U.S. Nuclear Regulatory Commission 180-Day Response to 50.54(f) Letter NTTF Recommendation 2.3: Seismic November 27, 2012 Page 5

.

# Enclosure 2

Seismic Walkdown Report In Response To The 50.54(f) Information Request Regarding Fukushima Near-Term Task Force Recommendation 2.3: Seismic for the Dresden Nuclear Power Station, Unit 3, Report Number: 12Q0108.30-R-002, Revision 2

(891 pages)

.

# **SEISMIC WALKDOWN REPORT**

IN RESPONSE TO THE 50.54(f) INFORMATION REQUEST REGARDING FUKUSHIMA NEAR-TERM TASK FORCE RECOMMENDATION 2.3: SEISMIC

# for the

DRESDEN GENERATING STATION UNIT 3 6500 North Dresden Road, Morris, Illinois, 60450 Renewed Facility Operating License No. DPR-25 NRC Docket No. STN 50-249 Correspondence No.: RS-12-167



Exelon Generation Company, LLC (Exelon) PO Box 805398 Chicago, IL 60680-5398

> Prepared by: Stevenson & Associates 1661 Feehanville Drive, Suite 150 Mount Prospect, IL 60056

Report Number: 12Q0108.30-R-002, Rev. 2

|                                       | Printed Name     | Signature       | Date       |
|---------------------------------------|------------------|-----------------|------------|
| Preparer:                             | Mariene Delaney  | Martine Marting | 11/15/2012 |
| Reviewer:                             | Tony Perez       | TAR             | 11/15/2012 |
| Approver:                             | Tony Perez       | TAR             | 11/15/2012 |
| Peer Review Team Leader:              | Bruce Lory       | Bran H. Hoy     | 11/15/2012 |
| Lead Responsible Engineer:            | Bryan Weight     | Burny Weight    | 11/15/2012 |
| Branch Manager:                       | Joseph Reda      | O Docal S. Rede | 11/16/2012 |
| Senior Manager<br>Design Engineering: | PAR WOUTKIEVICE  | Egy Worther     | 11/16/12   |
| Corporate Acceptance: -               | Jeffrey S. Clark | follow & Clark  | 11/14/12   |

Document Title: SEISMIC WALKDOWN REPORT IN RESPONSE TO THE 50.54(f) INFORMATION REQUEST REGARDING FUKUSHIMA NEAR-TERM TASK FORCE RECOMMENDATION 2.3: SEISMIC for the DRESDEN GENERATING STATION UNIT 3

Document Type: Report

Report Number: 12Q0108.30-R-002

| Project Name:<br>NTTF R2.3 Seismic Walkdowns for Exelon - Dresden |  |
|-------------------------------------------------------------------|--|
| Job No.: 12Q0108.30                                               |  |
| Client: Exelon.                                                   |  |

This document has been prepared in accordance with the S&A <u>Quality Assurance</u> <u>Program Manual</u>, Revision <u>17</u> and project requirements:

| Initial Issue (Rev. 0)          |                 |
|---------------------------------|-----------------|
| Mailine Mailing Mailine Mailing | Date: 11/7/2012 |
| Reviewed by: Tony Perez         | Date: 11/7/2012 |
| Approved by: Tony Perez         | Date: 11/7/2012 |

| Revision Record: |                                                   |                          |                          |                                     |  |  |  |
|------------------|---------------------------------------------------|--------------------------|--------------------------|-------------------------------------|--|--|--|
| Revision<br>No.  | Prepared by/<br>Date                              | Reviewed by/<br>Date     | Approved by/<br>Date     | Description of Revision             |  |  |  |
| 1                | Marlene<br>Delaney<br>11/8/2012                   | Tony Perez<br>11/8/2012  | Tony Perez<br>11/8/2012  | Replaced pages 5-11, 5-12, and F-3. |  |  |  |
| 2                | Marlene<br>Delaney<br>11/15/2012<br>Apulue Manung | Tony Perez<br>11/15/2012 | Tony Perez<br>11/15/2012 | Replaced page F-3 and<br>Table E-2. |  |  |  |

i

# Contents

| List o | of Tabl  | les                                                                                |
|--------|----------|------------------------------------------------------------------------------------|
| Exec   | utive \$ | Summary                                                                            |
| 1      | Intro    | duction1-1                                                                         |
|        | 1.1      | Purpose1-1                                                                         |
|        | 1.2      | Background                                                                         |
|        | 1.3      | Plant Overview                                                                     |
|        | 1.4      | Approach1-2                                                                        |
|        | 1.5      | Conclusion                                                                         |
| 2      | Seísi    | mic Licensing Basis2-1                                                             |
|        | 2.1      | Overview                                                                           |
|        | 2.2      | Safe Shutdown Earthquake (SSE)                                                     |
|        | 2.3      | Design of Seismic Category I SSCs                                                  |
|        |          | 2.3.1 Seismic Summary2-1                                                           |
|        |          | 2.3.2 Applicable Codes                                                             |
|        |          | 2.3.3 Seismic Qualification of Safety Related Mechanical Equipment2-3              |
|        |          | 2.3.4 Seismic Qualification of Class I Instrumentation and Electrical Equipment2-3 |
| 3      | Pers     | onnel Qualifications3-1                                                            |
|        | 3.1      | Overview                                                                           |
|        | 3.2      | Project Personnel                                                                  |
|        |          | 3.2.1 Stevenson & Associates Personnel                                             |
|        | 3.3      | Additional Personnel                                                               |
| 4      | Sele     | ction of SSCs4-1                                                                   |
|        | 4.1      | Overview                                                                           |
|        | 4.2      | SWEL Development                                                                   |
|        |          | 4.2.1 SWEL 1 – Sample of Required Items for the Five Safety Functions              |
|        |          | 4.2.2 SWEL 2 – Spent Fuel Pool Related Items                                       |
| 5      | Seis     | mic Walkdowns and Area Walk-Bys5-1                                                 |
|        | 5.1      | Overview                                                                           |

|   | 5.2  | Seismic Walkdowns                                          | 5-1 |
|---|------|------------------------------------------------------------|-----|
|   |      | 5.2.1 Adverse Anchorage Conditions                         | 5-2 |
|   |      | 5.2.2 Configuration Verification                           | 5-2 |
|   |      | 5.2.3 Adverse Seismic Spatial Interactions                 | 5-3 |
|   |      | 5.2.4 Other Adverse Seismic Conditions                     | 5-4 |
|   | •    | 5.2.5 Conditions Identification during Seismic Walkdowns   | 5-4 |
|   | 5.3  | Area Walk-Bys                                              | 5-4 |
|   |      | 5.3.1 Conditions Identification during Area Walk-bys       | 5-6 |
|   | 5.4  | Supplemental Information on Electrical Cabinet Inspections | 5-6 |
| 6 | Lice | nsing Basis Evaluations                                    | 6-1 |
| 7 | IPEE | EE Vulnerabilities Resolution Report                       | 7-1 |
| 8 | Pee  | r Review                                                   | 8-1 |
| 9 | Refe | erences                                                    | 9-1 |
|   |      |                                                            | ,   |

# Appendices

| Α | Project Personnel Resumes and SWE CertificatesA-1              |
|---|----------------------------------------------------------------|
| B | Equipment ListsB-1                                             |
| С | Seismic Walkdown Checklists (SWCs) C-1                         |
| D | Area Walk-By Checklists (AWCs) D-1                             |
| Ε | Plan for Future Seismic Walkdown of Inaccessible Equipment E-1 |
| F | Peer Review ReportF-1                                          |
| G | IPEEE VulnerabilitiesG-1                                       |

ii

# List of Tables

| Table 2-1. List of Codes and Standards                    | . 2-2 |
|-----------------------------------------------------------|-------|
| Table 3-1. Personnel Roles                                | 3-1   |
| Table 5-1. Anchorage Configuration Confirmation           | 5-3   |
| Table 5-2. Conditions Identified during Seismic Walkdowns | 5-8   |
| Table 5-3. Conditions Identified during Area Walk-Bys     | 5-9   |
| Table B-1a. Base List 1a - Items Exclusive to Unit 3      | B-3   |
| Table B-1b. Base List 1b - Items Common to Units 2 and 3  | B-42  |
| Table B-2. SWEL 1                                         | B-46  |
| Table C-1. Summary of Seismic Walkdown Checklists         | C-2   |
| Table D-1. Summary of Area Walk-By Checklists             | D-2   |
| Table E-1. Inaccessible and Deferred Equipment List       | E-2   |
| Table E-2. Supplemental Cabinet Internal Inspection List  | E-4   |
| Table G-1. IPEEE Improvements Status                      | G-2   |

iii

The purpose of this report is to provide information as requested by the Nuclear Regulatory Commission (NRC) in its March 12, 2012 letter issued to all power reactor licensees and holders of construction permits in active or deferred status. (Ref. 7) In particular, this report provides information requested to address Enclosure 3, Recommendation 2.3: Seismic, of the March 12, 2012 letter. (Ref. 7)

Following the accident at the Fukushima Dai-ichi nuclear power plant resulting from the March 11, 2011, Great Tohoku Earthquake and subsequent tsunami, the NRC established the Near Term Task Force (NTTF) in response to Commission direction. The NTTF issued a report - *Recommendations for Enhancing Reactor Safety in the 21<sup>st</sup> Century: The Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident* - that made a series of recommendations, some of which were to be acted upon "without unnecessary delay." (Ref. 14) On March 12, 2012, the NRC issued a letter to all power reactor licensees in accordance with 10CFR50.54(f). The 50.54(f) letter requests information to assure that certain NTTF recommendations are addressed by all U.S. nuclear power plants. (Ref. 7) The 50.54(f) letter requires, in part, all U.S. nuclear power plants to perform seismic walkdowns to identify and address degraded, non-conforming or unanalyzed conditions and to verify the current plant configuration is within the current seismic licensing basis. This report documents the seismic walkdowns performed at Dresden Generating Station Unit 3 in response, in part, to the 50.54(f) letter issued by the NRC.

The Nuclear Energy Institute (NEI), supported by industry personnel, cooperated with the NRC to prepare guidance for conducting seismic walkdowns as required in the 50.54(f) letter, Enclosure 3, Recommendation 2.3: Seismic. (Ref. 7) The guidelines and procedures prepared by NEI and endorsed by the NRC were published through the Electric Power Research Institute (EPRI) as EPRI Technical Report 1025286, *Seismic Walkdown Guidance for Resolution of Fukushima Near-Term Task Force Recommendation 2.3: Seismic*, dated June 2012; henceforth, referred to as the "EPRI guidance document." (Ref. 1) Exelon/Dresden has utilized this NRC endorsed guidance as the basis for the seismic walkdowns and this report. (Ref. 1)

The EPRI guidance document was used to perform the engineering walkdowns and evaluations described in this report. In accordance with the EPRI guidance document, the following topics are addressed in the subsequent sections of this report.

- Seismic Licensing Basis
- Personnel Qualifications
- Selection of Systems, Structures, and Components (SSC)
- Seismic Walkdowns and Area Walk-Bys
- Seismic Licensing Basis Evaluations
- IPEEE Vulnerabilities Resolution Report
- Peer Review

#### Seismic Licensing Basis

The Seismic Licensing Basis is briefly described in Section 2 of this report. The safe shutdown earthquake for the Dresden Generating Station site is 0.20g horizontal ground acceleration and 0.133g vertical ground acceleration. (Ref. 2 Section 3.8)

## Personnel Qualifications

Personnel qualifications are discussed in Section 3 of this report. The personnel who performed the key activities required to fulfill the objectives and requirements of the 50.54(f) letter are qualified and trained as required in the EPRI guidance document. (Ref. 1) These personnel are responsible for:

- Selecting the SSCs that should be placed on the Seismic Walkdown Equipment List (SWEL),
- Performing the Seismic Walkdowns and Area Walk-Bys,
- Performing the seismic licensing basis evaluations, as applicable,
- Identifying the list of plant-specific vulnerabilities identified during the IPEEE program and describing the actions taken to eliminate or reduce them,
- Performing the peer reviews

#### Selection of SSCs

Selection of SSCs is discussed in Section 4 of this report. The process used to select the items that were included in the overall Seismic Walkdown Equipment List (SWEL) is described in detail in the EPRI guidance document, Section 3: Selection of SSCs. (Ref. 1) The SWEL is comprised of two groups of items, which are described at a high level in the following subsections.

#### Sample of Required Items for the Five Safety Functions – SWEL 1

Screen #1 narrowed the scope of SSCs in the plant to those that are designed to Seismic Category I requirements because they have a seismic licensing basis.

Screen #2 narrowed the scope of SSCs by selecting only those that do not regularly undergo inspections to confirm that their configuration continues to be consistent with the plant licensing basis.

Screen #3 narrowed the scope of SSCs included on SWEL 1 as only those associated with maintaining the five safety functions. These five safety functions include the four safe shutdown functions (reactor reactivity control, reactor coolant pressure control, reactor coolant inventory control, and decay heat removal, which includes the Ultimate Heat Sink), plus the containment functions.

Screen #4 was a process intended to result in a SWEL 1 that sufficiently represented the broader population of plant equipment and systems needed to meet the objectives of the 50.54(f) letter. The following five sample attributes were used:

- A variety of types of systems
- Major new or replacement equipment
- A variety of types of equipment
- A variety of environments

۷

 Equipment enhanced due to vulnerabilities identified during the IPEEE program

#### Spent Fuel Pool Related Items - SWEL 2

Screen #1 and Screen #2 were used to narrow the scope of spent fuel pool related SSCs to those that have a seismic licensing basis and those that are appropriate for an equipment walkdown process. Screen #3 was intended to result in SWEL 2 that sufficiently represents the broader population of spent fuel pool Seismic Category I equipment and systems to meet the objectives of the 50.54(f) letter, and included the following sample selection attributes:

- A variety of types of systems
- Major new or replacement equipment
- A variety of types of equipment
- A variety of environments

Screen #4 identified items of the spent fuel pool that could potentially cause a rapid drain-down of the pool, even if such items are not Seismic Category I. Rapid drain-down is defined as lowering of the water level to the top of the fuel assemblies within 72 hours after the earthquake. Any items identified as having the potential for rapidly draining the spent fuel pool were to be added to SWEL 2.

For Dresden Unit 3, the SWEL is comprised of:

- SWEL 1 resulted with 103 items for walkdown.
- SWEL 2 resulted with no items for walkdown.
- No items associated with spent fuel pool rapid drain-down are included on SWEL
   2.

#### Seismic Walkdowns and Area Walk-Bys

Section 5, Appendix C, and Appendix D of this report documents the equipment Seismic Walkdowns and the Area Walk-Bys. The online seismic walkdowns for Dresden Unit 3 were performed during the week of July 30, 2012. During the walkdown activities, the walkdown team consisted of two (2) Seismic Walkdown Engineers (SWEs), a station Equipment Operator, and various station personnel.

The seismic walkdowns focused on the seismic adequacy of the items on the SWEL. The walkdowns focused on the following:

- Adverse anchorage conditions
- Adverse seismic spatial interactions
- Other adverse seismic conditions (e.g., degradation, configuration, etc.)

Area Walk-Bys were conducted in each area of the plant that contained an item on the SWEL (generally within 35 feet of the SWEL component). The Area Walk-By was performed to identify potentially adverse seismic conditions associated with other SSCs located in the vicinity of the SWEL item. The key examination factors that were considered in the Area Walk-Bys included the following:

• Anchorage conditions (if visible without opening equipment)

vi

- Significantly degraded equipment in the area
- Potential seismic interaction
- A visual assessment (from the floor) of cable/conduit raceways and HVAC ducting (e.g., condition of supports or fill conditions of cable trays)
- Potential adverse interactions that could cause flooding/spray and fire in the area
- Other housekeeping items, including temporary installations

The seismic walkdown team inspected 88 of the 103 components on the SWEL. Walkdowns for 15 components were deferred due to accessibility issues such as being located in containment or energized equipment. The 15 remaining items will be inspected during a unit outage or another time when the equipment is accessible, as required. Anchorage verification was required for a minimum of 31 components. (Ref. 1) A total of 45 anchorage configurations were confirmed to be installed in accordance with the station documentation.

Following the completion of the online seismic walkdowns, the industry was made aware that the NRC staff had clarified a position on opening electrical cabinets to inspect for other adverse seismic conditions. Supplemental inspections of 33 electrical cabinets are planned and will be completed, as required, during a unit outage or another time when the equipment becomes accessible. The list of electrical cabinets along with the milestone completion schedule is provided in Table E-2.

During the seismic walkdowns at the Dresden Unit 3 fourteen (14) Issue Reports (IRs) were issued. After evaluation through the CAP, it was determined that none of the conditions identified in the IRs were adverse seismic conditions.

#### Seismic Licensing Basis Evaluations

The EPRI guidance document, Section 5: Seismic Licensing Basis Evaluation provides a detailed process to perform and document seismic licensing basis evaluations of SSCs identified when potentially adverse seismic conditions are identified. The process provides a means to identify, evaluate and document how the identified potentially adverse seismic condition meets a station's seismic licensing basis without entering the condition into a station's Corrective Action Program (CAP). In lieu of this process, Exelon/Dresden utilized the existing processes and procedures (Site CAP Expectations) to identify, evaluate and document conditions identified during the Seismic Walkdowns.

In accordance with Exelon/Dresden processes and procedures, all questionable conditions identified by the SWEs during the walkdowns were entered into the station CAP to be further evaluated and addressed as required. The SWEs provided input to support the identification and evaluation (including seismic licensing basis evaluations, as required) of the potentially adverse seismic conditions entered into the CAP. The station corrective action program is a more robust process than that provided in the EPRI guidance document; in part, ensuring each condition is properly evaluated for conformance with design and licensing bases and corrected as required.

Conditions identified during the walkdowns were documented on the SWCs, AWCs, and entered into the CAP. For those conditions that required, seismic licensing basis evaluations were completed and documented within the IR. Tables 5-2 and 5-3 in the report provide the IR, a summary of the condition, and the action completion status.

vii

## **IPEEE Vulnerabilities**

IPEEE vulnerabilities are addressed in Section 7 and Appendix G of this report. No vulnerabilities were identified as a result of the effort that addressed the Individual Plant Examination of External Events (IPEEE). (Ref. 3 and 5) However, plant improvements were identified in Section 7 of Reference 4. Table G-1 provides the list of plant improvements, the IPEEE proposed resolution, the actual resolution and resolution date. All IPEEE plant improvements and associated actions are complete.

#### Peer Reviews

A peer review team consisting of at least two individuals was assembled and peer reviews were performed in accordance with Section 6: Peer Reviews of the EPRI guidance document. The Peer Review process included the following activities:

- Review of the selection of SSCs included on the SWEL
- Review of a sample of the checklists prepared for the Seismic Walkdowns and Area Walk-Bys
- Review of licensing basis evaluations, as applicable
- Review of the decisions for entering the potentially adverse conditions into the CAP process
- Review of the submittal report
- Provided a summary report of the peer review process in the submittal report

Section 8 of this report contains a summary of the Peer Review. The Peer Review determined that the objectives and requirements of the 50.54(f) letter are met. Further, it was concluded by the peer reviews that the efforts completed and documented within this report are in accordance with the EPRI guidance document.

#### Summary

In summary, seismic walkdowns have been performed at the Dresden Generating Station Unit 3 in accordance with the NRC endorsed walkdown methodology. All potentially degraded, nonconforming, or unanalyzed conditions identified as a result of the seismic walkdowns have been entered into the corrective action program.

Evaluations of the identified conditions are complete and documented within the CAP. These evaluations determined the Seismic Walkdowns resulted with no adverse anchorage conditions, no adverse seismic spatial interactions, and no other adverse seismic conditions associated with the items on the SWEL. Similarly, the Area Walk-Bys resulted with no adverse seismic conditions associated with other SSCs located in the vicinity of the SWEL item(s).

The Seismic Walkdowns identified fourteen (14) minor conditions. Other than these minor conditions, the Seismic Walkdowns identified no degraded, nonconforming, or unanalyzed conditions that required either immediate or follow-on action. No planned or newly identified protection or mitigation features have resulted from the efforts to address the 50.54(f) letter.

Follow-on activities required to complete the efforts to address Enclosure 3 of the 50.54(f) letter include inspection of 15 items deferred due to inaccessibility along with

viii

ix

supplemental inspections of 33 electrical cabinets. Area Walk-Bys will be complete, as required, during these follow-on activities.

All IPEEE improvement actions are complete.

# 1 Introduction

# 1.1 PURPOSE

The purpose of this report is to provide information as requested by the Nuclear Regulatory Commission (NRC) in its March 12, 2012 letter issued to all power reactor licensees and holders of construction permits in active or deferred status. (Ref. 7) In particular, this report provides information requested to address Enclosure 3, Recommendation 2.3: Seismic, of the March 12, 2012 letter. (Ref. 7)

# 1.2 BACKGROUND

Following the accident at the Fukushima Dai-ichi nuclear power plant resulting from the March 11, 2011, Great Tohoku Earthquake and subsequent tsunami, the NRC established the Near Term Task Force (NTTF) in response to Commission direction. The NTTF issued a report - *Recommendations for Enhancing Reactor Safety in the 21<sup>st</sup> Century: The Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident* - that made a series of recommendations, some of which were to be acted upon "without unnecessary delay." (Ref. 14) On March 12, 2012, the NRC issued a letter to all power reactor licensees in accordance with 10CFR50.54(f). The 50.54(f) letter requests information to assure that certain NTTF recommendations are addressed by all U.S. nuclear power plants. (Ref. 7) The 50.54(f) letter requires, in part, all U.S. nuclear power plants to perform seismic walkdowns to identify and address degraded, non-conforming or unanalyzed conditions and to verify the current plant configuration is within the current seismic licensing basis. This report documents the seismic walkdowns performed at Dresden Generating Station Unit 3 in response, in part, to the 50.54(f) letter issued by the NRC.

The Nuclear Energy Institute (NEI), supported by industry personnel, cooperated with the NRC to prepare guidance for conducting seismic walkdowns as required in the 50.54(f) letter, Enclosure 3, Recommendation 2.3: Seismic. (Ref. 7) The guidelines and procedures prepared by NEI and endorsed by the NRC were published through the Electric Power Research Institute (EPRI) as EPRI Technical Report 1025286, *Seismic Walkdown Guidance for Resolution of Fukushima Near-Term Task Force Recommendation 2.3: Seismic*, dated June 2012; henceforth, referred to as the "EPRI guidance document." (Ref. 1) Exelon/Dresden has utilized this NRC endorsed guidance as the basis for the seismic walkdowns and this report. (Ref. 1)

# **1.3 PLANT OVERVIEW**

Dresden Generating Station consists of two operating boiling water reactor (BWR) generating units, located in Morris, Illinois. A third retired unit is also present at Dresden but will not be included in this report. Both operating units have Mark I containments, are rated at 2957 MWt power (Renewed Facility Operating License No. DPR-25), and were originally designed and built by GE as prime contractor for Commonwealth Edison

Company (ComEd). Dresden Unit 3 was completed and went in to commercial service in November of 1971. (Ref. 2 section 1.1.1).

# **1.4** APPROACH

The EPRI guidance document is used for the Dresden Generating Station Unit 3 engineering walkdowns and evaluations described in this report. In accordance with Reference 1, the following topics are addressed in the subsequent sections of this report:

- Seismic Licensing Basis
- Personnel Qualifications
- Selection of Systems, Structures, and Components (SSCs)
- Seismic Walkdowns and Area Walk-Bys
- Licensing Basis Evaluations
- IPEEE Vulnerabilities Resolution Report
- Peer Review

# 1.5 CONCLUSION

Seismic walkdowns have been performed at the Dresden Generating Station Unit 3 in accordance with the NRC endorsed walkdown methodology. All potentially degraded, nonconforming, or unanalyzed conditions identified as a result of the seismic walkdowns have been entered into the corrective action program.

Evaluations of the identified conditions are complete and documented within the CAP. These evaluations determined the Seismic Walkdowns resulted with no adverse anchorage conditions, no adverse seismic spatial interactions, and no other adverse seismic conditions associated with the items on the SWEL. Similarly, the Area Walk-Bys resulted with no adverse seismic conditions associated with other SSCs located in the vicinity of the SWEL item(s).

The Seismic Walkdowns identified fourteen (14) minor conditions. Other than these minor conditions, the Seismic Walkdowns identified no degraded, nonconforming, or unanalyzed conditions that required either immediate or follow-on action. No planned or newly identified protection or mitigation features have resulted from the efforts to address the 50.54(f) letter.

Follow-on activities required to complete the efforts to address Enclosure 3 of the 50.54(f) letter include inspection of 15 items deferred due to inaccessibility along with supplemental inspections of 33 electrical cabinets. Area Walk-Bys will be complete, as required, during these follow-on activities.

# 2 Seismic Licensing Basis

# 2.1 OVERVIEW

This section of the report summarizes the seismic licensing basis for the Dresden Generating Station Unit 2 and Unit 3. The safe shutdown earthquake and a summary of the codes, standards, and methods used in the design of Seismic Class I (Category I) SSCs are presented. This section does not establish or change the seismic licensing basis of the facility and is intended to provide a fundamental understanding of the seismic licensing basis of the facility.

# 2.2 SAFE SHUTDOWN EARTHQUAKE (SSE)

The safe shutdown earthquake for the Dresden Generating Station site is 0.20g horizontal ground acceleration and 0.133g vertical ground acceleration. (Ref. 2 Section 3.8)

# 2.3 DESIGN OF SEISMIC CATEGORY I SSCS

A full description of the Safe Shutdown Earthquake along with the codes, standards, and methods used in the design of the Seismic Class I (Category I) SSCs for meeting the seismic licensing basis requirements is provided in the following Dresden Generating Station UFSAR sections:

- 3.2 Classification of Structures, Components, and Systems
- 3.7 Seismic Design
- 3.8 Design of Class I Structures
- 3.9 Mechanical Systems and Components
- 3.10 Seismic Qualification of Class I Instrumentation and Electrical Equipment

These UFSAR sections should be referred to for a detailed understanding of the seismic licensing basis.

# 2.3.1 Seismic Summary

The input motions used to create the seismic design of Dresden are based on the Housner-type Ground Response Spectrum (GRS) and the north-south component earthquake record of El Centro of May 18, 1940. The Dresden design basis Safe Shutdown Earthquake (SSE) ground spectra are smoothed Housner-type spectra. The design basis In-Structure Response Spectra (ISRS) were generated using a time-history method of analysis. The El Centro 1940 earthquake N-S component, anchored to 0.10g, was used to generate the ISRS for the Dresden Operating basis Earthquake (OBE). For SSE design, the spectral values were obtained by doubling the OBE spectra. The OBE is defined in the horizontal direction by the Housner-type GRS scaled to 0.10g peak

ground acceleration (PGA) and ISRS developed from the El Centro Earthquake time history scaled to 0.10g. The OBE in the vertical direction is defined by two-thirds of the Housner-type GRS with a resulting PGA of 0.067g. The SSE is defined by multiplying the OBE acceleration by a factor of 2, resulting in a horizontal direction GRS PGA of 0.20g. (Ref. 4)

# 2.3.2 Applicable Codes

As per section 3.2 of Reference 2, Table 2-1 summarizes the codes and standards used for design of systems or components which are applicable in-whole or in-part:

|                                           | ·····                                            |
|-------------------------------------------|--------------------------------------------------|
| System, Structure, or Component           | Code or Standard                                 |
| Valves (except main steam isolation,      | USAS B-31.1 and ASME Section I                   |
| safety, relief, and safety relief valves) |                                                  |
| Reactor Recirculation Pumps               | ASME Section III, Class C                        |
| Main Steam Isolation, Safety, Relief,     | USAS B-31.1, ASME Section I, and ASME            |
| and Safety Relief Valves and Flow         | Section III (Safety Relief Valve)), 1971 Edition |
| Restrictors                               |                                                  |
| Piping System                             | USAS B-31.1, and ASME Section I.                 |
| Batteries (Station batteries)             | IEEE 308-1974; IEEE 450                          |
| Cable (new cable installations)           | IEEE 384                                         |
| Condenser pit level alarms                | IEEE 279                                         |
| Containment                               | ASME Section III, 1965 Edition, Class B          |
| Containment air monitoring (CAM)          | ASME III, Class 2; IEEE 323-1974; IEEE           |
|                                           | 344-1975                                         |
| Containment penetrations                  | ASME Section III, Class B                        |
| Containment penetration fitting design    | ASME Section VIII                                |
| Control rod drive                         | ASME Section III                                 |
| Core spray piping                         | USAS B31.1                                       |
| Core spray pump casing                    | ASME Section III, Class C                        |
| Core spray spargers and nozzles           | ASME Section III                                 |
| Core spray vessel nozzle                  | ASME SA 336, Code Case 1332                      |
| Fuel pool cooling heat exchanger          | ASME Section III                                 |
| Fuel pool cooling pump                    | ASME VIII                                        |
| HPCI piping                               | USAS B-31.1 and ASME Section I                   |
| HPCI pumps                                | ASME Section III                                 |
| Hydrogen injection system                 | USAS B-31.1 and ASME Section VIII                |
| Isolation condenser heat exchanger        | ASME Section VIII                                |
| shell side                                |                                                  |
| Isolation condenser heat exchanger        | ASME Section III                                 |
| tube side                                 | ·                                                |
| Instruments (replacement and new          | IEEE 344-1975                                    |
| RG 1.97)                                  |                                                  |
| LPCI pump casings                         | ASME Section III, Class C                        |
| Main steam piping                         | USAS B-31.1; ASME Section I and III              |
| Off-gas piping                            | USAS ASA B-31.1                                  |
| Off-gas recombiner/adsorber               | ASME Section III, Subsection ND, Class 3         |
| Oxygen injection tank (inner vessel)      | ASME Section VIII, Division I                    |
| RBCCW heat exchangers                     | ASME Section VIII                                |

| Table 2-1. List of Codes and Standard |
|---------------------------------------|
|---------------------------------------|

| System, Structure, or Component     | Code or Standard                              |
|-------------------------------------|-----------------------------------------------|
| Reactor protection system           | IEEE 279-1968                                 |
| Reactor water cleanup vessels       | ASME Section III Class C, 1965 (Unit 2        |
|                                     | purchased to ASME Section VIII, reconciled to |
|                                     | ASME Section III, Class C, 1965)              |
| Shutdown cooling system             | ASME III, Class C)                            |
| Suppression pool temp monitoring    | IEEE 279-1971, 323-1974, 344-1971, 344-       |
| system                              | 1975                                          |
| Traversing incore probe guide tubes | ASME Section VIII                             |

## 2.3.3 Seismic Qualification of Safety Related Mechanical Equipment

Safety-related mechanical equipment is qualified by either dynamic or static analysis methods. (Ref. 2 section 3.9.2.2)

Where a dynamic analysis was not performed, the horizontal seismic coefficients for rigid equipment in the reactor-turbine building were considered to be equal to or greater than the building acceleration at the installed elevation. The vertical seismic coefficient was considered as two-thirds of ground acceleration, i.e., 0.067 g. The input motion to the equipment was assumed to be the absolute acceleration of the structure at the points of support of the equipment. (Ref. 2 section 3.9.2.2)

A reassessment of the seismic adequacy of mechanical and electrical equipment at Dresden Unit 2 was performed under the systematic evaluation program (SEP), Topic III-6, titled, "Seismic Design Considerations." In addition, Generic Letter (GL) 87-02, "Verification of Seismic Adequacy of Mechanical and Electrical Equipment in Operating Reactors, Unresolved Safety Issue (USI) A-46," requires verification of seismic adequacy. (Ref. 2 section 3.9.2.2)

# 2.3.4 Seismic Qualification of Class I Instrumentation and Electrical Equipment

The original seismic design criteria for Dresden Units 2 and 3 were developed by John A. Blume and Associates based on the recommendation of seismologist Perry Byerly. (Ref. 2 section 3.10)

Dresden Station was originally designed for a design level earthquake, equivalent to the operating basis earthquake (OBE) with a peak ground acceleration of 0.1 g. The design was reviewed to assure that the plant would resist twice the response loads for the 0.1 g earthquake without hindering the ability of the plant to be safely shut down. (Ref. 2 section 3.10)

Seismic design requirements and procedures have evolved significantly since the time Dresden Station received its construction permit. Recognizing this evolution, the NRC found that it was necessary to make a reassessment of the seismic safety of older operating plants. The Dresden Unit 2 seismic reassessment was performed under the Systematic Evaluation Program (SEP), Topic III-6, titled "Seismic Design Considerations," June 30, 1982. (Ref. 2 section 3.10)

Generic letter (GL) 87-02, "Verification of Seismic Adequacy of Mechanical and Electrical Equipment in Operating Reactors, Unresolved Safety Issue (USI) A-46," which was issued on February 19, 1987, also addresses seismic assessment of older plants. The generic letter was issued to implement the USI A-46 resolution which concluded that the seismic adequacy of certain equipment in older operating nuclear plants must be reviewed against seismic criteria not yet in use when these plants were licensed. (Ref. 2 section 3.10)

Supplement No. 1 to Generic Letter 87-02 was issued on May 22, 1992. It transmitted the NRC staff's Supplemental Safety Evaluation Report No. 2 (SSER-2) on the Seismic Qualification Utility Group's (SQUG) Generic Implementing Procedure, Revision 2 as corrected on February 14, 1992 (referred to as GIP-2). The GIP-2 methodology relies primarily on the use of existing earthquake and testing experience data to verify the seismic adequacy of generic classes of equipment in contrast to seismic qualification procedures, which rely on analysis or testing of each item of equipment. (Ref. 2 section 3.10)

ComEd committed to use the following as its method for responding to Generic Letter 87-02:

- GIP-2 in its entirety (both SQUG commitments and implementation guidance);
- Clarifications, interpretations, and exceptions to GIP-2 identified in SSER-2;
- Letter of August 21, 1992 (N.P. Smith to J.G. Partlow), SQUG Response to Generic Letter 87-02; and
- Letter of October 2, 1992 (J.G. Partlow to N.P. Smith), NRC Response to Seismic Qualification Group.

