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ABSTRACT 
 
Today’s emergent computer technology has introduced the capability of integrating information 
from numerous plant systems and supplying needed information to operations personnel in a 
timely manner that could not be envisioned when previous generation plants were designed and 
built.  For example, Small Modular Reactor (SMR) plant designs will make extensive use of 
computer based I&C systems for all manner of plant functions, including safety and non-safety 
functions.  On the other hand, digital upgrades in existing light water reactor plants are 
becoming necessary in order to sustain and extend plant life while improving plant performance, 
reducing maintenance costs of aging and obsolete equipment, and promoting prognostic system 
monitoring and human machine interface (HMI) decision making. 
 
The extensive use of digital instrumentation and control systems in new and existing plants 
raises issues that were not relevant to the previous generation of analog and rudimentary digital 
I&C systems used in the 1970’s style plants.  These issues include the occurrence of unknown 
failure modes in digital I&C systems and HMI issues.  Therefore, digital system reliability/safety, 
classification of digital I&C system failures and failure modes, and software validation remain 
significant issues for the Light Water Sustainability and SMR initiatives and the digital I&C 
system community at large. 
 
The purpose of the research described in volume 1 thru volume 4 is to help inform the 
development of regulatory guidance for digital I&C systems and potential improvement of the 
licensing of digital I&C systems in NPP operations.  The work described herein presents; (1) the 
effectiveness of fault injection (as applied to a digital I&C system) for providing critical safety 
model parameters (e.g., coverage factor) and system response information required by the PRA 
and reliability assessment processes, (2) the development and refinement of the methodology 
to improve applicability to digital I&C systems, and (3) findings for establishing a basis for using 
fault injection as applied to a diverse set of digital I&C platforms. Some of the specific issues 
addressed in Volume 1 are: 
 
 Fault Injection as a support activity for PRA activities. 
 Development of the UVA fault injection based methodology. 
 Fault models for contemporary and emerging IC technology in Digital I&C Systems. 
 Requirements and challenges for realizing Fault Injection in Digital I&C systems.  
 Solutions to challenges for realizing fault injection in digital I&C systems. 
 
Volume 1 presents the findings of developing a fault injection based quantitative assessment 
methodology with respect to processor based digital I&C systems for the purpose of evaluating 
the capabilities of the method to support NRC probabilistic risk assessment (PRA) and review of 
digital I&C systems.  Fault injection is defined as a dependability validation technique that is 
based on the realization of controlled validation experiments in which system behavior is 
observed when faults are explicitly induced by the deliberate introduction (injection) of faults into 
the system [Arlat 1990].  Fault injection is therefore a form of accelerated testing of fault 
tolerance attributes of the digital I&C system under test.   
 
Volumes 2 and 3 of this research present the application of this methodology to two 
commercial-grade digital I&C system executing a reactor protection shutdown application. 
 
In Volumes 2 and 3, the research identified significant results related to the operational behavior 
of the benchmark systems, and the value of the methodology with respect to providing data for 
the quantification of dependability attributes such as safety, reliability, and integrity.  By applying 
a fault injection-based dependability assessment methodology to a commercial grade digital 
I&C, the research provided useful evidence toward the capabilities and limitations of fault 
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injection-based dependability assessment methods with respect to modern digital I&C systems. 
The results of this effort are intended to assist NRC staff determine where and how fault 
injection-based methodologies can best fit into the overall license review process. 
 
The cumulative findings and recommendations of both applications of the methodology and 
application of the generalized results to broader classes of digital I&C systems are discussed in 
volume 4. 
 
The digital I&C systems under test for this effort, herein defined as Benchmark System I and 
Benchmark System II, are fault tolerant multi-processor safety-critical digital I&C systems typical 
of what would be used in a nuclear power plant 1-e systems.  The benchmark systems contain 
multiple processing modules to accurately represent 4 channel or division 2 out of 4 reactor 
protection systems.  In addition, the systems contain a redundant discrete digital input and 
output modules, analog input and output modules, inter-channel communication network 
modules, other interface modules to fully represent and implement a Reactor Protection 
System.  The application Reactor Protection System software was developed using the 
benchmark systems software development and programming environments. 
 
To establish a proper operational context for the fault injection environment a prototype 
operational profile generator tool based on the US NRC systems analysis code TRACE 
[NRC 2011] was developed.  This tool allowed generation of realistic system sensor inputs to 
the Reactor Protection System (RPS) application based on reactor and plant dynamics of the 
simulated model.  In addition, the tool allowed creation of accident events such as large break 
LOCAs, turbine trips, etc., to stress the RPS application under the various design basis events. 
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FOREWORD 
 
As discussed in the NRC Policy Statement on Probabilistic Risk Assessment (PRA), the NRC 
intends to increase its use of PRA methods in all regulatory matters to the extent supported by 
state-of-the-art PRA methods and data.  Currently, I&C systems are not modeled in PRAs.  As 
the NRC moves toward a more risk-informed regulatory environment, the staff will need data, 
methods, and tools related to the risk assessment of digital systems.  Fault injection methods 
can provide a means to estimate quantitatively the behavior model parameters of the system.  
The quantification of these parameters (in a probabilistic sense) can be used to produce more 
accurate parameter estimates for PRA models, which in turn produces more a accurate risk 
assessment to inform the risk oversight process. 
 
A challenge for evaluating system reliability relates to relatively undeveloped state of the art 
methods for assessing digital system reliability.  Quantitative measures of digital system 
reliability are available for digital system hardware, but procedures for evaluating system level 
reliability (both hardware and software) are not well defined in current industry literature.  
However, comprehensive use of fault injection techniques for providing critical data toward 
evaluating digital system dependability may reduce software reliability uncertainties. 
 
The conduct of fault injection campaigns often yields more information than just quantifying the 
fault tolerance aspects of a system; it also is a means to circumspect and comprehend the 
behaviors of complex fault tolerant I&C systems to support overall assessment activities for both 
the developer and the regulator.  Fault injection experiments cannot be performed without 
gaining a deeper understanding of a system.  The process itself is a learning experience, 
providing richer insights into how a system behaves in response to errors arising from system 
faults.  The inclusion of fault injection information into review processes and PRA activities can 
enlighten the review processes of digital I&C systems.  Finally, the process of conducting fault 
injection testing allows two very important pieces of information to come into direct connection 
with each other: what the system is supposed to do, and what it actually does.  This information 
is essential for anticipating system behaviors, performing verification and validation (V&V) 
activities, and conducting methodical system evaluations. 
 
This report describes an important step toward developing a systematic method of evaluating 
digital system dependability.  Volume 1 presents a broad and in-depth development of a digital 
system dependability methodology, and the requirements and challenges of performing fault 
injections on digital I&C systems.  The process developed in this research project was applied 
to two digital systems that modeled nuclear power plant safety functions.  The results of this 
phase of the research are described in volume 2 and volume 3.  The cumulative findings and 
recommendations of both applications of the methodology and application of the generalized 
results to broader classes of digital I&C systems are discussed in volume 4. 
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1. INTRODUCTION 

1.1. Background 

This report is volume 1 of a multi-volume set of reports that present the cumulative efforts, 
findings, and results of U.S. Nuclear Regulatory Commission (NRC) contract JCN N6124 – 
“Digital System Dependability Performance”.  The reports are organized as follows: 
 
Volume 1 – Presents a broad and in-depth development of the methodology, the requirements 
and challenges of realizing fault injection on digital instrumentation and control (I&C) systems. 
 
Volume 2 – Presents the application of the methodology to Benchmark System I. 
 
Volume 3 – Presents the application of the methodology to Benchmark System2- employing the 
lessons learned from Benchmark System I. 
 
Volume 4 – Presents the cumulative findings and recommendations of both applications of the 
methodology and generalizes the results to broader classes of digital I&C systems. 

1.2. Purpose 

This report (Volume 1) presents the findings of developing a fault injection-based quantitative 
assessment methodology with respect to processor-based digital I&C systems for the purpose 
of evaluating the capabilities of the method to support NRC probabilistic risk assessments 
(PRAs).  Another purpose of this work is to help inform the development of regulatory guidance 
processes for digital I&C systems and potential improvements of the licensing process for digital 
I&C systems in nuclear power plant (NPP) safety systems. The work described herein broadly 
presents: (1) a theory and methodology for fault injection (as applied to a digital I&C system), 
(2) the usefulness of providing critical parameters and information required by the PRA and 
reliability assessment processes, (3) the challenges to applying a fault injection method to 
contemporary digital I&C systems, and (4) the findings for addressing these challenges and 
establishing a basis for implementing fault injection for digital I&C platforms. 

1.3. Background and Motivation 

Given the revitalization of the nuclear power industry in this country, there is near uniform 
agreement in the nuclear industry that significant technology and production challenges must be 
addressed to enable e3fficient construction of new plants and refurbishment of existing plants. 
These challenges are largely being driven by the need to extend the life of current operating 
NPPs by an additional 20 to 30 years (up to 60 years total plant life) to meet projected energy 
consumption demands while new plants are constructed and licensed to operate [Energy 2011]. 
 
Next generation NPPs and modernized plants will be fundamentally different from their 
predecessors.  Today’s emergent computer technology has introduced the capability of 
integrating information from numerous plant systems and supplying needed information to 
operations personnel in a timely manner that could not be envisioned when previous generation 
plants were designed and built.  At present, numerous versions and different types of new 
advanced digital I&C systems are in the regulatory licensing application process. However, with 
the introduction of software-based and hardware description language-based I&C systems for 
NPP control and monitoring, new human-machine integration, potential digital failure mode 
issues have arisen that could adversely affect safety and security [Committee 1997].  However, 
the need for these digital I&C systems to be as dependable as their predecessors across a wide 
spectrum of threats, faults, and failures to ensure public safety is of the utmost importance. 
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In recent years, significant effort has gone into improving safety critical system design 
methodologies, assessment methods, and the updating of regulatory industry standards and 
NRC regulatory guidelines to ensure that digital I&C systems can be designed and assessed to 
the high safety requirement levels required for highly critical applications. Of particular interest 
recently are quantitative dependability assessment methodologies that employ fault injection 
methods to ensure proper compliance of digital I&C system fault handling mechanisms [Arlat 
1990(a); Yu 2004; Smith D., 2000; Elks 2009(a); Aldemir 2007; Smidts 2004]. The goal of a 
dependability assessment methodology is to provide a systematic process for characterizing the 
safety and performance behavior of embedded systems (e.g., digital I&C systems) in the 
presence of faults. 
 
Dependability evaluation involves the study of failures and errors and their potential impact on 
system attributes such as reliability, safety, and security. Very often the nature of failures or 
crashes and long error latency often make it difficult to identify the causes of failures in the 
operational environment. Thus, it is particularly hard to recreate a failure scenario for large, 
complex systems just from failure logs alone. To identify and understand potential failures, the 
use of an experiment-based or measurement based approach for studying the dependability of 
a system is gaining acceptance in the nuclear industry for better understanding the effects of 
errors and failures to promote an informed understanding of risk. Such an approach is useful not 
only during the concept and design phases, but also during licensing review activities. 
 
From a practical point of view, most digital I&C systems are designed to be safety critical 
employing extensive fault detection/tolerance and design diversity features to ensure proper fail 
operational and fail safe behavior in the event of a system failure.    For example, Fault 
Detection, Isolation, and Mitigation (FDIM) software or online diagnostic functions of the 
benchmark systems in this research effort account for as much as 40 to50 percent of the 
executable system software code [Barton 1990; Palumbo 1986; Young 1989].  This code is 
rarely exercised in the real world because faults and failures are an infrequent occurrence.  This 
FDIM code is vital toward system dependability and safety compliance, and can only be 
effectively tested and validated by realistic fault injection campaigns. 

1.4. Relevance of Research with Respect to Regulatory Guidance 

The NRC has created (and continues to improve) a comprehensive set of regulatory guidelines 
for reviewing and assessing the safety and functionality of digital I&C systems. The NRC PRA 
technical community has not yet agreed on how to model digital system reliability in the context 
of a PRA and the level of detail that digital I&C systems require in reliability modeling. It is clear 
that PRA models must adequately represent the complex system interactions that can 
contribute to digital system failure modes.  Nonetheless, the essential research aim of the PRA 
technical community is to accurately model digital I&C systems behaviors that take into account 
interactions of the system, fault handling behaviors, coverage of fault tolerance features, and 
the view of the system as a integrated software and hardware system. 
 
A central part of this framework is Appendix B to Title 10 of the Code of Federal Regulations 
(CFR) Part 50 (10 CFR 50).  The purpose of Appendix B is to establish broad quality assurance 
requirements for the design, development, and operation of systems, and components whose 
operation is deemed critical to the safe operation of nuclear power plants. The pertinent 
requirements of this appendix apply to all activities affecting the safety related functions of those 
systems, and components. In support of Appendix B 10 CFR 50 are Regulatory Guide 
(RG) 1.153, RG 1.152 and RG 1.168, which endorse the Institute of Electrical and Electronics 
Engineers (IEEE) standards  IEEE Std 603, IEEE Std 7-4.3.2, and both IEEE Std 1012 and 
IEEE Std 1028, respectively, as a basis for compliance to regulatory requirements for software 
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based systems.  NUREG-0800 Section 7 describes the standard review plan criteria for safety 
analysis reports with respect to digital I&C systems.  Taken all together, these laws, guidelines 
and reports establish the criteria for review of the applicant/licensee's testing, analysis, and 
technical justification documents for installing a safety-related digital I&C system into a plant. 
Importantly, the applicant must show that the I&C system design, including the underlying 
design bases and performance requirements, can perform appropriate safety functions in the 
presence of normal and off normal operating conditions (including faulted and failure behavior of 
the I&C system).  For example, IEEE Std 603-1991 contains the criteria for determining the 
continued functioning of safety systems in the presence of faults: 
 

“The methods to be used to determine that the reliability of the safety system 
design are appropriate for each safety system design and any qualitative or 
quantitative reliability goals that may be imposed on the system design.” 
 
Clause 5.1 Single-Failure Criterion. The safety systems shall perform all safety 
functions required for a design basis event in the presence of:  
(1) any single detectable failure within the safety systems concurrent with all 
identifiable but non-detectable failures;  
(2) all failures caused by the single failure; and  
(3) all failures and spurious system actions that cause or are caused by the 
design basis event requiring the safety functions.  
 
The single-failure criterion applies to the safety systems whether control is by 
automatic or manual means. . . . 

 
Fault injection as part of a quantitative assessment process is a robust testing process that can 
support verification and validation and question and answer activities to gather evidence that the 
I&C system can perform its safety functions in the presence of faulted and failure conditions, 
which would be in direct compliance with IEEE Std 603-1991.  In addition, those aspects of 
appendix B of 10CFR50, NUREG-0800 and other relevant guidelines that address requirements 
for testing processes, methods and evidence to support safety function operational 
effectiveness are clear candidates for the application of fault injection methods. Fault injection is 
a formal-based process to collect evidence to gauge the dependability of safety functions 
associated with I&C systems, that has an underlying mathematical theory (with explicitly stated 
assumptions), which allows one to place stronger justification or refutation to the claims of the 
overall design and safety of the I&C system. 

1.4.1. Relationship to NRC Research Activities 

The research conducted under this contract was performed with consideration of previous and 
on-going research efforts related to the safety and reliability assessment of digital I&C systems.  
Accordingly, the research effort was attentive of complementary research efforts and how those 
efforts could benefit from the work accomplished through this effort. Specifically, the 
researchers recognized that the products developed from this research had the potential to be 
used in other research efforts.  Therefore researchers thus endeavored to catalog research 
findings in way that promoted broader relevance and helpful information for other research 
efforts. 

1.4.2. Research Objectives 

The overall objective of this work was to develop a body of evidence to inform the development 
of regulatory guidance processes for digital I&C systems and potentially improve the licensing 
process of digital I&C systems in NPP operations. In support of this objective the research 
investigated the effectiveness of fault injection (as applied to digital I&C systems) for providing 
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critical parameters and information required by PRA and reliability assessment processes. The 
results and findings of this effort are aimed at assisting NRC staff determine when, where and 
how fault injection based methodologies can best fit in the overall license review process.  
The major goals of the research effort are listed below: 
 
Objective 1 
Demonstrate the effectiveness of the University of Virginia quantitative safety assessment 
process on commercial safety grade I&C systems executing reactor protection applications with 
respect to a simulated NPP safety system design.  
 
Objective 2 
Identify, document, and develop improvements to the process that make it easier and more 
effective to apply to a wider spectrum of digital I&C systems.  Document the limitations, 
sensitive assumptions, and implementation challenges that would encumber the application of 
fault injection processes for digital I&C systems. 
 
Objective 3 
Document the quantitative and qualitative results that can be obtained through application of the 
assessment process, and provide the technical basis upon which NRC can establish the 
regulatory requirements for safety-related digital systems, including the acceptance criteria and 
regulatory guidance documents. 
 
Secondary Objective 1 
Assess the level of effort and cost for implementing fault injection capability in a vendor or 
licensee environment. 
 
Secondary Objective 2 
Identify and develop innovative fault injection methods that would make fault injection more 
efficient and easier to adopt by NRC and the nuclear industry. 
 
The scope of this work is targeted at safety critical digital I&C systems, but applies to non-safety 
related systems as well.  The target benchmark systems were configured to be representative of 
a four-channel Reactor Protection System (RPS) system, but were limited in a scale due to 
budget constraints on equipment availability. Therefore, the systems lacked some redundant 
hardware modules that would normally be found in an actual RPS.  The overall complexity and 
configuration of the system was sufficient to stress the methodology, which was the objective of 
the research effort.  The specific benchmark system data results obtained from the study should 
be interpreted with respect to the benchmark system configuration described in this report 
unless otherwise stated. 
 
In addition, the methodology that was developed and applied in this research effort is part of a 
larger comprehensive assessment and review process, and is not intended to be interpreted as 
a “replacement” for existing processes. Rather the methodology is viewed as a complementary 
method to support existing and emerging design assurance and license review processes in an 
effort to establish more efficient, repeatable and objective design assessment and review 
processes. 

1.4.3. Scope of Study 

Fault injection-based methodologies are but one part of a comprehensive process of estimating 
the reliability of digital systems (hardware and software) for the purpose of PRA applications.  
From the highest level perspective, the essential pieces of information needed for reliability 
estimation are (1), the knowledge of the likelihood of faults (software or hardware) and (2) the 
consequence of activating these faults in the system context.  Fault injection methods are most 
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useful in characterizing system responses to activated faults - the second requirement.  That is, 
providing empirical knowledge on the triggering, detection, tolerance, and propagation of errors 
due to software (SW) or hardware (HW) faults in the system.  How a digital I&C system 
responds to faults and mitigates faults are essential elements for accurate system reliability 
modeling.  As such, the methodology developed and presented here is aimed at providing 
empirical data in support of estimating system fault response data, such as fault detection, error 
propagation, fault latency, timing delays, etc. 

1.5. Project Organization and Timeline 

This project was carried out in three phases.  The first phase, which is principally reported in this 
volume developed and refined the methodology so that it could be applied to the benchmark 
systems.  The second phase of the work applied the methodology to the first benchmark system 
based on the recommendations and plan of action from the first phase of the work.  The third 
and final phase of the work applied the methodology to a second benchmark system based on 
the lessons learned from the first and second phase of the work.  Figure 1-1 shows the 
progression of this effort through the lifecycle of the project. 
 

Figure 1-1 Phases and activities of the research effort 

1.6. Organization of this Report 

This report is intended to provide a contemporary and comprehensive perspective on fault 
injection for digital I&C systems.  In addition, this report also provides a broad and deep 
perspective on fault injection with specific focus on digital I&C systems. This report is organized 
around three main themes: (1) concepts of dependable systems, (2) theory of fault injection with 
respect to digital I&C systems, and (3) fault injection-based assessment methodology issues 
and challenges.  Each Section builds on and connects to previous Sections.  Sections 1, 2 and 
3 provide a broad and deep foundation for understanding the concepts of fault injection with 
respect to digital I&C systems. Section 4 presents a detailed overview of the proposed 
methodology prior to the outset of this research.  Section 5 presents an in-depth survey and 
characterization of the state of the art in fault injection practices.  Section 6 describes the digital 
I&C benchmark systems to be used in this study.  Section 7 presents lessons learned from 
previous research efforts on fault injection.  Section 8 identifies the challenges and issues with 
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implementing a fault injection process on digital I&C systems, and provides recommendations 
for resolving the challenges. 

1.7. Concepts 

This section introduces the basic concepts needed to understand the context of this research. 
These concepts include overview of modern digital I&C systems, definitions, safety metrics, and 
an overview of fault injection principles.  

1.7.1. Digital and Computer Based I&C Systems: Overview 

In order to provide relevance beyond the benchmark systems that were evaluated, the research 
developed a generic representation of an I&C system based on the evaluation of several current 
digital I&C systems being proposed for new reactor applications and the emerging technologies 
that may be used in new I&C systems.  The characterization that seemed most suitable is 
illustrated in Figure 1-2. 
 

 

Figure 1-2 Generic digital I&C system architecture model 

Modern digital I&C systems characteristic of the systems addressed in this research are neither 
strict embedded systems nor general purpose computing platforms.  Rather, these systems fall 
into a special class of embedded computing platforms called adaptive or configurable 
embedded computing.  That is, the hardware and software architectural elements of the 
platform allow the architecture to be tailored to specific constraints of the application domain.  
To achieve such flexibility the architecture may trade-off attributes such as optimal performance, 
simplicity, and cost with respect to a fully custom embedded system.  Most I&C systems being 
considered for NPP applications fall into this class of systems.  Figure 1-2 illustrates several 
important concepts of modern I&C systems, specifically: 
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(1) Application adaptive functionality: Configurable to different plant designs, ability to 
change parameters and programming to optimize performance and safety. 

 

(2) Layered Architecture: Separation of Application independent functions and Application 
dependent functions. 

 

(3) Intra-communication and inter-communication functionality to facilitate integration of I&C 
system operational information to other plant systems and personnel. 

 

(4) Redundancy and diversity to support fail-safe operation and/or degraded operation in the 
presence of faults and failures. 

 

(5) Interfaces and sub-systems to support health monitoring of I&C operations and system 
behavior. 

 

(6) Interfaces to support operator monitoring and actions. 
 
Digital I&C systems are used in NPP systems such as safety systems, plant process control 
systems, monitoring systems, data communication systems, and sensor processing systems.  
The digital I&C systems depicted in Figure 1-2 serve a variety of functions within NPP 
operations.  The generic digital I&C architecture provides a mapping of function to form, and 
implementations to realize the functionality. 
 
The wide range of uses illustrates that digital I&C systems are not just characterized by their 
internal form and function, but also by their interaction context with the environment in which 
they operate.  Context is important.  These types of systems may interact with other systems 
through communication systems and may indirectly interact with other systems through plant 
dynamics.  Context establishes the basis for what a system is supposed to do, and what a 
system is not supposed to do.  Context establishes the basis for what reasonable assumptions 
should be made concerning the assessment of a digital I&C system and what relevant 
conclusions can be made from the assessment process.  The research described in this report 
strived to keep this principle in mind as the methodology was developed and tested. 
 
Another overarching aspect of modern digital I&C systems (and embedded systems) is their use 
of programmable elements throughout the design and implementation.  Traditionally, embedded 
systems were viewed from two perspectives: the software and the hardware.  This perspective 
is largely driven by the development processes that realize the functionality of the system.  
Software enables the system to perform its intended functionality in the context of its 
environment.  Hardware provides the necessary programmability to allow software to be flexible 
to different applications.  Neither view by itself is representative of actual behavior. 
 
Software does nothing without hardware to animate it.  Hardware is just an organization of 
digital functions and signals.  The digital I&C system should be viewed from a unified 
perspective, seeing software and hardware not as completely different domains but rather as an 
integrated system to achieve a purpose that is more representative of the functionality that the 
I&C system implements. 
 
This unified view of I&C systems is often represented at the object code level or register transfer 
level (RTL) in digital I&C systems. It is here that the interactions of software and hardware take 
place.  This is an important concept because the failure of a hardware function can adversely 
affect the functionality and reliability of the software relying upon that function.  In like manner, a 
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design flaw in a software function or improper programming can produce different errors or 
failures depending on the hardware architecture and organization.  Digital I&C assessment 
methodologies, therefore, should be flexible enough to allow this multi-level view of the 
application. 
 
Recent trends in digital technology advances have strengthened this integrated view to the point 
where there is less distinction between software and hardware.  Integrated circuit and 
microelectronic capacities have increased to the point that both software processors and 
custom hardware now commonly coexist on a single integrated circuit (IC) package – these 
Systems on a Chip (SoC) have become very common.  This is particularly true of field 
programmable gate array (FPGA) technology in which embedded processor cores, network and 
bus protocol engines, analog-to-digital and digital-to-analog conversions, and memory 
management functions are often mapped into a single FPGA structure.  FPGA and SoC 
technologies are hardware that act like software.  Users can change the hardware organization 
at any time during the design, development, and field operation of FPGAs to meet the changing 
needs of the customers.  This technology is already finding its place in digital I&C systems – as 
both digital I&C systems used in this research effort employed FPGA technology. 

1.7.2. Concepts of Dependable Systems 

This section provides informative background discussions on the concepts of dependable 
systems.  Dependable systems concepts developed by [Avizienis 2004] are widely recognized 
as a standard for understanding the concepts of critical system attributes.  This report adopts 
the concepts of the Avizienis 2004] model of dependability to provide consistent terminology 
when discussing faults, errors, and failures with respect to digital I&C systems.  A review of the 
[Avizienis 2004] paper provides a more detailed appreciation of the topic.  A dependable real-
time system has the ability to provide its intended, expected and agreed upon functions, 
behavior, and operations in a correct timely manner [Avizienis 2004].  The  alternate definition is 
the ability  to avoid  service  failures  that  are more  frequent and more  severe  than  is 
acceptable. 

1.7.2.1. System Function, Behavior, Structure, and Service 

In dependability theory, a system is defined as an entity that interacts with other entities, i.e. 
other systems, including hardware, software, humans, and the physical world.  Digital I&C 
systems in NPPs perform these interactions to control, monitor, and actuate plant systems.  
These interactions with other systems are the environment or the context of a given system.  
The border between the system and its environment is the system boundary or common 
interface. 
 
Digital I&C and communication systems are often characterized by fundamental properties: 
functionality, performance, safety, reliability, security, and cost.  The function of a system is 
what the system is intended to do and is described by the functional specification in terms of 
functionality and performance.  The behavior of a system is what the system does to implement 
its function and is described by a sequence of states.  The total state of a system is the 
following set of the states: computation, communication, stored information, interconnection 
(e.g., inputs and feedback), and physical condition.  As discussed in Section 1.7.1, the structure 
or composition of a digital I&C system is what enables it to generate behaviors 
 
The service delivered by a digital I&C system is its behavior as it is perceived by its user(s); a 
user is another system that receives service from the given digital I&C system.  The delivered 
service is a typically a sequence of information in the form of commands, state status, and 
requested information (e.g., sensor data).  A system  may sequentially or simultaneously be 
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giving and receiving with respect to another system (i.e., deliver service to and receive service 
from the other system). 

1.7.2.2. The Attributes of Dependable Systems 

The attributes of dependable systems are the primary means by which the quantitative and 
qualitative requirements of a system are specified.  Following are some basic terms and 
concepts related to dependable system attributes as used in this report: 
 
 Definition 1: Reliability, a conditional probability that the system will perform correctly 

throughout the interval [t0, t], given the system was performing correctly at time t0 
[Johnson 1989], which is related to the continuity of service. 

  
 Definition 2: Availability, a probability that a system is operating correctly and is 

available to perform its functions at the instant time, t  [Johnson 1989], which is related 
to readiness for usage. 

  
 Definition 3: Safety, a probability that a system will either perform its functions correctly 

or will discontinue its functions in a manner that does not disrupt the operation of other 
systems or compromise the safety of any people associated with the system [Johnson 
1989], which is related to the non-occurrence of catastrophic consequences on the 
environment. 

  
 Definition 4: Integrity: absence of improper system alterations [Johnson 1989]. 
  
 Definition 5: Maintainability:  ability to undergo modifications and repairs [Johnson 

1989]. 

1.7.2.3. Impairments to Dependability 

Faults, errors, and failures affect the ability of a system to deliver its dependability attributes 
(e.g., safety, reliability, performance, etc.).  Hence, they are called the impairments of 
dependability. 
 
Correct service is delivered when the service accurately reflects the system function.  A service 
failure, abbreviated here to failure, is an event that occurs when the delivered service deviates 
from correct service.  A failure is either because the service does not comply with the functional 
specification, or because this specification did not adequately describe the system function.  A 
failure is a transition from correct service to incorrect service (i.e., not implementing the system 
function).  The deviation from correct service may assume different forms that are called failure 
modes. 
 
Since  delivered service is a sequence of the digital I&C system states, a service failure means 
that at least one (or more) external state of the system  deviates from the correct service state.  
The deviation is called an error.  Error propagation occurs when an error is successively 
transformed into other errors through execution of functions on the digital system, (e.g., errors 
from component A propagate to component B when it receives information from component A).  
At this time, service delivered by A to B becomes incorrect, and the ensuing service failure of A 
appears as an external fault to B and propagates the error into B via its use interface.  A service 
failure occurs when an error is propagated to the system interface and causes the service 
delivered by the system to deviate from correct service. 
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The cause of an error is called a fault.  Faults can be internal or external to a system.  A fault is 
active when it produces an error; otherwise, it is dormant.  An active fault is either 1) an internal 
fault that was previously dormant and that has been activated by the computation process 
and/or environmental conditions, or 2) an external fault.  Fault activation is the application of an 
input pattern to a component that causes a dormant fault to become active. 
 
Implicit in the definitions of the above terms is a cause-effect relationship.  The well-known 
3-universe model depicted in Figure 1-3 shows the relationship between faults, errors, and 
failures [Johnson 89].  Faults cause errors, and errors may propagate to the system interface to 
cause service failures. 
 

 

Figure 1-3 Cause-effect relationship among faults, errors, and 
failures using the 3-Universe Model 

1.7.3. A Taxonomy of Faults for Digital I&C Systems 

This section presents a taxonomy of threats that may affect a digital I&C system during its 
lifetime.  The taxonomy is derived from [Avizienis 2004], and is very general in its domain of 
applicability.  The purpose of this fault taxonomy is to present a complete and structured view of 
the domain of faults applicable to digital I&C systems.  Since main purpose of this research 
effort was to assess the applicability and utility of fault injection, it is reasonable to start with a 
well-structured and complete view of the fault space.  The taxonomy presented in this section is 
complete with respect to the types of fault classes in digital I&C systems, however, it may be the 
case that certain fault classes in the taxonomy may not occur due to the digital I&C system 
environment or the design and operational aspects of the digital I&C system.  Farther research 
along these lines may be helpful for confirming the taxonomy with respect to digital I&C 
systems.  This research performed a preliminary comparison of the fault classes in the 
taxonomy with those compiled in a recent survey effort by the NRC1.  Knowledge of all possible 
fault classes allows the user to decide which classes should be included in the assessment 
process. 
 
To begin, a digital I&C system life cycle consists of two phases: development and operations.  
The development phase includes all activities from presentation of the user’s initial concept to 
the decision that the system has passed all acceptance tests and is ready to be deployed for 
use.  The operational phase of a system life cycle begins when the system is accepted for use 
and placed in service.  Operations consist of alternating periods of service delivery, service 
outage, and service shutdown.  A service outage is caused by a service failure.  It is the period 
when incorrect service (including no service at all) is delivered by the system.  A service 
shutdown is an intentional halt of service by an authorized entity.  Maintenance actions may 
take place during all three periods of the operational phase.  During the operational phase the 
system interacts with its operating environment and may be adversely affected by faults 

                                                 
1 As a cursory check on the above taxonomy, survey results from Industry Survey of Digital I&C Failures ORNL report 
ORNL/TM-2006/626 are cross referenced with the above fault taxonomy.  All fault reports in the ORNL reports were 
classifiable in one of the three fault classifications for the above fault taxonomy. 
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originating in it.  According to [Avizienis 2004] taxonomy; all faults that may affect a system 
during its life are classified according to eight basic attributes: 
 
(1) The phase of the system life during which the faults originate: 
 

 Development faults that occur during (a) system development, (b) generation of 
procedures to operate or to maintain the system; 
 

 Operational faults that occur during service delivery of the operational phase. 
 

(2) The location of the faults with respect to the system boundary: 
 

 Internal faults that originate inside the system boundary; 
 

 External faults that originate outside the system boundary and propagate errors 
into the system by interaction or interference. 
 

(3) The phenomenological cause of the faults: 
 

 Natural faults that are caused by natural phenomena without human 
participation; 
 

 Human-made faults that result from human actions. 
 

(4) The dimension in which the faults originate: 
 

 Hardware (physical) faults that originate in, or affect, hardware; 
 

 Software (information) faults that affect software, i.e., programs or data. 
 

(5) The objective of introducing the faults: 
 

 Malicious faults that are introduced by a human with the malicious objective of 
causing harm to the system; 
 

 Non-malicious faults that are introduced without a malicious objective. 
 

(6) The intent of the human(s) who caused the faults: 
 

 Deliberate faults that are the result of a harmful decision; 
 Non-deliberate faults that are introduced without awareness. 

 
(7) The capacity of the human(s) who introduced the faults: 
 

 Accidental faults that are introduced inadvertently; 
 

 Incompetence faults that result from lack of professional competence by the 
authorized human(s), or from inadequacy of the development organization. 
 



12 

(8) The temporal persistence of the faults: 
 

 Permanent faults whose presence is assumed to be continuous in time; 
 Transient faults whose presence is bounded in time. 

 
If all combinations of the eight elementary fault classes were possible, there would be 256 
different combined fault classes.  In fact, according to [Avizienis, 2004] there are only 31 likely 
combinations; which are shown in Figure 1-4. 
 

 

Figure 1-4 Taxonomy of fault classes for digital I&C systems [Avizienis 2004] 

Referring to Figure 1-4, the combined faults are shown to belong to three major partially 
overlapping groupings: 
 
 Development faults that include all fault classes occurring during system development; 
 Physical faults that include all fault classes that affect hardware; 
 Interaction faults that include all external faults. 
 
The overlap between groupings of fault classes shows that origins of a fault along with its 
dimension (software or hardware) are important in describing the complete nature of a fault.  As 
a case in point, from Figure 1-4 the development faults listed in columns 6-11 are both grouped 
in development and physical fault classes.  This means that the origins of these faults are in the 
development processes of the hardware, and their manifestation occurs in the physical fault 
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domain - hardware.  Examples of these types of faults are manufacturing defects and hardware 
design flaws.  Accordingly, the physical fault class in Figure 1-4 is overlapped with the hardware 
dimension of the other two fault classes. 
 
Important classes of faults in the above taxonomy are interaction faults, which occur during 
the operational phase; therefore they are operational faults.  These faults are caused by the 
interaction of the digital I&C system with its operational environment.   
 
Most classes of faults originate due to some human action in the operational environment; 
therefore, they are of the type human machine interaction faults.  These are represented in fault 
classes 16-31 in Figure 1-4.  An exception to human machine interaction faults are external 
natural faults (e.g.,14-15) caused by external disturbances such as cosmic particle strikes in the 
ICs of the digital system, and electromagnetic interference (EMI) disturbances.  Another 
important class of faults in the taxonomy is configuration faults, i.e., wrong setting of parameters 
that can affect the correct operation of the system.  These faults can occur in the control logic, 
display symbols, diagnostics, communication protocol of the digital I&C system etc.  Such faults 
can occur during configuration changes performed during maintenance periods. 
 
Finally, the arrows depicted in Figure 1-4 indicate the types of significant fault classes known to 
occur in digital I&C systems, which were investigated in the development of the fault injection 
methodology described in this report.  The broad arrows indicate the principle aim of the 
research, which was to find representative fault models for these physical-based fault classes 
and determine the feasibility of using physical-based faults injected into the benchmark 
systems. 
 
The smaller arrows indicate to a lesser extent the research objective of emulating software and 
interaction-based fault classes through fault injection techniques.  Due to the limited scope and 
time of this research effort, not every fault class in the above taxonomy was investigated with 
respect to fault injection.  However, the above fault classes are representative and provide a 
vehicle to investigate the capabilities of applying fault injection to digital I&C systems.  Section 4 
describes the fault models for the above fault classes intended to be implement based on the 
above taxonomy. 
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2. RESEARCH METHODOLOGY 

2.1. Overview 

The research methodology for this report consists of the following six steps: 
 
(1) Developing of a fault injection model. 
 

(2) Selecting and describing the benchmark systems and application (RPS). 
 

(3) Identifying candidate fault injection methods for the benchmark digital I&C systems. 
 

(4) Reviewing previous results and lessons learned from applying the methodology to a 
Digital Feedwater Control System (DFWCS) (NUREG/CR 6985) [Aldemir 2007]. 

 

(5) Identifying key challenges for fault injection with respect to digital I&C systems, 
 

(6) Establishing an implementation plan for applying fault injection to the benchmark 
systems for phase 1 and phase 2 part of this research. 

 

Each of these steps are  discussed in detail in the remaining Sections of this report. 

2.2. Development of a Fault Injection Model  

It is important to have a formal model to characterize the applicability and understanding of the 
fault injection process to ultimately guide its use and facilitate understanding of the results with 
respect to assumptions.  The importance of the formal model is to provide a reference for fault 
injection-based methodologies with respect to the necessary requirements for fault injection. 
Before assessing the capabilities and limitations of the fault injection-based methodology a 
formal model of what the fault injection methodology is trying to achieve must be defined.  
Section 3 describes a formal fault injection-based model in terms of the Faults, Activations, 
Readouts, and Measures (FARM) model [Arlat 1993].  This work was extended to better 
represent the application of fault injection to digital I&C systems [Elks 2005]. 

2.3. Selection of the Benchmark Systems 

The benchmark systems used in this study represent the state of the art in safety grade digital 
I&C systems.  Both of the benchmark systems developed for this research are commercial 
grade I&C systems representative of systems deployed in NPP applications.  These digital I&C 
systems belong to a class of high-integrity, safety-critical, real-time systems typically used in 
nuclear applications such as Reactor Protection/Shutdown Systems.  Therefore, the benchmark 
systems selected for this research represent, to the best extent possible, the complexity and 
behavior of the contemporary digital I&C systems depicted in Figure 1-2.  A description of the 
systems is presented in Section 6. 

2.3.1. Application 

The research developed RPS multi-dimensional trip functions that used a number of reactor 
variables.  The RPS functions are similar to the functions used in [Smidt 2004], in that the 
functions represent a reduced model of a typical RPS.  The RPS functions developed for this 
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research used 3 process variable measurements: reactor coolant system flow, hot leg pressure, 
and hot leg temperature.  These reactor process variables are monitored to prevent power 
operation in an off-nominal basis as would be in an event such a loss of coolant accident 
(LOCA). 
 
The application for both systems was modeled on a typical nuclear power industry protection 
system trip function.  The RPS function was developed using the software development tools 
and environment for the respective benchmark systems.  The RPS functions were developed 
using the function block oriented auto code generation tools from the vendors of the benchmark 
systems.  The documents used to help develop the RPS functions are: 
 
 NRC Regulatory Guide 1.152: Criteria for Programmable Digital Computer System 

Software in Safety-Related Systems of Nuclear Power Plants 
  
 ANSI/IEEE/ANS Standard 7-4.3.2 (1982): Application Criteria for Programmable Digital 

Computer Systems in Safety Systems of Nuclear Power Generating Stations 
  
 ANSI/IEEE Std 279-1971. “Criteria for Protection Systems for Nuclear Power Generating 

Stations” 
  
 U.S. Standard IEEE 323 
 
It should be noted that the purpose of this work was aimed at developing a fault injection 
methodology for digital I&C systems, and not to produce high quality, high assurance software 
for the RPS functions or to assess the development platforms used to produce the RPS 
functions, as would be typically done for licensed digital I&C system. 
 
The software development environment for both benchmark I&C systems began with the 
specification of an I&C system comprising function diagrams and hardware diagrams using 
function block editors.  These tools perform a series of consistency and plausibility checks on 
the diagrams created.  This type of software compositional process typically reduces the 
possibilities of error in the plant-specific I&C specification.  The concept behind the engineering 
of I&C functions with these function block code generator systems is based on the graphical 
"interconnection" of function blocks to produce I&C functions in the form of function diagrams. 

2.4. Lessons Learned and Review of Previous Fault Injection Efforts 

In order to provide the highest degree of success, previous efforts applying fault injection to 
several digital processor based systems were reviewed.  Most notably was the application of a 
fault injection process to a benchmark DFWCS used in an NPP.  The results of the application 
were part of NUREG/CR-6985 [Aldemir 2009] and fully detailed in the University of Virginia 
(UVA) technical report CSCS 2007-003, “Quantitative Dependability Assessment of the 
Benchmark Digital Feed-Water Control System: Final Report” [Elks 2007].  In addition to the 
above, the literature for applications of fault injection to commercial/industrial applications was 
reviewed.  The results of this step helped inform the research on promising methods for fault 
injection for digital I&C systems. 

2.5. Candidate Fault Injection Methods for Benchmark Digital I&C 
systems 

Realization and application of Fault Injection for digital I&C systems is a complex process of 
determining the types of faults to inject into the system, how to inject the faults into the system, 
establishing the context of the fault injection process, and analyzing the data to extract 
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measures for the risk informed assessment process.  There are many different types of fault 
injection that may or may not be suitable for physical-based fault injection of digital I&C 
systems.  This step in the research process helped narrow down the best candidates for fault 
injection for not only the benchmark systems, but also other classes of digital I&C systems.  The 
result of this step is a candidate fault injection technique for each benchmark system. 

2.6. Identifying Key Challenges with Respect to Digital I&C Systems 

After selecting a candidate fault injection technique and reviewing previous efforts, the research 
set about identifying key challenges and open problems with respect to fault injection in 
processor-based I&C systems and FPGA-based I&C systems.  These challenges and open 
problems were identified, and are discussed in Sections 7 and 8 of this report.  These are 
considered to be areas of candidate improvements to the methodology.  A list of challenges and 
open problems are provided in this report. 
 
Unobtrusive in-situ fault injection.  A key problem identified for physical digital I&C platforms 
is realizing fault injection methods that can corrupt information inside IC technology (e.g., 
processors and FPGAs) in a manner that does not upset the real time operation of the digital 
I&C systems, nor requires modification of the SW/HW of the target digital I&C system. 
  
Automation.  This is one of the most important design goals that a fault injection tool developer 
must provide for the tool to be effective.  For highly reliable or safety critical digital I&C 
applications where the probability of system failure is very low (e.g., on the order of 10-5 
failures/year), statistical fault injection requires that a large number of experiments be performed 
in order to obtain a commensurate degree of confidence in the data used for model parameters.  
Thus, automation of experiments is an essential feature that enables collecting large volumes of 
data with little need to manually intervene in the experimentation process. 
 
Experiment Management.  To ensure controllable, repeatable and credible fault injections the 
user must have the ability to manage the types of faults to be injected into the system, where 
they are injected, how they are injected, and when they are injected.  Additionally, the 
responses to the fault injections must be acquired in a manner that allows the responses to 
traced back to the faults so that a fault injection trial can be repeated as needed. 
 
