 - Estimates consequences
 - Health effects numbers and risks
 - Economic impacts land areas and costs
 - No equivalent industry code
- WinMACCS Graphical User Interface
 - Assist the user in creating MACCS2 inputs
 - Preprocessor for MACCS2 input
 - Postprocessor for MACCS2 output
 - Allow uncertainty mode sampling
- Use of MACCS2 in State-of-the-Art Reactor Consequences Analyses study peer-reviewed by independent panel of experts

3

Pathways to Receptors from Atmospheric Release

MACCS2 models the radioactive transport through the atmosphere (e.g. plume rise, dispersion, dry and wet deposition)

MACCS2 estimates the health effects from: inhalation, cloudshine, groundshine, skin deposition, and ingestion (e.g. water, milk, meat, crops)

MACCS2 Modules

- ATMOS
 - Not associated with a phase
 - Atmospheric transport and deposition
- EARLY (1 day to 1 week)
 - Emergency-phase
 - Prompt and latent health effects
 - Effects of sheltering, evacuation, and relocation
- CHRONC
 - Intermediate phase (0 to 1 year)
 - Long-term phase (0 to 317 years; 30-50 years typical)
 - Latent health effects
 - Effects of decontamination, interdiction, and condemnation

5

ATMOS Module

<u>Atmospheric Transport and Dispersion (ATD) Estimates</u>

- Dispersion based on Gaussian plume segment model
 - Provisions for meander and surface roughness effects
 - Phenomena not treated in detail in this model: irregular terrain, spatial variations in wind field, temporal variations in wind direction
 - A study (NUREG/CR-6853) comparing the MACCS2 ATD model with two Gaussian puff codes and a Lagrangian particle tracking code showed that the MACCS2 mean results (over weather) were within a factor of 2 for arc-averages and a factor of 3 at a specific grid location out to 100 miles from the point of release.
- Multiple Plume Segments (up to 200)
- · Plume rise from initial release height
- Effects of building wake on initial plume size
- Dry and wet deposition
- Radioactive decay and ingrowth (150 radionuclides, 6 generations)

ATMOS Module (continued)

- MELCOR source term is input via MELMACCS
- Meteorological data required
 - Wind speed and direction
 - Pasquill stability category
 - Precipitation rate
 - Seasonal AM and PM mixing-layer height
- User selectable meteorology sampling options
 - Single weather sequence
 - Multiple weather sequences
 - Statistical sampling to represent uncertain conditions at the time of a hypothetical accident
- Outputs
 - Dispersion parameters, χ/Q , fraction remaining in plume
 - Air and ground concentrations; land contamination

- 7

EARLY Module

- Emergency-phase consequences
 - Acute and lifetime doses for following dose pathways
 - Inhalation (direct and resuspension),
 - Cloudshine
 - Groundshine
 - Skin deposition
 - Associated health effects
 - Early injuries/fatalities from acute doses
 - Latent health effects from lifetime committed doses
- Doses are subject to effects of
 - Sheltering
 - Evacuation
 - Speed can vary by phase, location, precipitation
 - Relocation criteria for individuals
 - Based on projected dose
- Outputs
 - Doses, health effects, land contamination areas

CHRONC Module

- Intermediate Phase (optional, 0 to 1 year)
 - Dose pathways
 - Groundshine
 - Resuspension inhalation
 - Continued relocation is only protective action
- Long-Term Phase (up to 317 years, 30 to 50 typical)
 - Dose pathways
 - Groundshine
 - Resuspension inhalation
 - Ingestion
 - Protective actions
 - Based on habitability and farmability
 - Actions include
 - Decontamination
 - Interdiction
 - Condemnation

9

CHRONC Module (continued)

Decision logic for long-term protective actions

- Habitability criterion initially met?
 - No actions required
 - Population home at beginning of long-term phase
- Decontamination sufficient to restore habitability?
 - First-level decontamination performed if sufficient
 - Sequentially higher levels of decontamination performed if required
 - Population returns home following decontamination
- Decontamination plus interdiction sufficient to restore habitability?
 - Highest-level decontamination performed
 - Property is interdicted up to 30 years
 - Population returns home following decontamination plus interdiction
- Property is condemned when
 - Habitability cannot be restored within 30 years
 - Cost to restore habitability > value of property

CHRONC Module (continued)

- Economic costs
 - Per diem and lost income for evacuation/relocation
 - Moving expense lost income for interdicted property
 - Decontamination labor and materials
 - Loss of use of property
 - Condemned property
 - Contaminated crops and dairy
- Output
 - Doses by pathway and organ
 - Latent health effects
 - Economic costs

11

MACCS2 Uses

- PRAs and other severe accident studies (e.g., SOARCA)
 - Risks from operating a facility
 - Relative importance of the risk contributors
 - Insights on potential safety improvements
- NRC Regulatory Analyses
- NEPA Studies (National Environmental Policy Act) such as: License extension and new reactor applications
 - Environmental Impact Statements (EISs)
 - the results of the calculations are typically used to compare the accident risks posed by various alternatives
 - Severe Accident Mitigation Alternatives (SAMAs) and Design Alternative (SAMDAs) analyses required for license renewal and for new licenses
- DOE Applications: Authorization basis analyses performed for DBAs
 - the analyst is interested in conservatively calculated, bounding dose estimates for well-defined DBA and beyond-DBA accident scenarios. The results of this analysis are used to determine if the safety basis of the facility is adequate for operation (DOE 1989, 1992b)
- MACCS2 has an international usership (US plus over 10 other countries)

