

COLLEGE OF SCIENCES AND HUMANITIES DEPARTMENT OF PHYSICS AND ASTRONOMY

Muncie, Indiana 47306-0505 Phone: 765-285-8860

MEMO

To:

Bryan A. Parker

NRC, Region III Office Lisle, IL 60532-4351

From: Mohammed S. Islam

RSO, Ball State University

Muncie, IN 47306

Date: 1/28/2013

Re: Ball State University's License Renewal Application (control number 578078)

This Memo is in response to questions arising during your review of Ball State University's NRC license renewal application, and our conversation over the telephone as well as email exchanges on 1/24/13. Our current license number is 13-06231-01.

1) Materials listing (Page 1 of application)

The table containing the list of isotopes has been modified to reflect our current use and inventory. This new table will replace one which was part of our original license application. The modified table is attached.

2) The RSO Delegation of Authority

A signed version of the RSO Delegation of Authority (page D-1) is attached and should replace the one without signature which was submitted with the original application.

3) Neutron Generator Decommissioning Report

A full version of the Neutron Generator Facility Decommissioning report is attached. Pages J-3 to J-29 of Appendix-J of our original application will be replaced by the content of this file.

I appreciate you assistance in the review of our renewal application. If you have additional questions, my phone number is (765) 285-8066 and e-mail is mislam@bsu.edu.

5. Radioactive Materials

Byproduct, source, and/or special nuclear material	Chemical and/or physical form	Maximum amount that licensee may possess at any one time under this license	Proposed Use
Any byproduct material with atomic numbers 1 through 83 with half-lives less than 120 days	Any	10 millicuries per radionuclide and 500 millicuries total	In vitro studies
C-14	Any	25 mCi	In vitro studies
H-3	Any	100 mCi	In vitro studies
Ca-45	Any	2 mCi	In vitro studies
I-125	Bound/non- volatile	2 mCi	RIA/In vitro studies

ACADEMIC AFFAIRS
ASSOCIATE PROVOST FOR RESEARCH
AND DEAN OF THE GRADUATE SCHOOL

Muncie, Indiana 47306-0155 Phone: 765-285-5002-1300 Pax: 765-285-1624-1328

MEMO

To:

All Ball State University Employees

From:

Robert J. Morris (/ Mut)

Associate Provost for Research and Dean of the Graduate School

Subject: Delegation of Authority for Radiation Safety Officer

Mohammed Islam has been appointed Radiation Safety Officer and is responsible for ensuring the safe use of byproduct material. The Radiation Safety Officer is responsible for managing the radiation safety program; identifying radiation safety problems; initiating, recommending, or providing corrective actions; verifying implementation of corrective actions; and ensuring compliance with regulations for the use of byproduct material. The Radiation Safety Officer is hereby delegated the authority necessary to meet these responsibilities.

The Radiation Safety Officer has the authority to immediately stop any operations involving the use of byproduct material in which health and safety may be compromised or may result in non-compliance with Nuclear Regulatory Commission requirements.

I accept this appointment to be Radiation Safety Office at Ball State, University.

> Jelan

Neutron Generator Facility Decommissioning Report

Ball State University 2201 Riverside Ave. Muncie, IN

Work Performed Under
Ball State University
US Nuclear Regulatory Commission
Radioactive Materials License No. 13-06231-01

February 2010

Prepared by: Chase Environmental Group, Inc. 109 Flint Road Oak Ridge, TN 37830 865-207-3664

Neutron Generator Facility Decommissioning Report

Ball State University 2201 Riverside Ave. Muncie, IN 47303

U.S. Nuclear Regulatory Commission Radioactive Materials License Number 13-06231-01

2/10/2010

Prepared:	Ken Gavlik	Project Manager	_ Date:	2/10/2010
Approved:	assign	Radiological Engineer	_ Date:	2/10/2010
	Dave Culp			

Prepared by: Chase Environmental Group, Inc. 109 Flint Road Oak Ridge, TN 37830 865-481-8801

TABLE OF CONTENTS

1.0		CUTIVE SUMMARY	
2.0	FAC	ILITY DESCRIPTION	1
3.0	SITE	E HISTORY	1
3.1	His	storical Operations	1
3.2	Pot	tential Contaminants	1
3.3	Lic	cense	1
4.0		EASE CRITERIA	
5.0	DER	IVED CONCENTRATION GUIDELINE LEVELS (DCGL)	2
5.1	Vo	dumetric DCGLs	2
5.2	Su	mmary of DCGLs	2
6.0	SUR	VEY INSTRUMENTATION	2
6.1	Fu	nctional Checks	2
6.2	Ins	trumentation Used	3
6.3	De	termination of Counting Times and Minimum Detectable Concentrations	4
6.	3.1	Static Counting	
6.	3.2	Surface Ratemeter Scanning	4
6.:	3.3	Smear Counting	5
6.:	3.4	Determination of Uncertainty	5
7.0	REM	IOVAL ACTIVITIES	5
7.1	Ac	celerator Equipment Removal	5
8.0	RAD	IOACTIVE MATERIALS MANAGEMENT	5
9.0	SUR	VEYS	6
9.1	Dat	ta Quality Objectives	6
9.2		ea Classifications	
9.	2.1	Non-Impacted Area	6
9.:	2.2	Impacted Areas	7
9.3	Su	rvey Units	7
9.4	Sui	rface Scans	7
9.5	Tot	tal Surface Activity Measurements	7
9.6		se Rate Measurements	
9.7		termining the Number of Samples	8
9.	7.1	Determination of the Relative Shift	
9.	7.2	Determination of Acceptable Decision Errors	
9.	7.3	Determination of Number of Data Points (Sign Test)	9
9.	7.4	Determination of Number of Data Points (WRS Test)	0
9.8	De	termination of Sample Locations	10
9.	8.1	Determining Class 1 Sample Locations	0
9.9	Rei	movable Contamination Measurements 1	
9.10	Sui	rveys of Building Mechanical System Internals 1	1
9.11	Su	rvey Investigation Levels 1	1
9.12	Vo	dumetric Scan Results	1
9.13	Su	rface Scan Results1	1
9.14	Tot	tal Surface Activity Results1	1
9.15	Re	movable Contamination Results1	2
9.16		se Rate Measurement Results	
10.0	DAT	A QUALITY ASSESSMENT AND INTERPRETATION OF SURVE	Y
RESU	LTS		13
10.1		ta Validation	

10.2 Preliminary Data Review	
10.3 Determining Compliance for Building Surfaces and Structures	
10.4 Determining Compliance for Volumetric Activity	
10.5 Determining Compliance for Building Systems	16
11.0 REFERENCES	16
TABLES	
Table 5-1 Removable Activity Contribution to Total Dose	2
Table 5-2 Summary of DCGLs	
Table 6-1 Instrumentation Specifications	3
Table 6-2 Typical Instrument Operating Parameters and Sensitivities	
Table 9-1 MicroRem Measurements in Background Reference Area	
Table 9-2 MicroRem Measurements in Cyclotron Room	
Table 10-1 Structural Surfaces - Total Beta Surface Activity Summary	
Table 10-2 Structural Surfaces - Removable Surface Activity Summary.	
Table 10-3 Systems - Total Surface Activity Summary	
Table 10-4 Systems - Removable Surface Activity Summary	
Table 10-5 Structural Surfaces - Total Beta Surface Activity Dose Calcu	
Table 10-6 Structural Surfaces - Volumetric Activity Dose Calculations.	
·	
APPENDICES	
Appendix A – Site Map	
Appendix B – Final Status Survey Location Maps	•
Appendix C – Instrument Calibration Records	
Appendix D – Structural Surfaces Survey Results	
Appendix E – QA Survey Results	
Appendix F – Systems Survey Results	•
Appendix G – Material Release Survey Results	

ACRONYM LIST

ALARA As Low As Reasonably Achievable Chase Chase Environmental Group, Inc. Code of Federal Regulations CFR Derived Air Concentration DAC

DAW Dry Active Waste

Derived Concentration Guideline Level **DCGL**

Data Quality Objective DQO Default Screening Value DSV **DWP** Decommissioning Work Plan

Geiger-Mueller GM FSS Final Status Survey

FSSR Final Status Survey Report

Null Hypothesis H_0 H_A Alternate Hypothesis **HSA** Historical Site Assessment

Multi-Agency Radiation Survey and Site Investigation Manual MARSSIM

Minimum Detectable Concentration **MDC** NRC U.S. Nuclear Regulatory Commission

National Institute of Standards and Technology **NIST**

RSO Radiation Safety Officer Radiation Work Permit RWP

TEDE Total Effective Dose Equivalent **TMMC** Toxco Materials Management Center

WRS Wilcoxon Rank Sum Test

1.0 EXECUTIVE SUMMARY

Ball State University (BSU) removed its neutron generator from service and decommissioned their vault facility located at the Cooper Science Complex, 22091 Riverside Ave., Muncie, Indiana, 47303. The accelerator was historically used to generate neutrons by bombarding tritium targets.

BSU retained Chase Environmental Group, Inc. (Chase) to perform accelerator removal, characterization, transportation, waste disposal, surveys, and reporting. No aggressive remediation was required. Decommissioning activities were performed under BSU's US Nuclear Regulatory Commission (NRC) Radioactive Materials License Number 13-06231-01. All activities were performed in accordance with a Decommissioning Work Plan (DWP). On-site decommissioning activities were performed from December 14 to December 17, 2009.

The DWP was developed using the guidance provided in NUREG-1757, "Consolidated NMSS Decommissioning Guidance" and NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual" (MARSSIM) and provided the approach, methods, and techniques for the radiological decommissioning of impacted areas of the facility. Final status surveys were designed using the guidance provided in MARSSIM to demonstrate compliance with the default screening values specified in NUREG-1757, Volume 1, Appendix B. These methods ensure technically defensible data are generated to aid in determining compliance with release criteria for unrestricted use specified in 10CFR20.1402 (25mrem/yr.).

This report presents sufficient data to support the conclusion that the facility meets the release criteria. Final status surveys demonstrate that building structural surfaces included in the scope of this report are below release criteria and are suitable for unrestricted release. Based on the building occupancy scenario, the Total Effective Dose Equivalent (TEDE) to an average member of the critical group is < 1.0 mrem/year (< 4% of the release criterion of 25 mrem/yr).

2.0 FACILITY DESCRIPTION

The Neutron Generator Facility, located in the basement of the Cooper Science Complex, has a footprint of approximately 140 square feet and consists of one room (a concrete vault) and a facility entrance and exit walkway. The vault is equipped with metal ventilation ducting, a sink, and a drain sump. A neutron generator resided in the room along with the associated electric supply, transformer and vacuum pumps. The ventilation system duct extended along the back (east) wall inside the vault to the courtyard where it exited horizontally through the wall. The general layout of the facility is depicted in Appendix A.

3.0 RELEASE CRITERIA

The radiological release criteria are that of 10CFR20.1402, "Radiological criteria for unrestricted use": "A site will be considered acceptable for unrestricted use if the residual radioactivity that is distinguishable from background radiation results in a Total Effective Dose Equivalent (TEDE) to an average member of the critical group that does not exceed 25 mrem (0.25mSv) per year, including that from groundwater sources of drinking water and the residual radioactivity has been reduced to levels that are as low as reasonable achievable (ALARA). Determination of the levels which are ALARA must take into account consideration of any detriments, such as deaths from transportation accidents, expected to potentially result from decontamination and waste disposal."

4.0 DERIVED CONCENTRATION GUIDELINE LEVELS (DCGL)

The Derived Concentration Guideline Level (DCGL) is the radionuclide-specific surface contamination or volumetric concentration that could result in a dose equal to the release criterion. DCGL_W is the concentration limit if the residual activity is essentially evenly distributed over a large area. Gamma scans conducted during characterization indicated that there was no detectable activation of building structures. As such, the facility was classified as non-impacted by activation products. However, dose rate surveys were conducted to provide a statistically-based systematic protocol for verification of non-impacted status.

The release criteria for loose equipment and materials from the vault were per FC 83-23, "Guidelines for the Decontamination of Facilities and Equipment Prior to Release for Unrestricted Use or Termination of Byproduct, Source or Special Nuclear Material Licenses." These limits were also used as site DCGL's³ for release of vault structures. These limits are:

- 5,000 dpm/100 cm² average total surface contamination over any 1 m²
- 15,000 dpm/100 cm² maximum total surface contamination limited to 100 cm²
- 1,000 dpm/100 cm² removable surface contamination

5.0 SURVEY INSTRUMENTATION

Laboratory and portable field instruments were calibrated within the previous year with National Institute of Standards and Technology (NIST) traceable sources. Portable instrument calibration records are included as Appendix C.

5.1 Functional Checks

Functional checks were performed at least daily when in use. The background, source check, and field measurement count times were determined to ensure measurements were

³ H-3 is the only nuclide of concern for decommissioning. However, the survey design includes C-14 for conservatism. The NRC default screening values are 1.2E8 dpm/100cm² for H-3 and 3.7E6 dpm/100cm² for C-14.

statistically valid. Background readings were taken as part of the daily instrument check and compared with the acceptance range for instrument and site conditions.

5.2 Instrumentation Used

The instrumentation used for facility decommissioning surveys is summarized in Table 5-1 and Table 5-2.

Table 5-1 Instrumentation Specifications

Detector Model	Detector Type	Detector Area	Meter Model	Window Thickness	Typical 4π Efficiency
Ludlum 43-68	Gas Flow Proportional	126 cm ²	Ludlum 2221	0.8 mg/cm ²	13 % (C-14)
Ludlum 43-37	Gas Flow Proportional	582 cm ²	Ludlum 2241	0.8 mg/cm ²	13 % (C-14)
Ludium 44-10	2" x 2" Sodium Iodide	N/A	Ludlum 2241	N/A	900 cpm per μR/hr (Cs-137)
Bicron MicroRem	Organic Scintillator	N/A	N/A	N/A	N/A
Beckman	Beckman Liquid Scintillation		N/A	N/A	60% (H-3) 80% (C-14)
Ludlum 43-10-1			Ludlum 2929	0.4 mg/cm²	10% (C-14)

Table 5-2 Typical Instrument Operating Parameters and Sensitivities

Measurement Type	Detector Model	Max. Scan Rate	Count Time	Bkg. Count Time	Background (cpm)	MDC (dpm/100cm ²)
Surface Scans (Beta)	Ludlum 43-68	10 in./sec.	N/A	60 sec.	500	2,279
Surface Scans (Beta)	Ludlum 43-37	10 in./sec.	N/A	60 sec.	1000	612
Total Surface Activity (Beta)	Ludlum 43-68	N/A	6 sec.	60 sec.	500	1087
Volumetric Scans (Gamma)	Ludlum 44-10	5 in./sec.	N/A	60 sec.	17,000	1.45 μR/hr
Removable Activity	Beckman	N/A	60 sec.	60 sec.	30	28
Removable Activity	2929/ 43-10-1	N/A	180 sec.	600 sec.	60	185

5.3 Determination of Counting Times and Minimum Detectable Concentrations

Minimum counting times for background determinations and measurement of total and removable contamination were chosen to provide a Minimum Detectable Concentration (MDC) that met the criteria specified in the DWP. MARSSIM equations relative to building surfaces were modified to convert to units of dpm/100cm². Count times and scanning rates were determined using the following equations:

5.3.1 Static Counting

Static counting Minimum Detectable Concentration at a 95% confidence level is calculated using the following equation, which is an expansion of NUREG 1507, "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions", Table 3.1 (Strom & Stansbury, 1992):

$$MDC_{static} = \frac{3 + 3.29\sqrt{B_r \cdot t_s \cdot (1 + \frac{t_s}{t_b})}}{t_s \cdot E_{tot} \cdot \frac{A}{100cm^2}}$$

Where:

 MDC_{static} = minimum detectable concentration (dpm/100cm²)

 B_r = background count rate (counts per minute)

 t_b = background count time (minutes)

 t_s = sample count time (minutes)

 E_{tot} = total detector efficiency for radionuclide emission of interest

(cpm/dpm)

 $A = \text{detector probe area (cm}^2)$

5.3.2 Surface Ratemeter Scanning

Scanning Minimum Detectable Concentration at a 95% confidence level is calculated using the following equation, which is a combination of MARSSIM equations 6-8, 6-9, and 6-10:

$$MDC_{scan} = \frac{d' \sqrt{b_i} \left(\frac{60}{i}\right)}{\sqrt{p} \cdot E_{tot} \cdot \frac{A}{100cm^2}}$$

Where:

 MDC_{scan} = minimum detectable concentration (dpm/100 cm²)

d' = desired performance variable (1.38)

 b_i = background counts during the residence interval (counts)

i = residence interval (seconds)
 p = surveyor efficiency (0.5)

 E_{tot} = total detector efficiency for radionuclide emission of interest (cpm/dpm)

 $A = \text{detector probe area (cm}^2)$

5.3.3 Smear Counting

Smear counting Minimum Detectable Concentration at a 95% confidence level is calculated using the following equation, which is NUREG 1507, "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions", Table 3.1 (Strom & Stansbury, 1992):

$$MDC_{smear} = \frac{3 + 3.29\sqrt{B_r \cdot t_s \cdot (1 + \frac{t_s}{t_b})}}{t_s \cdot E}$$

Where:

 MDC_{smear} = minimum detectable concentration level (dpm/smear)

 B_r = background count rate (counts per minute)

t_b = background count time (minutes) t_s = sample count time (minutes)

E = instrument efficiency for radionuclide emission of interest (cpm/dpm)

6.0 REMOVAL ACTIVITIES

6.1 Accelerator Equipment Removal

Chase personnel disassembled and removed the accelerator and ancillary equipment. All activities were performed under a Radiation Work Permit (RWP), authorized by the Radiation Safety Officer (RSO) and conducted to control the spread of contamination and to maintain personnel exposures ALARA. Monitoring for airborne particulate radioactivity was conducted during removal and disassembly and the highest sample result was below the MDC of 2.0E-12 µCi/ml.

