Brunswick Units 1 and 2 MELLLA+ Implementation

Pre-Application Meeting January 08, 2013

Brunswick Units 1 and 2 MELLLA+ Implementation

- Duke Participants
 - John Siphers
 - Roger Thomas
 - Jeff Boaz
 - Bill Murray
 - Charles Stroupe (Presenter)

Agenda

- Introduction and Objectives
- MELLLA+ benefits for Brunswick (BSEP)
- Approach to fuel and plant licensing analysis strategy
- Approach to thermal hydraulic stability solution
- Approach to ATWS analysis
- Other MELLLA+ impacts
- Schedule
- Questions and answers

- Identify benefits of MELLLA+ for Brunswick (BSEP)
- Looking for feedback on specific aspects of MELLLA+ implementation that are unique to BSEP
 - Use of two vendors and mixed vendor methodology
 - Use of AREVA's approved Enhanced Option III (EO-III) methodology for stability
 - Sample problem for LAR will be mixed core (A10XM & A10)
 - No change to existing Containment Accident Pressure (CAP) credit
 - No impact on Annulus Pressurization (AP) Loads
 - Project schedule

Introduction and Objectives MELLLA+ overview

MELLLA+ benefits for **BSEP**

- MELLLA+ will increase the full-power flow window
 - Current MELLLA flow window is 5.5%; MELLLA+ will extend the flow window to 19.5%
 - MELLLA+ reduces the number of down powers and rod improvements required to manage reactivity
- Operation at MELLLA+ conditions requires ~70% fewer power maneuvers to facilitate rod improvements than at MELLLA minimizing required rod improvements
- MELLLA+ provides the opportunity to increase the Standby Liquid Control (SLC) system capability by increasing the B-10 enrichment

MELLLA+ benefits for **BSEP**

7

MELLLA+ benefits for **BSEP**

- Core performance margins maintained
- MELLLA+ will have minimal impact on core parameters
 - No loss of thermal limit margins (MFLCPR, MAPRAT, LHGR)

	MELLLA	MELLLA+
Core max radial peak	1.38 average 1.46 max	1.39 average 1.47 max
Core average void	49.1% average 51.8% max	47.7% average 52.9% max
Core max exit void	84.9% average 87% max	87.5% average 90% max
Average inlet subcooling	20.9 Btu/lb	24.2 Btu/lb

Fuel and plant licensing analysis strategy

- GEH generic M+ LTR process (NEDC-33006P-A) with GEH methodologies and analysis will address:
 - Non-fuel impacts
 - Long term ATWS and ATWS instability explicitly modeling A10XM fuel
- AREVA methodologies and analyses will address:
 - Fuel, core design, COLR fuel limits
 - ATWS overpressure (COTRANSA2)
 - Methods applicability to MELLLA+ (Report submitted as part of LAR)
- Duke Energy will address:
 - Integration of GEH and AREVA analyses
 - APRM and Enhanced Option III setpoints and implementation
 - Risk evaluation, procedure updates, operator training
 - Plant changes to mitigate ATWS (SLC B-10 enrichment increase)
 - Stability scram activation
 - Application of existing plant specific EPU analysis

9

Fuel and plant licensing analysis strategy

- MELLLA+ LAR to be based on current A10XM fuel type
 - GEH will analyze long term ATWS and ATWS-I by explicitly modeling an A10XM equilibrium core designed by AREVA
- MELLLA+ LAR sample problem and cycle application
 - B1C19 reload analysis report sample problem to be used in LAR; core comprised of 1 batch of A10XM with remainder A10
 - B1C21 reload analysis report cycle specific application; first Unit 1 MELLLA+ cycle with full core A10XM
 - B2C22 reload analysis report cycle specific application; first Unit 2 MELLLA+ cycle (implement mid-cycle with full core A10XM)
- The LAR will have proprietary information from both vendors appropriately marked to protect each vendors proprietary information

Fuel and plant licensing analysis strategy Preliminary Technical Specification changes

- TLO APRM flow biased STP scram line
 - Scram margin: expansion for M+ region; reduction for EO-III stability solution
 - Corresponding changes in flow biased rod block
 - Existing AL-AV-NTSP set-point margins maintained
 - Protect EO-III Channel Instability Exclusion Region (CIER) region
- Define MELLLA+ region, add EO-III to COLR methods
- New equipment OOS actions
 - FWHOOS, SLO and OPRM inoperable not allowed in MELLLA+
 - Exit MELLLA+ region within 12 hours for inoperable condition
- OPRM inoperable
 - Implement manual BSP regions in COLR (no change)
 - Exit MELLLA+ region within 12 hours; OPRM OOS or reduced FWT (new)
 - Automatic scram stability protection above BSP scram region (new protection)
- SLC B-10 enrichment increase

Thermal hydraulic stability solution

- Implement approved AREVA Enhanced Option III (EO-III)
- EO-III Algorithm same as Option III with additional channel instability protection
- EO-III has a Channel Exclusion SPT AL Line that will be protected via:
 - Setdown of flow biased APRM SCRAM NTSP
 - Setdown of flow biased APRM Rod Block NTSP
- Provides an automatic scram to protect the CIER after a 2RPT trip from MELLLA+ conditions
- Implemented via existing BSEP PRNM hardware