(Ref. 2 section 3.10)

The following two clarifications apply:

- ComEd will use previously performed anchorage evaluations to expedite and/or minimize the GIP verification efforts, provided that the anchorage evaluations previously performed meet the criteria and procedures approved by the staff in SSER-2.
- ComEd will use existing seismic qualification test reports to demonstrate operability for any equipment on its safe shutdown equipment list that was previously qualified to IEEE 344-1975.

(Ref. 2 section 3.10)

For new and replacement equipment, the GIP-2 methodology is applied if consistent with the licensing basis for the equipment. In particular, each new or replacement item of equipment and parts is evaluated for any design changes that could reduce its seismic capacity from that reflected by the earthquake experience or generic testing equipment classes. This includes verification of the seismic adequacy of commercial grade equipment being dedicated for safety-related purposes. (Ref. 2 section 3.10)

For Regulatory Guide 1.97 new and replacement equipment requiring seismic qualification, the requirements of IEEE 344-1975, Regulatory Guide 1.100, Revision 1, and Dresden Station will be satisfied. (Ref. 2 section 3.10)

# **3** Personnel Qualifications

# 3.1 OVERVIEW

This section of the report identifies the personnel that participated in the NTTF 2.3 Seismic Walkdown efforts. A description of the responsibilities of each Seismic Walkdown participant's role(s) is provided in Section 2 of the EPRI guidance document. (Ref. 1) Resumes included in Appendix A provide detail on each person's qualifications.

# **3.2 PROJECT PERSONNEL**

Table 3-1 below summarizes the names and corresponding roles of personnel who participated in the NTTF 2.3 Seismic Walkdown effort.

| Name                          | Equipment<br>Selection<br>Engineer | Plant<br>Operations | Seismic<br>Walkdown<br>Engineer<br>(SWE) | Licensing<br>Basis<br>Reviewer | IPEEE<br>Reviewer | Peer<br>Reviewer |
|-------------------------------|------------------------------------|---------------------|------------------------------------------|--------------------------------|-------------------|------------------|
| A. Perez                      | X                                  |                     |                                          |                                |                   |                  |
| K. Hull                       | X                                  |                     |                                          |                                |                   |                  |
| T.K. Ram                      |                                    |                     |                                          |                                |                   | X <sup>(1)</sup> |
| J. Griffith                   |                                    |                     | Х                                        | Х                              |                   |                  |
| M. Wodarcyk                   |                                    |                     | Х                                        | . <b>X</b>                     | ۴.                |                  |
| B. Lory                       |                                    |                     |                                          |                                |                   | X <sup>(2)</sup> |
| W. Djordjevic                 | •                                  |                     |                                          |                                |                   | X <sup>(3)</sup> |
| D. Hamilton (Exelon)          |                                    | Х                   |                                          |                                |                   |                  |
| B. Weight (Exelon)            |                                    |                     |                                          | Х                              | Х                 |                  |
| Notes:<br>1. Peer Review Tear | n member for S                     | SWEL review of      | only.                                    |                                |                   |                  |

Table 3-1. Personnel Roles

2. Peer Review Team Leader.

3. Peer Review Team Leader for SWEL.

## 3.2.1 Stevenson & Associates Personnel

The following provides a synopsis of each individual's background and experiences.

Antonio Perez, P.E.: Mr. Perez is a Senior Engineer III and serves as the General Manager of the S&A Hudson, WI office. He earned his Bachelor of Science degree in Mechanical Engineering at Michigan Technological University and is a licensed Professional Engineer in the states of Wisconsin and Minnesota. Mr. Perez has over 15 years of experience in project management, project engineering, equipment design, and mechanical systems design and has served in the nuclear power industry for over 11 years. He has extensive experience in Program and Design Engineering and has held positions such as MOV Engineer, Responsible Design Engineer, Design Engineering Supervisor and STA Trainee in the nuclear power industry. Mr. Perez has successfully completed the Near-Term Task Force Recommendation 2.3 – Plant Seismic Walkdowns Training Course.

<u>Kim Hull:</u> Mr. Hull is a Senior Engineer III in the S&A Hudson, WI office. He earned his Master of Science degree in Mechanical Engineering at Michigan State University. Mr. Hull has over 30 years of experience in the nuclear power industry and has held positions such as Shift Technical Advisor, Principal Engineer, Senior Instructor, and Mechanical Design Supervisor. He has an extensive background in all aspects of nuclear power plant modifications with a thorough understanding of configuration control/management along with design and licensing basis of nuclear power plants. Mr. Hull has successfully completed the Near-Term Task Force Recommendation 2.3 – Plant Seismic Walkdowns Training Course.

Tribhawan K. Ram, P.E.: Mr. Ram is a Senior Engineer III in the S&A Phoenix, AZ Office. He has over 28 year experience in the nuclear power industry with expertise in plant systems and design engineering. Currently, Mr. Ram is leading the electrical engineering effort in support of Post-Fukushima Seismic Margin Analysis (SMA) for two Taiwan nuclear stations (PWR and BWR). This effort, in support of the plant Safe Shutdown Equipment List (SSEL), consists of relay list development, relay screening (using GERS, SQURTS or other available testing data), and relay chatter analysis. Mr. Ram was involved in resolving USI A-46 relay outliers for several plants (Dresden, Quad Cities, Millstone, Palisades, and Pilgrim). He evaluated dozens of control circuits for relay chattering issues. To replace outliers. Mr. Ram developed and/or supervised the development of modification packages including: replacement relay selection; relay testing specification preparation; and seismic testing facility visits for relay qualification. As a systems manager, Mr. Ram conducted periodic system walkdowns to discover and then pursue resolutions for any design, maintenance or operational issues with equipment. He has developed test plans for circuit breaker and other electrical equipment replacement, including involvement in test plan execution during refueling outages. Mr. Ram has interfaced, with NRC in their biennial Component Design Basis Inspections (CDBI), and with INPO in their biennial evaluations. Mr. Ram has MS degrees in Nuclear and Electrical Engineering from the University of Cincinnati, and an MBA from Bowling Green State University. He is a licensed Professional Engineer (electrical) in Ohio. Mr. Ram has completed a six month training course in BWR systems.

<u>Jim Griffith, P.E.</u> Mr. Griffith is a Senior Engineer III in the S&A Chicago Office. He has a Bachelor of Science degree in civil engineering and has more than 25 years of experience in the nuclear power plant industry. He is a licensed Professional Engineer

3-2

in the State of Wisconsin. He is a SQUG Qualified Seismic Capability Engineer (SCE) and has completed the NTTF Recommendation 2.3 Training Course (SWE). In addition to his involvement in design and analysis of structures, systems, and components at nuclear power plants, Mr. Griffith has many years of experience working at numerous nuclear power plants in support of construction, design, outage, and walkdown activities including SQUG walkdowns.

<u>Michael Wodarcyk, E.I.T.</u> Mr. Wodarcyk is a Staff Engineer in the S&A Chicago, IL Office. He has a Master of Science Degree in Civil Engineering and has been working in the nuclear power plant industry for slightly more than one year. He has completed the NTTF Recommendation 2.3 Training Course (SWE). He has been involved in the design and analysis of rigging configurations, piping and pipe supports, and other various structures.

<u>Bruce Lory</u> Mr. Lory is a Senior Engineer III in the S&A Chicago, IL Office. He has a Bachelor of Science degree in mechanical engineering and has more than 30 years of experience in the nuclear power plant industry. He is a SQUG Qualified Seismic Capability Engineer (SCE) and is the instructor of the Fundamentals of Equipment Seismic Qualification training course for EPRI, and is the co-instructor of the Fukushima Seismic Walkdown training course in response to NTTF 2.3. In addition, he has been involved with equipment modifications for Extended Power Uprates (EPU), as well as Seismic Qualification (SQ) and Environmental Qualification (EQ) of equipment/components at numerous nuclear power plants.

<u>Walter Djordjevic, P.E.</u> Mr. Djordjevic is a Senior Consultant and serves as President of S&A with specialization in the dynamic analysis and design of structures and equipment for seismic, blast, fluid, and wind loads. He has managed and led seismic walkdowns and fragility analyses of structures and components for use in probabilistic risk assessments. Mr. Djordjevic has 37 years of seismic experience serving the nuclear industry. Mr. Djordjevic performed and managed more than 20 USI A-46 and IPEEE projects in response to the requirements of Generic Letters 87-02 and 88-20. Mr. Djordjevic has a Master of Science in Structural Engineering from the Massachusetts Institute of Technology. He has received industry training as a Seismic Capability Engineer (EPRI SQUG training), EPRI IPEEE Add-on, Seismic Fragility and Seismic Walkdown Engineer (SWE).

# 3.3 ADDITIONAL PERSONNEL

Exelon plant Operations staff member Mr. David Hamilton, reviewed the SWEL. Mr. Hamilton is the Manager of Operations Support at Dresden Station. He is currently a licensed SRO and has been since 2006. Mr. Hamilton has worked in the operations department at Dresden for 23 years and he is familiar with all aspects of the station operating procedures.

Various additional station personnel also provided support to the SWEL preparer to help identify major equipment or system modifications, equipment and systems located in different environments, and equipment and systems that would be accessible for inspection during the plant walkdowns, in accordance with Reference 1.

Exelon Engineering staff member Mr. Bryan Weight performed the IPEEE Vulnerabilities Review based, in part, on the Dresden IPEEE submittal along with subsequent correspondence and station records. (Ref. 3, 4, and 5) Mr. Weight is a Staff Engineer in the Exelon Engineering Department. He has over 36 years of engineering experience and has worked at Dresden for the past 5 years. Mr. Weight has completed the NTTF Recommendation 2.3 Training Course (SWE) and the SQUG Training in 2009.

# **4** Selection of SSCs

# 4.1 OVERVIEW

This section of the report describes the process used to select structures, systems, and components, (SSCs) that were included in the Seismic Walkdown Equipment List (SWEL). The actual equipment lists that were developed in this process are found in Appendix B and are as follows:

- Table B-1a, Base List 1a Items Exclusive to Unit 3
- Table B-1b, Base List 1b Items Common to Units 2 and 3
- Table B-2, SWEL 1

# 4.2 SWEL DEVELOPMENT

The selection of SSCs process described in EPRI Technical Report 1025286, *Seismic Walkdown Guidance for Resolution of Fukushima Near-Term Task Force Recommendation 2.3: Seismic*, dated June 2012, was utilized to develop the SWEL for Dresden Generating Station Unit 3. (Ref. 1)

The SWEL is comprised of two groups of items:

- SWEL 1 is a sample of items to safely shut down the reactor and maintain containment integrity
- SWEL 2 is a list of spent fuel pool related items

# **4.2.1** SWEL 1 – Sample of Required Items for the Five Safety Functions

The process for selecting a sample of SSCs for shutting down the reactor and maintaining containment integrity began with the composite Seismic Individual Plant Examination for External Events (IPEEE) Success Path Equipment List (SPEL)<sup>1</sup>. (Ref. 3 and 4) The IPEEE SPEL was then subjected to the following four screens to identify the items to be included on the first Seismic Walkdown Equipment List (SWEL 1):

# 1. Screen #1 – Seismic Category 1

As described in Reference 1, only items that have a defined seismic licensing basis are to be included in SWEL 1. Each item on the IPEEE SPEL was reviewed to determine if it had a defined seismic licensing basis. All items identified as Class I, as defined in Dresden UFSAR Chapter 3, were identified as having a defined seismic licensing basis. (Ref. 2) Electrical enclosures containing Class 1E devices

<sup>&</sup>lt;sup>1</sup> Through the efforts of this project, certain equipment identification numbers listed on the IPEEE SPEL were found to be incorrect. The equipment identification numbers have been corrected in this report to be consistent with current plant drawings and the master equipment database.

were identified as Class I. Class I and Class 1E determination was made through a review of current design and licensing basis documentation.

## 2. Screen #2 – Equipment or Systems

This screen narrowed the scope of items to include only those that do not regularly undergo inspections to confirm that their configuration is consistent with the plant licensing basis. This screen further reduced the IPEEE SPEL of any Class I Structures, Containment Penetrations, Class I Piping Systems, cable/conduit raceways and HVAC ductwork.

#### 3. Screen #3 – Support for the Five Safety Functions

This screen narrowed the scope of items included on the SWEL 1 to only those associated with maintaining the following five safety functions:

A. Reactor Reactivity Control (RRC)

- B. Reactor Coolant Pressure Control (RCPC)
- C. Reactor Coolant Inventory Control (RCIC)
- D. Decay Heat Removal (DHR)
- E. Containment Function (CF)

The first four functions are associated with bringing the reactor to a safe shutdown condition. The fifth function is associated with maintaining containment integrity.

As described in Appendix E of Reference 1, the safety function for each item on the IPEEE SPEL was identified. It is noted that items on SWEL 1 with a specific safety function(s) are considered frontline systems. Items with a safety function of 'Auxiliary & Support', 'Electrical Systems', or 'Racks & Panels' may be a frontline or support system. Items with a safety function of 'Auxiliary & Support', 'Electrical Systems', or 'Racks & Panels' may be a frontline or support system. Items with a safety function of 'Auxiliary & Support', 'Electrical Systems', or 'Racks & Panels' support at least one of the five safety functions however, the specific safety function(s) is not indicated as identification of the specific safety function(s) supported is not required by Reference 1.

The resultant equipment list after Screen #3 is defined in the EPRI guidance document as Base List 1 and is included in Appendix B. (Ref. 1)

#### 4. Screen #4 – Sample Considerations

This screen is intended to result in a SWEL 1 that sufficiently represents a broad population of plant Seismic Category 1 equipment and systems to meet the objectives of the NRC 50.54(f) letter. The following attributes were considered in the selection process for items included on SWEL 1:

A. A variety of types of systems

The system is identified for each item on SWEL 1. The equipment included on SWEL 1 is a representative sample of several systems that perform one or multiple safety functions. Further, the systems represented include both frontline and support systems as listed in Reference 1 Appendix E: Systems to Support Safety Function(s).

#### B. Major new and replacement equipment

The equipment included on SWEL 1 includes several items that have been modified or replaced over the past several years. Each item on SWEL 1 that is new or replaced is identified.

C. A variety of types of equipment

The equipment class is identified for each item on SWEL 1. The equipment included on SWEL 1 is a representative sample from each of the classes of equipment listed in Reference 1 Appendix B: Classes of Equipment. Where appropriate, at least one piece of equipment from each class is included on SWEL 1.

Screening #1, #2, and #3 resulted in no equipment in the following classes:

- (13) Motor Generators
- (19) Temperature Sensors.
- D. A variety of environments

The location for each item is identified on SWEL 1. The equipment included on SWEL 1 is a representative sample from a variety of environments (locations) in the station.

E. Equipment enhanced due to vulnerabilities identified during the IPEEE program

The equipment included on SWEL 1 includes several items that were enhanced as a result of the IPEEE program. Each item on SWEL 1 that was enhanced as a result of the IPEEE program is identified.

F. Contribution to risk

In selecting items for SWEL 1 that met the attributes above, some items with similar attributes were selected based on their higher risk-significance. To determine the relative risk-significance, the Risk Achievement Worth (RAW) and Fussell-Vesely importance for a Loss of Off-Site Power (LOOP) scenario from the internal plant PRA were used. Additionally, the list of risk-significant components for the LOOP PRA were compared with the draft SWEL 1 to confirm that a reasonable sample of risk-significant components (relevant for a seismic event) were included on SWEL 1. (Ref. 8)

## **4.2.2** SWEL 2 – Spent Fuel Pool Related Items

The process for selecting a sample of SSCs associated with the spent fuel pool (SFP) began with a review of the station design and licensing basis documentation for the SFP and the interconnecting SFP cooling system. (Ref. 2 section 9.1 and Ref. 9, 10, 11, 12, 13, and 15) The following four screens narrowed the scope of SSCs to be included on the second Seismic Walkdown Equipment List (SWEL 2):

#### 1. Screen #1 - Seismic Category 1

Only those items identified as Class I (having defined seismic licensing basis) are to be included on SWEL 2 with exception to the SFP structure. As described in Reference 1, the adequacy of the SFP structure is assessed by analysis as a Seismic Category 1 structure. Therefore, the SFP structure is assumed to be

seismically adequate for the purposes of this program and is not included in the scope of items included on SWEL 2.

The review of design and licensing basis documentation for the SFP revealed no Class I equipment for Dresden Generating Station Unit 3. (Ref. 2 section 9.1 and Ref. 9, 10, 11, 12, 13 and 15)

Screen #1 identified no items to be added to SWEL 2. Therefore, Screens #2 and #3 below were not performed. However, Screens #2 and #3 are provided for completeness as they are part of the equipment selection process.

#### 2. Screen #2 – Equipment or Systems

This screen was to consider only those items associated with the SFP that were appropriate for an equipment walkdown process. This screen was not performed as Screen #1 added no items to SWEL 2.

### 3. Screen #3 – Sample Considerations

This screen represents a process that was intended to result in a SWEL 2 that sufficiently represented a broad population of SFP Seismic Category 1 equipment and systems that met the objectives of the NRC 50.54(f) letter. (Ref. 1) The following attributes were to have been considered in the development of SWEL 2:

G. A variety of types of systems

H. Major new and replacement equipment

I. A variety of types of equipment

J. A variety of environments

This screen was not performed as Screen #1 added no items to SWEL 2.

#### 4. Screen #4 – Rapid Drain-Down

This screen identifies items that could allow the spent fuel pool to drain rapidly. Consistent with Reference 1, the scope of items included in this screen is limited to the hydraulic lines connected to the SFP and the equipment connected to those lines. For the purposes of this program it is assumed the SFP gates are installed and the SFP cooling system is in its normal alignment for power operations. The SFP gates are passive devices that are integral to the SFP. As such, they are considered capable of withstanding a design basis earthquake without failure and do not allow for a rapid drain-down of the SFP.

The SSCs identified in this screen are not limited to Seismic Category 1 (having defined seismic licensing basis) items, but is limited to those items that could allow rapid drain-down of the SFP. Rapid drain-down is defined as lowering of the water level to the top of the fuel assemblies within 72 hours after the earthquake.

An assessment of the Dresden Generating Station Unit 3 spent fuel pools and their cooling systems was performed and found no SFP penetrations below 10 feet above the top of the fuel assemblies. (Ref. 2 section 9.1 and Ref. 9, 10, 11, 12, 13 & 15) As such, and consistent with Reference 1, there is no potential for rapid drain-down and no items were added to SWEL 2 for Unit 3.

No items were identified to be included in the scope of SWEL 2 for Dresden Generating Station Unit 3.

# 5 Seismic Walkdowns and Area Walk-Bys

# 5.1 OVERVIEW

Seismic Walkdowns and Area Walk-Bys were conducted by two (2) person teams of trained Seismic Walkdown Engineers (SWEs), in accordance with the EPRI guidance document during the week of July 30, 2012. The Seismic Walkdowns and Area Walk-Bys are discussed in more detail in the following sub-sections.

Consistent with the EPRI guidance document, Section 4: Seismic Walkdowns and Area Walk-Bys, the SWEs used their engineering judgment, based on their experience and training, to identify potentially adverse seismic conditions. Where needed, the engineers were provided the latitude to rely upon new or existing analyses to inform their judgment.

The SWEs conducted the Seismic Walkdowns and Area Walk-Bys together as a team. During the evaluations, the SWEs actively discussed their observations and judgments with each other. The results of the Seismic Walkdowns and Area Walk-Bys reported herein are based on the comprehensive agreement of the SWEs.

# 5.2 SEISMIC WALKDOWNS

The Seismic Walkdowns focused on the seismic adequacy of the items on the SWEL as provided in Appendix B of this report. It is noted, as discussed in Section 4 above, there were no items included on SWEL 2 for Dresden Unit 3. The Seismic Walkdowns also evaluated the potential for nearby SSCs to cause adverse seismic interactions with the SWEL items. The Seismic Walkdowns focused on the following adverse seismic conditions associated with the subject item of equipment:

- Adverse anchorage conditions
- Adverse seismic spatial interactions
- Other adverse seismic conditions

The results of the Seismic Walkdowns have been documented on the Seismic Walkdown Checklist (SWC) provided in the EPRI guidance document. Seismic Walkdowns were performed and a SWC completed for 88 of the 103 items identified on the Dresden Unit 3 SWEL. The completed SWCs are provided in Appendix C of this report. Additionally, photos have been included with most SWCs to provide a visual record of the item along with any comments noted on the SWC. Drawings and other plant records are cited in some of the SWCs, but are not included with the SWCs because they are readily retrievable documents through the station's document management system. Information on anchorage that was obtained from the previously performed Seismic Qualification Utility Group (SQUG) walkdowns are included in the SWCs since this information, in part, was used for the anchorage verification.

Seismic Walkdowns are deferred for the remaining 15 items to a unit outage or appropriate time when the equipment is accessible. These items could not be walked down during the 180-day period following the issuance of the 10CFR50.54(f) letter due to their being inaccessible. Inaccessibility of this equipment was either based on the location of the equipment (environment that posed personnel safety concerns while the unit is operating) or due to the electrical safety hazards posed while the equipment is operating. Appendix E of this report identifies the inaccessible equipment along with the plan for future Seismic Walkdowns.

The following subsections describe the approach followed by the SWEs to identify potentially adverse anchorage conditions, adverse seismic interactions, and other adverse seismic conditions during the Seismic Walkdowns.

#### 5.2.1 Adverse Anchorage Conditions

Guidance for identifying anchorage that could be degraded, non-conforming, or unanalyzed relied on visual inspections of the anchorage and verification of anchorage configuration. Details for these two types of evaluations are provided in the following two subsections.

The evaluation of potentially adverse anchorage conditions described in this subsection applies to the anchorage connections that attach the identified item of equipment to the civil structure on which it is mounted. For example, the welded connections that secure the base of a Motor Control Center (MCC) to the steel embedment in the concrete floor would be evaluated in this subsection. Evaluation of the connections that secure components within the MCC is covered later in the subsection "Other Adverse Seismic Conditions."

# Visual Inspections

The purpose of the visual inspections was to identify whether any of the following potentially adverse anchorage conditions were present:

- Bent, broken, missing, or loose hardware
- Corrosion that is more than mild surface oxidation
- Visible cracks in the concrete near the anchors
- Other potentially adverse seismic conditions

Based on the results of the visual inspection, the SWEs judged whether the anchorage was potentially degraded, non-conforming, or unanalyzed. The results of the visual inspection were documented on the SWC, as appropriate. If there was clearly no evidence of degraded, nonconforming, or unanalyzed conditions, then it was indicated on the checklist and a licensing basis evaluation was not necessary. However, if it was not possible to judge whether the anchorage was degraded, nonconforming, or unanalyzed, then the condition was entered into the Corrective Action Program as a potentially adverse seismic condition.

## 5.2.2 Configuration Verification

In addition to the visual inspections of the anchorage as described above, the configuration of the installed anchorage was verified to be consistent with existing plant documentation for at least 50% of the items on the SWEL.

Line-mounted equipment (e.g., valves mounted on pipelines without separate anchorage) was not evaluated for anchorage adequacy and was not counted in establishing the 50% sample size.

Examples of documentation that was considered to verify that the anchorage installation configurations are consistent with the plant documentation include the following:

- Design drawings
- · Seismic qualification reports of analyses or shake table tests
- IPEEE or USI A-46 program documentation, as applicable

The Table C-1 of Appendix C indicates the anchorage verification status for components as follows:

N/A: components that are line-mounted and/or are not directly anchored (with separate anchorage) to the civil structure and therefore do not count in the anchorage confirmation total.

Y: components that are anchored to the civil structure which were confirmed to be consistent with design drawings and/or other plant documentation.

N: components that are anchored to the civil structure for which anchorage drawings were not identified and/or retrieved.

See Table 5-1 below for the accounting of the 50% anchorage configuration confirmations, and the individual SWC forms in Appendix C for the specific drawings used for each anchorage verification confirmation.

| SWEL  | No. of SWEL<br>Items<br>(A) | N/A Items<br>(B) | Required to<br>Confirm?<br>(A-B)/2 | Items Confirmed |
|-------|-----------------------------|------------------|------------------------------------|-----------------|
| Total | 103                         | 42               | 31                                 | 45              |

 Table 5-1.
 Anchorage Configuration Confirmation

## 5.2.3 Adverse Seismic Spatial Interactions

An adverse seismic spatial interaction is the physical interaction between the SWEL item and a nearby SSC caused by relative motion between the two during an earthquake. An inspection was performed in the area adjacent to and surrounding the SWEL item to identify any seismic interaction conditions that could adversely affect the capability of that SWEL item to perform its intended safety-related functions.

The three types of seismic spatial interaction effects that were considered are as follows:

- Proximity
- Failure and falling of SSCs (Seismic II over I)
- Flexibility of attached lines and cables

Detailed guidance for evaluating each of these types of seismic spatial interactions is described in Appendix D: 'Seismic Spatial Interaction' of the EPRI guidance document.

The Seismic Walkdown Engineers exercised their judgment to identify seismic interaction hazards. Section 5.2.5 provides a summary of issues identified during the Seismic Walkdowns.

# **5.2.4** Other Adverse Seismic Conditions

In addition to adverse anchorage conditions and adverse seismic interactions, described above, other potentially adverse seismic conditions that could challenge the seismic adequacy of a SWEL item could have been present. Examples of the types of conditions that could pose potentially adverse seismic conditions include the following:

- Degraded conditions
- Loose or missing fasteners that secure internal or external components to equipment
- Large, heavy components mounted on a cabinet that are not typically included by the original equipment manufacturer
- Cabinet doors or panels that are not latched or fastened
- Other adverse conditions

Any identified other adverse seismic conditions are documented on the items' SWC, as applicable.

#### 5.2.5 Conditions Identification during Seismic Walkdowns

Table 5-2 provides a summary of conditions identified during the equipment Seismic Walkdowns. The equipment Seismic Walkdowns resulted with a total of five (5) conditions identified and each of these was entered into the station's CAP. All of the identified conditions were assessed and it was concluded that the condition would not prevent the associated equipment from performing its safety-related function(s). None of the conditions identified by the SWEs during the equipment Seismic Walkdowns were concluded to be adverse seismic conditions.

# 5.3 AREA WALK-BYS

The purpose of the Area Walk-Bys is to identify potentially adverse seismic conditions associated with other SSCs located in the vicinity of the SWEL items. Vicinity is generally defined as the room containing the SWEL item. If the room is very large (e.g., Turbine Hall), then the vicinity is identified based on judgment, e.g., on the order of about 35 feet from the SWEL item. This vicinity is described on the Area Walk-By Checklist (AWC), shown in Appendix D of this report. A total of 33 AWCs were completed for Dresden Unit 3.