7.0 RADIOACTIVE MATERIALS MANAGEMENT

All operational and disassembly wastes were moved to BSU's on-site waste storage facility pending milk-run transportation to the Toxco Material Management Center (TMMC) in Oak Ridge, TN for processing and disposal.

Waste consists of eight 2 ft³ fiberboard boxes of activated metal and dry active waste (DAW) weighing 455 lbs., the diffusion pump weighing 110 lbs., and ½ gallon of vacuum pump oil.

8.0 SURVEYS

Surveys were performed using the Data Quality Objectives (DQO) process to demonstrate that residual radioactivity in the vault satisfied the predetermined criteria for release for unrestricted use. Vault interior surfaces were considered a single survey unit. Surveys were conducted by performing the appropriate combination of scan surveys, total activity measurements, dose rate measurements and removable activity measurements.

8.1 Data Quality Objectives

The following is a list of the major DQOs for the survey design:

- Static measurements will be taken to achieve an MDC_{static} of less than 5,000 dpm/100cm².
- Scanning will be conducted at a rate to achieve an MDC_{scan} of less than 5,000 dpm/100cm².
- Smear counting will be conducted to achieve an MDC of less than 200 dpm/100cm².
- Individual measurements will be made to a 95% confidence interval.
- Decision error probability rates will be set at 0.05 for both α and β .
- The null hypothesis (H₀) and alternate null hypothesis (H_A) are that of NUREG 1505 scenario A:

H₀ is that the survey unit does not meet the release criteria

HA is that the survey unit meets the release criteria

- Characterization and in-process waste packaging surveys will be conducted under the same quality assurance criteria as final status surveys such that the data may be used as final status survey data to the maximum extent possible.
- Quality Assurance Surveys will be conducted at a rate of 5%.

8.2 Area Classifications

Based on the facilities operational history and previous survey results, the facility areas were initially classified as impacted areas and non-impacted areas for the purposes of characterization.

8.2.1 Non-Impacted Area

Non-impacted areas were areas without residual radioactivity from licensed activities and were not surveyed during final status surveys. Surfaces outside the vault were classified as non-impacted. Thorough surveys of vault entrances/exits and ventilation exhausts were conducted to provide adequate assurance that any residual contamination was contained within the building structure.

8.2.2 Impacted Areas

Impacted areas were those areas that had potential residual radioactivity from licensed activities. Impacted areas were subdivided into Class 1, Class 2 or Class 3 areas. Class 1 areas have the greatest potential for contamination and therefore receive the highest degree of survey effort for the final status survey using a graded approach, followed by Class 2, and then by Class 3. Impacted sub-classifications are defined as follows:

- Class 1 Area: Areas with the highest potential for contamination, and meet the following criteria: (1) impacted; (2) potential for delivering a dose above the release criterion; (3) potential for small areas of elevated activity; and (4) insufficient evidence to support classification as Class 2 or Class 3.
- Class 2 Area: Areas that meet the following criteria: (1) impacted; (2) low potential for delivering a dose above the release criterion; and (3) little or no potential for small areas of elevated activity.
- Class 3 Area: Areas that meet the following criteria: (1) impacted; (2) little or no potential for delivering a dose above the release criterion; and (3) little or no potential for small areas of elevated activity.

8.3 Survey Units

A survey unit is a geographical area of specified size and shape for which a separate decision will be made whether or not that area meets the release criteria. A survey unit is normally a portion of a building or site that is surveyed, evaluated, and released as a single unit. Areas of similar construction and composition were grouped together as survey units and tested individually against the DCGLs and the null hypothesis to show compliance with the release criteria. Survey units are homogeneous in construction, contamination potential, and contamination distribution. Survey unit designations and classifications are as follows:

- Survey Unit 0101: Accelerator Vault Internal Surfaces Class 1
- There were no Class 2 areas
- There were no Class 3 areas

8.4 Surface Scans

Scanning was used to identify locations within the survey unit that exceeded the investigation level. 100% of accessible building structural surfaces were scanned using a gas flow surface contamination detector. Additionally, surfaces in the vault were scanned for volumetric activation products using a 2" x 2" NaI detector.

8.5 Total Surface Activity Measurements

Direct surveys (static measurements) were taken on building surfaces and system internals to the extent practical in impacted areas utilizing instrumentation of the best geometry based on the surface at the survey location.

8.6 Dose Rate Measurements

Dose rate measurements were taken on building surfaces in the accelerator room and in a background reference area. The background reference area was selected outside the accelerator room near concrete surfaces, yet away from potentially activated portions of the vault. Dose rate measurements were taken at each accelerator room sample location and in the background reference area. At each location, a measurement was taken at 1 m from the surface to determine the dose rate at the midpoint of a receptor.

Dose rate measurements were performed with a tissue equivalent Bicron MicroRem meter. This instrument was selected due to its flat energy response. Additionally, a one-minute count was performed at each location using a 2" x 2" sodium iodide detector. Because the Bicron is a ratemeter, an average of ten instantaneous rates was determined at each location by covering the meter and recording the measurement observed when it is uncovered (this is a relatively unbiased method to obtain an average).

8.7 Determining the Number of Samples

A minimum number of samples are needed to obtain sufficient statistical confidence that the conclusions drawn from the samples are correct. The number of samples depends on the Relative Shift (the ratio of the concentration to be measured relative to the statistical variability of the contaminant concentration).

The minimum number of samples is obtained from MARSSIM tables or calculated using equations in Section 5 of MARSSIM.

8.7.1 Determination of the Relative Shift

The number of required samples depends on the ratio involving the activity level to be measured relative to the variability in the concentration. The ratio to be used is called the Relative Shift, Δ/σ_S and is defined in MARSSIM as:

$$\Delta/\sigma_{s} = \frac{DCGL - LBGR}{\sigma_{s}}$$

Where:

DCGL = derived concentration guideline level

LBGR = concentration at the lower bound of the gray region. The LBGR is the average concentration to which the survey unit should be cleaned in order to have an acceptable probability of passing the test

 σ_S = an estimate of the standard deviation of the residual radioactivity in the survey unit

The actual calculations are provided below:

$$\Delta/\sigma_s = \frac{1.2E8 - 6.0E7}{25000} = 2400$$

Since MARRSIM Table 5.5 does not include relative shifts above 3 and the number of samples required decreases with an increasing relative shift, the relative shift for structural surface activity was conservatively set at 3.

8.7.2 Determination of Acceptable Decision Errors

A decision error is the probability of making an error in the decision on a survey unit by passing a unit that should fail (α decision error) or failing a unit that should pass (β decision error). MARSSIM uses the terminology α and β decision errors; this is the same as the more common terminology of Type I and Type II errors, respectively. The decision errors are 0.05 for Type I errors and 0.05 for Type II errors.

8.7.3 Determination of Number of Data Points (Sign Test)

The number of direct measurements for a particular survey unit, employing the Sign Test, is determined from MARSSIM Table 5.5, which is based on the following equation (MARSSIM equation 5-2):

$$N = \frac{\left(Z_{1-\alpha} + Z_{1-\beta}\right)^2}{4(SignP - 0.5)^2}$$

Where:

N = number of samples needed in the survey unit
 Z_{1-α} = percentile represented by the decision error α
 Z_{1-β} = percentile represented by the decision error β
 SignP = estimated probability that a random measurement will be less than the DCGL when the survey unit median is actually at the LBGR

Note: SignP is determined from MARSSIM Table 5.4

MARSSIM recommends increasing the calculated number of measurements by 20% to ensure sufficient power of the statistical tests and to allow for possible data losses. MARSSIM Table 5.5 values include an increase of 20% of the calculated value. The following calculations were made to determine this number:

$$N = \frac{\left(1.645 + 1.645\right)^2}{4\left(0.998650 - 0.5\right)^2} = 11$$

 $Z_{1-\alpha}$ and $Z_{1-\beta}$ are equal to 1.645 using the error rate of 0.05 from MARSSIM Table 5.2. SignP is equal to 0.998650 from MARSSIM Table 5.4. Adding an additional

20% to account for data losses resulted in a value of 14. Therefore, the determined number of samples per survey unit for planning purposes was 14.

8.8 Determination of Sample Locations

Determination of Class 1 survey unit sample locations is accomplished by first determining sample spacing and then systematically plotting the sample locations from a randomly generated start location. The random starting point of the grid provides an unbiased method for obtaining measurement locations to be used in the statistical tests.

8.8.1 Determining Class 1 Sample Locations

In Class 1 survey units, the sampling locations are established in a unique pattern beginning with the random start location and the determined sample spacing. After determining the number of samples needed in the survey unit, sample spacing is determined from MARSSIM equation 5-8:

$$L = \sqrt{\frac{A}{N}}$$
 for a square grid

Where:

L = sample spacing interval

A = the survey unit area

N = number of samples needed in the survey unit

A map was generated of the survey unit's permanent surfaces included in the statistical tests (floors, walls, ceilings, etc.) and folded out in a 2-dimensional view. A random starting point is determined using computer-generated random numbers coinciding with the x and y coordinates of the total survey unit. A grid was plotted across the survey unit surfaces based on the random start point and the determined sample spacing. A measurement location was plotted at each intersection of the grid plot. Survey unit map showing sample locations is presented in Appendix B.

8.9 Removable Contamination Measurements

Removable contamination measurements (smears) were collected on building structural surfaces at each sample location and internal surfaces of building systems. For each sample, an area of approximately 100cm^2 was wiped. Smears were collected and counted using a both a liquid scintillation counter (LSC) and a phoswich counter scaler (2929).

Both instruments were set up for one (1) minute count times. The LSC ran each smear three (3) times and provided a maximum and mean for the three (3) sample counts. For conservatism, the maximum value was used for the results provided in Appendices D,E, and F.

8.10Surveys of Building Mechanical System Internals

Surveys of various building system components were performed. Survey design for these systems is out of the scope of MARSSIM. For the purposes of identifying potential residual contamination within these systems, scan surveys, total activity measurements, and removable contamination measurements of accessible ventilation exhaust points and the floor drain sump.

8.11Survey Investigation Levels

Investigation levels are used to flag locations that require special attention and further investigation to ensure areas are properly classified and adequate surveys are performed. These locations are marked and receive additional investigations to determine the concentration, area, and extent of the contamination. The survey investigation levels for each type of measurement are listed by classification in Table 14.2.

Table 14.2 Survey Investigation Levels

Survey Unit Classification	Flag Direct Measurement or Sample Result When:	Flag Scanning Measurement Result When:	Flag Removable Measurement Result When:
Class 1	>75% of DCGL	>MDC	$> 200 \text{ dpm}/100 \text{cm}^2$

8.12 Volumetric Scan Results

Sodium iodide scans were performed to detect areas of elevated activity as a result of activation based on the audible response. No areas of elevated activity were detected.

8.13Surface Scan Results

No areas of elevated activity were detected during the scans of building structural surfaces inside the vault.

8.14Total Surface Activity Results

Direct surveys (static measurements) for total surface activity were taken on building surfaces inside the vault (survey unit 0101) using gas flow proportional detectors. Static measurements were taken in impacted areas at each identified sample location. Scaler count times were determined to achieve the detection sensitivities stated in the DQOs. Field measurements were converted to an activity concentration using the following equation:

Equation 1

Activity (dpm/100cm²) =
$$\frac{cpm_{sample} - cpm_{background}}{E_{total} \cdot \frac{A}{100cm^{2}}}$$

The results of total surface activity measurements are presented in Appendix D.

8.15 Removable Contamination Results

Removable contamination measurements were collected by wiping an area of approximately 100 cm² on structural surfaces for Liquid Scintillation and Counter-Scaler measurement. Samples were then counted for one minute on a Beckman Liquid Scintillation Counter and three minutes on Ludlum Model 2929 Counter-Scaler. Smear results were converted to an activity concentration using the following equation:

Equation 2

Activity(dpm/100cm²) =
$$\frac{cpm_{sample} - cpm_{background}}{E_{total}}$$

The results of removable surface activity measurements are presented in Appendix E

8.16Dose Rate Measurement Results

Dose rate measurement results from the background reference area and the accelerator room are presented in Table 8-1 and Table 8-2.

Table 8-1 MicroRem Measurements in Background Reference Area

		Bio	eron	Inst	anta	neou	s Me	asur	eme	nts (ı	ıRem/h	r)
Loc.	1	2	3	4	5	6	7	8	9	10	SD	Mean
1	3	3	4	3	4	4	3	5	4	5	0.8	3.8
2	5	4	5	4	4	5	4	4	5	5	0.5	4.5
3	4	4	4	4	5	4	5	5	5	4	0.5	4.4
4	6	6	6	5	4	5	5	6	5	4	0.8	5.2
5	5	4	4	4	5	5	4	4	4	4	0.5	4.3
6	4	4	3	4	5	5	6	5	4	4	0.8	4.4
7	4	4	4	5	4	4	4	4	5	4	0.4	4.2
8	4	4	4	3	4	4	5	4	5	4	0.6	4.1
9	3	3	3	4	4	3	4	4	5	5	0.8	3.8
10	4	5	6	5	5	5	5	5	5	5	0.5	5
11	5	6	6	5	5	6	6	5	4	4	0.8	5.2
12	4	4	4	4	5	4	5	6	6	5	0.8	4.7
13	5	6	5	5	5	6	7	6	5	5	0.7	5.5
14	4	4	3	4	4	5	4	3	4	4	0.6	3.9
15	4	3	4	4		4	4	5	5	5	0.7	4.1
16	4	5	4	5	5	4	4	4	5	5	0.5	4.5
17	4	3	4	5	6	5	6	5	5	6	1.0	4.9
18	5	4	4	5	4	4	4	4	4	4	0.4	4.2
19	5	4	5	4	5	4	4	5	5	4	0.5	4.5
20	4	5	4	4	4	4	4	4	4	4	0.3	4.1
21	3	3	4	4	4	3	4	4	4	5	0.6	3.8

22	4	4	5	5	6	5	5	4	5	5	0.6	4.8
23	5	5	6	6	6	5	5	4	.4	4	0.8	5
,			· -								Mean	4.5
											SD	0.6

Table 8-2 MicroRem Measurements in Accelerator Room

T		Bi	cron	Inst	anta	neou	s Me	easui	eme	nts (μRem/h	r)
Loc.	1	2	3	4	5	6	7	8	9	10	SD	Mean
1	4	4	4	5	5	4	5	4	4	5	0.5	4.4
2	5	5	6	5	6	6	5	5	6	5	0.5	5.4
3	5	5	6	7	7	6	7	6	5	6	0.8	6
4	5	5	4	5	5	6	5	5	5	6	0.6	5.1
5	4	4	4	4	5	4	4	4	4	4	0.3	4.1
6	4	4	3	4	4	3	4	4	4	4	0.4	3.8
7	6	6	5	7	6	5	5	6	5	5	0.7	5.6
8	5	6	6	5	6	5	5	4	5	5	0.6	5.2
9	6	6	5	6	5	6	5	5	5	5	0.5	5.4
10	4	5	4	4	3	4	3	4	4	4	0.6	3.9
11	4	4	4	5	5	5	4	5	5	4	0.5	4.5
12	4	4	4	5	4	4	4	5	4	5	0.5	4.3
13	7	6	5	6	7	6	6	5	6	5	0.7	5.9
14	5	4	5	5	4	4	5	5	6	5	0.6	4.8
15	4	5	4	4	4	4	5	4	4	4	0.4	4.2
16	5	5	4	5	5	6	5	4	5	5	0.6	4.9
17	4	5.	6	5	6	4	5	6	6	5	0.8	5.2
18	4	4	5	4	4	4	4	5	5	4	0.5	4.3
19	5	5	4	4	5	5	5	4	4	4	0.5	4.5
20	6	6	5	7	5	5	4	5	5	6	0.8	5.4
21	5	6	5	5	5	6	5	5	4	5	0.6	5.1
22	5	5	4	4	4	5	4	4	5	4	0.5	4.4
23	6	6	5	6	5	5	5	6	5	5	0.5	5.4
											Mean	4.9
											SD	0.6

9.0 DATA QUALITY ASSESSMENT AND INTERPRETATION OF SURVEY RESULTS

The statistical guidance contained in Section 8 of MARSSIM was used to determine if areas are acceptable for unrestricted release and whether additional surveys or sample measurements were required.