Operational and Environmental Profiles.  Context is important in fault injection.  The 
operational profiles must be representative of the different system configurations and workloads 
that would be experienced in actual field operations.  The ability to place the inputs and 
feedback paths into an actual context is critical to establishing the validity of the results of the 
fault injection process.  Having means to simulate or generate realistic profiles is important to 
the overall utility of the fault injection process. 

2.7. Research and Implementation Plan for Applying Fault Injection 
to the Benchmark Systems 

The final step in the research methodology for this report was to create a research and 
implementation plan to realize the UVA fault injection-based safety assessment methodology on 
the benchmark systems.  This plan had two categories of tasks.  The first task category includes 
items that required additional research and development to determine their potential for 
implementation.  These items were identified and additional efforts were assigned to them.  An 
example of this category is fault list generation methods.   Identifying and generating a list of 
faults for a target digital I&C system is a non-trivial task.  As such this step was an on-going 
work for the project.  The second categories were tasks that needed little or no additional 
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research effort to implement to determine their overall effectiveness.  The second category may 
be viewed as items that needed to be accomplished to support the overall research objectives. 
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3. FAULT INJECTION CONCEPTS AND THEORY 

This Section presents a detailed overview of fault injection as a dependability assessment 
practice.  A basic introduction to the concept is presented, and then a more detailed discourse 
on the methodology to establish a base of understanding for the research, results, and 
contributions that is described later in this report. 

3.1. Motivation for Fault Injection Methods 

Dependability evaluation involves the study of failures and errors and their potential impact on 
system attributes such as reliability, safety, and security.  The destructive nature of a failure or 
crash and long error latency often make it difficult to identify the causes of failures in the 
operational environment.  Thus, it is particularly difficult to recreate a failure scenario for large 
complex systems just from failure logs and observations alone. 
 
Fault Injection is defined as a dependability validation technique based on the realization of 
formal controlled validation experiments in which system behavior is observed while faults are 
explicitly induced in the system by the deliberate introduction (injection) of faults [Arlat 1992].  
That is, faults are injected into the system and the resulting behavior is observed.  This 
technique speeds up the occurrence and the propagation of faults in a system for the purpose of 
observing the effects of faults on the system performance and behavior.  Depending on the 
objectives of fault injection, the measures or the information from fault injection often serve 
different purposes. 
 
To identify and understand potential failures, the use of experiment-based or measurement-
based approaches for studying digital I&C system dependability is gaining acceptance in the 
nuclear industry to better understand the effects of  digital I&C system faults, errors, and failures 
on overall plant operations [Smith 2000; Kaufman 1998; Elks 2009(a); Elks 2010(a); Reynolds 
2009; Aldemir 2009; Aldemir 2007; Huang 2005; Huang 2011; Chu 2008].  From a broader 
perspective, fault injection has been used extensively in many industries to aid in the 
assessment of fault tolerant systems and safety critical systems over the past 30 years, and is 
widely used in the software development and testing community for improving software quality 
and protection against cyber threats.  In addition, the International Electrotechnical Commission 
(IEC) standard IEC 61508 “Functional Safety of Electrical/Electronic/Programmable Electronic 
Safety-related Systems,” recommends the use of fault injection to determine the effects of faults 
and their mitigation on safety critical systems.  Thus, fault injection as technique to aid in the 
dependability evaluation of safety critical systems is not a novel concept, but one of continued 
maturation and acceptance. 
 
Further, fault injection-based methods are aimed at providing information to support an informed 
understanding of risk with respect to digital I&C systems as they are deployed in new and 
existing plants.  The overall safety and reliability of critical digital I&C systems strongly depends 
on the fault tolerance and mitigation strategies employed, and the correct implementation of 
these strategies.  Therefore, methods to credibly quantify and characterize the safety and 
reliability of digital I&C systems is of great interest to the NRC. 

3.2. Common Misconceptions about Fault Injection 

Section 2.5 defined fault injection.  This section describes some common misconceptions about 
fault injection in order to define its purpose more clearly. 
 



20 

Misconception 1: Fault injection estimates failure rates. 
One misconception about fault Injection is that it is a technique or approach for estimating 
failure rates or failure mode failure rates of systems, sub-systems, or components.  While fault 
injection can, under certain limiting assumptions, accelerate the occurrence of observed failures 
in a system, it does not produce or approximate field failure rate data.  Rates of failures are 
driven by natural processes such as thermal degradation, electro-migration, cosmic particle 
strikes for hardware origin faults, etc.  This failure data is largely estimated from field data sets 
on the failure of ICs.  Fault injection emulates the effects of these naturally occurring events and 
provides a means for estimating how these faults impact digital I&C system operations. 
 
Misconception 2: Fault injection emulates only hardware faults. 
There is some concern that fault injection is mainly relegated to emulating hardware faults.  
While fault models for fault injection are most mature and accepted with respect to hardware 
and environmental-based faults, this does not infer that fault injection is restricted to emulating 
only hardware faults. 
 
Injecting software faults into systems is not only possible, but is practiced by the software test 
engineering community as a means to test commercial software robustness [Chillerage 2002; 
Voas 1998].  The challenge or issue with regard to injecting software faults into digital systems 
lies not with the fault injection process, but with the acceptance of a software fault/failure model 
for safety critical software. 
 
At present, research in software reliability and appropriate fault models for safety critical 
software is still evolving.  One focus of the research described in this report was to briefly 
investigate how fault injection of software-based faults could be achieved on the benchmark I&C 
systems. 

3.3. Goals of Fault Injection 

This section discusses the major goals for the application of fault injection.  From a general 
perspective, fault injection has two complementary major goals:  (1) as an aid to validation and 
(2) as an aid to design assurance. 

3.3.1. Validation Support 

In the validation  process, the role of fault injection is related to the concept of coverage, (i.e., 
how can one obtain confidence in the dependability enhancement methods and mechanisms 
used in the digital I&C system?).  Thus, fault injection can be viewed as a means for testing the 
fault tolerance and safety enhancement features of the system with respect to the inputs they 
have been designed to cope with, namely the faults. 
 
In practice, there are two means by which fault injection aids in the validation of digital I&C 
systems.  The first is to aid in the confidence of the development processes of the digital I&C 
system.  It is assumed the design of safety critical digital I&C systems incorporate rigorous 
design and development assurance processes required by governing bodies or law.  Often very 
stringent methods are used to model and analyze the fault tolerance capabilities of the system 
during the design and development phase.  These methods include fault simulation, formal 
verification of fault tolerance algorithms, structured software development, etc.  In this case, the 
goal of the fault injection process is essentially qualitative and is aimed at checking the 
adequacy of the verification procedures and of the fault tolerance mechanisms with respect to 
the considered fault assumptions.  For instance, if fault injection revealed a number of faults that 
were predicted to be detected by the development process and system models, but went 
undetected, then there would be cause to investigate the adequacy of the development process.  



21 

This is type of validation support is sometimes called model-based testing.  That is, the testing 
of the system supports the confirmation or refutation of the system models built to comprehend 
and predict the behavior of the system. 
 
In the second case, fault injection is used to determine the efficiency and effectiveness of the 
system fault detection and fault tolerance mechanisms with respect to an operational context 
(i.e., the coverage or coverage factor and execution parameters of the fault tolerance 
mechanisms with respect to an operational profile or environmental context).  In this case, the 
fault injection is carried out as a statistical-based experiment to determine how effective the fault 
tolerance mechanisms are in their operational setting. 
 
Both of these cases are complementary to one another, and are often performed in same fault 
injection experimental setting. 
 
For model based testing, the fault set is usually made up of specific faults that are identified 
during the development process as “stressors”.  That is, corner case conditions for which the 
fault handling behavior of the system may be imperfect or may have side-effects that are not 
completely characterized.  Furthermore, it is practically required that the experiments carried out 
be reproducible and repeatable (i.e., the same fault produces the same readouts).  This enables 
the possibility of design changes to be thoroughly checked. 
 
In the case of coverage-based testing, the main concern is that the fault set corresponds to a 
representative distribution of faults among the possible faults and that a large number of faults 
be injected to guarantee a sound statistical confidence level in the measure. 

3.3.2. Design Assurance Support 

Fault injection can be applied at various steps in the design and development assurance 
process and in particular, the results of fault injection can be used to improve the test 
procedures and the effectiveness and efficiency of fault tolerance mechanisms.  As such, fault 
injection can be considered a design aid in their development, provided that it is applied in the 
early phases (i.e., on axiomatic or empirical models).  Another significant goal of fault injection 
as a design aid concerns the establishment of fault dictionaries that can be used to develop 
diagnosis procedures, self-test routines, and improve on-line monitoring. 

3.4. A Formal Model of Fault Injection: the Modified FARM Model 

As with all well-formed methodologies, it is important to have a formal model to characterize the 
applicability and understanding of the fault injection process to ultimately guide its use and 
facilitate understanding of the results with respect to assumptions.  A well established and 
practical model for characterizing fault injection is the FARM model [Arlat 1990(b); Arlat 1992]. 
 
The FARM model presented in this report is modified from the original FARM model to be more 
representative of typical digital I&C systems of the type presented in Section 1.7.1.  In addition, 
the original FARM model concepts have been extended by providing a more formal 
development of the conditions for fault injection based on [Elks 2005]. 
 
A digital I&C system (as depicted in Figure 1-2 and Figure 3-1) is represented as a reactive 
state-based system with sets of well-defined attributes.  The state-based assumption is 
reasonable in that digital processor-based I&C systems, whether realized in processor 
technology or FPGA-based technology, are state-based.  Digital I&C systems in NPP 
applications almost always belong to one of three classes of systems: control systems, 
actuation systems, or monitoring systems.  All of these systems are reactive systems.  Reactive 
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systems continuously accept inputs, compute actions on the basis of these inputs, and produce 
outputs on an ongoing basis [Wieringa 2003]. 
 
Consider the digital I&C system shown in Figure 3-1,  which will be refer to as the target system.  
When fault injection is applied to the target system, the input domain corresponds to the 
following sets: a set of faults F taken from a class of faults “Fclass”  a set of activations A that 
specifies the domain used to functionally exercise the system; an output domain corresponding 
to a set of readouts R, and a set of derived measures M.  Together, the “FARM” model sets 
constitute the major attributes that can be used to fully characterize fault injection.  The following 
subsections define these sets more clearly. 
 

 

Figure 3-1 FARM model for digital I&C 

3.4.1. Attributes of the FARM Model 

The attributes of the model are defined as follows: 
 
 The set F is the set of all anticipated or perceived faults to which the target system could 

be exposed over its operational phase.  The set F may contain several types of fault 
classes (Fclass) from the fault taxonomy in Figure 1.4.  The fault hypothesis of the system 
describes the classes of faults that the system is expected to defend against.  The 
maximum fault assumption sets the limit on the number of faults that the target system 
can reliably detect during a given interval.  These three attributes help guide the fault 
model selection process and the fault injection experiments. 
 

 The set A is the set of inputs to the system aimed at exercising the injected faults.  
These include the sensor inputs, feedback, and inbound communication messages.  The 
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important aspect of this attribute is that it places the system in the context of the 
operational behavior, including nominal, off-nominal, and unexpected system conditions. 
 

 The set Z defines the internal state space of the target I&C system.  This attribute 
expresses the notion that a digital-based or processor-based system is state-based.  
That is, its behavior is discrete time-based with transitions from one state to a set of 
other states.  A state describes a behavioral mode of the system in which it is waiting for 
a trigger to execute a transition.  In some finite-state machine representations, it is also 
possible to associate actions to a state: 
 
 Entry action: performed when entering the state, 
 Exit action: performed when exiting the state. 

 
A transition is a set of actions to be executed when a condition is fulfilled or when an 
event is received. In the FARM model, the application runtime OS and the hardware 
have state space. 

 
 The set Y defines the set of current internal states.  The set Y describes the current 

state of the machine or system at any particular discrete time reference (e.g., an 
instruction boundary, input event changes, etc.)  Y is a subset of Z. 
 

 The set U characterizes the outputs provided by the system to its connected 
environment (e.g., plant controls).  The set U represents both pure digital outputs and 
digital outputs that are converted to the analog domain. 
 

 The set Pin designates the inward bound communications to the system from other 
systems, other channels, or users. 
 

 The set Pout defines the set of outward bound communications and services to other I&C 
systems, channels or users.  Pout can represent outbound information from one channel 
to other redundant channels in a system, or outbound information to monitoring systems 
or to users. 
 

 The set D designates the external input data from sensors. 
 

 The set, R, comprises the readouts collected for each fault injection experiment to 
characterize the behavior of the system in the presence of faults. 
 

 The measure set M defines the experimental measures, coverage, fault latency 
estimate, fault dictionary entries, etc., obtained by combining and processing the 
elements of the FAR sets. 

3.4.2. Fault Injection Defined by the FARM Model 

Fault injection is a formal, experiment-based approach.  For each experiment, a fault f is 
selected in F and an activation trajectory a is described in A.  The reactions of the system are 
observed and form a readout r that fully characterizes the outcome of the experiment.  An 
experiment is thus characterized by the triple ordinate < f, a, r >, where the readouts, r, for each 
experiment form a global set of readouts R for the test sequence and can be used to elaborate 
a measure in M.  A campaign is a collection of experiments to achieve the quantification of a 
measure M. 
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Consider a test sequence of n independent fault injection experiments.  In each experiment a 
point in the {F x A} space is randomly selected according to the distribution of occurrences in 
{F x A} and the corresponding readouts collected.  Expanding the F to include the fault space 
dimensionality of time, location, fault type, and fault value yields six parameters that define a 
fault injection experiment. 
 

a = the set of external inputs 
= is the duration of the injected fault 
t = fault occurrence time, or when the fault is injected into the system 
l = fault location 
fm =  a specific fault type as sampled from fault classes 
v= Fault value 

 
Figure 3-2 illustrates the basic concept of a fault injection experiment.  Specifically, Figure 3-2 
shows that faults from F are sampled from the fault space (discussed in section 3.7). These 
faults are elaborated by their fault type fm, the fault duration the fault location l, time of 
occurrence t, along with the set of inputs a to characterize a set of experiments.  The fault 
experiments are applied to the target computer, and a set of readouts (the R set) is used to 
derive the M set (coverage estimation) by statistical estimation.  More importantly, from a 
practical perspective, the parameters of the coverage equation serve as the essential 
requirements in the development of any fault injection methodology or tools to support fault 
injection.  Fault injection frameworks of any type must address the control of these parameters 
and the observable responses of a system to these parameters as they are sampled.  The 
following sections describe the statistical theory behind the coverage estimation and the 
dependent parameters of coverage. 
 

 

Figure 3-2 Fault injection experiment 

3.4.3. Fault and Error Behavior Characterization of the Target Computer 

In accordance with general classification, the attributes of the target computer (TC) are 
distinguished from the F, R, and M sets to characterize its behavior under the influence of faults. 
The reason for this distinction is to fully describe how injected faults affecting the target 
computer can be observed to form a basis for the R set. 
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Let the target computer be characterized as a deterministic state machine [Kohavi 1978] defined 
by the tuple (A, Z, z0, δ, U) where: 
 

A = the input space (a finite, non-empty set of symbols) 
U= the output space (a finite, non-empty set of symbols) 
Z = a finite, non-empty set of states. 
z0 = an initial state, an element of Z. 
δ = the state-transition function: : Z A Z    
ω = the output function ω: Z×U 

 
The state transition relation maps each input and state pair (i, Zj ) to the set of next state sets 
in Z. The notation of : Z x Z follows from automata theory, which describes the behavior of 
sequential digital systems [Kohavi 1978].  The state transition relation symbolizes the notion of 
program states that evolve in response to inputs (A) and clock inputs to the digital I&C system 
(e.g., the central processing unit (CPU) clock and digital clocking circuits).  In addition, the value 
of a state z may be forwarded to the output by the output function ω: Z×U when a transition 
from one state to another occurs. 
 
Note the model of Figure 3-1 symbolizes fault injection as being part of the input domain, I, 
where I = {A x F} = {D, Y, F, Pin}.  For elements of the input space, for some state of the 
machine, for some message of the input communication, and for some fault selected from the 
fault span, the cross product of D, Y, F, Pin defines the total input domain of the target system 
for a specific fault campaign.  The set A is often called the operational profile of the system.  
The functional inputs (D, Pin) must be distinguished from non-functional inputs F (e.g., faults and 
disturbances).  This is done by defining a fault application function The fault application 
function  introduces the concept that when a fault is applied to the system, the various finite 
state machine attributes of the target computer defined above can be affected by the fault.  The 
fault application function is formally defined below. 
 
Let f be a fault action taken from some fault class Fclass. 
 
The generalization is then 
 

 
 0 0 1[ ] [ , , ]n

i n classf f f f F   (3.1) 

 

where 0[ ]nif   is a selection of fault actions taken from var ious fault classes. 

 
The fault activation function takes a fault from the fault space F and applies it to the target 
computer, denoted by: 
 

0 0 1 2([ ] ) ( , , ..... )n
i nf f f f f  .  (3.2) 

 
Essentially, the fault activation function is the application of the fault model to target computer.  
Accordingly, the impact of a fault vector fi can be defined precisely when the fault is activated 
and applied to the elements of the state machine: 
,ݐ׊  ,ሻݐሼܽሺ׌ ,ሻݐሺݖ uሺtሻ, δሽ ד ߰ሺܽ, ,ݖ u, δ, ௜݂ ; ሻݐ ് ߰ሺܽ, ,ݖ ,ݑ δ, ଴݂;  ሻ (3.3)ݐ
 
where f0(t) is the vector “absence of fault”. 
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Equation (3.3) expresses the fact that when a fault is applied to the target computer, its internal 
execution behavior can be altered.  The state (z), the control flow (), the output (u) may be 
corrupted by the fault.  This corresponds to the deviation from the expected or correct execution 
with respect to the following observations: 
 
Either as an internal error when only the state vector Z is altered: 
 ݂ሺܽ, ,ݖ ݂; ሻݐ ൌ ሺݖᇱ, ,ݑ ሻݐ ് ሺݖ, ;ݑ  ሻ (3.4)ݐ
 
where z’(t) denotes an internal state distinct from the nominal state z(t), 
 
or, as an error affecting the service when, as a result of a failure, the vector from U also 
deviates from the specified service: 
 ݂ሺܽ, ,ݖ ݂; ሻݐ ൌ ൜ሺݖᇱ, ;ᇱݑ ሻݐ ് ሺݖ, ;ݑ ,ݖሻሺݐ ;ᇱݑ ሻݐ ് ሺݖ, ;ݑ ሻݐ ൠ (3.5) 

 
where u’(t) denotes an output distinct from the nominal one u(t). 
 
Control flow errors are faults affecting the program behavior.  The target computer has next-
state error on receiving input word Ai  in state z if Z) ≠Z), where  is the correct state 
transition relation and  is the erroneous state transition relation.  An erroneous transition in the 
presence of some fault is a sequence of program states z0, z1, z2…zj-1,zj  such that for each j, 
j>0, zj is obtained from zj-1 by executing a fault action from  (f) that is enabled in zj-1.  The 
general notion here is that from each program state in Z there exists the possibility of taking an 
erroneous transition or a correct transition to the next state when f is present and active. 
 
The target computer has an output error on receiving input word Ai in state z if U≠ 
Uwhere  is the correct output function and  is the faulty output function of the TC.  An 
erroneous output is obtained by imposing fault action f) onto a set of the observable states Z 
and U such that correct output state variables are not equal to the erroneous output state 
variables of U 

The target computer has input error in state Z if some input word Ai

* is not a valid word from  
and the TC accepts this word. 
 
Lastly, the notion of a latent error is introduced.  The evolution of a system state with respect to 
error manifestation does not depend on time for all internal states z(t).  This leads to a partition 
of the state vector z(t) that distinguishes the state vector zs(t), which characterizes the state 
variables that are sensitized at time t.  That is, the internal variables that actually impact the 
evolution of the system at time t from the state vector zd (t), which characterizes the variables 
that are not sensitized at time t.  Such a distinction is useful in practice to account for the latent 
error or dormant error problem. A latent error is an error that has not been recognized by the 
system error detection mechanisms as an error. 
 ߰ሺܽ, ,ௗݕ ,௦ݕ ݂; ሻݐ ൌ ሺݖௗᇱ , ,௦ݖ ;ݑ ሻݐ ՜ ߰ሺܽ, ,ௗݕ , ,௦ݕ ݂; ሻݐ ൌ ሺݖௗᇱ , ,௦ݖ ࢛;  (3.6) (ݐ
 
Equation (3.6) illustrates the condition when a state error is latent, and the result of this state 
error being dormant is that the output state remains uncorrupted.  The concern with latent faults 
is that the faults may remain undetected for long periods of time until an unusual event or 
another fault occurs, at which time the faults become active.  In such cases, the system now 
has two active faults with which to deal; the system may not be designed to handle these 
coincident fault conditions.  This distinction also reinforces the fault-error-failure pathology since 
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dormant faults may not create erroneous behaviors and all erroneous states do not necessarily 
cause a failure [Arlat 1992].  Fault injection campaigns should address the latent or dormant 
fault problem when appropriate. 

3.4.3.1. Controllability and Observability 

The concepts of controllability and observability play an important role in fault injection.  They 
define what elements of the target computer can be influenced by fault injection.  Different types 
of fault injection methods will have various degrees of controllability and observability, so it is 
important to discuss them in the context of a fault injection model. 
 
The target computer with internal state Z is called controllable if and only if the system states 
can be changed by the fault application function.  The target computer has full fault 
controllability in this case.  When only some of the states can be controlled by the fault 
application function, the target computer has partial fault controllability. 
 
The target computer with an initial state, z(t0) is observable if and only if the value of the initial 
state can be determined from the system output u(t) that has been observed through the time 
interval t0 < t < tf.  If the initial state cannot be so determined, the system is unobservable. 
 
The concept of controllability determines the extent or reachability of a fault injection as applied 
to the target computer. Observability determines what readouts “R set” are detectable or 
observable from the outcomes of a fault injection experiment.  Both of these attributes play 
significant role in application of physical fault injection as discussed in Section 5. 

3.4.4. Characterization of Error Detection Mechanisms for the Target 
Computer 

This section defines and describes the characteristics and attributes of the Error Detection 
Mechanisms (EDMs) of the Target Computer.  This section builds on the theory presented in 
[Elks 2005].  Digital I&C systems that are used in safety critical applications should have 
fault detection and fault tolerance functions to prevent fault-induced errors and failures from 
propagating to critical plant systems and processes.  EDMs are the basic building blocks of 
fault tolerance.  The importance of characterizing EDMs in digital I&C systems is that the 
outputs of EDMs are part of the basic R set of the FARM model.  EDMs produce error 
messages after a fault injection to indicate the response to the injected fault. 
 
EDMs are defined from an abstract perspective, as opposed to giving specific implementation 
details.  This approach allows characterization of a wide range of EDMs for digital I&C systems 
relying primarily on the properties that the systems should have, irrespective of their hardware 
and software composition [Elks 2005]. 
 
Informally, an EDM is a distinct module or component either internal or external to the target 
computer that observes a given set of conditions or states from a system.  These states can be 
viewed at different levels of abstraction, such as operating system states, application level 
variables, input sensors, outputs, or even hardware signals.  The role of an EDM is to 
determine or recognize when a set of conditions or states in the target computer are deviated 
from a specified level of normal operation.  Examples of EDMs are comparators, voters, 
threshold checks, set point checks, and error detecting codes. 
 
In section 3.3.3, the finite state machine representation of the target computer was introduced 
and showed how the fault application function could alter the form or attributes of the state 
machine representation.  These attributes are the inputs to the EDM, and can be characterized 
as the event language or alphabet of the EDM.  In cases where these events are faulty, they 
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may not be contained in the event language of the EDM.  The EDM asserts an error condition 
or predicate (P) when it suspects the monitored events are faulty.  These concepts are refined 
more clearly in the following discussion. 
 
Definition 3.1 An EDM is a distinct module that observes a set of conditions or executions from 
a target computer and determines if these conditions or executions are consistent with its 
notion of validity. 
 
Validity means that the EDM is in agreement with its reference of correctness.  A reference of 
correctness for an EDM is the means for determining acceptance or rejection an input.  As 
examples, a comparator accepts inputs that are identical with each other, and rejects those that 
are not.  The reference of correctness is an identical agreement between the two inputs.  A 
threshold comparison compares an input to a reference value and determines if the input is out 
of range.  Here the reference of correctness is agreement to a bound limit. 
 
The definition of EDM is formalized as follows: 
 
Let  be a sequence of state conditions taken from {Z, A, U}.  This is denoted as 
 

1 2 3 1{ , , ] , , , ..... ,o j jZ A U s s s s s s   . (3.7) 

 
Let be the acceptance condition of the EDM or the reference of correctness condition, and let 
P be predicate for the state sequences of β.  P is a predicate that indicates an acceptance 
condition.  Then P is the predicate for a detection condition of the EDM. 
 
Let Z be a check process of β. 
 

( )Z P   (3.8) 

 
“Z detects P” is a detector in the EDM if  
 

"  accepts " P ( ) True and "Z rejects " P ( ) FalseZ        
 (3.9) 

 
With these formal definitions it is possible to fully characterize the EDM based on desirable 
properties an EDM should have.  Conceptually, an EDM is complete with respect to an 
acceptance condition  if for any  such that P false, the EDM is guaranteed to reject  and 
raise an alarm.  Furthermore, an EDM is sound with respect to  if whenever EDM signals an 
alarm, then always is assuredly erroneous (e.g., no false alarms).  Also, an EDM is accurate 
or reliable if for any correct run  the EDM never accuses any run of of being erroneous. 
These properties are important to fault injection processes because in reality, EDMs and fault 
tolerance mechanisms are not perfect. 
 
As an example, an EDM may have weak completeness.  Weak completeness says that for 
some set of runs in  where that P false; the EDM will detect/reject these runs as non-
compliant.  In doing so, it may also accept some runs that are erroneous, but not detectable as 
such by Pa.  In these instances, the EDM is incomplete.  This is the basis for the imperfect 
coverage problem. 
 
From an assessment perspective, the relationship between incompleteness of EDMs and 
system non-coverage is important.  The measurement/estimation of non-coverage fault injection 
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indicates that some of the error detection mechanisms in a target computer are incomplete with 
respect to the fault injected into them. 
 
The modified FARM model described in this section is useful toward establishing a basis not 
only for conducting experiments, but also serves as a reference model for gauging the 
adequacy and sufficiency of fault injection methodologies.  Moreover, it also aids as a guide in 
designing and developing fault injection environments.  This is an important issue, because the 
results or outcomes of fault injection experiments can be assessed in accordance with the 
governing modified FARM model. 

3.5. Characterization of a Fault Injection Experiment 

Referring back to the FARM model, a fault injection experiment is characterized by the F, A, and 
R sets.  For a given fault f and set of activations a (workload and operational profile) a readout r 
is observed.  The readout from the experiment usually consists of monitored states (Y), and 
outputs (U) of the digital I&C system.  The monitored states are often process variables of the 
application, error messages from the error detection mechanisms, etc.  The set of such 
observed states can be defined in terms of combinations of a set of detection predicates P that 
were defined in section 3.4.4 on the experiment readouts of the R set, e.g., {fault_injected}, 
{fault_activated and error_signaled}, etc.  A detection predicate is either true or false.  That is, 
an error is signaled or not, a fault is active or not. 
 
A fault injection experiment is carried out with respect to time.  Specifically, there is an 
observation time interval T in which the response of the system to gather the readouts R from 
the target system is observed.  This time interval T is called the censoring time of the 
experiment.  The expected behavior with respect to a single predicate in relation to T is 
observed.  For example, Figure 3-3 presents two common test cases for most fault tolerant 
digital I&C systems.  The first is when the target system is supposed to detect and correct the 
error attributed to a fault (e.g., fault masking), the second is when the system is supposed to 
signal an error whenever a fault is present (e.g., just fault detection).  Figure 3-3 illustrates the 
behaviors over the observation interval T. 
 

 

Figure 3-3 Characterization of time censored fault injection experiment 
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Case 1 indicates that the fault was tolerated corrected and acceptable service was delivered.  
Case 1a indicates that the error was not detected, and erroneous results were delivered.  
Case 2 shows that the fault was latent for some time, before being detected and signaled.  This 
occurs when P asserts to true.  Case 2a shows that the fault did not signal an error predicate.  
This could be due to a long fault or error latency, or if the fault is undetectable. 
 
Also, the observation domain T is bounded and the readouts obtained from the experiments 
form a set of so-called Type I (or time) censored data; the observed times are known only up to 
the upper bound T (censoring time) of the observation domain [Sharma 1994].  The 
characteristics of the considered target system and especially the temporal parameters of the 
fault detection (e.g., error and fault latency) to be evaluated have a direct impact on the 
determination of T.   
 
The choice of T relies on a careful analysis of the a priori (partial) information available 
concerning the fault detection and fault tolerance features of the digital I&C system, the 
dynamics of the environment that are being controlled by the digital I&C system, and may 
necessitate a set of preliminary experiments for its proper adjustment.  In the following 
discussion the concept of an experiment graph to characterize the outcomes of fault injection 
experiments is introduced. 

3.5.1. Characterization of Fault Injection Outcomes 

The second important use of the FARM model is to characterize the possible readouts R 
collected during a fault injection campaign of a target system.  The objective is to formulate or 
observe the possible outcomes of the campaign.  This is achieved by way of an assertion graph 
that abstracts the specification of the behavior of the target system under test.  An assertion 
graph can be established a priori to describe anticipated behaviors or can be obtained a 
posteriori from the analysis of the R set. 
 
Figure 3-4 provides an example of the assertion graph used in this research [Arlat 1992].  
Transition 1 corresponds to the activation of an injected fault as an error; the associated time 
defines the fault dormancy.  Transition 2 represents the situation where an injected fault is not 
activated; such an experiment is not significant when error detection coverage is evaluated with 
respect to error patterns (resulting from activated faults) rather than with respect to the faults 
injected.  Transition 3 depicts the case of a detected error; the associated time characterizes the 
latency of error detection.  Transition 4 represents the case where an error is apparently 
tolerated although it was not detected; whereas transition 6 depicts the (normal) situation where 
the error is tolerated after having been detected.  Transitions 5 and 7 distinguish the cases of 
failure of the detection and tolerance mechanisms.  In particular, transition 4 characterizes a 
singular behavior that is not always easy to diagnose in practice since it may result from either 
1) an activated fault that remains hidden (latent) or 2) a propagated error that is tolerated or that 
is eliminated by some other-unobserved-mechanism. 
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Figure 3-4 Fault injection experiment predicate diagram 

3.6. Development of the Coverage Function 

As stated in Section 3.1, one of the purposes of fault injection is to evaluate the error and fault 
handling mechanisms of a fault tolerant digital system.  An extremely important parameter in the 
design and assessment of fault tolerant systems is fault coverage, C.  The fault coverage 
available in a system can have a significant impact on the reliability and safety of a system 
[Smith 1997; Choi 1997; Yu 2004].  The intuitive definition of fault coverage is that it is a 
measure of a system’s ability to perform fault detection, fault isolation, and fault recovery given 
the existence of a fault.  Thus, coverage is a specific measure from the M set in the FARM 
model. 
 
It is generally assumed that if perfect and exhaustive testing of the system could be carried out, 
the estimate of coverage obtained would be exactly equal to the system’s fault coverage. 
Obviously, the ideal case cannot be achieved because of the limitations of the testing process.  
As a result, to obtain meaningful data and good estimation accuracy, fault injection campaigns 
must consist of a large number of experiments because of the high reliability or safety 
requirements of digital I&C in safety related NPP applications.  The following sections describe 
the formal and mathematical description of concepts that are fundamental to statistical 
estimation of fault coverage. 

3.6.1. The Fault Space 

The development of a statistical model for fault-coverage estimation requires definition of the set 
of possible faults that are to be considered in the experimentation process.  The statistical 
model can only be developed when this set is completely defined.  The fault taxonomy 
presented in Section 1.7.3 is a starting point for considering what faults the system may be 
subject to during its lifetime.  The set of all faults is called the fault space, and is denoted in this 
document by F.  It is worth noting the distinction of the fault space from fault universe, denoted 
by U, which is the set of all possible faulty states of the system.  The notion of the fault universe 
is derived from the simple consideration that the occurrence of a fault is a transition to a system 
state that should not be reached, ideally, according to the allowed transitions defined by the 
system's design [Pescosolido 2002].  Hence a fault can be considered as the faulty system 
state itself, and an experimental fault injection can be considered a forced transition to that 
state. 
 
It is clear that a complete description of the fault universe cannot be made because a complete 
definition of the system state is never available.  Moreover, the fault universe is considered a 
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continuous multi-dimensional space, and hence, is uncountable and infinite.  Theoretically, a 
distributed parameter model of some physical quantity is needed to completely define the state 
of a system and hence also to define a faulty state.  This limited ability to completely describe a 
system is most often solved by using concentrated parameter models. 
 
This transition from distributed parameter models to concentrated parameter models involves 
reduction of the fault universe to the fault space.  The fault space is a more simplified 
description of the fault universe and is usually discrete and finite, yet in general is 
multidimensional.  It is not possible to define an exhaustive set of faults and test the system with 
each to possibly obtain the best estimate of coverage, but provides a statistical population from 
which the faults can be sampled and injected into the system. 
 
A number of characteristic attributes, such as location, value, time, or workload, can be used to 
identify a fault in the fault space.  In general, a fault space is regarded as a multi-dimensional 
space with d dimensions, where each fault is identified as a point in the d-dimensional space by 
a set of d coordinates.  Hence the fault space can be considered as the Cartesian product of the 
sets of values that can possibly be assumed by each attribute or axes in the multi-dimensional 
fault space. 
 

If i  represents the axis corresponding to attribute iA , and ia  represents the value assumed by 

iA , then the fault space can be defined as, 

 

FF  ),,(= 121 dd aafand    (3.10) 

 
 where  
 

F),,( 1 daaf   is the fault for which ii aA = . 

  
 

 

Figure 3-5 Three dimensional fault space 

3.6.2. Fault Distribution 

The occurrence of a fault in a system can be regarded as a random event and hence can be 
described in a probabilistic framework.  The fault distribution deserves careful consideration in 
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the development of a statistical model, as the quality of the results can be significantly affected 
by the assumptions made about it.  In the Bernoulli model, a simple approximation is provided 
by the uniform distribution, which assigns equal relative probabilities of occurrence to every fault 
in the fault space.  The probability function is thus defined on a random variable F as, 
 

 (3.11) 
 
where || F  denotes cardinality of the fault space.  The uniform distribution is a commonly used 
model for coverage estimation because it provides a conservative approximation on the fault 
distribution in the absence of any known information about the underlying fault distribution. 

3.6.3. Coverage Definition 

For a given fault injection experiment, let tpi denotes the instant of assertion of predicate p for 
experiment i,i=1, . . . , n, let YI ( t ) denote the random variable defined by, 
 ௜ܻሺݐሻ ൌ ௣௜ሻݐሺܫ ൌ  ൜1; ,ሾ0 ݀݁ݒݎ݁ݏܾ݋ ݏ݅ ݌ ݂݋ ݊݋݅ݐݎ݁ݏݏܽ ݄݁ݐ ݂݅  ;ሿ0ݐ ݁ݏ݅ݓݎ݄݁ݐ݋  ൠ  (3.12) 

 
The random event described by the predicate p can be associated to a binary random variable 
Y, which assumes the value 1 when the predicate is true and 0 when the predicate is false 
during the observation interval T.  The variable Y is then distributed like a Bernoulli distribution 
with parameter C.  From the definition of the Bernoulli variable the parameter of the distribution 
equals the mean of the variable. In this case, 

 

 (3.13) 
 
 
The last expression is obtained by applying the theorem of total probability.  It is generally 
assumed that the fault tolerance mechanism will always either cover or not cover a certain fault 
f, the probability )=|1=( fFYProb  is either 0 or 1, and can be expressed as a function of the 
fault, 
 

 (3.14) 

 
 
 From Equation (3.14), the following expression for fault coverage is obtained, 
 

 (3.15)
 

 

3.6.3.1. Forced Coverage 

If a certain distribution of the fault space is imposed, then the event of occurrence of a fault 
f F  must be associated with another random variable F , which is different from F , and 

distributed according to the new probability function )=( fFP .  A new Bernoulli random 

variable Y , different from Y , must then be introduced to describe the fault handling event.  The 

distribution parameter C , different from C , of the variable Y  is called the forced coverage and 
is given by, 
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 (3.16)
 

  
Although the two variables Y  and Y  may have different distributions, they are related by the 

fact that the fault tolerance mechanism is the same for both, that is )(== fyYY  whether the 

fault occurs with the fault distribution or with the forced distribution.  Therefore the values of C  
and C  must also be related.  To determine the relationship between the two distribution 

parameters, a new random variable Q  is introduced, which is also a function of the variable F  
that is given by, 
 

 (3.17)
 

 
 
when the event fF =  occurs. The mean of P  can be calculated by, 

 

 (3.18)
 

 
That is, when faults occur in the system with the forced distribution, the ratio between the 
probabilities that the fault occurs according to the fault distribution and the forced distribution is 
equal, on average, to unity. 
 
The covariance   between the random variables Y  and Y, defined as the mean of the cross-
products of the two variables with their means removed is, 
 

 (3.19)

 

 
 
 
 
The relationship between the forced coverage and the fault coverage of the system can 
therefore be expressed by, 
 

 (3.20) 

 
For most statistical models, C is optimistic for 0< , and is pessimistic for 0> .  For values of 
the covariance close to 0, the estimator can be considered unbiased. 

3.6.4. The Simple Bernoulli Model 

The simple Bernoulli model is the simplest model for fault coverage estimation and is based on 
the standard statistical approach of estimation of the mean of a Bernoulli population, which 
makes use of simple random sampling.  It provides a very generic approach to the problem of 
fault coverage estimation.  The simplicity of the model drastically minimizes the cost and time 
for experimental setup and data analysis, which makes the model widely accepted for coverage 
estimation by designers of dependable systems. 
 
With the Bernoulli model, a test sequence can be considered as a series of Bernouilli trials.  Let 
n denote the number of independent fault injection experiments and N (t) the total number of 
assertions of P (coverages) observed in a time interval  [0, t].  Let the random event described 
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by the predicate p be associated to a binary random variable Y, which assumes the value 1 
when the predicate is true and 0 when the predicate is false during the observation interval T.  
The number of assertions of the predicate p cumulated within the time interval [0,t] can thus be 
expressed as, 
 ܰሺݐሻ ൌ  ∑ ௜ܻ௡௜ୀଵ ሺݐሻ  (3.21) 
 
It follows  that N (t) is distributed according to the binomial distribution, 
 ܲሼܰሺݐሻ ൌ ݇; ݊ሽ ൌ ቀ݊݇ቁ ሾܥሺݐሻሿ௞ሾ1 െ  ሻሿ௡ି௞   (3.22)ݐሺܥ

 
Accordingly, the mathematical expectation of the numer fo coverages is written as 
ሻݐሺܥ  ൌ ாሾேሺ௧ሻሿ௡  (3.23) 

 
The statistical estimator of C(t) is thus, 
ሻݐመሺܥ  ൌ ேሺ௧ሻ௡   (3.24) 

 
As ݐ ՜ ∞, the asymptotic value of C is given by the simple average, that is the arithmetic 
average of n  observations of the random variable Y. 
 

 (3.25)
 

 
 
The mean of the estimator is calculated as, 
 

 (3.26)
 

 
 
This value of fault coverage given by the mean of Y  is the total fraction of faults that are 
covered by the fault tolerance mechanism.  It is called coverage proportion and is denoted by 
C .  The relationship between coverage proportion and coverage factor was defined in equation 

(3.20) as CC = .  The estimation provided by the sample average in this model is optimistic 
for 0< , and is pessimistic for 0> .  For values of the covariance close to 0, the estimator 
can be considered unbiased. 
 
The accuracy of the estimator can easily be calculated as the variance as, 
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and its unbiased estimator ࡿ෡ is given by, 
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 (3.28)

 

 
 

3.6.4.1. Confidence Intervals 

Confidence intervals for the fault coverage are usually defined using the technique of the pivotal 
transformation applied to the point estimator.  From the definition of confidence intervals, 
 

=])ˆ:ˆ[( 21 CCCP   (3.29) 

 
and using the pivotal quantity, 
 

 (3.30)
 

 
 
 
it can be observed that the estimator is distributed like a binomial random variable, which can be 

approximated by the normal distribution with mean ]ˆ[CE  and variance ]ˆ[CV , so that the pivotal 
quantity in equation (3.30) has the standard normal distribution.  The symmetric double-sided 
100 % confidence interval is then given by, 
 

)]ˆ[ˆˆ(<<)]ˆ[ˆˆ( CSKCCCSKC   
 (3.31)

 

where K  indicates the 
th





 

2

)100(1 
 standard normal percentile.  The estimated variance has 

been used rather than the unknown variance. 
 
When the variance is unknown, the t-Student distribution should be considered rather than the 
normal distribution.  However for typical sample sizes of fault injection experiments, with 

100n , the two distributions are equivalent [Arlat 1993].  The single sided 100 % confidence 
interval is instead given by, 
 

  (3.32) 
 

 

where z  indicates the 100 % standard normal percentile.  It must be noted that the 

confidence intervals have been defined for the mean of the estimator, i.e., the coverage 

proportion Ĉ , which is different from the real coverage factor C  if the fault coverage 
mechanism is unfair.  The difference between the coverage proportion and the system coverage 
is given by the covariance, and is a measure of how fairly the fault tolerance mechanism 
behaves with it attempts to cover faults with higher or lower probability of occurrence than the 
average.  An unfair fault tolerance mechanism that covers the most likely faults better than the 
less likely faults leads to a positive covariance, while an unfair fault tolerance mechanism that 
covers least likely faults better than the most likely faults will result in a negative covariance.  
Therefore the confidence interval defined above is valid only when it can be assessed that 
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3.6.4.2. The Number of Fault Injection Experiments 

In conducting a campaign of fault injections to estimate coverage values, the number of fault 
injections needed to provide a statistically sound estimate of coverage for each component must 
be estimated.  For practical purposes, the single sided or one-side confidence interval model to 
estimate the number of fault injections may be used, although there are several other statistical 
models that can be used to derive the number of fault injection estimates [Pescosolido 2002]. 
 
As indicated in previous sections, the estimation of the fault coverage can be modeled as a 
binomial random variable Yi, where, 
 

 (3.33)  
 
 
The fault injection experiments are performed to generate Y1, ……Yn, outcomes or responses 
where each Yi is assumed to be independent and identically distributed (e.g independent trials).  
The expected value of the random variable is E (X) = C, and the variance of the random 
variable is Var (Y) = C(1-C). 
 
Given the statistic, 
 

 (3.34)
 

 
 

the probability of 
jSn   is, 

 
  (3.35) 

 
 
If Sn out of n faults are observed to be covered, then C, the lower side of the confidence interval, 
satisfies the following equation, 
 

P(Sn > sn ) = 1-  (3.36) 
 
where P(Sn > sn ) is the probability Sn is greater than or equal to sn, given that the fault coverage 
value equals Cl, and  is the confidence coefficient.  The single-sided confidence interval is 
calculated as, 
 

 (3.34) 
 
 
 
Now, consider the case where all the faults are covered.  In the case, 
 

   (3.37) 
 
 
 
Rearranging the above equation and solving for n yields, 
 

   (3.38) 
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where n is the number of faults to be injected for a given confidence bound. 
 
