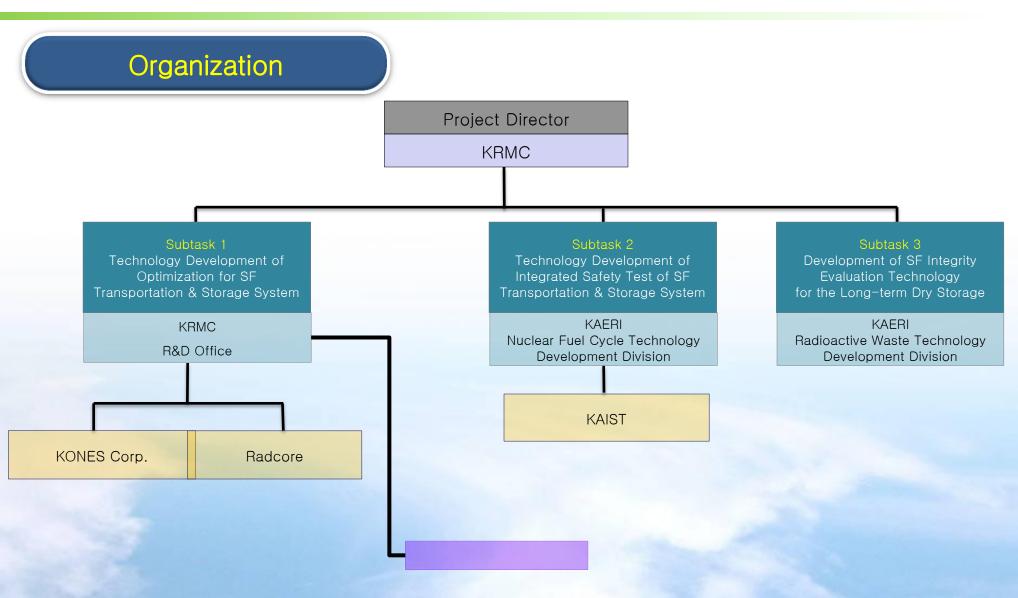
Current Status of Technology Development for SF Transportation & Storage System

2013. 01. 30

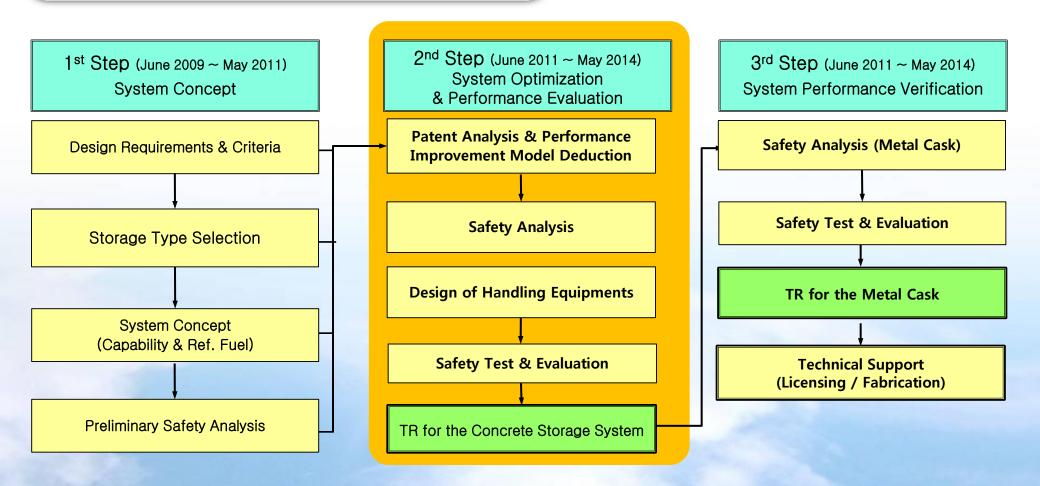
Korea Radioactive Waste Management Corporation Research & Development Office