9.1 Data Validation

Field data were reviewed by the Project Manager and validated to ensure:

- Completeness of forms
- Proper types of surveys were performed
- The MDCs for measurements met the established data quality objectives
- Independent calculations were performed on a representative sample of data sheets
- Satisfactory instrument calibrations and daily functionality checks were performed as required

9.2 Preliminary Data Review

A preliminary data review was performed for each survey unit to identify any patterns, relationships or anomalies. Additionally, measurement data were reviewed and compared with the DCGLs and ALARA goals to confirm the correct classification of survey units. All calculations of means, standard deviations, minimum and maximum values, and comparisons between survey data and ALARA goals and investigation levels are presented in the following tables. Structural surfaces final status survey results are presented in Appendix D.

Table 9-1 Structural Surfaces - Total Beta Surface Activity Summary

Survey Unit	# of Sample Locations	Mean	MDC	Standard Deviation	Min.	Max.	Investigation Level	Any Result Exceeding Investigation Level?	
$(dpm/100 cm^2)$									
0101	23	98	297	108	-36	407	5000	NO	

Table 9-2 Structural Surfaces - Removable Surface Activity Summary

Survey Unit	# of Sample Locations	Mean	MDC	Standard Deviation	Min.	Max.	Investigation Level	Any Result Exceeding Investigation Level?
				(dpm/	100 cm)		
0101 (2929)	23	-13	171	31	-93	53	200	NO
0101 (LSC)	23	24	5	7	13	42	200	МО

Table 9-3 Systems - Total Surface Activity Summary

Survey Unit	# of Sample Locations	Mean	MDC	Standard Deviation	Min.	Max.	Investigation Level	Any Result Exceeding Investigation Level?	
			Lievel.						
N/A	2	198	297	288	-5	402	5000	NO	

Table 9-4 Systems - Removable Surface Activity Summary

Survey Unit	# of Sample Locations	Mean	MDC	Standard Deviation	Min.	Max.	Investigation Level	Any Result Exceeding Investigation Level?
				(dpm/	100 cm²	²)		IJC VOL.
2929N/A	2	7	171	40	-21	36	200	NO
LSCN/A	2	142	5	177	17	267	200	YES

9.3 Determining Compliance for Building Surfaces and Structures

Survey results were initially compared to the investigation levels. No total activity results in survey unit 0101 were above the investigation level, and were well below the DCGL. Removable activity results in survey unit 0101 were above the investigation level, but were well below the DCGL. For surface activity, the Sign test is used to determine the minimum number of sample locations. Because all surface activity measurements are less than the DCGL, the survey unit passes the Sign Test. Therefore, the null hypothesis can be rejected and the survey unit meets the release criterion and is suitable for release for unrestricted use.

The results of the data quality assessment and calculations of the dose from each structural surface survey unit are presented in Table 10-5.

Table 9-5 Structural Surfaces - Total Beta Surface Activity Dose Calculations

Survey Unit	Standard Deviation (dpm/100 cm ²)	# Samples Required	# of Samples	Adequate # of Samples?	Mean (dpm/100 cm²)	Calculated Annual TEDE ⁴ (mrem/yr)
0101	107	11	23	YES	98	.0013

⁴ The TEDE shown is calculated by multiplying 25 mrem/yr by the ratio of the mean total surface activity to the C-14 DCGL of 3.7E6 dpm/100cm² and then multiplying by 2 to account for the ISO 7503-1 surface efficiency.

9.4 Determining Compliance for Building Systems

All total and removable surface activity measurements were compared directly to the investigation levels to determine if an area required further examination. All measurements were less than the investigation levels, therefore all systems meet the release criteria and are suitable for release for unrestricted release.

10.0 REFERENCES

- Ball State University US NRC Radioactive Materials License Number 13-06231-01
- NUREG-1575, "Multi-Agency Radiation Survey and Site Investigation Manual" (MARSSIM)
- NUREG-1505, "A Nonparametric Statistical Methodology for the Design and Analysis of Final Decommissioning Surveys"
- NUREG-1507, "Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions"
- NUREG-1757, Volume 1 "Consolidated NMSS Decommissioning Guidance," September, 2002
- NUREG-1757, Volume 2 "Consolidated NMSS Decommissioning Guidance," September, 2002
- USNRC Policy and Guidance Directive FC 83-23, "Guidelines for the Decontamination of Facilities and Equipment Prior to Release for Unrestricted Use or Termination of Byproduct, Source, or Special Nuclear Material Licenses."
- ISO-7503-1, "Evaluation of Surface Contamination Part 1: Beta Emitters and Alpha Emitters." 1988
- Decommissioning Work Plan

Appendix A Site Map

Appendix B FSS Location Maps

(

Appendix C Inst Calibration Records

CALIBRATION CERTIFICATE FOR	2929	SERIAL#	149121	
Owner: CHASE ENV			:	
DATE: 10/28/09	LÓÇATION:		Griffin Inst	•
TECH: Joanne Glenn	DATE LAST CAL	EXPIRES:	12/18/09	• ••
Reason For Calibration: 🕒 Due	For Calibration	O Repai	r (See Remarks)	
CABLE LENGTH: :39" Oth	er (See Remarks)	O Due a	nd Repair (See R	emerka)
NIST TRACEABLE EC	UIRMENT USED DURIN	G CALIBRATION		
MODEL! M-500 SERIAL #:	114512	CAL. DUE:	09/05/10	
Model: Serial #:		CAL DUE:		
	AF Mechanical Zero	. 0	· · · · · · · · · · · · · · · · · · ·	
Condition: 🔘 8at 🔾 Unașt	AL Mechanicai Zèro			•
Beta Channel Window (4-50 mV):	4-48	A.F.		•
Alpha Channel Window (175 mV, 120 for 3030):	175	A.F.		
Alpha Counts w/Pulser @ 10,000 CPM;		Á.F.	% Error: 0.5	i%
Bata Counts w/Pulser @ 10,000 CPM:	9,946	A.F.	% Error: 0.5	3%
THE EVOLUTE OF FOUR ESTUDINGS IN (FOUR AND).	***			•
1 KV Reading (R-5 on HV Board):		A.F.	. , ,	
Max HV (1600 V +):	⊚ Sat .⊙	Unsat		
man, 14 Clock A. M.	G Sat. O		•	
REMARKS:			•	
Does Instrument Meet Final Acceptance Criteria?:	Yes () No	* 4.	•	
Calibration Sticker Attached?:			. '	
	/28/10			
	•			•
INSTRUMENT MARRIED WITH 43-10-1	# PR160791			• •
Performed/Reviewed by:	Date: 10/28/2009	Ent	ered by:	nittalá

	<u> </u>	;	· · · · · · · · · · · · · · · · · · ·		1 44	ATION:		~	riffin Inst
ATE: 10/28/ ECH: Joann	e Glenn .	•			* * * *		L EXPIRES:		12/18/09
			RE	Ason Fo	OR CALIBRATIC			•	•
Due For Ca	libration	· O:			arks) : O 0		emarkė)	O pu	e and Repair
CABLE L	ENGTH:	39"			INPU	T SENSITIY	/ITY; dual		
				-				•	
	NISTTI	ACEAB	,		ND STANDAR		**************************************		
NODEL:	2929		ŠĖ	RIAL#:	1481	21	CAL, DUE:		10/28/10
	٠.	•	NIS	TTRAC	ABLE SOURC	ES USED			
Source Nun			sotope		4 pl Activity			Date	2 pl Activity
00TC470		• 3	rc99 \$S		17,300 dp			15/09	10,800 cpr 8,170 cpr
94111470	-1593 96-00	,	Th230 Pü239		16,700 dp 18,500 dp			16/09. 18/06	9,390 cpr
	97-00		Sr90	. ·.	12,200 dp			01/00	8,530 cpr
	X 728		C14	:	48,780 dp		•	21/08	18,660 cpr
٠.	• .		-			•			
								•	
	· · · · · ·		- ; ; ;						
	· · · ·					,	Efficienc	les fron	last cal.:
Condition:	Sui	t O	Unsat	•		śu:	Efficienc	ies from 38.29	
Condition:	⊕ Sni	t O	Unsat	* .	· · · <u>.</u>	<u> </u>	Th:[% šr:
	- ·•		Unsat	•	· · · <u>.</u>	<u> </u>			
Condition: As Found (AF	- ·•		Unsat		· · · <u>.</u>	<u> </u>	Th:[% šr:
) Efficient	ncles: ource Re	sponse	• · · ·	· · · <u>.</u>	ss: 26.	Th:[36.29	76 Sr:
As Found (Al) Efficient	ncles: ource Re ckel (CP)	sponse VI):	Pu-2	To 39 Source onse (CPM):	Backgrou	Th:[33%] C14:[36.29	Te Ni:
As Found (AF) Efficient	ncles: ource Re	sponse	Pu-2 Resp A ch.	To 39 Source onse (CPM): B ch. Net Eff.	Backgrou	Th: 33% C14: and (CPM): B ch.	To-99 S - Stainle	76 Sr: Te Ni: Ource Response ss Steel (CPM): B ch. Net Eff.
As Found (Al	C-99 S	ncles: ource Re ckel (CP)	sponse VI):	Pu-2 Resp	To 39 Source onse (CPM):	Backgrou	Th:[33%] C14:[36.29 To-99 S - Stainle	Te Ni:
As Found (AF	C-99 S	ncles: ource Re ckel (CP)	sponse VI):	Pu-2 Resp A ch. 7290	39 Source onse (CPM): B ch. Net Eff. 253 39 419	Backgrou	Th: 33% C14: and (CPM): B ch.	To-99 S - Stainle	76 Sr: Te Ni: Ource Response ss Steel (CPM): B ch. Net Eff.
As Found (AF	C-99 S	ncles: ource Re ckel (CP)	sponse VI):	Pu-2 Resp A ch. 7290	39 Source onse (CPM): B ch., Net Eff. 253 39 419	Backgrou	Th: 33% C14: and (CPM): B ch.	To-99 S - Stainle	76 Sr: Te Ni: Ource Response ss Steel (CPM): B ch. Net Eff.
As Found (AF	C-99 S	ncles: ource Re ckel (CP)	sponse VI):	Pu-2 Resp A ch. 7290	39 Source onse (CPM): B ch. Net Eff. 253 39:419	Backgrou A ch.	Th: 33% C14: and (CPM): B ch.	To-99 S - Stainle	76 Sr: Te Ni: Ource Response ss Steel (CPM): B ch. Net Eff.
As Found (AF	To-99 S	ncles: ource Re ckel (CPI B ch.	sponse vi): Net En	Pu-2 Résp A ch. 7290	39 Source onse (CPM): B ch. Net Eff. 253 39.419 At A to B B to silic <10%	Backgrou A ch. O A Xtalk: <1%	Th: 33% C14: and (CPM): B ch. 84	To-99 S - Stainle	Tc Ni: Tc Ni: Ource Response is Steel (CPM): B ch. Net Sff. 4627 28.26%
As Found (AF	C-99 S	ncles: ource Re ckel (CPI B ch.	sponse VI):	Pu-2 Résp A ch. 7290	39 Source onse (CPM): B ch. Net Eff. 253 39.419 At A to B B to silic <10%	Background A Ch.	Th: 33% C14: and (CPM): B ch.	To-99 S - Stainle	76 Sr: Te Ni: Ource Response ss Steel (CPM): B ch. Net Eff.
As Found (AF	To-99 S	ncles: ource Re ckel (CPI B.ch.	sponse vi): Net En	Pu-2 Résp A ch. 7290	39 Source onse (CPM): B ch. Net Eff. 253 39.419 At A to B B to silc <10% 2.3%	Backgrou A ch. O A Xtalk: <1%	Th: 33% C14: and (CPM): B ch. 84	To-99 S - Stainle	Tc Ni: Tc Ni: Ource Response is Steel (CPM): B ch. Net Sff. 4627 28.26%
As Found (AF HV/Vemier: 800 / 3.16	To-99 S NA A Ch.	ncles: ource Re ckel (CPI B ch.	sponse vi): Net En	Pu-2 Résp A ch. 7290	39 Source onse (CPM): B ch. Net Eff. 253 39.419 A A to B B to 10.419 2.3%	Backgrqu A ch. 0 A Xtalk: <1%	Th: 33% C14: and (CPM): B ch. 84	To-99 S - Stainle	Tc Ni: Tc Ni: Ource Response is Steel (CPM): B ch. Net Sff. 4627 28.26%
As Found (AF HV / Vemier: 800 / 3.16 AF CPM: AF 4 pl eff:	729	ncles: ource Re ckel (CPI B.ch.	sponse vi): Net En	Pu-2 Reap A ch. 7290 Ne Xts	39 Source onse (CPM): B ch. Net Eff. 263 39.41% At to B B to 10% 2.3% 1627 3.26% 3.	Background A ch. 6 0 A Xtalk: <1% Th-230	Th: 33% C14: and (CPM): B ch. 84 \$199	To-99 S - Stainle	Tc Ni: Tc Ni: fource Response is Steel (CPM): B ch: Net Eff. 4627 28.26%
As Found (AF HV/Vemier: 800 / 3.16	729(39.41	ncles: ource Re ckel (CPI B.ch.	sponse vi): Net En	Pu-2 Reap A ch. 7290 Ne Xts	39 Source onse (CPM): B ch. Net Eff. 263 39.417 A to B B to 810 81	Backgrou A ch. A ch. 196 179 171 171 171 171 171 171 171 171 171	Th: 33% C14: and (CPM): B ch. 84 \$199 4042 40.85%	To-99 S - Stainle	Tc Ni: Tc Ni: Ource Rasponse as Steel (CPM): B ch. Nat Eff. 4627 28.26%

.