One can see from equation that as the coverage parameter approaches unity the number of 
fault injections grows significantly.  Table 3-1 shows the number fault injections as a function of 
coverage and confidence intervals.   

Table 3-1 Coverage estimation as function of experiment runs. 

n 
Cl 

 = .80 
Cl 

= .90 

100 0.983 0.977 

1000 0.9983 0.9977 

10,000 0.99983 0.99977 

100,000 0.999983 0.999977 

10k 0.9k-183 0.9k-177 

 
As rule of thumb, the number of experiments needed for a given coverage level is approximately 
10x where x is the number of “9’s” in the coverage factor.  For example, for C = .999 at least 
1000 fault injection experiments are needed. 

3.6.4.3. Assumptions and Discussions about the Simple Bernoulli Model 

The model discussed in this section has advantages and disadvantages.  It is usually chosen by 
fault injection assessors as the most appealing approach to fault coverage estimation because 
of the simplicity and familiarity of the theoretical and practical development of a fault injection 
campaign resulting from the application of this model. 
 
One of the shortcomings of the estimation process described in this section is that it assumes a 
uniform fault distribution, which may or may not be valid.  It is usually used when the information 
about the underlying fault distribution is completely unknown.  It was shown in Section 3.6.4 that 
this kind of assumption can lead to biased estimates of the fault coverage (or the non-coverage, 
depending on the specific approach used in the references). The bias of the estimator is 
quantified by the covariance , representing the unfairness of the fault tolerant mechanism.  
Only when the fault tolerant mechanism can be considered fair (i.e. 0   ) can this assumption 
lead to precise estimates of the fault coverage.  Therefore, the assumption of a uniform fault 
distribution is only sufficient, but not necessary, for the unbiasedness of the estimator proposed 
in this model.  In general, all the models that assume a uniform fault distribution provide equally 
precise estimates if only the condition of fairness is verified. 
 
Whether the fairness condition is verified in real systems or not is an open research question, as 
no such study has been found in the literature.  From an engineering perspective it could be 
argued that in the design of dependable systems most of the effort is devoted to achieving high 
coverage for the most likely faults to occur.  For example, a fault tolerance mechanism that 
implements error-detecting/error-correcting codes for a communication channel is generally 
designed such that only one or a few bits can be recovered in a fixed-length word, because 
those are the errors that are most often observed.  Clearly, it can generally be argued that the 
most likely faults are the ones that historically have been more often observed and studied, thus 
the fault detection/tolerance mechanisms are designed to mitigate those faults. 
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From such considerations it could be concluded that in highly realiable fault tolerant systems   
is greater than zero, thus the model presented in this section would provide pessimistic 
estimates of the fault coverage.  Such a conservative result is often desirable, especially for 
critical applications in which safety is of major concern. 
 
However, the conclusion that real systems have a positive covariance has only been reached 
from practical considerations, and is not to be interpreted as a statement of general validity.  It 
would be interesting to carry out a detailed study of the covariance in systems for which 
historical data are available, so as to assess the applicability of the model presented in this 
section (and the other models that make use of the strict assumption of a uniform fault 
distribution) and to quantify the degree of conservativeness of the estimates provided by such 
models. 
 
The other limitation of this model regards the applicability of the pivotal transformation used to 
determine the confidence intervals in practical fault injection experiments.  It is common practice 
[Powell 1995] in statistical estimation of the distribution parameter of a Bernoulli random 
variable to assume that the pivotal quantity of Equation (3.29) is distributed as a standard 
Gaussian distribution.  This assumption derives in general from the result provided by the 
Central Limit Theorem, but in the specific case it is better understood considering that the 
estimator of Equation (3.30) is distributed as a binomial random variable, which a discrete 
distribution that can be approximated by the normal distribution with the same mean and 
variance.  The appropriateness of such an approximation has been discussed several times in 
the literature, and the general conclusion is that a large number of experiments and a relatively 
low value of the system’s coverage are necessary conditions for the approximation to be valid 
[Smith 1997; Cukier 1997].  This is usaully the case for most fault injection studies. 

3.7. Fault Models 

Faults from either hardware failures or software failures can have significant impact on the 
reliability and safety operation of digital I&C systems.  Hardware faults can cause software to 
malfunction beyond its intended operation.  For instance, a hardware fault in a register can 
misdirect a pointer data structure to the wrong location in memory.  Traditionally, the main 
purpose of a fault model is to define the fault conditions that may occur on a semiconductor 
device, integrated circuit, or software.  In a sense, a fault model indirectly describes the types of 
failure mechanisms a digital device can experience.  Thus, fault models are abstract 
representations of real faults that occur in digital systems.  Applying these fault models to digital 
I&C systems and observing the responses is a key component of fault injection based 
assessment processes.  It is important to note that fault models must be both representative 
and supportable in the physical fault injection context.  
 
Among the various attributes (such as workload, fault set, measurements and measures) that 
have been introduced within the FARM model to precisely characterize a dependability 
benchmark, the determination of a representative fault set for digital I&C is identified as one of 
the key challenges [Arlat 2002].  A representative fault set is a set of faults that accurately 
represent the types of failures that can occur in an operational context in digital I&C systems.  
The determination of fault representativeness attempts to show that a fault model is 
representative with respect to actual faults.  
 
Fault models for digita- based systems are often classified by their time dimension, 
 
 Permanent, which remain in existence indefinitely, 
  
 Transient, with a usually short temporal duration, 
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 Intermittent, similar to transient as they have a temporal duration, but that appear and 
disappear repeatedly in time, without a periodic behavior. 

3.7.1. Permanent Faults 

The permanent fault model represents a physical defect in the semi-conductor IC or supporting 
hardware that is activated when certain input and state conditions place demands on the 
hardware where the physical fault exists.  Examples include electro-migration, hot carrier 
effects, and time dependent dielectric (oxide) breakdown.  These failure mechanisms usually 
result in permanent faults/failures in devices.  Recently, there has been some concern that the 
FIT caused by permanent failure mechanisms in semiconductors is increasing due to 
aggressive scaling and process technologies [George 2010(a); Baumann 2005(a)].  Shrinking 
geometries, lower power voltages and higher frequencies have a negative impact on reliability 
of digital technology by increasing the rates of occurrence of transient, intermittent, and 
permanent faults. 

3.7.2. Transient Faults 

It is estimated that 80% of all faults that occur in computer based systems are transient in 
nature [Yount 1996; Baumann 2005(a); Baumann 2005(b)].  Also known as soft errors, transient 
faults generally do not cause permanent damage to silicon-based digital circuits and disappear 
with reset of the system, or get overwritten by dynamic data.  While a number of sources of 
transient faults exist, such as electrostatic discharge, power fluctuations, High Intensity 
Radiated Fields (HIRF); those that arise from high-energy particle strikes) have recently gained 
more significance as a result of aggressive scaling of device dimensions, lower voltage 
operations, with a consequent increase in the corresponding soft error rates observed 
[Baumann 2005(a)]. 
 
The initiating failure mechanism of single event upset (SEU) transient faults is the high energy 
particle strike.  High energy cosmic particles (e.g., Hadrons, protons, and neutrons) interacting 
with silicon can cause ionization reactions in the silicon cells of an IC causing the cell to absorb 
a charge and thus flip the state of a memory cell or propagate a pulse charge.  Historically, 
particle strikes would cause only one bit to flip because the cell geometry size was large 
compared to the area affected by the particle strike.  However, with contemporary 
semiconductors featuring geometries around 25nm, the occurrence of multiple event upsets are 
now possible and have been observed in the laboratory [Constantinescu 2002].  In addition, 
logic cells inside CPUs are now vulnerable to particle upsets for the first time [Baumann 2003].  
Taken all together, the transient fault phenomena in digital I&C systems is one that should be 
considered when selecting appropriate fault models for fault injection. 

3.7.3. Intermittent Faults  

Intermittent fault manifestation can come from a number of sources.  The most widely reported 
cause of intermittent faults inside an IC is defects that occur during the manufacturing process 
[Constantinescu 2006; Gracia-Moran 2010; Constantinescu 2003].  At the board and system 
level, intermittent faults often are associated with degraded connections, poor contact points, 
unbalanced ground current loops, and power fluctuations.  Intermittent faults are often the most 
difficult to isolate because of their non-stationary behavior. 

3.7.4. Software Faults 

Software faults are basically an artifact of design.  It is a potential, unintended functionality that 
must be assumed to be always present in the system.  Software is more a reflection of the 
design of the system than it is a component of the system.  As such, it is more appropriate, 
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when discussing safety or reliability, to talk about failures of the system that are caused by 
software than it is to talk about failures of the software alone.  This places the argument into the 
context of a system and its interacting environment. 
 
Software failures, especially those associated with common mode or common cause origin, are 
a potential serious problem with digital I&C systems.  The software testing and software 
reliability research community has been using variants of fault injection to test the robustness of 
software for some years with reasonable success [Lyu 1996].  The purpose of software testing 
in the commercial realm is mainly geared toward defect removal and product quality 
enhancement, not safety enhancement.  Typical techniques include mutation testing, error or 
fault seeding, sandboxing, and fuzzing. 
 
When speaking of injecting software faults into a system, there should be some clarification on 
what the purpose of such an exercise would be.  One purpose of injecting software faults would 
be to test the resilience or robustness of the digital I&C system to detect, isolate and recover 
from such faults.  This presumes that the injected software faults have the potential to get 
introduced into the system, either by system or application software changes, or by malicious 
intent (e.g., malware). 
 
In the context of digital I&C systems, the system would have to possess the capability to detect 
and mitigate such faults.  If the system has no detection or tolerance mechanisms to deal with 
the software faults then it will most likely fail.  However if the system is developed in a manner 
that provides some resilience to software faults, then fault injection is an appropriate process to 
test the resilience of the system to these threats.  This is analogous to anti-virus software that 
runs on desktop computers, its purpose is to detect and isolate viral code that is not intended to 
be running on the machine. 
 
At present, there is a need for guidance to determine what would be an adequate software fault 
model that is appropriate for digital I&C systems and under what circumstance would it be 
useful.  In summary, the ability to inject software faults into a system is not a significant 
technical barrier; the methods developed in this research can achieve this with moderate 
success.  The issue at hand is determining the necessary guidance so that the results have 
some meaning to the overall assessment process. 

3.8. References 

[Arlat 2002] Arlat, J, and Y Crouzet. "Faultload representativeness for dependability 
benchmarking." 2002. 29-30. 

[Arlat 2003] Arlat, J, Y Crouzet, J Karlsson, P Folkesson, E Fuchs, and G H Leber. 
"Comparison of Physical and Software-Implemented Fault Injection 
Techniques." IEEE Transactions on Computers, no. 52 (2003): 1115-
1133. 

[Arlat 1992] Arlat, J. "Fault Injection for the Experimental Validation of Fault-
Tolerant Systems." Proceedings of Workshop Fault-Tolerant Systems. 
Kyoto, Japan: IEICE, 1992. 33-40. 

[Arlat 1990(b)] Arlat, J., et al. "Fault injection for dependability validation: a 
methodology and some applications." #IEEE_J_SE# 16, no. 2 
(1990(b)): 166-182. 

[Baumann 2005(a)] Baumann, R. C. "Radiation-induced soft errors in advanced 
semiconductor technologies." #IEEE_J_DMR# 5, no. 3 (2005(a)): 305-
316. 

[Baumann 2005(b)] Baumann, R. "Soft Errors in Advanced Computer Systems." IEEE 
Design and Test of Computers, 2005(a): 258-266. 



42 

[Baumann 2003] Baumann, R. "Technology scaling trends and accelerated testing for 
soft errors in commercial silicon devices." 9th IEEE On-Line Testing 
Symposium.  Dallas TX:  2003. 

[Elks 2009(a)] C. Elks, B.W. Johnson, M. Reynolds. "A Perspective on Fault Injection 
Methods for Nuclear Safety Related Digital I&C Systems." 6th 
International Topical Meeting on Nuclear Plant Instrumentation Control 
and Human Machine Interface Technology. Knoxville, TN: 
NPIC&HMIT, 2009(a). 

[Elks 2010(a)] C. Elks, M. Reynolds, B. Johnson, N. George, M. Waterman, J. Dion. 
"Application of a Fault Injection Based Dependability Assessment 
Process to a Commercial Safety Critical Nuclear Reactor Protection 
System." Dependable Systems and Networks Symposium. Chicago, 
IL, 2010(a). 

[Yount 1996] C.R. Yount, D.P. Siewiorek. "A Methodology for the Rapid Injection of 
Transient Hardware Errors." IEEE Transactions on Computers, 1996: 
881-891. 

[Choi 1997] C.Y. Choi, B.W. Johnson, J.A. Profeta III. "Safety Issues in the 
Comparative Analysis of Dependable Architectures." IEEE 
Transactions on Reliability, September 1997: 316-322. 

[Chillarege 2002] Chillarege, R., Goswami, K., Devarakonda, M. "Experiement 
Illustrating Failure Acceleration and Error Propagation in Fault-
Injection." IEEE International Symposium on Software Reliability 
Engineering, 2002. 

[Constantinescu 2003] Constantinescu, C. "Trends and Challenges in VLSI Circuit Reliability." 
IEEE Micro Magazine, 2003: 14-19. 

[Constantinescu 2002] C. Constantinescu. "Impact of Deep Submicron Technology on 
Dependability of VLSI Circuits." Dependable Systems and Networks. 
International Conference, 2002. 205-209. 

[Constantinescu 2006] Constantinescu, C. "Intermittent Faults in VLSI Circuits." IEEE 
Workshop on System Effects of Logic Soft Errors. IEEE, 2006. 

[Smith 2000] D. Smith, T. DeLong, B.W. Johnson. "A Safety Assessment 
Methodology for Comples Safety Critical Hardware/Software Systems." 
International Topical Meeting on Nuclear Plant Instrumentation, 
Controls, and Human-Machine Interface Technology. Washington, 
D.C., 2000. 

[Smith 1997] D.T. Smith, B.W. Johnson, N. Andrianos, J.A. Profeta III. "A Variance 
Reduction Technique Using Fault Expansion for Fault Coverage 
Estimation." IEEE Transactions on Reliability, September 1997: 366-
374. 

[Elks 2005] Elks, C. A Theory of Run-Time Verification. Charlottesville, VA: 
University of Virginia, Ph.D. Thesis, 2005. 

[Huang 2011] Huang, Bing, M. Rodriguez, Ming Li, J. B. Bernstein, and C. S. Smidts. 
"Hardware Error Likelihood Induced by the Operation of Software." 
#IEEE_J_R# 60, no. 3 (2011): 622-639. 

[Huang 2005] Huang, Bing, Xiaojun Li, Ming Li, J. Bernstein, and C. Smidts. "Study of 
the impact of hardware fault on software reliability." 2005. 

[Gracia-Moran 2010] J. Gracia-Moran, D. Gil-Tomas. "Searching Representative and Low 
Cost Fault Models for Intermittent Faults in Microcontrollers: A Case 
Study." IEEE 16th Pacific Rim International Symposium. Tokyo, Japan: 
IEEE, 2010. 11-18. 

[Voas 1998] J. Voas, G. McGraw. Software Fault Injection: Implementing Programs 
Against Errors. Wiley, 1998. 

[Kohavi 1978] Kohavi, Z. Switching and Finite Automate Theory. McGraw-Hill, 1978. 



43 

[Chu 2008] L. Chu, G. Martinez-Guridi, M. Yue, J. Lehner, P. Samanta. Traditional 
Probablistic Risk Assessment Methods for Digital Systems. 
NUREG/CR-6962, NRC, 2008. 

[Kaufman 1998] L. Kaufman, B.W. Johnson. The Importance of Fault Detection 
Coverage in Safety Critical Systems. NUREG/CP-0166, Proceedings 
of the 26th Water Reactor Safety Information Meeting: U.S. NRC, 
1998. 

[Lyu 1996] Lyu, M. Handbook on Software Reliability Engineering. McGraw Hill, 
1996. 

[Cukier 1997] M. Cukier, J. Arlat, D. Powell. Frequentist and Bayesian Coverage 
Estimations for Stratified Fault-Injection. Research Report 96336, 
Bologna, Italy: LAAS-CNRS, 1997. 

[Reynolds 2009] M.Reynolds, C.R. Elks, N. George, M.Sekhar, T. Delong, B.W. 
Johnson. "A Quantitative Safety Assessment Methodology for Safety-
Critical Programmable Electronic Systems Using Fault Injection." SAE 
World Congress. Detroit, MI, 2009. 

[George 2010(a)] N. George, C. Elks, B. Johnson, J. Lach. "Transient Fault Models and 
Architecture Vulnerability Factor (AVF) Revisited." Dependable 
Systems and Networks Symposium. Chicago, IL, 2010(a). 

[Pescosolido 2002] Pescosolido, M. "Statistical Models for Coverage Estimation." School 
of Engineering and Applied Science Masters Thesis. University of 
Virginia, May 2002. 

[Powell 1995] Powell, D., E. Martins, J. Arlat, and Y. Crouzet. "Estimators for fault 
tolerance coverage evaluation." #IEEE_J_C# 44, no. 2 (1995): 261-
274. 

[Sharma 1994] Sharma, K.K. "On the Estimation of Sample Size and Censoring Time 
and Life Testing Experiments" Microelectronics Reliability, vol 34, 
1994: 125-134. 

[Aldemir 2007] T. Aldemir, M.P. Stovsky, J. Kirschenbaum, D. Mandelli, P. Bucci, L.A. 
Mangan, D.W. Miller, A. W. Fentiman, E. Ekici, S. Guarro, B.W. 
Johnson, C.R. Elks, S.A. Arndt. Reliability Modeling of Digital 
Instrumentation and Control Systems for Nuclear Reactor Probabilistic 
Risk Assessment. Regulatory Guide NUREG/CR-6942, NRC, 2007. 

[Aldemir 2009] T. Aldemir, S.Guarro, J. Kirschenbaum, D. Mandelli, L.A. Mangan, P. 
Bucci, M. Yau, B.W. Johnson, C. Elks, E. Ekici, M.P. Stovsky, D.W. 
Miller, X.Sun, S.A. Arndt. "Dynamic Reliability Modeling of Digital 
Instrumentation and Control Systems in Nuclear Power Plants." 6th 
International Topical Meeting on Nuclear Power Plant Instrumentation 
Control and Human Machine Interface Technology. Knoxville, TN: 
NPIC&HMIT, 2009. 

[Wieringa 2003] Wieringa, R.J. Design Methods for Reactive Systems, 1st ed. Morgan 
Kaufman, 2003. 

[Yu 2004] Y. Yu, B.W. Johnson. "Coverage Oriented Dependability Analysis for 
Safety-Critical Computer Systems." The International System Safety 
Conference (ISSC). System Safety Society, 2004. 

 



44 

4. OVERVIEW OF THE FAULT INJECTION BASED DEPENDABILITY 
ASSESSMENT METHODOLOGY 

This section provides an overview of the UVA fault injection-based dependability assessment 
methodology.  The original methodology is described in more detail in NUREG/CR reports 
[Kaufman 1999(a); Kaufman 1998; Cutright 2003(a); Cutright 2004; Bastien 2004; Cutright 
2003(b); Cutright 2003(c); Cutright 2003(d); Kaufman 1999(b); Kannan 2000; Yu 2003].  The 
purpose of this section is to provide an overview of the original methodology as it relates to the 
research effort describe in this report. 

4.1. Introduction 

The prevailing conventional approach to reliability and availability prediction is usually 
accomplished by the use probabilistic models that use component level failure rates published 
in handbooks or supplied by the manufacturers. This approach provides an early indication of 
system dependability, but the model as well as the underlying data later need to be validated by 
actual measurements. In addition, these models typically do not account for recovery provisions 
and fault coverage considerations which are critically important to reliability and safety 
assessments. 
 
Probabilistic modeling focuses mainly on system hardware reliability estimation.  However, 
accounting for software reliability is essential.  Typically, software reliability growth models are 
based upon fault rates [Lyu 1996], and at present it is difficult to obtain creditable predictions 
when there are few observed failure data, as is the case for safety critical systems. 
 
A complement to the probabilistic modeling approach is offered by measurement-based 
dependability evaluations [Smith 2000, Iyer 2002, Tang 1996]. The measurement-based 
approach is appropriate for the operational environment and during testing.  The primary 
advantage of this approach lies in the use of measurements and models for interpretation of the 
measurements.  Measurements can be performed on commercial grade components without 
the need to reveal proprietary information.  Based on the measurements, the approach can 
provide assessments of various dependability measures (e.g., failure rate, safety, reliability, 
availability) with stated confidence levels.  Measurement-based dependability assessment was 
developed on the basis of innovative techniques of fault injection, failure measurement and 
probabilistic analysis.  The methodology consists of methods for failure data collection and 
processing, statistical analysis, and dependability modeling.  Figure 4-1 shows the basic steps 
in a measurement-based dependability methodology. 
 

 

Figure 4-1 Measurement-based dependability methodology 

The UVA fault injection-based dependability assessment methodology was developed to 
complement measurement-based dependability assessments, realizing that fault injection may 
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serve different goals and purposes [Smith 2000, Elks 2010, Reynolds 2009].  Thus, the 
methodology was intended to be as flexible as possible to the needs of the assessor and 
designer.  The goal of the dependability assessment methodology described in this section is to 
provide a generic, systematic means of characterizing the dependability behavior of digital I&C 
systems and their input/output interactions in the presence of anomalous behaviors, faults, and 
failures. 
 
A central part of Phase 1 of this research was to thoroughly examine the methodology before 
the application of the methodology to the benchmark systems to determine a priori the 
challenges, issues, and deficiencies that need to be addressed in the latter phases of this effort.  
As such, it was expected that the methodology as described in this section would evolve to 
meet those challenges.  As a reminder, the methodology presented here is the original 
unmodified version of the methodology. 
 
The methodology described in this Section builds on the theory and concepts presented in the 
last Section (e.g., the FARM model of fault injection) to provide a practical means for 
implementing fault injection in the measurement-based dependability assessment process.  An 
overview of the process is shown in Figure 4-2.  In this depiction, the process is driven by the 
needs of PRA modeling efforts to estimate more accurately parameters for PRA modeling 
activities.  Statistical sampling principles are used to guide the parameter estimation process.  
Then, representative fault models are selected with respect to the target I&C system.  After the 
faults are injected into the system, the data is post-processed to produce new estimates of 
model parameters, which are then instantiated back into the PRA models to enhance better 
predictions by the PRA models. 
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4.2. Step 1: Support PRA Modeling Needs 

The process steps of the methodology are illustrated in Figure 4-3.  Each step in the 
methodology illustrated in Figure 4-3 is described in this Section.  Referring to Figure 4-3, the 
starting point in the methodology is to understand what is needed from the PRA process. 
 
The purpose of the reliability and safety assessment process is to ensure a system will meet its 
reliability and safety requirements, show that risk mitigation measures produce reliability and 
safety improvements, and the unreliability risk is controlled to an acceptable level.  A 
probabilistic safety and reliability safety assessment process usually begins with asking three 
basic questions: (1) what can go wrong, (2) what is the likelihood, and (3) what are the 
consequences?  Fault injection-based methodologies are most useful in characterizing 
questions 1 and 3 – determining failure modes and the consequences of failure. 
 
The essential process of a PRA [Kumamoto 1996] is as follows: 
 

 What are the end states or adverse consequence states of concern?  These would 
include core damage in a reactor, loss of flight control in an aircraft, unattended release 
of a hazardous material.  This activity attempts to answer the 3rd question above. 

 
 A set of initiating events for each consequence state is developed.  An initiating event is 

often related to a disturbance or a component failure deviating from normal operation. 
 

 Modeling methods such as fault trees, event trees, and Markov models are used to 
characterize a sequence of events that lead from the initiating event to the end 
consequence states.  These sequence scenarios often include hardware system 
failures, human errors, human-machine errors, common mode failures, etc.  The process 
tries to enumerate to the best extent possible all of the possibilities that may occur.  This 
step answers question 1. 

 
 Probabilities of these scenarios are determined to the best extent possible from past 

historical data, expert engineering judgment, and experimental analysis.  These 
probabilities are the answer to question 2. 

 
 The accident scenarios are ranked according to their severity and their frequency of 

occurrence to ascertain the overall risk, and what is an acceptable level of risk.  What is 
acceptable is determined and set by the managing or oversight organization (e.g., the 
licensee and the NRC).  Determining the risk of a system involves placing the risk in the 
context of its operating environment. 
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From the research perspective, the concerned was with how fault injection can support PRA 
processes, including the attributes of reliability and safety.  With respect to the PRA process 
described above, faults injected into the digital I&C system can provide the following important 
information: 
 
 Is the response of the system to the fault consistent with what was expected?  Were 

there side-effects?  This information informs step 2 and step 3. 
 

 Was the fault detected?  Was the detection handled properly?  Did the system mitigate 
the fault as intended?  This information informs step 2, step 3, step 4 and step 5. 
 

 Did the system respond consistently to the same set of faults with similar operating 
conditions?  This information informs step 2 and step 3. 
 

 Does a fault produce a failure mode not postulated?  This information informs step 1, 
step 2, step 3 and step 4. 

 
The PRA modeling process described above typically begins with defining or selecting a set of 
measurement-based attributes that are appropriate toward informing the risk assessment 
process.  These attributes include reliability, unreliability, safety, etc.  In a typical risk informed 
PRA process, there may be several dependability attributes that are used to characterize the 
system risk.  In digital I&C system reliability assessments, these measures include probability of 
system failure, probability of coincident failure, probability of failure on demand, mean time to 
system failure, mean time to unsafe system failure, and steady state unsafe system failure. 
 
The important point is that PRA activities employ modeling methods such as fault trees, event 
trees, and Markov models to assist in the determination of risk.  These models have parameters 
that represent attributes of the system, such as physical failure rates, detection capability, 
capability to tolerate faults, fail-safe capability, repair capability, etc.  Fault injection methods 
provide a means to quantitatively estimate the behavior model parameters of the system. 
 
A behavioral model parameter is a measure of how a system behaves or responds with respect 
to a stimulus (e.g., a fault or set of inputs or a disturbance).  The important coverage factor 
parameter presented in Section 3.6 of this report is a behavioral parameter in a PRA model.  
Equally important is stating the assumptions the models or model parameters in light of 
incomplete knowledge of the systems.  Since fault injection provides response information that 
can be used to statistically estimate these parameters, the quantification of these parameters (in 
a probabilistic sense) can be used to produce more accurate parameter estimates for the PRA 
models, which in turn produces more accurate risk assessments to inform the oversight 
process. 

4.3. Step 2: Fault Injection by Purpose and Type 

It is not uncommon to use fault injection for different purposes in order to obtain a more 
complete picture of a system’s behavior response.  As indicated in Section 3.4, fault injection is 
used in the design and validation processes of digital I&C systems.  As discussed in step 1, the 
accurate estimation of the parameters used in the reliability and safety models of a system is a 
primary use of fault injection.  Model parameters such as failure mode coverage, fault coverage, 
fault latency, and real-time responses are difficult to estimate a priori in digital-based systems.  
Fault injection methods (either physical or simulation based) are often used to provide data to 
estimate these parameters so the predictions of the models are more accurate and credible. 
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From a broader stance, fault injection is a measurement-based process that provides important 
experimental techniques for assessment and verification of fault-handling mechanisms.  The 
process allows researchers and system designers to study how computer-systems react and 
behave in the presence of faults.  Fault injection is used in many contexts and serves purposes, 
such as: 

 Supporting on-line monitoring so that systems can react in an appropriate way. 
 
 Assessment of the effectiveness, i.e., fault coverage, of software and hardware 

implemented fault-handling mechanisms. 
 
 Studies of error propagation and error latency in order to guide the design of fault-

handling mechanisms. 
 

 Providing evidence to support the resilience of the system to unexpected faults and 
failures. 

 
 Measuring the time required for a system to detect or to recover from errors. 

 
 Testing the security detection capabilities of fault-handling protocols in distributed 

systems. 
 

 Verifying failure mode assumptions for components or subsystems. 
 

Since fault injection can be used for many purposes, it is necessary to identify as early as 
possible the type of fault injection and the measurements that will be used and whether fault 
injections should be applied to a physical system or a model of the physical system.   
 
Fault injection can, in principle, be carried out in two ways: faults can be injected in an actual 
system (i.e., a physical computer system) or in a model of a system (i.e., a prototype of a 
commercial product).  System models for fault injection experiments can be built using two basic 
techniques: software simulation and hardware emulation. 

The main advantage of performing fault injections on an actual system is that the 
implementation of the fault-handling mechanisms is assessed and verified realistically.  Thus, 
system representativeness is usually higher when using a physical system compared to using 
software simulation or hardware emulation.  On the other hand, fault models used in simulation-
based and emulation-based fault injections can usually emulate a larger set of representative 
faults more accurately than in physical-based fault injection system and the reachability of these 
faults into the system is much greater.  However, there is an issue of model fidelity with 
simulation-based fault injections; that is, is the model an accurate representation of the physical 
system. 

Fault injection techniques have specific drawbacks and advantages.  A comprehensive survey 
of fault injection methods and techniques to serve as a guide toward selecting fault injection for 
a target digital I&C system is presented in the next Section. 

4.4. Step 3: Statistical Modeling Guidance for Fault Injection 
Experiments 

The purpose of statistical modeling is to provide a formal basis for (1) conducting fault injection 
experiments and (2) providing a statistical model for a estimating the measures of a fault 



 

51 

injection experiment, such as coverage.  As developed in Section 3, the statistical model 
supports four specific needs of the methodology: 
 
(1) Characterize the fault injection experiment in formal statistical framework. 

 
(2) Quantify and characterize the uncertainty of model parameter. 

 
(3) Characterize and define the assumptions of the estimation process. 

 
(4) Statistically estimate based on the assumptions of the model and model parameters the 

numbers of observations are required to estimate a parameter to a known confidence 
level. 

 
Section 3 presented an overview of the statistical development of fault injection.  In practice, 
there are many statistical models that can be adopted to guide a fault injection experiment.  The 
methodology described in this report is not tied to one specific model; rather it allows users to 
decide which statistical models are best suited for a particular operational context.  In reference 
[Pescosolido 2002] a detailed survey and analysis of statistical models for the estimation of fault 
coverage is provided to better guide the user in this area.  Appendix A summarizes the 
characteristics of several popular statistical models used in fault injection. 

4.5. Step 4:  Fault Model Selection 

Digital I&C systems are subject to faults and failures from a variety of sources, and can manifest 
these faults and failures in many ways as was discussed in the fault taxonomy discussion in 
Section 1.7.3 [Avizienis 2004].  Fault models are abstract representations of real faults.  For 
example, a single event upset caused by a power surge or a cosmic particle strike can be 
modeled by the bit-flip fault model.  Fault models allow assessors to evaluate the effectiveness 
of fault detection, diagnostic testing, and fault tolerance mechanisms with respect to the faults 
that are anticipated to arise in the operation of a digital I&C system.  Applying these fault models 
to I&C systems and observing the responses is a key component of fault injection-based 
assessment processes.  Selecting the appropriate fault model for a fault injection campaign is a 
crucial decision. 
 
Research of fault models for digital I&C systems has been ongoing for at least 20 years [Ubar 
1998; Yount 1993; Yount 1996; Zemva 1998; Anceau 1986; Rashid 2010(a); Rashid 2010(b); 
Wangqi 2004].  Recent research of fault models has been focused on new device technologies, 
software flaws, and common mode faults [Baumann 2005(a); Bernardi 2004; Sierwaski 2009].  
New device technologies such as the deep sub-micron complementary metal oxide silicon 
(CMOS) process provides unparalleled performance scaling, however it can negatively impact 
reliability. 
  
Faults arising from hardware failures or software failures can have significant impact on the 
reliability and safety operation of digital I&C systems.  Hardware faults can cause software to 
malfunction beyond its intended operation.  For instance, a hardware fault in a register can 
misdirect a pointer data structure to the wrong location in memory.  It is important to note that 
fault models must be both representative and supportable in the physical fault injection context. 
 
As part of the research described in this report, fault models for processor-based I&C systems 
were reviewed, and a means to use these fault models that would be supportable across a wide 
variety digital I&C platforms was investigated.  Verifying the representativeness of fault models 
is generally a difficult challenge.  The approach for addressing this problem was to: 
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 Model and simulate processors at a highly detailed level to see how low level faults (at 
the gate level) manifest at higher levels (RTL) [Delong 2005; George 2010(a); George 
2010(b)]. 
 

 Conduct literature reviews of digital I&C systems and other embedded systems to 
identify fault models adopted by the scientific community. 

 
Figure 4-4 shows the taxonomy of supported fault models and the methods used to generate 
fault lists from the fault model types.  Based on these investigations, the fault models shown in 
Figure 4-4 represent and extend the capabilities of previous fault injection methods.  The 
research along these lines was a best effort in support of the overall goals of developing a fault 
injection-based system dependability evaluation methodology.  Building a fault injection 
environment to support the entire fault models listed in the fault taxonomy of section 1.5.3 was 
beyond the scope of the research effort described in this report. 
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Referring to Figure 4-4, in the physical fault domain there are two types of faults that are of 
relevance: (1) deterioration or degradation faults, and (2) external interference faults. The first 
type of faults are due to the natural wear-out and degradation of semiconductor devices, ICs 
and board level interconnections.  Typically, these faults are modeled as permanent faults.  The 
second type of faults arise from the natural interference in the system from external sources.  
The error manifestation of both fault classes is either a permanent or transient error. 
 
It is estimated that 80% of all faults that occur in computer based systems are transient in 
nature [Yount 1996; Constantinescu 2002; Baumann 2005(b)].  The effects may last for 
milliseconds or may persist until the system is re-booted or refreshed.  In recent years, the 
impact of SEUs caused by neutron particles and high intensity radiation fields (e.g., EMI) 
affecting digital systems has become more significant due to the aggressive scaling of 
semiconductor manufacturing processes.  Thus, the choice of the transient fault model on the 
basis of these facts is justified.  The transient fault is represented by the modified single and 
multi-bit flip model proposed in [George 2010(a)] as a result of this work. 
 
The other fault model that is of importance is the permanent fault model.  The permanent fault 
model represents a physical defect in the semi-conductor IC or supporting hardware that is 
activated when certain input and state conditions place demands on the hardware where the 
physical fault exists.  Examples include electro-migration, hot carrier effects, and time 
dependent dielectric (oxide) breakdown.  These failure mechanisms usually result in permanent 
faults or failures to devices.  As with increased SEU susceptibility with new IC technologies, the 
rates of failure caused by permanent failure mechanisms in semiconductors is increasing due to 
aggressive scaling and process technologies [Srinivasan 2004].  Specially, the increase in FIT 
rate from the 150 nm technology to the 35 nm technology is approximately 500%. 
 
Emulation of the permanent fault model is based on a special case of the bit flip fault model.  In 
this special case bits are flipped in memory or register locations on every occurrence of the use 
of the affected register or memory location through the use of a trigger register.  Use of this 
model requires extremely high performance fault injection methods so as to not adversely 
impact the performance of the target I&C system when injecting a permanent fault.  Until 
recently permanent fault models were not practical due to their negative performance impact on 
system performance.  As part of the research described in this report a high performance fault 
injector to support the demanding needs of emulating permanent faults (and other types of 
faults) on digital I&C systems was developed.  This new fault injector is described in later 
sections. 
 
The next type of hardware domain fault is a multiple fault type.  Multiple faults are the 
occurrence of two or more faults that are nearly coincident in time (i.e., concurrent relative to the 
period of interest).  These faults can be dependent (i.e., one fault is triggered by another fault) 
or sequential (i.e., one fault is followed by another fault).  Multiple faults can be either transient 
or permanent in persistence.  Single faults also can be dependent faults, such as a fault 
triggered when a specific operational mode is activated or deactivated in the digital I&C system. 
 
The above fault classes are mainly attributable to hardware domain faults.  Developmental 
based faults, or software errors also are important contributors to digital I&C system failures.  As 
part of this work the research efort used a very conservative approach to support software 
domain fault emulation.  The approach used is function block-oriented fault injection. 
 
Most digital I&C systems of the type found in NPP systems are programmed by function block 
programming because the applications development engineer understands the operation of the 
I&C system through the function block representation.  Function block-oriented fault injection is 
aimed at characterizing the function block at its lowest level – data structures, assembly code, 
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parameters, and internal and interface variables – so that both hardware and proposed software 
fault models can be applied to the function blocks. 
 
The main goal of function block-oriented fault injection is to promote traceability from the 
function block representation (high level) to the low level implementation (assembly code, data 
structures, and variables that are realized on the target I&C machine).  While strictly function 
block-oriented fault injection is not a fault model, the process allows fault models to be placed 
into the context of the application functionality of the I&C system.  By allowing the manipulation 
of data structures at the interface of function blocks and in the internal space of function blocks, 
the impact of various software faults (e.g., assignment, checking, reference parameters, etc.) 
can be assessed, which can provide useful data to the I&C community on how to model 
software faults and errors (this modeling issue is still an open question). 
 
The important point is that emulating a fault in a function block provides information on the 
impact a particular software fault will have on a system.  That is, identifying the failure modes or 
errors that result, and under what conditions those failure modes or errors arose.  The impact of 
a fault, however, does not reveal the likelihood of the fault being present in the system.  This is 
outside the domain of fault injection-based methods, and is part of a larger research effort 
related to software quality assurance and metrics. 
 
Lastly, interaction fault models that occur in the operational environment and the communication 
network are significant with respect to highly integrated control rooms incorporating digital I&C 
systems.  There are many human-machine interaction faults that are possible in such an 
environment; however this research effort focused on three types of interaction faults.  The 
interaction fault models proposed by this research are principally: sensor faults, communication 
protocol and data faults, and configuration faults.  Sensor faults are modeled as permanent or 
transient faults arising from hardware degradation, noise, and EMI interference.  
Communication protocol and data faults are modeled as transient faults for protocols and data.  
Configuration faults are modeled as permanent faults since they represent a configuration 
change in the system by accidental intent. 

4.6. Step 5: Establishing the Operational Profile and Workload 

4.6.1. Introduction 

An operational profile (OP) is a quantitative representation of how a system will be used within 
its use environment [Musa 1998].  The OP models how users interact and use the system, 
specifically the occurrence probabilities of system and user modes over a range of operations.  
Traditionally, it is used to generate test cases and to direct testing of the most used functions; 
thus, the potential for improved reliability with respect to the use environment is achieved.  It 
associates a set of probabilities or weighting factors to the program input space and therefore 
assists in the characterization of possible behaviors of the program or collection of programs 
that represent a system.  Determining the OP of a non-trivial system is a challenging part of 
dependability assessment in general [Shukla 2004]. 
 
The OP is traditionally evaluated by enumerating field inputs to the various software functions 
that comprise a system and then determining their occurrence frequencies from customer and 
user databases.  Musa pioneered a five-step approach to develop the OP, which is based on 
collecting information on customers and users, identifying the system modes, determining the 
functional profile, and recording the input states and their associated occurrence probabilities 
experienced in field operation. 
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Another term that is often used interchangeably with OP is the Workload of a system.  While OP 
and workload are similar, they are not the same.  A workload is a set of tasks or functions and 
their respective activation input space that reflects the processing capacity and demand on an 
embedded digital system.  These tasks are typically application-specific and real-time in nature.  
The workload on a system can vary depending on the configuration of the system, or its 
operating state.  Thus, a workload is sub-set of an OP. 

4.6.2. Operational Profiles for Real-Time Systems 

Most digital I&C systems such as Benchmark System I and Benchmark System II are reactive 
real-time systems.  A reactive system is characterized by its ongoing interaction with its 
environment, continuously accepting requests from the environment and continuously producing 
reactions [Wieringa 2003].  In reactive systems, correctness or safeness of the reactive system 
is related to its behavior over time as it interacts with its environment.  Unlike, functional 
computations, which compute a value upon termination, reactive programs usually do not 
terminate.  A reactive system has states which describe the current and past conditions of the 
plant (the thing that is being controlled or monitored), (2) environmental stimulus (inputs) cause 
transitions from one state to another state in the control or processing algorithm, and (3) 
transitions cause reactions (output commands) that dictate control to the plant. 

 

Digital I&C systems that are real-time and reactive operate on a deterministic, time-triggered 
basis.  The software executing in the target computer consists of a set of concurrent tasks 
governed by a real-time operating system kernel.  Each task is represented as finite sequence 
of events with respect to the operating system task scheduling.  These tasks are scheduled on 
cyclical basis.  More precisely, let a task, J, running on the target computer be a finite sequence 
of states defined as si, i = 1,2…n.  This view is typical of a control system that computes a 
control output command in response to a sensor input.  Let a cycle of task J be the complete 
scheduled repeated execution of J that occurs at frequency fc.  The length of the cycle in time is 
called the rate of the cycle, denoted as Ts, which is the sample time in control system 
terminology.  Therefore, the executions of task J occur one cycle at time for every cycle time 
and are infinitely repeating.  A collection these tasks and their respective inputs are the real-time 
OP of the target system. 
 
The difference between an OP for general purpose computing and a real-time OP is that 
general purpose OPs typically represent many customer or user domains, while real-time OPs 
are specific to a particular application (user) and its environment.  In this research effort, the OP 
is defined in the context of its application specific nature (i.e., the RPS). 
 
Real time OPs to be used in the fault injection experiments must be selected to be 
representative of the system under various modes of operation and configuration.  Digital I&C 
system configurations may invoke different hardware and software modules in response to real 
time demands, and it is important that the fault injection assessment includes sufficient 
combinations of these configurations to ensure a thorough evaluation of their behavior in the 
presence of faults. 

4.6.3. Characterization of Real-time Operational Profile for Fault Injection 

The first step in characterizing an OP is to establish a use profile the digital I&C system uses 
according to its various operational modes.  As an example, the process with respect to a 
generic digital I&C system is described in this section. 
 
A typical digital I&C system used in a safety critical plant application has at least four defined 
operating modes (see Table 4-1).  These are operating modes (1) boot up mode, (2) normal 
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mode, (3) test mode, and (4) parameter change mode.  In the boot-up mode, diagnostics, self-
tests, and health checks are executed before engagement to the normal operating mode.  
During this phase, the systems does not receive inputs from the NPP system.  The average 
boot-up time duration is around 2-3 minutes.  A “boot-up” of the system would most likely occur 
after plant outages or after reactor shutdown events. 

Table 4-1 Example composition of an operational profile for digital I&C system. 

Operational 
Mode 

Sub-System Activity 
Time 

Interval Processors 
Fault 

Tolerance 
Input/Output 

(I/O) 
Communi- 

cations 
Service Unit 

Interface 

Boot up 

Diagnostic test 
patterns, 
config checks, 
com checks.  

May be 
temporarily 
disabled or 
diminished 
during testing 

Diagnostic 
checks, 
Connectivity. 
I/O 
disengaged 

Protocol 
initialization, 
diagnostics, 
and 
connectivity.  

Diagnostics, 
connectivity 
checks, com 
checks.   

2-3 
minutes 

Normal 

Safety 
Function or 
control law 
operational. 
Various of 
modes of 
operation 
depending on 
plant 
configuration 

Full system 
error and fault 
detection. 

Acquisition of 
plant specific 
Inputs for the 
safety 
functions or 
control laws. 
Outputs 
signals are 
sent to the 
plant 
interfaces.  

Data and 
health status 
traffic is 
passed 
between 
operational 
units.   

