Enclosure 3 ASME and Reactor Vessel & Internals Update (Redacted)

.

babcock & wilcox mPower, Inc., a Babcock & Wilcox company

generation

ASME Code Update & Reactor Vessel and Internals Overview

February 28, 2013 (Redacted Version)

© 2013 Babcock & Wilcox mPower, Inc. All Rights Reserved. This document is the property of Babcock & Wilcox mPower, Inc. (B&W mPower)

- Objectives
- ASME Code Update
 - Key Design Features Overview
 - Component Design perspective
 - Code cases
 - Systems Design perspective
 - 48 Month Fuel Cycle Impacts on Testing and Inspections
- Reactor Vessel Update
 - Changes to support arrangement
- Reactor Internals Update
 - Core Support
 - Upper Internals
 - CRDM update
 - FIV Testing and Evaluation
- Conclusions

2

Agenda

Objectives

3

- Update the NRC staff on B&W interactions with ASME Committees
- Provide an overview of key changes to the reactor vessel and internals design and testing plans

ASME Code Update

© 2013 B&W mPower Inc. All rights reserved.

4

Key Design Features Overview

а и на таки на на "Каки Славани

-31,500 14 PC 141,941 4 17327 4 14 PC 14

© 2013 B&W mPower Inc. All rights reserved.

B&W mPower[™] Reactor

B&W mPower Reactor

7

B&W mPower Reactor

Pressure Boundary

generation

Interactions with ASME

- mPower Reactor Overviews for ASME
 - Keep ASME informed of mPower reactor design
- Presentations
 - ASME Executive Committee on Strategy (8/11/11)
 - ASME 2011 SMR Symposium, Plenary Session (9/29/11)
 - ASME Section XI Committee (2/6/12)
 - ANSI-NIST NESCC Meeting (7/17/12)
- ASME Engagement
 - B&W mPower continues to increase participation on ASME Code committees
- Component Code Jurisdiction Established

Interactions with ASME (cont.)

- Anticipated Code Cases
 - Case N-782, Use of Code Editions, Addenda, and Cases Section III, Division 1
- Possible Code Cases
 - Case N-60-5, Material for Core Support Structures Section III, Division 1
 - Case N-62-7 Internal and External Valve Items, Classes 1, 2, and 3 Section III, Division 1
 - Case N-284-2 Metal Containment Shell Buckling Design Methods, Class MC Section III, Division 1
 - Case N-71-18, Additional Materials for Subsection NF, Class 1, 2, 3, and MC Supports Fabricated by Welding Section III, Division I
 - Case N-249-14 Additional Materials for Subsection NF, Class 1, 2, 3, and MC Supports Fabricated Without Welding Section III, Division 1

48 Month Surveillance Cycle

Background

- Regulations, Codes, Technical Specifications, etc. Stipulate a Variety of Periodic Surveillances – for Example:
 - Instrument Calibrations and Channel Checks
 - Condition (Parameter) Verifications
 - Component Operability Tests
 - Weld Examinations
 - Leak Rate Tests
 - System Functional Tests
 - Steam Generator Tube Inspections
- Current Outage Related Surveillance Frequencies Based on Standard 24-Month Fuel Cycle
- B&W mPower Reactor Designed for 48-Month Fuel Cycle

Applicable Requirements

- Technical Specifications
- ASME Section XI
- 10 CFR 50, Appendix J (Containment Leak Rate Testing)
- EPRI (Steam Generator Tube Inspection Guidelines)
- ASME O&M Code

Technical Specifications

- Safety Systems Surveillances
 - Instrument Channel Calibrations
 - Instrument Response Time Testing
 - Instrument Channel Functional Tests
 - Visual Inspections
 - Component Functional Tests
 - System Functional Tests
- Potential Path Forward

ASME Section XI

- Additional Surveillances
 - Pressure Boundary Visual and Non-Destructive Examinations
 - Component Support Visual and Non-Destructive Examinations
 - \Rightarrow Typically @ 100% / 10-Years
- Potential Path Forward

Containment Leak Rate Testing

- Containment Surveillances
 - Appendix J, Option A
 - Type A (Containment Integrated Leak Rate) = 3 / 10-Years
 - Types B & C (Local Leak Rate) = Each Refueling Shutdown, Not to Exceed 2 Years
 - Appendix J, Option B (Via RG 1.163)
 - Type A ≤ 10 Years, Following Two Consecutive Successful Tests
 - Type B ≤ 10 Years, Following Two Consecutive Successful Tests
 - Type C ≤ 5 Years, Following Two Consecutive Successful Tests
- Potential Path Forward

Steam Generator Inspection

Steam Generator Surveillances

- Typical Operating Plant Programs Are Based on Inspecting 33% of Tubes Every 24 EFPM or Each Refueling Outage (Whichever Occurs First), Such that 100% of Tubes Are Inspected Every 60 EFPM
- Current EPRI Guidelines for Replacement Steam Generators Require Inspection of 100% of Tubes at First Refueling Outage following SG Replacement (Within 18-24 EFPM of SG Replacement), then 100% of Tubes Sequentially Thereafter at 144, 108, 72 and 60 EFPM
- Potential Path Forward

ASME O&M

- Additional Surveillances
 - Pump and Valve Testing
 - Snubber Testing
 - Risk-Informed Inservice Inspections

 \Rightarrow Complex Frequency Specifications

Potential Path Forward

Conclusion

20

B&W mPower Reactor 48-Month Surveillance Cycle Is Consistent with Current Practice and Requirements, with Limited Exceptions:

- Some Standard TS 24-Month Intervals \Rightarrow 48-Months
- Some ASME O&M Code Changes (TBD)

Reactor Vessel Update

B&W mPower Reactor

22

Design Chara	acteristics
Reactor Type	PWR
Core Outlet	530 MWt
Reactor Height	
Reactor Diameter	13ft (At the Flanges)
Reactor Dry Weight	
Fuel Cycle	4 Years
Design Life	60 Years
RCP Quantity	8
Rail Shippable	Factory built

Reactor Component Breakdown

Lower Vessel

Lower Reactor Vessel Support

Vessel support arrangement [

- Improved ease of fabrication / cost reduction
- Improved ease of installation
- Preferable seismic responses
- Inclusion of additional [enables revised arrangement

Upper Reactor Vessel Support

Lower Reactor Vessel Support

© 2013 B&W mPower Inc. All rights reserved.

27

Reactor Internals Update

Reactor Component Breakdown

Core Support Structure

In-core Detector Testing

mPower Upper Internals

33

generation

mPower Control Rod Drive Mechanism Update

- [] Control Rod Drive Mechanism
 - 69 internal CRDMs, [] inches of stroke
- [] latching mechanism
- High temperature motor
- Lead screw [

• [

l

Overall Mechanism Fully Inserted

© 2013 B&W mPower Inc. All rights reserved.

1

35

Overall Mechanism Fully Withdrawn

© 2013 B&W mPower Inc. All rights reserved.

]

Latching System Fully Inserted - Disengaged]

[

1

Latching System Fully Withdrawn

© 2013 B&W mPower Inc. All rights reserved.

39

Latching System

Fully Scrammed

© 2013 B&W mPower Inc. All rights reserved.

40

• [

CRDM Program Status

CRDM Testing

4 4 4

42

CRDM Testing

ſ

© 2013 B&W mPower Inc. All rights reserved.

L

43

CRDM Testing[[]

@ 2013 B&W mPower Inc. All rights reserved.

- - n -², w man - e- ²

]

FIV Evaluation and Testing

© 2013 B&W mPower Inc. All rights reserved.

45

FIV Evaluation and Testing

FIV Evaluation and Testing Approach

- Conform to RG 1.20
- Design with FIV in mind
- Analytical evaluation
 - CFD prediction of velocity distribution
 - B&W FIV codes
 - Commercial structural codes + manual calculations
- Test Program
 - Test at increasingly prototypical conditions
 - Vessel model flow tests
 - FOAK reactor instrumentation
- Comprehensive program document is being written
- Generally, FIV is less an issue in mPower because of lower coolant velocities
- Plan to engage industry FIV experts

.

>

FIV Related Testing

- Integral Control Rod Drive Line (ICRDL)
 - Increasingly prototypical test conditions
- Vessel model flow tests
 - Primarily to validate CFD predictions
- FOAK Reactor Instrumentation
 - Accelerometers, strain gauges, etc. installed in first reactor for hot functional testing

ICRDL Test Program

ICRDL Test Program

Static Test Facility

Cold Flow Test Loop (CFTL)

51

Autoclave 3 Test Facility

Hot Flow Test Loop (HFTL)

Component Test Locations

Location	Testing	D/(
Barberton, OH • Cold Flow Test Loop • Small autoclaves • Vessel Model Flow • Hot Flow Test Loop (tentative)	 Penetrations / Connectors ICRDL Test Program Fuel assembly hydraulic testing In-core insertion testing 	Barberton, OH Euclid, OH
Euclid, OH • Large autoclaves (Air & Hot Tests)	 CRDM Motor and Latch ICRDL Test Program ICRDL life & wear testing Fuel assembly life & wear testing 	
Lynchburg, VA • Static Test Facility • Fuel Assembly mechanical test system • Instron & Fixtures	 ICRDL Test Program Fuel assembly and component mechanical testing Integrated Systems 	Lynchburg, VA
• CAER - Integrated System Testing (IST)	Operational simulations	

Vessel Model Flow Test (VMFT) Program

Lower Vessel Model Flow Test Program	•	ſ	uitial Planning Stage	Barberton Researc
				Center or Vendor
Upper Vessel Model Flow Test Program	•[nitial Planning Stage	Barberton Researc Center or Vendor
	REC			

B&W VMFT History

- B&W 177 and 205 VMFT facilities existed at the Alliance Research Center
- 1/6th geometrically scaled model of the B&W 177 and 205 PWRs
- 2-2,000 GPM pumps used giving a total flow capacity of 4,000 GPM @ a total head of 350 feet
- Extensive testing conducted: Gross Flow Distribution, Pressure Drop, FIV, Gross Mixing of Fluid Entering Core, Vent Valve Closing Forces
- Testing started ~1968 and ended ~1980
- Unit decommissioned after the B&W 205 program ended

generation

VMFT Focus Areas

Pump Plenum Area

- First of a Kind Design
- Verification of Computational Fluid Dynamic (CFD) model flow characteristics
- Verification of anticipated pressure drops in the area
 - Instrumentation type and location in vessel

Lower Vessel Assembly

- First of a Kind Design
- Verification of Computational Fluid Dynamic (CFD) model flow characteristics.
- Verification of anticipated pressure drops in the area
- Identification of areas of interest in regards to Flow Induced Vibrations (FIV)
- Instrumentation type and location in vessel

© 2013 B&W mPower Inc. All rights reserved.

Conclusions

- B&W ASME Interfaces Active and Focused
- Vessel and Internals Design Progress Progressing as Planned
- Key Testing has been Identified, Prioritized and Plans are Active