PR150791 10/28/09

Date:

PLATEAU AND SET POINT DATA

HV./ Vernier:	Tc-99 Sc S	ource Re S (CPM)			239 S ponee	ource (CPM):	Ва	ckgrou	nd (CPM):	Net A to B Xtalk: <10%	B to A Xtalk:
	A ch.	B ch.	Net Eff.	A ch.	18	h. Net Eff.	. A	ch.	, B ch.,		*.
700 / 2.72	0.1	3428	19.6%	6515	222	35.2%		0 -1	44	2.7%	.<1%
750 / 2,90	0	3935	22.4%	6948	253		ا : :	0	66	2.6%	<1%
775 / 3.00	4	4234	24.1%	7058	221	38.2%.		0	66	2.1%	′ '<1% '
			1			144.1					
					·			;			
	"	•].	,	Ŀ	`		• '			
	;	• : •		• . *			•			•	
Africa C. C.				•			•	- ,•			
Alpha / B	leta Bkg (•	0 <u>1-239</u>	Tc-9	<u> 9 Mi</u> . 98	Tc-99	33	Th-	230	<u>C-14</u>	<u> Sr-90</u>
775 / 3.00	CPN	ti 7	058	, .		423	4	60	09	4628	4203
4 pl AL E		. •	.18% .17%			24.01 38.5			96% 55%	9.35% ; 24.45%	42.71% 61.09%
		• •	· .	:	•						•
		•		-	· ·			•			
emarks;						٠,	•				
oes Instrument M	lèet Final	Accepte	uice Crite	ri n?:	` ©	Yes	0	No .	•	• •	•
allbration Sticker	Attached'	7:			(Yes	O	No		•	•
ite instrument is	Due For I	viext Cal	ibration:		10/2	28/10		•	,		
INSTRUMENT N	MARRIED	WITH		2929		# 1491	21		*,	,	
	• •			•						•	

CALIBRATION CERTIFICATE FOR Owner: CHASE ENV	2929 SI	ERIAL# 160013
DATE: 08/18/09	LOCATION:	Griffin Inst
TECH: Joanne Glenn	DATE LAST CAL EX	PIRES: 09/05/09
Reason For Calibration:	Due For Calibration	Repair (See Remarks).
CABLE LENGTH: 39"	Other (See Remarks)	O Due and Repair (See Remarks)
NIST TRACEAS	LE EQUIPMENT ÙSED DURING C	<u>ALIBRATION</u>
MODEL: M-500 SERI	IAL #: 114512	CAL. DUE: 09/05/09
MODEL: SER	IAL#;	CAL DUE:
Condition: Sat O Uneat	AF Mechanical Zero:	•
	Al Machanical Zero:	Ó
Significant and the second sec	ASIA ASIA	
Beta Channel Window (4-50 mV):	4-50 A.	
Alpha Channel Window (175 mV, 120 for 3030):	175 A.I	
Alpha Gounts w/Putser @ 10,000 CPM:	9,984 A.I	% Error: 0.2%
Beta Counts w/Pulser @ 10,000.CPM:	9,994 A.I	% Error: 0.1%.
1 KV Reading (R-5 on HV Board)?	1 Al	
Max HV (1800.V 4):	Set O Uris	
RÈMARKS:		
Doss Instrument Mast Final Acceptance Criteria?	Yes O No	
Calibration Sticker-Atteched?	(a) Yes Q No	
Date instrument is Due For Next Calibration:	08/18/10	
d - Ann	, , ,	
INSTRUMENT MARRIED WITH 43-10-	1 # PR167231	
Performed/Reviewed by:	Date: 8/18/2009	Entered by nitials

ATE 08/18/06 LOCATION: Griffin Inst Date Location: Date	ALIBRATIO	N CE	RTIFIC	CATE	OR	43-10)-1	PROBE	# PR1	67231
DATE LAST CAL EXPIRES:	Owner: CHA	SE EM	/							•
Due For Calibration								AL EXPIRES:		
NEST TRACEABLE EQUIPMENT AND STANDARDS USED DURING CALIBRATION			. '	Repair (9		arka) O	Other (See		O Due and	Repair
Source Number	CABLE L	ENGTH:	39"	-	•	INF	UT SENSIT	IVITY: dual		
NIST TRACEABLE SOURCES USED Source Number Isotope		MELT	RACEAE	LE EQUI	MENT	AND STANDA	RDS USED	DURING CALI	BRATION	
Source Number Isotope	ODEL	2929		SE	RIAL#:	16	p013	CAL DUE:	08/18	/10
94TH470-1993 Tin230 16,700 fbm 06/18/09 8,170 cpm 09/15/09 10,800			•	NIS	T TRAC	EABLE SOUR	CES USED		(
94TH470-1993 Tin230 16,700 fbm 06/18/09 8,170 cpm 09/15/09 10,800	Source Num	aber		sofope		4 di Activi	hv	Annav	Date	2 pl Activity
10 17 17 18 18 18 18 18 18								.06/	16/09	
2696-00. Pu239 18,600 dpm 03/01/00 8,550 cpm 2696-00. Pu239 18,600 dpm 07/49/06 9,350 cpm PX 728 C14 48,780 dpm 01/21/08 18,690 opp PX 728 C14 48,780 dpm 01/21/08 18,690 opp PX 728 C14 48,780 dpm 01/21/08 18,690 opp PX 728 C14 10,84% Tq. Nt.	· · · · · · · · · · · · · · · · · · ·	•			,					
2696-00 Pu239 18,500 dpm 07/19/06 9,350 cpm PX 728 C14 48,760 dpm 01/21/06 18,680 cpm Efficiencies from fast cal.; condition:		.2%.0			•				,	
PX 728	26	96-00.		Pu239						
Efficiencies from list cal.: Condition:	· p	X 726	. •	C14						18,680 cpn
As Found (AF) Efficiencies: Fu = 23.31% C14: 10,84% Ta Ni:	· · , :		. * •				- 	* ************************************		
As Pound (AF) Efficiencies: To set		<u> </u>	•••	·	· · · ·	· · · · · · · · · · · · · · · · · · ·	•			
As Found (AF) Efficiencies: Fu = 23.31% C14: 10,84% Ta Ni:	•				•	25.	•	Efficienci	es from last ca	ıL:
To 98: 22.31% C44: 10,84% To Nt: HV / Vernier: To 98 Source Response Pu-238 Source Response Response Pu-238 Source Background (CPN0): To 98 Source Response Stainless Size (CPM): Stainle		~ .				• • •	· · ·			
As Found (AF) Efficiencies: HV / Vernier: To-99 Source Response Pu-239 Source Response Stainless Staef (CPM): St	Condition:	(e) Sa	t O	Unsat		•	Pu: 3	7.77% That	33,84%	8r: 40,497
As Found (AF) Efficiencies: HV / Vernier: To-99 Source Response Pu-239 Source Response Stainless Staef (CPM): St					· .		To see 2	2.31% C14:	10.84% T	NI:
HV / Vernier: To-99 Source Response Pu-239 Source Response Res			×					mariel estail		· · · · · · · · · · · · · · · · · · ·
Nickel (CPM): Response (CPM): Stainless Steel (CPM): A ch	As Found (AF) Efficiei	ncles:						•	
Nickel (CPM): Response (CPM): Stainless Steel (CPM): A ch				·						
850 / 3.50	HV / Vernier:	To-99 S	ource Re kel (CP)	sponse V):	Resp	39 Source orise (CPM):	Backgr		Stainless Ste	el (ČPM):
Net-A to B	• • • • • • • • • • • • • • • • • • • •	A ch.	B ch.	Net Eff.				. B.ch.		
Xtalk: <10% <1% 3.5% <1% 3.5% <1% 3.5% <1% 3.5% 5960 3864 6258 4567 5960 3864 6258 4567 5960 38.67% 38.18% 25.93% 35.67% 38.80% 12.65% 47.2 pi eff: 75.23% 41.54% 72.91% 65.49% 33.10% 33.10% 55.49% 33.10% 56.49%	850 / 3.50				7067	337 38.18	3% 3	. 81	2 456	25.93%
Xtalk: <10% <1% 3.5% <1% 3.5% <1% 3.5% <1% 3.5% 5960 3864 6258 4567 5960 3864 6258 4567 5960 38.67% 38.18% 25.93% 35.67% 38.80% 12.65% 47.2 pi eff: 75.23% 41.54% 72.91% 65.49% 33.10% 33.10% 55.49% 33.10% 56.49%	•	,	•					· · · · · · · · · · · · · · · · · · ·		
### Pu239 Tc99 NI Tc99 se Th-230 Sr00 C-14 AF CPM: 7087 4567 5960 3854 6258 AF 4 pi eff; 38.18% 25.93% 35.47% 38.80% 12.58% AF 2 pi eff: 75.23% 41.54% 72.91% 55.49% 33.10% s as found efficiency within 20% of the efficiency from the last cal? • Yes No (See Ramarks) is: If the se found data is within 10% of the isst-ceitbruiton and the 8-A Xtell is <1% and the A-B Xtell is <10%, then the technicien may NIA the platieru section - and is the A-B Xtell is <10%, then the technicien may NIA the platieru section - and is the A-B Xtell is <10%, then the technicien may NIA the platieru section - and is the A-B Xtell is <10%, then the technicien may NIA the platieru section - and is the A-B Xtell is <10%, then the technicien may NIA the platieru section - and is the A-B Xtell is <10%, then the technicien may NIA the platieru section - and is the A-B Xtell is <10%, then the technicien may NIA the platieru section - and is the A-B Xtell is <10%, then the technicien may NIA the platieru section - and is the A-B Xtell is <10%, then the technicien may NIA the platieru section - and is the A-B Xtell is <10% of the section - and is the A-B Xtell is <10% of the section - and is the A-B Xtell is <10% of the action - and is the A-B Xtell is <10% of the action - and is the A-B Xtell is <10% of the action - and is the A-B Xtell is <10% of the action - and is the A-B Xtell is <10% of the action - and is the A-B Xtell is <10% of the action - and is the A-B Xtell is <10% of the action - and is the A-B Xtell is <10% of the A-B Xtell is <1		· .	•	•	. N	et A to B B				
AF CPM: 7087 4567 5980 3854 6258 AF 4 pi eff; 38.18% 25.93% 35.67% 38.80% 12.66% AF 2 pi eff: 75.23% 41.54% 72.91% 55.49% 33.10% as as found efficiency within 20% of the efficiency from the last cal? The se found data is within 10% of the instacibration and the 8-A Xiaik is <1% and the A-B Xiaik is <10%, then the isochaldam may N/A the pletissu section - and			•		1	3.5%	<1%	1.	,	
AF 4 pi eff; 38.18% 25.93% 35.67% 38.80% 12.66% AF 2 pi eff: 75.23% 41.54% 72.91% 55.49% 33.10% as as found efficiency within 20% of the efficiency from the last cal? by Yes O'No (See Ramarks) as if the as found data is within 10% of the instacitors and the 8-A Xiaik is <1% and the A-B Xiaik is <10%, then the isotherician may N/A the pletissu section and	•	Pu239	.]	C99 NI		C99 se	Th-230	<u>\$.90</u>	<u>C</u>	14
AF 4 pi eff; 38.18% 25.93% 35,67% 38.80% 12.56% AF 2 pi eff: 75.23% 41.54% 72.91% 55.49% 33.10% as as found efficiency within 20% of the efficiency from the last cal? by Yea No (See Ramarks) is: If the as found data is within 10% of the isst-ceitbration and the 8-A Xtell is <1% and the A-B Xtell is <10%, then the ischnician may NIA the platianu section. and	AF CPM:	7067	ין וַיי		7.	4567	5960	3864	6	258
AF Z pi eff: 75.23% 41.54% 72.91% 55.49% 33.10% s as found efficiency within 20% of the efficiency from the last-cat? • Yes O'No (See Remarks) is: If the as found data is within 10% of the inst-ceitbration and the 8-A Xialk is <1% and the A-B Xialk is <10%, then the inst-ceiton may N/A the pletistu section and	AF 4 pl eff:				7 2	5.93%	35.67%	38:80%	, , , , , , , , , , , , , , , , , , , 	
s as found efficiency within 20% of the efficiency from the last cal? (a) Yes (b) No (See Remarks) (b) If the as found data is within 10% of the instantion and the S-A Xtalk is <1% and the A-B Xtalk is <10%, then the technician may N/A the pletistus section and								55.49%	33.	10%
is: If the as found data is within 10% of the inst.celibration and the S-A Xigik is <1% and the A-B Xigik is <10%, then the isothetican may N/A the plateau section and		<u> </u>		·····	- I			L		
is: If the as found data is within 10% of the inst.celibration and the 8-A Xigik is <1% and the A-B Xigik is <10%, then the technician may N/A the plateau section -and			•			, ;		•		
is: If the as found data is within 10% of the issuculibration and the 8-A Xigik is <1% and the A-B Xigik is <10%, then the technician may NIA the plateau section and	is as found effic	iency wi	thin 20%	of the ef	ficiency	from the last	cal?	. (a) Yes	O'No (8	se Remarke)
	-						. '			
	notify to contactor:	= = = = H	w. ale 10			· · · · · · · · · · · · · · · · · · ·	and the Villa (4)	- रक्ताकी साम्बंध साम्य श् <u>र</u> ाम		P
		•			-				· ,	•
				•		•		*	•	

PROBE #: PR167231

Date:

08/18/09

PLATEAU AND SET POINT DATA

HV / Vernier:	Tc-99 So Si	urce Re 3 (CPM)			39 Sq onse (Backgro	und (CPM):	Net A to B Xtelk: <10%	B to A XIalk:
	A ch.	B ch.	Net Eff.	A.ch;	B ch.	Net Eff.	A ch.	B ch.		
:700 / 2.90	O:	2517	14,3%	6369	317	34.4%	1	71 .47	4.1%	<1%
750 / 3.10	2	3194	18.1%	6684	1308	36.1%	. 0	. 59	3.6%	<1%
, 800 / 3.32	: 1	4174	23.7%	6870	328	37.1%	3.115	68	3.7%	<1%
850 / 3.50	. 75						12.4	103		
			 	***		*****				

				+	Tarr.		· · · · · · · · · · · · · · · · · · ·	* * * * * * * * * * * * * * * * * * * *		
Alpha / B	eta Akgi (d		2	7		. 4 -1		مفدر		
HV / Vernier			-239	<u>Tc-99</u>	MI .	Tc-89		<u>i-230</u>	<u>C-14</u>	Sr:90
800/3.32	CPM	61	332			4134		1888	4779	4098
	ficiencies		92%			23.47	% 3 <u>!</u>	5.25%	9.85%	41.39%
2 pl AL E	ficiencies	. 72.	74%	• •	• ·	37.60	% 7.	2.04%	25.22%	59.20%
				• •				ett et s		أمر ومعار
	· · • • •	<i>:</i> . ,		<u>: </u>	٠,		· • • • • • • • • • • • • • • • • • • •			<u> </u>
			\$ 14		•					
EMÁRKS: Notice	i emalic bi	kg - Res	et myler i	inal slippe	ág, 🧢			•		
oos instrument M		Laanatai	inn C-lin	ing.	(a)	/es	() No		•	
		• .	ino cine	ia r			_			
alibration Sticker	Atlached?			٠,	③ .	reb"	O No			#- -
ate Instrument is	Due For N	lext Call	bration:		81180	/10				
INSTRUMENT M	ARRIED V	NITH	, , ,	2929		# 1600	is ;	*		
Performed/Revie			enny Gla	He	• •	Date: 8/		.: • • •	Entered by	de_Initial

2

CALIBRA Owner: CHA		RTIFICATE	FOR	2241-3	SERIAL	# 25334	16
DATE	:. 08	/18/09	, , , , , , , , , , , , , , , , , , ,	LOCATION:	•	Griffin Inst	
TECH	: Jo	anne Glenn		DATE LAST CAL	08/13/09)	
Reas	on For Calibra	tion:	Due For	Calibration	○ Repa	ir (See Remark	a)
		•	Other (Se	se Remarks)	O, Due	and Repair (Sec	Remarks)
		NIST TRAC	EABLE EQUIP	WENT USED DURIN	IG CALIBRATION		
MOD		• •	SERIAL#:	114612	CAL. DUE		
MOD			BERIAL#:		CAL DUE:		
☑ Fast/Slow	Switch work	ng properly	Audio Resp	onse 🔃 Geot	ropism CABI	ELENOTH 1	o '
CONDITIO	N: Sat				,		
NEW BATT	ERIES:	O Yes 🔘	No	BATTERY CHECK	C: Sat		•
HV TEST	. O N	A . O Sat C) Unsaț		•		•
AF INP	JT SENS(TIVI	TY (mV) #1:	2.5 A	L INPUT SENSITIV	/ITY (mV) #1:	4	
AF INP	JT SENSITIVI	TY (mV) #2:	2.5 A	L INPUT SENSITIV	/ITY (mV) #2.:	4	
. AF INP	JT SENSITIVIT	TY (mV) #3:	2.5 A	L INPUT SENSITI	/ITY (mV) #3:	4 .	
AF INP	UT SENSITIVI	TY (mV) #4:	2.5 A	L INPUT SENSITA	/ITY (mV) #4:	4	
RATE CPM	AS FOUND	% ERROR AS LEI	T % ERROR				
250	261	0.4% A.F.		is the As Four	nd Data Within 2%	of the Set Pol	nt?:
2500	2498	0.1%, A.F.		⊚ Y	es O No	•	•
25K	24.993 K 249.955 K	0.0% A.F.		•			
DET	ECTOR 1:	DET	ECTOR 2:	DE	TECTOR 3:	DETE	CTOR 4:
AF 1-6	AL 1-6	AF 1-8	AL 1-8	AF 1-8	AL 1-8	AF 1-8	AL 1-6
0000 8-6	ÀF.	0000 5-6	A.F.	0000 S-6	A.F.	0000 s-6	A.F.
0100 -2	A.F.	0100 -2	A.F.	0100 -2	A.F.	0100 -2	A.F.
c/	A.F.		A.F.	ct Ct	A.F.	C/	A.F.
m	A.F.	m	A.F.		ÁF.	M	A.F.
1	A.F.	1	A.F.	1	A.F.	. [1	A.F.
000s	A.F.	000s	A.F.	000s	A.F.	0000	A.F.
	nt Meet Final A ker Attached?:			O No			
					•		
INSTRUM	ENT MARRIE	D WITH	•	*	•	. ^	
Performed/R	eviewed by:	Jeanno Clever	, D	ate: 8/18/2009	. Ent	ered by: 8	_Initials .

