Annie Kammerer January 2013



United States Nuclear Regulatory Commission

Protecting People and the Environment

### Common Challenges Among Natural Hazard Assessments

- Need for both best estimate and uncertainties
- Limited data and long return periods
  - 10<sup>-4</sup> for seismic design & larger range for risk assessment
- High uncertainty in rates of rare events
- Complex and sometimes contradictory data sets require the use of expert judgment
- Data permissive of alternate interpretations
- Needs to separate and address natural (aleatory) variability from epistemic (model) uncertainty

## Senior Seismic Hazard Analysis Committee (SSHAC) Guidelines



- NUREG/CR-6372, "Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts"
- Developed in the 1980s as a result of differing NRC and EPRI Seismic Hazard Assessment Studies the *method* used to engage experts differed more than the *technical input*
- SSHAC provides a framework for incorporating experts into scientific assessments through structured processes and interactions

### Senior Seismic Hazard Analysis Committee (SSHAC) Guidelines

NUREG-2117



Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts

Main Report

renared for

U.S. Nuclear Regulatory Commission U.S. Department of Energy Electric Power Research Institute

| repared by       | Hyrard Anabais Committee (SSHAC     |                      |                         |                       |     |
|------------------|-------------------------------------|----------------------|-------------------------|-----------------------|-----|
| R. J. Budnitz (0 | Chairman), G. Apostolakis, D. M. Bo | ore, L. S. Cluff, K. | J. Coppersmith, C. A. O | Cornell, P. A. Morris | _ 1 |
|                  |                                     |                      |                         |                       | _   |
|                  |                                     |                      |                         |                       | _   |
|                  |                                     |                      |                         |                       | _   |
|                  |                                     |                      |                         |                       | _   |
| Lawrence Li      | vermore National Laboratory         |                      |                         |                       | _   |
|                  |                                     |                      |                         |                       | _   |
|                  |                                     |                      |                         |                       | _   |
|                  |                                     |                      |                         |                       | _   |
|                  |                                     |                      |                         |                       | .   |
|                  |                                     |                      |                         |                       | _   |
|                  |                                     |                      |                         |                       |     |



Practical Implementation Guidelines for SSHAC Level 3 and 4 Hazard Studies

Office Nuclear Regulatory Research

provides framework. New report provides additional details. Both describe how to undertake studies that develop hazard assessment models

Original report

NUREG/CR-6372 (1989) NUREG 2117 (2012)



- Objective is to develop a model that represents the center, body and range of technically defensible interpretations of the available data
  - Center-best estimate
  - Body-shape of the distribution
  - Range-extreme values of the distribution
- Achieved through a process with well defined evaluation and integration phases

## Essential Features of a SSHAC Study (Level 3)



- Compilation of comprehensive databases
  - made available to all participants
- Defined roles and responsibilities for participants
  - Technical Integration (TI) Team: Evaluate data, methods and models and develop distribution capturing center, body and range of technically-defensible interpretations
  - Participatory Peer Review Panel (PPRP): Continuous process and technical review
  - Resource Experts (neutral experts a dataset or topic)
  - Proponent Experts (support an interpretation or model)

Essential Features of a SSHAC Study (Level 3)



- Structured sequence of steps, including 3 formal workshops
  - WS1: Data needs and critical issues
    - Probe the datasets available, identify and other data, and identify and discuss the critical issues
  - WS2: Proponent viewpoints and alternatives
    - Proponents experts go through a process of discussion, challenge and defense
  - WS3: Investigation of the preliminary model





# Uncertainty

Aleatory

Epistemic

Natural variability

Not reducible

Addressed through integration over parameter distributions

Modeling or knowledge uncertainty

Reducible with more information

Addressed through use of a logic tree





#### Aleatory

#### Epistemic

Integration over distribution of expected parameter values

logic tree of technically defensible interpretations



# Uncertainty

### Aleatory

Aleatory variability gives the curve its shape.







#### The Central and Eastern United States Seismic Source Characterization for Nuclear Facilities Project (CEUS SSC Project 2008-2011, NUREG 2115)



#### NGA EAST



Pacific Earthquake Engineering Research Center

(NGA-East Project 2010-2014)

#### Logic Tree Structure to Characterize Uncertainty in Volcanic Hazard



9

# Thank you for your attention