The key examination factors that were considered during Area Walk-Bys include the following:

- Anchorage conditions (if visible without opening equipment)
- Significantly degraded equipment in the area

- A visual assessment (from the floor) of cable/conduit raceways and HVAC ducting (e.g., condition of supports or fill conditions of cable trays)
- Potentially adverse seismic interactions including those that could cause flooding, spray, and fires in the area
- Other housekeeping items that could cause adverse seismic interaction (including temporary installations and equipment storage)
- Scaffold construction was inspected to meet Exelon Procedure NES-MS-04.1 Seismic Pregualified Scaffolds
- Seismic housekeeping was examined to meet station procedure DAP 03-20, Restraint of Portable Equipment

The Area Walk-Bys are intended to identify adverse seismic conditions that are readily identified by visual inspection, without necessarily stopping to open cabinets or taking an extended look. Therefore, the Area Walk-By took significantly less time than it took to conduct the Seismic Walkdowns described above for a SWEL item. If a potentially adverse seismic condition was identified during the Area Walk-By, then additional time was taken, as necessary, to evaluate adequately whether there was an adverse condition and to document any findings.

The results of the Area Walk-Bys are documented on the AWCs included in Appendix D of this report. A separate AWC was filled out for each area inspected. A single AWC was completed for areas where more than one SWEL item was located.

Additional details for evaluating the potential for adverse seismic interactions that could cause flooding, spray, or fire in the area are provided in the following two subsections.

#### Seismically-Induced Flooding/Spray Interactions

Seismically-induced flooding/spray interactions are the effect of possible ruptures of vessels or piping systems that could spray, flood or cascade water into the area where SWEL items are located. This type of seismic interaction was considered during the IPEEE program. Those prior evaluations were considered, as applicable, as information for the Area Walk-Bys.

One area of particular concern to the industry is threaded fire protection piping with long unsupported spans. If adequate seismic supports are present or there are isolation valves near the tanks or charging sources, flooding may not be a concern. Numerous failures have been observed in past earthquakes resulting from sprinkler head impact. Less frequent but commonly observed failures have occurred due to flexible headers and stiff branch pipes, non-ductile mechanical couplings, seismic anchor motion and failed supports.

Examples where seismically-induced flooding/spray interactions could occur include the following:

- Fire protection piping with inadequate clearance around fusible-link sprinkler heads
- Non-ductile mechanical and threaded piping couplings can fail and lead to flooding or spray of equipment
- Long, unsupported spans of threaded fire protection piping
- Flexible headers with stiffly supported branch lines

#### Non-Seismic Category I tanks

The SWEs exercised their judgment to identify only those seismically-induced interactions that could lead to flooding or spray.

## Seismically-Induced Fire Interactions

Seismically-induced fire interactions can occur when equipment or systems containing hazardous/flammable material fail or rupture. This type of seismic interaction was considered during the IPEEE program. Those prior evaluations were considered, as applicable, as information for the Area Walk-Bys.

Examples where seismically-induced fire interactions could occur include the following:

- Hazardous/flammable material stored in inadequately anchored drums, inadequately anchored shelves, or unlocked cabinets
- Natural gas lines and their attachment to equipment or buildings
- Bottles containing acetylene or similar flammable chemicals
- Hydrogen lines and bottles

Another example where seismically-induced fire interaction could occur is when there is relative motion between a high voltage item of equipment (e.g., 4160 volt transformer) and an adjacent support structure when they have different foundations. This relative motion can cause high voltage busbars, which pass between the two, to short out against the grounded bus duct surrounding the busbars and cause a fire.

The Seismic Walkdown Engineers exercised their judgment to identify only those seismically-induced interactions that could lead to fires.

## 5.3.1 Conditions Identification during Area Walk-bys

Table 5-3 provides a summary of conditions identified during the Area Walk-bys. Nine (9) conditions were identified during the Area Walk-Bys and entered into the station CAP. No potentially adverse seismic conditions were identified that resulted in a seismic licensing basis evaluation. No seismically-induced flooding or spray interactions were identified during the Area Walk-Bys. No seismically-induced fire interactions were identified during the Area Walk-Bys.

# 5.4 SUPPLEMENTAL INFORMATION ON ELECTRICAL CABINET INSPECTIONS

Following the completion of the online seismic walkdowns, the industry was made aware that the NRC staff had clarified a position on opening electrical cabinets to inspect for other adverse seismic conditions. The purpose for opening these cabinets is to inspect for evidence of:

- internal components not being adequately secured,
- whether fasteners securing adjacent cabinets together are in place, and
- other adverse seismic conditions.

Appendix E of this report includes Table E-2 which identifies components in the specified equipment classes that would be considered as electrical cabinets:

1. Motor Control Centers and Wall-Mounted Contactors

- 2. Low Voltage Switchgear and Breaker Panels
- 3. Medium Voltage, Metal-Clad Switchgear
- 4. Transformers
- 14. Distribution Panels and Automatic Transfer Switches
- 16. Battery Chargers and Inverters
- 20. Instrumentation and Control Panels

Components that are identified on Table E-1 (inaccessible and deferred components) are not listed on Table E-2 to avoid redundancy. Table E-2 indicates internal accessibility of each cabinet. Cabinets that have been identified as requiring these supplemental internal inspections are those with doors or panels with latches or thumbscrews and can be readily opened during normal maintenance activities. Also provided for each cabinet is a proposed milestone schedule for performing these internal inspections and the associated station tracking number (IR number).

The Seismic Walkdown Checklists (SWC) for the components identified in Table E-2 that can be opened for internal inspections will be revised at the time of the supplemental walkdown to indicate the results of these internal inspections.

| Item ID                            | Description of Issue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Action<br>Request<br>ID (IR) | Actions<br>Complete<br>(Yes/No,<br>See Notes<br>1 & 2) |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------|
| D03-0903-<br>0028                  | Panel 903-28 was found unlocked and unlatched.<br>The opening device is a push button lock without a<br>handle, which makes it impossible to engage the<br>latches without a key. Some of the relays in this panel<br>could be adversely affected (relay chatter sending<br>intermittent signals) during a seismic event. Interim<br>(temporary) fix was installed by FIN team and judged<br>to be acceptable by Engineering. Permanent fix (new<br>locks) has been installed and panel doors are<br>properly latched. | 1394831                      | Yes                                                    |
| D03-9802-<br>AP06                  | Panel 3A 48/24VDC was found partially latched. Only<br>one of three latches were engaged (the door was out<br>of plane with the rest of the item). Operations<br>personnel secured all latches.                                                                                                                                                                                                                                                                                                                        | 1394946                      | Yes                                                    |
| D03-1503-<br>AH15                  | Light fixture just west of the 3A Hx in the SE LPCI<br>Corner Room had a detached chain on one side of<br>the fixture. However, the other chain at the same end<br>of the fixture was securely attached and the two<br>chains at the other end of the fixture were also<br>securely attached Therefore, the fixture is not in any<br>immediate danger of falling.                                                                                                                                                      | 1396014                      | Yes                                                    |
| D03-7338<br>S35<br>D03-7339<br>S35 | During Fukushima seismic walkdowns, two movable<br>trolley hoists mounted on top of SWGR 38 and one<br>movable trolley hoist mounted on top of SWGR 39<br>were found unrestrained against horizontal movement<br>due to the restraining pin for each hoist not being<br>installed while each hoist was in the stored position.<br>The switchgears are located at U3, N-47, EL. 570.<br>Station personnel installed the pins for all three trolley<br>hoists.                                                           | 1396562                      | Yes                                                    |
| D03-0302-<br>0019AV27              | A cantilever channel support for the (1/2" diameter<br>estimated) copper pipe running to Equipment No. 3-<br>0302-20B was missing a clamp. Location RxB at L-48<br>elevation 517'-6". The system is adequately<br>supported with no adverse effects based upon<br>inspection and engineering judgment.                                                                                                                                                                                                                 | 1395804                      | Yes                                                    |

# Table 5-2. Conditions Identified during Seismic Walkdowns

Notes:

 "Yes" indicates that any corrective actions resulting from the issue are complete.
 "No" indicates that any corrective actions resulting from the issue are NOT complete. Actions are tracked by the IR number in the station Corrective Action Program.

| ltem<br>ID    | Description of Issue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Action<br>Request<br>ID (IR) | Actions<br>Complete<br>(Yes/No,<br>See Notes<br>1 & 2) |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------|
| AWC-<br>U3-10 | Light fixture hanging above Equipment No. 3-1501-36A<br>(Location: U3, Grid 49, El. 495') had an open S-hook on<br>the North side of the fixture. However, the other chain at<br>the same end of the fixture had an S-hook that was<br>securely clamped shut. Therefore, the fixture would not fall<br>if the open S-hook were to come loose.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1395486                      | Yes                                                    |
| AWC-<br>U3-26 | The Fukushima Seismic walkdown team inspected the U3<br>SDC Pump Room as part of the scope for area walk-by<br>inspections to satisfy the NRC request for information.<br>There is a ladder rack on the wall directly across from the<br>doorway to the room. The chain intended to restrain the<br>ladder on the rack was placed over the ladder but the<br>chain did not have a latch to secure it. The ladder was<br>repositioned to mitigate this deficiency.                                                                                                                                                                                                                                                                                                                                                                                                                     | 1396906                      | Yes                                                    |
| AWC-<br>U3-2  | Panel 903-28 was found unlatched per IR 01394831. The<br>FIN Team performed a corrective remedial repair of<br>cabinet door 903-28 and then checked the Unit 2 side,<br>Panel 902-28 (located in the front part of the Aux Electric<br>room at elevation 517'-6"). Panel 902-28 was found in the<br>same condition as U3; namely, the opening device is a<br>push button operated latch without a handle that requires<br>a key to engage the latches. Interim (temporary) fix was<br>installed by FIN team and judged to be acceptable by<br>Engineering. Permanent fix (new locks) has been installed<br>and panel doors are properly latched.                                                                                                                                                                                                                                      | 1395481                      | Yes                                                    |
| AWC-<br>U3-2  | <ul> <li>Panels 903-28 and 902-28 were found unlatched per IRs 01394831 &amp; 01395481 respectively.</li> <li>An extent of condition walkdown was performed in the Aux Electric room at elevation 517'-6" to see if there are other unsecured panel latches. The "Data Aquisition Cabinet #1 &amp; #2" doors were found in similar conditions as those above; namely, the opening device is a button without a handle that requires a key to engage the latches. There are no other panels/cabinets in the Aux Electric room besides those identified above that have the key operated latches.</li> <li>This IR was generated to document unsecured latches for Data Aquisition Cabinets #1 &amp; #2. These panels are not safety related and since they are by themselves, they have no spatial seismic interaction issues with other cabinets in the Aux Electric room.</li> </ul> | 1395498                      | Yes                                                    |

# Table 5-3. Conditions Identified during Area Walk-Bys

<u>ک</u> .

|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | <u>.</u>                                               |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------|
| ltem<br>ID    | Description of Issue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Action<br>Request<br>ID (IR) | Actions<br>Complete<br>(Yes/No,<br>See Notes<br>1 & 2) |
| AWC-<br>U3-19 | Multiple open S-hook connections between the chain and<br>the support bracket for the lighting fixtures in the U3 HPCI<br>Room. However, each light fixture is hardwired; therefore,<br>they would not fall if the support chains were to come<br>loose. In addition, the equipment within the range that the<br>light fixtures would swing; if they were to come loose, is<br>robust and would not be significantly damaged by<br>engineering judgment.                                                               | 1396017                      | Yes                                                    |
|               | NRC identified an electrical conduit support outside the designated walk-by boundary that has one of two wall mounted brackets not flush with the wall. The support is U-shaped. Three conduits are attached to this support. The location of the subject support is between L-50 and K-50 approximately 15' above floor elevation 545'-0". The subject support is also above valve 3-3917-B-501.                                                                                                                      |                              |                                                        |
| AWC-<br>U3-23 | The bracket that is not flush is not a concern because the<br>other end of the support is judged capable of carrying the<br>whole load as a hanger. The bracket that is not flush<br>would be in compression so flush mount is not an issue. In<br>addition, there are multiple additional properly installed<br>conduit supports in the run that are immediately adjacent<br>to the subject support. The system is adequately<br>supported with no adverse effects based upon inspection<br>and engineering judgment. | 1396558<br>/                 | No                                                     |
| AWC-<br>U3-30 | Anchor plate of a floor mounted piping support near valve<br>3-1201-124B missing a nut on one of four anchors. The<br>support is located at the U3 RWCU Demin Valve Gallery.<br>However, the other three anchors have nuts securely<br>torqued so the support is structurally adequate by<br>engineering judgement. Also, this support is on a non-<br>safety related system.                                                                                                                                          | 1396565                      | No                                                     |
| Item<br>ID    | Description of Issue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Action<br>Request<br>ID (IR) | Actions<br>Complete<br>(Yes/No,<br>See Notes<br>1 & 2) |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------|
| AWC-<br>U3-24 | <ul> <li>NRC identified a 3" diameter pipe run with two knee-brace type wall mounted bracket supports missing one anchor bolt each. The 3" pipe has Spent Fuel Pool (SFP) drain valve 3-1901-8 in the line. Each support is intended to have two anchor bolts and only the bottom bolt in each support is installed. The location of the subject supports is on the north wall above elevation 570 on the high dose side of the SFP fence in a High Radiation Locked boundary. The 3" pipe is 3-1913-3-L per P&amp;ID drawing M-362.</li> <li>According to the P&amp;ID drawing, the subject pipe drains the SFP on the dry side of the gate and is currently isolated. This was confirmed by the shift manager and unit supervisor. Therefore the deficiency does not affect the safety related function of the equipment.</li> </ul> | 1396568                      | Νο                                                     |

| ltem<br>ID    | Description of Issue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Action<br>Request<br>ID (IR) | Actions<br>Complete<br>(Yes/No,<br>See Notes<br>1 & 2) |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------|
| AWC-<br>U3-24 | NRC identified a 2.5" diameter conduit run with a ceiling<br>mounted bracket support that is missing one anchor bolt.<br>The location of the subject support is in the ceiling above<br>elevation 570' on the high dose side of the SFP fence in a<br>High Radiation Locked boundary. The conduit and subject<br>support are above valve 3-1601-23.<br>The conduit run is vertical from an existing junction box<br>that is supported from the floor by a stanchion underneath.<br>The majority of this vertical conduit run is carried by the                                       |                              |                                                        |
|               | floor support. The ceiling support with a missing anchor<br>bolt is immediately after a 90 degree bend where it turns<br>horizontal below the ceiling. A second ceiling support is<br>located approximately 4' from the support with the missing<br>anchor bolt. This second ceiling support is properly<br>installed with both anchors intact.                                                                                                                                                                                                                                      | 1396571                      | No                                                     |
|               | According to Table 1.2 in specification K-4081 the maximum acceptable horizontal span between supports is 9'-0". The vertical run is well supported and acts as an end support for the beginning of the horizontal run. The properly installed ceiling hanger may be considered the next support on the horizontal run without regard to the improperly installed support. Since the horizontal span between the vertical conduit run and properly installed support is less than 9'-0", the missing anchor deficiency does not affect the safety related function of the equipment. |                              |                                                        |

Notes:

- "Yes" indicates that any corrective actions resulting from the issue are complete.
   "No" indicates that any corrective actions resulting from the issue are NOT complete.
  - Actions are tracked by the IR number in the station Corrective Action Program.

### 5 Licensing Basis Evaluations

The EPRI guidance document, Section 5: Seismic Licensing Basis Evaluation provides a detailed process to perform and document seismic licensing basis evaluations of SSCs identified when potentially adverse seismic conditions are identified. The process provides a means to identify, evaluate and document how the identified potentially adverse seismic condition meets a station's seismic licensing basis without entering the condition into a station's Corrective Action Program (CAP). In lieu of this process, Exelon/Dresden utilized the existing processes and procedures (Site CAP Expectations) to identify, evaluate and document conditions identified during the Seismic Walkdowns.

In accordance with Exelon/Dresden processes and procedures, all questionable conditions identified by the SWEs during the walkdowns were entered into the station CAP to be further evaluated and addressed as required. The SWEs provided input to support the identification and evaluation (including seismic licensing basis evaluations, as required) of the potentially adverse seismic conditions entered into the CAP. The station corrective action program is a more robust process than that provided in the EPRI guidance document; in part, ensuring each condition is properly evaluated for conformance with design and licensing bases and corrected as required.

Conditions identified during the walkdowns were documented on the SWCs, AWCs, and entered into the CAP. For those conditions that required, seismic licensing basis evaluations were completed and documented within the IR. Tables 5-2 and 5-3 in the report provide the IR, a summary of the condition, and the action completion status.

# IPEEE Vulnerabilities Resolution Report

Per the Individual Plant Examination of External Events (IPEEE) Submittal for Dresden and the NRC Staff Evaluation Report of IPEEE submittal for the Dresden Station, an explicit definition of vulnerability was not provided and no vulnerabilities with respect to potential severe accidents related to external events were identified. (Ref. 3, 4, & 5) However, plant improvements and previously identified SQUG outliers were identified in Sections 3 and 7 of Reference 4. Table G-1, in Appendix G, lists the plant improvements, the IPEEE/SQUG proposed resolution, the actual resolution and resolution date. No open items exist as a result of the seismic portion of the IPEEE program.

### B Peer Review

A peer review team consisting of at least two individuals was assembled and peer reviews were performed in accordance with Section 6: Peer Reviews of the EPRI guidance document. The Peer Review process included the following activities:

- Review of the selection of SSCs included on the SWEL
- Review of a sample of the checklists prepared for the Seismic Walkdowns and Area Walk-Bys
- Review of Licensing basis evaluations, as applicable
- Review of the decisions for entering the potentially adverse conditions into the CAP process
- Review of the submittal report
- Provide a summary report of the peer review process in the submittal report

The peer reviews were performed independently from this report and the summary Peer Review Report is provided in Appendix F of this report.

# References

Reference drawings related to SWEL items are provided in the Seismic Walkdown Checklists and if applicable, in the Area-Walkdown Checklists.

- 1. EPRI Technical Report 1025286, Seismic Walkdown Guidance for Resolution of Fukushima Near-Term Task Force Recommendation 2.3: Seismic, dated June 2012.
- 2. Dresden Power Station Updated Final Safety Analysis Report (UFSAR), Revision 9
- 3. ComEd PSLTR #00-0068, Request for Additional Information Regarding Individual Plant Examination of External Events, dated March 30, 2000
- Letter from J.M. Heffley (ComEd) to U. S. NRC, "Final Report Individual Plant Examination of External Events (IPEEE) Generic Letter 88-20, Supplement 4," dated December 30, 1997
- Staff Evaluation Report of Individual Plant Examination of External Events (IPEEE) submittal of Dresden Nuclear Power Station, Units 2 and 3 dated September 28, 2001
- ComEd Letter to U.S. Nuclear Regulatory Commission dated May 18, 1999 "Response to Request for Additional Information Regarding Unresolved Safety Issue (USI) A-46
- NRC (E. Leeds and M. Johnson) Letter to All Power Reactor Licensees et al., "Request for Information Pursuant to Title 10 of the Code of Federal Regulations 50.54(f) Regarding Recommendation 2.1, 2.3, and 9.3, of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident," Enclosure 3, "Recommendation 2.3: Seismic," dated March 12, 2012
- Exelon Nuclear Memorandum from Larry Lee to John Steinmentz, dated July 3, 2012, Subject: Dresden Risk Importance Listings to Support Development of Seismic Walkdown Equipment List (SWEL)
- 9. Drawing M-362, Rev. BA, Diagram of Fuel Pool Cooling Piping
- 10. Drawing B-681, Rev. A, Reactor Building Pool Liner Plan
- 11. Drawing B-683, Rev. Original, Reactor Building Pool Liner Sections & Details
- 12. Drawing B-684, Rev. A, Reactor Building Pool Liner Sections & Details
- 13. Drawing B-685, Rev. Original, Reactor Building Pool Liner Sections & Details
- 14. "Recommendations for Enhancing Reactor Safety in the 21<sup>st</sup> Century: The Nearterm Task Force Review of Insights from the Fukushima Dai-ichi Accident," ADAMS Accession No. ML111861807, July 12, 2011
- 15. Drawing M-373, Rev. AG, Diagram of Fuel Pool Filter & Demineralizing Piping

A-1

### **Project Personnel Resumes and SWE Certificates**

Resumes and certificates (where applicable) for the following people are found in Appendix A:

| A. Perez, Equipment Selection Engineer     | A-2               |
|--------------------------------------------|-------------------|
| K. Hull, Equipment Selection Engineer      | A-6               |
| J. Griffith, SWE, Licensing Basis Reviewer | A-9               |
| M. Wodarcyk, SWE, Licensing Basis Reviewer | A-13              |
| T. Ram, SWEL Peer Reviewer                 | A-15 <sup>.</sup> |
| B. Lory, Peer Reviewer                     | A-17              |
| W. Djordjevic, Peer Review Team Leader     | A-21              |
| B. Weight, IPEEE Reviewer                  | A-25              |



### Antonio J. Perez, P.E.

### **SUMMARY**

Mr. Perez has over 15 years of experience in project management, project engineering, equipment design, and mechanical systems layout for nuclear and industrial facilities.

### **EDUCATION**

B.S. – Mechanical Engineering Michigan Technological University, Houghton, MI Magna cum Laude

### LICENSES

Professional Engineer,

Wisconsin: September 2002 Minnesota: December 2010

### **PROFESSIONAL EXPERIENCE**

Stevenson & Associates, Green Bay, WI General Manager

October 2010 - Present

- Responsible for interfacing with clients with a focus on continuously improving relationships.
- Responsible for managing staff resources to meet or exceed clients' needs.
- Responsible for recruiting and hiring staff necessary to meet resource requirements while effectively increasing capacity.
- Responsible for providing Engineering Consultation services to clients.

### **Project Manager**

March 2007 – October 2010

- Performing Project Management tasks including development of project plans, identification of resource needs, estimating task durations, developing project schedules, and monitoring budgets.
- Lead design team efforts at the Kewaunee Power Station on multiple projects that include two separate Auxiliary Feedwater flow control modifications, Auxiliary Feedwater flow monitoring instrumentation modifications, and Auxiliary Building roof modifications.
- Supported the Calculation Reconstitution and Improvement Project at the Prairie Island Nuclear Generating Plant by mapping calculations associated with the RHR system.

Dominion Energy Kewaunee (formerly Nuclear Management Company 2001 - 2005) Kewaunee Power Station, Kewaunee, WI

### Shift Technical Advisor (trainee)

January 2006 - March 2007

• Trainee in a Senior Reactor Operator Certificate training program.

May 2004 - January 2006



### Antonio J. Perez, P.E.

### Engineering Supervisor – ME/CE/SE Design

- Supervised a staff of 12 to 15 engineers (mechanical, civil, and structural design) who were charged with developing design changes, maintaining design and licensing basis documentation and supporting maintenance.
- Integrated the civil/structural engineering group and the mechanical engineering group into a cohesive unit that resulted in gained efficiency and a net reduction of one full time equivalent engineer.
- Substantially increased the quality of engineering products developed and published by the ME/CE/SE Design Engineering group through coaching and feedback as a result of increased supervisory oversight of engineering products.
- Developed a work management system for the group that provided a means for prioritizing activities, estimating the level of effort, and scheduling of activities. This system allowed for an increased understanding of workload and became an invaluable tool for prioritizing work and managing resources.
- Increased communications within the group by holding daily 15 minute meetings where station messages were delivered and where the group's resources were assessed and redirected as necessary to meet commitments. This resulted in an increase in morale and an increase in commitments met.
- Increased communications with other departments by establishing a central point of contact for the group and by assuring that the ME/CE/SE Design Engineering group was represented at Planning and Scheduling meetings.

### Motor Operated Valve Engineer

June 2001 – May 2004

- Established a project plan and led the implementation effort that re-organized the Motor-Operated Valve Program at KPS. This effort consisted of developing a Program Manual, developing controlled calculations, performing Design Basis Reviews, and compiling and/or establishing plant positions on known industry issues. The result of this effort was a reduction of full time equivalent engineers, from 3 to 1, required to maintain the Program.
- Performed and reviewed MOV safety related calculations including Minimum Required Stem Thrust, Weak Link Analysis, and Available Margin.
- Assisted in MOV testing by providing engineering support to maintenance personnel.

### DISTRIBUTION PLANNING, INC., Grandville, MI Systems Mechanical Engineer

2000 - 2001

- Integrated mechanical systems and designed equipment for material handling systems.
- Procured equipment and coordinated delivery schedules with vendors.



### Antonio J. Perez, P.E.

### SMS SANDMOLD SYSTEMS, INC., Newaygo, MI

### Project Engineer /Manager

1998 - 2000

- Led multi-discipline project design teams for several projects that ranged in size from a few thousand dollars up to \$2.2 million.
- Coordinated efforts with engineering, manufacturing, and installation groups to establish and maintain project schedules that met or exceeded the client's expectations.
- Procured equipment and coordinated delivery schedules with vendors.
- Acted as the company's liaison with clients to work through issues that arose during projects. Provided project status updates to clients and management.
- Designed equipment such as sand storage bins up to 540-ton live load capacity, bucket elevators, belt conveyors, screw conveyors, and mixers. Most of this equipment was for handling of bulk solids (foundry sand).
- Analyzed and designed structural support members for various types of equipment such as vibratory conveyors, mixers, and conveyors. Designed access structures such as stair towers, service platforms and catwalks.
- Calculated foundation loads and point loads of equipment support points.

### LIFT-TECH INTERNATIONAL, Muskegon, MI **Project Engineer**

1997 - 1998

- Performed engineering analyses, wrote critiques, and recommended design modifications of structural members for the purpose of upgrading bridge cranes and hoists.
- Implemented engineering design changes to enhance product development.

Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167

## **Certificate of Completion**

### **Tony Perez**

Successfully Completed

Training on Near Term Task Force Recommendation 2.3 – Plant Seismic Walkdowns

Bruce M. Lory - Instructor

Bruce M. Lory / Instructor NTTF 2.3 Seismic Walkdown Course

Date: 06/26/12

### KIM L. HULL

#### **BACKGROUND SUMMARY**

Accomplished Lead Engineer/ Project Manager with significant experience in commercial nuclear power industry. Demonstrated ability to lead and contribute on cross-functional project teams. Possess strong analytical, problem resolution, collaboration, and communication skills when interacting with diverse audiences including regulatory inspectors, internal inspectors, management, and employees. Respected trainer with ability to develop and present information and measure effectiveness through evaluation techniques. Strengths include:

Project Management Procurement Training/Coaching

Design Modifications Management/Leadership Auditing Plant Operational Support Regulatory Compliance Inspections

### **KEY ACCOMPLISHMENTS**

- Served as KNPP Lead Engineer/ Project Supervisor for approximately 125 plant design changes.
- Experienced in all aspects of nuclear power plant modification packages including development of calculations, design, engineering, and procurement specifications.
- Thorough understanding of configuration control, management, and preparation of 10CFR50.59 analyses.
- Participated in several regulatory and industry audits, including CDBI and INPO assessments.
- Experienced as a Technical Specialist performing NUPIC Audits.
- Well-developed communication skills for preparing technical presentations including lesson plans, project reports, and meetings in support of regulatory activities and inspections.
- Qualified Shift Technical Advisor for KNPP Operations Group (1980s).

### **PROFESSIONAL EXPERIENCE**

#### STEVENSON & ASSOCIATES - Project Manager

### 2010 - Current

National consulting engineering firm specializing in civil, structural and mechanical engineering for power, industrial and advanced technology facilities.

### **Project Manager**

- Development of plant specific Seismic Walkdown Equipment Lists for multiple Units in response to NRC 50.54(f) requirements regarding Recommendation 2.1, 2.3, and 9.3, of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident," Enclosure 2.3, "Recommendation 2.3: Seismic."
- Onsite at Kewaunee Power Station Consultant support to resolve Q-list Open Items
- On-site at Kewaunee Power Station Consultant support for Auxiliary Feedwater Flow Control Modification including preparation and review of design documentation.

### WISCONSIN PUBLIC SERVICE RESOURCES / Nuclear Management Company DOMINION ENERGY - Kewaunee, WI

1982 to 2010

### Senior Instructor (Maintenance) (2009 - 2010)

• Developed lesson plans and taught Basic Systems and Continuing Training Topics for Engineering and Technical Support training program.

### Engineer III/Principal Engineer (2004 - 2009)

- Responsible for modifications and emergent issues including Steam Exclusion Boundaries, Fuel Transfer Carriage, Frazil Ice development on the KPS Circulating Water Intake, and NRC 96-06 Two Phase flow.
- Member of Dominion Fleet Calculation Quality Review Team and Mentor for Calculation training.
- Outage nightshift Lead Mechanical Design Engineer/Back-up Supervisor.
- KPS Engineering representative on the Independent Review Team developed to address CDBI

inspection findings. Assigned to review all calculations, modification packages, 10CFR 50.59 screenings, evaluations, and procurement packages.

• Technical Instructor for Administrative Process training for new engineers.

### Mechanical Design Supervisor (2002 - 2004)

- Supervised nine engineers, analysts, and technicians assigned to the KNPP Mechanical Design Group.
- Provided Mechanical Design Oversight for all vendor activities impacting KNPP Mechanical Design Bases.
- Provided support for emergent plant issues, NRC Inspections, and Physical Change Packages.
- Subject Matter Expert Instructor for 10CFR 50.59 process training for new engineers.

### Principal Engineer (Analytical Group SGR Project) (1998 - 2002)

- Contract Manager for Steam Generator Replacement (SGR).
- Responsible for coordination of SGE design, fabrication and installation contracts.
- Provided outage schedule development, coordination, and work process integration between Bechtel and KNPP.
- Coordinated contractor mobilization, badging, and plant specific training.
- Technical Specialist for Quality Assurance audits of vendors.
- SGR Shift Manager for night shift
- Responsible Engineer for SGR related Physical Change Packages.
- Responsible for SGR budget development up to 1998.
- Prepared, reviewed, and awarded Bechtel Installation contract.
- Participated in review and award of Ansaldo Fabrication contract.
- Served on team to review and award Westinghouse Design contract.
- Selected to work at Arkansas Nuclear One for their steam generator installation.

#### Senior Engineer (Analytical Group) (1994–1998)

- Responsible Engineer for Physical Change Packages.
- Member KNPP Engineering Reorganization Team.
- Recognized Technical Expert for KNPP systems.

### Senior Project Supervisor (1992–1994)

- Provided project management and engineering services for KNPP DCR packages.
- Supervisor of KNPP NPM Project Attendants responsible for modification package organization and close out.

#### Nuclear Services Supervisor (1991–1992)

- Supervised initial Steam Generator replacement project effort.
- Provided specification development for services and major plant components.