ODEL: 2	ration C	Repair (See	ON FOR CAL Remarks)		T CAL EXPIRES		
CABLE LE	NGTH: 10'	Repair (See			a Samerial	· ·	
DDEL: 2	IST TRACE	IDI E BALUAN		INPUT SENS	NIVITY: 4 m/	Obue and R	spair .
DDEL: 2		10LE ELUIPO	ENT AND ST	4-4-1	D DURING CAL		.,,
		SERI		253346	CAL DUE:		0
	 	NIST'	TRACEABLE	SOURCES USE	D .		
Source Numbe	BF .	Isotope	.4 pi	Activity	Assay	Date	2 pl Activity
9471-1470-16		Jh230		700 dpm		/16/09	8,170 cpm
0010470-00	354	Tc99 88	.17	7,300 dpm		/15/09	10,800 cpm
2696	-00	Pu239		3,500 dpm		/18/08	9,390 cpm
2697	-00	, Si 30		5,500 dbw		/01/00	8,530 cpm
PX 7	726	C14	4	3,780 dpm	.01	/21/08	18,660 cpm
					·		
ondition: @ As Found (AF) E) Unint:		Put	Th: 25,80% C14:[Sr:
HV / Vernier: 170	c-99 Source	Response	Pu-239 Sout	se Baci	ground (CPM):	Tc-99 Source R	европве }-
	Nickef (C	PM):	Response (C	PM):		Stainless Steel	(CPM):
d B 1	ch. Boh	Net Eff.	A ch! B ch.	Net Eff. A c	h. Bch.	A ch. B ch.	
1250 / 1650			1764	25.75% 1	149	4642	25.97%
		• • •					75
,		•	Not A to B	B to A Xtalk	• 1		
					 .		
			1		- 4 3		
•	Pu239	Tc99 NI	Tc99.88	<u>Th-230</u>	3190	<u>C-1</u> 4	4
. de exercis	·			· · · · · · ·	7 7 0004		
AF CPM:	4764	لسنسا	4642	4139	3521	766	12
F4 pi eff:	25.75%		25.97%	24.78%	34.67%	15.4	0%
F 2 pl eff:	50.72%		41.80%	50.65%	49.50%	40.2	6%
		•	•		•		

1

PROBE #: PR216394

Date:

08/18/09

PLATEAU AND SET POINT DATA

HV / Vernier:		ource Re			39 Şol ons 6 (0		Backgrou	ind (CPM):	Net A to B Xtalk: <10%	B to A-Xtalk: <1%
*	A ch:	B ch.	Net Eff.	A ch.	B ch.	Net Eff.	A ch.	B ch.		
N/A								::]		
131				. , :	٠.					
						·	,			
		-				· ,. ; ,	1 15 - 1	, ,		
	<u> </u>		1 1							
	ب	<u> </u>	<u> 1 -: 1</u>	• • •				<u>, ,</u>		لننا
				······································		· · · ·	· · · · · ·			·:
Alpha / B	leta Bka	(com)	.1	. 1	49			٠: .		•
HV / Vernier			-239	Tc-99		<u>Tc-99</u>	<u>88 İh</u> -	230	<u>C-14</u>	Sr-90
1250 /1850	CPI	M: 4	764			: 4642	4	39	7662	3521
			• .		• .	•		, w		
4 pi AL E 2 pi AL E			.75% .72%		٠.	25.97 41.60		78% 65%	15.40% 40.26%	34.87% 49.59%
					•	•	•		•	
					. : •					•
		<u>-</u>			٠,,			, ,		
EMARKS:			•	•	•			•		
					~··.		•			•
oes instrument N	leet Final	Accepta	nce Criter	187 7.	⊚ 1	CS.	O No		•	
alibration Sticker	Attached	17:			(a)	(eş	O No	;	*	
ale Instrument la	Due For	Next Cal	lbration:		08/18	но.			-	•
INSTRUMENT I	IARRIED	WITH		2241-3	· · · · · · · · · · · · · · · · · · ·	# 2533	16			•
Performed/Revi	ewed by	. <u>.</u>	Tayins Ghu	d ₽		Date: 8/	18/2009		Entered by	:Initials
pi cificlerales denote	d in Station.	. •	N. 34	:	•	*	• .	Callbridges o	erformed to AVSI N	323A-1917 slandard
									~	

t sis) s Remarks)
si) e Remarks)
e Remarks)
B4
6 '
6
6 '
•
•
int?:
•
ECTOR 4:
AL 1-6
N/A
N/Å

ALIBRATION CE Owner: CHASE EN	RTIFICATE FOR	44-10	PROB	E# RNO	12930
ATE: 04/28/09 ECH: Joanne Glenn	•	LOCATIO DATE LA	N: ST CAL EXPIR	•	în inst /19/09
Due For Calibration Repair (See Remarks	Other (See Ré Due and Repa		Cable I	.ength: 5' L8.: 10 m	v
NIST	TRACEABLE EQUIPMEN	TAND STANDARDS	USED DURING	CALIBRATION	ι΄,
MODEL: 22	41 SERIAL	t: 215484	CAL.	DUE:	01/13/10
SOURCE#: 99-1816	ISOTOPE: Cs13	ACTIVITY:	1.23 uCi	ASSAY DATE	: 08/12/99
EOMETRY: Jig upaide d	own with source underne	ath, activity side up.		•	
hysical Condition: (9 Set C Unsat			•	
ifficiency From Last Cal		Previous	HV Set Point:	1050 V	•
Counts (CPM)	Background (CP			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•
128140	10180	11796	·	Efficiency:	5:40%
			•		
	in 20% of the efficiency fr			⊕ Yes	O No
Reproducibility:	128140 129080 s within 10% of the average		rage:	129023.33	Ó No
High Voltage: S 900 950 1000 1050 HV RESPO	107980 119110 122350 128140	5890 7760 9450 10180 NET CPM	Net CF 102090 111350 112900 117980		•
1000 V 1223	9450	112900	Efficienc	y: ,	i.17%
EMARKS: Calibrated with	n new meter. Cal due 1/13/1	0 to match box.	***************************************		
Poes Instrument Meet Fin:	al Acceptance Criteria?:	Yes	No		
Calibration Sticker Attache		Yes	No	•	
Date Instrument is Due Fo		01/13/10			
INSTRUMENT MARRIE	هم	# 215484 Date: 4/28/2	009	Entere	ed by: of initials

ALIBRATION WHERE CHASE EM		ICATE FOR	t	MICRO	REM	SERI	AL# B22	6L
DATE:	08/19/09	-		LOCATION			- Griffin Ir	· ·
TECH:	Joanne G	lann	*	DATE LAS		voince.	09/11/	
	R CALIBRATIO		Due for Calib		. GVE E	AFIREO.		
ND BOOK 10					oso nili		DATION	
DI H OFF 1 100 F		EABLE EQUIPN			ISED DO			07/10/10
PULSER MODEL:	MP-Z	•	ER SERIAL:				CAL DUE:	07/13/10
SOURCE NUMBE	10250	·· ISO1	TOPE:	Cs137		ASSAY	DATE:	08/30/07
Geotropism	TEMP	71.8° F I	BARÓ PRES	S: 30.08°	•	HUMIDITY	42%	
•	A.F.Data	A.F. % ERRO	DR A	L.Data	A.L. %	ERROR		
uR/hr	r 1							
x0.1 Scale*	4	0.0%	A.F.				*Puised Sca	ale .
x0.1 Scale*	16.5	3.1%	<u>A.F.</u>	J	<u>L.</u>		•	•
x1 Scale*	40	0.0%	A.F.				•	
x1 Scale*	160	0.0%	A.F.		·			•
mR/hr	٠					•		
x10 Scale	0.4	0.0%	A.F.				•	_
x10 Scale	1.0	0.0%	A.F.		Γ			•
x10 Scale	1.6	0.0%	A.F				·	,
x100 Scale	4	0.0%	A.F					•
x100 Scale	. 10	0.0%	A.F		l <u>-</u>		•	•
x100 Scale	15.25	4.7%	A.F		Γ		•	
x1000 Scale	40	0.0%	A.F					
x1000 Scale	100	0.0%	A.F					
x1000 Scale	150	6.3%	A.F					
is the As I	Found Data W	ithin 20% of the						
:		Yes O	No, See F	temarks				

HADVO.	•						*	•
EMARKS:			-				Ÿ	
es Instrument Meet	Final Acceptar	ice Criteria?:	Yes	0	io			
ilibration Sticker Atta	ached?:		• Yes	0 1	No			
ite Instrument la Duc	For Next Call	oration:	08/19/10					•
Performed/Reviews	ed by:	ann Ghan		te: 8/19/200	9		intered by:	initials

Calibrations performed to ANSI N328A-1997 standards.

Appendix D
Struct Surfaces Results

Neutron Generator Facility
Decommission Report
Page 1 of 4

Radiological Survey Record

Location:	Ball State Univ	versity	Area: Neutron	Generator Va	ult	Survey: V01-0	101	Date:	12/16/2009	Time	4:00 PM
Surveyor: I	Ken Gaylik		Reviewed: Mil	e Culp		Notes: Final St	atus Survey				
Detector	nt / Serial # r / Serial #	Source Check	Cal Due	Alpha/ Beta	Total/ Removable	Bkgd (cpm)	Efficiency	Count '	Fime (min) Bkg.	Area (cm²)	MDC (dpm/100cm ²)
43-68/I	11-3 / 253346 PR216394	SAT	8/18/2010	Beta	Total	138	15.40%	1	1	126	297
	29 / 149121 PR150791	SAT	10/28/2010	Beta	Removable		9.35%	3_	10	100	171
			face Activity				ırface Activity				
Location	Gross Counts	Net CPM	Activity (dpm/100cm ²)	Notes	Gross Counts	Net CPM	Activity (dpm/100cm ²)	Notes		Description	ı
1	136	-2	-10	<mdc< td=""><td>143</td><td>0</td><td>-4</td><td><mdc< td=""><td></td><td>Ceiling</td><td></td></mdc<></td></mdc<>	143	0	-4	<mdc< td=""><td></td><td>Ceiling</td><td></td></mdc<>		Ceiling	
2	165	27	139	<mdc< td=""><td>144</td><td>0</td><td>0</td><td><mdc< td=""><td></td><td>Ceiling</td><td></td></mdc<></td></mdc<>	144	0	0	<mdc< td=""><td></td><td>Ceiling</td><td></td></mdc<>		Ceiling	
3	145	7	36	<mdc< td=""><td>137</td><td>-2</td><td>-25</td><td><mdc< td=""><td></td><td>Ceiling</td><td></td></mdc<></td></mdc<>	137	-2	-25	<mdc< td=""><td></td><td>Ceiling</td><td></td></mdc<>		Ceiling	
4	142	4	21	<mdc< td=""><td>145</td><td>0</td><td>4</td><td><mdc< td=""><td></td><td>Ceiling</td><td></td></mdc<></td></mdc<>	145	0	4	<mdc< td=""><td></td><td>Ceiling</td><td></td></mdc<>		Ceiling	
5	176	38	196	<mdc< td=""><td>159</td><td>5</td><td>53</td><td><mdc< td=""><td></td><td>Ceiling</td><td></td></mdc<></td></mdc<>	159	5	53	<mdc< td=""><td></td><td>Ceiling</td><td></td></mdc<>		Ceiling	
6	134	-4	-21	<mdc< td=""><td>146</td><td>1</td><td>7</td><td><mdc< td=""><td></td><td>Ceiling</td><td></td></mdc<></td></mdc<>	146	1	7	<mdc< td=""><td></td><td>Ceiling</td><td></td></mdc<>		Ceiling	
7	170	32	165	<mdc< td=""><td>136</td><td>-3</td><td>-29</td><td><mdc< td=""><td></td><td>Wall</td><td></td></mdc<></td></mdc<>	136	-3	-29	<mdc< td=""><td></td><td>Wall</td><td></td></mdc<>		Wall	
8	171	33	170	<mdc< td=""><td>141</td><td>-1</td><td>-11</td><td><mdc< td=""><td></td><td>Wall</td><td></td></mdc<></td></mdc<>	141	-1	-11	<mdc< td=""><td></td><td>Wall</td><td></td></mdc<>		Wall	
9	192	54	278	<mdc< td=""><td>138</td><td>-2</td><td>-21</td><td><mdc< td=""><td></td><td>Wall</td><td></td></mdc<></td></mdc<>	138	-2	-21	<mdc< td=""><td></td><td>Wall</td><td></td></mdc<>		Wall	
10	132	-6	-31	<mdc< td=""><td>118</td><td>-9</td><td>-93</td><td>. <mdc< td=""><td>,</td><td>Wall</td><td></td></mdc<></td></mdc<>	118	-9	-93	. <mdc< td=""><td>,</td><td>Wall</td><td></td></mdc<>	,	Wall	
11	146	88	41	<mdc< td=""><td>127</td><td>-6</td><td>-61</td><td><mdc< td=""><td></td><td>Wall</td><td></td></mdc<></td></mdc<>	127	-6	-61	<mdc< td=""><td></td><td>Wall</td><td></td></mdc<>		Wall	
12	146	8	41	<mdc< td=""><td>137</td><td>-2</td><td>-25</td><td><mdc< td=""><td></td><td>Wall</td><td></td></mdc<></td></mdc<>	137	-2	-25	<mdc< td=""><td></td><td>Wall</td><td></td></mdc<>		Wall	
13	174	36	186	<mdc< td=""><td>139</td><td>-2</td><td>-18</td><td><mdc< td=""><td></td><td>Floor</td><td></td></mdc<></td></mdc<>	139	-2	-18	<mdc< td=""><td></td><td>Floor</td><td></td></mdc<>		Floor	
14	156	18	93	<mdc< td=""><td>136</td><td>-3</td><td>-29</td><td><mdc< td=""><td></td><td>Floor</td><td></td></mdc<></td></mdc<>	136	-3	-29	<mdc< td=""><td></td><td>Floor</td><td></td></mdc<>		Floor	
15	131	-7	-36	<mdc< td=""><td>148</td><td>11</td><td>14</td><td><mdc< td=""><td></td><td>Floor</td><td></td></mdc<></td></mdc<>	148	11	14	<mdc< td=""><td></td><td>Floor</td><td></td></mdc<>		Floor	
16	151	13	67	<mdc< td=""><td>140</td><td>-1</td><td>-14</td><td><mdc< td=""><td></td><td>Floor</td><td></td></mdc<></td></mdc<>	140	-1	-14	<mdc< td=""><td></td><td>Floor</td><td></td></mdc<>		Floor	
17	217	79	407		139	-2	-18	<mdc< td=""><td>7777</td><td>Floor</td><td></td></mdc<>	7777	Floor	
18	152	14	72	<mdc< td=""><td>156</td><td>4</td><td>43</td><td><mdc< td=""><td></td><td>Floor</td><td></td></mdc<></td></mdc<>	156	4	43	<mdc< td=""><td></td><td>Floor</td><td></td></mdc<>		Floor	