System health 
and 
performance 
messages are 
sent to the 
operator 
service and 
monitoring 
station  

10 -18 
months 

Test mode 

Special 
Diagnostic 
routines, and 
run-time 
monitors are 
available to 
run 
concurrently 
with safety and 
control law 
functions   

May invoke 
special 
diagnostics to 
enhance the 
detection, and 
isolation of a 
fault 

Plant specific  
Inputs, 
output(s) may 
be 
disengaged.  

Data and 
health status 
traffic is 
passed 
between 
operational 
units 

Special 
diagnostic 
messages are 
sent to the 
operator and 
monitoring 
station 

As needed 
for testing
(~24 hours 
-48 hours)

Parameter 
Change 

Ability to re-
calibrate plant 
parameters in 
the safety 
function and 
control laws. 

Should have 
full system 
error and fault 
detection. 

Plant specific  
Inputs and 
outputs, 
possibly 
special test 
inputs to 
validate the 
parameter 
change 

Data and 
health status 
traffic is 
passed 
between 
operational 
units 

System health 
and 
performance 
messages are 
sent to the 
operator 
service and 
monitoring 
station 

Plant 
dependent
(~8 hours)

 
During normal operation, the digital I&C system monitors or controls the plant system to ensure 
safe and reliable operation for the prescribed safety envelope.  The normal operating mode is 
the mode where the safety functions or control algorithms would be allowed to execute.  The 
functional modes for normal mode operation are application dependent, but they always relate 
to the operating state of the plant.  For instance, in an NPP the reactor could be operating at 
rated power, a transition mode, start-up mode, low-power mode, or manual mode.  The 
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functional modes within the safety functions or control algorithm would be a part of the 
operational profile make-up. 
 
Another mode is the test mode.  The test mode allows for a part (or all) of a digital I&C system 
to be placed in a special mode in which operational aspects of the system can be measured for 
surveillance monitoring purposes.  In this mode, the safety functions may be executing, but the 
actuation outputs of the digital I&C may be disengaged.  Special monitoring diagnostics are 
usually invoked to monitor various sub-systems performance, error reports, and trends.  Test 
mode operation usually occurs as part of a planned surveillance interval, a planned outage, or 
an unplanned outage event. 
 
The parameter change mode allows specific parameter changes to the control or safety function 
software.  This mode of operation may occur during normal operating conditions where the 
controller needs to tune or calibrate the control system to compensate for slow dynamic 
changes occurring within the plant.  Like the test mode, this mode of operation is fairly 
infrequent as compared to the normal operating mode.  A parameter change is usually a 
planned action by the operating staff. 
 
After the operational modes have been identified and characterized, the next step is to define 
how the operational will be used in the testing environment.  Since workload and the input 
stimulus to the system in various modes of operation can have significant impact on the 
estimation of parameters such as coverage [Folkesson 1999], it is important to represent the 
operations of the system accurately.  Since digital I&C systems are usually reactive real time 
systems responding to their environment their interaction to the input environment will be 
discussed first. 
 

If there are no inputs or a reduced set of inputs from the external environment, only a reduced 
set of software and hardware resources on the digital I&C system may be used (cyclic idle 
tasks, diagnostics, and so forth).  This portion of the OP is referred to as a system light 
workload.  A transient fault that occurs during a system light workload has a higher probability of 
not being activated as an error.  If activated as an error, the transient fault may not produce a 
failure until an input/output activity starts.  Also a permanent fault that occurs during a system 
light workload has a higher probability of not being activated as an error by the idle tasks, but it 
has a higher probability of being activated as an error and detected by the system diagnostics 
since those tasks are running without preemption.  This assumes that the fault activation interval 
is longer than the time in which diagnostics are completed. 

 

If there are many inputs and events from the external environment, a majority of the software 
and hardware resources of the digital I&C system are used.  This portion of the operational 
profile is a system heavy workload.  In general, when testing the functionality of a given system, 
the OPs should be selected to exercise as much of the system as possible.  This becomes 
especially important in a safety evaluation effort using fault injection since it has been shown 
that certain operational profiles can mask faults within the system [Choi 1999].  A transient fault 
that occurs during a system heavy workload has a higher probability of being activated as an 
error, and could quickly produce (if not detected) a failure due to the high input/output activity.  
Also, a permanent fault that occurs during a system heavy workload has a high probability of 
being activated as an error before being detected by a diagnostic function.  The exception to 
this case is when the fault occurs in a location not being used by the workload.  In this case, the 
diagnostic functions will take a longer time to detect the fault or error assuming that the fault 
activation interval is longer than the time in which diagnostics are completed. 
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Faults injected during the system heavy workload can be used to determine if the system is able 
to mitigate faults in a safe manner before an incorrect output changes the environment state 
(i.e., an incorrect output must be stable for a given period, T, to affect the environment). 
Therefore, a system heavy workload, followed by a short “no activity” interval (to allow the 
outputs to stabilize), should be included in the selected operational profiles to properly exercise 
the system.  A system heavy workload can be defined, compressing in time and mixing various 
operational conditions of the environment controlled by the selected system configuration. 

Figure 4-5 Representative operational profile for fault injection experiments 

In summary, the operational profile shown in Figure 4-5 is considered to be representative of the 
types of OPss that must be used for fault injection experiments in order to properly exercise 
complex hardware/software systems.  As such, OPs like the one shown in Figure 4-5 are used 
during the fault injection experiments, the results of which are then used to statistically estimate 
the fault coverage for the various system components.  As shown in Figure 4-5, OPs consist of: 
 
 system start-up (Phase 1), 
 system light workload (Phase 2), 
 system heavy workload (Phase 3), and 
 short system light workload (Phase 4) 
 
Most faults are injected during Phase 2 and Phase 3, and on a limited basis in Phase 1 and 
Phase 4 due to the justifications presented above.  It is worth noting that the window shown in 
Figure 4-5 can be seen as the OP to be applied for a given fault injection experiments.  Sliding 
the window left and right produces a set of OPs with many stress conditions. 

4.7. Step 6: Injecting Faults into the Target System 

Figure 4-6 shows the essential components of a fault injection environment.  This has been 
adapted from reference [Hsueh 1997].  There are a number of fault injection techniques and 
tools that are available to the designer for dependability validation.  Section 5 provides a 
detailed survey and classification of the various fault injection techniques that are applicable to 
digital I&C system. 
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Figure 4-6 Basic architecture of a fault injection environment 

Referring to Figure 4-6, the generic representation of the fault injection environment combines 
the key elements of a fault injection methodology into a setting where the theory of fault injection 
can be realized.  In Figure 4-6, the Target System is the system to which the fault injection is 
applied.  The Target System executes tasks assigned from the application workload 
environment.  The Application Workload(s) of the system are representative programs the target 
system typically executes in its application domain.  The Operational Inputs define the input 
domain for the Target System with respect to the various workloads that the system executes.  
The Fault Library(s) contains the list of faults to be injected into the target machine by the Fault 
Injector.  The list includes faults that are representative of fault classes that are expected to be 
encountered.  The Monitor globally keeps track of execution on the target and initiates data 
collection when necessary.  The Data Collector captures the effects of faults as they propagate 
through the target.  The effectiveness of the data collector determines the quality of the results 
obtained upon analysis of the collected data by the Data Analyzer. 

4.7.1. Required Attributes of a Fault Injection Environment 

This section presents attributes that a fault injection environment should have to satisfy the 
requirements of the FARM model of fault injection.  Some requirements pertain to providing the 
capability for automating fault injections, and some requirements are concerned with the ability 
to represent different fault models so that a wide variety of failure modes can be tested. 

4.7.1.1. Support for Fault Models 

An effective fault injector must be able to emulate various fault models so that the assessor of a 
system can test the fault tolerance mechanisms under the effects of various types of the faults 
indicated in the fault taxonomy of Section 1.7.3 and in the previous section.  Hence, the ability to 
model various fault models using the same fault injection environment is a valuable feature.  
Furthermore, the ability to use several different fault injection techniques from a single 
environment aids in the overall usability of the fault injection environment from one platform to 
another. 
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4.7.1.2. Support for Precise Fault Activation 

Support for precise fault activation is an essential feature related to the requirements of the 
FARM model.  Recall, the fault space F has three basic dimensions; (1) location of fault 
activation, (2) time of fault activation, and (3) duration of fault activation.  In fault injection, the 
ability to inject a fault based on these dimensions that might be applied to emulate a certain fault 
is a concern.  For example, a fault may need to be injected at a random point in time to emulate 
a transient fault.  Or, a fault may be injected when a certain mode or input condition or certain 
event occurs on a given variable.  The ability to set up composite timing and triggering 
constraints is an essential feature that ensures various operational modes of the target system 
can be exercised effectively.  Being able to precisely control the time, location, and duration of 
when a fault is to be injected improves the controllability of the fault injection process, and thus 
improves the repeatability and efficacy of the fault injection experiments. 

4.7.1.3. Support for Experiment Control 

The design of experiments consists of deciding a number of controllable parameters such as 
fault location, fault value, fault dependence, fault timing, persistence of faults, and so on.  For 
example, there are a number of available choices as to what a fault value might be.  These 
might include: 
 
 Min/Max: The value of a variable that must be corrupted can be made a minimum or a 

maximum of what it is capable of representing. 
 

 Random bit-flip: A randomly selected bit in the binary representation of the variable can 
be toggled. 
 

 Random value: A random value can be chosen from a valid set of values a variable 
might be allowed to represent. 
 

 Invert: All bits in the binary representation of the variable could be toggled. 
 
Similarly, persistence of the fault might be permanent or transient depending on whether the 
value is corrupted each time it is used or just once at a random point in time. 
 
A list of fault locations corresponds to what is known as a fault list.  A collection of similar lists 
like these is called a fault library.  The fault injector must be able to load a number of fault lists 
or libraries and should be able to swap between fault lists giving the ability to set up complex 
fault patterns.  The fault injection environment that is built must provide the capability to easily 
decide these parameters and thereby allow easy set-up of experiments. 

4.7.1.4. Support for Automation 

Being able to automate fault injection is essential to being able to collect large amounts of data 
so that adequate confidence can be placed in the parameters that are determined during the 
statistical estimation process.  A number of capabilities must come together to enable 
automation of fault injection. 
 
When integrated into a complex microprocessor based system, the fault injector must be able to  
communicate with the system in order to inject a fault, or to convey status messages back to the 
data collection subsystem or any other part of the fault injection environment.  The fault injector 
must have output signals that it can issue and also input signals that it can detect.  Being able to 
issue and detect these signals is crucial for communication between the Target System and the 
Fault Injector at different levels.  For example, the fault injector must be coordinated with system 
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resets, when the system has completed booting up, and so on.  Exchanges of this kind of 
information is needed at a level that is different from the main connection between the fault 
injector and the target system, which is typically at a physical interface level (e.g., the CPU, a 
test port, the pins of a device, etc.). 
 
The fault injector also should have commands that can be issued from a remote host computer 
to perform various tasks, such as the ability to compile and execute command scripts to enable 
automatic set up of tasks to support fault injection.  These various tasks include detection of 
events, setting up, enabling or disabling software or hardware breakpoints, performing 
memory/register corruptions, and halting and resuming the CPU, through low level commands. 
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5. FAULT INJECTION METHODS FOR DIGITAL I&C SYSTEMS:  A 
SURVEY AND CHARACTERIZATION 

This Section presents a comprehensive description of contemporary and emerging techniques 
for fault injection.  The first three sections address fault injection into physical systems.  This 
Section is significant because the advantages and disadvantages of fault injection methods and 
techniques with respect to digital I&C systems must be weighed during the selection process.  
The principle aim of this research was to identify and develop methods for injecting faults into 
digital I&C systems of the type found in Benchmark System I and Benchmark System II 
systems, consequently the following sections provide essential information on this research.  
Four additional sections address software simulation-based fault injection, hardware emulation-
based fault injection, hybrid fault injection, and novel methods to provide a comprehensive 
state-of-the-art view of fault injection for digital I&C systems.  Hardware faults can be injected or 
emulated by all the techniques described in this Section; some techniques can accommodate 
software fault injection.  The methods that can accommodate software faults are identified in 
this Section. 

5.1. Introduction 

As discussed earlier in this report, fault injection is a dependability validation technique based 
on the realization of formal controlled validation experiments in which system behavior is 
observed while faults are explicitly induced in the system by the deliberate introduction 
(injection) of faults.  That is, faults are injected into the system and the resulting behavior is 
observed.  This technique accelerates the occurrence and the propagation of faults in a system 
for the purpose of observing the effects of faults on the system performance and behavior.  
Moreover, it cannot be emphasized strongly enough that the selection of a fault injection 
technique must directed by what what is to be measured or observed in the fault injection 
process. 
 
For the practitioner or user of fault injection, the variety of fault injection techniques and tools 
are many.  The claimed capabilities (often stated without assumptions), and tradeoff space 
make decisions about fault injection difficult.  This report provides a structured survey in order to 
organize fault injection methods into classes.  Additionally, the benefits, assumptions, and 
disadvantages of various techniques are summarized so that decision-making regarding the 
selection of fault injection methods can be done in a systematic manner. 

5.1.1. Preliminaries 

Before discussing and comparing different fault injection techniques in detail, the terminology 
use in this Section must be defined.  As introduced in Section 4, a Target System is a generic 
term for the digital I&C system under test or assessment.  The target system executes a 
workload, which is determined by the program executed by the target system and the data 
processed by the program.  The faults injected during the experiments constitute the fault-load. 
 
The difference between a fault injection experiment and a fault injection campaign is that a fault 
injection experiment corresponds to injecting one fault and observing, or recording, how the 
target system behaves in presence of that fault.  To gain statistical confidence in the 
assessment or the verification of a target system, data must be collected from many fault 
injection experiments.  A fault injection campaign comprises a series of fault injection 
experiments conducted on a target system. 
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Fault injection techniques can be compared and characterized on the basis of several different 
properties.  The following properties are used to characterize the fault injection techniques 
described in this Section: 
 
 Controllability – the ability to control the injection of faults in time and space. 

 
 Observability – the ability to observe and record the effects of an injected fault. 

 
 Repeatability – the ability to repeat a fault injection experiment and obtain the same 

result. 
 

 Reproducibility – the ability to reproduce the results of a fault injection campaign. 
 

 Reachability – the ability to reach possible fault locations inside an integrated circuit, or 
within a program. 
 

 Fault representativeness – how accurately the fault load represents real faults. 
 
 Workload or Operational Profile representativeness – how accurately the workload 

represents real system usage. 
 

 System representativeness – how accurately the target system represents the real 
system 

5.2. Classification of Fault Injection Techniques  

As shown in Figure 5-1, the application and realization of fault injection is broadly classified into 
two predominant categories; (1) physical-based fault injection, and (2) simulation-based fault 
injection.  In physical-based fault injection faults are injected into the hardware and software of 
the operational digital I&C system.  The target system usually represents what will be deployed 
in the field of operations.  The level of representation of the system under test is very high, and 
in many cases the tested system and the actual system are identical. 
 
On the other hand, simulation-based fault injection involves the construction of a simulation 
model of the target system, which typically includes varying levels of detail of the actual digital 
I&C system structural and behavioral information.  Often the models are developed using a 
modeling description language, such as SystemC [Bhasker 2004], Architecture Description 
Language [Association 2011], SIMICS [River 2011], or very high speed integrated circuit 
hardware description language (VHDL) [Ashenden 1995].  This type of fault injection is 
generally used during the design stages for verifying the intended implementation of a system 
before it is released to manufacturing.  The simulation-based fault injection is non-intrusive and 
can support various system abstraction layers such as application levels, operating system 
levels, and hardware levels.  Hence, a wide variety of fault types can be simulated using this 
technique.  However, because the simulation-based fault injection uses models to represent an 
actual system under test, system representation fidelity concerning system interactions can be 
an issue. 
 
Figure 5-1 illustrates the classification of fault injection based on these classes.  The remainder 
of this Section discusses each of these classes. 
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Figure 5-1 Taxonomy of fault injection techniques 

5.3. Physical Implemented Fault Injection Methods 

Physical-based fault injection includes four techniques: pin-level fault injection, power supply 
disturbances, radiation-based fault injection, and test port-based fault injection.  Physical based 
fault injection involves exercising a system under test or analysis with specially designed test 
hardware to allow the injection of faults into the target system and to examine the fault effects.  
These four techniques are discussed in the following sections. 

5.3.1. Pin-Level Fault Injection 

In pin-level fault injections, faults are injected via probes connected to electrical contacts of ICs 
or discrete hardware components.  This method was used in the 1970’s for generating fault 
dictionaries for system diagnosis.  Many experiments and studies using pin-level fault injection 
were carried out during the 1980’s and early 1990’s. 
 
Pin level faults are injected at the IC pin level or at the boundary of the IC.  The fault models that 
are typically used in pin level fault injections are the stuck-at, bridging of two or more 
connections, noise, reduced voltage, and transient fault models.  There are two types of pin 
level fault injection techniques normally used: 
 
Forcing  technique:  In this technique the fault is injected directly into an IC pin terminal or 
connector without disconnecting the IC or part from the board.  The fault injector probe forces a 
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low or high logical level at the selected points.  Since, the fault injector is “fighting” the output 
voltage of the IC pin, there is always a chance the IC could be damaged if the probe’s current 
exceeds the limit of the IC pin driver circuits. 
 
Insertion technique:  A special IC socket carrier replaces the original chip socket of the IC.  
The special IC socket device is instrumented so that the voltage levels on the pins can be 
altered by the fault injection apparatus.  This allows the connection between the IC and the chip 
socket to be cut off before injecting the fault.  Thus, the injection is performed on the side that 
remains at high impedance.  Because there is not any signal forcing, there is not any danger of 
damage to the IC pin driver circuits. 
 
Several pin-level fault injection tools have been developed (e.g., MESSALINE [Arlat 1990(a)] 
and RIFLE [Madeira 1994]).  A key feature of these tools is that they support fully automated 
fault injection campaigns.  However, the increasing level of integration of electronic circuits and 
advanced IC packaging methods has rendered the pin-level technique somewhat problematic 
(and in some cases infeasible) as a general method for evaluating fault-handling mechanisms in 
computer systems.  The method is, however, still valid for assessing systems where faults in 
electrical connectors pose a major problem, such as automotive and industrial embedded 
systems.  As such, the pin-level fault injection technique is a special case, and not so much a 
general method to be considered for digital I&C systems. 
 
Advantages 
 
 Best suited for faults that are associated with board faults and output driver circuits of 

ICs. 
 

 Experiments can be conducted in an expedient manner. 
 

 Experiments can be run in real-time, allowing for the possibility of running a large 
number of fault injection experiments. 
 

 Fault injection experiments are performed using the same software that will run in the 
field. 
 

 Running the fault injection experiments on hardware that is executing the system 
software has the advantage of including design faults that might be present in the actual 
hardware and software design. 
 

 Commercial tools are readily available. 
 
Disadvantages 
 
 Hardware fault injection can introduce the risk of damage to the IC. 

 
 The technique is relatively obsolete with respect to contemporary IC technology. 

 
 There is a high level of device integration, multiple-chip hybrid circuits, and dense 

packaging technologies that limit accessibility to pin level fault injections.  Many current 
IC package technologies completely eliminate the possibility of pin level fault injection 
(e.g., ball grid arrays and pin grid arrays). 
 

 The technique cannot represent faults that occur inside the IC.  
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 There is a limited set of injection points and a limited set of injectable faults. 
 

 The technique requires special-purpose hardware in order to perform the fault injection 
experiments, although the hardware can be purchased commercially. 

5.3.2. Power Supply Disturbance Fault Injection 

Power supply disturbances (PSDs) are rarely used as primary methods for fault injection 
because of low repeatability and controllability of the experiments.  The principle reason for 
using PSD fault injection is to investigate common cause failures (CCFs) due to power supply 
disturbances in the digital system.  As such, the PSD technique has been used mainly as a 
complement to other fault injection techniques in the assessment of error detection mechanisms 
for processor-based safety critical systems [Karlsson 1991; Miremadi 1995; Rajabzadeh 2004; 
Tummeltshammer 2009].  The impact of PSD fault injections is usually much more severe than 
the impact of other commonly used injection techniques (e.g., those that inject single bit-flips) 
since PSDs tend to affect many bits and thereby a larger part of the system state.  Interestingly, 
some error detection mechanisms show lower fault coverage for PSDs than for single or multi 
bit-flip errors [Rajabzadeh, 2004; Tummeltshammer, 2009].  For this reason, PSD fault injection 
should be a special type of fault injection to consider if a CCF due to power disturbances is a 
concern.  Since CCFs are a concern in digital I&C systems,  this type of fault injection should be 
explored as a possible complementary technique to more general fault injection methods. 
 
Advantages 
 
 Fault models for PSD are well accepted. These include power level droop, noise 

augmentation, delay, and modulated power fluctuations. 
 

 The technique is relevant to real world faults, and is becoming increasingly important 
with lower voltage, higher speed IC technologies. 

 
Disadvantages 
 
 There is low repeatability and controllability. 

 
 The technique can be difficult to isolate a power supply feed due to the different DC 

voltages used in digital ICs.  For example, core voltage for a processor is different from 
the input/output (I/O) voltage. 
 

 Implementation requires special circuits to disturb the power supplies at the board and 
chip level.  May require some modification to the system. 

5.3.3. Radiation Based Fault Injection  

Modern electronic integrated circuits and systems are sensitive to various forms of external 
disturbances such as EMI and particle radiation.  Traditionally, digital systems that were 
exposed to various forms of radiation were mainly confined to aerospace and space-borne 
systems.  However, due to aggressive scaling in IC technology, the vulnerability factor for 
ground-based digital I&C systems is on the increase.  Thus, one means of validating or 
investigating a fault tolerant system’s susceptibility to this type of disturbance is to expose the 
system to disturbances such as high energy cosmic particles and EMI. 
 
A growing reliability concern for computer systems is the increasing susceptibility of ICs to soft 
errors (i.e., bit-flips caused when highly ionizing cosmic particles affect sensitive regions within 
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in a circuit).  Soft errors have been a concern for electronics used in space applications since 
the 1970’s.  In space, soft errors are caused by cosmic rays, i.e., highly energetic heavy-ion 
particles.  Historically, heavy-ions are not a direct threat to electronics at ground-level and 
airplane flight altitudes because they are mostly absorbed when they interact with the Earth’s 
atmosphere.  However, more current circuit technology generations have become increasingly 
sensitive to high energy neutrons, which are generated in the upper atmosphere when cosmic 
rays interact with the atmospheric gases.  Such high energy neutrons are a major source of soft 
errors in ground-based and aviation applications using modern ICs.  To underscore this 
vulnerability, nearly all modern microprocessors, FPGAs manufactured in technologies with 
feature sizes below 90 nm are equipped with low level error detection and error correcting code 
mechanisms to cope with soft errors [George 2010(b)].  While these low level error detection 
and correction mechanisms improve the reliability of the IC operations, they do not eliminate all 
error manifestations [George 2011]. 
 
To assess the efficiency of such fault tolerance mechanisms, semiconductor manufacturers are 
now regularly testing their circuits by exposing them to ionizing particles.  The neutron beam 
facility at the Los Alamos Neutron Science Center (LANSCE) in the United States is often used 
for such tests as its energy spectrum is very similar to that of natural high energy neutrons at 
sea-level.  Similar neutron beam facilities are the Osaka University RCNP and the ANITA 
Neutron Source at The Svedberg Laboratory in Uppsala, Sweden.   Results of neutron beam 
testing are reported for the Intel Itanium microprocessor in [Constantinescu 2005(a)], for the 
SPARC64 V microprocessor in [Ando 2008], and for several generations of microprocessors 
from Sun Microsystems in [Dixit 2009].  Sometimes proton radiation is used as a slightly less 
expensive alternative to neutron beam testing.  Results of proton beam testing of the IBM 
POWER 6 processor can be found in [Kellington, 2007]. 
 
The sensitivity of ICs to heavy-ion radiation can be exploited for assessing the efficiency of fault-
handling mechanisms.  In [Gunneflo, 1989] and [Karlsson 1991], results from fault injection 
experiments conducted by exposing circuits to heavy-ion radiation from a Californium-252 
source is reported.  This method was also used in the previously mentioned study [Arlat 2003], 
in which the impact of four different fault injection techniques was compared.  In this study, the 
main processor as well as the communication processor of a node in a distributed system was 
exposed to heavy-ion radiation.  The results showed that the impact of the soft errors injected 
by the heavy-ions varied extensively and that they activated many different error detection 
mechanisms in the target system. 

5.3.3.1. Electromagnetic and High Intensity Radiated Electromagnetic Fields (HIRF) 

With respect to EMI disturbances, the principle threat of concern is the HIRF.  In particular, 
HIRF environments have the potential to cause random fault manifestations in individual digital 
system components and to generate simultaneous system-wide faults that overwhelm fault 
detection and management mechanisms.  This is typically called the massive transient fault 
phenomena.  Research and reports of these phenomena are well known in the aviation and 
aerospace community.  Examples of serious accidents strongly suspected to be caused by 
HIRF are the TWA Flight 800 and the Swissair Flight 111 accidents [Evans 2000].   These 
phenomena typically occur when a digital I&C system comes in close proximity to a source EMI 
radiator, such as  civilian or military radio frequency (RF) transmitters, or even a hand held RF 
transmitter such as a police/emergency communication radio. 
 
In [Arlat 2003], EMI fault injection was used along with three other fault injection techniques to 
evaluate error detection mechanisms in a computer node in a distributed real time system.  A 
primary goal of this study was to compare the impact of pin-level fault injection, EMI, heavy-ion 
radiation and software-implemented fault injection.  The study showed that the EMI injections 
tended to “favor” one particular error detection mechanism.  For some of the fault injection 
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campaigns almost all faults were detected by one specific CPU-implemented error detection 
mechanism, namely spurious interrupt detection.  This illustrates the difficulty in using EMI as a 
fault injection method.  Another use of EMI for fault injection is reported in [Vargas 2005]. 
 
EMI or HIRF fault injection is typically conducted in a specialized test facility using a 
reverberation chamber (RC).  An RC is an electrically conductive shielded enclosure used for 
generating an electromagnetic environment for radiated susceptibility and emissions testing.  
The operational concept is similar to a very large microwave oven.  When a radiated field at a 
resonant frequency enters the cavity, it is reflected back and forth between the walls with low 
energy loss, and additional energy entering the cavity reinforces the standing wave and 
increases its intensity.  This resonance phenomenon allows the generation of high intensity 
electromagnetic fields with relatively low input power.  However, it has the disadvantage that the 
spatial distribution of the field is not uniformly distributed.  In practice, a transmit antenna is used 
to emit RF energy inside the chamber setting up a complex field structure within the chamber.  
Rotating mechanical stirrers then “mix” the energy, effectively changing the boundary conditions 
and creating new complex field structures.  When sampled over time, this stirring results in a 
statistically uniform filed environment. 
 
The principle facility in the US for conducting HIRF and EMI susceptibility testing is at the NASA 
Langley Research Center High Intensity Radiated Fields Laboratory located in Hampton, 
Virginia [Meyer 2009]. 
 
Radiation-based fault injection and EMI/HIRF injection has low repeatability.  Due to low 
controllability, it is difficult to precisely synchronize the activity of the target system with the time 
and the location of an injection in a radiation-based fault injection experiment.  Thus, it is difficult 
to repeat an individual experiment to reproduce exact results.  However, the ability to 
statistically reproduce results over many fault injection campaigns is usually high in both types 
of fault injection environments. 
 
Advantages 
 
 Radiation-based fault injection can reach regions inside ICs that are difficult to reach 

with other physical fault injection techniques. 
 

 Radiation-based testing is the primary means to verify the effects of single upset events 
and multiple event upsets due to cosmic particle strikes on semi-conductor components. 
 

 Radiation-based fault injection and HIRF disturbance injection have very low 
intrusiveness, that is, the target system behavior is not altered to accommodate fault 
injection. 
 

 Both radiation-based fault injection and HIRF testing are required when a digital I&C 
system is expected to operate in environments where these threats are known to exist. 

 
Disadvantages 
 
 Radiation-based fault injection has poor repeatability and reproducibility of experiments 

due to poor controllability.  Repeatability and reproducibility are required for attaining 
statistical significance of results. 
 

 Both radiation-based fault injection and HIRF testing requires highly specialized testing 
facilities to conduct tests.  However, such facilities are operational at national labs and 
other government agencies (NASA). 



 

72 

5.3.4. Test Port and On Chip Debugging (OCD) Based Fault Injection 

Test port-based fault injection encompasses techniques that use test ports to inject faults in 
microprocessors.  Many modern microprocessors (since ~1998) are equipped with built-in 
debugging and testing features, which can be accessed through special I/O-ports known as test 
access ports (TAPs), or just test ports.  Test ports are defined by standards such as the 
IEEE-ISTO 5001-2003 (Nexus) standard [Organization 2003] for real-time debugging, the 
IEEE Std 1149.1, “Standard Test Access Port and Boundary-Scan Architecture (JTAG)” [IEEE 
Std 1149.1 01], and Intel’s OnCE and Motorola’s Background Debug Mode (BDM) facility.  
Nexus and Joint Test Action Group (JTAG) are standardized solutions used by several 
semiconductor manufacturers, while BDM and OnCE are proprietary solutions for debugging 
developed by Freescale and Intel.  The important point is that nearly all modern processors 
used in embedded computing are equipped with some form of OCD capability.  Volume 3 
describes a customized high performance OCD based fault injector was developed for digital 
I&C systems [Miklo 2011]. 
 
Tools for test port-based fault injection are usually implemented on top of an existing 
commercial microprocessor debug tool, since such tools contain all functions and drivers that 
are needed to access a test port.  The type of fault that can be injected via a test port depends 
on the debugging and testing features supported by the target microprocessor.  Normally, faults 
can be injected in all registers in the instruction set architecture (ISA) of the microprocessor and 
certain I/O test registers of the main signals of processor.  BDM and Nexus also allows injection 
of faults in main memory.  BDM and Nexus allow access to hardware structures in the micro-
architecture that are invisible to the programmer.  However, information on how to access such 
hardware structures is usually not normally disclosed by manufacturers of microprocessors, but 
manufacturers have been cooperative with the fault injection community along these lines 
[Communications 2011].  Since OCD methods can manipulate or alter the instructions on the 
target processor, OCD methods can, in principle, be used to emulate software faults. 
 
Tools that support test port-based fault injection include GOOFI (Generic Object Oriented Fault 
Injection) [Aidemark 2001], INERTE (Integrated NExus-based Real-Time fault injection tool for 
Embedded systems) [Yuste, 2003], Xception [Maia 2005] and HiPeFI (High Performance Fault 
Injection) [Miklo 2011].  GOOFI supports both JTAG-based and Nexus-based fault injection, 
while INERTE is specifically designed for Nexus-based fault injection.  An environment for BDM-
based fault injection is described in [Rebaudengo, 1999].   Most of these efforts, with the 
exception of [Miklo 2011] use commercial debugging tools to implement the fault injection 
capability.  HiPeFi is based on high performance implementation of BDM on FPGA, thus 
allowing very fast modifications of memory and registers. 
 
Injecting a fault via a test port involves four major steps:  
 
(1) Setting a breakpoint via the test port and waiting for the program to reach the breakpoint; 
(2) Reading the value of the target location (a register or memory word) via the test port; 
(3) Manipulating this value and then writing the new, faulty value back to the target location; 
(4) Resuming the program execution via a command sent to the test port. 
 
The time overhead for injecting a fault depends on the speed of the test port.  JTAG and BDM 
are low-speed ports, whereas Nexus ports can be of four different classes with different speeds.  
The simplest Nexus port (Class 1) is a JTAG port, which uses serial communication and 
therefore only needs 4 pins.  Ports compliant with Nexus Class 2, Class 3 or Class 4 use 
separate input and output ports, known as auxiliary ports.  These are parallel ports that use 
several pins for data transfer.  The actual number of data pins is not fixed by the Nexus 
standard, but for Class 3 and Class 4 ports the standard recommends 4 data pins to 16 data 
pins for the auxiliary output port and 1 data pin to 4 data pins for the auxiliary input port. 
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The main advantage of test port-based fault injection is that faults can be injected internally in 
microprocessors without making any alterations to the system’s hardware or software.  This is 
crucial in digital I&C system testing because the alteration of the system HW and SW is not 
generally looked upon as acceptable in Factory Acceptance Testing or Site Acceptance Testing.  
Compared to software-implemented fault injection, it provides better capabilities of emulating 
real hardware faults.  Finally, advanced Nexus ports (Class 3 and Class 4) provide outstanding 
possibilities for data collection and observing the impact of injected faults within a 
microprocessor.  Existing tools have not fully exploited these possibilities.  Hence, 
microprocessors with high-speed Nexus ports and BDM ports constitute interesting targets for 
the development of new fault injection tools, which potentially can achieve much better 
observability than existing tools.  As such, as part of this research effort, this area was identified 
as a high value target for research to advance the state of the practice in fault injection for digital 
I&C systems (see Section 8.6). 
 
Advantages 
 
 Excellent controllability, which leads to high repeatability and reproducibility of fault 

injection experiments. 
 
 Very low intrusiveness.  No alteration to target system is required. 
 
 Can inject faults into hidden registers of the target processor that are not visible to the 

programmer (e.g., pipeline status register). 
 
 Can emulate a variety of fault types including permanent faults with certain caveats2. 
 
 Can provide a means to profile program behavior before fault injection to locate 

vulnerabilities.  That is, which registers, memory locations, and variables are being used 
most frequently. 

 
 Typically low cost implementation when using commercial debugging tools. 

 
Disadvantages 
 
 Target system must have an OCD standard test port such as JTAG, BDM, or Nexus.  

Not all digital I&C systems have these test ports. 
 

 Using commercial debugging tools to implement OCD-based fault injection requires 
optimization of the debugger tool to implement fault injection.  This usually involves 
programming the low APIs to improve the debugger tool performance. 
 

 Efficiency of the fault injection can be low if faults are injected into processor locations 
where resources (e.g., registers, memory locations) are not being used.  Pre-fault 
analysis of the target program addresses this problem. 

                                                 
2 Permanent faults can be emulated with OCD methods, however, the repeated “triggering” on the memory or register 
usage can cause execution time delays in the processor under test.  Significant time delay usually occurs after about 
20 trigger events per scan cycle. It is rare to have one resource exercised 20 times in one execution cycle.     
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5.3.4.1. Software-implemented fault Injection 

Software-implemented fault injection (SWIFI) encompasses techniques that inject faults through 
software executed on the target system.  There are two approaches that can be used to 
emulate hardware faults by software: 
 
 run-time injection 
 pre run-time injection 
 
In run-time injection, faults are injected while the target system executes its application or 
workload.  This requires a mechanism that (1) stops the execution of the workload, (2) invokes a 
fault injection routine, and (3) restarts the workload.  Thus, run-time injection can incur a 
significant run-time overhead if the implementation of the fault injection method is not optimized.  
In pre run-time injection, faults are introduced by manipulating either the source code or the 
binary image of the workload before it is loaded into memory.  Pre run-time injection usually 
incurs less run-time overhead than run-time injection, but the total time for conducting a fault 
injection campaign is usually longer for pre run-time injection since it requires more time for 
preparing each fault injection experiment. 
 
There are several fault injection tools that can emulate the effects of hardware faults by 
software, but they use different techniques for injecting faults and support different fault models.  
Most of these tools use run-time injection, since it provides better opportunities for emulating 
hardware faults than pre run-time injection.  Pre-fault injection methods have been mainly 
adopted by the software testing community as a means to investigate the effects of various 
software defects or flaws on the reliability of the system [Smidts 2011; Voas 2000]. 
 
Software-implemented fault injection relies on the assumption that the effects of real hardware 
faults can be emulated either by manipulating the state of the target system registers and 
memory via run-time injection, or by modifying the target workload through pre run-time 
injection. 
 
The validity of this approach varies depending of the fault type and where the fault occurs.  
Consider for example emulation of a soft error (i.e., a bit-flip error induced by a strike of a high 
energy particle).  Flipping bits in main memory or processor registers can be done easily by 
software.  On the other hand, the effect of a bit-flip in a processor’s internal control logic can be 
difficult to emulate accurately by software manipulations of registers in the processor.  This 
aspect also applies to OCD and test port fault injection methods as well.  This is not a 
shortcoming of either fault injection method, but rather a fault modeling issue related to 
developing a fault model that can accurately represent the fault occurrences at the internal 
micro-controller and internal logic level of the processor where fault injection is applied.  
Accordingly, this was identified as another high value target area for investigation for research 
that was investigated in the latter stages of this research effort.  This topic is discussed in more 
detail in Section 9 (fault model representation). 
 
Emulating a permanent hardware fault requires a more elaborate set of manipulations than 
emulating a transient fault.  For example, the emulation of a stuck-at fault in a memory word or a 
processor register would require a sequence of manipulations performed every time the 
designated word or register is read by a machine instruction.  On the other hand, a transient 
fault requires only a single manipulation.  The time overhead imposed by fault emulation thus 
varies for different fault types.  Emulating the permanent fault model can impose significant time 
overheads by either SWIFI-based methods or OCD-based methods.  For this reason, SWIFI or 
OCD based fault injection tools developed to date recommending the use of a fault model in 
their tools have not been identified.  This as another justification for developing a portable 
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customized fault injector that can implement permanent fault models with minimal impact to 
system performance or timing. 
 
There are eight tools capable of emulating hardware faults through software.  These tools 
represent important steps in the development of software-implemented fault injection for 
emulation of hardware faults.  The tools are FIAT [Barton, 1990], FERRARI [Kanawati 1992], 
FINE [Kao 1993], DEFINE [Kao, 1995], FTAPE [Tsai 1996], DOCTOR [Han 1995], Xception 
[Carreira 1998], MAFALDA [Arlat 2002] and Exhaustif  [Dasilva 2007].  These tools use different 
approaches to emulate hardware faults and implement partly different fault models.  Some also 
provide support for emulating software faults. 
 
Researchers started to investigate software-implemented fault injection in the late 1980’s.  In 
the beginning, the focus was on developing techniques for emulating the effects of hardware 
faults.  Work on emulation of software faults started a few years later. 
 
One of the first tools that used software to emulate hardware faults was FIAT [Barton 1990], 
developed at Carnegie Mellon University.  FIAT injected faults by corrupting either the code or 
the data area of a program’s memory image during run-time.  Three fault types were supported: 
zero-a-byte, set-a-byte and two-bit compensation.  The last fault type involved complementing 
any 2 bits in a 32 bit word.  Injection of single-bit errors was not considered, because the 
memory of the target system was protected by parity. 
 
More advanced techniques for emulation of hardware faults were included in FERRARI 
[Kanawati 1992], developed at the University of Texas, and in FINE [Kao 1993], developed at 
the University of Illinois.  Both these tools supported emulation of transient and permanent 
hardware faults in systems based on SPARC processors from Sun Microsystems.  FERRARI 
could emulate three types of faults: address line, data line, and condition code faults; while FINE 
emulated faults in main memory, CPU-registers and the memory bus.  DEFINE [Kao 1995], 
which was an extension of FINE, supported fault injection in distributed systems and introduced 
two new fault models for intermittent faults and communication faults. 
 
DOCTOR [Han, 1995] is a fault injection tool developed at the University of Michigan targeting 
distributed real-time systems.  It supports three fault types: memory faults, CPU faults and 
communication faults.  The memory faults can affect a single-bit, two bits, one byte, and multiple 
bytes.  The target bit(s)/byte(s) can be set, reset and toggled.  The CPU faults emulate faults in 
processor registers, the op-code decoding unit, and the arithmetic logic unit.  The 
communication faults can cause messages to be lost, altered, duplicated or delayed.  DOCTOR 
can inject transient, intermittent and permanent faults, and uses run-time injection for the 
transient and intermittent faults.  Permanent faults are emulated using pre run-time injection. 
 
FTAPE [Tsai, 1996] is a fault injector aimed at benchmarking fault tolerant commercial systems.  
It was used to assess and test several prototypes of fault tolerant computers for on-line 
transaction processing.  FTAPE emulates the effects of hardware faults in the CPU, main 
memory and I/O units.  The CPU faults include single and multiple bit-flips and zero/set registers 
in CPU registers.  The memory faults include single and multiple bit and zero/set faults in main 
memory.  The I/O faults include SCSI and disk faults.  FTAPE was developed at the University 
of Illinois in cooperation with Tandem Computers. 
 
Xception [Carreira, 1998] is a fault injection tool developed at the University of Coimbra, 
Portugal.  This tool also uses the test ports for OCD to inject faults.  Thus it injects faults in a 
way that is similar to test port-based fault injection.  The difference is that Xception controls the 
setting of breakpoints and performs the fault injections via software executed on the target 
processor rather than sending commands to a test port. 
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Xception injects faults through exception handlers executing in kernel mode, which can be 
triggered by the following events: op-code fetch from a specified address, operand load from a 
specified address, operand store to a specified address, and a specified time passed since 
start-up.  These triggers can be used to inject both permanent and transient faults.  Xception 
can emulate hardware faults in various functional units of the processors such as the integer 
unit, floating point unit, and the address bus.  It can also emulate memory faults, including 
stuck-at-zero, stuck-at-one and bit-flip faults.  Xception is unique because it is one of very few 
academic tools that has been commercialized.  Xception is sold by Critical Software, Coimbra, 
which released the first commercial version of the tool in 1999. 
 
MAFALDA [Arlat 2002] is a tool for assessing commercial off-the-shelf microkernels.  It uses 
software-implemented fault injection to inject single or multiple bit-flips in the code and data 
segments of the microkernel under assessment.  In addition, MAFALDA also allows corruption 
of input parameters during invocation of kernel system calls, and thus supports robustness 
testing of microkernels. 
 
A more recent commercial tool, similar in functionality to Xception, is Exhaustif [Dasilva, 2007].  
It instruments the workload with a software component that injects faults at run-time.  This 
component is configured through a communication interface (e.g.,, serial port, Ethernet) using a 
graphical user interface.  It supports several fault models based on corruption of processor 
registers and memory, and interception of function calls.  The software component that injects 
faults on the target system requires several kilobytes for code and data, which may be 
significant in terms of intrusiveness. 
 
Advantages 
 
 Lowest cost for all physical fault injection implementation methods. 

 
 Excellent controllability, which leads to high repeatability and reproducibility of 

experiments. 
 

 Several commercial versions are available, for example, Xception. 
 
Disadvantages 
 
 Requires the target software to be modified to incorporate exception handlers for fault 

injection.  This may be unacceptable in certain applications especially with regards to 
digital I&C systems. 
 

 Requires a “free” port on the target system so the host computer can communicate with 
the exception handler modules in the target system software. 
 

 Can only reach resources that are visible to the programmer.  These are typically 
processor registers, memory registers, and special purpose I/O mapped registers. 

5.4. Simulation-Based Fault Injection 

As mentioned in the introduction, simulation-based fault injection can be performed at different 
levels of abstraction, such as the device level, logical level, function block level, ISA level, and 
system level.  Simulation models at different abstraction layers are often combined in so called 
mix-mode simulations to overcome limitations imposed by the time overhead incurred by 
detailed simulations.  FOCUS [Choi 1992] is an example of a simulation environment that 
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combines device-level and gate-level simulation for fault sensitivity analysis of circuit designs 
with respect to soft errors. 
 