References

- Jow, H-N, J. L. Sprung, J. A. Rollstin, L. T. Ritchie, D. I. Chanin (1990), MELCOR Accident Consequence Code System (MACCS): Model Description, NUREG/CR-4691, Volume 2.
- Chanin, D., M. L. Young, J. Randall, K. Jamali (1998), Code Manual for MACCS2: Volume 1, User's Guide, NUREG/CR-6613.
- Chanin, D., M. L. Young, J. Randall, K. Jamali (1998), Code Manual for MACCS2: Volume 2, Preprocessor Codes COMIDA2, FGRDCF, IDCF2, NUREG/CR-6613.
- Young, M. L., D. Chanin (1997 draft), DOSFAC2 User's Guide, NUREG/CR-6547.
- Bixler, N. E., S. A. Shannon, C. W. Morrow, B. E. Meloche, and J. N. Ridgely (2003), SECPOP2000: Sector Population, Land Fraction, and Economic Estimation Program, NUREG/CR-6525 Rev. 1.
- C.R. Molenkamp, N.E. Bixler, C.W. Morrow, J.V. Ramsdell, Jr., J.A. Mitchell(2004), "Comparison of Average Transport and Dispersion Among a Gaussian, a Two-Dimensional, and a Three-Dimensional Model," NUREG/CR-6853.
- Consolidated NUREG/CR Manual Under Development

13

Scope of Analysis for Filtered Vents

MACCS2 used to calculate:

- Offsite population doses
 - Includes doses to public as well as off-site decontamination workers
- Land contamination
 - For different thresholds of Cs-137 concentration in soil (Ci/km²)
- Economic cost
- For 50-mile radius around plant

Inputs

- Work is based on the SOARCA project, which is documented in NUREG-1935 and NUREG/CR-7110 Volume 1
- Started with SOARCA inputs for Peach Bottom Atomic Power Station pilot plant (with exception of source term, and ingestion pathway modeled)
- Habitability (return) criterion used is 500 mrem/year, per Pennsylvania State guideline
- Statistical sampling of weather sequences used to represent uncertain conditions at the time of a hypothetical accident (~1,000 weather trials)
- Linear-no-threshold dose response model

15

Inputs – Six Emergency Phase Cohorts

- Cohort 1: 0 to 10 Public
- Cohort 2: 10 to 20 Shadow
- Cohort 3: 0 to 10 Schools and 0 to 10 Shadow
- Cohort 4: 0 to 10 Special Facilities
- Cohort 5: 0 to 10 Tail
- Cohort 6: Non-Evacuating Public (assumed to be 0.5%)

Inputs – Decontamination Factor of Filters

- Neither MELCOR nor MACCS2 models mechanistically the decontamination effect of an external filter
- A prescribed decontamination factor (DF) value is assigned for an external filter
- This DF is applied to only a portion of the total fractional release the portion which is released through a flow path connected to venting
- For the MACCS2 input, the MELCOR source term from the relevant flow path was reduced by the DF

17

MACCS Results Per Event

Event	Base case Case 2	Base case with WW venting Case 3 Unfiltered Filtered DF = 10	Base case with core spray Case 6	Base case with WW venting and core spray Case 7 Unfiltered Filtered DF = 10
Population dose 50 mile radius per event (rem)	510,000	400,000 180,000	300,000	240,000 37,000
Population weighted latent cancer fatality (LCF) risk 50 mile radius per event	4.8E-05	3.3E-05 1.3E-05	2.5E-05	1.6E-05 2.2E-06
Contaminated area with level exceeding 15 Ci/km2 per event(km2)	350	54 8	91	34 0.4
Total economic cost 50 mile radius per event (\$M)	1,900	1,700 270	85	480 18

QUS. VRC

MACCS Results Per Event (continued)

Event	Base case with CS Case 14	Base case with WW venting & CS Case 15 Unfiltered Filtered DF = 10	Base case with Drywell venting Case 12 Unflitered Fittered 1 DF=5,000 Filtered 2 DF=1,000	Base case with DW venting and DW spray Case 13 Unfiltered Filtered DF=1,000
Population dose 50 mile radius <i>per event</i> (rem)	86,000	280,000 43,000	3,200,000 210,000 230,000	3,900,000 60,000
Population weighted latent cancer fatality (LCF) risk 50 mile radius per event	6.4E-06	2.1E-05 2.7E-06	3.2E-04 1.4E-05 1.6E-05	3.3E-04 3.7E-06
Contaminated area with level exceeding 15 Ci/km2 per event(km2)	12	28 0.3	9,200 25 28	8,800 2
Total economic cost 50 mile radius per event (\$M)	116	590 20	33,000 370 390	33,000 38

19

Insights from MACCS2 Calculations

- The health effect of interest is latent cancer fatality risk, which is largely controlled by the habitability (return) criterion
 - Essentially no prompt fatality risk
- In terms of long-term radiation, the most important isotope is Cs-137, and most of the doses are from groundshine
- There is a non-linear relationship between decontamination factor and both land contamination area and health effects