Prior to 1992 – Held engineering positions from Associate Engineer to Nuclear Design Engineering Supervisor.

### **EDUCATION**

Masters Program Coursework - Mechanical Engineering; Michigan State University - E. Lansing, MI B.S. - Mechanical Engineering - Michigan State University - E. Lansing, MI

B.A. - Biology - Albion College - Albion, MI

Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167

## **Certificate of Completion**

### Kim Hull

Successfully Completed

Training on Near Term Task Force Recommendation 2.3 – Plant Seismic Walkdowns

(IL PDH)

Bruce M. Lory - Instructor NTTF 2.3 Seismic Walkdown Course

Date: 06/26/12

### **STEVENSON & ASSOCIATES**

### JAMES D. GRIFFITH

### QUALIFICATIONS

Knowledgeable professional with over 23 years of diverse experience in structural engineering. Thorough, results-oriented problem solver with excellent communication skills. Works well independently or as part of a team. Highly skilled in all project phases from design through construction and specializes in field problem resolution.

### PROFESSIONAL EXPERIENCE

### Project Engineer (Stevenson & Associates, 2000 to present)

Responsible for all aspects of civil structural design. Also provides interface between clients, vendors, constructors and Stevenson & Associates.

### Decommissioning Design Engineer (ComEd, 1998 to 2000)

Responsible for structural design work during conversion from generating to storage facility. Gathered design information during conceptual field walkdowns and prepared design calculations and drawings. Provided field support during construction.

- Designed all component supports and concrete foundations for various new indoor equipment.
- Managed construction during installation of new roof-mounted HVAC system.
- Designed structural steel support framing and access gallery for new outdoor cooling towers.

### Maintenance Engineer (ComEd, 1995 to 1998)

Responsible for the design of structural repairs to station equipment and facilities. Interfaced with maintenance and construction personnel and performed evaluations of rigging, lead shielding, and scaffolding. Investigated and developed solutions for structural problems in the field and provided field support during installation of modifications.

- Designed and supervised field installation of heavy-duty rigging apparatus for replacement of large overhead crane motor.
- Performed conceptual design and supervised field construction of 60 foot high scaffold work platform for valve replacement.
- Prepared and reviewed calculations to justify structural acceptability of station equipment during successful completion of Seismic Qualification Utility Group (SQUG) evaluation program.
- Acted as engineering liaison to other station departments (Maintenance, Operations, Radiation Protection, etc) to resolve emergent problems regarding:
  - Rigging for lifting various plant equipment
  - Placement and support of temporary lead shielding
  - Storage of equipment in safety related seismic areas of the plant
  - Structural repairs and improvements to plant buildings and equipment

Structural Engineer (Sargent and Lundy, 1983 to 1995)

Responsible for design of structural modifications to various components of power generating facilities. Prepared and reviewed design calculations and drawings

Designed numerous modifications to existing structural steel framing members and end connections.

- Supported field installation of modifications and provided solutions to problems encountered in the field.
- Designed and monitored field installation of new access galleries for various pieces of equipment.

### EDUCATION

B.S., Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin

### Continuing Education

"Concrete Evaluation and Repair Seminar", Portland Cement Association, Skokie, Illinois, 1996 "STAAD III Program Training", Sargent and Lundy Engineers, Chicago, Illinois, 1995

"Piping Design, Analysis and AUTOPIPE Training"

Vectra Technologies, Inc., Zion, Illinois, 1995

"SQUG Walkdown Screening and Seismic Evaluation Training Course", Seismic Qualification Utility Group through ComEd, Downers Grove, Illinois, 1994

### PROFESSIONAL REGISTRATIONS

Licensed Professional Engineer in State of Wisconsin

Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167

## **Certificate** of Completion

### **Jim Griffith**

Successfully Completed

Training on Near Term Task Force Recommendation 2.3 – Plant Seismic Walkdowns

Bruce M. Lory - Instructor NTTF 2.3 Seismic Walkdown Course

Date: 06/26/12

## AMSQUG

## Certificate of Achievement

This is to Certify that

### Jim Griffith

has Completed the SQUG Walkdown Screening and Seismic Evaluation Training Course



SQUG Representative

Aug 2-4 \$ 10-11, 1994 Date of Course

Training Course Administrator

A-12

### **MICHAEL WODARCYK**

#### **EMPLOYMENT**

Stevenson & Associates, Glenview, Illinois

Staff Engineer June 2011 – present

 Analysis and design of nuclear power plant structures and other assorted structures. On-site engineering at plants during outage maintenance periods.

#### ESCA Consultants, Urbana, Illinois

Design Engineer September 2010 – June 2011

 Structural design and hydraulic modeling of bridges for the Illinois Department of Transportation, Canadian National Railway, BNSF Railway, and others. Inspection of the production of precast structural elements for CN.

#### Evans, Mechwart, Hambleton, & Tilton, Columbus, Ohio

- *Intern* May 2007 August 2007, May 2008 August 2008
- Assisted in the design and drafting of site, stormwater, and utility plans for various projects using AutoCAD, including the headquarters tower and garage for Grange Insurance in downtown Columbus.

### D.E. Huddleston General Contractors, Columbus, Ohio

- Laborer May 2006 August 2006
- Constructed footing foundations and performed other miscellaneous tasks for two elementary schools under construction in the Columbus City Schools district.

EDUCATION

**University of Illinois, Urbana-Champaign** Master of Science, Civil Engineering Structural Engineering Concentration GPA: 3.66 (of 4.0)

**University of Notre Dame** 

GPA: 3.47 (of 4.0)

Bachelor of Science, Civil Engineering

Urbana-Champaign, Illinois August 2010

Notre Dame, Indiana May 2009

- Undergraduate Research, January 2009 August 2009 Studied the effects that different structural systems have on the harmonic damping of a high-rise structure. Modeled a case study high-rise building using SAP2000.
- Big Beam Contest, August 2008 February 2009
   Led a team of four students that designed, built, and tested Notre Dame's entry for the Precast/Prestressed Concrete Institute's Big Beam reinforced-concrete beam contest, with all design considerations based upon ACI 318-08 and PCI 6th ed. codes and specifications. This design won 2nd place in the contest's Zone 4 (Midwest).

CERTIFICATIONS

Engineer-in-Training First Aid April 2009 August 2008

**ORGANIZATIONS** 

American Concrete Institute American Society of Civil Engineers

Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167

## **Certificate of Completion**

### **Mike Wodarcyk**

Successfully Completed

Training on Near Term Task Force Recommendation 2.3 – Plant Seismic Walkdowns

Berno Ul.

Bruce M. Løry - Instructor NTTF 2.3 Seismic Walkdown Course

Date: 06/26/12

### Tribhawan Ram

### EDUCATION:

B.S. - Electrical Engineering, Punjab University, India, 1972 M.S. - Electrical Engineering, University of Cincinnati, 1977 M.S. - Nuclear Engineering, University of Cincinnati, 1982 M.B.A. - Bowling Green State University, 1996

### **PROFESSIONAL REGISTRATION:**

State of Ohio

### PROFESSIONAL HISTORY:

Stevenson & Associates, Inc., Senior Engineer, 2011 - present Public Service Electric & Gas Co., Senior Plant Systems Engineer, Hancock Bridge, NJ, 2007 - 2011 Entergy Corporation, Plymouth, Massachusetts, Senior Design Engineer, 2002-2007 Various Companies, Contract Consulting Project Engineer, 1996 – 2002 Public Service Electric & Gas Co., Senior Staff Engineer, Hancock Bridge, NJ, 1983-1990 Toledo Edison Co., Toledo, Ohio, Senior Assistant Engineer, Associate Engineer, 1978-1983

### PROFESSIONAL EXPERIENCE:

- Electrical and Controls Design Engineering
- Plant Systems Engineering
- Transformer and Relay(s) Spec Developer
- Plant Modification Engineering
- Systems and Component Test Engineering
- Factory Testing Witness
- 6 Month BWR Systems Engineering Training
- ETAP Trained
- Arc Flash IEEE 1584 Trained

Mr. Ram has over 28 years of electrical project, design and systems engineering experience in US nuclear plants. As part of the Seismic Margin Analysis (SMA) team, in 2012, Mr. Ram is leading the electrical engineering EPRI methodology effort to perform Post-Fukushima relay list development and evaluation to support Safe Shutdown Equipment List (SSEL), including relay functional screening and chatter analysis, for Taiwan nuclear plants (both PWR and BWR). In this effort, he is preparing the final reports including recommendations to replace any bad actor relays. Mr. Ram is preparing proposals to replace these bad actors including modification package development for field replacement of these relays. He has prepared proposals to lead similar forthcoming relay evaluation efforts for several Westinghouse plants in the USA. Mr. Ram has either prepared or peer reviewed the Seismic Walkdown Equipment Lists (SWEL 1 & 2) for several Exelon Plants.



As a senior plant systems engineer, Mr. Ram has: 1. Developed several test plans for modification packages for the replacement of low and medium voltage circuit breakers (ABB K-Line to Square D Masterpact; GE Magneblast to Wyle Siemens) and for the replacement of the entire Pressurizer Heater Bus switchgear; 2. Personally been involved in execution of these test plans during refueling outages; 3. Witnessed factory testing of Pressurizer Heater Bus Switchgear; 4. Interfaced with NRC in their biennial Component Design Basis Inspections (CDBI); Interfaced with INPO in their biennial evaluations; 5. Developed and executed Performance Centered Maintenance (PCM) strategies for Motor Control Centers (MCCs) and low and medium voltage circuit breakers and switchgear; 6. Developed and executed margin improvement strategies for pressurizer heater busses, for twin units, through obtaining funds and then equipment replacement; 7. Developed refueling outage scoping for low and medium voltage circuit breakers and MCCs through working with outage group, maintenance, operations, and work MGMT; 8. Resolved breaker grease hardening issue for ABB K-Line breakers, over a two year period, through working with maintenance and work MGMT in implementing accelerated overhauls with better grease; 9. Trained operations and engineering personnel in the Engaging People and Behavior Change process, as part of a case study team and: 10. Resolved day to day operations and maintenance issues with systems of responsibility (low and medium voltage systems)

Mr. Ram has regularly participated in the EPRI annual circuit breaker user group conferences; at the 2011 meeting, he made a presentation on circuit breaker as found testing vis-à-vis protection of equipment, cables, and containment penetrations, and selective coordination preservation.

As a Senior Design Engineer, Mr. Ram has: 1. Developed specifications and procured 345/4.16/4.16 kV and 23/4.16/4.16 kV transformers (ranging up to \$1.25 million); 2. Prepared a modification package to install the 23 kV/4.16 kV/4.16 kV transformer, including leading the project team to get this transformer successfully installed, tested, and placed in service; 3. Developed ETAP scenarios and performed load flow studies to successfully support the 2006 INPO evaluation; 4. Performed arc flash calculations per IEEE 1584 methodology for 4 kV, 480V Load Centers, and MCCs, enabling a justification of reduced arc flash rated clothing, thereby allowing conversion of OUTAGE PMs into ONLINE PMs and; 5. Performed single point system vulnerability analysis.

As a Consulting Lead Project Engineer, Mr. Ram was heavily involved in resolution of the USI A-46 for several plants. He performed an extensive review of dozens of control circuits for relay chattering issues. To replace bad relay actors, Mr. Ram developed and/or supervised the development of many modification packages including: selection of replacement relays (both protective and auxiliary); preparation of relay testing specification with civil engineering input; working with and visiting seismic testing facilities for relay qualification and; developing pre and post installation instructions including test procedures. He worked closely with teams consisting of maintenance, operations, and work MGMT during the development and implementation of these projects. Besides the A-46 issue, Mr. Ram first developed and then was personally involved in the implementation of modification packages consisting of Cable, Conduit, Circuit Breaker and motor starter (contactor) replacements.

The following provides a list of USI A-46 resolution projects:

Northeast Utilities – Millstone Station Consumers Power Co. - Palisades Nuclear Station Boston Edison Co. - Pilgrim Nuclear Power Station Commonwealth Edison Company- Dresden Station, Quad Cities Station

Tribhawan Ram Page 2



STEVENSON & ASSOCIATES 4350 DiPaolo Center, Suite H, Glenview, IL 60025

### Bruce M. Lory

Tel: 847.795.0500 Fax: 847.795.0501 blory@vecsa.com

### EDUCATION AND PROFESSIONAL AFFILIATIONS

- B.S., Mechanical Engineering, State University of New York at Buffalo, Buffalo, NY 1982
- Exelon-certified instructor 1992
- ASME Training certification "Design and Repair of ASME Section I, IV, and VIII, Division 1 Pressure Vessels" – 2000
- Instructor of EPRI "Fundamentals of Equipment Seismic Qualification" course
- Member of 2003-11 IEEE Subcommittee-2 on Equipment Qualification
- Member of 2003-11 IEEE 323 Working Group (Environmental Qualification)
- Member of 2003-11 IEEE 344 Working Group (Seismic Qualification)

### QUALIFICATIONS

Degreed Mechanical Engineer with over 30 years experience in the nuclear industry, with specific technical expertise in the field of overseeing equipment modifications for Extended Power Uprates (EPU), as well as Seismic Qualification (SQ) and Environmental Qualification (EQ) of equipment/components. Also possesses technical proficiency in design verification and project management for installation of single failure-proof cranes.

### PROFESSIONAL EXPERIENCE - EPU PROJECTS

Provided staff augmentation services as utility responsible engineer, overseeing engineering activities necessary for developing engineering modifications packages for various EPU projects, including:

- Generator rewinds (LaSalle, Clinton, & Dresden), and associated GE support system modifications (SLMS package, flux probe, generator temperature monitoring, rotor torsional vibration monitoring system)
- HP Turbine replacement with new ADSP advanced GE turbine design
- RWCU pump replacements
- Reactor Feed Pump, Recirc Valve, and FW Reg. Valve replacements
- Stator Cooling system improvements (heat exchangers, filters, strainer)
- Replacement of entire IA system with 3 independent system trains in new building.

Activities included interface with Project Manager, Field Engineer, Work Planning, Construction, and Work Week Manager, as modification packages were developed, followed by implementation. Worked within INDUS PassPort program for populating ADL, AEL, loading engineering deliverables in PassPort, ECN processing. Performed owner's review of design descriptions, calculations, construction drawings. etc. Reviewed FAT test plans, as well as witnessed FAT activities at OEM locations, assisted supply chain oversight of OEM milestones and auditing OEM facilities and generating nonconformances. Provided technical interface with OEM as designs developed from mechanical & structural engineering perspectives. Reviewed resulting work order tasks in PassPort to get WO tasks to approved status. Produced CCNs in accordance with station procedures during installation phase to develop quick solution to engineering issues.

#### Bruce M. Lory

#### **PROFESSIONAL EXPERIENCE – SEISMIC QUALIFICATION**

Over 18 years of experience in Seismic Qualification of equipment and components, including seismic stress analyses, equipment foundation load analyses, equipment nozzle secondary stress analyses, and selection of vendors for replacement of seismically qualified Class 1E components. Well versed in requirements of IEEE 344-1975 for seismic qualification of Class 1E components, and use of SQUG methodology for demonstrating seismic adequacy of equipment. Excellent verbal/writing skills in field of SQ and EQ testing/analyses; responds well to organizational challenges, and relationship building. Member/Chairperson of numerous EPRI EQ and SQ technical committees (see below). Proficient in PC software applications: Microsoft Word, Excel, MS Projects and PowerPoint as well as INDUS PassPort database.

Special expertise in preparation of SQ test plans, and witnessing of SQ tests; having witnessed over 100 seismic tests for numerous utilities. Excellent knowledge of seismic and environmental testing facilities, including Wyle (Norco and Huntsville), NLI, Southern Testing Services, Nutherm, NTS Acton, EGS, and Qualtech.

Served as ComEd (now Exelon) corporate subject matter expert in SQ, providing SQ guidance and policy for all five ComEd generating stations, including on-site SQ engineers. Developed and implemented ComEd ownership of SQ program by authoring corporate procedure and SQ review checklists in 1993. Also created existing ComEd SQ standards used at all sites.

Also served as subject matter expert for ComEd Corporate Engineering, providing technical guidance to Dresden, Quad Cities, and Zion sites required to complete the SQUG project. EPRI SQUG-certified Seismic Capability Engineer, and participated in all SQUG walkdowns at the three ComEd SQUG sites. Served on EPRI G-STERI, and SQURTS committees, as ComEd employee.

Specific SQ experience and special SQ projects includes:

- Designed temporary fix to broken auxiliary switch mounting on Merlin Gerin 4KV circuit breakers in support of restarting Dresden 2 & 3 and Quad Cities 1 & 2 after extended shutdown to investigate issue. Coordinated and witnessed expedited seismic testing of temporary design fix that resulted in NRC approval to restart affected units. Received "Engaging in Excellence" award from ComEd for solving problem (1997).
- Member of EPRI SQUG mock-NRC audit team which performed 1 week inspection of TMI SQUG program at TMI in preparation for formal NRC SQUG inspection (1998).
- Expedited SQ test procedure preparation and witnessed SQ testing and HELB (EQ) testing of Magnetrol level switch needed to replace Dresden HPCI Glo-SLO obsolete level switch, allowing Dresden to exit 14 day LCO (1999).
- Coordinated response to NRC resident inspector inquiry at Byron regarding SQ status of a racked out Westinghouse 4KV circuit breaker, reviewed third party calculation justifying the configuration as seismically qualified, interfaced with Resident Inspector at Byron, and consulted industry on the issue (2000).
- Chairman of 1 day EPRI technical workshop on issue of "racked out" circuit breakers, attended by over 30 utilities and contractors, EPRI NDE Center – Charlotte, NC (1997)
- Coordinated with Quad Cities SQ engineer the response to NRC concern regarding potential contact of 125VDC batteries against hard spot on associated battery racks under seismic loading. Solution involved SQ testing of non-conforming condition, SQ test procedure reviewed and SQ test witnessed as well (1998).
- Member of the special root cause investigative team formed in response to NRC audit concern on seismic qualification status of commercial grade-dedicated protective relays on Quad Cities EDGs (1999).

### Bruce M. Lory

### PROFESSIONAL EXPERIENCE - ENVIRONMENTAL QUALIFICATION

Possess over 15 years of EQ experience, in consulting services and in utility positions. Prepared and reviewed over 100 EQ Binders to meet requirements station-specific EQ licensing basis requirement.). Knowledgeable in EQ requirements for satisfying the different levels of EQ licensing basis, (10CFR50.49, NUREG 0588 – Category I and II, or DOR Guideline).

Prepared, reviewed over 20 EQ test procedures, and witnessed numerous EQ tests as part of licensee's initial EQ program origination or EQ component replacement objectives. Well versed in EQ requirements contained in IEEE Standards 323, 382, 282, 317, and 649. Understands differentiation between Arrhenius and Regression Line analysis methodologies for calculating thermal gualified life.

Have performed many FMEAs (Failure Mode Effects Analysis) on EQ components down to part level to determine applicable failure mode and appropriate corresponding activation energy/regression line slope and intercept for calculating thermal qualified life of a given material. Have used Digital Engineering and Wyle Materials databases to assist FMEAs in selection of most applicable Arrhenius material properties for failure mode/part use.

Member of Corporate EQ group at Commonwealth Edison (ComEd) Downers Grove, IL overseeing EQ program compliance of all 6 nuclear stations (1991-1995). Served as backup EQ Engineer for

ComEd Corporate Engineering office (1998-2000). Specific EQ experience and special EQ projects includes:

- Prepared or reviewed over 100 EQ binders over entire six site ComEd EQ program (1983-1993)
- Project Engineer overseeing staff of 5 EQ engineers prepare 88 EQ binders for Fort St. Vrain EQ program creation from scratch. Numerous technical challenges due to high temperature MSLB profile, necessitating thermal lag analyses and design of thermal protection modifications. Included lead role of defending EQ program in mock-NRC audit followed by successful NRC audit.
- Assisted in EQ impact evaluation for high drywell temperature excursion that occurred at ComEd Dresden Nuclear Station, assessing EQ life consequences on Class 1E components (1988).
- Assisted in preparation of EQ test procedure and witnessed EQ HELB testing of nonconforming Raychem NMCK and WCSF-N electrical splices for ComEd LaSalle County Nuclear Station in support of JCO (1986)
- Member of EQ inspection team performing mock-NRC audit of Quad Cities EQ program with respect to compliance to R.G. 1.97, including EQ walkdown discovery of Class 1E terminal blocks epoxy glued to junction boxes involving R.G. 1.97 instrumentation circuitry (1991).
- Member of EQ assessment team performing technical review of Consumers Energy Palisades EQ program for compliance to DOR Guidelines and R.G. 1.97 (1990).
- Performed special EQ impact assessment of potentially non-EQ components installed in Class 1E 480VAC MCCs at ComEd Braidwood Nuclear Station, reviewed over 150 NWRs for Stores Item # used for installation.
- Lead 5 EQ engineers on independent EQ assessment of ComEd LaSalle County Nuclear Station EQ program re-baseline initiative to determine remaining weaknesses in EQ program and identify corrective actions needed in EQ analyses and component replacements (1997)

### Bruce M. Lory

**PROFESSIONAL EXPERIENCE – SINGLE FAILURE-PROOF CRANE DESIGN VERIFICATION** Performed utility owner's (CMS Energy – Big Rock Restoration Project) design review of all crane manufacturer's design stress analyses for use of single failure-proof Containment Building Crane for dry cask activities. Activities included assisting project manager in resolving design issues which arose during seismic qualification analyses by crane vendor, resolving crane manufacturer (Ederer) NCRs, and establishing protocol for identification of critical characteristics for commercial grade dedication of crane for safety related use. Crane expertise includes owner's review of manufacturer's design stress calculations for all operating load conditions per CMAA Spec. #70, and compliance with NUREG 0554.

Project highlights included:

- Visited crane manufacturer facility (Ederer) and vendor facility (Bigee) numerous times to resolve owner review comments on design stress calculations, attend project status meetings, and work with crane/vendor engineering staff towards final design resolutions.
- Reviewed over 30 design stress calculations for Ederer "X-SAM" single failure-proof crane trolley and hoist, including vendor bridge, column, and end truck design. Review resulted in three design changes to crane in order to comply with CMAA Spec. #70 and NUREG 0554 design margin requirements.
- Attended NRC meeting at NRR headquarters (Washington D.C.) with client to answer NRC and independent review team technical review questions on crane design and Ederer topical report.
- Assisted utility project manager in related engineering activities of commercial grade dedication, QA program establishment, and seismic qualification interface with Bigee Rigging.

#### EMPLOYMENT HISTORY

Stevenson & Associates – 2008 to present EMS Inc. – 2000 - 2007 Commonwealth Edison, 1991-2000 ABB Impell, 1989 – 1991 Sargent & Lundy Engineers, 1979 – 1989

#### SPECIAL ACHIEVEMENTS & AFFILIATIONS

- Presented ComEd C-Team facility design for LOCA test chamber system to NUGEQ 1991
- Inaugural Technical Program Chairman of EPRI SQURTS program, 1993-95
- Member of EPRI G-STERI program, 1995-98
- "Engaging in Excellence" award from ComEd for designing and seismically qualifying emergency fix to broken auxiliary switch mounting on Merlin-Gerin 4KV circuit breakers – 1997
- "Certificate of Appreciation", ASME PVP Division for being Technical Program Representative
   of the OAC Committee for the 2000 ASME PVP Division International Conference 2000
- Instructor of EPRI "Fundamentals of Equipment Seismic Qualification" training course 2011

### Walter Djordjevic

### EDUCATION:

B.S. - Civil Engineering, University of Wisconsin at Madison, 1974

M.S. - Structural Engineering, Massachusetts Institute of Technology, 1976

### PROFESSIONAL REGISTRATION:

State of California, State of Wisconsin, Commonwealth of Massachusetts, State of Michigan, State of Arizona, State of Missouri

### PROFESSIONAL HISTORY:

Stevenson & Associates, Inc., President 1996 - present; Vice President and General Manager of the Boston area office, 1983 - 1995

URS/John A. Blume & Associates, Engineers, Boston, Massachusetts, General Manager, 1980 - 1983; San Francisco, California, Supervisory Engineer, 1979 - 1980

Impell Corporation, San Francisco, California, Senior Engineer, 1976 - 1979 Stone & Webster Engineering Corporation, Boston, Massachusetts, Engineer, 1974 - 1976

### **PROFESSIONAL EXPERIENCE:**

- Structural Engineering
- Structural Dynamics
- Seismic Engineering
- Construction
- Vibration Engineering
- Expert Witness
- Committee Chairman

Mr. Djordjevic founded the Stevenson & Associates Boston area office in 1983 and serves as President and General Manager. Mr. Djordjevic is expert in the field of structural engineering – more specifically, in the areas of structural vulnerabilities to the effects of seismic and other extreme loading phenomena. As a structural dynamicist, Mr. Djordjevic also heads the Vibration Engineering Consultants corporate subsidiary of Stevenson & Associates for which he has overseen numerous designs of vibration sensitive microelectronics facilities for such clients as IBM, Intel, Motorola and Toshiba. He has personally been involved in such projects as resolving vibration problems due to construction activities for the Central Artery Project (Big Dig) in Boston for which he was retained by Massport. Finally, Mr. Djordjevic has been personally retained as an Expert Witness a number of times relating to cases involving construction, structural and mechanical issues.

He has performed over a thousand hours of onsite seismic and other natural phenomena (including tornados, hurricanes, fire, and flooding) inspection walkdowns to assess structural soundness and vulnerabilities. He has inspected microelectronics fabrication facilities, power facilities, and hazardous material government and military reservations. He is one of the most experienced seismic walkdown

inspection screening and verification engineers having personally participated in seismic walkdowns at over 50 U.S. nuclear units. In recent years, he has concentrated on screening inspection walkdowns and assessments for resolution of the USI A-46 and seismic IPEEE issues, on numerous facilities. The following provides a partial list of recent projects: American Electric Power - D.C. Cook Station Boston Edison Co. - Pilgrim Nuclear Power Station (SPRA) Commonwealth Edison Company- Braidwood Station<sup>PM</sup>, Byron Station<sup>PM</sup>, Dresden Station<sup>PM</sup>, Quad Cities Station<sup>PM</sup> Consumers Power Co. - Palisades Nuclear Station<sup>™</sup> Entergy - Arkansas Nuclear One Florida Power & Light - Turkey Point Station New York Power Authority - James A. Fitzpatrick Nuclear Power Plant Niagara Mohawk Power Corporation - Nine Mile Point Station PM Northern States Power Co. - Monticello Nuclear Generating Plant Northern States Power Co. - Prairie Island Nuclear Generating Plant Omaha Public Power District - Fort Calhoun Station (SPRA) Public Service Electric & Gas - Salem Nuclear Station Rochester Gas & Electric - R.E. Ginna Station Wisconsin Electric - Point Beach Nuclear Station<sup>™</sup> (SPRA) Wisconsin Public Service - Kewaunee Nuclear Power Plant<sup>PM</sup> (SPRA) <sup>PM</sup> Indicates projects where Mr. Djordjevic served as Project Manager Hanford Reservation Savannah River Plant Reservation **Rocky Flats Reservation Tooele US Army Depot** Anniston US Army Reservation Umatilla US Army Reservation Newport US Army Reservation Aberdeen US Army Reservation

He is a member of the IEEE 344 Standards Committee, Chairman of the ASCE Working Group for Seismic Evaluation of Electrical Raceways, and Chairman of the IES Committee for Microelectronics Cleanroom Vibrations

Representative projects include overseeing the SEP shake-table testing of electrical raceways, in-situ testing of control panels and instrumentation racks at various nuclear facilities, equipment anchorage walkdowns and evaluations at various nuclear facilities. He is the principal author of the *CERTIVALVE* software package to evaluate nuclear service valves, and contributing author in the development of the *ANCHOR* and *EDASP* software packages commercially distributed by S&A.

Mr. Djordjevic is expert in the area of seismic fragility analysis and dynamic qualification of electrical and mechanical equipment. He has participated in and managed over twenty major projects involving the evaluation and qualification of vibration sensitive equipment and seismic hardening of equipment. As demonstrated by his committee work and publications, Mr. Djordjevic has participated in and contributed steadily to the development of equipment qualification and vibration hardening methodology.



### PROFESSIONAL GROUPS

Member, Institute of Electrical and Electronics Engineers, Nuclear Power Engineering Committee Working Group SC 2.5 (IEEE-344)

Chairman, American Society of Civil Engineers Nuclear Structures and Materials Committee, Working Group for the Analysis and Design of Electrical Cable Support Systems

Member, American Society of Mechanical Engineers Operation, Application, and Components Committee on Valves, Working Group SC-5

Chairman. Institute of Environmental Sciences, Working Group foe Standardization of Reporting and Measuring Cleanroom Vibrations

### PARTIAL LIST OF PUBLICATIONS

1979 ASME PVP Conference, San Francisco, California, "Multi-Degree-of-Freedom Analysis of Power Actuated Valves", Paper No. 79-PVP-106.

1983 ASME PVP Conference, Portland, Oregon, "A Computer Code for Seismic Qualification of Nuclear Service Valves", Paper No. 83-PVP-81.

1983 ASME PVP Conference, Portland, Oregon, "Qualification of Electrical and Mechanical Equipment at Rocky Flats Reservation Using Prototype Analysis".