At the logic level and the function block level, circuits are usually described in a hardware 
description language (HDL) such as Verilog or VHDL.  Several tools have been developed that 
support automated fault injection experiments with HDL models (e.g., MEFISTO [Jenn 1994] 
and the tool described in [Delong 1996]).  There are several different methods for implementing 
the fault injection process, such as modifying the HDL code [Assaf 2004], modifying the HDL 
simulator, commanding the simulator through scripts or, in a more recent example [Das 2006], 
using the force and release constructs in Verilog to emulate stuck-at faults. 
 
Recently, several studies assessing the soft error vulnerability of complex high-performance 
processors have been conducted using simulation-based fault injection.  In [Wang 2006] a novel 
low-cost approach for tolerating soft errors in the execution core of a high-performance 
processor is evaluated by combining simulations in a detailed Verilog model with an ISA-level 
simulator.  This approach allowed the authors to study the impact soft errors for seven 
SPEC2000 integer benchmarks through simulation. 
 
DEPEND [Goswami 1997] is a tool for simulation-based fault injection at the functional level 
aimed at evaluating architectures of fault-tolerant computers.  A simulation model in DEPEND 
consists of a number of interconnected modules, or components, such as CPUs, 
communication channels, disks, software systems, and memory.  DEPEND is intended for 
validating system architectures in early design phases and serves as a complement to 
probabilistic modeling techniques such as Markov and Petri net models.  DEPEND provides the 
user with predefined components and fault models, but also allows the user to create new 
components and new fault models (e.g., the user can use any probability distribution for the time 
to failure for a component). 
 
Virtualized System Fault Injection is new method that is gaining acceptance.  This is based on a 
new simulation and modeling technique called full system simulation or virtualization [Bastien 
2004].  Full-system simulation combines fast instruction-set simulators of the target digital I&C 
system with accurate models of all components in the physical hardware to form a virtual 
machine of the target I&C system.  A virtual machine is a software implementation of a machine 
(i.e. a computer) that executes programs identical to a physical machine.  Thus, the software 
experiences a virtual computer system that is functionally identical to the physical system, 
capable of running the same unmodified binaries, including device drivers, operating systems, 
protocol stacks, and applications. 
 
Full system simulation or virtualized simulation is a relatively new simulation technology, 
becoming feasible on desktop workstations only in the past six or seven years.  This technology 
has benefited significantly from virtual machine technology software (e.g., VMware), and as 
such new opportunities to exploit virtual machine breakthroughs for accurately modeling I&C 
systems are becoming available.  Tools such as SIMICS [River 2011], Simplescaler 
[Austin 2002], and Processor Technology Laboratory Simulator (PTLsim) [Yourst 2007] are a 
few of the virtualized simulators currently being used.  SIMICS is by far the most widely used 
and powerful.  SIMICs is a commercial tool, Simplescaler and PTLsim are open-source.  Basic 
fault injection is built into the SIMICs toolset.  The research effort described in this report built 
upon the basic capabilities of the SIMICs fault injection by providing saboteur modules that 
allow a tester to insert fault injection modules into hardware, software, and firmware of a target 
system [Bastien 2004; Sekhar 2008].  A description of SIMICS can be found at 
http://www.virtutech.com/. 
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Advantages 
 
 Controllability and observability of the target system are very high because the target 

system is being simulated in a controlled environment. 
 

 Repeatability and reproducibility are both high due to high controllability. 
 

 Intrusiveness is low because the target system is in a simulation environment. 
 

 Typically supports a larger set of fault models than physical fault injection. 
 

 Complements physical fault injection by enabling fault injection into specific sub-systems 
or components of the target I&C system that would be difficult to reach with physical-
based fault injection. 

 
Disadvantages 
 
 Model fidelity or system representativeness is the most significant issue with simulation 

based methods. High fidelity models of the system require a significant amount of time to 
develop and can be a significant cost factor. 
 

 Simulating complete digital I&C systems to a high degree of fidelity is very challenging 
and in some cases infeasible.  The exception to this case is the commercial SIMICs tool 
set, which enables the possibility of full system model development.  Even then it could 
be a significant effort to model a digital I&C system in SIMICs with the complexity of the 
benchmark systems used in this research. 

5.4.1. Hardware Emulated Fault Injection 

The advent of large FPGA circuits has provided new opportunities for conducting model-based 
fault injection with hardware circuits.  One of the main reasons for the increasing popularity of 
FPGAs is that they provide many of the advantages of both hardware and software 
components.  Being a hardware component, an FPGA is efficient compared to software, and the 
rapid development of the technology results in growing capacities.  At the same time, an FPGA-
based application can be designed, developed, and configured by the end user, that is to say, 
by the developers themselves, and this provides for flexibility that could earlier only be achieved 
by using a software component.  This is a new phenomenon, a hardware device that has 
development properties and attributes like software. 
 
Circuits designed in a HDL are usually tested and verified using software simulation.  Even if a 
powerful computer is used in such simulations, it may take considerable time to verify and test a 
complex circuit adequately.  To speed up the test and verification process, techniques have 
been developed where HDL-designs are tested by hardware emulation in a large FPGA circuit.  
This technique also provides excellent opportunities for conducting fault injection experiments.  
Hardware emulation-based fault injection has all the advantages of simulation-based fault 
injection such as high controllability and high repeatability, but requires less time for conducting 
a fault injection experiment compared to using software simulation. 
 
The use of hardware emulation for studying the impact of faults was first proposed in [Kwang-
Ting 1999].  The authors of that paper used the method for fault simulation, i.e., for assessing 
the fault coverage of test patterns used in production testing. 
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Fault injection can be performed in hardware emulation models through compile time 
reconfiguration and run-time reconfiguration.  Reconfiguration refers to the process of adding 
hardware structures to a model that are necessary to perform the experiments.  In compile-time 
reconfiguration, these hardware structures are added by instrumentation of the HDL models.  
An approach for compile-time instrumentation for injection of single event upsets (soft errors) is 
described in [Civera 2003].  This work presents different instrumentation techniques that allow 
injection of transient faults in sequential memory elements as well as in microprocessor-based 
systems. 
 
One disadvantage of compile-time reconfiguration is that the circuit must be re-synthesized for 
each reconfiguration, which can impose a severe overhead on the time it takes to conduct a 
fault injection campaign.  In order to avoid re-synthesizing the target circuit, a technique for run-
time reconfiguration is proposed in [Antoni 2003].  This technique relies on directly modifying the 
bit-stream that is used to program the FPGA-circuit.  By exploiting partial reconfiguration 
capabilities available in some FPGA circuits, this technique achieved substantial time-savings 
compared to other emulation-based approaches to fault injection. 
 
A tool for conducting hardware emulation-based fault injection called FADES is presented in 
[Andrés 2006; Andrés 2008].  This tool uses run-time configuration and can inject several 
different types of transient faults, including bit-flips, pulse, and delay faults, as wells as faults 
that cause digital signals to assume voltage levels between “1” and “0”. 
 
Even though FPGA-based techniques overcome the performance issues present in software 
simulation, it is often difficult to obtain ideal observability due to the communication required for 
observing the behavior of emulated circuits.  A recently proposed method [Ejlali 2007] reduces 
this overhead by having a single combinational circuit for both the faulty circuit and the fault-free 
circuit. The complete circuit repeatedly executes one clock cycle with the fault-free flip-flops 
followed by one clock cycle with the faulty flip-flops, and the output is multiplexed to a 
comparator, in order to identify which faults cause errors on the target.  This method provides 
good observability under the bit-flip fault model and avoids duplicating the entire combinational 
circuit, which is assumed to be unaffected by faults. 
 
There is a concern with representativeness when using hardware emulated circuits, rather than 
the actual hardware.  In [Ramachandran 2008], the results of fault injection on a hardware-
emulated IBM POWER6 processor (the authors call it “hardware accelerated simulation”) are 
compared to radiation-based fault injection.  The results show a close match between the two 
techniques, thereby providing evidence in favor of hardware emulation-based fault injection. 
 
Advantages 
 
 Speeds up the fault injection process by emulating the hardware on FPGA devices. 

 
 All the advantages of simulation based fault injection, but speeds up the fault injection 

process by several orders of magnitude. 
 

 Excellent controllability and repeatability of experiments. 
 

 Most suitable for sub-system or components of a target digital I&C system that are 
difficult to reach with other physical based fault injection methods, specifically, FPGA 
type devices. 

 



 

80 

Disadvantages 
 
 If compile-time fault injection is used the FPGA must be re-synthesized for each fault 

injection campaign, which can impose a severe overhead on the time it takes to conduct 
a fault injection campaign.  A typical re-compile time for a FPGA can be from several 
minutes to hours. 
 

 System or model representativeness can be an issue when using FPGAs.  The 
processor model structure that is downloaded into a FPGA is not structurally equivalent 
to the real processor structure.  While they are supposed to be functionally equivalent, in 
some cases this is not guaranteed [Lenhart 2007]. 

5.5. Hybrid Fault Injection 

Hybrid approaches to fault injection combine several fault injection techniques to improve the 
accuracy and scope of the verification or the assessmentof a target system.  An approach for 
combining software-implemented emulation of hardware faults and simulation-based fault 
injection is presented in [Guthoff 1995].  In this approach, the physical target is run until the 
program execution hits a fault injection trigger, which causes the physical system to halt.  The 
architected state of the physical system is then transferred to the simulation model, in which a 
fault is injected (e.g., in the non-visible parts of the micro-architecture).  The simulator is run 
until the effects of the fault have stabilized in the architected state of the simulated processor.  
This state is then transferred back to the physical system, which subsequently is restarted so 
that the system-level effects of the fault can be determined. 
 
An extension of the FERRARI tool which allows it to control a hardware fault injector is 
described in [Kanawati 1995].  The hardware fault injector can inject logic-0/logic-1 faults into 
the memory bus lines of a SPARC 1 workstation.  The authors used the hardware fault injector 
to study the sensitivity of the computer in different operational modes.  The results showed that 
the system was more likely to crash from bus faults when the processor operated in kernel 
mode, compared to when it operated in user mode.  This study showed that it is feasible to 
extend a tool for software-implemented fault injection with other techniques at reasonable cost, 
since many of the central functions of a tool are independent of the injection technique. 
 
A more recent tool that supports the use of different fault injection techniques is NFTAPE [Stott 
2000], developed at the University of Illinois.  This tool is aimed at injecting faults in distributed 
systems using a technique called Light Weight Fault Injectors (LWFIs).  The purpose of the 
LWFI is to separate the implementation of the fault injector from the rest of the tool.  NFTAPE 
provides a standardized interface for the LWFIs, which simplifies the integration and use of 
different types of fault injectors.  NFTAPE has been used with several types of fault injectors 
using hardware-implemented, software-implemented, and simulation-based fault injection. 
 
Advantages 
 
 Can support different techniques of fault injection to provide better reachability and 

scope of the fault injection process. 
 

 Provides an environment where the advantages of one fault injection technique can 
offset the disadvantages of another fault injection technique. 
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Disadvantage 
 
 Integration of the different methods into a single fault injection framework can be 

challenging. 

5.6. Novel Methods 

Novel Methods refer to fault injection methods that don’t fit cleanly into a specific category. 
Recently (and the most notable) are fault injection methods that incorporate fault injection 
capability with formal verification techniques, which combines the advantages of both methods 
into a single method or technique.  These new methods are often called symbolic fault injection. 
 
This section briefly describes formal methods since it may not be well known to the reader.  
Formal methods are a particular kind of mathematically-based techniques for the specification, 
development, and verification of software and hardware systems [Gupta 2004].  In practice, two 
types of formal methods are used today: automated theorem proving and model checking.  
Automated theorem proving deals with the development of computer programs that show that 
some statement (the conjecture) is a logical consequence of a set of statements (the axioms 
and hypotheses).  It is primarily used to create provable correct programs and specifications of 
systems.  On the other hand, Model checking is a technique for automatically verifying the 
correctness properties of finite-state system models [Baier 2008].  It tests automatically whether 
a model of a system satisfies a given specification.  Typically, the systems one has in mind are 
hardware or software systems, and the specification contains safety requirements expressed in 
temporal logic.  Model checking is by far the most widely used of the two techniques. 
 
In [Pattabiraman 2008], a symbolic fault injection framework (called SymPLIFIED) for verifying 
error detecting mechanisms in programs and systems using symbolic execution and model 
checking is described.  The goal of the framework is to expose error cases that could potentially 
escape detection and cause program failure.  The focus is on transient hardware errors.  The 
framework consists of three models to perform symbolic fault injection: (1) a formal execution 
model to represent programs expressed in a generic assembly language, and reasons about 
the effects of errors originating in hardware and propagating to the application without assuming 
specific detection mechanisms; (2) an error detection model that specifies the semantics of 
general error detectors; and (3) an error model that represents errors using a single symbol, 
thereby merging multiple error values into a single symbolic value in the program.  This includes 
single and multi-bit errors in the register file, main memory, cache, as well as errors in 
computation.  The advantage of this framework is that one can perform exhaustive fault injection 
over the entire state space of a program/system.  The power to perform such exhaustive fault 
injection comes from the model checking capabilities of the tool.  However, because the 
framework uses a model of the program or system, it is subject to model fidelity issues.  
Nonetheless, this type of fault injection is very promising. 
 
Another recent development is the development of Assertion-based Verification Fault Injection 
(ABVFI).  ABVFI is an emerging technique that involves the use of formal methods in the 
analysis of fault coverage for a system or components of a system.  ABVFI extends an 
emerging technique called assertion-based verification (ABV), a variant of model checking, to 
mathematically analyze design behavior in the presence of faults.  Given a defined fault model, 
this method considers all possible combinations of faults across both time (when the fault 
occurs) and space (where the fault occurs), for a complete analysis of fault coverage. 
 
ABVFI replaces simulation-based fault injection with formal verification engines, such as model 
checking, in a fault injection campaign.  Like simulation-based fault injection, formal verification-
based fault injection provides high controllability and observability and can model many types of 
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faults.  However, the advantages of using formal methods are that the analysis performs an 
exhaustive search of the input and fault space, ensuring that no corner case fault goes 
uncovered, and in less time than an exhaustive analysis with simulation-based fault injection. 
 
One benefit of model checking is that when a property is violated, a counter example is 
produced describing a scenario that led to the property’s failure.  The counter example can then 
be used as an aid in determining the vulnerabilities of a design.  ABVFI counter-example results 
can also be helpful at other stages of system verification.  A compilation of uncovered faults and 
their error behaviors can be used to feed a fault injection analysis at a higher system level.  The 
benefit is that the system level fault list generation can be limited to the known failure scenarios 
of the low-level components. 
 
In [Bingham 2009] an ABVFI methodology was developed that allows fault injection to be 
performed at the register transfer level of a design. 
 
The novel fault injection methods presented in this section are on the cutting edge of system 
verification and validation research.  Specifically, techniques like those described in this section 
are a means to guide physical and simulation based fault injections to investigate high impact 
faults and corner cases where a system is vulnerable. 

5.7. Characterization of Fault Injection Techniques for Digital I&C 
Systems 

This section briefly summarizes important issues that must be taken into account when 
selecting a fault injection technique.  This section takes the information learned from the survey 
and the experiential knowledge gained from applying fault injections to previous systems.  The 
purpose is to characterize fault injection techniques to better inform the reader on the 
applicability of specific fault injection techniques for digital I&C systems.  In addition to fault 
representativeness (i.e., the plausibility of the supported fault model with respect to actual 
faults), which is one concern that is often raised in conjunction with fault injection experiments 
and for which some objective insights were provided in the previous Section, a wide range of 
criteria can be considered to assess the merits of the fault injection techniques. 
 
Without any claim of a comprehensive analysis, the following basic properties mentioned in 
Section 5.1 are a means to characterize the fault injection techniques discussed in this Section: 
 
 Reachability and observability 
 Controllability, with respect to space and time,  
 Repeatability (with respect to experiments),  
 Reproducibility (with respect to results), 
 Non-intrusiveness, 
 Time measurement (e.g., error detection latency), 
 Efficiency - generating significant experiments (minimizing no-response experiments). 
 System representativeness 
 
A characterization of the considered fault injection techniques based on these basic properties 
is shown in Table 5-1 and is explained in this section.  For each property, the techniques are 
graded on a scale of none, low, medium, and high.  It is worth noting that, although it is quite 
generic in scope, this analysis also builds upon insights gained during the previous fault 
injection experiments. 
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The observability property is the reachability property attached to a fault injection technique, 
which is defined as the ability to reach possible fault locations in an IC that implements the 
target system. 
 
Controllability is defined with respect to both the space and time domains.  The space domain 
relates to the ability to control which of the reachable fault locations are actually injected.  The 
time domain corresponds to controlling the instant when faults are injected and the duration for 
which the faults are injected.  Thus time has two attributes: (1) instance, and (2) persistence. 
 
Repeatability refers to the ability to repeat experiments exactly or with a very high degree of 
accuracy.  This property is highly desirable, particularly when the aim of the experiments is to 
remove potential design or implementation faults in the fault tolerance mechanisms.  
Repeatability requires a high degree of controllability in both the space and the time domains. 
 
Reproducibility refers to the ability to reproduce results statistically for a given set-up.  
Reproducibility of results is an absolute requirement to ensure the credibility of fault injection 
experiments.  Repeatability normally implies reproducibility; if an experiment can be controlled 
exactly, then it is always possible to reproduce the same results.  However, reproducibility can 
be achieved without repeatability. 
 
Intrusiveness relates to the property of avoiding or minimizing any undesired impact of fault 
injection on the behavior of the target system in both time and space.  Time intrusiveness refers 
to altering the timing behavior of the system.  Space intrusiveness refers to altering the system 
functionality of the target system by augmenting the target system with additional hardware 
and/or software to accommodate the fault injection technique. 
Time measurement refers to the acquisition of timing information associated with the monitored 
events (e.g., measurement of error detection latency), which is an important outcome of fault 
injection experiments.  Time measurement allows one to determine the effects of a fault in 
relation to the target system real-time operation.  For instance, a fault can be detected and 
mitigated by the system, however the error detection and mitigation response may be too late 
with respect to the controlled plant dynamics.  When this occurs the system has a dynamic 
system failure. 
 
Efficiency refers to the ability to produce a high proportion of meaningful results from a fault 
injection campaign.  The type of efficiency considered here concerns the testing power offered 
by the techniques (i.e., their ability to produce a limited number of non-significant experiments).  
A non-significant experiment occurs, for example, when a fault is injected into a hardware or 
software component which is not accessed or used by the workload executed during the 
experiment.  Efficiency is also closely associated with fault list generation methods for some 
fault injection techniques (e.g., SWIFI and OCD methods). 
 
System representativeness refers to how accurately a target system represents the real system.  
In actuality, system representativeness is more a property of the target system and not fault 
injection per se.  However, since fault injection is largely divided along physical-based 
techniques and simulation-based techniques, it is important to include this attribute to reinforce 
the fact that simulation-based approaches always use models of the system that are subject to 
fidelity issues. 
 
Implementation complexity indicates the extent of skills, resources, and special equipment 
needed to realize the fault injection technique.  A low implementation capability is something 
within the reach of a small team of mid-level, experienced software and hardware engineers.  
The level of effort is one to two staff years over a six month timeframe.  A high level 
implementation capability requires a more experienced team of specialized hardware and 



 

84 

software engineers with significant resources.  The Level of effort is on the order of two to four 
staff years over a six month time frame. 
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5.8. Discussion of the Comparisons 

The discussion of the comparison between the fault injection methods is restricted to physical 
based fault injection methods since the aim of the research was to apply physical-based fault 
injection on target benchmark systems. 
 
Pin level fault injection (see Table 5-2) has several advantages worth noting.  First, it has high 
degree of repeatability and reproducibility, meaning that statistically significant results can be 
achieved from the method.  Secondly, it has very low intrusiveness to the system operation, 
which is desirable.  However, the reachability aspects of the technique are fairly limited, 
especially when trying to emulate faults that occur within packaged ICs.  In addition, the 
complexity of implementing pin level fault injection can be challenging when confronted by 
today’s highly dense integrated IC packages and small pin pitch sizing.  Pin level fault injection 
is more of specialized technique that tends to complement other fault injection techniques. 
 
Power supply fault disturbance injection is another specialized technique.  It can produce fault 
effects that are unique to it alone, and for this reason it cannot be entirely dismissed.  However, 
the low repeatability and reproducibility of the technique is a significant shortcoming as a 
general fault injection technique. 
 
Radiation based fault injection has the ability to reach deep inside ICs to perturb locations that 
are hard to reach (e.g., pipeline micro-control units) by any other physical fault injection 
methods.  The technique usually requires placing the target system in a special ionizing 
radiation test chamber, which can be very expensive and requires a special license to operate.  
Repeatability is low as is reproducibility. 
 
Software implemented fault injection is one the more popular methods used in recent years.  It 
has high repeatability and reproducibility attributes, good controllability, and is probably the 
easiest fault injection method to implement.  However, it requires modifying the target system 
software so that low level exception handlers can be added to the target system.  In some cases 
this not an issue, in other cases it is difficult to implement these exception handlers with the OS 
and system level source code of the target, such as in commercial digital I&C systems.  In 
addition, the ability to emulate permanent faults is somewhat limited. 
 
The OCD-based fault injection method addresses some of the shortcomings of SWIFI-based 
methods.  The method does not require modifying the system software or the system hardware.  
Since the OCD fault injection method interfaces to the processor debug port, it only requires a 
commercial debugger tool or a specially designed fault injector built around the debug port 
protocol.  Of all the physical fault injection techniques surveyed and compared, OCD methods 
appear to offer the best opportunity to achieve repeatable, credible fault injection results from 
digital I&C systems.  However, taking advantage of OCD fault injection methods requires the 
onboard microprocessors and other ICs of the digital I&C system to have OCD capability.  Older 
microprocessor technology (prior to 1998) does not have OCD capability.  However, almost all 
contemporary microprocessors built in last 10 years have some if not full OCD capability. 
 
Hybrid techniques that are integrated into a single fault injection framework offer the promise of 
having a “tool box” of techniques from which to choose.  The only significant challenge with this 
approach is the development of such an integrated environment for general purpose fault 
injection.  Several fault injection tools have already started moving in this direction, namely 
GOOFI and Xception.  In the research effort described in this report the “tool box” approach was 
adopted for the fault injection environment for the benchmark systems. 
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In summary, while some techniques stand out (e.g., OCD , SWIFI and hybrid techniques), it 
should be noted that some techniques complement others to produce a set of fault injection 
methods that broaden the scope of fault injection capabilities for digital I&C systems.  For 
example, pin level and power supply disturbance fault injections tend to emulate faults that are 
difficult to produce with OCD and SWIFI methods.  The tool box approach to fault injection is 
advocated in this report, recognizing that not one specific technique will provide the scope 
needed for full system fault injections of digital I&C systems. 
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6. REACTOR PROTECTION SYSTEMS AND DESCRIPTION OF THE 
BENCHMARK SYSTEMS 

6.1. Introduction  

The RPS is one the primary defense in depth systems of a commercial nuclear power plant.  
The function of the RPS is to monitor measured process parameters associated with the safe 
operation of the reactor, to shut-down the reactor to prevent damage to the reactor system or 
the fuel cladding, and to prevent the reactor coolant system from exceeding its design limits.  
The RPS is the most important safety system in the nuclear power plant.  It is designed to meet 
very high reliability and safety requirements without operator intervention. 

6.2. Reactor Protection Overview 

A typical RPS is a fairly complex system, monitoring many reactor and plant process variables.   
The following discussion is a simplified explanation [Westinghouse Electric Co. 2003] of a RPS.  
The RPS shuts down the nuclear fission process in a nuclear reactor core by removing electrical 
power from the Control Rod Drive Mechanisms (CRDMs), thereby releasing reactor control rods 
and allowing them to fall into the reactor core.  The control rods contain materials that absorb 
thermal neutrons, which prevents the neutrons from causing the uranium fuel to fission, thereby 
stopping the fission process in the reactor core.   
 
A RPS is typically comprised of 4 independent channels or divisions.  The sensor data from the 
reactor is sent to the RPS trip logic which is designed to trip the reactor if any measured sensor 
value is outside of the safe operating limit of the reactor.  Each RPS channel monitors several 
critical parameters of the reactor and plant.  Upon a condition in the reactor system requiring a 
reactor trip to be initiated, the RPS sends four redundant trip signals to the CRDM circuit 
breakers.  A combination of any two trip signals from the four redundant channels to the trip 
breakers will cause the CRDMs to release the control rods.  All of the monitored sensor 
parameters are normally energized when the plant or reactor is operating within normal limits.  If 
the terminating sensor relay de-energizes for any reason, it sends a trip signal to the RPS trip 
logic.  Any two channels or divisions sending a trip signal will cause the RPS trip logic to send a 
trip signal to the CRDM. 
 
Historically, the RPS logic and processing divisions have been entirely based on 1970’s analog 
processing technology.  The trend to replace obsolete analog-based RPS processing divisions 
has gained traction in recent years with the advent of highly reliable processor-based digital I&C 
systems [Hashemian 2011].  The benchmark systems in this research effort are simulation 
processor-based digital I&C safety systems.  
 
Referring to Figure 6-1, a digital I&C-based RPS takes the monitored analog sensors values 
from the reactor and converts them to digital representations through an analog to digital 
conversion module.  The digital sensor representations are then provide as input data to the 
onboard processing functions, which forward the data to the RPS trip logic, which is a real time 
task executing on the processor of the digital I&C system. The RPS trip logic performs logic 
calculations and comparisons to determine whether the reactor is within its safe operating limits.  
If it is not, the RPS trip Logic issue a trip command to be sent to the output modules of the 
digital I&C system.   The output modules convert the trip command to a trip signal (either digital 
or analog) to be sent to the CRDMs.  Listed in Table 6-1 are typical signals or sensor values 
monitored by the RPS. 
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Figure 6-1 Typical RPS operation 

Table 6-1 Typical signals or sensor values monitored by RPS. 

Trip Signal Description Condition 

Variable 
Overpower 

The Variable Overpower Trip provides a 
reactor trip when the indicated neutron flux 
increases at a rate greater than a 
predetermined value for a sufficient time 
period requiring over power protection or a 
high preset value is reached. 

The purpose of this trip is to prevent 
fuel damage caused by an over power 
event. 

High 
Logarithmic 

Power 
Level 

The high logarithmic power level trip initiates a 
reactor trip when indicated neutron flux power 
reaches a preset high value. 

The purpose of this trip is to ensure the 
integrity of the fuel cladding and 
coolant system boundary in the event 
of unplanned criticality from a 
shutdown condition.   

High Local 
Power 

Density 

The high Local Power Density (LPD) trip 
initiates a reactor trip when the calculated core 
local power density in the fuel assembly 
reaches a predetermined value (setpoint). 

The purpose of this trip is to prevent 
the linear heat rate in the core from 
exceeding the fuel design limit. 

High 
Pressurizer 

Pressure 

The high pressurizer pressure trip initiates a 
reactor trip when measured pressurizer 
pressure reaches a high preset value. 

The purpose of this trip is to help 
assure the integrity of the Reactor 
Coolant Pressure Boundary for design 
basis events (e.g.,, feedwater line 
breaks. etc...) that can lead to an over-
pressurization of the Reactor Coolant 
System. 

Input 
To Trip 
Logic

Signal 
Filtering

A/D

Steam Pressure

Trip 
Logic 
Calc.

Output 
Trip 

Signal
D/A

RPS Division

To 
CRDMs
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Table 6-1 Typical signals or sensor values monitored by RPS. 

Trip Signal Description Condition 

Low 
Pressurizer 

Pressure 

The low pressurizer pressure trip initiates a 
reactor trip when measured pressurizer 
pressure falls to a low preset value. 

The purpose of this trip is to assist the 
Engineered Safety Features System in 
the event of a coolant accident and to 
provide a reactor trip in the event of 
reduction in pressurizer pressure.  

Low Steam 
Generator 

Water Level 

The low steam generator water level trip 
initiates a reactor trip when the measured 
water level in a steam generator region falls to 
a low preset value.  

The purpose of this trip is to assist the 
Engineered Safety Features System by 
assuring that there is sufficient time for 
actuating the auxiliary feedwater 
pumps to remove decay heat from the 
reactor in the event of a reduction of 
steam generator water inventory. 

High Steam 
Generator 
Water level 

The high steam generator water level trip 
initiates a reactor trip when the measured 
water level in a steam generator region 
reaches a high preset value.  
 

The purpose of this trip is to assist the 
Engineered Safety Features System by 
assuring that there is sufficient time for 
actuating the auxiliary feedwater 
pumps to remove decay heat from the 
reactor in the event of a reduction of 
steam generator water inventory.   

Low Steam 
Generator 
Pressure 

The low steam generator pressure trip initiates 
a reactor trip when measured steam generator 
secondary pressure falls to a low preset value. 

The purpose of this trip is to provide 
protection against excess secondary 
heat removal events assumed in the 
Plant Safety to assist the Engineered 
Safety Features System in limiting the 
consequences of a feedwater or steam 
line rupture accident 

Low 
Reactor 
Coolant 

Flow 
 

The low reactor coolant flow trip initiates a 
reactor trip when the measured steam 
generator DELTA P across the primary side of 
either steam generator decreases at a rate 
great enough to require loss of flow protection 
or reaches a low preset value. 

The purpose of this trip is to limit the 
consequences of a sheared reactor 
coolant pump shaft and steam line 
break.  

Manual Trip 
A manual reactor trip is provided permit the 
operator to trip the reactor. 
 

 

6.3. Description of the Benchmark Systems 

6.3.1. Introduction 

The following sections describe the hardware, software, and dependability features of the 
benchmark systems.  The following documents were provided by the system developer and 
were used to describe the systems in this section. 
 
Benchmark System I: 
 
 Training Manuals  
 Demo/Test System User Manual 
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 Demo/Test System Drawing Set 
 Digital Input Modules manual  
 Analog Input Modules manual 
 Digital Output Modules manual 
 Analog Output Modules manual 
 Software Specification and Coding Environment Manual.   
 Service Unit manual 
 X-Bus Communications manual 
 Processing Module manual  
 Communication module manual 
 NRC Demo/Test System Application Software Code and Hardware Parameters Listing 
 
Benchmark System II: 
 
 Overview of the System Operations 
 Training Manuals  
 
Benchmark System II Hardware User Manuals 
 
 Planning & Installation Guide 
 User's Manual for Field Terminations 
 
Benchmark System II Manuals for Communication 
 
 Network Planning & Installation 
 Intelligent Communication Modules 
 Sequence of Events User's Manual  
 
Benchmark System II Programmer Manuals plus CD 
 
 Getting Started Guide 
 Users Guide  
 Benchmark System II Libraries 

6.3.2. Benchmark System I 

Benchmark System I is a safety grade pre-qualified digital I&C system specifically developed for 
safety and high reliability functions in nuclear facilities.  The benchmark system provided by the 
NRC for this study is a scaled version of a typical four- division RPS.  Due to non-disclosure and 
proprietary agreements, the make and model of the target system are not disclosed in this 
report.  The salient features of the target system are its ability to be adaptable to plant-specific 
requirements with varying degrees of redundancy.  Its scalability permits development of 
solutions for a spectrum of safety-related tasks within the NPP system.  Typical applications 
include RPS and Engineered Safety Features Actuation System (ESFAS) functions. 
 
It should be noted that the benchmark systems used in this effort were testing platforms to 
exercise the fault injection methodology and software dependability methodology developed by 
this research.  In that regard, the benchmark systems represent the complexity of RPS 
processing and fault tolerance from both a hardware and software perspective.  Typical in-plant 
RPS digital I&C systems are considerably more enhanced in their fault tolerance and diversity 
attributes than the representative benchmark systems used in this study.  Therefore, results of 
this study are intended to be a reflection on the ability of the methodology to accommodate fault 
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injection on digital I&C systems, and not be construed as representative of the performance and 
suitability of the benchmark systems for RPS applications. 

6.3.3. Architecture and System Description of Benchmark System I 

6.3.3.1. Overview 

Figure 6-2 shows the architecture of the Benchmark System I.  The system consists of four 
separate processors, each acting as a processing channel or division for the RPS application.  
Data exchange via fiber-optic bus systems distributes information such as sensor values, fault 
messages, and process parameter messages to each processing channel.  The bus protocol for 
the data exchange network is an IEC standard Supervisory Control and Data Acquisition 
(SCADA) protocol, which will be referred to as X-bus.   
 

 

Figure 6-2 Benchmark System I detailed architecture 

The inter-channel X-bus network is usually configured as a point-to-point topology, but can be 
configured as a linear bus or a ring topology.  In the configuration for this research effort, it was 
configured as a point-to-point network.  Communication between channels on X-bus is 
deterministically upper bounded by the synchronous circulating token nature of the X-bus 
protocol, meaning there is an upper bound for message delivery between processing channels.  
However, the Benchmark System I as a whole was not clock synchronized among the 
processing channels.  That is, the processing channels operated independently and 
asynchronously from each other in their execution of a task.  The Runtime Executive (RE) 
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operating system environment operates as a deterministic static scheduler for application tasks 
with several prioritized rate groups.  All processing within a rate group is bounded by the cycle 
time of the rate group.  Because of the repetitive cyclic nature of the processing, the execution 
time skew between processing channels is bounded. 
 
Each channel typically has its own I/O processing.  This includes multiple modules of digital 
input, output, analog input, and analog output.  Fault masking features for the I/O sub-systems 
include detection of invalid signals due to known failure modes to improve the availability of the 
safety I&C functions.  These fault masking features of the system include majority voting 
schemes (typically 2-out-of-4 for binary signals and 2nd minimum/2nd maximum selection for 
analog signals). 

6.3.3.2. Fault Tolerance Features 

The fault tolerance features of Benchmark System I are both application independent and 
application dependent.  Depending on the degree of redundancy needed for an application, the 
user can configure a system as an n out of m voting scheme, where n is the number of channels 
that are in agreement with all other channels, and m are the total number of channels in the 
system.  In addition to these application dependent fault tolerance features, the system 
executes a number of application independent fault detection mechanisms, such as runtime 
diagnostics and self-tests in the background of the RE to detect latent faults in the system. 

6.3.3.3. Monitoring Interface 

External communications to non-safety monitoring stations for purposes of monitoring the 
operation of the application (e.g., RPS) is facilitated by a special interface called the Monitor 
Interface (MI).  The MI is responsible for gathering system level diagnostic health messages and 
application level messages from the system and forwarding this information to plant and 
operator monitoring stations.  The MI serves as boundary between the safety functions and the 
non-safety functions.  The MI and the messaging protocol is designed to be non-interfering with 
respect to the safety functions operating on the benchmark system. 

6.3.3.4. RPS Configuration 

In a RPS configuration, the system is configured as a two out of four voting system.  This means 
that if any two channels indicate that any of the measured sensor variables from the reactor 
system are out of their safety range, the reactor trip logic in the RPS will initiate a shutdown 
command and signal to the reactor CRDM assembly.  If a channel becomes faulty and it is 
detected as so, the RPS gracefully degrades to a two out of three voting scheme to allow 
continued operation in a limited capacity while maintenance and service can perform off-line 
diagnostics and repair of the failed channel. 
 
Figure 6-3 shows the basic processing flow for one channel or division of a RPS.  Each channel 
gathers a number of reactor sensor variables (see Table 6-1 to monitor the safe operation of the 
reactor system.  Each of these sensor values is supplied to the RPS by four independent 
sensors.  These values are acquired by the analog input modules, and are distributed to all 
other channels (e.g., channels A, B, C, and D).  The analog sensor values are preprocessed by 
a 2nd min/max selection function to bound the influence of any outlier sensor values.  The 2nd 
max function uses the second highest value recorded from the group of sensor readings.  The 
2nd min function uses the second lowest reading from a group of sensors.  The output of the 2nd 
min/max function is then provided to a set point comparison function, which compares the 
conditioned sensor values to maximum and minimum set points for safe operation of the reactor 
system.  The output of the set point function is a Boolean – Reactor trip or no-trip.  The outputs 
of the set point functions are then sent to a set of reactor trip breaker relays configured in a two 
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out of four voter configuration.  If two or more trip indications have been noted, the relay 
breakers will interrupt power to the CRDMs, thereby causing the reactor control rods to drop into 
the reactor core. 
 

 

Figure 6-3 RPS diagram for Benchmark System I 

In some safety systems, the output trip signals of the safety I&C functions are distributed to an 
additional voting process, which consists of two computers each running as master/checker 
pair.  The benchmark system used in this research did not have this additional fault tolerance 
capability. 

6.3.3.5. Software  

The Benchmark System I software consists of (1) off-line software development and (2) on-line 
software to support task reliable execution and a fault tolerance capability.  The off-line code 
development environment designs applications from a function diagram editor.  Function 
diagrams are developed by selecting and connecting appropriate function block modules 
available from a function block library.  For each processing module the application software 
code is compiled and auto generated from this specification (function diagram modules) and 
then linked to the RE system software resulting in a set of real-time tasks for the application. 
 
The interface between application functions (function diagram modules) and the system 
software is generated by the software development code generator tool.  It automatically 
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creates the call and data interface to the function diagram modules and describes the I/O and 
communication activities that are to be performed by the processing module. 
 
The design of the processing cycle is one of the key preconditions for ensuring deterministic 
system behavior by maintaining strictly cyclic operation of each processor in a distributed I&C 
system independent of the status of the plant process.  Each processing unit runs three tasks, 
which are scheduled by the RE on the basis of task priorities: 
 
 Priority 1 (highest) – Cycle task:  The cycle task operates with a predefined, constant 

cycle time.  It handles all communication messages, the input and output signals, and 
the cyclic processing of the application safety functions.   Having the highest priority of 
all three tasks, it ensures that the cyclic operation of the application safety functions are 
completed within the specified cycle time. 
 

 Priority 2 – Service task:  The service task processes service commands received from 
the Service Unit.  When no service commands are pending it is suspended.  It is 
reactivated by the cycle task each time a new service message has been received and 
the cycle tasks have been completed for that cycle.  After processing of the service 
message, the service task is suspended again.  There are two types of service requests 
that can be received from the service unit: 
 
 Type 1:  Service requests are fulfilled without interrupting cyclic processing, such 

as reading and acknowledging system messages, tracing signal data, and on-line 
modification of operation parameters. 
 

 Type 2:  Requests for diagnostic data for fault diagnosis of the CPU or the 
performance of tests that require the processor to be in the special operation 
modes TEST or DIAGNOSIS. 

 
 Priority 3 (lowest) – Self-test task:  The self-test task has the lowest priority of all tasks 

and is only processed when the service task and the cycle task are not active.  The self-
test task continuously performs tests of all relevant hardware components on the 
processor board (random access memory (RAM)-test, read only memory checksums, 
watchdog tests, etc.).  This endless loop of tests consumes all “idle” time of the 
processor. 

 
Through the above separation of functionality approach, the interactions between the 
application, RE, and system services level is more structured compared to combining all of the 
functionality within a single task. 

6.4. Benchmark System II 

6.4.1. Introduction 

Benchmark System II is also a safety grade pre-qualified digital I&C system specifically 
developed for safety or high reliability functions in nuclear facilities.  Like Benchmark System I, 
Benchmark System II is a scaled version of a typical four-division RPS.  Due to non-disclosure 
and proprietary agreements the make and model of the target system cannot be disclosed.  The 
salient features of the target system are its ability to be adaptable to plant-specific requirements, 
with varying degrees of redundancy.  Typical applications include RPS and ESFAS functions. 
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6.4.2. Architecture and System Description 

The Benchmark System II configuration consists of two chassis assemblies.  As shown in 
Figure 6-4, each chassis includes termination panels, power supply modules, three main 
processor modules, redundant I/O modules, and communication modules.  Each chassis is 
powered by two independent, redundant power supplies, each capable of providing the full 
power requirements of the chassis. 
 

 

Figure 6-4 Benchmark System II architecture 

In an in-plant RPS configuration there would be four full chassis assemblies for each channel or 
division.  In Benchmark System II only two chassis assemblies were used.  Therefore, one 
channel or division of the RPS was hosted on Chassis 1 (i.e., channel A), and the other three 
channels (i.e., B, C, and D) were hosted on chassis 2.  Each emulated RPS division on chassis 
2 was run as a separate task in the RE with appropriate independent I/O and inter-channel 
communication. 
 
Each channel in the configuration is triple modular redundant (TMR) from input terminal to 
output terminal, as shown in Figure 6-5.  The TMR architecture allows continued system 
operation in the presence of any single point of failure within the system.  The TMR architecture 
also allows the Benchmark System II to detect and correct individual faults on-line, without 
interruption of monitoring, control, and protection capabilities.  In the presence of a fault, the 
Benchmark System II will alarm the condition, remove the affected portion of the faulted module 
from operation, and continue to function normally in a dual redundant mode.  The system 
returns to the triple redundant mode of operation when the affected module is replaced.  Thus, 
the system acts as fault masking architecture with no active reconfiguration. 
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Figure 6-5 Benchmark System II detailed architecture 

To facilitate module replacement, the Benchmark System II chassis includes provisions for a 
spare module, logically paired with a single input or output module.  This design allows on-line, 
hot replacement of any module under power while the system is running, with no impact on the 
operation of the application. 
 
Figure 6-5 also shows the arrangement of the input, main processor (MP), main processor units 
(MPUs), and output modules.  As shown, each input and output module includes three separate 
and independent input or output paths or legs.  These legs communicate independently with the 
three main processor modules.  The legs receive signals from common field input termination 
points.  The microprocessor in each leg continually polls the input points, and constantly 
updates a private input data table in each leg’s local memory.  E ach leg performs signal 
conditioning, isolation, and processing independently.  The input modules possess sufficient 
leg-to-leg isolation and independence so that a component failure in one leg will not affect the 
signal processing in the other two legs. 
 
Each MPU operates independently with no shared clocks, power regulators, or circuitry.  Each 
MPU owns and controls one of the three signal processing legs in the system, and each leg 
contains two 32-bit processors.  One of the 32-bit processors is a dedicated, leg-specific I/O 
and communication microprocessor that processes all communication with the system I/O 
modules and communication module.  The second 32-bit primary processor manages 
execution of the application program (RPS) and all system diagnostics at the main processor 
module level. 

6.4.3. Fault Tolerance Operation 

Benchmark System II is a TMR fault tolerant system with a fully distributed voting scheme.  That 
is, the voting for all inputs and outputs per chassis is conducted by three voters; each voter is 
associated with each leg of operation (e.g., MPU A, MPU B, and MPU C).  In addition, all 
operations between the legs are synchronized by a distributed fault tolerant clock that is 1-f fault 
tolerant.  That is, it is capable of tolerating one arbitrary single fault per leg. 
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For digital inputs, the voted input table is formed by a two out of three majority vote on 
respective inputs across the three data tables.  The voting scheme is designed for de-energize-
to-trip applications, always defaulting to the de-energized state unless voted otherwise.  Any 
single leg failure or corrupted signal feeding a main processor module is corrected or 
compensated at the main processor module level when the voted data table is formed. 
 
For analog inputs, a mid-value selection algorithm chooses an analog input signal 
representation in the voted input table.  The algorithm selects the median of the three signal 
values representing a particular input point for representation in the voted input tables.  Any 
single leg failure or corrupted signal feeding a main processor is compensated at the main 
processor module level when the voted data table is formed.  Significant errors are alarmed.  All 
input and output modules include self-diagnostic features designed to detect single failures within 
the module. 
 