(1-23) min: -36

(1-23) min: -93

(1-23) max: 407

(1-23) max: 53

(1-23) average: 98

(1-23) average: -13

(1-23) SD: 108

(1-23) SD: 31

Location: I	Ball State Univ	ersity	Area: Neutron	Generator Va	ult	Survey: V01-0	101	Date:	12/16/2009	Time	4:00 PM
Surveyor: I	Ken Gavlik		Reviewed: Mik	e Culp		Notes: Final Sta	atus Survey				
	nt / Serial #	Source	Cal. Due	Alpha/	Total	Bkgd	Efficiency	Count'	Time (min)	Area	MDC
	/ Serial #	Check	Car. Due	Beta	Removable	(cpm)	Efficiency	Sample	Bkg.	(cm²)	(dpm/100cm ²)
	1-3 / 253346	~ . m	0/10/2010	•• .				_			
	PR216394 29 / 149121	SAT	8/18/2010	Beta	Total	138	15.40%	1	1	126	297
	PR150791	SAT	10/28/2010	Beta	Removable	48	9.35%	3	10	100	171
			face Activity	Dota	reditio value		rface Activity		i i i	1,00	
Location	Gross Counts	Net CPM	Activity (dpm/100cm ²)	Notes	Gross Counts	Net CPM	Activity (dpm/100cm ²)	Notes		Description	
19	157	19	98	<mdc< td=""><td>144</td><td>0</td><td>0</td><td><mdc< td=""><td></td><td>Wall</td><td></td></mdc<></td></mdc<>	144	0	0	<mdc< td=""><td></td><td>Wall</td><td></td></mdc<>		Wall	
20	133	-5	-26	<mdc< td=""><td>137</td><td>-2</td><td>-25</td><td><mdc< td=""><td></td><td>Wall</td><td></td></mdc<></td></mdc<>	137	-2	-25	<mdc< td=""><td></td><td>Wall</td><td></td></mdc<>		Wall	
21	156	18	93	<mdc< td=""><td>147</td><td>1</td><td>11</td><td><mdc< td=""><td></td><td>Wall</td><td></td></mdc<></td></mdc<>	147	1	11	<mdc< td=""><td></td><td>Wall</td><td></td></mdc<>		Wall	
22	160	22	113	<mdc< td=""><td>134</td><td>-3_</td><td>-36</td><td><mdc< td=""><td>·</td><td>Wall</td><td></td></mdc<></td></mdc<>	134	-3_	-36	<mdc< td=""><td>·</td><td>Wall</td><td></td></mdc<>	·	Wall	
23	169	31	160	<mdc< td=""><td>132</td><td>-4</td><td>-43</td><td><mdc< td=""><td></td><td>Wall</td><td></td></mdc<></td></mdc<>	132	-4	-43	<mdc< td=""><td></td><td>Wall</td><td></td></mdc<>		Wall	
						Photosophic Control					
·											
						,					
								-			

(1-23) min: -36 (1-23) max: 407

(1-23) min: -93

(1-23) max: 53

(1-23) average: 98

(1-23) average: -13

(1-23) SD: 108

(1-23) SD: 31

Location:	Ball State Uni	versity	Area: Neutron (Generator Va	ult _	Survey: V01-0	101	Date:	12/16/2009	Time	4:00 PM
Surveyor: 1	Ken Gavlik		Reviewed: Mik	e Culp		Notes: Final St	atus Survey		, , , , , , , , , , , , , , , , , , , ,		
Detector	nt / Serial # r / Serial #	Source Check	Cal. Due	Alpha/ Beta	Total/ Removable	Bkgd (cpm)	Efficiency	Count' Sample	Time (min) Bkg.	Area (cm²)	MDC (dpm/100cm ²)
43-68 / 1	11-3 / 253346 PR216394	SAT	8/18/2010	Beta	Total	138	15.40%	1	1	126	297
	SC nan 6500	SAT	N/A	Beta	Removable	0	60.00%	1	1	100	5
		Total Sur	face Activity			Removable H-3	Surface Activity			•	
Location	Gross Counts	Net CPM	Activity (dpm/100cm ²)	Notes	Gross Counts	Net CPM	Activity (dpm/100cm ²)	Notes		Description	1
1	N/A	N/A	N/A		15	15	25			Ceiling	
2	N/A	N/A	N/A		10	_10	17			Ceiling	
3	N/A	N/A	N/A	_	20	20	33		·	Ceiling	
4	N/A	N/A	N/A		25	25	42			Ceiling	
5	N/A	N/A	N/A	_	22	22	37			Ceiling	
6	N/A	N/A	N/A	=	19	19	32			Ceiling	
7	N/A	N/A	N/A		14	14	23			Wall	_
8	N/A	N/A	N/A		13	13	22			Wall_	
9	N/A	N/A	N/A		15	15	25			Wall	
10	N/A	N/A	N/A		12	12	20			Wall	
11	N/A	N/A	N/A		12	12	20			Wall	
12	N/A	N/A	N/A		12	12	20			Wall	
13	N/A	N/A	N/A		20	20	33			Floor	
14	N/A	N/A	N/A	_	14	_14	23			Floor	
15	N/A	N/A	N/A	_	13	13	22			Floor	
16	N/A	N/A	N/A		12	12	20			Floor	
17	N/A	N/A	N/A		13	13	22			Floor	
18	N/A	N/A	_N/A		12	_12	20			Floor	

(1-23) min: 13

(1-23) max: 42

(1-23) average: 24 (1-23) SD: 7

all State Univ	ersity				Survey: V01-0		Date:	12/16/2009	Time	: 4:00 PM
en Gavlik		Reviewed: Mik	ce Culp		Notes: Final St	atus Survey				
t / Serial # / Serial #	Source Check	Cal. Due	Alpha/ Beta	Total/ Removable	Bkgd (cpm)	Efficiency	Count '	Time (min) Bkg.	Area (cm²)	MDC (dpm/100em ²)
	SAT	8/18/2010	Reta-	Total	138	15 40%	1	1		297
C						·				5
11 0300			Deta	Kelilovaole				1	1 100] 3
Gross	Net	Activity	Notes	Gross	Net	Activity			Description	1
Counts	CPM	(dpm/100cm ²)	140fe2	Counts	CPM	(dpm/100cm ²)	Notes			
N/A	N/A	N/A		12	12	20			Wall	
N/A	N/A	N/A		14	14	23			Wall	····
N/A	N/A	N/A		8		13			Wall	
N/A	N/A	N/A		11	11	18			Wall	
N/A	N/A	N/A	~	13	13	22			Wall	
	Tramewas La									

	- ,									
			**************************************		•			·		
			•							
	······································									
	en Gavlik t / Serial # Serial # -3 / 253346 R216394 C n 6500 Gross Counts N/A N/A N/A N/A	en Gavlik 1 / Serial # Source	Reviewed: Mile Reviewed: Mile Serial # Source Cal. Due	Reviewed: Mike Culp Cal. Due Cal. Due	Reviewed: Mike Culp Cal. Due Alpha/ Removable	Reviewed: Mike Culp Notes: Final Start Source Cal. Due Alpha/ Beta Removable (cpm) -3 / 253346 Removable Removable	Reviewed: Mike Culp Notes: Final Status Survey	Reviewed: Mike Culp Notes: Final Status Survey	Reviewed: Mike Culp	Reviewed: Mike Culp Notes: Final Status Survey

(1-23) min: 13

(1-23) max: 42

(1-23) average: 24 (1-23) SD: 7

	Ball State Univ		Area: Neutron	Generator Val	ult	Survey:QA-V()1-0101	Date:	12/17/2009	Time	: 9:00 AM
Surveyor: 1	Mike Culp		Reviewed: Ken	Gavlik		Notes: Final St	atus Survey 5% C)A			
Detector	nt / Serial # · / Serial #	Source Check	Cal. Due	Alpha/ Beta	Total/ Removable	Bkgd (cpm)	Efficiency	Count? Sample	(ime (min) Bkg.	Area (cm²)	MDC (dpm/100cm²)
43-68 / 1	11-3 / 253346 PR216394	SAT	8/18/2010	Beta	Total	134	15.40%	1	1	126	293
43-10-1	29 / 149121 PR150791	SAT	10/28/2010	Beta	Removable	43	9.35%	3	10	100	163
			face Activity				rface Activity				
Location	Gross Counts	Net CPM	Activity (dpm/100cm ²)	Notes `	Gross Counts	Net CPM	Activity (dpm/100cm ²)	Notes		Description	n
2	162	28	144	<mdc< td=""><td>136</td><td>2</td><td>25</td><td><mdc< td=""><td></td><td>Ceiling</td><td></td></mdc<></td></mdc<>	136	2	25	<mdc< td=""><td></td><td>Ceiling</td><td></td></mdc<>		Ceiling	
15	208	74	381		113	-5	-57	<mdc_< td=""><td></td><td>Floor</td><td></td></mdc_<>		Floor	
19	133	-1	-5	<mdc< td=""><td>112</td><td>-6</td><td>-61</td><td><mdc< td=""><td></td><td>Wall</td><td></td></mdc<></td></mdc<>	112	-6	-61	<mdc< td=""><td></td><td>Wall</td><td></td></mdc<>		Wall	
					1.	,					· · · · · · · · · · · · · · · · · · ·

										۲.	
							,				
					-						
									·······························		
									,		
		` <u> </u>									

 min:
 -5
 min:
 -61

 max:
 381
 max:
 25

 average:
 174
 average:
 -31

 SD:
 195
 SD:
 48

	Ball State Univ		Area: Neutron (Generator Va	ult	Survey:QA-V)1-0101	Date:	12/17/2009	Time	9:00 AM
Surveyor: N	Aike Culp		Reviewed: Ken	Gavlik		Notes: Final St	atus Survey 5% C)A			···········
Detector	nt / Serial # / Serial #	Source Check	Cal. Due	Alpha/ Beta	Total/ Removable	Bkgd (cpm)	Efficiency	Count' Sample	Time (min) Bkg.	Area (cm²)	MDC (dpm/100cm ²)
43-68 / P	1-3 / 253346 R216394	SAT	8/18/2010	Beta	Total	134	15.40%	1	1	126	293
	SC an 6500	SAT	N/A	Beta	Removable	0	60.00%	1	11	100	5
Location	Gross	Net	face Activity Activity		Gross	Net	Surface Activity Activity			Description	1
	Counts	СРМ	(dpm/100cm ²)	Notes	Counts	СРМ	(dpm/100cm ²)	Notes			
2	N/A	N/A	N/A		21	21	35			Ceiling	
15	N/A	N/A	N/A		21	21	35			Floor	
19	N/A	N/A	N/A		. 13	.13	22			Wall	
·											
									<u></u>		
						,					
						,	٠			***************************************	
						Manual Control of the					
										7.3.7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	
		•		, ,,,,,,,,	· · · · · · · · · · · · · · · · · · ·						

min: 0 max: 0 min: 22

average: #DIV/0!

max: 35 average: 31

SD: #DIV/0!

Appendix F Systems Results

.

.

	Ball State Univ		Area: Neutron	Generator Val	alt	Survey:System	ıs	Date:	12/16/2009	Time	: 3:00 PM
Surveyor: N			Reviewed: Ker			Notes:					
Detector	nt / Serial # / Serial #	Source Check	Cal. Due	Alpha/ Beta	Total/ Removable	Bkgd (cpm)	Efficiency	Count' Sample	Time (min) Bkg.	Area (cm²)	MDC (dpm/100cm ²)
43-68 / P	1-3 / 253346 R216394	SAT	8/18/2010	Beta	Total	138	15.40%	1	11	126	297
	29 / 149121 PR150791	SAT	10/28/2010	Beta	Removable	48	9.35%	3	10	100	171
		~	face Activity				rface Activity				
Location	Gross Counts	Net CPM	Activity (dpm/100cm ²)	Notes	Gross Counts	Net CPM	Activity (dpm/100cm ²)	Notes		Description	I
48	137	-1	-5	<mdc< td=""><td>138</td><td>-2</td><td>-21</td><td><mdc< td=""><td></td><td>Ventilation</td><td></td></mdc<></td></mdc<>	138	-2	-21	<mdc< td=""><td></td><td>Ventilation</td><td></td></mdc<>		Ventilation	
- 51	216	78	402		154	. 3	36	<mdc< td=""><td></td><td>Drain Sump</td><td>)</td></mdc<>		Drain Sump)
		······································			·						
						<u>.</u>					
								-			
		·····				,					
		· · · · · · · · · · · · · · · · · · ·	·								-

min: -5 max: 402 average: 198 min: -21 max: 36 average: 7

SD: 288

Neutron Generator Facility
Decommission Report
Page 2 of 2

Radiological Survey Record

Location: Ball State University				_		[C			Date: 12/16/2009 Time: 3:00 l		
		ersity	Area: Neutron		ult	Survey:System	15	Date:	12/16/2009	1 me:	3:00 PM
Surveyor: N			Reviewed: Ker			Notes:	4				
Detector	nt / Serial # / Serial #	Source Check	Cal. Due	Alpha/ Beta	Total/ Removable	Bkgd (cpm)	Efficiency	Count' Sample	Time (min) Bkg.	Area (cm²)	MDC (dpm/100cm ²)
43-68/P	1-3 / 253346 R216394	SAT	8/18/2010	Beta	Total	138	15.40%	1	1	126	297
	SC an 6500	SAT	N/A	Beta	Removable	0	60.00%	1	1	1 100 5	
7			face Activity			Removable H-3	Surface Activity	,			
Location	Gross Counts	Net CPM	Activity (dpm/100cm ²)	Notes	Gross Counts	Net CPM	Activity (dpm/100cm ²)	Notes	·	Description	
48	N/A	N/A	N/A		10	10	17			Ventilation	
51	N/A	N/A	N/A		160	160	267		·	Drain Sump	
						×					

									·		

										·	×

min: 0 max: 0 min: 17 max: 267

average: #DIV/0! SD: #DIV/0! average: 142 SD: 177 Appendix G
Mat'l Release Results

