

Source: Reference 780

Figure 2.5.1-325 Kinematic Illustrations Showing Interactions of Septentrional and Northern Hispaniola Faults at Depth

(A) EAST OF 70° LONGITUDE

Note: Northern Hispaniola Thrust fault is equivalent to North Hispaniola Subduction Zone.

Notes:

EPGF = Enriquillo-Plantain Garden fault zone NHF-TB = Northern Hispaniola fold-thrust belt SF = Septentrional fault

Figure 2.5.1-329 Timeline of Regional Tectonic and Geologic Events

Sources: References 307, 368, and 639

Base Source: Reference 822 Source of world stress data: Reference 731

Base sources: Reference 435 Source of geologic information: Reference 827

Figure 2.5.1-332 Site Stratigraphy

ERATHEM	SYSTEM	SERIES	HYDRO- GEOLOGIC UNIT		STRATIGRAPHIC UNIT		LITHOLOGY	APPROXIMATE TOP ELEVATION (ft NAVD 88)	APPROXIMATE THICKNESS (ft)
CENOZOIC	QUATERNARY	HOLOCENE			organic muck		organic soil and silt	0	3
		PLEISTOCENE			Mi	ami Limestone	sandy, oolitic limestone	-3	25
			Surficial aquifer system	Biscayne aquifer	Key Largo Limestone		well indurated, vuggy, coralline limestone	-28	22
					Fort Thompson Formation		poor/well indurated fossiliferous limestone	-50	65
	ТЕКТІАКҮ	PLIOCENE		Semi-confining unit	Tamiami Formation		sand and silt with calcarenitic limestone	-115	105
		MIOCENE		liate confining unit	Hawthorn Group	Peace River Formation	silty calcareous sand and silt	formation contact base signa -220	ed on natural gamma ture 235
				Intermedi		Arcadia Formation	calcareous wackestone with indurated limestones, sandstone, and sand	- 4 55 drilling ended	>160 at -616.5 ft

Note: see Figures 2.5.1-338, 2.5.1-339, 2.5.1-340, and 2.5.1-341 for site geologic cross sections.

Figure 2.5.1-333 Vegetated Depressions Identified Within Site from Photographs Taken Before Construction of the Cooling Canal System

Note: Reconnaissance mapping performed using 1940s 1:40,000 scale panchromatic stereo aerial photography (Reference 386), but shown on 2004 imagery (Reference 435) of the Units 6 & 7 site for reference.

Base sources: References 829, and 435 Source of geologic information: Reference 827

Figure 2.5.1-335 Site Area Geologic Map

Base sources: Reference 435 Source of geologic information: Reference 219

Figure 2.5.1-336 Locations of Geologic Cross Sections

Figure 2.5.1-337 Surficial Deposits Map

Base sources: Reference 829 Source of geologic information: References 715 and 830

Figure 2.5.1-338 Geologic Cross Section A-A'

Figure 2.5.1-339 Geologic Cross Section B-B'

Note: The location of this cross section is shown on Figure 2.5.1-336.

Note: The location of this cross section is shown on Figure 2.5.1-336.

Figure 2.5.1-341 Geologic Cross Section D-D'

Note: The location of this cross section is shown on Figure 2.5.1-336.

Figure 2.5.1-345Geologic Hazards for Coastal Zones of Cuba

Modified from: Reference 742

Note: Sequence G (the shallow-water carbonate platform sampled at Site 627) is offset, while sequences A-F thicken across the fault trace, suggesting syn-sedimentary movement.

Modified from: Reference 785

Figure 2.5.1-347 Initiation of the Greater Antilles Arc and Collision with the Caribbean Oceanic Plateau

Notes:

A. Present-day distribution of Cretaceous to Recent island arc and late Cretaceous oceanic plateau crust in the Caribbean.

B. Mid-Cretaceous (Cenomanian) reconstruction of the Caribbean island arc and oceanic plateau

Notes:

A and B. Comparison of typical inundation distances, sediment-transport distances, and maximum water levels (indicated by height of wrack line) for deposition by tsunamis (A) and coastal storms (B) C. Composite characteristics of typical sandy tsunami and storm deposits