Like the I/O modules, the communication modules have three separate communication busses 
and three separate communication bus interfaces, one for each of the three main processors.  
Unlike the I/O modules, however, the three communication bus interfaces are merged into a 
single microprocessor. That microprocessor votes on the communications messages from the 
three main processors and transfers only one of the messages to an attached device or external 
system.  If two-way communications are enabled, messages received from the attached device 
are triplicated and provided to the three main processors. 
 
The communication paths to external systems have appropriate levels of Cyclic Redundancy 
Checks (CRCs), handshaking, and other protocol-based features. These features are supported 
in hardware and firmware.  Firmware provides core functionality common to all the 
communication modules with additional coding to support the specific communication protocol. 
 
The main processor diagnostics monitor the health of each main processor as well as each I/O 
module and communication channel.  The main processor modules process diagnostic data 
recorded locally and data received from the input module level diagnostics in order to make 
decisions about the health of the input modules in the system. 
 
If a standby module is installed in the paired slot with a faulty module, and that module is itself 
deemed healthy by the main processors, the system automatically switches over to the standby 
unit and takes the faulty module off line.  If no standby unit is in place, the faulty module 
continues to operate on two of the three legs and protection and control is unaffected. 

6.4.4. Runtime Software Operation 

The operating system, run-time library, and fault analysis for the main processor is fully 
contained in the flash memory on each module.  The main processors communicate with one 
another through a high speed, voting, bi-directional serial channel called T-BUS.  Each main 
processor has an I/O channel for communicating with one of the three legs of each I/O module.  
Each main processor has an independent clock circuit and selection mechanism that enables all 
three main processors to synchronize their operations each scan cycle to allow voting of data 
and exchange of diagnostic information. 
 
The principle part of the OS is the RE.  The RE is a static deterministic scheduler that schedules 
and executes the real-time tasks on a pre-determined cycle time (called a scan) to ensure 
deterministic operation of the tasks.  At the beginning of each scan, each primary processor 
takes a snapshot of the input data table in dual port RAM and transmits the snap shots to the 
other main modules over the T-BUS.  This transfer is synchronized using the T-Clock.  Each 
module independently forms a voted input table based on respective input data points across 
the three snapshot data tables.  If a main processor module receives corrupted data or loses 
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communication with a neighbor, the local table representing that respective leg data will default 
to the de-energized state. 
 
The primary processors for each channel then execute the application program in parallel on the 
voted input table data and produce an output table of values in dual port RAM.  The voting 
schemes explained above for analog and digital input data ensure the process control programs 
are executed on the same input data value representations.  After the main processors 
complete the control algorithm, data is sent out to the output modules.  Outputs from the main 
processors are provided to the I/O bus microprocessors through dual port RAM.  The I/O bus 
microprocessors then transfer that data to the triplicated microprocessors on the output 
modules.  The output modules then set the output hardware appropriately on each of the 
triplicated sections and vote on the appropriate state and/or verify correct operation. 
 
The transmission of data between the main processor modules and the output modules is 
performed over the I/O data bus using a master/slave communication protocol.  The system 
uses a CRC to ensure the health of data transmitted up to three times.  Watchdog timers on 
each output module leg ensure communication has been maintained with its respective main 
processor module with a certain timeout period. 

6.4.5. RPS Configuration for Benchmark System II 

The RPS design for Benchmark System II is slightly different from that of Benchmark System I.  
The system is still configured as a teo out of four voting system.  The principle difference is that 
RPS input sensor signals do not get a 2nd min/max treatment as in Benchmark System I 
because the 2nd min/max functionality is specific to Benchmark System I.  Benchmark System II 
uses a mid-point select algorithm to bound sensor input values.  Otherwise, the designs are 
functionally similar as described above. 
 
Figure 6-6 shows the basic function of the Benchmark System II RPS for channel A of the 
system.  In this diagram, the coolant flow trip signals are indicated.  The bolded signals in the 
diagram indicate voted signals from the three legs (MPU A, MPU B, and MPU C).  The legs are 
indicated in the diagram as the depth dimension.  The coolant flow trip logic on channel B, 
channel C and channel D are logically and functionally the same as shown below.  The coolant 
flow trip signals from channel B, channel C and channel D are transferred to channel A by the 
inter-channel communication network.  Thus, all channels exchange their trip signals wirth each 
other.  Not shown in the diagram is the last “OR” block that takes all trip signals (steam flow, hot 
leg pressure, etc…) and ORs them for the final trip signal. 
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Figure 6-6 Channel A RPS for Benchmark System II 
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7. LESSONS LEARNED FROM PREVIOUS EFFORTS 

This section describes lessons learned from previous efforts at UVA, namely the application of 
fault injection to an authentic DFWCS.  This section, along with Section 5, serves as a 
springboard to (1) identify candidate fault injection methods for the benchmark systems, (2) 
identify areas where the methodology is underprovided or lacking in support, and (3) provide a 
basis for implementation and research efforts for phase II and phase III of this research.  The 
DFWCS presents the same scale and complexity as expected on the benchmark systems, so 
reviewing the effort, challenges, and results is significant to the overall research effort. 

7.1. Introduction 

The UVA safety assessment methodology was developed and matured primarily through 
simulation-based fault injection techniques starting in the early 1990’s.  While the capabilities 
developed along this path were considerable, the transition to physical-based fault injection at 
UVA was not without challenges.  This is an important point because simulation-based fault 
injection techniques are considerably different than physical-based fault injection techniques.  
To better illustrate these differences, the attributes of simulation-based fault injection are listed 
here: [Arlat 2003]. 
 
 Enhanced Observability and Controllability.  The simulation environment along with its 

model building tools allows full observability and controllability of the target system 
model. 
 

 Built in Automation.  The simulation environment along with programming support allows 
for total automation of the fault injection process inside the simulator. 

 
 Built in Time Measurement.  The simulation environment, due to its intrinsic timing 

capabilities, allows for precise measurement of all fault injection results. 
 

 Built in data Collection.  The simulation environment permits easy collection of program 
execution trace information to determine differences between non-faulted operation and 
faulted operations. 

 
 Fault Injection “everywhere”.  The reachability of the fault injection process is only limited 

by the fidelity and the scale of the model for the target system. 
 

In a physical fault injection environment none of the above qualities are intrinsic or given; and 
more often than not it is a significant challenge to modestly instrument some of the above 
attributes in physical-based fault injection environments.  This is the principal issue of physical-
based fault injection experiments; many of the above attributes must be developed, integrated, 
and implemented to support the fault injection process in a physical system.  Moreover, the 
basic components of the fault injection environment must work together in a seamless automatic 
fashion [Hsueh 1997]. 
 
The next section discusses the challenges related to physical-based fault injection on the 
Calvert Cliffs NPP DFWCS prototype system at UVA and at the Calvert Cliffs NPP station labs. 
This was the first substantial application of physical-based fault injection to a digital I&C system 
at UVA. 
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7.2. Overview of the Digital Feedwater Control System 

The function of the DFWCS is to control the input water level in its associated steam generator 
from approximately 1% reactor output power up to 100% reactor output power [Aldemir 2009].  
As depicted Figure 7-1, the steam generator level is controlled by two computer-based 
controllers.  The two controllers are designated as the main controller and the backup controller.  
The main and backup controllers operate as a redundant pair.  These controllers are 
implemented using commercial-off-the-shelf (COTS) components that include two Azonix 
uMAC7000 Industrial PCs with 486DX4 33 Mhz processors running a scaled down version of 
MS Windows 3.1.  A real-time kernel application was developed to schedule and execute the 
control laws on a 100 ms cycle time.  The real-time kernel was executed as a supervisor level 
within Windows OS. 
 

 

Figure 7-1 Overview of benchmark Digital Feedwater Control System (DFWCS) 

Normally the main controller reads various inputs and provides control outputs while the backup 
controller tracks the main controller.  The main and backup controllers act on duel analog 
sensor readings of reactor power level, steam generator (SG) level, feedwater flow rate, 
feedwater temperature, and steam flow rate.  The DFWCS outputs set the operating positions of 
the main feedwater flow control valve and the bypass feedwater flow control valve, and speed 
change commands for the main feedwater pump.  In the NPP, the feedwater pump commands 
are further shaped by a redundant turbine speed regulation controller. 
 
In the event that the main controller fails, the backup controller can take over operation of the 
system.  The outputs of both the main and backup controllers are passed to a set of four 
Proportion, Integral, and Derivative (PID) controllers.  These four PID controllers are 
implemented using Bailey Fischer & Porter (BFP) 53MC5000 series process control stations. 
Three of these controllers are dedicated to the main feedwater flow control valve, the bypass 
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feedwater flow control valve, and the feedwater pump speed regulator respectively, with the 
fourth controller acting as a spare for either the main feedwater flow control valve PID controller 
or the bypass feedwater flow control valve PID controller.  The PID associated with each of the 
controlled devices performs a comparison of the desired setting from the main and backup 
controllers and delivers the final outputs to the controlled device. 
 
In summary, the DFWCS presents an unusual architecture for real-time safety related 
applications.  It uses Windows 3.1 as its underlying OS, which uses dynamic task allocation and 
memory management.  Dynamic task allocation and memory management is almost never used 
in real time safety related systems due to its non-deterministic behavior.  The real-time kernel 
compensated for this by scheduling tasks on a timer interrupt every 100 ms.  However, the 
memory allocation management was still controlled by Windows, which meant it was 
dynamically reallocated if the processor was reset or another task needed more space in 
Windows. 

7.3. Background on the DFWCS Fault Injection Efforts at UVA 

Research on the DFWCS was sponsored by the NRC under 2 contracts, which are referred to in 
this report as Phase 1 and Phase 2, respectively.  The first phase was “Embedded Real-Time 
Safety-Critical Hardware/Software Systems,” which defined and developed the fundamentals of 
the methodology described in Section 3.  Phase 2 was a reassessment of the Phase 1 efforts, 
and the application of fault injection to the DFWCS to support a dynamic reliability modeling 
effort led by the Ohio State University (tOSU). 
 
In the Phase 1 effort (2000 to 2003), a SWIFI method of was chosen after an unsuccessful 
attempt at another technique3 [Maia 2005].  In run-time, SWIFI faults are injected while the 
target system executes its application or workload.  This requires a mechanism (called an 
exception handler) that (1) stops the execution of the processor, (2) invokes a fault injection 
routine to corrupt the memory or register locations of the target system, and (3) restarts the 
processor and workload where it was interrupted.  Thus, SWIFI can incur a significant run-time 
overhead if the implementation of the fault injection method is not optimized.   
 
The effort to develop the exception handlers needed for SWIFI fault injection was challenging 
because the exception handlers had to be integrated into the Windows OS.  In this case, the 
run-time overhead for SWIFI was not the prevailing issue.  The dominant issue was the low 
controllability of the fault injection process, mainly due to implementation issues rather than 
technology issues.  First, the exception handlers did not have the ability to trigger and break on 
specific program variables because of the difficulty of deriving or obtaining a memory map of the 
program residing in data memory.  Secondly, because there were no breakpoint triggers for the 
fault injection process, the fault injector could not control two dimensions of the fault injection 
process space: time of the fault injection, and location of the fault injection.  Lack of these two 
factors led to poor reproducibility and repeatability of experiments. 
 
In Phase 2 (2004 to 2006) a new team of investigators (Carl Elks, Michael Reynolds, and 
Nishant George) were brought in to reassess the Phase I efforts in support of a NRC sponsored 
project led by tOSU called Dynamic Reliability Assessment of Digital I&C Systems.  To fully 
support the needs of the tOSU investigators, UVA had to develop a method of fault injection for 
the DFWCS that allowed (1) injecting faults into memory and register locations that were being 
used by specific process variables of the control law (e.g., inputs, state variables, outputs, 
etc....) and (2) doing so in a manner that could be fully automated.  At this time, the SWIFI 
method was abandoned in favor of In-Circuit Emulator (ICE)-based fault injection to enhance 

                                                 
3 The first attempt at fault injection was with an in-circuit emulator (ICE)-based fault injection.  It was unsuccessful 
due to incompatibility between the ICE machine and the processors on the DFWCS.  
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controllability of the fault injection process (see the sections below).  A brief description of ICE-
based fault injection is described below along with how it was used on the DFWCS.  For a 
detailed description of the design and development of the ICE based Fault Injection 
Environment used in the DFWCS experiments see reference [George 2007]. 

7.4. Selecting a Fault Injection Method for the DFWCS  

In Section 5 a number of methods for injection are reviewed and critiqued according to their 
advantages and disadvantages.  In summary, software-based methods of fault injection are 
better suited to test fault tolerance mechanisms at the data flow and control flow level, when 
compared to hardware-based methods.  In most cases it can be seen that the target digital I&C 
system OS needs to be instrumented with traps and exception handlers to enable triggering of 
fault injection.  However, as noted above, SWIFI can be a difficult fault injection technique to 
implement due to these modifications and controllability of the technique can be an issue if not 
done correctly.  At the time UVA was working with the DFWCS, and due to the previous issues 
the UVA research staff had with SWIFI, a method of fault injection closely related to OCD4 fault 
injection called In-Circuit Emulation based fault injection or simply ICE-based fault injection 
[George 2007] was chosen. 
 
An ICE machine is a tool used by designers of embedded systems to debug embedded 
software.  Debugging embedded system software is particularly challenging because embedded 
systems usually lack suitable user-interface devices such as keyboards and displays.  Under 
such circumstances, ICE machines provide a `window' into the system through which the 
designer can exercise a good deal of control of the embedded system at a very low level (e.g., 
Assembly code, and signals).  In-circuit emulators usually have a pod (shown in Figure 7-2) that 
plugs directly into the socket where a CPU chip is inserted. There is interface circuitry that 
provides a connection between an ICE machine and a terminal PC.  This terminal can be used 
to run an interactive user interface application by which the designer can monitor the embedded 
system. 
 

 

Figure 7-2 In-circuit Emulator (ICE) pod 

 
At the time of this effort, ICE-based fault injection appeared to be a feasible and attractive option 
because fault injection was possible without any change to the software running on the target 
system, which was something the researchers wanted to avoid.  In theory, ICE-based fault 

                                                 
4 OCD-based fault injection was not an option on the DFWCS platform because there were no OCD features 
associated with the Intel-based x486 processor. 
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injection should provide better controllability and observability as compared to other alternative 
techniques (such as SWIFI and pin-level fault injection). 

7.4.1. ICE-based Fault Injection 

A discussed earlier, ICE machines are used primarily for debugging and not fault injection.  The 
UVA effort to use an ICE machine for fault injection was a novel approach, so UVA had to 
develop much of the “know how” and technology to achieve the ICE-based fault injection 
capability. 
 
A prototype implementation of an ICE-based fault injector was designed using the PowerPack 
EA/SW In-Circuit Emulator, manufactured by Microtek International Development Systems.  
Referring to Figure 7-3, the Microtek Powerpack EA486 ICE hardware consists of a pod that 
plugs into the socket of an Intel x486 CPU-based target system and an interface circuitry box 
that interfaces the pod to the host machine through the serial port.  The interface box has a 
dedicated power supply, which powers the ICE-pod.  The CPU of the target system is removed, 
and the ICE-pod is plugged directly into the CPU socket of the DFWCS. 
 

 

Figure 7-3 ICE–based fault injection on the DFWCS 

The in-circuit emulator software is a source-level debugger (SLD) application that must be 
installed on a separate computer known as the host.  The target system is the DFWCS.  The 
interface box is connected to the host computer through the serial port.  All communication 
between the host and the target system takes place through this interface.  Once the ICE 
interface and the target system have been powered up, the SLD application can be initiated on 
the host.  The ICE and SLD give a disassembled view of the memory around the location that 
the program counter register points to on the target system.  When halted, the disassembled 
view of the code running on the target machine can be viewed on the host machine. 
 
As can be seen in the Figure 7-4, the memory locations immediately following the location 
pointed to by the instruction pointer are displayed in the window, together with the binary code 
of the instruction at that location and its corresponding disassembled mnemonic assembly code. 
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Figure 7-4 Screenshot of disassembly view on the host SLD application 

7.5. Automation of Fault Injection Process  

The SLD command tool for the ICE machine is equipped with the capability to execute script 
files, which contain a sequence of shell commands that, when used in sequence, allow the 
basic steps of fault injection to be executed in a serial manner.  A script file is a sequence of 
commands and command arguments that the ICE machine uses to perform its debugging 
functions.  This is a key capability in the realization of fault injection using the ICE machine.  The 
normal SLD Graphics User Interfaces (GUIs) are not capable of being invoked in an automated 
fashion, which is required for conducting extensive fault injection campaigns.  These script files 
enable automatic fault injection. 
 
Figure 7-5 shows an example of the various shell commands that are executed at the shell 
command prompt of the SLD application to emulate a single fault injection.  The basic steps that 
comprise a fault injection from the SLD host application are explained below with respect to 
Figure 7-5. 
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Figure 7-5 Sequence of script command steps for automating fault injection 

Step 1 is a spin loop that waits for the CPU to halt.  This halt may be induced by a number of 
means depending on when the fault needs to be injected into the system.  For example, the 
fault may be injected on an event defined as ``when a write occurs on a predefined memory 
location that corresponds to a location in the data segment”.  An event can be defined by setting 
various flags in the SLD application that correspond to signals within the CPU such as 
MEM_WRITE, MEM_READ, and CODE/DATA, can be set to suitable values, and its action may 
be specified as a halt.  When the system halts, the variable becomes false and the script falls 
through to execute the remaining commands in the script. 
 
Besides using events, software and hardware break points can be defined on memory events 
for code/data accesses to halt the CPU at desired points in time.  In addition to these, external 
signals can be used to trigger CPU halts asynchronous to the target and host machines.  This 
was the scheme that was used to inject faults at random points in time, and was initiated using 
trigger pulses generated external to the host and target machines. 
 
Step 2 dumps the contents of the specified location into a predefined SLD system variable 
called MEM_VALUE.  Step 3 copies this value from the system variable to a local variable so 
that it may be manipulated.  Step 4 applies the mask that is specified in the fault list onto the 
value of the variable.  Any logical operation may be performed in this step and each different 
logical operation or a different fault mask would correspond to a distinct fault.  The value of the 
variable corrupted in step 4 is copied back into the location from which it was read in step 5.  
This can be considered as the actual injection step because it is in this step that a corrupted 
value gets updated in the memory.  In steps 6 and 7 a local counter variable is incremented and 
displayed to keep track of the number of fault injections that have been completed.  Step 8 
resumes execution of the target. 
 
The fault list contains a number of pieces of information that are used by scriptgen.cpp.  These 
include a serial number, address, number of bytes to corrupt, a fault mask (defines which bit(s) 
to corrupt) and a mask operation (AND/OR/XOR and so on). 
 
This example shows how the capabilities of the ICE machine were exploited to realize fault 
injections.  If needed, more complicated events and breakpoints can be set up to meet arbitrary 
timing requirements.  A sequence of sets of such statements can be grouped together in a 
single script to achieve consecutive automatic fault injections.  For example, if after step 8, step 
1 is repeated, then the SLD will execute a spin-loop-wait until the next halt event occurs.  This 
time can be used for monitoring responses to the fault injection, such as for collecting data 
dumps.  The target may also be restarted at this point to refresh the workload to rid of the target 
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any effects of the fault previously injected so that the next fault injection behaves independent of 
the previous fault injection. 

7.6. Realization of Fault Models 

The principle fault model used in this effort was the transient fault model [Cutright 2003(b)].  
Using the ICE machine allowed changing the number of bits in a register or memory location.  
For this project, single bit corruption and multiple bit corruptions on a specific memory or 
register location per control cycle was chosen, including all “zeros’ or all “ones” on a 16 bit or 
32-bit word. 
 
For realizing a permanent fault model, the fault must be persistent.  To increase the duration of 
the presence of a fault, the fault script was set up so that the value stored in the location could 
be corrupted every time it was overwritten with a fresh value.  It should be noted that emulation 
of permanent faults incurs much more overhead in implementation using this fault injection 
technique since each value corruption occurs every time a values is written in the specified 
memory location, which may be many times during a single control cycle.  Thus, the permanent 
fault model was used only during specific instances. 

7.7. Fault List Generation 

A review of various documents including the DFWCS hazard analysis document revealed the 
source code drove the construction of fault lists for the DFWCS effort.  Locations such as 
analog inputs and outputs, digital inputs and outputs, set-points, internal variables, and test-
points were identified as key locations for injecting faults, along with random locations in 
memory.  A memory and link map of the application was generated when the DFWCS was 
compiled.  These map files were automatically searched by a special parser program developed 
for obtaining the address components (segment:offset) of each variable in the DFWCS program.  
Because the DFWCS used the Windows 3.1 OS, which is a dynamic memory management 
operating system, the segment address is not static because it would depend on where the 
application was loaded into the memory, which is allocated by the operating system of the 
target. To overcome this difficulty, special probes were inserted into the boot code of the 
DFWCS application before each fault injection campaign to determine where the code was 
being relocated.  Details of this procedure can be found in reference [George 2007].  As stated 
earlier, dynamic memory management is something of an anomaly in real-time safety critical 
system since almost all safety critical systems use static memory allocation. 

7.8. Integration of ICE-based Fault Injector into DFWCS 

The initial design of the ICE-based fault injector was implemented at UVA using a replica 
version of the DFWCS.  After the initial testing at UVA, the fault injector was deployed at the 
NPP where integration of the fault injector into the full-scale DFWCS was begun in the NPP I&C 
laboratory.  Integration of a fault injection environment into an operational environment is 
necessary because it addresses a number of engineering challenges when compared to a 
stand-alone fault injector.  Fault injectors are never standalone and discussing them in the 
context of a system gives a more complete picture.  A number of issues were faced during the 
design of the ICE-based fault injector at UVa.  While integrating the fault injector into the 
operational environment, a new set of challenges were faced.  This section discusses the 
challenges associated with the integration effort. 
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7.8.1. Integration of the ICE-based Fault Injector into the DFWCS 

The development of the fault injection environment for the DFWCS application involved 
integrating the ICE-based Fault Injector into the DFWCS in the laboratory at the NPP.  This 
integration posed a number of challenges and led to the development of solutions to overcome 
these challenges.  This section lists and explains these challenges and solutions.  A schematic 
showing the ICE-based fault injector environment integrated into the DFWCS is shown in 
Figure 7-6.  The discussion in the remainder of this Section will refer mostly to this figure. 
 

 

Figure 7-6 Integration of the ICE based fault injector into DFWCS environment 

Challenge 1: Reset Sequence of the DFWCS 
 
In order to support full automation of the fault injection process after each fault injection and 
data collection activity, the DFWCS should be reset automatically to clear the effects of the 
injected fault from the system state.  This was not a straightforward process with the DFWCS.  
The DFWCS has an elaborate reset sequence that consists of eight to ten steps (some of which 
are dependent on each other) taking about 100 s.  The complexities of the reset sequence are 
mainly due the use of diverse COTS components from different vendors in the DFWCS 
architecture. 
 
The reset sequence was emulated using a sequencer computer running a LabView application, 
which sent out reset signals to various components of the DFWCS in a timely manner.  The 
NPP I&C engineer who had detailed knowledge of the DFWCS designed and coded the reset 
sequencer for the test setup.  The timing diagram of the signals the sequencer application 
generated is shown in Figure 7-7.  Integration of the fault injector into this system involved 
modifying the sequencer application to provide an indication to the fault injection environment to 
inject a fault, only when the whole system was operating after the elaborate reset sequence.  
This indication was in the form of a trigger signal sent from the sequencer to the ICE machine.  
The ICE machine would recognize this incoming trigger pulse as an indication for fault injection 
and would initiate injection of the next fault from the fault list. 
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Challenge 2: Power-Fail Signal Masking 
 
A fault injection involves three steps: halting the CPU, changing bits, and restarting the CPU. 
The DFWCS-self monitoring system was designed with the main and backup CPUs monitoring 
each other such that the instant either CPU was halted, the other CPU would identify that event 
as a power fail on the failed CPU.  However, during fault injection, this was a false alarm 
because the main CPU was intentionally halted for fault injection.  This was conveyed from the 
main to backup CPU as a power-fail signal line, which would drop to a voltage level of 0 V when 
the power was halted. 
 
To overcome this false alarm problem, a power-fail-mask circuit was developed to pull up the 
signal on the power-fail line while the fault was injected.  The ICE machine is equipped with a 
reset-out signal which can be pulsed using a shell command in the host application.  This signal 
was fed into the clock input of a toggle flip flop, which would toggle its state if there was a pulse 
on the clock.  This functionality was used with proper placement of the shell commands in the 
fault scripts to effectively mask the power fail signal for the time the fault was injected.   
 
The power-fail line was multiplexed with two inputs.  One input was the actual signal from the 
main CPU, and the other signal was a constant 1 V signal.  The control signal for the multiplexer 
relay was the output of the toggle flip flop.  The shell command for toggling the flip flop was first 
given immediately after the halt of the main CPU and was reset immediately after the execution 
was resumed after the fault injection.  Figure 7-8 shows a schematic of the power-fail mask 
solution. 

 

Figure 7-8 Power Fail mask circuit 

In addition to the power fail mask signal, each processor had a watch dog timer (WDT) signal 
that was derived from an independent and external WDT module.  Due to long delays in the 
fault injection process (primarily due to ICE machine inefficiency) the WDT signals were 
disabled during fault injection.  In normal operation, the WDT signal is used to detect timing 
failures such as crashed or hung processors that would impede real-time operation of the main 
or backup processor. 
 



 

118 

Challenge 3: Static Electricity and Noise 
 
The subsystems described in the previous sections operate at a wide range of voltages.  For 
example, all of the CPUs operate at 5VDC, but all of the signals between CPUs, and 
inputs/outputs from sensors operate as 24V analog signals.  The ICE machine operates at 5V 
DC and the signals coming from the ICE machine are also 5VDC.  After the preliminary 
attempts at integration of the subsystems into a fault injection environment, it was observed that 
the fault injector was not stable.  Random signals would trigger fault injections at wrong times, 
during the reset sequence.  This was a major impediment which delayed the deployment and 
experimentation process.  Until the random fault injections that were being observed were 
attributed to effects from static electricity and electrical noise, each fault injection campaign was 
very short, comprising not more than 10 to 15 experiments. 
 
This warranted electrical isolation across all connections between the ICE machine signals and 
the DFWCS signals.  Hence, among the connections shown in the diagram shown in Figure 7.7, 
the signals connecting the sequencer and the ICE, the ICE and the T-flip flop, and the T-flip flop 
to relay had to be coupled through opto-couplers.  This ensured electrical isolation between 
various components of the fault injector integrated into the DFWCS.  With this circuit in place, 
most of the random noise signals that were affecting the determinism of fault injection 
sequences were addressed.  This resulted in the ability to run long fault injection campaigns that 
were capable of handling hundreds of faults per campaign. 
 
Challenge 4: Data Acquisition 
 
The data acquisition capability is an important component of the fault injection environment 
because responses to injected faults must be gathered for later analysis.  Unless the results of 
fault injections can be captured effectively, the effort of building the fault injection environment 
can be negated.  The DFWCS application has a built in data dump capability which logs events 
that occur in the system.  These logs are generally available to the user when the operator 
queries the system for data dumps.  The logs are also visible to the operator on the plasma 
display I/O units (PDUs).  The PDUs are connected to the CPUs through the serial port COM1.  
A modification of this existing data dump capability was used to collect data in the sequencer 
computer.  The sequencer computer, upon reception of a data dump was made to append some 
fault information and save it locally with a suitable filename.  Data dumps were collected once 
before a fault injection and once after a period of monitoring after a fault injection.  Dumps were 
collected from each of the main and backup CPUs.  Thus a total of four dump files were 
obtained for each fault injection experiment that was conducted. 
 
The data dump files contain three sections.  Figure 7-9 shows the first section of data dump 
files.  The first section consists of a listing all of the 142 set point values.  The second section 
contains the minimum, maximum, and current values of 19 parameters.  Figure 7-10 shows a 
portion of this section of the data dump.  The third section contains event log messages with 
time stamps for each event.  This section provides insight into detected faults and the nature of 
responses that were initiated by the DFWCS as a result of a fault injection.  Figure 7-11 shows a 
portion of the third section of the data dump. 
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Figure 7-9 First part of data dumps contain setpoints 

 

 

Figure 7-10 A portion of the second section of data dumps containing Min-Max 

 

 

Figure 7-11 A portion of the data dump that contains event logs 

 
Challenge 5: Data Analysis 
 
Normally an assessor would have a custom-tailored data acquisition system, which can be 
customized to provide structured and directed data dumps.  The data dumps that were obtained 
were, however, highly customized for the NPP application so that information required for 
extracting details about fault coverage were scattered within each file.  As described in the 
previous section, each fault injection gives a total of four data dump files that contain pre-fault 
injection and post-fault injection information.   
 
Because manual examination of each of 2400 dump files was impractical, parsers were written 
to extract specific information from these files and compile the extracted information into a more 
suitable format for analysis.  For example, a parser was written to extract set point values from 
data dump files into comma-separated-value (CSV) files that could be read easily using a 
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spreadsheet application.  Similarly, another parser compiled into CSV files all minimum, 
maximum, and current values of 19 of the system parameters available in the dumps.  A PERL5 
parser was written to extract the most recent log messages that appeared between the two data 
dump requests.  These files were analyzed for various modes of responses and were classified 
accordingly.  More details about this classification are presented in the next section. 

7.9. Experiments and Analysis of the Fault Injection Data.   

The experimental setup was designed and tested on the prototype of the DFWCS at UVa.  
Once sufficient confidence was obtained in the functions of the fault injector it was deployed on 
the DFWCS at the NPP laboratory. This section describes details about the fault injection 
campaigns, such as fault locations and types, fault values, and timing.  In addition, the results of 
the data were analyzed according to several needs. 

7.9.1. Experiment Attributes 

This section describes the various attributes of the fault space that defined a fault in the fault 
space that was used in the fault injection campaigns.  The three attributes that defined a fault 
were location, timing and value.  All of the experiments were run using the same workload - the 
DWFCS application. 

7.9.1.1. Fault Locations 

By analysis of the DFWCS hazards document, the compiler generated map file, and the source 
code, a total of 240 locations were identified as points for fault injection to stimulate the various 
error detection mechanisms in DFWCS.  Variables in the application source code modules that 
corresponded to input processing, output processing, internal variables, and those used for 
acceptance tests were chosen for corruption.  These variables included analog inputs, analog 
outputs, digital inputs, digital outputs, control law variables, set-points, and test-points.  Each 
variable group is an array of structure variables, whose addresses were obtained from the 
compiler generated map file.  The size (in number of bytes) of each variable group was 
calculated from the individual structure elements.  Array offsets were thus computed to find the 
locations of each array element. 
 
Table 7-1 shows details about the data structures that represent various variable groups that 
were chosen for fault injection.  For example, there are 20 analog inputs.  The data structure 
used to represent one analog input is 104 (68H) bytes long.  Within that data structure, the 
actual value of the analog input itself is 8 bytes long and is of the float data type.  The base 
address of the data structure that stores information about the first analog input is at 4FF6H, 
and hence the data structure containing information about the second analog input is located at 
4FF6H + 68H. 
 

Table 7-1 Data structures of the locations for fault injection. 

Var. group 
Size of 

structure 
No. of 

instances 
Base 

address 
Size of 
value 

Analog 
inputs 

104 bytes 20 4FF6H 8 bytes 

Digital inputs 30 bytes 16 5816H 1 byte 

                                                 
5 PERL is a high-level, general-purpose, interpreted, dynamic programming language 
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Analog 
outputs 

80 bytes 5 59F6H 8 bytes 

Digital 
outputs 

80 bytes 13 5B86H 1 byte 

Test points 24 bytes 45 5D0CH 8 bytes 

Set points 14 bytes 143 4824H 4 bytes 

7.9.1.2. Fault Models 

Both transient and permanent fault models were attempted in the experiments.  However, when 
permanent faults were injected into memory locations, after long fault injection campaigns, the 
main computer would crash in a manner that was not restorable using a simple reset.  The 
reason for this failure mode was that the main CPU flash memory became corrupted, and its 
image had to be rebuilt to restore operational status.  This behavior was attributed to data and 
code memory segments of the main CPU being swapped in and out of flash during execution.  If 
an OS code segment was corrupted through a fault and was then swapped out to the flash, it 
would result in damage to the OS image.  Consequently, not many permanent fault injection 
experiments were performed and the research effort resorted to using the transient fault model.  
This type of fault is typical and recoverable in most computing systems, however, the flash disk 
drives in the DFWCS are not easily re-imaged with the Windows 3.1 OS, so the plant engineers 
decided it was best to limit the permanent fault campaign. 

7.9.1.3 Fault Timing 

Fault timing defines at what point in time the fault is to be injected into the system.  It was 
mentioned earlier that the DFWCS requires approximately 100 seconds to boot up through the 
entire reset sequence.  A fault can be injected at any time after the reset sequence.  After the 
boot up sequence of the DFWCS, 10 seconds are needed for pre-fault data collection.  The fault 
was injected at a random point in time after this event.  A uniform distribution was used to 
determine a random point in time between 1 and 10 seconds and was added to the reset 
sequence as the amount of time to wait before injecting the fault.  After the fault was injected, 
the system was allowed to run for 60 seconds before the post-fault data were collected. 

7.9.1.3. Fault Value 

There were a number of choices for the value to which a corrupted variable, register or memory 
location could be set, as shown below.  The contents of the memory location or register chosen 
for corruption could be forced to any of the following: 
 
 All zero state (minimum): 0000H 
 All one state (maximum): FFFFH 
 Random assignment: a randomly generated bit vector 
 Inverted state: all bits inverted 
 Single bit flips in a 32-bit word 
 Multiple bit flips in a 32-bit word 

7.10. Experiments  

In effect, each unique fault value can be considered to be a different fault.  However, the list of 
faults that were compiled mainly contained faults in which the values of analog inputs, outputs, 
set points and test points were set to the all-zero state, all-one state, and digital inputs and 
outputs were set to the all-zero state and all-one state.  This was mainly attributed to the limited 
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number of fault injection experiments that were able to be conducted during the time access to 
the DFWCS was available at the NPP laboratory. 
 
Automation limitations dictated that no more than 100 fault injection experiments could comprise 
a fault injection campaign.  This was because it was observed that on certain occasions, though 
rarely, the fault injector failed to complete a campaign of 100 fault injections due to stability 
issues that were encountered as a result of static electricity and noise in the environment.  The 
limited size of the fault injection campaigns required that a new campaign be started 
approximately once every five hours. 
 
Moreover, due to schedule restrictions of the engineers at the power plant, up to three fault 
injection campaigns could be performed each day.  With a maximum of 300 faults per day, 
some missed days, and some incomplete injection campaigns (which had to be rerun), 2400 
fault injections were completed in a period of three to four weeks.  Each of the 240 process 
variables that were identified for corruption was injected 10 times with different fault value 
corruptions.  A very large percentage of this inefficiency is due to the fact that the experiments 
were executed remotely with little or no feedback on the status of the fault injection process 
from the NPP.  Typically this is not the case in fault injection methods and experiments, most 
often the engineers and scientists who design, develop, and implement the fault injection 
environment are present in the laboratory to conduct the experiments, review the data, and fine 
tune the injection process as needed for maximum efficiency. 
 
Each fault injection campaign resulted in four data dump files, as follows: 
 

 Pre-fault injection dump from the main CPU - mcpua__.txt 
 Pre-fault injection dump from the backup CPU - bcpua__.txt 
 Post-fault injection dump from the main CPU - mcpub__.txt 
 Post-fault injection dump from the backup CPU - bcpub__.txt 

 
Each filename was suffixed with the experiment number in a given campaign (for example 
mcpub56.txt). Each data dump file was prefixed with fault information obtained from the fault list 
that indicated the fault location and fault value.  Each fault list was numbered 100.lst, 200.lst,     
. . . ., 2400.lst. 

7.10.1. Raw Data Results 

A number of response modes were observed, including: 
 
 Fault covered due to masking or no-response faults:  This is the case when the 

effect of a fault does not propagate as an error because after the fault was injected, the 
variable would have been overwritten with a fresh, valid value.  These are also called no-
response faults.  The response of this type of fault would correspond to those cases 
when the data dump files do not indicate any failure or any detected event between the 
pre- and post-fault injection data dump requests. 
 

 Fault covered by detection and recovery:  In this case, the effect of the injected fault 
is detected and reported as a message logged in the data dump files (e.g., DEVIATION 
ALARM, VALUE OOR (out of range), MAIN CPU FAILED, etc.).  These are usually 
accompanied by a following message that might indicate restoration to a normal state, 
such as OOR CLEARED, or DEVIATION ALARM CLEARED, or MAIN CPU NORMAL.  
If the last message logged in the data dump is one that indicates a normal system, then 
it is a covered fault with recovery. 
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 Main CPU failure:  If the last message that was logged in the data dumps indicated 
MAIN CPU FAILED, then it is a fault that is covered by a switch to the backup controller.  
Another indication that the main CPU failed is that if the data dump file from the main 
CPU was empty, then it implies that the main CPU was not functioning at the time the 
data dump was collected.  If the failure of the main CPU was logged in the data dump of 
the backup CPU, then it is considered to be a covered fault. 
 

 Local uncovered fault:  If the data dump from the main CPU before data collection is 
not empty, and the dump from the main CPU after fault injection is empty, this 
corresponds to the case when the fault injection caused the main CPU to fail.  If the 
backup CPU data dump failed to indicate a main CPU failure in this case, then it is 
considered a fault for which the main and backup CPU error detection mechanisms did 
not detect the fault.  It should be noted that the WDT module was disabled for these fault 
injection experiments, so its detection power was engaged for this experiment. Thus, the 
fault is not uncovered for the system as whole, but only for the diagnostic and self-tests 
routines for the main and backup processors.  In the 2400 fault injection experiments 
that were conducted, only one fault of this type was found. 
 

 Invalid cases:  Some fault injection campaigns resulted in some invalid states that did 
not bring the main CPU up after a certain fault injection experiment.  These experiments 
are invalid because the main CPU had not booted up successfully.  These are indicated 
by those data dumps where the main CPU data dump collected before the fault injection 
is also empty.  This means that the main CPU was not running when the pre fault-
injection data dump was collected.  Some campaigns resulted in a large number  of such 
cases(30 to 40), and were hence rerun.  If only a small number of such cases occurred 
in a given campaign those experiments were discarded. 

 
Figure 7-12 shows a distribution of the relative percentages of each of the response modes that 
were observed from the experiments.  Table 7-2 provides the actual numbers obtained for each 
response mode. 

 

Figure 7-12 Relative percentages of observed responses 

  



 

124 

Table 7-2 Breakdown of observed response modes. 

Response mode Count 

No-response faults 752 

Recovered from Faults 1462 

Recovered from Failure 30 

Local Uncovered 1 

Invalid Experiments 155 

Total 2400 

7.10.2. No-Response Faults 

From Table 7-2 it is clear that a significant number of experiments did not produce a system 
response within the time the system was monitored after the fault injection.  These experiments 
did not produce a system response mainly because the duration of the fault was not sufficient 
for the propagation of an error or the fault was latent for a period longer than system response 
monitoring time.  Normally, no-response experiments are re-run to determine if they are due to 
injecting a fault into an unused portion of the memory or CPU register files, or if the location 
where the fault was injected was overwritten with a valid value immediately after the fault 
injection thereby undoing the effect of the injected fault.  In this case, due to time constraints 
these experiments could not be re-run.  As shown in Table 7-2, no-response faults (i.e., masked 
faults) comprised 31.33 per cent portion of the observed responses of the fault injection 
campaigns. 
 
No-response faults are detrimental to the quality of the parameters estimated because statistical 
confidence is determined by the number of experiments performed.  Since these cases must be 
re-run or discarded, all of such experiments correspond to wasted experimentation time and 
resources.  To reduce the occurrence of no-response fault injections, one must use methods 
ofthat increase the likelihood of error propagation from an injected fault.  Due to this result, a 
pre-fault injection analysis method was developed.  This method is discussed briefly in the next 
Section, and is more fully described in Volume 2. 

7.10.3. Coverage Estimation: A System Level View 

This statistical view interprets the probability of system failure or an uncovered failure without 
regards to any specific failure modes.  The simple Bernouli model was used in this effort 
[Pescodido 2002].  This statistic gives a system view of the fault tolerances capabilities of the 
entire DFWCS.  From Table 7.2 it can be seen that 155 experiments were invalid and hence will 
be discarded.  Also it must be noted that the injected fault was masked in 752 experiments.  
One might interpret these situations as covered faults because the effect of the fault did not 
propagate as an error.  However, they do not convey any new information about the fault 
tolerance mechanisms of the system.  Hence, adopting the conservative approach, the no 
response fault injections were discarded for the analysis. 
 
The value for the number of experiments, n , in the expression for the point estimator of 

coverage defined in equation 7.1 is therefore, 2400-155-752 = 1493 experiments.  The point 
estimate of the coverage is thus given by, 
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 (7.1) 

 
 
 

Since one uncovered fault was observed, the value of kY  for that instance will be equal to 0, 
and equal to 1 for every other case.  Hence, 
 

  
 
 (7.2) 

 
 

which corresponds to a non-coverage of 
4106.69792=ˆ1 C .  The accuracy of the estimate 

can be calculated using the expression for the unbiased estimator of variance defined in 
equation (3.23) as, 
 

  
 

 
 
 (7.3) 

 
 
The symmetric 100 % confidence interval was defined in equation 4.8.7 as  
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 (7.4) 

 
The 95% confidence interval of the point estimate of coverage that was calculated is thus given 
by, 
 

  
 (7.5) 

 
 

This means it can be said with 95% confidence that the coverage proportion C  lies between 1.0 

and 0.9979.  Furthermore, the value of actual system coverage parameter C  and the coverage 

proportion C  are very close in values if the fault tolerance mechanism is considered fair, that is, 
it handles all faults similarly and there is no difference in the way it handles fault that occur 
frequently as compared to those that occur less frequently. 
 
Some discussion should be centered on the nature of the uncovered fault in the system wide 
fault tolerance context of the DFWCS.  The DFWCS has three basic fault detection levels.  The 
first is the main CPU validation tests – these are considered self-tests.  They detect anomalies 
and errors in the data flow of the control processing algorithms.  The second level of fault 
detection is the BU CPU.  If the main CPU fails, then the BU CPU takes over control.  The PID 
controllers determine the “health status” of the main and backup CPU’s by monitoring three 
signals from each CPU as shown if figure 7-13.  The first is the power fail signal which changes 
state on a power failure. The second is CPU self-test signal when the main or backup CPU 
detects a problem with the processing algorithm.  The third signal is the WDT signal from the 
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external watch dog timer.  If the WDT signal times out (500ms), the then signal changes state 
commanding the PID controllers not to use the outputs from the failed CPU. If both main and 
backup CPU’s fail, then the PID’s switch to manual mode. 
 

 

Figure 7-13 Fault detection signaling 

During the Fault Injection testing at CCNPP, the watchdog timer was disabled because the fault 
injection process was causing the main CPU execution to slow down enough to occasionally trip 
the watchdog timer.  The local uncovered fault that was observed escaped detection by the 
backup CPU and the main CPU self-tests; however, it cannot be concluded that this error would 
have escaped the watchdog timer because the watchdog timer had been disabled. 