1984 ANS Conference, "Qualification of Class 1E Devices Using In-Situ Testing and Analysis."

1986 Testing of Lithography Components for Vibration Sensitivity, Microelectronics, Cahners Publishing

1990 Nuclear Power Plant Piping and Equipment Conference, "Development of Generic Amplification Factors for Benchboard and Relay Cabinet Assemblies", Paper No. 106, Structures and Components Symposium, held by North Carolina State University

1991 Electric Power Research Institute, "Development of In-Cabinet Response Spectra for Benchboards and Vertical Panels," EPRI Report NP-7146

Walter Djordjevic Page 3

# Certificate of Completion

## Walter Djordjevic

Successfully Completed

Training on Near Term Task Force Recommendation 2.3 – Plant Seismic Walkdowns

Bruce M. Lory (16 PDH) Bruce M. Lorg - Instructor

Bruce M. Lor - Instructor NTTF 2.3 Seismic Walkdown Course Date: 06/26/12



### BRYAN Y WEIGHT

**EDUCATION** BRIGHAM YOUNG UNIVERSITY Bachelor of Science, Civil Engineering (structural emphasis)

### EXPERIENCE

EXELON CORPORATION, Morris, IL: Currently 5 years <u>Dresden Generation Station (DGS – nuclear power)</u> <u>Engineering Design / Projects / Staff Engineer</u>

- Performed owners acceptance reviews of civil and structural engineering vendor supplied products for DGS
- Completed various plant modifications Project Engineer
- Specialty projects: Heavy loads per NUREG 0612, Post-Fukushima Earthquake Task Force, NRC audits, etc

PT&C FORENSIC CONSULTING SERVICES, P.A., Chicago, IL: 1.5 years Engineering Manager / Senior Forensic Engineer

- · Marketing established new accounts with Insurance Companies
- Executed inspections and managed consulting services related to insurance claims and associated reports, invoices, client interface
- · Managed personnel and work assignments in the Midwest region

BW INSPECTION ENGINEERS, INC., Wilsonville, OR: 18 years EIFS & STUCCO CONSULTANTS, INC., Wilsonville, OR: Concurrent <u>President & Owner</u>

- Managed consulting services in Oregon & Washington
- Experienced in forensic engineering, construction defect litigation, cause & origin insurance claims, engineering design, construction management, and surveyed the physical condition of residential and commercial properties
- Marketing

NORTHWEST INSPECTION ENGINEERS, INC., Renton, WA: 1.5 years Inspection Engineer

 Performed inspections, forensics, engineering, expert witness, and construction management services

### Bryan Y Weight Page 2 of 2

BECHTEL POWER & BECHTEL CONSTRUCTION CORPORATIONS: 10 years Assistant Project Administrator -- San Onofre Nuclear Generation Stations 2 & 3

- Responsible for construction work procedures, quality control, and documentation during refueling operations in accordance with NRC code of Federal Regulations 10CFR50; managed various personnel groups
- Construction Management -- Intermountain Power Project, Delta, UT
- Managed multi-million dollar contracts in the civil and mechanical disciplines
- Authorized progress payments, change orders, settled claims, contractor audits
- Completed quality control (QC) inspections, specification compliance & reports
- ANSI inspector: concrete, steel, soils, pipe & mechanical equipment <u>Construction Engineer</u> -- Springerville Arizona Generating Station
- Worked as field liaison, provided technical guidance, recommended design changes, was advisor to construction

Design Engineer -- Los Angeles Power Division, Norwalk, CA

 Involved in the design of concrete; steel; supports for instrumentation, HVAC, pipe and electrical cable tray systems of various nuclear and fossil fuel projects including: Korea Nuclear Generation Stations 5 & 6; Palo Verde Nuclear Generation Station 2 & 3; San Onofre Nuclear Generation Station 2 & 3; Springerville Arizona Generating Station

### **PROFESSIONAL LICENSES:**

Professional Engineer: CA 33679 Professional Engineer: IL 62059873 Professional Structural Engineer: UT 170291-2203 Lapsed P.E. licenses: IA, MI, MN, OR, WA

### **OTHER PROFESSIONAL QUALIFICATIONS / TRAINING**

BWR Plant Systems Engineering Configuration Change Responsible Engineer (Plant Modifications) 10 Code of Federal Regulations (CRF) 50.59 BWR Screener EPRI Near Term Task Force Recommendation 2.3 – Plant Seismic Walkdowns SQUG Walkdown Screening and Seismic Evaluation Training Site Materials Expert (SME) for movement of Heavy Loads Certified Building Moisture Analyst Certified Infrared Thermographer

ELECTRIC POWER RESEARCH INSTITUTE EPR

# Certificate of Completion

# **Bryan Weight**

## Training on Near Term Task Force Recommendation 2.3 - Plant Seismic Walkdowns

June 27, 2012

Date

R.P. Kassawana

Robert K. Kassawara EPRI Manager, Structural Reliability & Integrity

A-27



Presents this Certificate of Achievement

To Certify That

has Completed the SQUG Walkdown Screening and Seismic Evaluation Training Course Held August 23-27, 2010

> Richard G. Starck <sup>II</sup>, MPR Associates, Inc. SQUG Instructor

STORE PROF.

Paul D Baughman ARES SAOA manana

### **B** Equipment Lists

Appendix B contains the equipment lists that were developed during SWEL development. Note that because no SWEL 2 or Rapid Drain-Down items existed for Dresden Generating Station Unit 3, there is no Base List 2, SWEL 2, or Rapid Drain-Down Equipment List.

The following contents are found in Appendix B:

| SWEL Approval Signature Page                             | <b>B-2</b>   |
|----------------------------------------------------------|--------------|
| Table B-1a, Base List 1a - Items Exclusive to Unit 3     | . <b>B-3</b> |
| Table B-1b, Base List 1b - Items Common to Units 2 and 3 | B-42         |
| Table B-2, SWEL 1                                        | B-46         |



Seismic Walkdown Interim Report, Revision 0 In Response to NTTF Recommendation 2.3: Seismic

### Dresden Generating Station Unit 3

| Tony Perez T777-5                                                                    | 07/25/2012 |
|--------------------------------------------------------------------------------------|------------|
| Equipment Selection Preparer                                                         | date       |
| Kim L. Hull                                                                          | 07/25/2012 |
| Equipment Selection Reviewer                                                         | date       |
| Dravis Hamilton Del                                                                  | 7/22/12    |
| Station Operations Staff Member                                                      | date       |
| Refer to Attachment 3 for synopsis of Station Operations<br>role and responsibility. |            |

B-2
## Table B-1a. Base List 1a - Items Exclusive to Unit 3

| ID                | DESCRIPTION                                                | SYSTEM                | BUILDING | ELEVATION | LOCATION    |
|-------------------|------------------------------------------------------------|-----------------------|----------|-----------|-------------|
| D03-0202-0005AV20 | REACTOR RECIRCULATION/<br>Recirc Pump A Discharge Valve    | Nuclear Boiler System | Reactor  | 515.5     | DRYWELL     |
| D03-0203-0001AV05 | MAIN STEAM/ Isolation Valve                                | Nuclear Boiler System | Reactor  | 515.42    | DRYWELL     |
| D03-0203-0001BV05 | MAIN STEAM/ Isolation Valve                                | Nuclear Boiler System | Reactor  | 515.42    | DRYWELL     |
| D03-0203-0001CV05 | MAIN STEAM/ Isolation Valve                                | Nuclear Boiler System | Reactor  | 515.42    | DRYWELL     |
| D03-0203-0001DV05 | MAIN STEAM/ Isolation Valve                                | Nuclear Boiler System | Reactor  | 515.42    | DRYWELL     |
| D03-0203-0002AV05 | MAIN STEAM/ Isolation Valve                                | Nuclear Boiler System | Turbine  | 517.5     | X AREA H/46 |
| D03-0203-0002BV05 | MAIN STEAM/ Isolation Valve                                | Nuclear Boiler System | Turbine  | 517.5     | X AREA H/46 |
| D03-0203-0002CV05 | MAIN STEAM/ Isolation Valve                                | Nuclear Boiler System | Turbine  | 517.5     | X AREA H/46 |
| D03-0203-0002DV05 | MAIN STEAM/ Isolation Valve                                | Nuclear Boiler System | Turbine  | 517.5     | X AREA H/46 |
| D03-0203-0003A-PC | ADS/ Target Rock Process<br>Controller (ROB-203-3A)        | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0203-0003AV26 | ADS/ Target Rock Valve                                     | Nuclear Boiler System | Reactor  | 537       | DRYWELL     |
| D03-0203-0003B-PC | ADS/ Electromatic Valve Process<br>Controller (ROB-203-3B) | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0203-0003BV26 | ADS/ Electromatic Relief Valve                             | Nuclear Boiler System | Reactor  | 537       | DRYWELL     |
| D03-0203-0003C-PC | ADS/ Electromatic Valve Process<br>Controller (ROB-203-3C) | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0203-0003CV26 | ADS/ Electromatic Relief Valve                             | Nuclear Boiler System | Reactor  | 537       | DRYWELL     |
| D03-0203-0003D-PC | ADS/ Electromatic Valve Process<br>Controller (ROB-203-3D) | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0203-0003DV26 | ADS/ Electromatic Relief Valve                             | Nuclear Boiler System | Reactor  | 537       | DRYWELL     |
| D03-0203-0003E-PC | ADS/ Electromatic Valve Process<br>Controller (ROB-203-3E) | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0203-0003EV26 | ADS/ Electromatic Relief Valve                             | Nuclear Boiler System | Reactor  | 537       | DRYWELL     |
| D03-0203-0004AV26 | ADS/ Reactor Overpressure Relief<br>Valve                  | Nuclear Boiler System | Reactor  | 537       | DRYWELL     |
| D03-0203-0004BV26 | ADS/ Reactor Overpressure Relief<br>Valve                  | Nuclear Boiler System | Reactor  | 537       | DRYWELL     |
| D03-0203-0004CV26 | ADS/ Reactor Overpressure Relief<br>Valve                  | Nuclear Boiler System | Reactor  | 537       | DRYWELL     |
| D03-0203-0004DV26 | ADS/ Reactor Overpressure Relief<br>Valve                  | Nuclear Boiler System | Reactor  | 537       | DRYWELL     |

Table B-1a Page 1 of 39

| ID                | DESCRIPTION                                | SYSTEM                | BUILDING | ELEVATION | LOCATION    |
|-------------------|--------------------------------------------|-----------------------|----------|-----------|-------------|
| D03-0203-0004EV26 | ADS/ Reactor Overpressure Relief<br>Valve  | Nuclear Boiler System | Reactor  | 537       | DRYWELL     |
| D03-0203-0004FV26 | ADS/ Reactor Overpressure Relief<br>Valve  | Nuclear Boiler System | Reactor  | 537       | DRYWELL     |
| D03-0203-0004GV26 | ADS/ Reactor Overpressure Relief<br>Valve  | Nuclear Boiler System | Reactor  | 537       | DRYWELL     |
| D03-0203-0004HV26 | ADS/ Reactor Overpressure Relief<br>Valve  | Nuclear Boiler System | Reactor  | 537       | DRYWELL     |
| D03-0203-001A1V27 | MAIN STEAM/ Isolation DC Solenoid<br>Valve | Nuclear Boiler System | Reactor  | 515.42    | DRYWELL     |
| D03-0203-001A2V27 | MAIN STEAM/ Isolation AC Solenoid Valve    | Nuclear Boiler System | Reactor  | 515.42    | DRYWELL     |
| D03-0203-001B1V27 | MAIN STEAM/ Isolation DC Solenoid Valve    | Nuclear Boiler System | Reactor  | 515.42    | DRYWELL     |
| D03-0203-001B2V27 | MAIN STEAM/ Isolation AC Solenoid Valve    | Nuclear Boiler System | Reactor  | 515.42    | DRYWELL     |
| D03-0203-001C1V27 | MAIN STEAM/ Isolation DC Solenoid Valve    | Nuclear Boiler System | Reactor  | 515.42    | DRYWELL     |
| D03-0203-001C2V27 | MAIN STEAM/ Isolation AC Solenoid Valve    | Nuclear Boiler System | Reactor  | 515.42    | DRYWELL     |
| D03-0203-001D1V27 | MAIN STEAM/ Isolation DC Solenoid Valve    | Nuclear Boiler System | Reactor  | 515.42    | DRYWELL     |
| D03-0203-001D2V27 | MAIN STEAM/ Isolation AC Solenoid Valve    | Nuclear Boiler System | Reactor  | 515.42    | DRYWELL     |
| D03-0203-002A1V27 | MAIN STEAM/ Isolation DC Solenoid Valve    | Nuclear Boiler System | Turbine  | 517.5     | X AREA H/46 |
| D03-0203-002A2V27 | MAIN STEAM/ Isolation AC Solenoid Valve    | Nuclear Boiler System | Turbine  | 517.5     | X AREA H/46 |
| D03-0203-002B1V27 | MAIN STEAM/ Isolation DC Solenoid Valve    | Nuclear Boiler System | Turbine  | 517.5     | X AREA H/46 |
| D03-0203-002B2V27 | MAIN STEAM/ Isolation AC Solenoid Valve    | Nuclear Boiler System | Turbine  | 517.5     | X AREA H/46 |
| D03-0203-002C1V27 | MAIN STEAM/ Isolation DC Solenoid Valve    | Nuclear Boiler System | Turbine  | 517.5     | X AREA H/46 |

| ID                | DESCRIPTION                                               | SYSTEM                | BUILDING | ELEVATION | LOCATION    |
|-------------------|-----------------------------------------------------------|-----------------------|----------|-----------|-------------|
| D03-0203-002C2V27 | MAIN STEAM/ Isolation AC Solenoid Valve                   | Nuclear Boiler System | Turbine  | 517.5     | X AREA H/46 |
| D03-0203-002D1V27 | MAIN STEAM/ Isolation DC Solenoid Valve                   | Nuclear Boiler System | Turbine  | 517.5     | X AREA H/46 |
| D03-0203-002D2V27 | MAIN STEAM/ Isolation AC Solenoid Valve                   | Nuclear Boiler System | Turbine  | 517.5     | X AREA H/46 |
| D03-0205-0024-V20 | REACTOR RECIRCULATION/<br>Reactor Head Cooling Line Valve | Nuclear Boiler System | Reactor  | 589       | K-L/47      |
| D03-0220-0001-V20 | MAIN STEAM/ Isolation Valve Line<br>Drain Valve           | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0220-0002-V20 | MAIN STEAM/ Isolation Valve Line<br>Drain Valve           | Nuclear Boiler System | Turbine  | 517.5     | X AREA H/46 |
| D03-0220-0044-V05 | REACTOR RECIRCULATION/<br>Recirc Loop Sample Line Valve   | Nuclear Boiler System | Reactor  | 537       | DRYWELL     |
| D03-0220-0044-V27 | REACTOR RECIRCULATION/<br>Recirc Loop Line Solenoid Valve | Nuclear Boiler System | Reactor  | 537       | DRYWELL     |
| D03-0220-0045-V05 | REACTOR RECIRCULATION/<br>Recirc Loop Sample Line Valve   | Nuclear Boiler System | Reactor  | 545.5     | L/45-46     |
| D03-0220-0045-V27 | REACTOR RECIRCULATION/<br>Recirc Loop Line Solenoid Valve | Nuclear Boiler System | Reactor  | 545.5     | L/45-46     |
| D03-0220-0082AA10 | MAIN STEAM/ Isolation Valve<br>Accumulator                | Nuclear Boiler System | Reactor  | 515.42    | DRYWELL     |
| D03-0220-0082BA10 | MAIN STEAM/ Isolation Valve<br>Accumulator                | Nuclear Boiler System | Reactor  | 515.42    | DRYWELL     |
| D03-0220-0082CA10 | MAIN STEAM/ Isolation Valve<br>Accumulator                | Nuclear Boiler System | Reactor  | 515.42    | DRYWELL     |
| D03-0220-0082DA10 | MAIN STEAM/ Isolation Valve<br>Accumulator                | Nuclear Boiler System | Reactor  | 515.42    | DRYWELL     |
| D03-0220-0083AA10 | MAIN STEAM/ Isolation Valve<br>Accumulator                | Nuclear Boiler System | Turbine  | 517.5     | X AREA H/46 |
| D03-0220-0083BA10 | MAIN STEAM/ Isolation Valve<br>Accumulator                | Nuclear Boiler System | Turbine  | 517.5     | X AREA H/46 |
| D03-0220-0083CA10 | MAIN STEAM/ Isolation Valve<br>Accumulator                | Nuclear Boiler System | Turbine  | 517.5     | X AREA H/46 |

| ID                | DESCRIPTION                                           | SYSTEM                | BUILDING | ELEVATION | LOCATION    |
|-------------------|-------------------------------------------------------|-----------------------|----------|-----------|-------------|
| D03-0220-0083DA10 | MAIN STEAM/ Isolation Valve<br>Accumulator            | Nuclear Boiler System | Turbine  | 517.5     | X AREA H/46 |
| D03-0261-0001A-FE | MAIN STEAM/ Injection Line Flow<br>Element            | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0261-0001B-FE | MAIN STEAM/ Injection Line Flow<br>Element            | Nuclear Boiler System | Reactor  | 517.5     | DryUell     |
| D03-0261-0001C-FE | MAIN STEAM/ Injection Line Flow<br>Element            | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0261-0001D-FE | MAIN STEAM/ Injection Line Flow<br>Element            | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0261-0014A-TE | ADS/ Target Rock Temperature<br>Element               | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0261-0014B-TE | ADS/ Electromatic Relief Valve<br>Temperature Element | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0261-0014C-TE | ADS/ Electromatic Relief Valve<br>Temperature Element | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0261-0014D-TE | ADS/ Electromatic Relief Valve<br>Temperature Element | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0261-0014E-TE | ADS/ Electromatic Relief Valve<br>Temperature Element | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0261-0020TR   | ADS/ Blowdown Lines Temperature<br>Recorder           | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0261-0037A-PS | ADS/ Target Rock Pressure Switch                      | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0261-0037B-PS | ADS/ Target Rock Pressure Switch                      | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0261-0037C-PS | ADS/ Target Rock Pressure Switch                      | Nuclear Boiler System | Reactor  | 517.5     | Drywell     |
| D03-0263-0059ALIS | REACTOR RECIRCULATION/ Level<br>Indicating Switch     | Nuclear Boiler System | Reactor  | 545.5     | L-M/46-47   |
| D03-0263-0059BLIS | REACTOR RECIRCULATION/ Level<br>Indicating Switch     | Nuclear Boiler System | Reactor  | 545.5     | K/48-49     |
| D03-0263-0060A-PI | REACTOR RECIRCULATION/<br>Pressure Indicator          | Nuclear Boiler System | Reactor  | 545.5     | L-M/46-47   |

Table B-1a Page 4 of 39

| ID                | DESCRIPTION                                  | SYSTEM                   | BUILDING | ELEVATION | LOCATION        |
|-------------------|----------------------------------------------|--------------------------|----------|-----------|-----------------|
| D03-0263-0060B-PI | REACTOR RECIRCULATION/<br>Pressure Indicator | Nuclear Boiler System    | Reactor  | 545.5     | K/48-49         |
| D03-0302-0019AV27 | CRD/ Backup Scram Solenoid Valve             | Control Rod Drive System | Reactor  | 517.5     | L/48            |
| D03-0302-0019BV27 | CRD/ Backup Scram Solenoid Valve             | Control Rod Drive System | Reactor  | 517.5     | L/48            |
| D03-0302-0020AV25 | CRD/ Scram Dump Solenoid Valve               | Control Rod Drive System | Reactor  | 517.5     | L/48            |
| D03-0302-0020BV27 | CRD/ Scram Dump Solenoid Valve               | Control Rod Drive System | Reactor  | 517.5     | L/48            |
| D03-0302-0082B-LS | CRD/ East Bank SDV Tank Level<br>Switch      | Control Rod Drive System | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0302-0082B-LT | CRD/ East Bank SDV Tank Level<br>Transmitter | Control Rod Drive System | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0302-0082C-LS | CRD/ East Bank SDV Tank Level<br>Switch      | Control Rod Drive System | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0302-0082D-LS | CRD/ East Bank SDV Tank Level<br>Switch      | Control Rod Drive System | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0302-0082E-LS | CRD/ East Bank SDV Tank Level<br>Switch      | Control Rod Drive System | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0302-0082E-LT | CRD/ East Bank SDV Tank Level<br>Transmitter | Control Rod Drive System | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0302-0082H-LS | CRD/ West Bank SDV Tank Level<br>Switch      | Control Rod Drive System | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0302-0082H-LT | CRD/ West Bank SDV Tank Level<br>Transmitter | Control Rod Drive System | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0302-0082J-LS | CRD/ West Bank SDV Tank Level<br>Switch      | Control Rod Drive System | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0302-0082K-LS | CRD/ West Bank SDV Tank Level<br>Switch      | Control Rod Drive System | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0302-0082L-LS | CRD/ West Bank SDV Tank Level<br>Switch      | Control Rod Drive System | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0302-0082L-LT | CRD/ West Bank SDV Tank Level<br>Transmitter | Control Rod Drive System | Reactor  | 517.5     | J-L/44-45,49-50 |

Table B-1a Page 5 of 39

| ID                | DESCRIPTION                                               | SYSTEM                   | BUILDING | ELEVATION | LOCATION      |
|-------------------|-----------------------------------------------------------|--------------------------|----------|-----------|---------------|
| D03-0302-0157AV05 | CRD/ East Bank Scram Discharge<br>Volume Drain Valve      | Control Rod Drive System | Reactor  | 476.5     | TORUS BAY 4   |
| D03-0302-0157AV27 | CRD/ East Bank Scram Discharge<br>Volume Drain Sol. Valve | Control Rod Drive System | Reactor  | 476.5     | TORUS BAY 4   |
| D03-0302-0157BV05 | CRD/ West Bank Scram Discharge<br>Volume Drain Valve      | Control Rod Drive System | Reactor  | 476.5     | TORUS BAY 9   |
| D03-0302-0157BV27 | CRD/ West Bank Scram Discharge<br>Volume Drain Sol. Valve | Control Rod Drive System | Reactor  | 476.5     | TORUS BAY 9   |
| D03-0302-0156AV05 | CRD/ East Bank Scram Discharge<br>Volume Drain Valve      | Control Rod Drive System | Reactor  | 476.5     | TORUS BAY 4   |
| D03-0302-0156AV27 | CRD/ East Bank Scram Discharge<br>Volume Drain Sol. Valve | Control Rod Drive System | Reactor  | 476.5     | TORUS BAY 4   |
| D03-0302-0156BV05 | CRD/ West Bank Scram Discharge<br>Volume Drain Valve      | Control Rod Drive System | Reactor  | 476.5     | TORUS BAY 9   |
| D03-0302-0156BV27 | CRD/ West Bank Scram Discharge<br>Volume Drain Sol. Valve | Control Rod Drive System | Reactor  | 476.5     | TORUS BAY 9   |
| D03-0302-0160AV05 | CRD/ East Bank Scram Discharge<br>Volume Vent Valve       | Control Rod Drive System | Reactor  | 517.5     | DRY GALL J/45 |
| D03-0302-0160AV27 | CRD/ East Bank Scram Discharge<br>Volume Vent Sol. Valve  | Control Rod Drive System | Reactor  | 517.5     | DRY GALL J/45 |
| D03-0302-0160BV05 | CRD/ West Bank Scram Discharge<br>Volume Vent Valve       | Control Rod Drive System | Reactor  | 517.5     | DRY GALL K/48 |
| D03-0302-0160BV27 | CRD/ West Bank Scram Discharge<br>Volume Vent Sol. Valve  | Control Rod Drive System | Reactor  | 517.5     | DRY GALL K/48 |
| D03-0302-0161AV05 | CRD/ East Bank Scrám Discharge<br>Volume Vent Valve       | Control Rod Drive System | Reactor  | 517.5     | DRY GALL J/45 |

| ID                              | DESCRIPTION                                                                                    | SYSTEM                   | BUILDING | ELEVATION | LOCATION        |
|---------------------------------|------------------------------------------------------------------------------------------------|--------------------------|----------|-----------|-----------------|
| D03-0302-0161AV27               | CRD/ East Bank Scram Discharge<br>Volume Vent Sol. Valve                                       | Control Rod Drive System | Reactor  | 517.5     | DRY GALL J/45   |
| D03-0302-0161BV05               | CRD/ West Bank Scram Discharge<br>Volume Vent Valve                                            | Control Rod Drive System | Reactor  | 517.5     | DRY GALL K/48   |
| D03-0302-0161BV27               | CRD/ West Bank Scram Discharge<br>Volume Vent Sol. Valve                                       | Control Rod Drive System | Reactor  | 517.5     | DRY GALL K/48   |
| D03-0305-0010-0031-<br>0125-A10 | CRD/ Insertion Accumulator, West<br>Bank, Row 8, Position 15 (C-8)                             | Control Rod Drive System | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0010-0031-<br>0126-V05 | CRD/ Accumulator Insertion Scram<br>Valve, West Bank, Row 8, Position<br>15 (C-8)              | Control Rod Drive System | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0010-0031-<br>0127-V05 | CRD/ Withdraw to Scram Discharge<br>Volume Scram Valve, West Bank,<br>Row 8, Position 15 (C-8) | Control Rod Drive System | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0010-0031-<br>H20      | CRD/ Hydraulic Control Unit, West<br>Bank, Row 8, Position 15 (C-8)                            | Control Rod Drive System | Reactor  | 517.5     | J-K/44-45,49-50 |
| D03-0305-0030-0043-<br>0125-A10 | CRD/ Insertion Accumulator, West<br>Bank, Row 8, Position 4 (H-11)                             | Control Rod Drive System | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0030-0043-<br>0126-V05 | CRD/ Accumulator Insertion Scram<br>Valve, West Bank, Row 8, Position 4<br>(H-11)              | Control Rod Drive System | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0030-0043-<br>0127-V05 | CRD/ Withdraw to Scram Discharge<br>Volume Scram Valve, West Bank,<br>Row 8, Position 4 (H-11) | Control Rod Drive System | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0030-0043-<br>H20      | CRD/ Hydraulic Control Unit, West<br>Bank, Row 8, Position 4 (H-11)                            | Control Rod Drive System | Reactor  | 517.5     | J-K/44-45,49-50 |

Table B-1a Page 7 of 39

| ID                              | DESCRIPTION                                                                                    | SYSTEM                   | BUILDING | ELEVATION | LOCATION        |
|---------------------------------|------------------------------------------------------------------------------------------------|--------------------------|----------|-----------|-----------------|
| D03-0305-0046-0031-<br>0125-A10 | CRD/ Insertion Accumulator, East<br>Bank, Row 1, Position 16 (M-8)                             | Control Rod Drive System | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0046-0031-<br>0126-V05 | CRD/ Accumulator Insertion Scram<br>Valve, East Bank, Row 1, Position 16<br>(M-8)              | Control Rod Drive System | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0046-0031-<br>0127-V05 | CRD/ Withdraw to Scram Discharge<br>Volume Scram Valve, East Bank,<br>Row 1, Position 16 (M-8) | Control Rod Drive System | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0046-0031-<br>H20      | CRD/ Hydraulic Control Unit, East<br>Bank, Row 1, Position 16 (M-8)                            | Control Rod Drive System | Reactor  | 517.5     | J-K/44-45,49-50 |
| D03-0305-0058-0023-<br>0125-A10 | CRD/ Insertion Accumulator, East<br>Bank, Row 1, Position 12 (R-6)                             | Control Rod Drive System | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0058-0023-<br>0126-V05 | CRD/ Accumulator Insertion Scram<br>Valve, East Bank, Row 1, Position 12<br>(R-6)              | Control Rod Drive System | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0058-0023-<br>0127-V05 | CRD/ Withdraw to Scram Discharge<br>Volume Scram Valve, East Bank,<br>Row 1, Position 12 (R-6) | Control Rod Drive System | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0058-0023-<br>H20      | CRD/ Hydraulic Control Unit, East<br>Bank, Row 1, Position 12 (R-6)                            | Control Rod Drive System | Reactor  | 517.5     | J-K/44-45,49-50 |
| D03-0305-0117-V27               | CRD/ Pilot Solenoid For HCU Scram Valves                                                       | Control Rod Drive System | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0118-V27               | CRD/ Pilot Solenoid For HCU Scram<br>Valves                                                    | Control Rod Drive System | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0120-V15               | CRD/ Hydraulic Control Unit<br>Withdraw Valve                                                  | Control Rod Drive System | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0121-V15               | CRD/ Hydraulic Control Unit Insertion<br>Valve                                                 | Control Rod Drive System | Reactor  | 517.5     | In Hydraulic CU |

Table B-1a Page 8 of 39

•

| ID                | DESCRIPTION                                         | SYSTEM                          | BUILDING | ELEVATION | LOCATION        |
|-------------------|-----------------------------------------------------|---------------------------------|----------|-----------|-----------------|
| D03-0305-0122-V15 | CRD/ Hydraulic Control Unit<br>Withdraw Valve       | Control Rod Drive System        | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0123-V15 | CRD/ Hydraulic Control Unit Insertion Valve         | Control Rod Drive System        | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0128-A10 | CRD/ Insertion Accumulator                          | Control Rod Drive System        | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0129LS   | CRD/ Insertion Accumulator Level Switch             | Control Rod Drive System        | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0130PS   | CRD/ Insertion Accumulator<br>Pressure Switch       | Control Rod Drive System        | Reactor  | 517.5     | In Hydraulic CU |
| D03-0305-0131PI   | CRD/ Insertion Accumulator<br>Pressure Indicator    | Control Rod Drive System        | Reactor  | 517.5     | In Hydraulic CU |
| D03-0399-0524AV27 | CRD/ Alternate Rod Insertion ATWS<br>Solenoid Valve | Control Rod Drive System        | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0399-0524BV27 | CRD/ Alternate Rod Insertion ATWS<br>Solenoid Valve | Control Rod Drive System        | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0399-0548AV27 | CRD/ Alternate Rod Insertion ATWS Solenoid Valve    | Control Rod Drive System        | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0399-0548BV27 | CRD/ Alternate Rod Insertion ATWS<br>Solenoid Valve | Control Rod Drive System        | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0399-0549AV27 | CRD/ Alternate Rod Insertion ATWS<br>Solenoid Valve | Control Rod Drive System        | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0399-0549BV27 | CRD/ Alternate Rod Insertion ATWS<br>Solenoid Valve | Control Rod Drive System        | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0409-AT05     | CRD/ East Bank Scram Discharge<br>Volume Tank       | Startup Equipment               | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0409-BT05     | CRD/ West Bank Scram Discharge<br>Volume Tank       | Startup Equipment               | Reactor  | 517.5     | J-L/44-45,49-50 |
| D03-0645-AFT      | MAIN STEAM/ Steam Flow<br>Transmitter               | Reactor Level Control<br>System | Reactor  | 545.5     | L-M/46-47       |
| D03-0645-BFT      | MAIN STEAM/ Steam Flow<br>Transmitter               | Reactor Level Control<br>System | Reactor  | 545.5     | L-M/46-47       |
| D03-0645-CFT      | MAIN STEAM/ Steam Flow<br>Transmitter               | Reactor Level Control<br>System | Reactor  | 545.5     | L-M/46-47       |