	Survey Recor		Area: Neutron	Generator Va	ult	Survey: Releas	Survey: Release of Materials Date: 12/15/2009 Time: 3:00					
Surveyor: I			Reviewed: Mik	ce Culp		<u> </u>	case surveys of m	aterials and	equipment from			
Detector	nt / Serial # / Serial #	Source Check	Cal. Due	Alpha/ Beta	Total/ Removable	Bkgd (cpm)	Efficiency	Count' Sample	Fime (min) Bkg.	Area (cm²)	MDC (dpm/100em ²	
43-68 / F	1-3 / 253346 PR216394	SAT	8/18/2010	Beta	Total	137	15.40%	1	1	126	296	
	29 / 149121 PR150791	SAT	10/28/2010	Beta	Removable	45	9,35%	3	10 100 16		166	
			face Activity				rface Activity					
Location	Gross Counts	Net CPM	Activity (dpm/100cm ²)	Notes	Gross Counts	Net CPM	Activity (dpm/100cm ²)	Notes		Description	1	
1	125	-12	-62	<mdc< td=""><td>134</td><td>0</td><td>-4</td><td><mdc< td=""><td>Ioniz</td><td>ation Vacuun</td><td>Gauge</td></mdc<></td></mdc<>	134	0	-4	<mdc< td=""><td>Ioniz</td><td>ation Vacuun</td><td>Gauge</td></mdc<>	Ioniz	ation Vacuun	Gauge	
2	142	5	26	<mdc< td=""><td>132</td><td>-1</td><td>-11</td><td><mdc< td=""><td>Ioniz</td><td>ation Vacuum</td><td>Gauge_</td></mdc<></td></mdc<>	132	-1	-11	<mdc< td=""><td>Ioniz</td><td>ation Vacuum</td><td>Gauge_</td></mdc<>	Ioniz	ation Vacuum	Gauge_	
3	135	-2	-10	<mdc< td=""><td>145</td><td>3</td><td>36</td><td><mdc< td=""><td></td><td>Power Guar</td><td>d</td></mdc<></td></mdc<>	145	3	36	<mdc< td=""><td></td><td>Power Guar</td><td>d</td></mdc<>		Power Guar	d	
4	128	-9	-46	<mdc< td=""><td>147</td><td>4</td><td>43</td><td><mdc< td=""><td>Harrison</td><td>6516A DC Po</td><td>wer Supply</td></mdc<></td></mdc<>	147	4	43	<mdc< td=""><td>Harrison</td><td>6516A DC Po</td><td>wer Supply</td></mdc<>	Harrison	6516A DC Po	wer Supply	
5	141	4	21	<mdc< td=""><td>137</td><td>1</td><td>7</td><td><mdc< td=""><td>Harrison</td><td colspan="3">Harrison 6516A DC Power Supply</td></mdc<></td></mdc<>	137	1	7	<mdc< td=""><td>Harrison</td><td colspan="3">Harrison 6516A DC Power Supply</td></mdc<>	Harrison	Harrison 6516A DC Power Supply		
6	112	-25	-129	<mdc< td=""><td>132</td><td>-1</td><td>-11</td><td><mdc< td=""><td>Thermoc</td><td>ouple Ionizat</td><td>ion Control</td></mdc<></td></mdc<>	132	-1	-11	<mdc< td=""><td>Thermoc</td><td>ouple Ionizat</td><td>ion Control</td></mdc<>	Thermoc	ouple Ionizat	ion Control	
7	138	1	5	<mdc< td=""><td>140</td><td>2</td><td>18</td><td><mdc< td=""><td></td><td>Powercord</td><td></td></mdc<></td></mdc<>	140	2	18	<mdc< td=""><td></td><td>Powercord</td><td></td></mdc<>		Powercord		
8	123	-14	-72	<mdc< td=""><td>132</td><td>-1</td><td>-11</td><td><mdc< td=""><td></td><td>Powercord</td><td></td></mdc<></td></mdc<>	132	-1	-11	<mdc< td=""><td></td><td>Powercord</td><td></td></mdc<>		Powercord		
9	140	3	15	<mdc< td=""><td>168</td><td>11</td><td>118</td><td><mdc< td=""><td>Ortec Hi</td><td>ghvoltage Po</td><td>wer Supply</td></mdc<></td></mdc<>	168	11	118	<mdc< td=""><td>Ortec Hi</td><td>ghvoltage Po</td><td>wer Supply</td></mdc<>	Ortec Hi	ghvoltage Po	wer Supply	
10	127	-10	-52	<mdc< td=""><td>156</td><td>7</td><td>75</td><td><mdc< td=""><td>Ortec Hi</td><td>ghvoltage Po</td><td>wer Supply</td></mdc<></td></mdc<>	156	7	75	<mdc< td=""><td>Ortec Hi</td><td>ghvoltage Po</td><td>wer Supply</td></mdc<>	Ortec Hi	ghvoltage Po	wer Supply	
11	120	-17	-88	<mdc< td=""><td>141</td><td>2</td><td>21</td><td><mdc< td=""><td>Harrison</td><td>6516A DC Po</td><td>ower Supply</td></mdc<></td></mdc<>	141	2	21	<mdc< td=""><td>Harrison</td><td>6516A DC Po</td><td>ower Supply</td></mdc<>	Harrison	6516A DC Po	ower Supply	
12	139	2	10	<mdc< td=""><td>151</td><td>5</td><td>57</td><td><mdc< td=""><td>Harrison</td><td>6516A DC Po</td><td>ower Supply</td></mdc<></td></mdc<>	151	5	57	<mdc< td=""><td>Harrison</td><td>6516A DC Po</td><td>ower Supply</td></mdc<>	Harrison	6516A DC Po	ower Supply	
13	139	2	10	<mdc< td=""><td>126</td><td>-3</td><td>-32</td><td><mdc< td=""><td></td><td colspan="2">Vacuum Pump</td></mdc<></td></mdc<>	126	-3	-32	<mdc< td=""><td></td><td colspan="2">Vacuum Pump</td></mdc<>		Vacuum Pump		
14	132	-5	-26	<mdc< td=""><td>145</td><td>3</td><td>36</td><td><mdc< td=""><td colspan="2">Kinney Vacuum</td><td>ım</td></mdc<></td></mdc<>	145	3	36	<mdc< td=""><td colspan="2">Kinney Vacuum</td><td>ım</td></mdc<>	Kinney Vacuum		ım	
15	119	-18	-93	<mdc< td=""><td>155</td><td>7</td><td>71</td><td><mdc< td=""><td colspan="2">Poly Source Storage</td><td>rage</td></mdc<></td></mdc<>	155	7	71	<mdc< td=""><td colspan="2">Poly Source Storage</td><td>rage</td></mdc<>	Poly Source Storage		rage	
16	135	-2	-10	<mdc< td=""><td>146</td><td>4</td><td>39</td><td><mdc< td=""><td colspan="2">Poly Source Storage</td><td>rage</td></mdc<></td></mdc<>	146	4	39	<mdc< td=""><td colspan="2">Poly Source Storage</td><td>rage</td></mdc<>	Poly Source Storage		rage	
17	121	-16	-82	<mdc< td=""><td>174</td><td>13</td><td>139</td><td><mdc< td=""><td colspan="3">Light</td></mdc<></td></mdc<>	174	13	139	<mdc< td=""><td colspan="3">Light</td></mdc<>	Light			
18	161	-440	-2268	<mdc< td=""><td>161</td><td>9</td><td>93</td><td><mdc< td=""><td></td><td>Light</td><td></td></mdc<></td></mdc<>	161	9	93	<mdc< td=""><td></td><td>Light</td><td></td></mdc<>		Light		

 min:
 -2268
 min:
 -32

 max:
 26
 max:
 139

 average:
 -158
 average:
 38

 SD:
 528
 SD:
 47

	Survey Reco											
Location: I	Ball State Uni	versity	Area: Neutron	Generator Va								
Surveyor: I	Ken Gavlik		Reviewed: Mik	ce Culp		Notes: Free rele	ease surveys of m	aterials and	equipment from	vault		
II .	ıt / Serial #	Source	Cal. Due	Alpha/	Total	Bkgd	Efficiency		Time (min)	Area	MDC	
	/ Serial #	Check	Can Dut	Beta	Removable	(cpm)	Billetticy	Sample	Bkg.	(cm²)	(dpm/100cm ²)	
	1-3 / 253346	0.470	9/19/2010	Dodo	Tradel	127	15 400/			1 126 206		
	PR216394 29 / 149121	SAT	8/18/2010	Beta	Total	137	15.40%	1	1 126 296		290	
	PR150791	SAT	10/28/2010	Beta	Removable	45	9.35%	3	10 100 166		166	
	Total Surface Activity					Removable Su	ırface Activity					
Location	Gross	Net	Activity	Notes	Gross	Net	Activity	Notes		Description	۱ ا	
	Counts	СРМ	(dpm/100cm ²)	110168	Counts	СРМ	(dpm/100cm ²)	110003				
19	164	27	139	<mdc< td=""><td>155</td><td>7</td><td>71</td><td><mdc< td=""><td></td><td>Light</td><td></td></mdc<></td></mdc<>	155	7	71	<mdc< td=""><td></td><td>Light</td><td></td></mdc<>		Light		
20	135	-2	-10	<mdc< td=""><td>129</td><td>-2</td><td>-21</td><td><mdc< td=""><td></td><td>Lamp</td><td></td></mdc<></td></mdc<>	129	-2	-21	<mdc< td=""><td></td><td>Lamp</td><td></td></mdc<>		Lamp		
21	125	-12	-62	<mdc< td=""><td>144</td><td>3</td><td>32</td><td><mdc< td=""><td></td><td>Intercomm</td><td></td></mdc<></td></mdc<>	144	3	32	<mdc< td=""><td></td><td>Intercomm</td><td></td></mdc<>		Intercomm		
22	149	12	62	<mdc< td=""><td>153</td><td>6</td><td>64</td><td><mdc< td=""><td></td><td>Powercords</td><td></td></mdc<></td></mdc<>	153	6	64	<mdc< td=""><td></td><td>Powercords</td><td></td></mdc<>		Powercords		
23	125	-12	-62	<mdc< td=""><td>143</td><td>3</td><td>29</td><td><mdc< td=""><td colspan="3">Flask Stand</td></mdc<></td></mdc<>	143	3	29	<mdc< td=""><td colspan="3">Flask Stand</td></mdc<>	Flask Stand			
24	156	19	98	<mdc< td=""><td>143</td><td>3</td><td>29</td><td><mdc< td=""><td>Hast</td><td>ings Vacuum</td><td>Pump</td></mdc<></td></mdc<>	143	3	29	<mdc< td=""><td>Hast</td><td>ings Vacuum</td><td>Pump</td></mdc<>	Hast	ings Vacuum	Pump	
25	140	3	15	<mdc< td=""><td>131</td><td>-1</td><td>-14</td><td><mdc< td=""><td></td><td>Vacuum Pum</td><td>р</td></mdc<></td></mdc<>	131	-1	-14	<mdc< td=""><td></td><td>Vacuum Pum</td><td>р</td></mdc<>		Vacuum Pum	р	
26	132	-5	-26	<mdc< td=""><td>162</td><td>9</td><td>96</td><td><mdc< td=""><td></td><td>Box Powercor</td><td></td></mdc<></td></mdc<>	162	9	96	<mdc< td=""><td></td><td>Box Powercor</td><td></td></mdc<>		Box Powercor		
27	54943	54806	282447		157	7	78	<mdc< td=""><td></td><td></td><td>as Rad Waste)</td></mdc<>			as Rad Waste)	
28	82717	82580	425582		137	1	7	<mdc< td=""><td>Beam Tube</td><td>nternal (Dipo Waste)</td><td>sed of as Rad</td></mdc<>	Beam Tube	nternal (Dipo Waste)	sed of as Rad	
29	152	15	77	<mdc< td=""><td>161</td><td>9</td><td>93</td><td><mdc< td=""><td></td><td>RAD Box DA</td><td>w</td></mdc<></td></mdc<>	161	9	93	<mdc< td=""><td></td><td>RAD Box DA</td><td>w</td></mdc<>		RAD Box DA	w	
30	142	5	26	<mdc< td=""><td>137</td><td>1</td><td>7</td><td><mdc< td=""><td>RA</td><td>D Box Beam</td><td>Tubes</td></mdc<></td></mdc<>	137	1	7	<mdc< td=""><td>RA</td><td>D Box Beam</td><td>Tubes</td></mdc<>	RA	D Box Beam	Tubes	
31	143	6	31	<mdc< td=""><td>150</td><td>5</td><td>53</td><td><mdc< td=""><td>RAD Box B</td><td>cam Stop, Di</td><td>ff Pump Tube</td></mdc<></td></mdc<>	150	5	53	<mdc< td=""><td>RAD Box B</td><td>cam Stop, Di</td><td>ff Pump Tube</td></mdc<>	RAD Box B	cam Stop, Di	ff Pump Tube	
32	141	4	21	<mdc< td=""><td>147</td><td>4</td><td>43</td><td><mdc< td=""><td colspan="2">Stool</td><td></td></mdc<></td></mdc<>	147	4	43	<mdc< td=""><td colspan="2">Stool</td><td></td></mdc<>	Stool			
33	121	-16	-82	<mdc< td=""><td>149</td><td>5</td><td>50</td><td><mdc_< td=""><td colspan="2">Powercords</td><td></td></mdc_<></td></mdc<>	149	5	50	<mdc_< td=""><td colspan="2">Powercords</td><td></td></mdc_<>	Powercords			
34	134	-3	-15	<mdc< td=""><td>166</td><td>10</td><td>111</td><td><mdc< td=""><td colspan="2">Chair</td><td></td></mdc<></td></mdc<>	166	10	111	<mdc< td=""><td colspan="2">Chair</td><td></td></mdc<>	Chair			
35	125	-12	-62	<mdc< td=""><td>149_</td><td>.5</td><td>50</td><td><mdc< td=""><td colspan="3">RAD Box Diff Pump Gate Valve</td></mdc<></td></mdc<>	149_	.5	50	<mdc< td=""><td colspan="3">RAD Box Diff Pump Gate Valve</td></mdc<>	RAD Box Diff Pump Gate Valve			
36	121	-12	-62	<mdc< td=""><td>139</td><td>1</td><td>14</td><td><mdc< td=""><td>RAD</td><td>Box DAW (7</td><td>Tubing)</td></mdc<></td></mdc<>	139	1	14	<mdc< td=""><td>RAD</td><td>Box DAW (7</td><td>Tubing)</td></mdc<>	RAD	Box DAW (7	Tubing)	