7.11. Observations, Lessons Learned and Recommendations 

7.11.1. A Task Oriented look at the Overall Effort 

The preceding sections have presented the design, development, implementation, and 
deployment of the UVA fault injection based dependability assessment methodology.  The 
importance of the work in relation to this effort is in what greater lessons were learned that can 
be used as the research progressed to Phase I and Phase II of this effort.  Many of the activities 
endeavored on this effort were not accounted for in the original methodology.  To better 
understand on this aspect, the activities necessary for applying fault injection and the amount of 
time spent in each activity were reviewed.  Figure 7-14 shows the breakdown in months spent 
for each task.  The order of the tasks in the chart follows the order in which they were 
conducted.  These issues are discussed in the following section. 
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Figure 7-14 Task Breakdown and Level of Effort for Each Task 

Referring to Figure 7-14, a majority of the effort (approximately 70 percent) was spent 
developing the overall means to realize fault injection capability (series 1).  The other 30 percent 
of the effort (series 2) was related to the application of the UVA methodology to the DFWCS.  
As shown in Figure 7-14, a significant amount of work was needed before the methodology was 
ready to apply to the DFWCS.  In addition, a few of the activities conducted in this effort are 
absent from the UVA methodology.  Namely, the automation of the fault injection, and the 
integration/testing tasks were not well represented in the methodology.  The above figure 
suggests that significant steps or activities must be integrated into the methodology to provide 
better guidance on applying fault injection to physical systems.  Section 7.11.2 discusses the 
challenges and observations on the applying the methodology to the DFWCS. 

7.11.2. Review of the Problems Encountered 

The problems and challenges faced during this effort are briefly summarized to characterize the 
lessons learned in a broader context.  The problems encountered are categorize in three 
classes:  fault injection, integration, and measurements.  Fault injection problems encompass 
issues with fault models, realizing the fault models with the ICE based fault injector, 
performance, intrusiveness, controllability, etc. Integration problems are concerned with 
interfacing the fault injector within its operational setting.  These issues include, representing the 
operational profile of the system, automation support of fault injection, fault list generation 
support, etc…  Measurements problems are related to the information or data that is needed for 
estimating the measures of interest such coverage.  Specially, the issues here are concerned 
with viability of acquiring data in way that is meaningful and the uncertainty of the 
measurements can be characterized. 
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Fault Injection Issues 
 
The following fault injection issues were encountered during this effort: 
 
 No-response faults – faults were injected at random times into the pre-determined 

locations where variables of interest reside.  However, because the injections were 
randomized in time, the effects of the fault were often masked by the DFWCS program 
overwriting the corrupted variable with a valid variable.  Approximately 1/3 of the faults 
injected were of this class. Since these no-response faults conveyed no information on 
the effectiveness of the fault detection and fault tolerance features of the DFWCS, these 
experiments consumed 1/3 of the experiment time with no contribution. 
 

 Low Performance of the ICE based fault injector – The ICE based fault injector was 
capable of injecting different fault types into the DFWCS with good controllability and 
precise fault activation.  However, the time it took to temporarily halt the processor, 
modify the contents of a register or memory location, and resume execution was 
significant.  For transient fault models this delay was on average about 150ms.  
However, on occasions delays over 500ms were observed, and in these cases the 
process of injecting the fault into the DFWCS would trip the watchdog timer.  Both of 
these delay times are too high.  The time intrusiveness of fault injection should be as low 
as possible on the order of fractions of the control iteration cycle. 
 

 Fault models – The ICE based fault injector can emulate both transient and permanent 
faults. The permanent fault model was implemented through repeated triggering on a 
specific location by the ICE machine debugger traps.  The time penalty for this repeated 
triggering was substantial.  The time delay over 1 iteration cycle (100ms) was from 
500ms to 1.5secs for most permanent faults.  Again, this amount of time penalty is too 
high. 
 

 Fault list Generation – Fault List were generated from the compiler map and link files. 
The process was complicated by the fact the DFWCS used dynamic memory 
management which re-allocated the data and code segments after every reset. 

 
Integration Problems 
 
 Operational Profile Flexibility - The DFWCS was integrated into a computer called CPAC 

which provided recorded plant data to the DFWCS analog and digital inputs.  The CPAC 
computer provided operational data on a few modes operation, namely, low power, high 
power, and transitional.  To better stimulate the operational profile of the DFWCS, the 
capability to stimulate various event behaviors (e.g., LOCAs) from the CPAC would have 
been a desirable feature. 
 

 Interference with onboard fault detection features – While interfacing the ICE based fault 
injector to the DFWCS at CCNPP two instances were encountered in which the fault 
injection process unintentionally triggered the fault detection mechanisms of the 
DFWCS. The first was the power fail mask, which was described in Section 7.7.  The 
second was the occasional tripping of the watchdog timer when the fault injection 
process took too long to complete.  Both of these issues were resolved, however, these 
types of problems indicate that fault injection needs to be (1) mindful of the fault 
tolerance features it is trying to test, and (2) the intrusiveness of fault injection should be 
keep as low as possible. 
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 Automation of fault injection – The automation of the fault injection process was a 
significant undertaking.  Referring to Figure 7.13, it took about 4 months to design, 
develop and test.  Along with integration, the combined tasks took almost 8 months or 
about ½ of the total effort of the project.  Most of this effort was spent developing a 
specific fault injection environment for the DFWCS.  This type of effort is non-
reoccurring, once the fault injection environment is built it can be used over and over 
again on the DFWCS, but not on other digital I&C systems. 
 

 Environmental Disturbances –Several noise and EMI problems were encountered during 
the development and integration of the ICE-based fault injector into the DFWCS.  Most 
of these issues were due to the electrically noisy environment of the power plant. 

 
Data Measurement and Analysis Problems 
 
 Data acquisition of error logs and error state – The way the error logs from the DFWCS 

were typically generated for plant operations was found not to be optimal for data 
analysis.  In normal plant operations, the error log files are continuous logs of activity 
over many days. For fault injection, a set of error log files for each fault injection 
campaign that reflects the errors detected for that campaign only were needed.  This is 
necessary to trace a specific injected fault to set of error responses for that fault.  
Therefore, the error reporting functions on the DFWCS were manipulated to ouput files 
after every fault injection, and then clear the error logs after monitoring period was over. 
 

 In addition to error logs, the research attempted to monitor the outputs of specific error 
detection mechanisms at a lower level than the error log.  However, this proved to be 
problematic for two reasons.  The first was locating the outputs of the error detection 
mechanism in the DFWCS code was not straightforward; however, the variables 
associated with various assertion tests and diagnostics were found.  The second and 
most limiting factor was the acquiring real-time trace data on the outputs of the error 
detection mechanisms in way that did not perturb the operation of the DFWCS.  
Specifically, the real-time trace collection of ability of the ICE machine tended to slow 
down the operation of the DFWCS CPU.  See the next topic for more information. 
 

 Processor state acquisition – One of the promises of using an ICE based fault injector is 
that one can save a trace of the processor state at any time during the operation of the 
digital I&C system.   Traces are detailed cycle-by-cycle timing information of each 
instruction executed on the target CPU.  The ability to view wall-clock time of each 
instruction in the form of a time stamp or incremental time taken by each instruction can 
be useful for investigating the possibility to find equivalent faults and for implementing 
fault expansion.  It could also be used for fault and error latency measurements. 
 

 The PowerPack ICE machine provides real time full-speed tracing capability. The trace 
buffers are however limited to 128K frames of address data and signal traces.  This 
restricts the amount of instructions that can be logged at a given time.  Due to the small 
size of the trace buffer, it was observed that only (roughly) 6.5 milliseconds of trace data 
just before the CPU halts due to memory availability in the trace buffer.  This 
corresponds roughly to about 250,000 instructions.  This puts a restriction on the amount 
of history that is available for analysis. 
 

 A more significant problem was observed when the ICE machine was put into real-time 
trace mode, the time delay penalty for fault injections went up considerably from about 
150ms to over 500ms.  At this time, it was not known whether these problems were 



 

130 

specific to the Microtek ICE that was used in this effort or were more or less universal for 
all ICE machines. 
 

 Global time reference – In order to measure time oriented attributes such as error 
detection latency, there must be a means to establish a base time reference for the 
measurements.  For example, when the fault is injected into the DFWCS, the system 
responds, records the error response as an event in an error log file, and the DFWCS 
timestamps the event in error log file.  For reliable measurement, the fault injection 
timestamp and the error response timestamp should be synchronized to a precision time 
reference.  For this effort, the timestamps of the measurements were not synchronized 
to a precision time reference.  The principle reason for this was twofold: The DFWCS 
timestamps the error messages with its own internal clock, and the fault injector used a 
different internal clock for its timestamp.  Synchronizing the two internal clocks turned 
out to be somewhat involved, and would have required additional time and effort to 
complete. 

 
 Data Analysis – The price paid for automated fault injection is vast amounts of data, e.g., 

100’s Mbytes of data are not uncommon for a series of fault injection campaigns.  
Because manual examination of each of the 2,400 dump files that were created from the 
fault injection campaign was impractical, a set of parsers were written to extract specific 
elements of information from these files and then compile the elements into a more 
suitable format for analysis.  Even using automated parsing programs to help with data 
reduction and filtering, this part of the effort required much more time than anticipated - 
almost a month. 

7.11.3. Summary 

The overall effort of applying fault injection to the DFWCS in viewed in a positive light despite 
the many challenges faced during the effort.  Most of the issues and problems were resolvable 
problems and, with time to refine and iterate, better solutions that what were improvised on a 
limited timeframe and budget likely could be found.  The significant lessons learned that impact 
the methodology are centered on the support activities (e.g automation for fault injection, 
measurement based activities, etc.) for the methodology.  As alluded to earlier, the UVA safety 
assessment methodology was developed and refined primarily from simulation based fault 
injection perspective.  As such, some of the issues encountered were specific to physical based 
fault injection and thus somewhat unfamiliar to the research team.  However, with this effort 
significant knowledge and comprehension of applying fault injection to real digital I&C systems 
was gained. This was one of the first successful efforts of applying fault injection to digital I&C 
system beyond Pin-level fault injection. 
 
To improve the methodology in a direction that better supports physical based fault injection, the 
methodology should be augmented with additional steps called support steps.  As such, the 
elements of the methodology can be partitioned into two classes.  The first class is what 
activities are necessary to perform fault injection according to the FARM model attributes.  
These steps are the elements in the methodology now.  The new steps are related to what 
support is needed to carry out fault injection.  As example, step 4 of the methodology is “define 
and develop operational profile of the system”.  A support step of this activity is how you select 
the operational profile, how you properly integrate it into the digital I&C system environment, 
what types of equipment are needed for the integration of the operational profile,  how do you 
present the operational profile data to the system so that it is representative, etc.  The 
methodology should be more than a theory based methodology, it should inform the user on 
what support is needed to realize it. 
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8. IDENTIFY KEY CHALLENGES WITH RESPECT TO DIGITAL I&C 
SYSTEMS 

This section discusses and summarizes the important challenges to fault injection-based 
assessment methods identified in previous Sections.  Based on the issues discovered, the 
challenges, the impact of these issues have on the methodology, and finally the identification of 
key issues pursued in phase 1 and phase 2 of this research are discussed in this section. 

8.1. Better Measurement Tools and Practices 

Tools for experimental assessment of dependability properties should be treated for what they 
really are: measurement instruments.  First of all, fault injection being a measurement based 
assessment process depends on sound measurement practices.  Secondly, since measuring a 
quantity (the measurand) consists in quantitatively characterizing it, a clear and univocal 
definition of the measurands is of uttermost importance [Bucher 2004].  The science of 
measurement, Metrology has developed theories and good practice rules to make 
measurements, to evaluate measurements results and to characterize measuring instruments.  
The main metrological properties of concern to fault injection are uncertainty, repeatability, 
resolution, sensitivity and intrusiveness should be precisely identified in the methodology (and 
supporting tools). In a similar way, the results obtained using a tool should include uncertainty 
evaluation and, when comparing results achieved through different measurement methods, 
compatibility of measurement results should be assessed. 

As noted in Section 7, Digital I&C systems are not typically designed to be monitored to the 
level required for dependability evaluation by fault injection; a methodological approach for their 
observation is thus needed.  In distributed digital I&C systems things are even more complex, 
for the lack of central control, and for the difficulties in obtaining a precise global time and an 
accurate view of the global state of the system are all noted challenges.  Measurement issues 
are very rarely addressed in the major conferences and scientific journals in the area of 
dependability. The most notable paper in this area [Bondavalli 2007(a)] raised the problem of 
awareness of measurement theory in evaluating dependability attributes of computing systems. 
In the paper, a set of well-known tools for experimental assessment of dependability and papers 
describing results of experimental evaluations are analyzed, identifying whether and to what 
extent the most important metrological properties and attributes, namely uncertainty, 
repeatability, resolution, intrusiveness and results compatibility, are taken into account.  
Currently, it is the only document that presents a deep state-of-the-art in this area. 

Dependability and resilience measurements on computing systems involve a wide variety of 
measures, from discrete measures, such as error counts, loss of messages, to continuous 
measures that refer to the dynamic behavior of the system under evaluation, which include fault 
and error latency, real-time response, etc…. Dependability-related measurements are very often 
based on time measurements, for example because the measurand is a time interval, or 
because the measurement result is obtained through indirect measurements based on 
timestamps. 

Based on the experiences and lessons learned from the DFWCS, certain measurements are a 
function of the system under test and as such the assessor has limited ability to alter the 
measurement process to suit the needs of the methodology.  Time-stamps on status messages 
and error messages produced by the target systems are examples.  What is more, the assessor 
of the system has little control over how the time-stamps are applied, when they are applied, 
and the resolution of the time measurement.  In these cases, it is still important to try to 
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characterize the in-situ measurement and its uncertainty so that a more complete picture of the 
system response can be obtained accounting for the uncertainties in the measurements. 

Part of the effort developing “measurement awareness” for fault injection and how it can be 
used to inform the methodology was addressed in Phase 1 and Phase 2 of the research. 

8.2. Fault Model Selection 

Sections 3.3 (FARM model), 4.5 (Fault Models), and Section 5 addressed some the issues 
regarding fault models for fault injection. The principle concerns raised are: 
 Representativeness – Are the fault models appropriate for the target system and its 

operational environment. 
  
 Guidance in using the fault model – How to apply the fault model so that it is 

representative of the faults that occur. 
 
Fault model selection almost always begins with first selecting fault models that represent faults 
that the system was designed to detect/tolerate by the designer, that is, the fault hypothesis of 
the system [Elks 2005].  These may include a number of fault classes as indicated in Figure 1.7, 
such as hardware faults (permanent and transient), commission faults, omission faults, 
interaction faults, etc. 
 
However, just because a system was designed to tolerate certain classes of faults, does not 
mean that it is not susceptible to other types of faults.  Thus, the fault hypothesis of the system 
does not guarantee all representative faults for the system or for that matter any representative 
faults for the system have been selected. 
 
The evidence of fault representativeness comes from empirical or experiential sources that 
indicate that certain components have certain failure mechanisms under certain conditions.  
These failure mechanisms are then paired with the most appropriate fault model to represent 
the failure mechanism. 
 
Empirical evidence of faults/failures in digital I&C systems is often guided by the use of failure 
databases based upon observed failures of systems in the field.  Databases of this type are 
most useful for characterizing failures when the failure data is homogenous to a specific type or 
make of system.  However, these databases are very rare, and most often proprietary to 
specific manufacturers.  Beyond this use, there are number of concerns about relying solely on 
failure database for determining fault representativeness.  
 
First, faults and failures that occur in systems are often technology dependent.  A digital I&C 
system built from 1990’s electronic technology will not have the same fault susceptibility profile 
as a contemporary digital I&C system.  For example, very large scale integration (VLSI) 
semiconductor manufacturing processes in the 1990’s were building semiconductors with 
relatively large transistor feature sizes, and as such, the susceptibility to transient faults due to 
cosmic particle strikes and EMI were almost non-existent.  This is not the case in today’s 
contemporary ICs. 
 
Secondly, the operational or environmental context of a digital I&C system is important in 
characterizing its fault and failure susceptibility profile, and this fact is poorly represented in 
most databases.   
 
Lastly, failure databases often report how the system failed, but rarely report the underlying 
cause or failure mechanism of the system. 
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Experiential data is usually collected from accelerated testing methods and/or high fidelity 
simulations of semiconductor physical processes to determine failure mechanisms.  These 
methods usually determine the upper bound or worst case scenario for failures-in-time (FIT) for 
a component. 
 
Taken altogether, there are no short cuts toward determining representative fault models or 
fault-loads for digital I&C systems.  The most prudent approach is to employ an “all-sources” 
approach where all available information is used to select appropriate fault models. 
 
The selection of fault models for digital I&C systems should be more structured and this process 
should be included in the fault injection methodology as a support step.  The steps of the fault 
model selection process should include the following activities: 
 
 Examination of the fault hypothesis of the system. 

 
 The use of a structured fault taxonomy (e.g., like the one presented in Section 1.7) as a 

starting point to help guide the fault model selection process. 
 

 Examination of failure data from empirical and experiential data sources that is relevant 
to the system. 
 

 The operational context of the system. 
 

 The interaction context of the system. 
 
The output of a fault model selection process should produce a set of faults that is relevant to a 
particular digital I&C system, but more importantly the process of fault model selection should 
produce an audit or evidence trail so the assumptions and factors for determining the fault 
models can be assessed during the licensing and review activities. 

8.3. Automated Fault Injection Environment 

As indicated in section 4.7 and in Section 5, a well formed fault injection environment is one of 
the most important aspects of a fault injection based methodology.  “Well-formed” means the 
fault injection environment follows and refines the theory of the FARM model (Section 3.5), and 
allows the fault injection process to be a statistically guided process as described in section 3.7.  
Furthermore, the fault injection environment plays a crucial role in the data collection and 
measurement of the responses which are important producing the measures of dependability 
(e.g., coverage, error latency, etc.).  For highly reliable or safety critical digital I&C applications 
where the probability of system failure is very low (e.g., on the order of 10-7 failures/year), 
statistical fault injection requires that a large number of experiments be performed in order to 
obtain a commensurate degree of confidence in the data used for model parameters. For 
example, if a critical component in a target system (e.g., voter) has an assumed fault coverage 
of 0.99, then to statistically quantify the fault coverage parameter with 10% confidence bounds 
approximately 1000 fault injection experiments must to be performed. Even though various 
variance reduction estimation methods can be used to reduce the number of experiments, 
significant time and resources will be required to perform hundreds or thousands of 
experiments. Thus, automation of experiments is an essential feature that enables collecting 
large volumes of data with little need to manually intervene in the experimentation process. 
 
As indicated in Section 5, certain properties of fault injection are required to ensure controllable, 
repeatable and credible fault injections. Thus, the user must have the ability to manage the 
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types of faults to be injected into the system, where they are injected, how they are injected, and 
when they are injected.  Additionally, the responses to the fault injections must be acquired in a 
manner that allows the responses to traced back to the faults so that any fault injection trial can 
be repeated as needed to reproduce the system response. 
 
As indicated in Section 7 experiences with the DFWCS fault injection effort show that designing, 
developing a well-formed fault injection environment is a non-trivial matter.  In the next phase of 
this effort a considerable amount of time and thought was devoted to the design, development, 
and implementation of a well formed fault injection environment for digital I&C systems.  While 
the methodology presented in Section 4 is intended to be somewhat “neutral” to the selection of 
fault injection techniques, more guidance on what the fault injection environment should provide 
to the methodology and what the methodology expects from a fault injection technique is 
needed.  The “tie in” from the requirements of fault injection theory (FARM model) to the 
specification of the fault injection environment is needed. 

8.4. Operational Profiles 

As indicated in Section 4, operational profiles and workloads of the target system are required to 
set the operational and environmental context of the system [Musa 1989].  The operational 
profiles must be representative of the different system configurations and workloads that would 
be experienced in actual field operations. Context is important in fault injection.  For a fault 
injection based assessment methodology, the operational profiles must represent the input 
conditions and system interactions that can occur not only nominal operations, but also in off-
nominal operations and more importantly during “accident” event scenarios.   
 
Gathering profile real plant data across all of these domains of operations is challenging task. 
Not all plants in operation have experienced accident events. Data may be limited due to 
proprietary sensitivities.  In order to provide a diverse and representative set of operational 
profiles for the target system, the use of high fidelity NPP simulator tools to generate nominal, 
off-nominal, and accident event profiles is the most promising way forward.  The challenges in 
this approach are (1) determining how to integrate the thermo-hydraulic modeling tools like the 
TRAC/RELAP Advanced Computational Engine (TRACE) [Commission 2011] into the fault 
injection environment to act as operational profile generator for the target system, and (2) how 
to coordinate the selection of the operational profiles to the fault injection process.  At present, 
the methodology provides guidance on how to use an operational profile for fault injection, but 
does not provide detailed guidance on the various ways to realize an operational profile.  
Further research investigate the use of NPP simulator tools to act as an operational profile 
generator for fault injection. 

8.5. Fault List Generation 

Generating fault lists for a fault injection experiment or campaign is a critical activity for fault 
injection.  Most fault list generating techniques found in the literature were developed for 
simulation based approaches and not physical fault injection approaches [Smith 1993; Benso 
2003].  UVA found that these approaches did not translate well into existing I&C systems 
because simulation-based approaches allow a high degree of controllability and observability 
which may or may not be achievable in real digital I&C systems. 
 
A fault list is a sample set of faults taken from the fault space of the target I&C systems. 
Specifically, for a single fault notation in a fault list, each entry identifies. 
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 The type of fault to be injected – Governed by the fault model selection. 
 
 Where the fault is to be injected – Where the corruption is to take place with respect to 

program execution behavior or component use. 
 
 When the fault is injected – At what time the injection takes place, either relative to an event 

or when a resource is in use, or randomly selected. 
 
 How long the fault is injected – The persistence of the fault with respect to the time domain. 
 
 The error mask of the fault – What values represent the fault injection process with respect 

to a resource in use or a component. 
 
The fault list can be thought of as a set of directives to the fault injector apparatus. Each of the 
directives is under experimental control of the experimenter.  The fault list is used to instruct the 
fault injection process according to a particular campaign purpose.  The fault list is strongly tied 
to the fault injection environment and its capabilities to emulate the faults of concern. 
 
An important aspect of fault list generation is improving the efficiency and effectiveness of the 
fault injection process.  Improving the efficiency and effectiveness of fault injection is often 
called error acceleration [Chillarege 2002] or more recently pre-injection analysis [Sekhar 2008; 
Barbosa 2005].  Pre-injection analysis is method to guide the fault injection process to produce 
more effective and efficient results. 
 
Pre-injection analysis is defined by a set of rules that forces fault injection experiments to push 
the limits of the measurement on the probability of systems failure.  Figure 8-1, shows the 
system in three states, a good state, an error state and a failed state.  Concisely, failure 
acceleration is achieved when: 
 

Error Latency  0

Fault Latency  0

P(F) 1





 

 
where p(F) is the probability of a fault causing a failure. 
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Figure 8-1 Failure and error acceleration through pre-fault injection analysis 

The above conditions can be stretched so long as the semantics of the fault model are not 
altered in the process of altering the controls: namely, the fault injected, and the operational 
environment. In a fault injection experiment, one constructs a fault, injects it into the system and 
then waits for the system to fail.  This would amount to one run of the fault injection experiment.  
It is not necessary that each of the fault injections cause a failure.  Since it is always possible 
that the error condition created by the injected fault is compensated by fault tolerance 
mechanisms, or it is not effective due to non-use of the faulted data.  On the other hand, the 
error condition can lay latent for a long time, and not cause a failure during the time allocated for 
observation in the experiment. 
 
Pre-injection analysis is a means to reduce or eliminate the “no-response” and the long fault 
latency problem associated with fault injection.  Being a statistical experiment, fault injection 
testing may require a large number of experiments to be conducted in order to guarantee 
statistically significant results. Thus, efficiency of the fault injection testing is important.  For 
example, the resources for fault injection testing include in addition to the automated fault 
injection setup the time required to perform a large number of experiments.  Each experiment 
involves initialization of the system (which includes reset and initialization of the target I&C 
system), followed by application of an operational profile, the actual fault injection, and then the 
monitoring of the system for a period of time after the fault injection. 
 
The amount of time required to the initialize digital I&C hardware can be several minutes 
because of the systematic nature of the diagnostics and self-tests the system initiates at startup.  
The total time required to perform all steps for one fault injection experiment is typically two to 
four minutes on contemporary digital I&C systems.  This limits the number of fault injection 
experiments to 300 – 500 experiments per day.  Therefore, ensuring that a large percentage of 
fault injection experiments result in producing a response from the target system is very 
important. 
 
Referring to Figure 8-2, the error response space is characterized by monotonically decreasing 
space of fault severities.  The largest space is the space of faults that produce no errors.   

 

Good Error Failed

Minimize

Maximize Maximize

Minimize Long Latency 
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Figure 8-2 Error response space 

The next largest space is the space of faults that produce errors, followed by the space that 
produces failures.  From a practical perspective, the error response spaces are really an artifact 
of the nature of a digital processing system.  A typical digital I&C system will have significant 
memory space (hundreds of megabytes is not uncommon), large number of processor register 
files, special purpose configuration registers, and (relatively) long control cycle times (50-
200ms). With random fault injection experiments (e.g., with no regard to when and where a fault 
is injected), a large fraction (up to 90%) of fault injection experiments may have no-response 
outcomes [Sekhar 2008; Barbosa  2005]. 
 
A large percentage of these “no-response” outcomes resulting from fault injections are due to 
non-use of the corrupted data by the executing program. For example, a randomly generated 
fault could be injected into a memory location that is not used by an application, or could be 
injected into a processor register that is not in use by the application. These instances in which 
the injected system would not respond to an injected fault do not convey meaningful information 
about the fault tolerance capabilities of the system under test.  Since time has an associated 
cost value, if the efficiency of the fault injection campaign is low, then the cost of the fault 
injection campaign is increased. 
 
As part of the next phase of work, pre-fault injection analysis methods for physical fault 
injections to improve the efficiency and effectiveness of fault injections were developed.  This 
effort will complement previous fault list generation methods developed by UVA for simulation 
based fault injection approaches and other methods reported in the literature [Chillarege 2002]. 
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8.6. High Performance Adaptable Fault Injection 

As discussed in Section 5 of this report, the need for fault injection techniques to support 
various fault models for fault injection, and to do so in manner that is minimally intrusive, 
controllable, repeatable and reproducible is critical to the application of fault injection to digital 
I&C systems.  Section 5 extensively reviewed contemporary fault injection methods to help 
guide the selection of a particular fault injection for digital I&C systems.  
 
One of the realizations from performing fault injection on the DFWCS, was the challenge of 
trying to obtain a high degree of controllability and observability while maintaining a low level of 
intrusiveness.  Various methods were investigated (ICE based fault injection and SWIFI) that 
could only attain controllability or low-intrusiveness but not both at the same time.  In addition, it 
was realized that a fault injection tool or environment should have the capability to choose from 
several techniques, and provide the capability to inject multiple faults into the system.   
 
It was also, realized that there should be a common portable interface between the fault injector 
and the fault injection environment.  In the DFWCS effort custom interfaces between the fault 
injector and the fault injection controller that had a low degree of reusability had to be 
developed.  Based on these experiences and lessons learned, it became apparent that a new 
implementation approach for injecting faults in digital I&C systems was needed if fault injection 
was to become practical for digital &C systems.   
 
Accordingly, UVA recognized that many of the fault injection techniques UVA and others used in 
experiments could be united on a single high performance FPGA-based fault injection module.  
By moving to a single multi-purpose fault injector, designed specifically to support diverse fault 
injection on digital I&C systems, fault injection could be optimized around performance (e.g., 
minimal intrusiveness) and controllability simultaneously.   
 
Furthermore, by uniting a variety of fault injection techniques to a common interface onto a 
single platform, the integration of the fault injector into the digital I&C system is more or less 
consistent from one digital I&C platform to the next.  This aspect becomes important when fault 
injection is used as benchmarking activity. That is, the same set of faults, operational conditions 
are applied to each digital I&C system by the same fault injection technique to form an objective 
basis for comparison or compliance.  To address these concerns, a FPGA based high 
performance adaptable fault injector was developed to be applied to both of the benchmark 
systems. 
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9. RESEARCH AND IMPLEMENTATION PLAN FOR APPLYING 
FAULT INJECTION TO THE BENCHMARK SYSTEMS 

9.1. Introduction 

The final step in the research methodology for this report was to create a research and 
implementation plan to realize the UVA fault injection based safety assessment methodology for 
the benchmark systems.  This plan has two categories of tasks.  The first task category includes 
items that required additional research and development to determine their potential for 
implementation.  As such, it was realized early that this would be on-going work for the project.  
The second task category involved tasks that needed little or no additional research effort to 
implement to determine their overall effectiveness.  The second category should be viewed as 
items that need to be accomplished in order to support the overall research objectives. 

9.2. Overall Task Plan Structure 

After reviewing the lessons learned on the DFWCS project, and assessing the level of effort as 
shown in Figure 7-14, it was realized that tasks needed to be allocated on the basis of support 
of research objectives.  From previous efforts with the DFWCS project, it was realized that a 
significant amount of time would be dedicated in the beginning gaining knowledge of the 
benchmark systems, instrumenting the systems into a test environment, and developing 
application software for the benchmark systems.  These task activities do not directly address 
the research objectives, however, as support tasks that are necessary so that the research on 
the benchmark systems can be conducted.  The key challenges identified in Section 8 will serve 
as on-going research tasks in attempt to find  resolution to the challenges with respect to Digital 
I&C systems. 
 
The level of effort for each task was gauged at the outset of each phase of the project and 
assessed as the research progressed so that (1) adequate resources could be allocated or (2) 
scoping of the task was done to manage the overall level of effort in order to gain results.  
Figure 9-1 shows the intended overall task plan structure.  These were the major task 
categories for the effort.  This task plan was meant to serve as a guide to carry out the tasks 
associated with the project.  However, this research was highly dynamic with a high potential for 
encountering new problems, and as such tasks were adjusted, and tasks were added to cope 
with emerging problems and issues.  The tasks are described in the following sections. 
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Figure 9-1 Project task organization 

9.2.1. Research Oriented Tasks 

The research oriented tasks in Figure 9-1 are specifically tied to key challenges identified to 
Section 8. 
 
High performance fault injection – As discussed in Sections 5 and 8 of this report the need 
for fault injection techniques to support various fault models for fault injection, and do so in 
manner that is minimally intrusive, controllable, repeatable and reproducible  is critical to the 
application of fault injection to digital I&C systems.  This task will investigate, design and 
develop and implement new methods to achieve these goals.  This effort will be assigned to 
masters level graduate student for a period of 2 years with supervision from the Co-PI’s.  The 
intent is to have the partial capability ready to use in the latter stages of phase 1 and fully 
deployed in phase 2. This task is considered to be a high risk effort, as such, less risky back up 
fault injection methods will be developed in parallel to this effort by the Co-PI and another 
graduate student. 
 
Data collection and analysis – In support of better measurement practices, the needs required 
for data collection from the benchmark systems were investigated.  This included a thorough 
understanding of the relationship between the error messages from the target benchmark 
systems and the underlying error detection and fault tolerant mechanisms in the target 
benchmark systems.  Prior experience had shown that vast amounts of data are the norm 
during long fault injection campaigns.  Finding methods to manage the data, establish 
relationships between the data sets, and reduce the data sets to essential attributes was a key 
to developing an effective analysis process. 
 
Fault list generation and pre-injection analysis – Generating fault lists for a fault injection 
experiment or campaign is a critical activity for fault injection.  Pre-injection analysis is a method 
for guiding  the fault injection process to produce more effective and efficient results.  It is a 
means to reduce or eliminate the “no-response” problem associated with fault injection.  Being a 
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statistical experiment, fault injection testing may require a large number of experiments to be 
conducted in order to guarantee statistically significant results.  Thus, efficiency of the fault 
injection testing is important.  The objection of this phase of the research was to develop a 
methodology for pre-analyzing the binaries of the target benchmark systems to reduce no-
response fault injections, accelerate error propagation, and improve efficiency. 
 
Operational profile generation – Operational profiles and workloads of the target system are 
required to set the operational and environmental context of the system.  The operational 
profiles must be representative of the different system configurations and workloads that would 
be experienced in actual field operations.  In order to provide a diverse and representative set of 
operational profiles for the target system, the use of high fidelity NPP simulator tools to generate 
nominal, off-nominal, and accident event profiles is the most promising way forward.  The work 
entailed integrating the TRACE thermo-hydraulic NPP simulator into the UVA fault injection 
environment so that real time process data from the simulator could be used to drive the inputs 
of the target benchmark systems under various conditions and modes. 

9.2.2. Research Support Tasks 

Research support task activities were necessary to conduct research on the benchmark 
systems.  As have indicated in Section 7, the amount time to design, development, test, and 
integrate the various fault injection components together and interface them to the target 
benchmark system was significant. 
 
Training and experience – To effectively apply fault injections to complex digital I&C systems 
of the type found in the benchmark systems, the research staff required professional training on 
the systems by the respective vendors.  Once this training was complete, the staff required time 
to gain additional experience on the systems to fully understand the details of the system from 
various points of view.  This effort required several months to complete before any research 
tasks or support tasks could be initiated. 
 
Fault injection environment – A well-formed fault injection environment is one of the most 
important aspects of a fault injection-based methodology to support credible, repeatable, and 
controllable fault injection experiments.  Furthermore, the fault injection environment plays a 
crucial role in the data collection and measurement of the responses, which are important for 
producing measures of dependability (e.g., coverage, error latency, etc…).  In addition, there 
must be a capability to manage the types of faults to be injected into the system, where they are 
injected, how they are injected, and when they are injected.  Additionally, responses to the fault 
injections must be acquired in a manner that allows the responses to be traced back to the 
faults so that a fault injection trial can be repeated as needed to reproduce the system 
response. 
 
Beyond the basic functional requirements for a fault injection process, effective fault injection 
environments also must be practical, adaptable to changing technology, and supportable.  Early 
in the development of the fault injection environment several development goals for the fault 
injection environment were identified to allow for adaptability of different I&C systems, including: 
 
 Flexible to a wide variety of applications 
 Easy to use and familiar to the engineering culture 
 Industry-grade, supportable, and open source 
 Modular 
 Extensible 
 Evolutionary 
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To achieve these goals, the National InstrumentsTM LabVIEW toolset was selected to develop 
the basic architecture of the fault injection environment.  Proven technology and industry 
acceptance made this a logical choice.  Due to the complex nature of fault injections and the 
need for tight coordination of several processes (e.g., data acquisition, operational profile 
sequencing, fault injection, data logging, etc), a cross-platform tool was determined to be the 
most effective means to support these functions. 
 
Application code development – The benchmark systems were not delivered to UVA with an 
application embedded on them.  Therefore, UVA built a representative RPS was developed. 
 
Integration and testing – Integrating the various components of the fault injection environment, 
the data acquisition system, and the target benchmark systems required substantial skills and 
knowledge.  The most prominent of these tasks was the integration of the fault injector platform 
into the target I&C system.  This task required considerable modifications to the prototype fault 
injector platform to effectively integrate the fault injector into the target systems. 

9.2.3. Experiment Related Tasks 

After the support research tasks were completed, the remaining time was devoted to conducting 
various fault injection campaigns on the benchmark systems in support of the research 
objectives.  Through the entire project research, development, implementation process,  the 
various challenges, needs and solutions were documented with respect to implementing fault 
injection on digital I&C systems.  The lessons learned along with the results of the effort formed 
the principle result of the project for the NRC. 
 
The fault injection campaigns conducted on the benchmark systems reflect the application of 
the FARM model and the statistical models presented in this volume to gauge how applicable 
they are with respect to digital I&C systems. 
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10. SUMMARY, FINDINGS AND CONCLUSIONS 

This Section summarizes activities (Section 10.1) of this report, and lists the principal study 
findings (Section 10.2). It also provides observations drawn by the authors by assessing and 
reviewing the fault injection based assessment methodology from a formal perspective (Section 
3) and practical perspective (Section 5 and 7) in the course of the study. In closing, some 
preliminary observations and recommendations (Section 10.3) are made in order to better refine 
the fault injection based assessment methodology toward the application to digital I&C systems 
(Sections 7 and 8). 

10.1. Summary of Key Activities and Results  

This volume presents a broad and in-depth development of the theory, methodology, the 
requirements and challenges of realizing fault injection on digital I&C systems as summarized 
below: 
 
Presentation of a formal taxonomy of faults for digital I&C systems (Section 1.7.3).  In 
Section 1.7.3 presents a taxonomy of faults and threats that may affect a digital I&C system 
during its lifetime.  The purpose of this fault taxonomy is to present a complete and structured 
view of the domain of faults applicable to digital I&C systems.  Since this research effort’s main 
purpose is to assess the applicability and utility of fault injection, it seems reasonable to start 
with a well-structured and complete view of the fault space.  The taxonomy presented here is 
almost assuredly complete with respect to the types of fault classes in digital I&C systems.  The 
taxonomy presented is complete with respect to the types of fault classes in digital I&C systems, 
however, this taxonomy is a starting point for further research and discussions. 
 
Development of a Formal Model of Fault Injection for Digital I&C Systems (Section 3.3).  It 
is important to have a formal model to characterize the applicability and understanding of the 
fault injection process to ultimately guide its use and facilitate understanding of the results with 
respect to assumptions. The importance of the formal model is to provide a reference for all fault 
injection based methodologies with respect to the necessary requirements for fault injection. 
 
Development and Analysis of Statistical Models for Fault Coverage Estimation (Section 
3.6 and Appendix A).  The purpose of the statistical model is to provide a formal basis for (1) 
conducting fault injection experiments and (2) providing a statistical model for a estimating the 
measures of a fault injection experiment, such as coverage.  Section 3.6 and Appendix A 
presents a formal and mathematical description of statistical estimation concepts that are 
fundamental in the assessment of fault coverage.  The presentation and analysis provides a 
sufficient and adequate approach that very well applies to a wide variety of statistical models for 
fault coverage estimation.  Appendix A analyzes two widely referenced and used models for 
statistical estimation of fault coverage, and present summary findings on both models. 

10.1.1. Survey and Characterization of Fault Injection Techniques for Digital 
I&C Systems (Section 5) 

In this section, a characterization schema for fault injection techniques based on eight 
properties is proposed and developed.  These eight properties represent attributes that are 
desired for a fault injection technique to support the requirements of the FARM model and the 
fault injection based dependability assessment methodology as presented in Section 4.  The 
purpose of the characterization is to describe fault injection techniques in manner that better 
informs the NRC on the applicability of specific injection techniques to digital I&C systems.  In 
addition to fault representativeness (i.e., the plausibility of the supported fault model with 
respect to actual faults) that is one concern that is often raised in conjunction with fault injection 
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experiments, show a wide range of criteria can be considered to assess the merits of the fault 
injection techniques. This is particularly important with respect to physical fault injection where 
complete controllability and reachability are difficult to achieve with just one fault injection 
technique.  This Section is significant because all advantages and disadvantages that must be 
weighed during the selection process of fault injection methods and techniques with respect to 
digital I&C systems. 
 
Lessons Learned from Previous Experience (7.10).  By examining the application of fault 
injection on a previous digital I&C system (DFWCS) insight into specific issues and challenges 
of applying fault injection to digital I&C systems of the type found in NPP operations was gained.  
The challenges and the resolution of those challenges showed that the application of fault 
injection to digital I&C systems is complex process involving the integration of several systems 
to achieve fault injection capability.  The integration process involves such diverse systems as 
the fault injector, the target computer, the fault injection controller to initiate the fault injection 
process, the operational profile system to supply inputs to the target system, and the data 
acquisition system to collect data.  To improve the methodology in a direction that better 
supports physical based fault injection, the methodology should be augmented with additional 
steps called support steps.  As such, the elements of the methodology can be partitioned into 
two classes.  The first class is what activities are necessary to perform fault injection according 
to the FARM model attributes.  These steps are the elements in the methodology now.  The new 
steps are related to what support is needed to carry out fault injection. 
 
Challenges to Fault Injection with respect to Digital I&C systems (Section 8).  Based on 
the findings in Sections 3, 4, 5, and 7, six challenges to enable credible fault injection on digital 
I&C systems and to improve the utility of fault injection process overall are identified.  These six 
challenges are: 
 
(1) Better measurement practices and tools - Digital I&C systems are not typically 

designed to be monitored to the level required for dependability evaluation by fault 
injection; a methodological approach for their observation is thus needed. In distributed 
digital I&C systems things are even more complex, for the lack of central control, and for 
the difficulties in obtaining a precise global time and an accurate view of the global state 
of the system are all noted challenges.  Measurement issues are very rarely addressed 
in the major conferences and scientific journals in the area of dependability. 

 
(2) Guidance for fault selection and realization – The selection of fault models for digital 

I&C systems should be more structured and this process should be included in the fault 
injection methodology as a support step.  The steps of the fault model selection process 
should include at the very least the following activities: 

 

 Examination of the fault hypothesis of the system. 
 

 The use of a structured fault taxonomy (e.g., like the one presented in Section 
1.7.3) as a starting point to help guide the fault model selection process. 

 
 Examination of failure data from empirical and experiential data sources that is 

relevant to the system. 
 

 The operational context of the system. 
 

 The interaction context of the system. 
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(3) Guidance for automation of fault injection processes – As indicated in Section 
4.7.1.4 and in Section 5, a well formed fault injection environment is one of the most 
important aspects of a fault injection based methodology.  “Well-formed” means the fault 
injection environment follows and refines the theory of the FARM model (Section 3.3), 
and allows the fault injection process to be a statistically guided process as described in 
Section 3.6.   Furthermore, the fault injection environment plays a crucial role in the data 
collection and measurement of the responses which are important producing the 
measures of dependability (e.g., coverage, error latency, etc…).  While the methodology 
presented in Section 4 is intended to be somewhat “neutral” to the selection of fault 
injection techniques, more guidance on what the fault injection environment should 
provide to the methodology and what the methodology expects from a fault injection 
technique is needed.  The “tie in” from the requirements of fault injection theory (FARM 
model) to the specification of the fault injection environment is needed. 

 
(4) Tools for operational profile generation – The operational profiles must be 

representative of the different system configurations and workloads that would be 
experienced in actual field operations. Context is important in fault injection.  For a fault 
injection based assessment methodology, the operational profiles must represent the 
input conditions and system interactions that can occur not only nominal operations, but 
also in off-nominal operations and more importantly during “accident” event scenarios.  
Gathering profile real plant data across all of these domains of operations is challenging 
task.  Tools to automatically generate profiles along these lines are needed.   NPP 
simulation tools such as TRACE are a possible way forward, however, there may be 
other approaches to solve this problem. 

 
(5) Methods to improve the efficiency and effectiveness of fault injection (pre-fault 

injection analysis) – Generating fault lists for a fault injection experiment or campaign 
is a critical activity for fault injection. Most fault list generating techniques found in the 
literature were developed for simulation based approaches and not physical fault 
injection approaches [Smith 1997; Benso 1998].  UVA found that these approaches did 
not translate well into existing I&C systems because simulation-based approaches allow 
a high degree of controllability and observability which may or may not be achievable in 
real digital I&C systems. In addition, fault list generation methods must address the 
efficiency and effectiveness issues mentioned in Section 8 related to the “no-response” 
problem.  Pre-injection analysis is method to guide the fault injection process to produce 
more effective and efficient results.  It is a means to reduce or eliminate the “no-
response” problem associated with fault injection. 