Table B-1a Page 9 of 39

| ID                | DESCRIPTION                                 | SYSTEM                          | BUILDING | ELEVATION | LOCATION        |
|-------------------|---------------------------------------------|---------------------------------|----------|-----------|-----------------|
| D03-0645-DFT      | MAIN STEAM/ Steam Flow<br>Transmitter       | Reactor Level Control<br>System | Reactor  | 545.5     | L-M/46-47       |
| D03-0750-0001A-RY | NEUTRON MONITORING/ Source<br>Range Monitor | Neutron Monitoring<br>System    | Turbine  | 534       | G-H/31-32       |
| D03-0750-0001B-RY | NEUTRON MONITORING/ Source<br>Range Monitor | Neutron Monitoring<br>System    | Turbine  | 534       | G-H/31-32       |
| D03-0750-0001C-RY | NEUTRON MONITORING/ Source<br>Range Monitor | Neutron Monitoring<br>System    | Turbine  | 534       | G-H/31-32       |
| D03-0750-0001D-RY | NEUTRON MONITORING/ Source<br>Range Monitor | Neutron Monitoring<br>System    | Turbine  | 534       | G-H/31-32       |
| D03-0903-0003     | CONTROL PANELS/ Control Panel<br>903-3      | Control Room Panels             | N/A      | 534       | C. RM PNL 903-3 |
| D03-0903-0004     | CONTROL PANELS/ Control Panel<br>903-4      | Control Room Panels             | N/A      | 534       | C. RM PNL 903-4 |
| D03-0903-0005     | CONTROL PANELS/ Control Panel<br>903-5      | Control Room Panels             | N/A      | 534       | C. RM PNL 903-5 |
| D03-0903-0008     | Aux Electric Room Panel                     | Control Room Panels             | N/A      |           |                 |
| D03-0903-0015     | CONTROL PANELS/ Control Panel<br>903-15     | Control Room Panels             | N/A      | 534       | C. RM PL 903-15 |
| D03-0903-0017     | CONTROL PANELS/ Control Panel<br>903-17     | Control Room Panels             | N/A      | 534       | C. RM PL 903-17 |
| D03-0903-0019     | CONTROL PANELS/ Control Panel<br>903-19     | Control Room Panels             | N/A      | 534       | C. RM PL 903-19 |
| D03-0903-0028     | CONTROL PANELS/ Control Panel<br>903-28     | Control Room Panels             | Turbine  | 517.5     | AEER PNL 903-28 |
| D03-0903-0032     | CONTROL PANELS/ Control Panel<br>903-32     | Control Room Panels             | Turbine  | 517.5     | AEER PNL 903-32 |
| D03-0903-0033     | CONTROL PANELS/ Control Panel<br>903-33     | Control Room Panels             | Turbine  | 517.5     | AEER PNL 903-33 |
| D03-0903-0036     | CONTROL PANELS/ Control Panel<br>903-36     | Control Room Panels             | N/A      | 534       | C. RM PL 903-36 |
| D03-0903-0039     | CONTROL PANELS/ Control Panel<br>903-39     | Control Room Panels             | Turbine  | 517.5     | AEER PNL 903-39 |

· · ·

| ID                | DESCRIPTION                                               | SYSTEM                          | BUILDING | ELEVATION | LOCATION        |
|-------------------|-----------------------------------------------------------|---------------------------------|----------|-----------|-----------------|
| D03-0903-0041     | CONTROL PANELS/ Control Panel<br>903-41                   | Control Room Panels             | Turbine  | 517.5     | AEER PNL 903-41 |
| D03-0903-0046     | CONTROL PANELS/ Control Panel<br>903-46                   | Control Room Panels             | Turbine  | 517.5     | AEER PNL 903-46 |
| D03-0903-0047     | CONTROL PANELS/ Control Panel<br>903-47                   | Control Room Panels             | Turbine  | 517.5     | AEER PNL 903-47 |
| D03-0903-0061     | CONTROL PANELS/ Control Panel<br>903-61                   | Control Room Panels             | Turbine  | 549       | B RM2 E/31      |
| D03-0903-0062     | CONTROL PANELS/ Control Panel<br>903-62                   | Control Room Panels             | Turbine  | 517.5     | AEER PNL 903-62 |
| D03-0923-0005     | CONTROL PANELS/ Control Panel<br>923-5                    | Control Room Panels             | N/A      | 534       | C. RM PNL 923-5 |
| D03-1001-0001AV20 | SHUTDOWN COOLING/ Shut Down<br>Pumps Injection Line Valve | Shutdown Cooling                | Reactor  | 517.5     | Drywell         |
| D03-1001-0001BV20 | SHUTDOWN COOLING/ Shut Down<br>Pumps Injection Line Valve | Shutdown Cooling                | Reactor  | 517.5     | Drywell         |
| D03-1001-0002AV20 | SHUTDOWN COOLING/ Shut Down<br>Pumps Suction Line Valve   | Shutdown Cooling                | Reactor  | 517.5     | H-J/48-49       |
| D03-1001-0002BV20 | SHUTDOWN COOLING/ Shut Down<br>Pumps Suction Line Valve   | Shutdown Cooling                | Reactor  | 517.5     | H-J/48-49       |
| D03-1001-0002CV20 | SHUTDOWN COOLING/ Shut Down<br>Pumps Suction Line Valve   | Shutdown Cooling                | Reactor  | 517.5     | H-J/48-49       |
| D03-1001-0005AV20 | SHUTDOWN COOLING/ Injection<br>Line Valve                 | Shutdown Cooling                | Reactor  | 476.5     | TORUS BAY K/45  |
| D03-1001-0005BV20 | SHUTDOWN COOLING/ Injection<br>Line Valve                 | Shutdown Cooling                | Reactor  | 476.5     | K/44-45         |
| D03-1201-0001AV20 | REACTOR WATER CLEAN UP/<br>Pump Suction Bypass Line Valve | Reactor Water Cleanup<br>System | Reactor  | 545.5     | Drywell         |
| D03-1201-0001-V20 | REACTOR WATER CLEAN UP/ Aux<br>Pump Suction Line Valve    | Reactor Water Cleanup<br>System | Reactor  | 537       | DRYWELL         |
| D03-1201-0002-V20 | REACTOR WATER CLEAN UP/<br>Pump Suction Bypass Line Valve | Reactor Water Cleanup<br>System | Reactor  | 545.5     | RWCU PIPWY J/45 |
| D03-1201-0003-V20 | REACTOR WATER CLEAN UP/ Aux<br>Pump Suction Line Valve    | Reactor Water Cleanup<br>System | Reactor  | 545.5     | J-K/45-46       |

Table B-1a Page 11 of 39

| ID                | DESCRIPTION                                               | SYSTEM                        | BUILDING | ELEVATION | LOCATION        |
|-------------------|-----------------------------------------------------------|-------------------------------|----------|-----------|-----------------|
| D03-1301-0001-V20 | ISOLATION CONDENSER/ Steam<br>Line Isolation Valve        | Isolation Condenser<br>System | Reactor  | 576.58    | DRYWELL         |
| D03-1301-0002-V20 | ISOLATION CONDENSER/ Steam<br>Line Isolation Valve        | Isolation Condenser<br>System | Reactor  | 570       | IC VLV RM L/46  |
| D03-1301-0003-V20 | ISOLATION CONDENSER/ Steam<br>Return Line Isolation Valve | Isolation Condenser<br>System | Reactor  | 545.5     | M/47            |
| D03-1301-0004-V20 | ISOLATION CONDENSER/ Steam<br>Return Line Isolation Valve | Isolation Condenser<br>System | Reactor  | 537       | DRYWELL         |
| D03-1402-0003AV20 | CORE SPRAY/ Pump Injection Line Valve                     | Core Spray System             | Reactor  | 476.5     | TORUS BSMT 1    |
| D03-1402-0003BV20 | CORE SPRAY/ Pump Injection Line Valve                     | Core Spray System             | Reactor  | 476.5     | TORUS BSMT 11   |
| D03-1402-0004AV20 | CORE SPRAY/ Pump Discharge<br>Test Line Valve             | Core Spray System             | Reactor  | 476.5     | TORUS BAY L/44  |
| D03-1402-0004BV20 | CORE SPRAY/ Pump Discharge<br>Test Line Valve             | Core Spray System             | Reactor  | 476.5     | TORSU BAY L/49  |
| D03-1402-0024AV20 | CORE SPRAY/ Pump Discharge<br>Injection Line Valve        | Core Spray System             | Reactor  | 545.5     | DRY GALL L/47   |
| D03-1402-0024BV20 | CORE SPRAY/ Pump Discharge<br>Injection Line Valve        | Core Spray System             | Reactor  | 545.5     | SHTC HX RM H/47 |
| D03-1402-0025AV20 | CORE SPRAY/ Pump Discharge<br>Injection Line Valve        | Core Spray System             | Reactor  | 545.5     | H-J/47-48       |
| D03-1402-0025BV20 | CORE SPRAY/ Pump Discharge<br>Injection Line Valve        | Core Spray System             | Reactor  | 545.5     | H-J/47-48       |
| D03-1501-0003AV20 | CCSW/ Heat Exchanger Outlet<br>Service Water Line Valve   | LPCI                          | Reactor  | 476.5     | SE C.RM M/44    |
| D03-1501-0003BV20 | CCSW/ Heat Exchanger Outlet<br>Service Water Line Valve   | LPCI                          | Reactor  | 476.5     | SW C.RM N/49    |
| D03-1501-0005AV20 | LPCI/ Suppression Pool Suction Line "A" Valve             | LPCI                          | Reactor  | 476.5     | SE C.RM N/45    |
| D03-1501-0005BV20 | LPCI/ Suppression Pool Suction Line<br>"B" Valve          | LPCI                          | Reactor  | 476.5     | SE C.RM N/45    |
| D03-1501-0005CV20 | LPCI/ Suppression Pool Suction Line<br>"C" Valve          | LPCI                          | Reactor  | 476.5     | SW C.RM N/49    |

Table B-1a Page 12 of 39

| ID                | DESCRIPTION                                      | SYSTEM | BUILDING | ELEVATION | LOCATION       |
|-------------------|--------------------------------------------------|--------|----------|-----------|----------------|
| D03-1501-0005DV20 | LPCI/ Suppression Pool Suction Line<br>"D" Valve | LPCI   | Reactor  | 476.5     | SW C.RM N/49   |
| D03-1501-0011AV20 | LPCI/ LPCI Heat Exchanger Bypass<br>Line Valve   | LPCI   | Reactor  | 476.5     | SE C.RM M-N/44 |
| D03-1501-0011BV20 | LPCI/ LPCI Heat Exchanger Bypass<br>Line Valve   | LPCI   | Reactor  | 476.5     | SW C.RM M-N/49 |
| D03-1501-0013AV20 | LPCI/ LPCI Minimum Flow Bypass<br>Line Valve     | LPCI   | Reactor  | 476.5     | TORUS BAY 2    |
| D03-1501-0013BV20 | LPCI/ LPCI Minimum Flow Bypass<br>Line Valve     | LPCI   | Reactor  | 476.5     | TORUS BAY 10   |
| D03-1501-0018AV20 | LPCI/ Suppression Chamber Spray<br>Line Valve    | LPCI   | Reactor  | 476.5     | M/44-45        |
| D03-1501-0018BV20 | LPCI/ Suppression Chamber Spray<br>Line Valve    | LPCI   | Reactor  | 476.5     | M/50           |
| D03-1501-0019AV20 | LPCI/ Suppression Chamber Spray<br>Line Valve    | LPCI   | Reactor  | 476.5     | M/44-45        |
| D03-1501-0019BV20 | LPCI/ Suppression Chamber Spray<br>Line Valve    | ĻPCI   | Reactor  | 476.5     | M/50           |
| D03-1501-0020AV20 | LPCI/ Suppression Chamber Spray<br>Line Valve    | LPCI   | Reactor  | 476.5     | TORUS BAY 2    |
| D03-1501-0020BV20 | LPCI/ Suppression Chamber Spray<br>Line Valve    | LPCI   | Reactor  | 476.5     | TORUS BAY 10   |
| D03-1501-0021AV20 | LPCI/ LPCI Injection Line Valve                  | LPCI   | Reactor  | 517.5     | K/44-45        |
| D03-1501-0021BV20 | LPCI/ LPCI Injection Line Valve                  | LPCI   | Reactor  | 517.5     | K/50           |
| D03-1501-0022AV20 | LPCI/ LPCI Injection Line Valve                  | LPCI   | Reactor  | 476.5     | TORUS BAY 2    |
| D03-1501-0022BV20 | LPCI/ LPCI Injection Line Valve                  | LPCI   | Reactor  | 476.5     | TORUS BAY K/49 |
| D03-1501-0027AV20 | LPCI/ Drywell Spray Line Valve                   | LPCI   | Reactor  | 545.5     | L-M/47-48      |
| D03-1501-0027BV20 | LPCI/ Drywell Spray Line Valve                   | LPCI   | Reactor  | 517.5     | M/48           |
| D03-1501-0028AV20 | LPCI/ Drywell Spray Line Valve                   | LPCI   | Reactor  | 545.5     | L-M/47-48      |
| D03-1501-0028BV20 | LPCI/ Drywell Spray Line Valve                   | LPCI   | Reactor  | 517.5     | M/48           |
| D03-1501-0032AV20 | LPCI/ LPCI Header Crosstie Line<br>Valve         | LPCI   | Reactor  | 476.5     | SE C.RM N/45   |
| D03-1501-0032BV20 | LPCI/ LPCI Header Crosstie Line<br>Valve         | LPCI   | Reactor  | 476.5     | SW C.RM N/49   |

Table B-1a Page 13 of 39

.

| ID                | DESCRIPTION                                              | SYSTEM | BUILDING | ELEVATION | LOCATION      |
|-------------------|----------------------------------------------------------|--------|----------|-----------|---------------|
| D03-1501-0038AV20 | LPCI/ Suppression Chamber Spray<br>Line Valve            | LPCI   | Reactor  | 476.5     | TORUS BAY 2   |
| D03-1501-0038BV20 | LPCI/ Suppression Chamber Spray<br>Line Valve            | LPCI   | Reactor  | 476.5     | TORUS BAY 10  |
| D03-1501-0044AP30 | CCSW/ CCSW Pump "A"                                      | LPCI   | Turbine  | 495       | D/49          |
| D03-1501-0044BP30 | CCSW/ CCSW Pump "B"                                      | LPCI   | Turbine  | 495       | VAULT RM D/50 |
| D03-1501-0044CP30 | CCSW/ CCSW Pump "C"                                      | LPCI   | Turbine  | 495       | VAULT RM D/50 |
| D03-1501-0044DP30 | CCSW/ CCSW Pump "D"                                      | LPCI   | Turbine  | 495       | D/52          |
| D03-1501-0045D-PI | LPCI/ LPCI Pump Suction Line "D"<br>Pressure Indicator   | LPCI   | Reactor  | 476.5     | SW C.RM N/49  |
| D03-1501-0047A-PI | LPCI/ LPCI Pump Suction Line "A"<br>Pressure Indicator   | LPCI   | Reactor  | 476.5     | SE C.RM N/45  |
| D03-1501-0047B-PI | LPCI/ LPCI Pump Suction Line "B"<br>Pressure Indicator   | LPCI   | Reactor  | 476.5     | SE C.RM N/45  |
| D03-1501-0047C-PI | LPCI/ LPCI Pump Suction Line "C"<br>Pressure Indicator   | LPCI   | Reactor  | 476.5     | SW C.RM N/49  |
| D03-1501-0048A-PI | LPCI/ LPCI Pump Discharge Line "A"<br>Pressure Indicator | LPCI   | Reactor  | 476.5     | SE C.RM N/45  |
| D03-1501-0048B-PI | LPCI/ LPCI Pump Discharge Line "B"<br>Pressure Indicator | LPCI   | Reactor  | 476.5     | SE C.RM N/45  |
| D03-1501-0048C-PI | LPCI/ LPCI Pump Discharge Line "C"<br>Pressure Indicator | LPCI   | Reactor  | 476.5     | SW C.RM N/49  |
| D03-1501-0048D-PI | LPCI/ LPCI Pump Discharge Line "D"<br>Pressure Indicator | LPCI   | Reactor  | 476.5     | SW C.RM N/49  |
| D03-1501-0051A-PS | LPCI/ LPCI Header Line Pressure<br>Switch                | LPCI   | Reactor  | 476.5     | M-N/44-45     |
| D03-1501-0051B-PS | LPCI/ LPCI Header Line Pressure<br>Switch                | LPCI   | Reactor  | 476.5     | N/49          |
| D03-1501-0053AFSL | LPCI/ LPCI Injection Line Flow<br>Switch Low             | LPCI   | Reactor  | 476.5     | K/44-45       |
| D03-1501-0053BFSL | LPCI/ LPCI Injection Line Flow<br>Switch Low             | LPCI   | Reactor  | 476.5     | K/50          |
| D03-1501-0058A-FT | LPCI/ LPCI Header Line Flow<br>Transmitter               | LPCI   | Reactor  | 476.5     | M-N/44-45     |

Table B-1a Page 14 of 39

| ID                | DESCRIPTION                                           | SYSTEM | BUILDING | ELEVATION | LOCATION       |
|-------------------|-------------------------------------------------------|--------|----------|-----------|----------------|
| D03-1501-0058B-FT | LPCI/ LPCI Header Line Flow<br>Transmitter            | LPCI   | Reactor  | 476.5     | N/49           |
| D03-1501-0059A1PT | CCSW/ CCSW Pump "A" Discharge<br>Pressure Transmitter | LPCI   | Turbine  | 495       | D/49           |
| D03-1501-0059A-PI | CCSW/ CCSW Pump "A" Discharge<br>Pressure Indicator   | LPCI   | Turbine  | 495       | D/49           |
| D03-1501-0059B1PT | CCSW/ CCSW Pump "B" Discharge<br>Pressure Transmitter | LPCI   | Turbine  | 495       | D/50           |
| D03-1501-0059B-PI | CCSW/ CCSW Pump "B" Discharge<br>Pressure Indicator   | LPCI   | Turbine  | 495       | D/50           |
| D03-1501-0059C1PT | CCSW/ CCSW Pump "C" Discharge<br>Pressure Transmitter | LPCI   | Turbine  | 495       | D/50-51        |
| D03-1501-0059C-PI | CCSW/ CCSW Pump "C" Discharge<br>Pressure Indicator   | LPCI   | Turbine  | 495       | D/50-51        |
| D03-1501-0059D1PT | CCSW/ CCSW Pump "D" Discharge<br>Pressure Transmitter | LPCI   | Turbine  | 495       | D/51-52        |
| D03-1501-0059D-PI | CCSW/ CCSW Pump "D" Discharge<br>Pressure Indicator   | LPCI   | Turbine  | 495       | D/51-52        |
| D03-1501-0092AFIS | LPCI/ LPCI Header Line Flow<br>Indicating Switch      | LPCI   | Reactor  | 476.5     | M-N/44-45      |
| D03-1501-0092BFIS | LPCI/ LPCI Header Line Flow<br>Indicating Switch      | LPCI   | Reactor  | 476.5     | N/49           |
| D03-1501-090A-PDS | LPCI/ Heat Exchanger Differential<br>Pressure Switch  | LPCI   | Reactor  | 476.5     | SE C.RM M-N/44 |
| D03-1501-090B-PDS | LPCI/ Heat Exchanger Differential<br>Pressure Switch  | LPCI   | Reactor  | 476.5     | SW C.RM M-N/49 |
| D03-1501-LDSH     | LPCI/ Lower Drywell Spray Header                      | LPCI   | Reactor  | 515.5     | DRYWELL        |
| D03-1501-SCSH     | LPCI/ Sippression Chamber Spray<br>Header             | LPCI   | Reactor  | 476.5     | INSIDE TORUS   |
| D03-1501-UDSH     | LPCI/ Upper Drywell Spray Header                      | LPCI   | Reactor  | 537       | DRYWELL        |
| D03-1502-AP30     | LPCI/ LPCI Injection Pump "A"                         | LPCI   | Reactor  | 476.5     | SE C.RM N/45   |
| D03-1502-BP30     | LPCI/ LPCI Injection Pump "B"                         | LPCI   | Reactor  | 476.5     | SE C.RM N/45   |

Table B-1a Page 15 of 39

| ID                | DESCRIPTION                                               | SYSTEM | BUILDING | ELEVATION | LOCATION       |
|-------------------|-----------------------------------------------------------|--------|----------|-----------|----------------|
| D03-1502-CP30     | LPCI/ LPCI Injection Pump "C"                             | LPCI   | Reactor  | 476.5     | SW C.RM N/49   |
| D03-1502-DP30     | LPCI/ LPCI Injection Pump "D"                             | LPCI   | Reactor  | 476.5     | SW C.RM N/49   |
| D03-1503-AH15     | LPCI/ LPCI Heat Exchanger                                 | LPCI   | Reactor  | 476.5     | SE C.RM M-N/44 |
| D03-1503-BH15     | LPCI/ LPCI Heat Exchanger                                 | LPCI   | Reactor  | 476.5     | SW C.RM M-N/49 |
| D03-1540-0005TR   | LPCI/ Heat Exchanger Temperature<br>Recorder              | LPCI   | Reactor  | 476.5     | SE C.RM M-N/44 |
| D03-1540-0006A-ZC | LPCI/ Heat Exchanger Differential<br>Pressure Modulator   | LPCI   | Reactor  | 476.5     | SE C.RM M-N/44 |
| D03-1540-0006B-ZC | LPCI/ Heat Exchanger Differential<br>Pressure Modulator   | LPCI   | Reactor  | 476.5     | SW C.RM M-N/49 |
| D03-1540-0007FR   | LPCI/ LPCI Header Line Flow<br>Recorder                   | LPCI   | Reactor  | 476.5     | M-N/44-45      |
| D03-1540-0012AFIS | LPCI/ LPCI Injection Line Flow<br>Indicating Switch       | LPCI   | Reactor  | 476.5     | K/44-45        |
| D03-1540-0012BFIS | LPCI/ LPCI Injection Line Flow<br>Indicating Switch       | LPCI   | Reactor  | 476.5     | K/50           |
| D03-1540-0013A-SI | LPCI/ LPCI Injection Line Flow<br>Summer                  | LPCI   | Reactor  | 476.5     | K/44-45        |
| D03-1540-0013B-SI | LPCI/ LPCI Injection Line Flow<br>Summer                  | LPCI   | Reactor  | 476.5     | K/50           |
| D03-1540-003ADPIC | LPCI/ Heat Exchanger Differential<br>Pressure Controller  | LPCI   | Reactor  | 476.5     | SE C.RM M-N/44 |
| D03-1540-003BDPIC | LPCI/ Heat Exchanger Differential<br>Pressure Controller  | LPCI   | Reactor  | 476.5     | SW C.RM M-N/49 |
| D03-1541A-FE      | CCSW/ CCSW Pump "A" and "B"<br>Discharge Flow Element     | LPCI   | Reactor  | 476.5     | M-N/44-45      |
| D03-1541B-FE      | CCSW/ CCSW Pump "C" and "D"<br>Discharge Flow Element     | LPCI   | Reactor  | 476.5     | N/49           |
| D03-1543-APDT     | LPCI/ Heat Exchanger Differential<br>Pressure Transmitter | LPCI   | Reactor  | 476.5     | SE C.RM M-N/44 |
| D03-1543-BPDT     | LPCI/ Heat Exchanger Differential<br>Pressure Transmitter | LPCI   | Reactor  | 476.5     | SW C.RM M-N/49 |
| D03-1545A-TE      | CCSW/ CCSW Heat Exchanger<br>Outlet Temperature Element   | LPCI   | Reactor  | 476.5     | SW C.RM M/44   |

Table B-1a Page 16 of 39

| ID            | DESCRIPTION                                             | SYSTEM | BUILDING | ELEVATION | LOCATION       |
|---------------|---------------------------------------------------------|--------|----------|-----------|----------------|
| D03-1545B-TE  | CCSW/ CCSW Heat Exchanger<br>Outlet Temperature Element | LPCI   | Reactor  | 476.5     | SW C.RM N/49   |
| D03-1546-A1TE | LPCI/ Heat Exchanger Inlet Line<br>Temperature Element  | LPCI   | Reactor  | 476.5     | SE C.RM M-N/44 |
| D03-1546-ATE  | LPCI/ Heat Exchanger Inlet Line<br>Temperature Element  | LPCI   | Reactor  | 476.5     | SE C.RM M-N/44 |
| D03-1546-B1TE | LPCI/ Heat Exchanger Inlet Line<br>Temperature Element  | LPCI   | Reactor  | 476.5     | SW C.RM M-N/49 |
| D03-1546-BTE  | LPCI/ Heat Exchanger Inlet Line<br>Temperature Element  | LPCI   | Reactor  | 476.5     | SW C.RM M-N/49 |
| D03-1547-A1TE | LPCI/ Heat Exchanger Outlet Line<br>Temperature Element | LPCI   | Reactor  | 476.5     | SE C.RM M-N/44 |
| D03-1547-ATE  | LPCI/ Heat Exchanger Outlet Line<br>Temperature Element | LPCI   | Reactor  | 476.5     | SE C.RM M-N/44 |
| D03-1547-B1TE | LPCI/ Heat Exchanger Outlet Line<br>Temperature Element | LPCI   | Reactor  | 476.5     | SW C.RM M-N/49 |
| D03-1547-BTE  | LPCI/ Heat Exchanger Outlet Line<br>Temperature Element | LPCI   | Reactor  | 476.5     | SW C.RM M-N/49 |
| D03-1548-AFE  | LPCI/ LPCI Header Line Flow<br>Element                  | LPCI   | Reactor  | 476.5     | M-N/44-45      |
| D03-1548-BFE  | LPCI/ LPCI Header Line Flow<br>Element                  | LPCI   | Reactor  | 476.5     | N/49           |
| D03-1549-AFT  | LPCI/ LPCI Header Line Flow<br>Transmitter              | LPCI   | Reactor  | 476.5     | M-N/44-45      |
| D03-1549-BFT  | LPCI/ LPCI Header Line Flow<br>Transmitter              | LPCI   | Reactor  | 476.5     | N/49           |
| D03-1550-AFE  | LPCI/ LPCI Injection Line Flow<br>Element               | LPCI   | Reactor  | 476.5     | K/44-45        |
| D03-1550-BFE  | LPCI/ LPCI Injection Line Flow<br>Element               | LPCI   | Reactor  | · 476.5   | K/50           |
| D03-1551-AFT  | LPCI/ LPCI Injection Line Flow<br>Transmitter           | LPCI   | Reactor  | 476.5     | K/44-45        |
| D03-1551-BFT  | LPCI/ LPCI Injection Line Flow<br>Transmitter           | LPCI   | Reactor  | 476.5     | K/50           |

Table B-1a Page 17 of 39

| ID            | DESCRIPTION                                              | SYSTEM | BUILDING | ELEVATION | LOCATION       |
|---------------|----------------------------------------------------------|--------|----------|-----------|----------------|
| D03-1551-CFT  | LPCI/ LPCI Injection Line Flow<br>Transmitter            | LPCI   | Reactor  | 476.5     | K/44-45        |
| D03-1551-DFT  | LPCI/ LPCI Injection Line Flow<br>Transmitter            | LPCI   | Reactor  | 476.5     | K/50           |
| D03-1552-A1TE | CCSW/ CCSW Heat Exchanger Inlet<br>Temperature Element   | LPCI   | Reactor  | 476.5     | SW C.RM M/44   |
| D03-1552-ATE  | CCSW/ CCSW Heat Exchanger Inlet<br>Temperature Element   | LPCI   | Reactor  | 476.5     | SW C.RM M/44   |
| D03-1552-B1TE | CCSW/ CCSW Heat Exchanger Inlet<br>Temperature Element   | LPCI   | Reactor  | 476.5     | SW C.RM N/49   |
| D03-1552-BTE  | CCSW/ CCSW Heat Exchanger Inlet<br>Temperature Element   | LPCI   | Reactor  | 476.5     | SW C.RM N/49   |
| D03-1554-APS  | LPCI/ LPCI Pump Discharge Line "A"<br>Pressure Switch    | LPCI   | Reactor  | 476.5     | SE C.RM M/45   |
| D03-1554-BPS  | LPCI/ LPCI Pump Discharge Line "B"<br>Pressure Switch    | LPCI   | Reactor  | 476.5     | SE C.RM M/45   |
| D03-1554-CPS  | LPCI/ LPCI Pump Discharge Line "C"<br>Pressure Switch    | LPCI   | Reactor  | 476.5     | SW C.RM M/49   |
| D03-1554-DPS  | LPCI/ LPCI Pump Discharge Line "D"<br>Pressure Switch    | LPCI   | Reactor  | 476.5     | SW C.RM M/49   |
| D03-1554-EPS  | LPCI/ LPCI Pump Discharge Line "A"<br>Pressure Switch    | LPCI   | Reactor  | 476.5     | SE C.RM M/45   |
| D03-1554-FPS  | LPCI/ LPCI Pump Discharge Line "B"<br>Pressure Switch    | LPCI   | Reactor  | 476.5     | SE C.RM M/45   |
| D03-1554-HPS  | LPCI/ LPCI Pump Discharge Line "C"<br>Pressure Switch    | LPCI   | Reactor  | 476.5     | SW C.RM M/49   |
| D03-1554-JPS  | LPCI/ LPCI Pump Discharge Line "D"<br>Pressure Switch    | LPCI   | Reactor  | 476.5     | SW C.RM M/49   |
| D03-1555-AFY  | LPCI/ Heat Exchanger Differential<br>Pressure Converter  | LPCI   | Reactor  | 476.5     | SE C.RM M-N/44 |
| D03-1555-BFY  | LPCI/ Heat Exchanger Differential<br>Pressure Converter  | LPCI   | Reactor  | 476.5     | SW C.RM M-N/49 |
| D03-1556A-FT  | CCSW/ CCSW Pump "A" and "B"<br>Discharge Flow Tranmitter | LPCI   | Reactor  | 476.5     | M-N/44-45      |