min: -82 max: 425582 min: -21 max: 111

average: 39340

average: 44

SD: 117082

Neutron Generatr ~ callity Decommissioni. :eport Page 3 of 8

Radiological Survey Record

	Ball State Univ		Area: Neutron	Generator Va	ult	Survey: Releas	e of Materials	Date:	12/16/2009	Time:	3:00 PM	
Surveyor: I	Ken Gavlik		Reviewed: Mik	e Culp		Notes: Free rele	ase surveys of m	aterials and	quipment from	vault	·	
Instrumer	at / Serial #	Source	Cal. Due	Alpha/	Total/	Bkgd	Efficiency	Count'	Γime (min)	Area	MDC	
	/ Serial #	Check	Cai. Due	Beta	Removable	(cpm)	Efficiency	Sample	Bkg.	(cm²)	(dpm/100cm ²)	
B	1-3 / 253346	<u> </u>						_				
	PR216394 29 / 149121	SAT	8/18/2010	Beta	Total	138	15.40%	1	11	126	297	
	PR150791	SAT	10/28/2010	Beta	Removable	48	9.35%	3	10	10 100 171		
			face Activity			Remoyable Su	rface Activity		1 10 1 100 1 171			
Location	Gross	Net	Activity	Notes	Gross	Net	Activity	Notes	Description			
	Counts	CPM	(dpm/100cm ²)	Notes	Counts	СРМ	(dpm/100cm ²)	140152				
37	135	-3	-15	<mdc< td=""><td>141</td><td>-1</td><td>-11</td><td><mdc< td=""><td>Neut</td><td>ron Generator</td><td>Stand</td></mdc<></td></mdc<>	141	-1	-11	<mdc< td=""><td>Neut</td><td>ron Generator</td><td>Stand</td></mdc<>	Neut	ron Generator	Stand	
38	139	1	5	<mdc_< td=""><td>149</td><td>2</td><td>18</td><td><mdc< td=""><td>Neut</td><td>ron Generator</td><td>Stand</td></mdc<></td></mdc_<>	149	2	18	<mdc< td=""><td>Neut</td><td>ron Generator</td><td>Stand</td></mdc<>	Neut	ron Generator	Stand	
39	126	-12	-62	<mdc< td=""><td>133</td><td>4</td><td>-39</td><td><mdc< td=""><td>Neut</td><td>ron Generator</td><td>Stand</td></mdc<></td></mdc<>	133	4	-39	<mdc< td=""><td>Neut</td><td>ron Generator</td><td>Stand</td></mdc<>	Neut	ron Generator	Stand	
40	136	-2	-10	<mdc< td=""><td>148</td><td>1.</td><td>14</td><td><mdc< td=""><td></td><td>ron Generator</td><td></td></mdc<></td></mdc<>	148	1.	14	<mdc< td=""><td></td><td>ron Generator</td><td></td></mdc<>		ron Generator		
41	135	-3	-15	<mdc< td=""><td>121</td><td>-8</td><td>-82</td><td><mdc< td=""><td>Neutron Gen</td><td colspan="3">Neutron Generator Stand (Disposed of as Rad Waste)</td></mdc<></td></mdc<>	121	-8	-82	<mdc< td=""><td>Neutron Gen</td><td colspan="3">Neutron Generator Stand (Disposed of as Rad Waste)</td></mdc<>	Neutron Gen	Neutron Generator Stand (Disposed of as Rad Waste)		
								***************************************	Neutron Generator Stand (Disposed of as			
42	147	9	46	<mdc< td=""><td>139</td><td>-2</td><td>-18</td><td><mdc< td=""><td></td><td>Rad Waste)</td><td></td></mdc<></td></mdc<>	139	-2	-18	<mdc< td=""><td></td><td>Rad Waste)</td><td></td></mdc<>		Rad Waste)		
43	168	30	155	<mdc< td=""><td>152</td><td>3</td><td>29</td><td><mdc< td=""><td>Neutron Gene</td><td>erator Stand () Rad Waste)</td><td>Disposed of as</td></mdc<></td></mdc<>	152	3	29	<mdc< td=""><td>Neutron Gene</td><td>erator Stand () Rad Waste)</td><td>Disposed of as</td></mdc<>	Neutron Gene	erator Stand () Rad Waste)	Disposed of as	
44	137	-1	-5	<mdc< td=""><td>148</td><td>1</td><td>14</td><td><mdc< td=""><td>Neut</td><td>ron Generator</td><td></td></mdc<></td></mdc<>	148	1	14	<mdc< td=""><td>Neut</td><td>ron Generator</td><td></td></mdc<>	Neut	ron Generator		
45	141	3	15	<mdc< td=""><td>143</td><td>0</td><td>-4</td><td><mdc< td=""><td></td><td>Transformer</td><td></td></mdc<></td></mdc<>	143	0	-4	<mdc< td=""><td></td><td>Transformer</td><td></td></mdc<>		Transformer		
	105		1.70	4400	162	,		4.000		T		
46	105	-33	-1 <u>70</u>	<mdc< td=""><td>162</td><td>6</td><td>64</td><td><mdc< td=""><td></td><td>Transformer</td><td></td></mdc<></td></mdc<>	162	6	64	<mdc< td=""><td></td><td>Transformer</td><td></td></mdc<>		Transformer		
47	97	-41	-211	<mdc< td=""><td>149</td><td>2</td><td>18</td><td><mdc< td=""><td></td><td>Steel Ramp</td><td></td></mdc<></td></mdc<>	149	2	18	<mdc< td=""><td></td><td>Steel Ramp</td><td></td></mdc<>		Steel Ramp		
48	137	-1	-5	<mdc< td=""><td>138</td><td>-2</td><td>-21</td><td><mdc< td=""><td></td><td>Ventilation</td><td></td></mdc<></td></mdc<>	138	-2	-21	<mdc< td=""><td></td><td>Ventilation</td><td></td></mdc<>		Ventilation		
49	144	6	31	<mdc< td=""><td>142</td><td>-1</td><td>-7</td><td><mdc< td=""><td colspan="2">Metal Container</td><td>er</td></mdc<></td></mdc<>	142	-1	-7	<mdc< td=""><td colspan="2">Metal Container</td><td>er</td></mdc<>	Metal Container		er	
50	121	-17 [*]	-88	<mdc< td=""><td>149</td><td>2</td><td>18</td><td><mdc< td=""><td colspan="2">Metal Container</td><td>cr</td></mdc<></td></mdc<>	149	2	18	<mdc< td=""><td colspan="2">Metal Container</td><td>cr</td></mdc<>	Metal Container		cr	
51	216	78	402	~	154	. 3	36	<mdc< td=""><td colspan="2">Drain Sump</td><td></td></mdc<>	Drain Sump			
52	136	-2	-10	<mdc< td=""><td>141</td><td>-1</td><td>-11</td><td><mdc< td=""><td colspan="2">Metal Can</td><td></td></mdc<></td></mdc<>	141	-1	-11	<mdc< td=""><td colspan="2">Metal Can</td><td></td></mdc<>	Metal Can			
53	139	1	5	<mdc< td=""><td>155</td><td>4</td><td>39</td><td><mdc< td=""><td colspan="3">Metal Can</td></mdc<></td></mdc<>	155	4	39	<mdc< td=""><td colspan="3">Metal Can</td></mdc<>	Metal Can			
54	141	3	15	<mdc< td=""><td>135</td><td>-3</td><td>-32</td><td><mdc< td=""><td></td><td>Metal Can</td><td></td></mdc<></td></mdc<>	135	-3	-32	<mdc< td=""><td></td><td>Metal Can</td><td></td></mdc<>		Metal Can		

min: -211 max: 402 average: 5

min: -82 max: 64

average: 1

SD: 127

Neutron Generatr - cacility

Decommissioni teport

Page 4 of 8

Radiological Survey Record

	Survey Reco	***************************************	T4 37						10/1/10000 100 100 100			
	Ball State Univ	ersity	Area: Neutron			Survey: Releas			12/16/2009 Time: 3:00 PM			
Surveyor: K			Reviewed: Mile			Notes: Free rele	ease surveys of m	aterials and	equipment from	vault		
	t / Serial #	Source	Cal. Due	Alpha/	Total/	Bk <u>e</u> d	Efficiency	Count'	Time (min)	Area	MDC	
Detector		Check	Cal Due	Beta	Removable	(cpm)	Elifciency	Sample	Bkg.	(cm²)	(dpm/100cm ²)	
	1-3 / 253346		·									
43-68 / P		SAT	8/18/2010	Beta	Total	137	15.40%	1	1	1 126 296		
Ludlum 292				_								
43-10-1 /1	PK150791					10	100	171				
Total Surface Activity					Removable Su	7						
Location	Gross	Net	Activity	Notes	Gross	Net	Activity	Notes	,	Description	1.	
	Counts	CPM	(dpm/100cm ²)	11000	Counts	CPM	(dpm/100cm ²)	11000				
55	156	19	98	<mdc< td=""><td>151</td><td>2</td><td>25</td><td><mdc< td=""><td></td><td>Metal Can</td><td></td></mdc<></td></mdc<>	151	2	25	<mdc< td=""><td></td><td>Metal Can</td><td></td></mdc<>		Metal Can		
			*									
						100010						
		······										
					İ							
				>								
-					· · · · ·							
					<u> </u>							
					,							
			,		<u> </u>							

min: 98 max: 98 average: 98 SD: #DIV/0! min: 25 max: 25 average: 25 SD: #DIV/0!

Neutron General Facility

Decommission Report Page 5 of 8

Radiological Survey Record

	Ball State Uni	_	Area: Neutron	Generator Va	ult	Survey: Releas	e of Materials	Date:	12/15/2009	Time:	3:00 PM	
Surveyor: 1	Ken Gavlik		Reviewed: Mil	e Culp			ease surveys of m	aterials and o	equipment from	vault		
n	nt / Serial #	Source	Cal. Due	Alpha/	Total	Bkgd	Efficiency	Count'	Time (min)	Area	MDC	
11	/ Serial #	Check		Beta	Removable	(срт)		Sample	Bkg.	(cm ²)	(dpm/100cm ²)	
14	PR216394	SAT	8/18/2010	Beta	Total	137	15.40%	1	1	126	296	
	SC	0.11	0,10,2010		1000	13,	15.4076					
Beckm	an 6500	SAT	N/A	Beta	Removable	0	60.00%	1	1 100 5		5	
. .	Total Surface Ac						rface Activity					
Location	Gross	Net	Activity	Notes	Gross	Net	Activity	Notes		Description	1	
	Counts	СРМ	(dpm/100cm ²)		Counts	СРМ	(dpm/100cm ²)				_	
1	N/A	N/A	N/A		17	17	28		Ioniz	ation Vacuum	Gauge	
2	N/A	N/A	N/A		18	18	30		Ioniz	ation Vacuum	Gauge	
3	N/A	N/A	N/A		22	22	37			Power Guard	i	
4	N/A	N/A	N/A		· 10	10	17		Harrison (6516A DC Po	wer Supply	
5	N/A	N/A	N/A		11	11	18		Harrison (Harrison 6516A DC Power Supply		
6	N/A	N/A	N/A		13	13	22		Thermoc	ouple Ionizati	on Control	
7	N/A	N/A	N/A		12	12	20			Powercord		
8	N/A	N/A	N/A		11	11	18			Powercord		
9	N/A	N/A	N/A		17	17	28		Ortec Hi	ghvoltage Pov	ver Supply	
10	N/A	N/A	N/A		13	13	22		Ortec Hi	ghvoltage Pov	ver Supply	
11	N/A	N/A	N/A		9	9	15		Harrison (6516A DC Po	wer Supply	
12	N/A	N/A_	N/A		12	12	20		Harrison	6516A DC Po	wer Supply	
13	N/A	N/A	N/A		51	51	85			Vacuum Pum	ID ·	
14	N/A	N/A	N/A		9	9	15		Kinney Vacuum			
15	N/A	N/A	N/A		83	83	138		Poly Source Storage		rage	
16	N/A	N/A	N/A		29	29	48		Poly Source Storage			
17	N/A	N/A	N/A		8	8	13 .		Light			
18	N/A	N/A	N/A		14	14	23			Light		

min: 0 max: 0 min: 13

average: #DIV/0!

max: 138 average: 33

SD: #DIV/0!

Neutron Generatr Facility Decommissioni. Report

Page 6 of 8

Radiol	ogical	Survey	Record

Location:	Ball State Univ	ersity	Area: Neutron	Generator Va	ult	Survey: Releas	e of Materials	Date:	12/15/2009	Time:	3:00 PM
Surveyor: 1	Ken Gavlik		Reviewed: Mik	e Culp		Notes: Free rele	ease surveys of m	aterials and	equipment from	vault	
1	nt / Serial # · / Serial #	Source Check	Cal. Due	Alpha/ Beta	Total/ Removable	Bkgd (cpm)	Efficiency	Count' Sample	Time (min) Bkg.	Area (cm²)	MDC (dpm/100cm ²)
8	11-3 / 253346 PR216394	SAT	8/18/2010	Beta	Total	137	15.40%	1	1	126	296
	SC an 6500	SAT	N/A	Beta	Removable	0	60.00%	1	1	100	5
	Total Surface Activity					Removable St	ırface Activity				-
Location	Gross Counts	Net CPM	Activity (dpm/100cm²)	Notes	Gross Counts	Net CPM	Activity (dpm/100cm²)	Notes		Description	
19			(/		13	13	22			Light	
20	N/A	N/A	N/A		16	16	27			Lamp	
21	N/A	N/A	N/A		18	18	30			Intercomm	-
22	N/A	N/A	N/A		16	16	27			Powercords	
23	N/A	N/A	N/A		16	16	27			Flask Stand	***************************************
24	N/A	N/A	N/A		19	19	32		Hast	ings Vacuum	Pump
25	N/A	N/A	N/A		29	29	48			Vacuum Pum	P
26	N/A	N/A	N/A		18	18	30			Box Powercor	~
27	N/A	N/A	N/A	••••	446016	446016	743360				as Rad Waste)
28	N/A	N/A	N/A		918306	918306	1530510		Beam Tube I	nternal (Dipo Waste)	sed of as Rad
29	N/A	N/A	N/A		26	26	43	_	. ,	RAD Box DA	w
30	N/A	N/A	N/A		144	144	240		RA	D Box Beam	Tubes
31	N/A	N/A	N/A		26	26	43		RAD Box B	eam Stop, Dit	f Pump Tube
32	N/A	N/A	N/A		43	43	72		Stool		
33	N/A	N/A	N/A		35	35	58		Powercords		
34	N/A	N/A	N/A		202	202	337		Chair		
35	N/A	N/A	N/A		31	31	52		RAD Box Diff Pump Gate Valve		
36	N/A	N/A	N/A		21	21	35		RAD	Box DAW (T	ubing)

min: 0 max: 0 min: 22

average: #DIV/0! SD: #DIV/0!

max: 1530510 average: 126388

Neutron Generatr Facility Decommissionii .eport Page 7 of 8

Radiological Survey Record

Location: I	Ball State Univ	ersity	Area: Neutron	Generator Va	ult	Survey: Releas	e of Materials	Date:	12/16/2009	Time:	3:00 PM	
Surveyor: k	Ken Gavlik		Reviewed: Mik	e Culp		Notes: Free rele	ease surveys of m	aterials and	equipment from	vault		
44	nt / Serial #	Source	Cal. Due	Alpha/	Total	Bkgd	Efficiency	Count'	Time (min)	Area	MDC	
	/ Serial #	Check	Car. Due	Beta	Removable	(cpm)	Efficiency	Sample	Bkg.	(cm²)	(dpm/100cm ²)	
	1-3 / 253346	0.470	6/10/0010	D 4	T . 1			•		126	207	
	R216394 SC	SAT	8/18/2010	Beta	Total	138	15.40%	1	1	126	297	
	an 6500	SAT	N/A	Beta	Removable	o	60.00%	1	1	100	5	
			face Activity			Removable Su	rface Activity					
Location	Gross	Net	Activity	Notes	Gross	Net	Activity	Notes	Description			
	Counts	CPM	(dpm/100cm ²)	140168	Counts	СРМ	(dpm/100cm ²)	Mores				
37	N/A	N/A	N/A		17	17	28		Neut	ron Generator	Stand	
38	N/A	N/A	N/A		46	46	77		Neut	ron Generator	Stand	
39	N/A	N/A	N/A		42	42	70		Neut	ron Generator	Stand	
40	N/A	N/A	N/A		26	26	43			ron Generator		
41	N/A	N/A	N/A		525	525	875		Neutron Gen	Neutron Generator Stand (Disposed of as Rad Waste)		
- ** <u></u>	10/1	IVA	N/A				3,5		Neutron Generator Stand (Disposed of as			
42	N/A	N/A	N/A		158	158	263			Rad Waste)		
42	27/4	21/4	.,,		410	410	(00		Neutron Gen	-	Disposed of as	
43	N/A	N/A	N/A		419	419	698			Rad Waste)		
44	N/A	N/A	N/A		13	13	22		Neut	ron Generator		
45	N/A	N/A	N/A		10	10	17			Transformer		
46	N/A	N/A	N/A		17	17	28			Transformer	•	
47	N/A	N/A	N/A		. 16	16	27		`	Steel Ramp		
48	N/A	N/A	N/A	_	10	10	17			Ventilation		
49	N/A	N/A	N/A		14	14	23		Metal Container			
50	N/A	N/A	N/A		12	12	20		Metal Container			
51	N/A	N/A	N/A		160	160	267		Drain Sump			
52	N/A	N/A	N/A		13	13	22		Metal Can			
53	N/A	N/A	N/A		13	13	22		Metal Can			
54	N/A	N/A	N/A		22	22	37			Metal Can		

min: 0 max: 0 min: 17 max: 875

average: #DIV/0! SD: #DIV/0!

average: 142 SD: 249

Radiological Survey Record

	Ball State Univ		Area: Neutron	Generator Va	ult	Survey: Releas	e of Materials	Date:	Date: 12/16/2009 Time: 3:00 PM			
Surveyor: K	en Gavlik		Reviewed: Mik	e Culp		Notes: Free rele	ase surveys of m	aterials and e	equipment from	vault	,	
Detector	t / Serial # / Serial #	Source Check	Cal. Due	Alpha/ Beta	Total/ Removable	Bkgd (cpm)	Efficiency	Count' Sample	Гіme (min) Вkg.	Area (cm²)	MDC (dpm/100cm ²)	
43-68 / P	1-3 / 253346 R216394	SAT	8/18/2010	Beta	Total	137	15.40%	1	1	126	296	
LS Beckma	SC an 6500	SAT	N/A	Beta	Removable	0	60.00%	1	1 100 5		5	
-			face Activity		ļ	Removable Su						
Location	Gross Counts	Net CPM	Activity (dpm/100cm ²)	Notes	Gross Counts	Net CPM	Activity (dpm/100cm ²)	Notes		Description		
55	N/A	N/A	N/A		15	15	25			Metal Can		

						***************************************			· · · · · · · · · · · · · · · · · · ·			

		****				•			······································			
						· · · · · · · · · · · · · · · · · · ·						
						······································	· · · · · · · · · · · · · · · · · · ·					
						•						
	·	· · · · · · · · · · · · · · · · · · ·										
				W**!.								

min: 0 max: 0 min: 25 max: 25

average: #DIV/0!

average: 25

SD: #DIV/0!

SD: #DIV/0!