 
(6) High performance fault injection – There is a need for fault injection techniques to 

support various fault models for fault injection, and do so in manner that is minimally 
intrusive, controllable, repeatable and objective.  This is critical to the practical 
application of fault injection to digital I&C systems.  By uniting a variety of fault injection 
techniques to a common interface onto a single platform, the integration of the fault 
injector into the digital I&C system is more or less consistent from one digital I&C 
platform to the next.  This aspect becomes important when fault injection is used as 
benchmarking activity. That is, the same set of faults, operational conditions are applied 
to each digital I&C system by the same fault injection technique to form an objective 
basis for comparison or compliance. 

10.2. Conclusions  

Before closing on this Section, some general observations can be drawn from both the work 
carried out in this research and from the awareness of what the research could not address (at 
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this point time).  It is appropriate to underscore that the nature of this volume reflects the early 
phase of the investigation.  Thus, some of the key findings of this study, and especially those 
involving the application of fault injection (Section 5 and 8) procedures that have been 
documented in this volume were further investigated and organized as the methodology was 
applied to the benchmark systems in Phase 2 and Phase 3.  Nonetheless, several of the key 
findings in this report form the foundation of a technical basis for the application of fault injection 
to digital I&C systems.  The key findings are preliminary, but several key findings stand out as 
noteworthy for the inclusion of a technical basis supporting fault injections: 
 
Systematic Guidance for Fault Model Selection – Presently there is a significant gap in 
understanding between faults and failures that have occurred in digital I&C systems, and those 
that can occur as digital I&C hardware and software technology evolves.  Furthermore, since 
faults and failures are rare occurrences in digital I&C systems, a comprehensive up-to-date 
database of such faults and failures is needed.  A key aspect of the problem that remains open 
is that of the identification and systematic characterization of potential digital I&C system faults 
and failures to make possible a selection of the most appropriate fault models for dependability 
assessment purposes. 
 
The fault taxonomy presented in Section 1.7.3 is viewed as starting point for a context specific 
classification with respect to digital I&C systems.  Any classification of fault and failures should 
be formulated with both empirical data and data from scientific investigations on emerging 
failures (see reference [Srinivasan 2004] for an example of scientific investigations on emerging 
failures).  In this way, science informs the empirical data to give the complete perspective on 
potential faults and failures of digital I&C systems.  Models for fault injection can then be 
selected to best represent those faults and failures that have been confirmed by the 
classification process.   
 
The use of fault injection to stimulate failure modes depends on the underlying fault model.  
Several fault models (Section 4.5) were identified that are known to be representative of faults 
that occur in digital systems.  This research and the associated insights provided in Section 
1.7.3, Section 3.3, Section 4.5, and Section 8.2, identify some of the gaps in theory and practice 
that will help illuminate this issue in order to provide a substantive baseline for a technical 
position. 
 
Support Guidance for Fault Injection Based Dependability Assessment Methodology – As 
indicated in Sections 7 and 8, the application of physical-based fault injection to digital I&C 
systems requires a significant coordination of processes and systems to faithfully represent the 
modified FARM model (Section 3.3) and the methodology as presented in Section 4.  These 
levels of coordination and integration are unique to physical based fault injection, and are not a 
significant issue in simulation-based fault injection.  The challenges faced by applying physical 
based fault injection to the DFWCS revealed this oversight in the methodology.  While the steps 
in the methodology as presented in Section 4 are necessary to perform fault injection, the 
guidance on how to effectively implement and apply physical based fault injection is something 
that will be needed to establish a technical basis.  The latter stages of this effort (phase 1 and 2) 
will be conducted with this goal in mind. 
 
Characterization of Fault injection Methods and Techniques –Section 5 presented a 
comprehensive description of contemporary and emerging techniques for fault injection. For the 
practitioner or user of fault injection the variety of fault injection techniques and tools are many.  
The claimed capabilities (often stated without assumptions), and tradeoff space make decisions 
about fault injection difficult.  This report provided a structured survey in order to organize fault 
injection according to classes.  To further aid the reviewer, the benefits, assumptions, and 
disadvantages of various techniques were summarized so that decision-making regarding the 
selection or analysis of a fault injection method could be performed in a systematic manner.  
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This type of information was compiled and guided by extensive experience with fault injection 
over many years of research and practice in the field.  The inclusion of this information in NRC 
guidance could form a common baseline of understanding of fault injection between the NRC 
staff and the nuclear industry. 
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APPENDIX A. STATISTICAL MODELS FOR COVERAGE 
ESTIMATION 

A.1. INTRODUCTION 

As discussed in Section 3, coverage factor C is an extremely important parameter in the safety 
assessment and safety modeling of dependable fault tolerant systems, of which digital I&C 
system belong to.  The fault coverage available in a system can have a significant impact on the 
reliability and safety of a system [Smith 1997; Choi 1997; Yu 2004].  The intuitive definition of 
fault coverage is that it is a measure of a system’s ability to perform fault detection, fault 
isolation, and fault recovery given the existence of a fault.  Thus, coverage is a specific measure 
from the M set in the FARM model from Section 3.3. 

 
In reference [Pescosolido 2002] different statistical models available in the literature were 
analyzed and compared in order to determine their applicability to fault coverage estimation.  
This appendix addresses two statistical models from that report that are often used: Stratified 
Bernoulli model, and the Fault Equivalence model. For a complete and detailed review of 
additional statistical models for fault coverage estimation the reader is referred to the original 
report. 
 
The following sections are dedicated to a formal and mathematical description of the concepts 
that are fundamental in statistical estimation of fault coverage.  Although the formulation of the 
problem presented here lays no claims to being the most general and formal possible, it does 
provide a sufficient and adequate approach that very well applies to a wide variety of statistical 
models for fault coverage estimation.  The purpose of this appendix is to provide a thorough 
understanding of statistical modeling concepts as applied to fault coverage and to review the 
aforementioned statistical models so that informed decisions can be made about the use of the 
models. 
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A.2. STATISTICAL MODELING CONCEPTS 

A.2.1. The Fault Space 

The set of all faults is called the fault space, and is denoted in this document by F.  A number of 
characteristic attributes, such as location, value, time, or workload, can be used to identify a 
fault in the fault space.  In general, a fault space is regarded as a multi-dimensional space with 
d dimensions, where each fault is identified as a point in the d-dimensional space by a set of d 
coordinates.  As shown in figure A.1, the fault space can be considered as the Cartesian 
product of the sets of values that can possibly be assumed by each attribute or axes in the 
multi-dimensional fault space. 
 

If i  represents the axis corresponding to attribute iA , and ia  represents the value assumed by 

iA , then the fault space can be defined as, 

 

1 2 1= ( , , )d dand f a a       FF
   (A.1) 

 

where 1( , , )df a a  F  is the fault for which ii aA = . 

  
 

 

Figure A-1 Dimensional fault space 

A.2.2. Typical Fault Distributions 

The fault distribution deserves careful consideration in the development of a statistical model, as 
the quality of the results can significantly be affected by the assumptions made about it.  Real 
fault distributions can never be described or known completely, therefore in general an 
approximation of the fault distribution is considered instead. 

 

The simplest approximation is provided by the uniform distribution, which assigns exactly the 
same relative probability of occurrence to each and every fault in the fault space, 
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where |F| indicates the cardinality of the fault space.   The uniform distribution is very commonly 
assumed in statistical models for fault coverage estimation.  The uniform approximation is 
generally conservative or pessimistic when used as the underlying fault distribution. 
 

A better approximation of the real fault distribution can be obtained if the fault space F can be 
partitioned into M classes Fi for which the relative probability of occurrence is known.  Within 
each class Fi the uniform distribution must be assumed in absence of further information.  This 
distribution is called the class-wise uniform distribution, as it assigns constant probabilities of 
occurrence to all faults belonging to the same class, 
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where the indicator function  has the value 1 or 0 if f does or does not, respectively, 

belong to  Fi.  The probabilities of occurrence of each of the classes, 
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Where are F called the weighting factors for reasons that will be clearer later. 
 

The class-wise uniform distribution must always be preferred to the uniform distribution, for 
reasons that will be discussed later.  Notice that if the real fault distribution is known, then there 
is no need to resort to the uniform or class-wise uniform distributions.  On the other hand, if the 
real fault distribution is unknown, then the weighting factors cannot be determined from the 
underlying fault distribution, because the actual ( )P F f is unknown. 

 

Many different strategies can be employed to determine a partition of the fault space and the 
corresponding set of weighting factors.  For example, if the relative failure rates of the single 
components of the system are known, the fault distribution can be modeled accordingly by 
attributing probabilities to the faults that are proportional to the failure rates of the components in 
which the faults occur.  This leads to the following values of the weighting factors, 
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where i indicates the failure rate of the component corresponding to the fault class Fi.  Another 
example is provided by a system for which it can be assessed that all components have the 
same failure rate, which, however, is proportional to the workload assigned to the component.  
Then the relative measure of the workload can be used as the weighting factor for the class of 
faults occurring in the corresponding component.  Instead, if the global failure rate of the system 
is known to be proportional to the workload of the system, then the relative frequency of 
occurrence of each workload during the system’s operational lifetime can be used as the 
weighting factor for the class of faults that occur when the corresponding workload is executed 
by the system. 
 
In the literature there are variations on the class-wise fault distribution.  One example is the 
method used by [Smidt 2011] that calculates the probability of software failure from 
semiconductor failure mechanism of a microprocessor. 

A.2.3. Sampling Process  

The goal of fault injection experiments is that of statistically evaluating as accurately and 
precisely as possible the fault coverage as defined in equation (3.10).  The problem is 
statistically equivalent to the estimation of the distribution parameter that is the mean, of the 
Bernoulli random variable Y, given that faults occur with the distribution ( )P F f . 

 
Ideally, one could calculate the fault coverage by observing the system during its normal 
operation for an infinite time, and calculating the limit of the ratio between the number of times 
that the fault coverage mechanism covers a fault and the total number of faults that occurred in 
the system. 

 
For the purpose of statistical estimation, only a finite number of observations are made: from the 
statistical population Y, distributed as a Bernoulli random variable with unknown mean C, the 
fault coverage, a sample of size n is selected, that is a collection of independent realizations of 
the random variable Y, indicated as .  As it was assumed before, each realization of 

the random variable Y is a function of a fault that has occurred in the system. 

 
 (A.7) 

 
Since it would take an extremely long time to observe enough occurrences of faults in the 
system, faults are instead sampled from the fault space F and injected on purpose into the 

system.  Indicating with F  the random variable associated with the event “fault F f has been 
sampled and injected”, the sampling distribution is defined by the following values. 

 
 (A.8) 

 
Notice that the fault injection experiment forces the event “occurrence of a fault f ∈ F ” in the 
system with the forced distribution as indicated in Section 3.6.3.1 of the main report.  That is, 
sampling and injecting a fault from the fault space with a certain sampling distribution is 

equivalent to forcing a fault distribution on the fault space.  The Bernoulli random variable Y 
observed during fault injection experiments is not distributed like the variable Y observed during 
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the operational life of the system. Instead, the distribution of the variable Y is Bernoulli with 

parameterC, as determined in Section 3, Section 3.6.3.1. 

 
In most cases, it is assumed that sampling is performed with replacement.  When this is not 
true, it is assumed that the size of the sample is very small compared to the cardinality of the 
fault space, therefore Bernoulli analysis is still possible [Ricci 1975]. 

 

A.2.4. Estimation 

Estimating a parameter of a statistical population requires the definition of a function of the 
observations collected during the sampling process, properly called a statistic [Ricci 1975], 
which is also a random variable.  The distribution of the statistic must provide meaningful 
information about the estimated parameter.  The statistic employed depends on the estimation 
strategy that is desired. The most common types of estimation are: point estimation, confidence 
intervals, distribution fitting, and test of hypotheses. 

A.2.5. Point Estimation 

The statistic used in point estimation strategies is simply called estimator, and it provides a 
value based on the sample that is simply used as the estimate of the parameter.  An estimator 
is supposed to be distributed around the value of the estimated parameter with very high 
probability. 
 
In the previous section it has been shown how the experimental process influences the 
estimation of fault coverage, by forcing a sampling distribution that is different from the fault 
distribution. An estimator for fault coverage, therefore, attempts to infer the distribution 
parameter of the variable Y from the observations of the variable Y .  This is possible because, 
as it has been shown in Section 3.6.3.1 the two variables are related to each other by Equation 
(3.11).  Estimators of the fault coverage must be defined according to the assumptions made 
about the fault space, the fault distribution and the sampling distribution. 
 
The quality of an estimator can be assessed in many different ways.  The two properties that 
are normally used to characterize the quality of an estimator are its precision and its accuracy. 
The precision of an estimator is its ability to provide estimates that fall, on the average, around 
the estimated values, and it is quantified by the bias, that is, the difference between its mean 
and the estimated parameter.  The accuracy of an estimator is its ability to provide estimates 
that are, on the average, very close to each other, and it is quantified by the variance, that is, 
the mean square error of the estimator from its mean. 
 
A reasonable balance of precision and accuracy is generally required from statistical estimators. 
Unfortunately, in the case of statistical estimation of fault coverage, achieving high precision is 
much more complicated than achieving high accuracy.  This is due to the fact that the fault 
distribution is seldom known, and simplistic assumptions must be made about it. 

A.2.6. Confidence Intervals 

Rather than a point estimate of the distribution parameter, a confidence interval can be 
determined from the sample observations.  Confidence intervals are determined based on the 
observations so that it can be assessed that the probability of the estimated parameter lying 
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within the interval is at least equal to a certain confidence level.  The extremes of a confidence 
interval are therefore functions of the observations, i.e. statistics. 
 
Typically, the extremes are determined by applying a pivotal transformation to a point estimator 
of the parameter, from which a pivotal quantity of known distribution is derived.  Then, the 
inverse of the pivotal transformation is applied to an ad hoc percentile, depending on the 
confidence level required, of the known distribution to obtain the required statistics. 
 
In fault coverage estimation, two types of confidence intervals are generally used: single-sided, 
which define a lower limit for the fault coverage, and double-sided, that define a symmetric 
interval around the value of the fault coverage.  Other methods to determine confidence 
intervals are also possible, as will be seen in the following sections. 

A.2.7. Distribution Fitting 

In the case of distribution fitting, the observed data are used to determine the distribution of the 
sampled population.  Generally, it is assumed that the parent distribution, that is, the distribution 
of the population, is of a known type, and the values of the distribution parameters are 
determined from the data.  There are several methods available to implement distribution fitting, 
among which two examples will be discussed in this report. 
 
In fault coverage estimation, distribution fitting is used by interpreting the fault coverage not as a 
constant parameter, but rather as a random variable with values in the interval [0 : 1].  From the 
data, an a posteriori distribution is then determined. 

A.2.8. Number of Experiments 

In the design of fault tolerant systems the level of dependability, expressed by any of the 
common metrics, is a requirement that must be met and verified by the use of behavioral 
models of the system under development.  The fault coverage factor necessary to achieve the 
required level of dependability is either itself a predetermined parameter, or it is determined as a 
function of the dependability metrics provided. 
 
During or after the development of the system, fault injection campaigns on computer models or 
system prototypes are performed in order to verify that the requirement for the fault coverage 
has been met.  The number of experiments necessary to assess whether or not the requirement 
was met strongly depends on the desired value of the fault coverage and on the degree of 
confidence assigned. 
 
Dependability assessment can take up a large portion of the design time, especially if simulated 
or physical fault injection is used.  Therefore, it is desirable that an a priori estimate of how 
many experiments should be performed in the fault injection campaign is available, so that the 
cost and time necessary can be calculated accordingly.  How this estimation is performed 
depends on the specific statistical model employed. 

A.2.9. No-Response Problem 

The occurrence of a fault in a system does not necessarily result in an error.  Some types of 
faults, such as transient faults, might not affect the normal operation of the system under 
testing, in which case the fault-tolerance mechanisms might not be exercised by their 
occurrence.  This may be caused, for example, by the occurrence of the fault in some part of the 
system that is currently unused, or by the practical inability to inject a fault that was previously 
selected for fault injection.  However, the same fault may, during the system’s operational 
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lifetime, result in an error that will either be detected by the fault-tolerance mechanism or result 
in a system failure. 
 
The problem is rather analogous to the “no-reply” response commonly encountered in opinion 
polls, which evidently affects the accuracy of the estimates [Powell 1995].  The experimental 
process and the resulting estimations might be more or less affected by this problem, depending 
on the particular strategy employed for fault injection experiments.  For example, if the number 
of faults to be injected is predetermined and the faults are all sampled before the fault injection 
campaign, simply discarding the no-response events would not be a reasonable strategy, 
because not enough meaningful results would have been obtained.  Neither would be a 
reasonable strategy to simply assume that the fault is covered when it results in a no-response 
event simply because it did not cause the system to fail, as it would probably lead to optimistic 
estimates. 
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A.3. STRATIFIED BERNOULLIAN MODEL 

A.3.1. Introduction 

 
This section introduces the concept of stratified estimation of fault coverage.  Stratification 
consists in creating an ad hoc partition of the fault space and estimating the fault coverage 
pertinent to each of the classes in the partition, and then combining the estimated class fault 
coverage factors to obtain an estimate of the overall system’s coverage. 
 
Stratification has several practical advantages [Powell 1996]: if the partition of the fault space is 
determined so that faults in the same class all occur at a certain location.  For example, within 
the same component or on the same equipotential line physical fault injection can be simplified 
because it is not necessary to re-apply the probes at each experiment.  Also, the data obtained 
in a fault injection campaign to calculate a coverage estimate for single components can be 
reused in other systems where the same components are employed; finally, if quantitative 
information about the occurrence of the faults in different classes is available, the system’s 
coverage estimate can be determined much more precisely than using the simple Bernoulli 
model.  The model presented in this section is based primarily on the stratified sampling 
strategy presented in [Powell 1995; Cukier 1997; Powell 1996]. 

A.3.2. Fault Space and Distribution 

In this model, the assumption on the fault space is that it can be partitioned into M disjoint 
subsets, also called classes: 

and  
 (A.9) 

 
 
 

 with         (A.10) 

 
The probability of occurrence of a fault can then be rewritten as, 
 

 (A.11) 

 
where the theorem of the total probability has been used together with the obvious relation. 
 

 (A.12) 

The quantity 
 

 (A.13) 

 
expresses the relative probability that a fault that has occurred in the system belongs to class 

.  Ideally, this quantity could be calculated as the limit of the ratio between the number of 

faults belonging to the class  that have occurred in a system over the total number of faults 
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that have occurred after an infinite observation time.  Clearly, it is impossible to calculate the 
exact value of such probabilities, and more practical considerations must be made.  In Section 
A.2.2 several approaches to determine an approximate class-wise uniform fault distribution 
were described, which apply to his case as well.  In fact, the are the identical to the 

weighting factors that were there introduced.  If the probabilities in Equation (A.13) cannot be 
determined then the following can always be assumed. 
 

 (A.14)  

 
or that 
 

 (A.15) 

 
The condition expressed in Equation (A.14) is a stronger condition than Equation (A.15): the 
latter is obtained when all faults are equally likely to occur (uniform distribution), whereas 
Equation (A.14) implies that the cumulative probability of all faults belonging to a certain class is 
constant for all classes.  The two statements are significantly different: as a clarifying example, 
consider a fault space with ten faults uniformly distributed and partitioned in only two classes, 
the first containing only one fault, the second containing nine faults; using Equation (A.14) the 
relative probabilities of both classes would be 0.5, whereas using Equation (A.15) one would 
obtain 0.1 and 0.9, respectively.  Clearly, it is impossible to state which of the two assumptions 
should be made in absence of quantitative information on the fault distribution.  However, the 
same practical considerations that usually lead designers of dependable systems to assume a 
uniform distribution of the fault space would suggest that Equation (A.15) should always be 
preferred to Equation (A.14). 

A.3.3. Definition of Coverage 

 
Following the development presented in [Powell 1995], the definition of fault coverage can be 
modified, using Equation (3.10) and Equation (A.11), as follows, 
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 (A.16) 

 

where  is called the class fault coverage of , as follows. 

  
 (A.17) 

 
 
Equation (A.16) allows expressing the coverage factor as a function of the individual coverage 
factors of each of the classes in the partitioned fault space.  This property will later be used to 
determine an estimator that combines the class coverage factors into an estimator for the 
system’s fault coverage. 

A.3.4. Sampling 

The stratified sampling strategy requires the selection of a predetermined number ni of samples 
from each class  of the partitioned fault space. 

If the values of the probabilities of Equation (A.13) are known, the number of faults sampled 
from each class is chosen to be, 

 
 (A.18) 

 
for reasons that will be clarified later.  Clearly, the ni so determined must be rounded to the 
nearest integer.  This sampling strategy is referred to as stratified sampling with representative 
allocation [Powell 1995]. 

 

If the values of the probabilities of Equation (A.13) are not known, different strategies can be 
employed similar to those discussed in Section 8.2.2.  Substituting expressions Equation (A.14) 
and equation (A.15) into Equation (A.18), the following two relations are obtained, respectively 

 (A.19)  

 
called homogeneous allocation [Powell 1995], or 
 

 (A.20)  

 
which is termed uniform allocation. 

 

In general, given a certain assumption on the value of the weighting factors of Equation (A.13), 
the size of the sample extracted from the corresponding classes are obtained by substituting the 
assumed value into Equation (A.18). 
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Within each class, however, the samples are selected using simple random sampling, that is the 
sampling distribution within each class is given by, 

 

 (A.21) 

 
and the overall sampling distribution can be expressed as. 
 

 (A.22) 

 
Therefore, stratified sampling forces a class-wise uniform distribution on the fault space. 

A.3.5. Point Estimator  

With the definition of fault coverage given in Equation (A.16) and given that samples are 
extracted using a simple random sampling strategy within each class, the estimation of the class 

fault coverage of class  can be performed as it has been described in Section 5 , using the 

estimator, 

 (A.23) 

 

that is, the sample average of the observations extracted from class , with mean, 

 

ˆ[ ]i iE C C    (A.24) 

 
that is, the class coverage proportion.  This estimator is completely equivalent to the one 
introduced in Section 5 to estimate the system’s fault coverage.  The same considerations 
discussed in the previous section apply, therefore, unchanged to the estimation of the class 
coverage factors.  However, it must be kept into account that the size of each class will 
generally be much smaller than the size of the fault space, thus a proportionally lower number of 
samples must be selected from each class to obtain an accurate estimate. The precision of the 
estimator of Equation (A.23) will still be affected by the fairness of the fault tolerant mechanism 
within each class, but it will be discussed how the combined estimate of the system’s fault 
coverage can be determined more precisely in this case. 

 

Also, it must be pointed out that in order to calculate the estimator as in Equation (A.23), the 

sample sizes ni cannot be zero, otherwise ˆ
iC  is undetermined.  From the class fault coverage 

estimates, the estimate of the system’s fault coverage can be calculated using the estimator, 

 

P F f=  F i   1
i
--------=

P F f= 
i f 
 i

-----------P F  i 
i 1=

M

=

i

Ĉi
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 (A.25) 

 
which is the weighted average of the estimated coverage factors of all the classes in the 
partitioned fault space.  Notice that substituting Equation (A.16) and Equation (A.18) into 
Equation (A.25), the following is verified, 
 

 (A.26) 

 
that is, the estimator can still be expressed as the arithmetic average of all the samples 
collected. Although similar properties can be expected for this estimator to the one described in 
the previous section, it must be noted that the sampling strategy adopted in this case is not 
simple random sampling.  Therefore, different characteristics should be expected, both for what 
concern the precision of the estimator and for what concerns its accuracy. 

A.3.6. Precision of the Estimator  

Analogous to what was done in Section 3.6.4, the random variable , describing the fault 

tolerance event for faults occurred in class , and the random variable  as a function of a 

fault from class  that has occurred in the system can be defined with the following probability. 
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 (A.27) 

 

The class covariance  between the variables  and  is defined as 

 (A.28) 

 
It is easy to show the following. 

 (A.29) 

 

 (A.30) 
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The mean of estimator in Equation (3.16) is finally calculated as, 
 

 

 (A.31)  

 

which shows that the estimate is still biased by the quantity . 

 

However, the value assumed by the covariance  is different, in general, from the covariance 
that would be obtained using the simple Bernoulli model of Section 3.6.  In fact, in this case the 
forced distribution, that is, the sampling distribution, is not uniform, but class-wise uniform, with 
weighting factors depending on the particular sampling strategy chosen, as discussed in Section 
A.2.2.  Stating the fairness condition of the fault tolerance mechanism with respect to the fault 
and forced distributions can be just as impractical as it is in the simple Bernoulli model 
described in the previous section. 

 

Generally, when using a stratified approach it is assumed that faults within a single class are 
uniformly distributed.  Therefore, in general, the partition of the fault space should be defined so 
that faults lying within the same class have an approximately constant probability of occurrence. 
However, making the same considerations as in Section 5, only the fairness of the fault 
tolerance mechanism within each class is required in order to obtain an unbiased estimate of 
the fault coverage.  That is, an unbiased estimate is obtained when the variable Y is 
uncorrelated with the relative probability of occurrence of faults distributed as in the fault 
distribution and the sampling distribution. 

 

Obviously, this condition is verified if the classes are designed so that faults within each class 
occur approximately all with equal probability (class-wise uniform distribution), because in this 
case the variable Pi, defined in Equation (A.27), always assumes values very close to unity. By 
simple inspection of Equation (A.28), it is clear that 0  , and from Equation (A.30) it is also 
verified that 0  . 

 

However, the values of i can be almost zero even if the distribution is not uniform within each 
class, as was discussed in Section 5.  Achieving the fairness condition is easier in this case 
because many considerations can be made so as to approximate the fault distribution using the 
sampling distribution, which were discussed in Section A.3.4. 

A.3.7. Accuracy of the Estimator 

The variance of the estimator is derived as a linear combination of the variances of the class 
coverage estimators Ci using the definition of class coverage proportion, the result obtained in 
Equation (3.22), and Equation (A.1), 
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 (A.32) 

 
which can be estimated using [Powell 1995]. 
 

 (A.33) 

 
The variance depends on the pre-determined number ni of faults sampled from each class, and 
can be minimized by choosing an appropriate allocation strategy.  It is stated in [Powell 1995] 
that using the Lagrange multiplier method it can be proven that the variance is minimum if the 
sample sizes are chosen so that, 
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which, in absence of any a priori knowledge of the fault coverage, must be approximated with 
Equation (A.18), the representative allocation, to obtain the following. 
 

 (A.35) 

 
Compared to the results obtained in Equation (3.22), the variance of this estimator is reduced if 
 

 (A.36) 

 
which is not always verified. One case when Equation (3.22) is valid for any values of the class 
fault coverage factors is when , which is, as discussed in Section A.3.2, a 

quite strong requirement.  Obviously, it is only possible to verify Equation (A.36) for each 
specific system.  In his thesis [Pescosolido 2002] analyzed the variants of the estimator 
obtained of this model to the variants of the simple Bernoulli model and found them almost 
identical. 
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V Ĉ  C·

n
P F i C· i

2

n
--------------------------------

i 1=

M

–

---------------------------------------------------=

P F i C· i
2

i 1=

M

 C· 2


P F i  1 M=



 

A-16 

A.3.8. Confidence Intervals 

Using the Central Limit Theorem, double- and single-sided confidence intervals can be defined 
exactly as the simple Bernoulli model, using the mean and the variance estimator calculated in 
Equation (A.31) and Equation (A.36), respectively. 
 

The imprecision of the confidence intervals is still a problem in the stratified case, however, 
using the same considerations made about the estimator, it is generally possible to minimize the 
bias by choosing an appropriate partition of the fault space. 

 

Since the use of the Central Limit Theorem implies approximating the binomial distribution of the 
estimator in Equation (A.26) with the normal distribution, the same considerations made with 
simply Bernoulli model apply in this case.  

A.3.9. Number of Experiments 

The number of experiments necessary to estimate the fault coverage with the stratified model 
can be calculated applying the constraint on the variance for each of the classes in the 
partitioned fault space as it was shown in Section A.3.2.  The order of magnitude of the required 
number of experiments is still the same as discussed in Section A.3.2.  Therefore, generally it is 

assumed that  experiments are sufficient if  is the desired non-coverage.  This number 

must be further increased according to the coverage level desired and the confidence degree 
imposed to determine the confidence intervals.  

A.3.10. No-Response Problem 

A technique called a posteriori stratification is proposed in [Powell 1995] as a solution to the no-
response problem, which can only be applied in the case of physical fault injection and when 
very detailed information about the system is available, that is, quoting from [Powell 1995], only 
when “the detailed wiring diagram of the target system is available”. 
 

From this statement, it appears that the proposed method lacks of generality, and is therefore 
beyond the scope of this report.  Therefore, only similar considerations to those made in Section 
A.3.2 can be made, in the general case, as a solution to the no-response problem. 

 

In stratified sampling, however, special attention must be posed to the fact that the sample sizes 
 are pre-determined according to the fault distribution, therefore the estimator, both in the 

form of Equation (A.25) andEquation (A.26), must be modified according to the specific strategy 
used. 

 

If no-response data are simply discarded, undetermined situations can be created, especially if 
all faults in one class result in no-response (for example, if the class corresponds to faults 
occurring in a non-testable component). In such a case, the estimator of the class coverage 
factor of Equation (A.23) is meaningless, since both the numerator and denominator are zero. 

10x 10 x–

ni
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A.3.11. Summary and Conclusions  

The model discussed in this section, like the simple Bernoulli model described in Section A.3.2, 
is very commonly used in the assessment of the fault coverage of dependable systems, 
because of the practical advantages that it provides [Powell 1996]. 

 

It was also suggested that if quantitative information about the system is available, which allows 
determining an ad hoc partition of the fault space, the precision of the estimator provided by the 
stratified model is greatly improved compared to the simple Bernoulli model.  The stratified 
approach is motivated by practical considerations, because if no information about the fault 
distribution is available, this model is equivalent to the simple Bernoulli model presented in 
Section 3.6 of the main report. 

 

In fact, in absence of information about the fault distribution the sampling strategy can only be 
chosen as in Equation (A.17) and Equation (A.20).  The former represents an allocation 
condition that does not appear to be justified in real systems and does not lead to any 
advantage in precision or accuracy. The latter is represents the uniform distribution assumption, 
which is equivalent in many ways to the simple Bernoulli model. 

 

The precision of the estimator is still affected by the value of the covariance.  However, it was 
discussed in Section A.2.2 that if some information about the fault distribution is available, the 
sampling distribution can be chosen so as to reduce the value of the covariance, thus increasing 
the precision of the estimate. 

 

It must be noted that in [Powell 1995; Powell 1996; Cukier 1997] it is stated that the estimator is 
unbiased.  This statement can be misleading, as it is based on the implied assumption that the 
real fault distribution of the system is identical to a class-wise uniform distribution.  This is 
clearly never the case, although a class-wise uniform distribution can very well approximate the 
real fault distribution.  Here an even looser condition than the class-wise uniform distribution has 
been stated for the unbiasedness of the estimator, i.e. the fairness of the fault tolerance 
mechanism within each class, or, equivalently, the fairness of the fault tolerance mechanism 
with respect to the real fault distribution and the forced class-wise uniform distribution. 

 

As for the validity of the fairness condition in real systems, the same considerations made in the 
previous sections apply here.  Apart from engineering considerations that apply to specific 
cases, further research on this matter is necessary. 

 

The variance of the estimator varies with the sampling strategy adopted and the particular 
system under analysis.  However, it was shown in [Pescosolido 2002], from numerical data, that 
the accuracy of the stratified model is very close to the accuracy of the simple Bernoulli model, 
which is very close to the minimum variance achievable. 

 

The number of experiments required has been discussed to be in the same order of magnitude 
as for the simple Bernoulli model. 

 

Finally, no optimal solution based on statistical methods could be determined to solve the 
problem of no-response experiments.  Special attention must be devoted to how the chosen 
strategy affects the estimation process, because the sample sizes for each class are pre-
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determined using Equation (A.18).  Undetermined situations can be created if all faults in a 
certain class result in no-response.  For this reason, the issue of no-response faults should be 
addressed at the fault injection environment level (e.g., pre-injection analysis).  These 
conclusions are summarized in Table A-1. 

Table A-1 Summary of properties for the stratified Bernoullian model. 

Estimation 
Point estimator for fault coverage. 
Single and double-sided confidence intervals for the fault coverage determined 
with the normal approximation. 

Precision 

Biased by  (centered around the forced coverage). 
Unbiased if the fault tolerance mechanism is fair with respect to the fault and 
forced distributions.  generally smaller than in the simple model. 

Accuracy 
Not necessarily minimum variance, but very close to the variance of the simple 
model. 

Assumptions 

The class-wise uniform fault distribution is generally assumed as the requirement 
for the unbiasedness of the estimator, whereas the fairness condition is 
necessary and sufficient. 
The validity of the normal approximation is only verified for low values of the 
coverage or for a high number of experiments. 

No-Response 
Problem 

This model does not define a specific solution to the no-response problem. 
Specific considerations must be made in each case. 
Problems of indeterminacy can occur. 

Number of 
Experiments 

Generally (confidence level around 95%) in the order of 10x if 10-x  is the desired 
coverage level. Higher by one-two orders of magnitude for confidence level 
around 99%. Same as the simple model. 

Applicability 

This model can be employed when practical considerations demand a stratified 
approach or when some information about the fault distribution is available. It 
must also be possible to perform a large number of experiments in order to use 
the normal approximation. 
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A.4. FAULT EQUIVALENCE MODEL 

A.4.1. Introduction 

Fault equivalence is a fault coverage estimation strategy that attempts to reduce the number of 
fault injection experiments required by partitioning the fault space into equivalence classes. The 
presentation of the fault equivalence model provided here is based on [Smith 1997], where a 
uniform fault distribution is assumed.  Therefore, it must be once more remarked that the 
estimator provided is biased. 

 

However, it is shown in [Smith 1997] that under certain conditions the number of experiments 
required can be reduced compared to the simple Bernoulli model, to obtain estimates with the 
same or lower variance.  Under such conditions the accuracy of the estimate is therefore 
increased compared to the simple Bernoulli model. 

A.4.2. Fault Space 

The fault space considered in this model is partitioned into equivalence classes, such that any 
two faults belong to the same class if and only if it can be assessed that the fault tolerance 
mechanism will either cover or not both faults. Thus, the equivalence relation inducing the fault 
space partition can be expressed as follows. 
 

 (A.37) 

 
A more flexible definition of the partition relation could account for the randomness associated 
with the actual behavior of the fault tolerance mechanism during the fault injection campaign, or 
for the uncertainty associated with the imperfect capability to assess the equivalence of faults. 
For example, one could define a distance function of fault fj from fault fi, 
 

  

 (A.38) 
 

which expresses the probability that the fault tolerance mechanism behaved for fault  like it 

did for fault fi (notice that the order of the operands must be preserved).  Although it is not 
possible to define a useful partition of the fault space using the distance relation only, given a 
fault fi it is always possible to define a subset  of the fault space such that the following 

condition is satisfied by all the elements of the subset, 
 

 (A.39) 

 

where  is a confidence parameter. 

 

The model presented in [Smith 1997] only uses Equation (A.37) to induce a pre-determined 
partition of the space, however, Equation (A.39) can also be used in this model without any 
change in the results, leaving more flexibility in the setup of the fault injection experiments. 

fh fk          y fh  y fk =

fi fj P Yj 1=  Yi 0=   P Yi 0=   P Yj 0=  Yi 1=   P Yi 1=  +=

fj

i

fi fj         f  i 
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A.4.3. Fault Distribution 

The fault distribution is assumed to be uniform in the model proposed in [Smith 1997].  It is 
possible, however, to generalize the model to the case of a generic fault distribution, but this 
would be beyond the scope of this report.  When readily available, formulas that are valid for the 
general case will be provided, together with the corresponding version in the assumption of 
uniform distribution. 

A.4.4. Sampling 

The sampling strategy is properly referred to as the fault equivalence process.  The process 
starts with the random selection of a fault f1 from the complete fault space. The equivalence 
class to which the fault belongs, which is predetermined using Equation (A.37), is removed from 
the fault space, and another fault is randomly selected from the so reduced space.  The process 
continues until M samples have been collected. 

 

Given the described process, it is clear that Equation (A.39) could also be used to perform the 

fault equivalence process.  Each time a fault fi  is sampled, the subset  of faults distant from 

fi less than the confidence level   are removed from the population from which the sample fi+1 
will be randomly selected. Therefore, the population from which sample fi is selected is 
determined by the following equation. 

 

 (A.40) 

 

Notice that the following conditions are always satisfied by the sets  determined using the 

fault equivalence process. 
 

 (A.41) 

 
Although these conditions do not define a partition of the fault space, the second one is 
sufficient for the validity of this model. 
 

The number of faults contained in  and the number of expanded faults are indicated as, 

 

 (A.42) 

 
which are, in this model, random variables, as their actual value depends on the specific 
realization of the sampling process. 
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A.4.5. Point Estimator 

Notice that with the terminology introduced in the Section A.3.5 and Equation A.25, this case is 
equivalent to the case of stratified sampling, and the same estimator previously used can be 
applied here 
 

 (A.43)  

with, 
 

( )i iC y f   (A.44) 

 
The estimator of Equation (A.43) is always unbiased, even if the assumption of uniform 
distribution does not hold. When no information about the fault distribution is available, one can 
do no better than assuming a uniform distribution and set, 
 

 (A.45) 

 
to obtain the estimator proposed in [Smith 1997]. 

 (A.46) 

 
Notice that in this case the estimated class fault coverage is always either 1 or 0.  This is due to 
the assumption that is it possible to assess with certainty that all faults in a class will either be 
covered or uncovered if only one fault in the same class is, respectively, covered or uncovered. 

A.4.6. Precision of the Estimator 

It is immediate to show that the estimator of Equation (A.43) is unbiased contrarily to the other 
estimators encountered in the previous sections: 

 

 (A.47) 

 
However, the estimator of Equation (A.46) is still biased, unless the assumption of 
Equation (A.45) is verified in the real system, that is, unless the uniform distribution is assumed, 
which implies the condition  = 0.  Therefore, the estimator of Equation (A.46) leads in general 

to unbiased estimates of the coverage proportion Ĉ . 
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A.4.7. Accuracy of the Estimator 

It is shown in [Smith 1997] that the variance, 

 (A.48) 

 
is lower than the variance that would be obtained using the simple Bernoulli model if the 
following condition applies, 

 (A.49) 

 
where Nu indicates the total number of expanded uncovered faults, and Mu is the number of 
uncovered faults in the sample. Therefore, if the condition of Equation (A.49) applies, a 
reduction of the sample variance is achieved and the use of fault equivalence is justified.  
Clearly, this condition can only be verified after the fault injection campaign has been carried 
out, therefore it is not guaranteed a priori that fault equivalence will actually result in variance 
reduction. 

 

A different approach to determining the variance reduction achieved via fault equivalence has 
been carried out in [Wang 1994], where it is assumed that the estimator is exponentially 
distributed (which is a typical approximation used in the estimation of the distribution parameters 
of a Bernoulli population that is known to be very high or very low [Ricci 1975]), and it is argued 
that in usual systems the condition of Equation (A.49) is not very often verified. The model 
presented in [Smith 1997] introduces a cost function that allows determining the convenience of 
using fault equivalence given the uncertainty of the variance reduction that can be achieved. 

A.4.8. Confidence Intervals 

Confidence intervals are determined using the normal approximation seen in the previous 
sections. Therefore, the same cautions discussed before are necessary in this case. A formula 
that allows calculating a lower confidence limit for coverage in the case when no uncovered 
faults are found in the sample is also provided in [Smith 1997], 
 

 (A.50) 

 
which can be used when M >> 1  and N >>1.  In [Smith 1997] it is also reported, from other 
references, that a number of experiments greater than 100 is sufficient for the application of the 
normal approximation.  This statement has no general validity, as will was discussed in 
Section 10. 

A.4.9. Number of Experiments 

The number of experiments necessary to estimate coverage C with a confidence level of using 
the fault equivalence model presented in [Smith 1997] is estimated using the relation, 
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 (A.51) 

 
where n is the size of the expanded fault set considered in the worst case scenario when all 
sampled faults are covered and no useful information can be determined from the data.  The 
number of actual experiments performed M obviously varies proportionally to the average size 
of each expanded class. 

A.4.10. No-Response Problem 

The fault equivalence model simply rejects the faults that result in no-response. Given the 
description of the sampling process provided in Section A.4.4, this strategy is appropriate 
because faults are sampled and injected sequentially. 

n
z

1 C– 
-----------------





 

A-25 

A.5. CONCLUSIONS 

The fault equivalence model described in this section uses an estimator that, given the 
assumption of a uniform fault distribution, has a precision comparable to the precision of the 
estimator considered in the simple Bernoulli model.  However, if the condition expressed by 
Equation (A.49) is verified, the accuracy of the estimator is guaranteed to be higher than the 
one obtained in the simple Bernoulli model.  This is only an a posteriori condition, that must be 
verified after the fault injection campaign has been carried out. 

 

When the condition of Equation (A.49) is verified, the higher accuracy of the estimate allows to 
interrupt the sequential sampling process when a desired number of fault injection experiments 
have been performed, which can be, in general, much lower than the number of experiments 
that must be performed in the simple Bernoulli model, depending proportionally on the average 
size of the expanded fault classes. 

 

Therefore, the cost of fault injection experiments can be significantly reduced by using the fault 
equivalence model. A cost function is introduced in [Smith 1997] that allows to determine the 
advantage produced by fault equivalence as a function of the achieved variance reduction. 

 

It must be finally pointed out that the results obtained in [Wang 1994] suggest that fault 
equivalence does not, for real systems, provide an advantage in most cases, because the 
condition of Equation (A.49) is not often verified, also given that the fault equivalence that can 
be achieved normally is relatively small.  These conclusions are summarized in Table A-2. 
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 Table A-2 Properties of the Fault Equivalence model. 

Estimation 
Point estimator for fault coverage.  Single- and double- sided confidence 
intervals for the fault coverage determined with the normal approximation. 
Confidence interval in the case of no uncovered faults found. 

Precision 
Biased by ρ (centered around the coverage proportion). 
Optimistic for ρ < 0 , conservative for ρ > 0. 
Unbiased if the fault tolerance mechanism is fair. 

Accuracy 
Variance reduced if the a posteriori condition of Equation (A.49) is 
verified. 

Assumptions 

The uniform distribution is indicated as the requirement for the 
unbiasedness of the estimator, whereas the fairness condition is 
necessary and sufficient.  The validity of the normal approximation is only 
verified for low values of the coverage or for a high number of 
experiments. 

No-Response 
Problem 

This model discards the no-response faults, consistently with the 
sequential sampling process. 

Number of 
Experiments 

Reduced proportionally to the achievable fault equivalence. 

Applicability 

This model can only be employed when it is possible to define an 
equivalence relation in the fault space.  Moreover, condition of 
Equation (A.49) must be verified for the model to provide any advantage 
compared to the simple model. 
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A.6. SUMMARY 

This Appendix has provided a detailed review and analysis of several statistical models for fault 
coverage estimation found in the literature. The purpose of the appendix is to better inform the 
NRC on the nature and use of statistical models for fault coverage estimation when used in fault 
injection based assessment process. A major effort has been devoted to achieving a consistent 
presentation throughout the whole report, so as to simplify a direct comparison of the models. 

 

Finally, for each model a summary table was provided that describes each of the attributes 
identified in Section A.2 to characterize the properties of the statistical models.  These tables 
can be used as a quick reference to determine the best approach to statistical estimation of fault 
coverage. 
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