Table B-1a Page 18 of 39

| ID            | DESCRIPTION                                              | SYSTEM | BUILDING | ELEVATION | LOCATION  |
|---------------|----------------------------------------------------------|--------|----------|-----------|-----------|
| D03-1556B-FT  | CCSW/ CCSW Pump "C" and "D"<br>Discharge Flow Tranmitter | LPCI   | Reactor  | 476.5     | N/49      |
| D03-1556C-FT  | CCSW/ CCSW Pump "A" and "B"<br>Discharge Flow Tranmitter | LPCI   | Reactor  | 476.5     | M-N/44-45 |
| D03-1556D-FT  | CCSW/ CCSW Pump "C" and "D"<br>Discharge Flow Tranmitter | LPCI   | Reactor  | 476.5     | N/49      |
| D03-1557-APSL | LPCI/ LPCI Header Line Pressure<br>Switch                | LPCI   | Reactor  | 476.5     | M-N/44-45 |
| D03-1557-BPSL | LPCI/ LPCI Header Line Pressure<br>Switch                | LPCI   | Reactor  | 476.5     | N/49      |
| D03-1558A-FY  | CCSW/ CCSW Pump "A" and "B"<br>Discharge Flow Converter  | LPCI   | Reactor  | 476.5     | M-N/44-45 |
| D03-1558B-FY  | CCSW/ CCSW Pump "C" and "D"<br>Discharge Flow Converter  | LPCI   | Reactor  | 476.5     | N/49      |
| D03-1558C-FY  | CCSW/ CCSW Pump "A" and "B"<br>Discharge Flow Converter  | LPCI   | Reactor  | 476.5     | M-N/44-45 |
| D03-1558D-FY  | CCSW/ CCSW Pump "C" and "D"<br>Discharge Flow Converter  | LPCI   | Reactor  | 476.5     | N/49      |
| D03-1559-AFY  | LPCI/ LPCI Injection Line Flow<br>Converter              | LPCI   | Reactor  | 476.5     | K/44-45   |
| D03-1559-BFY  | LPCI/ LPCI Injection Line Flow<br>Converter              | LPCI   | Reactor  | 476.5     | K/50      |
| D03-1559-CFY  | LPCI/ LPCI Injection Line Flow<br>Converter              | LPCI   | Reactor  | 476.5     | K/44-45   |
| D03-1559-DFY  | LPCI/ LPCI Injection Line Flow<br>Converter              | LPCI   | Reactor  | 476.5     | K/50      |
| D03-1560A-FI  | CCSW/ CCSW Pump "A" and "B"<br>Discharge Flow Indicator  | LPCI   | Reactor  | 476.5     | M-N/44-45 |
| D03-1560B-FI  | CCSW/ CCSW Pump "C" and "D"<br>Discharge Flow Indicator  | LPCI   | Reactor  | 476.5     | N/49      |
| D03-1561-AFl  | LPCI/ LPCI Injection Line Flow<br>Indicator              | LPCI   | Reactor  | 476.5     | K/44-45   |
| D03-1561-BFl  | LPCI/ LPCI Injection Lije Flou<br>Indicator              | LPCI   | Reactor  | 476.5     | K/50      |

Table B-1a Page 19 of 39

| ID                | DESCRIPTION                                                | SYSTEM              | BUILDING | ELEVATION | LOCATION       |
|-------------------|------------------------------------------------------------|---------------------|----------|-----------|----------------|
| D03-1599-0002BV15 | LPCI/ LPCI Injection Line Drain<br>Valve                   | LPCI                | Reactor  | 476.5     | K/45           |
| D03-1599-0013AV26 | LPCI/ Suppression Pool Suction Line<br>"A" Relief Valve    | LPCI                | Reactor  | 476.5     | SE C.RM N/45   |
| D03-1599-0013BV26 | LPCI/ Suppression Pool Suction Line<br>"B" Relief Valve    | LPCI                | Reactor  | 476.5     | SE C.RM N/45   |
| D03-1599-0013CV26 | LPCI/ Suppression Pool Suction Line<br>"C" Relief Valve    | LPCI                | Reactor  | 476.5     | SW C.RM N/49   |
| D03-1599-0013DV26 | LPCI/ Suppression Pool Suction Line<br>"D" Relief Valve    | LPCI                | Reactor  | 476.5     | SW C.RM N/49   |
| D03-1601-0021-V05 | PRESSURE SUPPRESSION/<br>Drywell Purge Line Valve          | Drywell Containment | Reactor  | 476.5     | TORUS BAY 4    |
| D03-1601-0021-V27 | PRESSURE SUPPRESSION/<br>Drywell Purge Line Solenoid Valve | Drywell Containment | Reactor  | 476.5     | TORUS BAY 4    |
| D03-1601-0022-V05 | PRESSURE SUPPRESSION/<br>Drywell/Torus Purge Line Valve    | Drywell Containment | Reactor  | 476.5     | TORUS BAY 4    |
| D03-1601-0022-V27 | PRESSURE SUPPRESSION/<br>Drywell/Torus Purge Solen. Valve  | Drywell Containment | Reactor  | 476.5     | TORUS BAY 4    |
| D03-1601-0023-V05 | PRESSURE SUPPRESSION/<br>Drywell Ventiliation Line Valve   | Drywell Containment | Reactor  | 570       | FPC RM L/47-48 |
| D03-1601-0023-V27 | PRESSURE SUPPRESSION/<br>Drywell Vent. Solenoid Valve      | Drywell Containment | Reactor  | 570       | FPC RM L/47-48 |
| D03-1601-0024-V05 | PRESSURE SUPPRESSION/<br>Drywell and Torus Vent Valve      | Drywell Containment | Reactor  | 570       | J-K/46         |
| D03-1601-0024-V27 | PRESSURE SUPPRESSION/<br>Drywell/Torus Solenoid Valve      | Drywell Containment | Reactor  | 570       | J-K/46         |
| D03-1601-0055-V05 | PRESSURE SUPPRESSION/<br>Drywell Purge Inerting Line Valve | Drywell Containment | Reactor  | 476.5     | TORUS BAY 4    |
| D03-1601-0055-V27 | PRESSURE SUPPRESSION/<br>Drywell Purge Inert. Solen. Valve | Drywell Containment | Reactor  | 476.5     | TORUS BAY 4    |
| D03-1601-0056-V05 | PRESSURE SUPPRESSION/ Torus<br>Purge and Inert Line Valve  | Drywell Containment | Reactor  | 476.5     | TORUS BAY 2    |

÷

Table B-1a Page 20 of 39

| ID                | DESCRIPTION                                                | SYSTEM                | BUILDING | ELEVATION | LOCATION        |
|-------------------|------------------------------------------------------------|-----------------------|----------|-----------|-----------------|
| D03-1601-0056-V27 | PRESSURE SUPPRESSION/ Torus<br>Purge/Inert Solenoid Valve  | Drywell Containment   | Reactor  | 476.5     | TORUS BAY 2     |
| D03-1601-0057-V20 | PRESSURE SUPPRESSION/<br>Drywell/Torus Nitr. Makeup Valve  | Drywell Containment   | Reactor  | 476.5     | TORUS BAY 3     |
| D03-1601-0058-V05 | PRESSURE SUPPRESSION/ Torus<br>Nitrogen Makeup Line Valve  | Drywell Containment   | Reactor  | 476.5     | TORUS BAY 3     |
| D03-1601-0058-V27 | PRESSURE SUPPRESSION/ Torus<br>Nitrogen Make. Solen. Valve | Drywell Containment   | Reactor  | 476.5     | TORUS BAY 3     |
| D03-1601-0059-V05 | PRESSURE SUPPRESSION/<br>Drywell Nitr. Makeup Line Valve   | Drywell Containment   | Reactor  | 476.5     | TORUS BAY 3     |
| D03-1601-0059-V27 | PRESSURE SUPPRESSION/<br>Drywell Nitr. Makeup Solen. Valve | Drywell Containment   | Reactor  | 476.5     | TORUS BAY 3     |
| D03-1601-0060-V05 | PRESSURE SUPPRESSION/ Torus<br>Ventilation Line Valve      | Drywell Containment   | Reactor  | 476.5     | TORUS BAY 10    |
| D03-1601-0060-V27 | PRESSURE SUPPRESSION/ Torus<br>Vent. Solenoid Valve        | Drywell Containment   | Reactor  | 476.5     | TORUS BAY 10    |
| D03-1601-0061-V05 | PRESSURE SUPPRESSION/ Torus<br>Ventilation Line Valve      | Drywell Containment   | Reactor  | 476.5     | TORUS BAY 10    |
| D03-1601-0061-V27 | PRESSURE SUPPRESSION/ Torus<br>Vent. Solenoid Valve        | Drywell Containment   | Reactor  | 476.5     | TORUS BAY 10    |
| D03-1601-0062-V05 | PRESSURE SUPPRESSION/<br>Drywell Ventilation Line Valve    | Drywell Containment   | Reactor  | 570       | FPC RM L/47-48  |
| D03-1601-0062-V27 | PRESSURE SUPPRESSION/<br>Drywell Vent. Solenoid Valve      | Drywell Containment   | Reactor  | 570       | FPC RM L/47-48  |
| D03-1601-0063-V05 | PRESSURE SUPPRESSION/<br>Containment to SBGT Line Valve    | Drywell Containment   | Reactor  | 570       | RWCU DEMIN J/45 |
| D03-1601-0063-V27 | PRESSURE SUPPRESSION/<br>Containment to SBGT Solen. Valve  | Drywell Containment   | Reactor  | 570       | RWCU DEMIN J/45 |
| D03-2001-0005-V05 | RB EQUIPMENT DRAIN/ Drywell<br>Equipment Drain Line Valve  | Radwaste / Spent Fuel | Reactor  | 476.5     | TORUS BAY 4     |

| ID                | DESCRIPTION                                               | SYSTEM                             | BUILDING | ELEVATION | LOCATION      |
|-------------------|-----------------------------------------------------------|------------------------------------|----------|-----------|---------------|
| D03-2001-0005-V27 | RB EQUIPMENT DRAIN/ Drywell<br>Equipment Solenoid Valve   | Radwaste / Spent Fuel<br>Pool      | Reactor  | 476.5     | TORUS BAY 4   |
| D03-2001-0006-V05 | RB EQUIPMENT DRAIN/ Drywell<br>Equipment Drain Line Valve | Radwaste / Spent Fuel<br>Pool      | Reactor  | 476.5     | TORUS BAY 4   |
| D03-2001-0006-V27 | RB EQUIPMENT DRAIN/ Drywell<br>Equipment Solenoid Valve   | Radwaste / Spent Fuel<br>Pool      | Reactor  | 476.5     | TORUS BAY 4   |
| D03-2001-0105-V05 | RB EQUIPMENT DRAIN/ Drywell<br>Floor Drain Line Valve     | Radwaste / Spent Fuel<br>Pool      | Reactor  | 476.5     | TORUS BAY 14  |
| D03-2001-0105-V27 | RB EQUIPMENT DRAIN/ Drywell<br>Floor Drain Solenoid Valve | Radwaste / Spent Fuel<br>Pool      | Reactor  | 476.5     | TORUS BAY 14  |
| D03-2001-0106-V05 | RB EQUIPMENT DRAIN/ Drywell<br>Floor Drain Line Valve     | Radwaste / Spent Fuel<br>Pool      | Reactor  | 476.5     | TORUS BAY 14  |
| D03-2001-0106-V27 | RB EQUIPMENT DRAIN/ Drywell<br>Floor Drain Solenoid Valve | Radwaste / Spent Fuel<br>Pool      | Reactor  | 476.5     | TORUS BAY 14  |
| D03-2203-0005     | INSTRUMENT RACKS/ Instrument<br>Rack 2203-5               | Local Panels & Racks<br>(Radwaste) | Reactor  | 545.5     | M/47          |
| D03-2203-0006     | INSTRUMENT RACKS/ Instrument<br>Rack 2203-6               | Local Panels & Racks<br>(Radwaste) | Reactor  | 545.5     | K/49          |
| D03-2203-0007     | INSTRUMENT RACKS/ Instrument<br>Rack 2203-7               | Local Panels & Racks<br>(Radwaste) | Reactor  | 517.5     | K/45          |
| D03-2203-0008     | INSTRUMENT RACKS/ Instrument<br>Rack 2203-8               | Local Panels & Racks<br>(Radwaste) | Reactor  | 517.5     | K/49          |
| D03-2203-0029     | INSTRUMENT RACKS/ Instrument<br>Rack 2203-29              | Local Panels & Racks<br>(Radwaste) | Reactor  | 476.5     | SE C.RM N/46  |
| D03-2203-0032     | INSTRUMENT RACKS/ Instrument<br>Rack 2203-32              | Local Panels & Racks<br>(Radwaste) | Reactor  | 545.5     | L/46          |
| D03-2203-0036     | INSTRUMENT RACKS/ Instrument<br>Rack 2203-36              | Local Panels & Racks<br>(Radwaste) | Reactor  | 476.5     | SW C.RM M/49  |
| D03-2203-0070A    | INSTRUMENT RACKS/ Instrument<br>Rack 2203-70A             | Local Panels & Racks (Radwaste)    | Turbine  | 517.5     | AEER 2203-70A |
| D03-2203-0070B    | INSTRUMENT RACKS/ Instrument<br>Rack 2203-70B             | Local Panels & Racks (Radwaste)    | Turbine  | 517.5     | AEER 2203-70B |
| D03-2203-0073A    | INSTRUMENT RACKS/ Instrument<br>Rack 2203-73A             | Local Panels & Racks<br>(Radwaste) | Turbine  | 538       | H/35          |

Table B-1a Page 22 of 39

| ID                | DESCRIPTION                                        | SYSTEM                             | BUILDING | ELEVATION | LOCATION       |
|-------------------|----------------------------------------------------|------------------------------------|----------|-----------|----------------|
| D03-2203-0073B    | INSTRUMENT RACKS/ Instrument<br>Rack 2203-73B      | Local Panels & Racks<br>(Radwaste) | Turbine  | 538       | H/35           |
| D03-2203-0075     | INSTRUMENT RACKS/ Instrument<br>Rack 2203-75       | Local Panels & Racks<br>(Radwaste) | Reactor  | 517.5     | TIP RM3 H/45   |
| D03-2253-0010     | CONTROL PANEL/ DG Metering<br>and Relay Cabinet    | Local Panels & Racks<br>(Radwaste) | Turbine  | 517.5     | DG RM3 G-H/55  |
| D03-2253-0021     | CONTROL PANEL/ DG Excitation<br>Cabinet            | Local Panels & Racks<br>(Radwaste) | Turbine  | 517.5     | DG RM3 G-H/55  |
| D03-2253-0083     | INSTRUMENT RACKS/ Instrument<br>Rack 2253-83       | Local Panels & Racks<br>(Radwaste) | Reactor  | 545.5     | N/47           |
| D03-2253-0084     | INSTRUMENT RACKS/ Instrument<br>Rack 2253-84       | Local Panels & Racks<br>(Radwaste) | Reactor  | 545.5     | N/48           |
| D03-2300-LLAS-1   | Gland Seal Condenser Hotwell Level<br>Alarm Switch | HPCI                               | Reactor  | 476.5     |                |
| D03-2300-LLAS-2   | Gland Seal Condenser Hotwell Level<br>Alarm Switch | HPCI                               | Reactor  | 476.5     |                |
| D03-2301-0003-V20 | HPCI/ Turbine Steam Line Valve                     | HPCI                               | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2301-0004-V20 | HPCI/ Turbine Steam Line Valve                     | HPCI                               | Reactor  | 576.58    | DRYWELL        |
| D03-2301-0005-V20 | HPCI/ Turbine Steam Line Valve                     | HPCI                               | Reactor  | 476.5     | TORUS BAY 2    |
| D03-2301-0006-V20 | HPCI/ Condensate Tank Supply to<br>HPCI Pump Valve | HPCI                               | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2301-0008-V20 | HPCI/ HPCI Pump Injection Line<br>Valve            | HPCI                               | Turbine  | 517.5     | X AREA G/46    |
| D03-2301-0009-V20 | HPCI/ HPCI Pump Injection Line<br>Valve            | HPCI                               | Reactor  | 476.5     | HP RM3 N/45    |
| D03-2301-0010-V20 | HPCI/ Condensate Storage Tank<br>Return Line Valve | HPCI                               | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2301-0014-V20 | HPCI/ HPCI Pump Test Line Valve                    | HPCI                               | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2301-0035-V20 | HPCI/ Suppression Pool Suction Line<br>Valve       | HPCI                               | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2301-0036-V20 | HPCI/ Suppression Pool Suction Line Valve          | HPCI                               | Reactor  | 476.5     | TORUS BSMT 15  |

| ID                | DESCRIPTION                                           | SYSTEM | BUILDING | ELEVATION | LOCATION       |
|-------------------|-------------------------------------------------------|--------|----------|-----------|----------------|
| D03-2301-0048-V20 | HPCI/ HPCI Pump Condensate<br>Return Line Valve       | HPCI   | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2301-0049-V20 | HPCI/ HPCI Pump Condensate<br>Return Line Valve       | HPCI   | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2301-0057-P30 | HPCI/ HPCI Turbine Cooling Water<br>Pump              | HPCI   | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2301-CONDPP   | HPCI/ Condenser Hotwell<br>Condensate Pump            | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2301-PS4PS    | HPCI/ Emergency Bearing Oil Pump<br>Pressure Switch   | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2301T20       | HPCI/ HPCI Turbine                                    | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2302P30       | HPCI/ HPCI Pump                                       | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2320-GSCE-F05 | HPCI/ Gland Seal Condenser<br>Exhaust Fan             | HPCI   | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2320-GSCH15   | HPCI/ Gland Seal Condenser                            | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2320-GSEF-F05 | HPCI/ Gland Seal Condenser<br>Exhaust Fan             | HPCI   | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2340-0001-FIC | HPCI/ HPCI Pump Discharge Flow<br>Controller          | HPCI   | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2340-0002PI   | HPCI/ HPCI Pump Discharge<br>Pressure Indicator       | HPCI   | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2340-0004PI   | HPCI/ Turbine Steam Line Pressure<br>Indicator        | HPCI   | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2340-0005PI   | HPCI/ Turbine Exhaust Line<br>Pressure Indicator      | HPCI   | Reactor  | 476.5     | TORUS BAY M/46 |
| D03-2340-0007PI   | HPCI/ HPCI Pump Inlet Pressure<br>Indicator           | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2341-0003TE   | HPCI/ HPCI Pump Injection Line<br>Temperature Element | HPCI   | Turbine  | 517.5     | G-H/47         |
| D03-2351-ALS      | HPCI/ Torus Water Level Switch                        | HPCI   | Reactor  | 476.5     | SW C.RM M/49   |
| D03-2351-BLS      | HPCI/ Torus Water Level Switch                        | HPCI   | Reactor  | 476.5     | SW C.RM M/49   |
| D03-2354FS        | HPCI/ HPCI Pump Discharge Flow<br>Switch              | HPCI   | Reactor  | 476.5     | HP RM3 N/46    |

Table B-1a Page 24 of 39

| ID           | DESCRIPTION                                           | SYSTEM | BUILDING | ELEVATION | LOCATION       |
|--------------|-------------------------------------------------------|--------|----------|-----------|----------------|
| D03-2356FE   | HPCI/ HPCI Pump Discharge Line<br>Flow Element        | HPCI   | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2357PI   | HPCI/ HPCI Pump Discharge Line<br>Pressure Indicator  | HPCI   | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2358FT   | HPCI/ HPCI Pump Discharge Flow<br>Transmitter         | HPCI   | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2359PT   | HPCI/ HPCI Pump Discharge<br>Pressure Transmitter     | HPCI   | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2360PS   | HPCI/ HPCI Pump Inlet Pressure Switch                 | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2363PI   | HPCI/ Turbine Steam Line Pressure<br>Indicator        | HPCI   | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2364PT   | HPCI/ Turbine Steam Line Pressure<br>Transmitter      | HPCI   | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2365LSH  | HPCI/ Turbine Steam Drain Line<br>Level Switch High   | HPCI   | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2366PT   | HPCI/ Turbine Exhaust Line Pressure Transmitter       | HPCI   | Reactor  | 476.5     | TORUS BAY M/46 |
| D03-2367PI   | HPCI/ Turbine Exhaust Line<br>Pressure Indicator      | HPCI   | Reactor  | 476.5     | TORUS BAY M/46 |
| D03-2368-APS | HPCI/ Turbine Exhaust Line<br>Pressure Switch         | HPCI   | Reactor  | 476.5     | TORUS BAY M/46 |
| D03-2368-BPS | HPCI/ Turbine Exhaust Line<br>Pressure Switch         | HPCI   | Reactor  | 476.5     | TORUS BAY M/46 |
| D03-2369LSH  | HPCI/ Turbine Exhaust Drain Line<br>Level Switch High | HPCI   | Reactor  | 476.5     | HP RM3 N/46    |
| D03-2370-ATS | HPCI/ Steam Leak Detection<br>Temperature Switch      | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2370-BTS | HPCI/ Steam Leak Detection<br>Temperature Switch      | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2370-CTS | HPCI/ Steam Leak Detection<br>Temperature Switch      | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2370-DTS | HPCI/ Steam Leak Detection<br>Temperature Switch      | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |

Table B-1a Page 25 of 39

| D               | DESCRIPTION                                             | SYSTEM | BUILDING | ELEVATION | LOCATION       |
|-----------------|---------------------------------------------------------|--------|----------|-----------|----------------|
| D03-2371-ATS    | HPCI/ Steam Leak Detection<br>Temperature Switch        | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2371-BTS    | HPCI/ Steam Leak Detection<br>Temperature Switch        | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2371-CTS    | HPCI/ Steam Leak Detection<br>Temperature Switch        | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2371-DTS    | HPCI/ Steam Leak Detection<br>Temperature Switch        | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2372-ATS    | HPCI/ Steam Leak Detection<br>Temperature Switch        | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2372-BTS    | HPCI/ Steam Leak Detection<br>Temperature Switch        | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2372-CTS    | HPCI/ Steam Leak Detection<br>Temperature Switch        | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2372-DTS    | HPCI/ Steam Leak Detection<br>Temperature Switch        | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2373-ATS    | HPCI/ Steam Leak Detection<br>Temperature Switch        | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2373-BTS    | HPCI/ Steam Leak Detection<br>Temperature Switch        | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2373-CTS    | HPCI/ Steam Leak Detection<br>Temperature Switch        | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2373-DTS    | HPCI/ Steam Leak Detection<br>Temperature Switch        | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2380PSH     | ·HPCI/HPCI Turbine Pressure Switch<br>High              | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2381PI      | HPCI/ HPCI Pump Inlet Local<br>Pressure Indicator       | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2382PT      | HPCI/ HPCI Pump Inlet Pressure<br>Transmitter           | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2392-0001PI | HPCI/ Hotwell Pump Discharge Line<br>Pressure Indicator | HPCI   | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-2399-79     | HPCI Gland Seal Flow Regulating<br>Valve                | HPCI   | Reactor  | 476.5     |                |

Table B-1a Page 26 of 39

| ID            | DESCRIPTION                                             | SYSTEM                          | BUILDING | ELEVATION | LOCATION      |
|---------------|---------------------------------------------------------|---------------------------------|----------|-----------|---------------|
| D03-3701-AP30 | RBCCW/ Cooling Water Pump                               | Rx Bldg Closed Cooling<br>Water | Reactor  | 545.5     | M/48-49       |
| D03-3701-BP30 | RBCCW/ Cooling Water Pump                               | Rx Bldg Closed Cooling<br>Water | Reactor  | 545.5     | M/48-49       |
| D03-3702-AH15 | RBCCW/ Cooling Water Heat<br>Exchanger                  | Rx Bldg Closed Cooling<br>Water | Reactor  | 545.5     | M-N/49-50     |
| D03-3702-BH15 | RBCCW/ Cooling Water Heat<br>Exchanger                  | Rx Bldg Closed Cooling<br>Water | Reactor  | 545.5     | M-N/49-50     |
| D03-3702V20   | .RBCCW/ Drywell Coolers Inlet<br>Header Line Valve      | Rx Bldg Closed Cooling<br>Water | Reactor  | 545.5     | L-M/48        |
| D03-3703V20   | RBCCW/ Drywell Coolers Outlet<br>Header Line Valve      | Rx Bldg Closed Cooling<br>Water | Reactor  | 545.5     | L/49          |
| D03-3704V20   | RBCCW/ Tie to Shutdown Heat<br>Exchangers Line Valve    | Rx Bldg Closed Cooling<br>Water | Reactor  | 545.5     | J/49          |
| D03-3706V20   | RBCCW/ Drywell Coolers Outlet<br>Header Line Valve      | Rx Bldg Closed Cooling<br>Water | Reactor  | 545.5     | Drywell       |
| D03-3901-AP30 | SERVICE WATER/ Service Water<br>Cooling Pump            | Service Water System            | C. House | 490.67    | B-C/4-5       |
| D03-3901-BP30 | SERVICE WATER/ Service Water<br>Cooling Pump            | Service Water System            | C. House | 490.67    | B-C/5-6       |
| D03-3902S22   | SERVICE WATER/ Cooling Pump<br>Strainer                 | Service Water System            | C. House | 490.67    | A-B/4-5       |
| D03-3903P30   | SERVICE WATER/ Diesel Generator<br>Cooling Water Pump   | Service Water System            | C. House | 490.67    | A/5           |
| D03-4600-BT05 | DIESEL GENERATOR/ Primary Gas<br>Air Receiver Unit "A1" | Service Air System              | Turbine  | 517.5     | DG RM3 G-H/55 |
| D03-4600-CT05 | DIESEL GENERATOR/ Primary Gas<br>Air Receiver Unit "A2" | Service Air System              | Turbine  | 517.5     | DG RM3 G-H/55 |
| D03-4600-GT05 | DIESEL GENERATOR/ Primary Gas<br>Air Receiver Unit "B1" | Service Air System              | Turbine  | 517.5     | DG RM3 G-H/55 |
| D03-4600-HT05 | DIESEL GENERATOR/ Primary Gas<br>Air Receiver Unit "B2" | Service Air System              | Turbine  | 517.5     | DG RM3 G-H/55 |
| D03-4720V05   | INSTRUMENT AIR/ Drywell<br>Pneumatic Supply Valve       | Instument Air                   | Reactor  | 517.5     | DRY GALL J/45 |

Table B-1a Page 27 of 39

.

....

| ID                | DESCRIPTION                                                | SYSTEM                             | BUILDING | ELEVATION | LOCATION      |
|-------------------|------------------------------------------------------------|------------------------------------|----------|-----------|---------------|
| D03-4720V27       | INSTRUMENT AIR/ Drywell Pneumatic Supply Solenoid Valve    | Instument Air                      | Reactor  | 517.5     | DRY GALL J/45 |
| D03-4721V05       | INSTRUMENT AIR/ Drywell Pneumatic Supply Valve             | Instument Air                      | Reactor  | 517.5     | DRY GALL J/45 |
| D03-4721V27       | INSTRUMENT AIR/ Drywell<br>Pneumatic Supply Solenoid Valve | Instument Air                      | Reactor  | 517.5     | DRY GALL J/45 |
| D03-4741-0011-V27 | INSTRUMENT AIR/ Drywell<br>Pneumatic Supply Solenoid Valve | Instument Air                      | Reactor  | 517.5     | DRY GALL J/45 |
| D03-4741-0012-V27 | INSTRUMENT AIR/ Drywell<br>Pneumatic Supply Solenoid Valve | Instument Air                      | Reactor  | 517.5     | DRY GALL J/45 |
| D03-4798-AA10     | INSTRUMENT AIR/ Target Rock<br>Accumulator                 | Instument Air                      | Reactor  | 537       | DRYWELL       |
| D03-5201T05       | DIESEL GENERATOR/ Diesel Fuel<br>Oil Storage Tank          | Diesel Oil System                  | N/A      | 517.5     | N/A           |
| D03-5202T05       | DIESEL GENERATOR/ Diesel Fuel<br>Oil Storage Day Tank      | Diesel Oil System                  | Turbine  | 528.25    | DG RM3 G-H/55 |
| D03-5203P30       | DIESEL GENERATOR/ Fuel Oil<br>Transfer Pump                | Diesel Oil System                  | Turbine  | 517.5     | DG RM3 G-H/55 |
| D03-5500-0030AH15 | CCSW/ CCSU Pump Cooler "A"                                 | Condensate<br>Demineralizer System | Turbine  | 495       | D+50          |
| D03-5500-0030BH15 | CCSW/ CCSW Pump Cooler "B"                                 | Condensate<br>Demineralizer System | Turbine  | 495       | D/50          |
| D03-5700-0030AH15 | CCSW/ CCSW Pump Cooler "A"                                 | Condensate<br>Demineralizer System | Turbine  | 495       | VAULT RM D/50 |
| D03-5700-0030BH15 | CCSW/ CCSW Pump Cooler "B"                                 | Condensate<br>Demineralizer System | Turbine  | 495       | VAULT RM D/50 |
| D03-5700-0030CH15 | CCSW/ CCSW Pump Cooler "C"                                 | Condensate<br>Demineralizer System | Turbine  | 495       | VAULT RM D/50 |
| D03-5700-0030DH15 | CCSW/ CCSW Pump Cooler "D"                                 | Condensate<br>Demineralizer System | Turbine  | 495       | VAULT RM D/50 |
| D03-5734-AF05     | DRYWELL COOLING HVAC/<br>Drywell Cooler Blower             | Condensate<br>Demineralizer System | Reactor  | 502.33    | DRYWELL       |
| D03-5734-AH15     | DRYWELL COOLING HVAC/<br>Drywell Cooler                    | Condensate<br>Demineralizer System | Reactor  | 502.33    | DRYWELL       |