- I. Project Overview
- II. Design Criteria
- III. System Concept
- IV. System Safety Evaluation



I. Project Overview

Goal	Technology Development of Optimization for Spent Nuclear Fuel Transportation & Storage System									
Period	June 2009 ~ May 2016 (84 months) 2 nd Step Period (36 months)									
Work Scope	 Safety Analysis for SN Fabrication Technolog & Storage Systems Safety Test Model (De 	y Development of	SNF Transportation							



I. Project Overview

I. Project Overview

Development Work and Goal

II. Design Criteria

Codes and Standards

○ NSSC Notification No.2012-49, "Regulations on the Packaging and Transportation of Radioactive Materials"

○ US 10CFR71, "Packaging and Transportation of Radioactive Material"

O US 10CFR72, "Licensing Requirements for the Independent Storage of Spent Nuclear Fuel and High-Level Radioactive Waste"

○ IAEA Safety standard Series No. TS-R-1, "Regulations for the Safe Transport of Radioactive Materials"

○ IAEA Safety Series No. 116, "Design of Spent Fuel Storage Facilities"

II. Design Criteria

Transport Cask (Normal & Accident Condition)

	Design Requirement	Reference					
Normal Condition							
 Environment Temperature (High/Low) 	38℃/-40℃	NSSC Notification No.2012-49					
 Environment Pressure (High/Low) 	140kPa/25kPa	10 CFR 71					
Free Drop	0.3m	IAEA SSS No. TS-R-1					
Accident Condition							
Porizental/ Vertical/ Corner Drop		NSSC Notification No.2012-49					
1m Puncture	Upper/Lower/Side	10 CFR 71					
■ Fire	800℃/30min	IAEA SSS No. TS-R-1					
 Submersion (200m in Water / time) 	20kg/cm²/1hr						

II. Design Criteria

Storage Cask (Normal, abnormal & Accident Condition)

	Design Requirement	Reference			
Normal Condition					
Environment Temperature	22°C	ANSI/ANS 57.9			
 Handling Load 	115 % of its own weight	CMAA #70			
Abnormal Condition					
 Environment Temperature (High/Low) 	−25℃/35℃	ANSI/ANS 57.9			
 Air Flow Blokage 	50 %	-			
 Wind(Maximum) 	45 m/s				
Accident Condition					
Environment Temperature	40 °C	ANSI/ANS 57.9			
Air Flow Blokage	100 %	10 CFR 72.128 (a)(4)			
 Falling/Overturn 	(Assumption)	Reflecting Operation Condition			
 Fire Condition 	(800℃ / Assumption)	10 CFR72.122(c)			
 Earthquake(Horizental/Vertical) 	0.3g / 0.2g	RG 1.60, 1.61			

III. System Concept

Design Basis Fuel Selection

O Design Basis Fuel

Items	Characteristics					
Spent Nuclear Fuel	CE 16×16 & WH 17×17					
Initial Enrichment	4.5wt%					
• Maximum Burnup	45,000MWD/MTU					
Minimum Cooling Period	10 YRS					

\bigcirc The Characteristics of SF(2008.12)

Enrichment and Burnup	WH Type	СЕ Туре	Sum
 Enrichment < 4.0 wt% Burnup < 45GWD/MTU 	64.0%	61.8%	63.3%
	(5,073 Bundles)	(1,972 Bundles)	(7,045 Bundles)
 Enrichment < 4.5 wt% Burnup < 45GWD/MTU 	85.4%	84.6%	85.1%
	(6,765 Bundles)	(2,700 Bundles)	(9,465 Bundles)
 Enrichment < 4.5 wt% Burnup < 50GWD/MTU 	98.9%	95.9%	98.0%
	(7,831 Bundles)	(3,070 Bundles)	(10,901 Bundles)
 Enrichment < 4.5 wt% Burnup < 55GWD/MTU 	99.8%	99.7%	99.8%
	(7,908 Bundles)	(3,189 Bundles)	(11,097 Bundles)