Thermal hydraulic stability solution Power flow map

ATWS analysis and mitigation Long term response

- BSEP EPU increased SLC B-10 enrichment to 47 atom percent
 - TS require two pumps in service, but
 - Single pump meets ATWS rule boron injection rate requirement
- Long term ATWS MELLLA+ margin improvement will be demonstrated with A10XM specific ODYN analyses
 - MELLLA+ rod line intercepts NC line post 2RPT ~20% higher in power
 - SLC B-10 enrichment increase to 92 atom percent (~2x increase)
 - SLC enrichment should offset MELLLA+ heat load increase
- No anticipated loss of margin with MELLLA+

ATWS analysis and mitigation Post depressurization

- NEDC-33006P-A Generic MELLLA+ LTR and SER: Best estimate TRACG or equivalent analysis of post depressurization ATWS required if HSBW not injected before shutdown/HCTL is reached
- BSEP has potential to inject HSBW before shutdown/HCTL
 - Increase SLC B-10 enrichment (47 to 92 atom percent)
- TRACG analysis will be performed if needed explicitly modeling A10XM fuel

ATWS analysis and mitigation Overpressure and instability

- ATWS instability
 - GEH will explicitly analyze the A10XM fuel for ATWS-I
- ATWS overpressure mitigation
 - Existing AREVA methodology will provide analysis of record
 - SRVOOS is supported for MELLLA+ (no change)
 - Analysis will apply 95/95 SRV upper setpoint tolerance
 - Different than the TS requirement
 - Based on plant performance
- No deviation from MELLLA+ LTR

MELLLA+ Impact Containment Accident Pressure (CAP)

- Brunswick MELLLA+LAR will not request any new or additional CAP credit relative to the current approved EPU licensing basis as described in SECY-11-0014
- Brunswick MELLLA+ implementation will have no adverse impact on CAP margin
 - No impact on LOCA CAP (NEDC-33006P-A NRC SER Section 4.2.6)
 - BNP takes no CAP credit for short term LOCA with some credit for long term LOCA
 - No impact on Appendix R CAP (NEDC-33006P-A NRC SER Section 4.2.6)
 - No impact on SBO CAP (NEDC-33006P-A NRC SER Section 4.2.6)
 - Expected improved ATWS CAP margin due to SLC B-10 enrichment upgrade
- New results will be compared to existing to show bounded
- No requirement that additional uncertainty be applied to ECCS NPSH calculations i.e,. 21% uncertainty in SECY-11-0014 will not be used

MELLLA+ Impact Annulus Pressurization (AP) Loads Impact

• BSEP has a Mark I containment

- Current Licensing Basis:
 - BSEP analyzed two breaks: feedwater and recirc suction line
 - Recirc guards were installed to mitigate limiting recirc suction line break
- MELLLA+ does not impact AP loads
- Existing licensing basis will be maintained

Project schedule

Summer 2014 MELLLA+ LAR submittal (both Units) B1C19 sample problem with A10XM B1C21 cycle specific application results to NRC Fall 2015 First planned MELLLA+ cycle ٠ Spring 2016 MELLLA+ requested approval (both Units) **MELLLA+** implementation BNP1 – During B1C21 refueling outage Spring 2016 ٠ BNP2 – Online implementation during B2C22 Summer 2016 ٠

- Looking for feedback for unique BSEP specific aspects of MELLLA+ implementation
 - Use of two vendors and mixed vendor methodology
 - Use of AREVA's approved Enhanced Option III (EO-III) methodology for stability
 - Sample problem for LAR will be mixed core (A10XM & A10)
 - No change to existing Containment Accident Pressure (CAP) credit
 - No impact on Annulus Pressurization (AP) Loads
 - Project schedule
- Plan on sharing results of ongoing analyses during an interim update (Summer 2013)

BSEP Units 1 and 2 MELLLA+ Implementation

Questions?

Selected Acronyms

- AL Analytical Limit
- AP Annulus Pressurization
- APRM Average Power Range Monitor
- ATWS Anticipated Transient Without Scram
- AV Allowed Value
- **BSP Backup Stability Protection**
- CAP Containment Accident Pressure
- CIER Channel Instability Exclusion Region
- ECCS Emergency Core Cooling System
- EO-III Enhanced Option III
- EPU Extended Power Uprate
- FWHOOS Feedwater Heater Out Of Service
- FWT Feedwater Temperature
- HCTL Heat Capacity Temperature Limit

- HSBW Hot Shutdown Boron Weight
- MELLLA Maximum Extended Load Line Limit Analysis
- NC Natural Circulation
- NPSH Net Positive Suction Head
- NTSP Nominal Trip Setpoint
- PRNM Power Range Neutron Monitor
- SBO Station Black Out
- SLC Standby Liquid Control
- SLO Single Loop Operation
- SPT Stability Protection Trip
- STP Simulated Thermal Power
- TLO Two Loop Operation
- 2RPT Two Recirculation Pump Trip