III. System Concept

Interim Storage of Spent Nuclear Fuel

[Wet Storage]

[Dry Storage]

Vault



Module

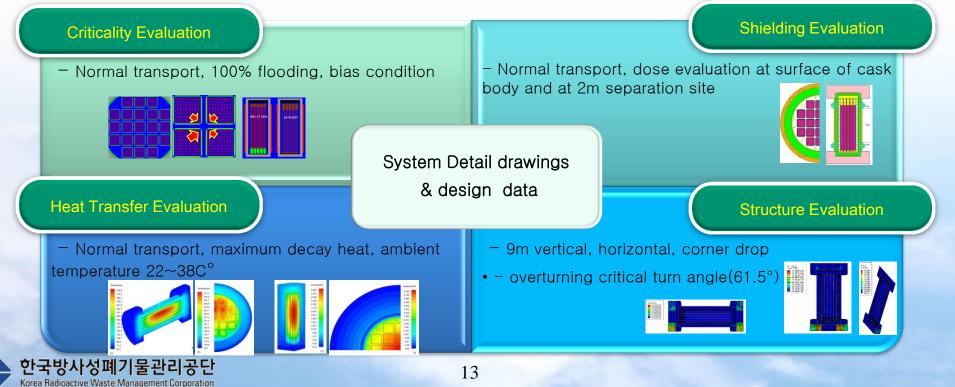
Metal Cask

Concrete Cask

III. System Concept

Conceptual Dwg. of F Transportation / Storage System

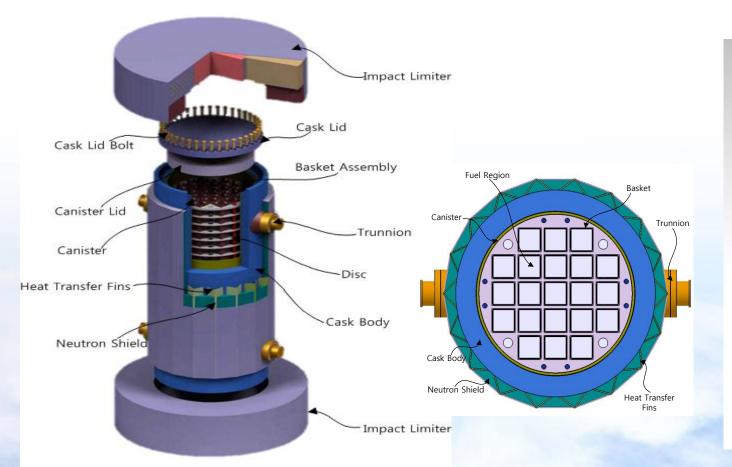
System Optimization & Preliminary Safety Analysis


Goals Items		2011							2012					
Goals	Items	6	7	8	9	10	11	12	1	2	3	4	5	
System	- Analysis of Optimization Items													
Optimization/	for each Design Element													
Safety	 Performance Evaluation and Analysis for Materials, Shapes and 													
Analysis	Specifications of the Items													
	 Preliminary Safety Analysis of Improved System 													
Domestic														
Model	- Patent Analysis												2-0.5	
Derivation	 Derivation of Domestic Model of Dual-purpose & Concrete Cask 													

Preliminary Safety Analysis

Purpose of Assessment

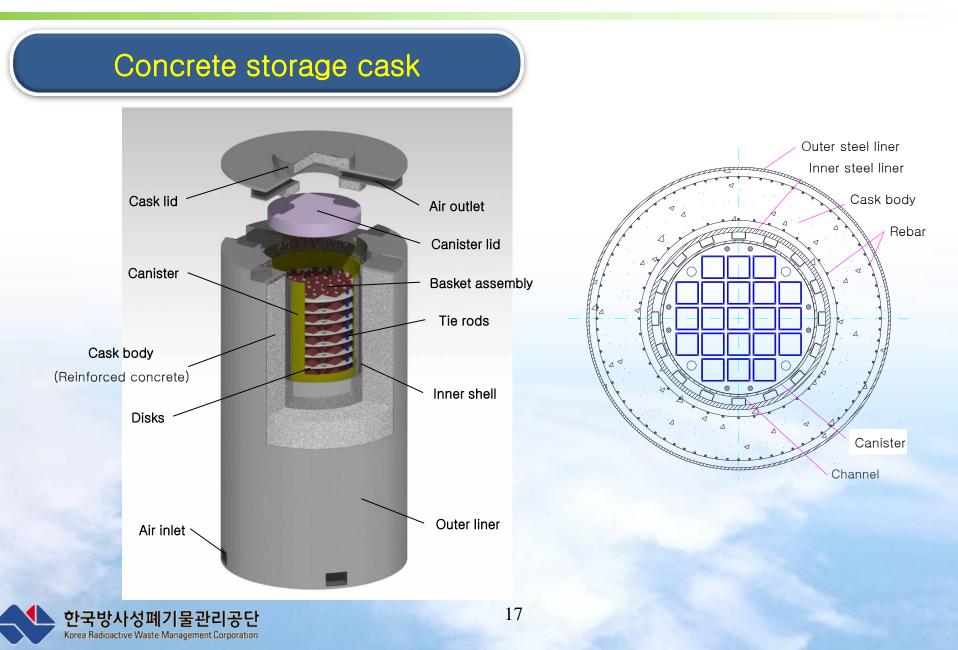
- ✓ An preliminary safety evaluation is performed on criticality/shielding/heat/structural of conservative conditions for improved models derived through optimization of systems
- Results on evaluations are applied to preparing detailed drawings and manufacturability evaluations



Dual-purpose Metal Cask

Items	Design features			
Storage capacity	– 21 PWR F/A(WH & CE)			
Dimension - Cask Body: O.D. 2,216 mm x 5,285 mm L - Canister : O.D. 1,686 mm x 4,880 mm L				
Total weight - Storage Cask: 105 ton (with Loaded Canister) - Canister: 33 ton (with Loaded Fuel)				
Material- Cask Body : Carbon Steel - Canister : Stainless Steel, BORAL(B4C + AI) or METAMIC				
Cooling	- Natural Cooling (Canister : Inert Gas)			

Dual purpose Metal Cask



Concrete storage cask

Items	Design features			
Storage capacity	- 21 PWR F/A(WH & CE)			
Dimension - Cask Body: O.D. 3,266 mm x 6,030 mm L - Canister : O.D. 1,686 mm x 4,880 mm L				
Total weight	 Storage Cask : 144 ton (with Loaded Canister) Canister : 33 ton (with Loaded Fuel) 			
Material- Cask Body : Concrete, Carbon Steel Lining - Canister : Stainless Steel, BORAL(B4C + AI) or METAMIC				
Cooling -Natural Cooling : Air Circulation System (4 Air Inlet and Outlet (Canister : Inert Gas / Helium)				

System safety evaluation

Occi	Items	2012								2013					
Goal		6	7	8	9	10	11	12	1	2	3	4	5		
	Criticality/Shielding Evaluation														
Metal cask (transport condition)	Heat Transfer Safety Evaluation														
	Structural Safety Evaluation (Including Handling Equipment)														
	Criticality/Shielding Evaluation														
Metal cask (storage condition)	Heat Transfer Safety Evaluation														
	Structural Safety Evaluation														
	Criticality/Shielding Design Safety Evaluation														
Concrete system	Heat Transfer Safety Evaluation														
	Structural Safety Evaluation (Transfer Cask, Handling Equipment)														
-	Evaluations for Metal Cask Manufacturability Evaluation Items														
	Manufacturing Process Development For Concrete Cask														
Evaluation/ Mockup	Manufacturing Test Models for Safety														