•

Table B-1a Page 28 of 39

| ID ·              | DESCRIPTION                                         | SYSTEM                             | BUILDING | ELEVATION | LOCATION      |
|-------------------|-----------------------------------------------------|------------------------------------|----------|-----------|---------------|
| D03-5734-BF05     | DRYWELL COOLING HVAC/<br>Drywell Cooler Blower      | Condensate<br>Demineralizer System | Reactor  | 502.33    | DRYWELL       |
| D03-5734-BH15     | DRYWELL COOLING HVAC/<br>Drywell Cooler             | Condensate<br>Demineralizer System | Reactor  | 502.33    | DRYWELL       |
| D03-5734-CF05     | DRYWELL COOLING HVAC/<br>Drywell Cooler Blower      | Condensate<br>Demineralizer System | Reactor  | 502.33    | DRYWELL       |
| D03-5734-CH15     | DRYWELL COOLING HVAC/<br>Drywell Cooler             | Condensate<br>Demineralizer System | Reactor  | 502.33    | DRYWELL       |
| D03-5734-DF05     | DRYWELL COOLING HVAC/<br>Drywell Cooler Blower      | Condensate<br>Demineralizer System | Reactor  | 502.33    | DRYWELL       |
| D03-5734-DH15     | DRYWELL COOLING HVAC/<br>Drywell Cooler             | Condensate<br>Demineralizer System | Reactor  | 502.33    | DRYWELL       |
| D03-5734-EF05     | DRYWELL COOLING HVAC/<br>Drywell Cooler Blower      | Condensate<br>Demineralizer System | Reactor  | 502.33    | DRYWELL       |
| D03-5734-EH15     | DRYWELL COOLING HVAC/<br>Drywell Cooler             | Condensate<br>Demineralizer System | Reactor  | 502.33    | DRYWELL       |
| D03-5734-FF05     | DRYWELL COOLING HVAC/<br>Drywell Cooler Blower      | Condensate<br>Demineralizer System | Reactor  | 515.42    | DRYWELL       |
| D03-5734-FH15     | DRYWELL COOLING HVAC/<br>Drywell Cooler             | Condensate<br>Demineralizer System | Reactor  | 515.42    | DRYWELL       |
| D03-5734-GF05     | DRYWELL COOLING HVAC/<br>Drywell Cooler Blower      | Condensate<br>Demineralizer System | Reactor  | 515.42    | DRYWELL       |
| D03-5734-GH15     | DRYWELL COOLING HVAC/<br>Drywell Cooler             | Condensate<br>Demineralizer System | Reactor  | 515.42    | DRYWELL       |
| D03-5746-AH15     | LPCI/ LPCI Emergency Room Air<br>Cooler             | Condensate<br>Demineralizer System | Reactor  | 476.5     | SE C.RM M/44  |
| D03-5746-BH15     | LPCI/ LPCI Emergency Room Air<br>Cooler             | Condensate<br>Demineralizer System | Reactor  | 476.5     | SW C.RM M/50  |
| D03-5747H15       | HPCI/ HPCI Emergency Air Cooler                     | Condensate<br>Demineralizer System | Reactor  | 476.5     | HP RM3 N/46   |
| D03-5772-0100-D05 | DIESEL GENERATOR/ Ventiliation<br>Fan Inlet Damper  | Condensate<br>Demineralizer System | Turbine  | 538       | H/54-55       |
| D03-5772-0101-D05 | DIESEL GENERATOR/ Ventiliation<br>Fan Outlet Damper | Condensate<br>Demineralizer System | Turbine  | 517.5     | DG RM3 G-H/55 |

Table B-1a Page 29 of 39

| ID                | DESCRIPTION                                                | SYSTEM                             | BUILDING | ELEVATION | LOCATION       |
|-------------------|------------------------------------------------------------|------------------------------------|----------|-----------|----------------|
| D03-5772-0102-D05 | DIESEL GENERATOR/ Normal<br>Ventiliation Duct Damper       | Condensate<br>Demineralizer System | Turbine  | 517.5     | G/54           |
| D03-5788-AF05     | DRYWELL COOLING HVAC/<br>Drywell Cooler Blower             | Condensate<br>Demineralizer System | Reactor  | 502.33    | Drywell        |
| D03-5788-BF05     | DRYWELL COOLING HVAC/<br>Drywell Cooler Blower             | Condensate<br>Demineralizer System | Reactor  | 502.33    | Drywell        |
| D03-5788-CF05     | DRYWELL COOLING HVAC/<br>Drywell Cooler Blower             | Condensate<br>Demineralizer System | Reactor  | 502.33    | Drywell        |
| D03-5788-DF05     | DRYWELL COOLING HVAC/<br>Drywell Cooler Blower             | Condensate<br>Demineralizer System | Reactor  | 502.33    | Drywell        |
| D03-5788-EF05     | DRYWELL COOLING HVAC/<br>Drywell Cooler Blower             | Condensate<br>Demineralizer System | Reactor  | 502.33    | Drywell        |
| D03-5788-FF05     | DRYWELL COOLING HVAC/<br>Drywell Cooler Blower             | Condensate<br>Demineralizer System | Reactor  | 515.5     | Drywell        |
| D03-5788-GF05     | DRYWELL COOLING HVAC/<br>Drywell Cooler Blower             | Condensate<br>Demineralizer System | Reactor  | 515.5     | Drywell        |
| D03-5790-0003-D05 | DIESEL GENERATOR/ Ventiliation<br>Fan Solenoid             | Condensate<br>Demineralizer System | Turbine  | 517.5     | G-H/34-35      |
| D03-5790-0003-V10 | DIESEL GENERATOR/ Vent. Fan<br>Damper Solenoid Operator    | Condensate<br>Demineralizer System | Turbine  | 538       | H/54-55        |
| D03-5790EP2-V27   | DIESEL GENERATOR/ Room Vent.<br>Fan Dampers Solenoid Valve | Condensate<br>Demineralizer System | Turbine  | 517.5     | DG PNL 2253-47 |
| D03-5790EP3-V27   | DIESEL GENERATOR/ Normal Vent.<br>Damper Solenoid Valve    | Condensate<br>Demineralizer System | Turbine  | 517.5     | DG PNL 2253-47 |
| D03-5790F10       | DIESEL GENERATOR/ Room<br>Ventiliation Fan                 | Condensate<br>Demineralizer System | Turbine  | 517.5     | DG RM3 G-H/55  |
| D03-6601G05       | DIESEL GENERATOR/ Diesel<br>Engine Driven Generator        | Diesel Generator                   | Turbine  | 517.5     | DG RM3 G-H/55  |
| D03-6665P30       | DIESEL GENERATOR/ Fuel Oil<br>Priming Pump                 | Diesel Generator                   | Turbine  | 517.5     | G-H/55-56      |
| D03-67331S35      | 4160V AC/ Switchgear 33-1                                  | 4160 Volt Switchgear               | Reactor  | 545.5     | M-N/46-47      |
| D03-6733S35       | 4160V AC/ Switchgear 33                                    | 4160 Volt Switchgear               | Turbine  | 538       | D-E/54-55      |
| D03-67341S35      | 4160V AC/ Switchgear 34-1                                  | 4160 Volt Switchgear               | Reactor  | 545.5     | M-N/48-49      |

Table B-1a Page 30 of 39

| ID                | DESCRIPTION                                               | SYSTEM               | BUILDING | ELEVATION | LOCATION  |
|-------------------|-----------------------------------------------------------|----------------------|----------|-----------|-----------|
| D03-6734S35       | 4160V AC/ Switchgear 34                                   | 4160 Volt Switchgear | Turbine  | 538       | D-E/54-55 |
| D03-7338T10       | 480V AC/ Transformer 38, Feed to Switchgear 38            | 480 Volt Switchgear  | Reactor  | 570       | N/48      |
| D03-7339T10       | 480V AC/ 480V Transformer 39,<br>Feed to Switchgear 39    | 480 Volt Switchgear  | Reactor  | 570       | N/48      |
| D03-7338-0382BS35 | 480V AC/ Breaker to Transformer 38<br>(ROB-Switchgear 38) | 480 Volt Switchgear  | Reactor  | 570       | M-N/47-48 |
| D03-7338-0382CS35 | 480V AC/ Breaker to Switchgear 39<br>(ROB-Switchgear 38)  | 480 Volt Switchgear  | Reactor  | 570       | M-N/47-48 |
| D03-7338-0384AS35 | 480V AC/ Breaker to MCC 38-1,4<br>(ROB-Switchgear 38)     | 480 Volt Switchgear  | Reactor  | 570       | M-N/47-48 |
| D03-7338-0384BS35 | 480V AC/ Breaker to MCC 38-2<br>(ROB-Switchgear 38)       | 480 Volt Switchgear  | Reactor  | 570       | M-N/47-48 |
| D03-7338-0384DS35 | 480V AC/ Breaker to MCC 38-3<br>(ROB-Switchgear 38)       | 480 Volt Switchgear  | Reactor  | 570       | M-N/47-48 |
| D03-7338-0385AS35 | 480V AC/ Breaker to MCC 38-7<br>(ROB-Switchgear 38)       | 480 Volt Switchgear  | Reactor  | 570       | M-N/47-48 |
| D03-7338-0386AS35 | 480V AC/ Breaker to Drywell Fan A (ROB-Switchgear 38)     | 480 Volt Switchgear  | Reactor  | 570       | M-N/47-48 |
| D03-7338-0386BS35 | 480V AC/ Breaker to Drywell Fan B<br>(ROB-Switchgear 38)  | 480 Volt Switchgear  | Reactor  | 570       | M-N/47-48 |
| D03-7338-0386CS35 | 480V AC/ Breaker to Drywell Fan F<br>(ROB-Switchgear 38)  | 480 Volt Switchgear  | Reactor  | 570       | M-N/47-48 |
| D03-7338-0386DS35 | 480V AC/ Breaker to Drywell Fan G<br>(ROB-Switchgear 38)  | 480 Volt Switchgear  | Reactor  | 570       | M-N/47-48 |
| D03-7338C05       | 480V AC/ Switchgear 38                                    | 480 Volt Switchgear  | Reactor  | 570       | M-N/47-48 |
| D03-7338S35       | 480V AC/ Switchgear 38                                    | 480 Volt Switchgear  | Reactor  | 570       | M-N/47-48 |
| D03-7339-0392BS35 | 480V AC/ Breaker to Transformer 39<br>(ROB-Switchgear 39) | 480 Volt Switchgear  | Reactor  | 570       | M-N/47-48 |
| D03-7339-0392CS35 | 480V AC/ Breaker to Switchgear 38<br>(ROB-Switchgear 39)  | 480 Volt Switchgear  | Reactor  | 570       | M-N/47-48 |
| D03-7339-0393BS35 | 480V AC/ Breaker MCC 39-1 (ROB-<br>Switchgear 39)         | 480 Volt Switchgear  | Reactor  | 570       | M-N/47-48 |

Table B-1a Page 31 of 39

| ID .              | DESCRIPTION                                                | SYSTEM              | BUILDING | ELEVATION | LOCATION  |
|-------------------|------------------------------------------------------------|---------------------|----------|-----------|-----------|
| D03-7339-0393DS35 | 480V AC/ Breaker MCC 39-2 (ROB-<br>Switchgear 39)          | 480 Volt Switchgear | Reactor  | 570       | M-N/47-48 |
| D03-7339-0394CS35 | 480V AC/ Breaker to MCC 39-7<br>(ROB-Switchgear 39)        | 480 Volt Switchgear | Reactor  | 570       | M-N/47-48 |
| D03-7339-0396AS35 | 480V AC/ Breaker to Drywell Fan C<br>(ROB-Switchgear 39)   | 480 Volt Switchgear | Reactor  | . 570     | M-N/47-48 |
| D03-7339-0396BS35 | 480V AC/ Breaker to Drywell Fan D<br>(ROB-Switchgear 39)   | 480 Volt Switchgear | Reactor  | 570       | M-N/47-48 |
| D03-7339-0396CS35 | 480V AC/ Breaker to Drywell Fan E<br>(ROB-Switchgear 39)   | 480 Volt Switchgear | Reactor  | 570       | M-N/47-48 |
| D03-7339S35       | 480V AC/ 480V Switchgear 39                                | 480 Volt Switchgear | Reactor  | 570       | M-N/47-48 |
| D03-7829-02A4-S35 | 480V AC/ Breaker to 125V Batt. Chg.<br>3 (ROB-MCC 39-2)    | 480 Volt MCCS       | Turbine  | 534       | G/44-45   |
| D03-7838-01C1-S35 | 480V AC/ Breaker to LPCI Air Cooler<br>(ROB-MCC 38-1)      | 480 Volt MCCS       | Reactor  | 517.5     | L/44      |
| D03-7838-01E1-S35 | 480V AC/ Breaker to Valve 1402-24A<br>(ROB-MCC 38-1)       | 480 Volt MCCS       | Reactor  | 517.5     | L/44      |
| D03-7838-01E3-S35 | 480V AC/ Breaker to Valve 1501-3A<br>(ROB-MCC 38-1)        | 480 Volt MCCS       | Reactor  | 517.5     | L/44      |
| D03-7838-01F3-S35 | 480V AC/ Breaker to Valve 1201-1<br>(ROB-MCC 38-1)         | 480 Volt MCCS       | Reactor  | 517.5     | L/44      |
| D03-7838-01H1-S35 | 480V AC/ Breaker to Valve 1301-4<br>(ROB-MCC 38-1)         | 480 Volt MCCS       | Reactor  | 517.5     | L/44      |
| D03-7838-01H2-S35 | 480V AC/ Breaker to Valve 1301-1<br>(ROB-MCC 38-1)         | 480 Volt MCCS       | Reactor  | 517.5     | L/44      |
| D03-7838-02C1-S35 | 480V AC/ Breaker to 125V Batt. Chg.<br>3A (ROB-MCC 38-2)   | 480 Volt MCCS       | Turbine  | 534       | G/47-48   |
| D03-7838-02D2-S35 | 480V AC/ Breaker to 250V Batt. Chg.<br>3 (ROB-MCC 38-2)    | 480 Volt MCCS       | Turbine  | 534       | G/47-48   |
| D03-7838-03C4-S35 | 480V AC/ Breaker to DG Cooling<br>Pump 2/3 (ROB-MCC 38-3)  | 480 Volt MCCS       | Turbine  | 517.5     | G/44      |
| D03-7838-03D1-S35 | 480V AC/ Breaker to CCSW Cooler<br>A, Fan 1 (ROB-MCC 38-3) | 480 Volt MCCS       | Turbine  | 517.5     | G/44      |

Table B-1a Page 32 of 39

| ID                | DESCRIPTION                                                | SYSTEM        | BUILDING | ELEVATION | LOCATION |
|-------------------|------------------------------------------------------------|---------------|----------|-----------|----------|
| D03-7838-03D2-S35 | 480V AC/ Breaker to CCSW Cooler<br>A, Fan 2 (ROB-MCC 38-3) | 480 Volt MCCS | Turbine  | 517.5     | G/44     |
| D03-7838-03D3-S35 | 480V AC/ Breaker to CCSW Cooler<br>B, Fan 1 (ROB-MCC 38-3) | 480 Volt MCCS | Turbine  | 517.5     | G/44     |
| D03-7838-03D4-S35 | 480V AC/ Breaker to CCSW Cooler<br>B, Fan 2 (ROB-MCC 38-3) | 480 Volt MCCS | Turbine  | 517.5     | G/44     |
| D03-7838-04A1-S35 | 480V AC/ Breaker to Valve 1402-3A<br>(ROB-MCC 38-4)        | 480 Volt MCCS | Reactor  | 517.5     | M/44     |
| D03-7838-04A3-S35 | 480V AC/ Breaker to Valve 1501-5A<br>(ROB-MCC 38-4)        | 480 Volt MCCS | Reactor  | 517.5     | M/44     |
| D03-7838-04A4-S35 | 480V AC/ Breaker to Valve 1501-5B<br>(ROB-MCC 38-4)        | 480 Volt MCCS | Reactor  | 517.5     | M/44     |
| D03-7838-04B1-S35 | 480V AC/ Breaker to Valve 1501-38A<br>(ROB-MCC 38-4)       | 480 Volt MCCS | Reactor  | 517.5     | M/44     |
| D03-7838-04B2-S35 | 480V AC/ Breaker to Valve 1501-20A<br>(ROB-MCC 38-4)       | 480 Volt MCCS | Reactor  | 517.5     | M/44     |
| D03-7838-04C3-S35 | 480V AC/ Breaker to Valve 1501-32A<br>(ROB-MCC 38-4)       | 480 Volt MCCS | Reactor  | 517.5     | M/44     |
| D03-7838-04E2-S35 | 480V AC/ Breaker to Valve 1501-13A<br>(ROB-MCC 38-4)       | 480 Volt MCCS | Reactor  | 517.5     | M/44     |
| D03-7838-04E4-S35 | 480V AC/ Breaker to Valve 1501-11A<br>(ROB-MCC 38-4)       | 480 Volt MCCS | Reactor  | 517.5     | M/44     |
| D03-7838-07A2-S35 | 480V AC/ Breaker to Valve 1501-22A<br>(ROB-MCC 38-7)       | 480 Volt MCCS | Reactor  | 517.5     | N/46     |
| D03-7838-07B2-S35 | 480V AC/ Breaker to Valve 202-5A<br>(ROB-MCC 38-7)         | 480 Volt MCCS | Reactor  | 517.5     | N/46     |
| D03-7838-1-1P06   | DISTRIBUTION PANELS/<br>Distribution Panel 38-1-1          | 480 Volt MCCS | Reactor  | 517.5     | L-M/44   |
| D03-7838-1M05     | 480V AC/ MCC 38-1                                          | 480 Volt MCCS | Reactor  | 517.5     | L/44     |
| D03-7838-2M05     | 480V AC/ MCC 38-2                                          | 480 Volt MCCS | Turbine  | 538       | G/52     |
| D03-7838-3M05     | 480V AC/ MCC 38-3                                          | 480 Volt MCCS | Turbine  | 538       | H/53     |
| D03-7838-4M05     | 480V AC/ MCC 38-4                                          | 480 Volt MCCS | Reactor  | 517.5     | M/44     |
| D03-7838-7M05     | 480V AC/ MCC 38-7                                          | 480 Volt MCCS | Reactor  | 517.5     | N/46     |
| D03-7839-01A1-S35 | 480V AC/ Breaker to HPCI Cooling<br>Pump (ROB-MCC 39-1)    | 480 Volt MCCS | Reactor  | 517.5     | L-M/50   |

Table B-1a Page 33 of 39

| ID                | DESCRIPTION                                                | SYSTEM        | BUILDING | ELEVATION | LOCATION |
|-------------------|------------------------------------------------------------|---------------|----------|-----------|----------|
| D03-7839-01B1-S35 | 480V AC/ Breaker to HPCI Air Cooler<br>(ROB-MCC 39-1)      | 480 Volt MCCS | Reactor  | 517.5     | L-M/50   |
| D03-7839-01E2-S35 | 480V AC/ Breaker to Valve 1501-3B<br>(ROB-MCC 39-1)        | 480 Volt MCCS | Reactor  | 517.5     | L-M/50   |
| D03-7839-01F1-S35 | 480V AC/ Breaker to LPCI Air Cooler<br>B (ROB-MCC 39-1)    | 480 Volt MCCS | Reactor  | 517.5     | L-M/50   |
| D03-7839-01H1-S35 | 480V AC/ Breaker to Valve 1402-24B<br>(ROB-MCC 39-1)       | 480 Volt MCCS | Reactor  | 517.5     | L-M/50   |
| D03-7839-01H4-S35 | 480V AC/ Breaker to Valve 1402-3B<br>(ROB-MCC 39-1)        | 480 Volt MCCS | Reactor  | 517.5     | L-M/50   |
| D03-7839-01K1-S35 | 480V AC/ Breaker to Valve 1501-5C (ROB-MCC 39-1)           | 480 Volt MCCS | Reactor  | 517.5     | L-M/50   |
| D03-7839-01K2-S35 | 480V AC/ Breaker to Valve 1501-5D (ROB-MCC 39-1)           | 480 Volt MCCS | Reactor  | 517.5     | Ľ-M/50   |
| D03-7839-01L1-S35 | 480V AC/ Breaker to Valve 1501-38B<br>(ROB-MCC 39-1)       | 480 Volt MCCS | Reactor  | 517.5     | L-M/50   |
| D03-7839-01L2-S35 | 480V AC/ Breaker to Valve 1501-20B (ROB-MCC 39-1)          | 480 Volt MCCS | Reactor  | 517.5     | L-M/50   |
| D03-7839-01N1-S35 | 480V AC/ Breaker to Valve 1501-13B<br>(ROB-MCC 39-1)       | 480 Volt MCCS | Reactor  | 517.5     | L-M/50   |
| D03-7839-01N2-S35 | 480V AC/ Breaker to Valve 1501-11B<br>(ROB-MCC 39-1)       | 480 Volt MCCS | Reactor  | 517.5     | L-M/50   |
| D03-7839-01P4-S35 | 480V AC/ Breaker to Valve 1501-32B (ROB-MCC 39-1)          | 480 Volt MCCS | Reactor  | 517.5     | L-M/50   |
| D03-7839-01P5-S35 | 480V AC/ Breaker to Valve 2301-4<br>(ROB-MCC 39-1)         | 480 Volt MCCS | Reactor  | 517.5     | L-M/50   |
| D03-7839-02A3-S35 | 480V AC/ Breaker to CCSW Cooler<br>C, Fan 1 (ROB-MCC 39-2) | 480 Volt MCCS | Turbine  | 534       | G/44-45  |
| D03-7839-02B2-S35 | 480V AC/ Breaker to CCSW Cooler<br>C, Fan 2 (ROB-MCC 39-2) | 480 Volt MCCS | Turbine  | 534       | G/44-45  |
| D03-7839-02C2-S35 | 480V AC/ Breaker to DG Cooling<br>Pump (ROB-MCC 39-2)      | 480 Volt MCCS | Turbine  | 534       | G/44-45  |
| D03-7839-02D3-S35 | 480V AC/ Breaker to 250V Batt. Chg. 2/3 (ROB-MCC 39-2)     | 480 Volt MCCS | Turbine  | 534       | G/44-45  |

Table B-1a Page 34 of 39

| ID                | DESCRIPTION                                                | SYSTEM           | BUILDING | ELEVATION | LOCATION      |
|-------------------|------------------------------------------------------------|------------------|----------|-----------|---------------|
| D03-7839-02D4-S35 | 480V AC/ Breaker to CCSW Cooler<br>D, Fan 1 (ROB-MCC 39-2) | 480 Volt MCCS    | Turbine  | 534       | G/44-45       |
| D03-7839-02D5-S35 | 480V AC/ Breaker to CCSW Cooler<br>D, Fan 2 (ROB-MCC 39-2) | 480 Volt MCCS    | Turbine  | 534       | G/44-45       |
| D03-7839-02E1-S35 | 480V AC/ Breaker to Transfer Pump<br>3 (ROB-MCC 39-2)      | 480 Volt MCCS    | Turbine  | 534       | G/44-45       |
| D03-7839-02E3-S35 | 480V AC/ Breaker to DG Vent. Fan 3<br>(ROB-MCC 39-2)       | 480 Volt MCCS    | Turbine  | 534       | G/44-45       |
| D03-7839-1M05     | 480V AC/ MCC 39-1                                          | 480 Volt MCCS    | Reactor  | 517.5     | L-M/50        |
| D03-7839-2M05     | 480V AC/ MCC 39-2                                          | 480 Volt MCCS    | Turbine  | 534       | G/44-45       |
| D03-7839-7M05     | 480V AC/ MCC 39-7                                          | 480 Volt MCCS    | Reactor  | 517.5     | N/48          |
| D03-83003AB05     | 125V DC/ Battery Charger #3A                               | 125 VDC /250 VDC | Turbine  | 538       | G-H/54-55     |
| D03-83003B05      | 125V DC/ Battery Charger #3                                | 125 VDC /250 VDC | Turbine  | 538       | BC RM3 G-H/55 |
| D03-8300BCB04     | 125V DC/ Battery #3, Feed to TB<br>Battery Bus #3          | 125 VDC /250 VDC | Turbine  | 551       | B RM3 G-H/55  |
| D03-8301A-P06     | panels 3A-1 and 3A-2                                       | 125 VDC /250 VDC | Turbine  | 538       | G-H/55-56     |
| D03-8302B-P02-M05 | 250V DC/ Breaker to Line Valve<br>2301-6 (ROB-Bus 2B)      | 125 VDC /250 VDC | Reactor  | 570       | M-N/46-47     |
| D03-8303A1-1P06   | 125V DC/ TB Main Bus #3A, Feed to<br>Res Bus #2            | 125 VDC /250 VDC | Turbine  | 538       | G-H/54-55     |
| D03-8303A1-2P06   | 125V DC/ TB Main Bus #3A-1 (ROB-<br>Main Bus #3A)          | 125 VDC /250 VDC | Turbine  | 538       | G-H/54-55     |
| D03-8303AAA02-M05 | 250V DC/ Breaker to Steam Valve<br>2301-8 (ROB-Bus 3A)     | 125 VDC /250 VDC | Reactor  | 570       | M-N/46-47     |
| D03-8303A-B01-M05 | 250V DC/ Breaker to Turbine<br>Auxiliary Pump (ROB-Bus 3A) | 125 VDC /250 VDC | Reactor  | 570       | M-N/46-47     |
| D03-8303A-C01-M05 | 250V DC/ Breaker to Turbine Oil<br>Pump (ROB-Bus 3A)       | 125 VDC /250 VDC | Reactor  | 570       | M-N/46-47     |
| D03-8303A-C02-M05 | 250V DC/ Breaker to Gland Seal<br>Cond. Fan (ROB-Bus 3A)   | 125 VDC /250 VDC | Reactor  | 570       | M-N/46-47     |
| D03-8303A-D02-M05 | 250V DC/ Breaker to Hot.<br>Condensate Pump (ROB-Bus 3A)   | 125 VDC /250 VDC | Reactor  | 570       | M-N/46-47     |
| D03-8303A-G01-M05 | 250V DC/ Breaker to Line Valve<br>1201-2 (ROB-Bus 3A)      | 125 VDC /250 VDC | Reactor  | 570       | M-N/46-47     |

Table B-1a Page 35 of 39

| ID ID             | DESCRIPTION                                                | SYSTEM           | BUILDING | ELEVATION | LOCATION          |
|-------------------|------------------------------------------------------------|------------------|----------|-----------|-------------------|
| D03-8303A-H02-M05 | 250V DC/ Breaker to Line Valve<br>1301-2 (ROB-Bus 3A)      | 125 VDC /250 VDC | Reactor  | 570       | M-N/46-47         |
| D03-8303AM05      | 250V DC/ MCC Bus #3A (ROB-RB<br>MCC #3)                    | 125 VDC /250 VDC | Reactor  | 570       | M-N/46-47         |
| D03-8303B1P06     | 125V DC/ TB Res Bus #3B-1 (ROB-<br>TB Res Bus #3B)         | 125 VDC /250 VDC | Turbine  | 538       | BC RM3 G-H/55     |
| D03-8303B-K02-M05 | 250V DC/ Breaker to Steam Valve<br>2301-3 (ROB-Bus 3B)     | 125 VDC /250 VDC | Reactor  | 570       | M-N/46-47         |
| D03-8303B-L01-M05 | 250V DC/ Breaker to Test Valve<br>2301-5 (ROB-Bus 3B)      | 125 VDC /250 VDC | Reactor  | 570       | M-N/46-47         |
| D03-8303B-L02-M05 | 250V DC/ Breaker to Test Valve<br>2301-14 (ROB-Bus 3B)     | 125 VDC /250 VDC | Reactor  | 570       | M-N/46-47         |
| D03-8303BM05      | 250V DC/ MCC Bus #3B (ROB-RB<br>MCC #3)                    | 125 VDC /250 VDC | Reactor  | 570       | M-N/46-47         |
| D03-8303B-002-M05 | 250V DC/ Breaker to Line Valve<br>2301-35 (ROB-Bus 3B)     | 125 VDC /250 VDC | Reactor  | 570       | <b>M-N/46-4</b> 7 |
| D03-8303B-P01-M05 | 250V DC/ Breaker to Line Valve<br>2301-36 (ROB-Bus 3B)     | 125 VDC /250 VDC | Reactor  | 570       | M-N/46-47         |
| D03-83125-3P06    | 125V DC/ TB Battery Bus #3, Feed<br>to Main Bus #3A        | 125 VDC /250 VDC | Turbine  | 538       | G-H/54-55         |
| D03-83125P06      | 125V DC/ RB 125V DC Distribution<br>Panel #3               | 125 VDC /250 VDC | Reactor  | 570       | N/46              |
| D03-83250-3B05    | 250V DC/ Battery Charger #3                                | 125 VDC /250 VDC | Turbine  | 538       | BC RM3 G-H/55     |
| D03-83250-A01-M05 | 250V DC/ Breaker to TB MCC #3<br>(ROB-Battery #3)          | 125 VDC /250 VDC | Turbine  | 549       | G/31-32           |
| D03-83250-A02-M05 | 250V DC/ Breaker to Battery #3<br>(ROB-Battery Charg #2/3) | 125 VDC /250 VDC | Turbine  | 549       | G/31-32           |
| D03-83250-A03-M05 | 250V DC/ Breaker to Battery #3<br>(ROB-Battery Charger #3) | 125 VDC /250 VDC | Turbine  | 549       | G/31-32           |
| D03-83250B04      | 250V DC/ Battery #3, Feed to TB<br>MCC #3                  | 125 VDC /250 VDC | Turbine  | 551       | B RM3 G-H/55      |
| D03-83250-102-M05 | 250V DC/ Breaker to RB MCC #2<br>(ROB-TB MCC #3)           | 125 VDC /250 VDC | Turbine  | 538       | G-H/55-56         |
| D03-83250M05      | 250V DC/ TB MCC #3                                         | 125 VDC /250 VDC | Turbine  | 538       | BC RM3 G-H/55     |

Table B-1a Page 36 of 39
| ID                | DESCRIPTION                                               | SYSTEM                   | BUILDING | ELEVATION | LOCATION     |
|-------------------|-----------------------------------------------------------|--------------------------|----------|-----------|--------------|
| D03-8501-0001AV05 | CONTAINMENT SAMPLING/ Torus<br>Oxygen Sampling Line Valve | Nitrogen Inerting System | Reactor  | 476.5     | TORUS BAY 16 |
| D03-8501-0001AV27 | CONTAINMENT SAMPLING/ Torus<br>Oxygen Sampl. Solen. Valve | Nitrogen Inerting System | Reactor  | 476.5     | TORUS BAY 16 |
| D03-8501-0001BV05 | CONTAINMENT SAMPLING/ Torus<br>Oxygen Sampling Line Valve | Nitrogen Inerting System | Reactor  | 476.5     | TORUS BAY 16 |
| D03-8501-0001BV27 | CONTAINMENT SAMPLING/ Torus<br>Oxygen Sampl. Solen. Valve | Nitrogen Inerting System | Reactor  | 476.5     | TORUS BAY 16 |
| D03-8501-0003AV05 | CONTAINMENT SAMPLING/ Drywell<br>Oxy. Sampling Line Valve | Nitrogen Inerting System | Reactor  | 517.5     | J/45-46      |
| D03-8501-0003AV27 | CONTAINMENT SAMPLING/ Drywell<br>Oxy. Sampl. Solen. Valve | Nitrogen Inerting System | Reactor  | 517.5     | J/45-46      |
| D03-8501-0003BV05 | CONTAINMENT SAMPLING/ Drywell<br>Oxy. Sampling Line Valve | Nitrogen Inerting System | Reactor  | 517.5     | J/45-46      |
| D03-8501-0003BV27 | CONTAINMENT SAMPLING/ Drywell<br>Oxy. Sampl. Solen. Valve | Nitrogen Inerting System | Reactor  | 517.5     | J/45-46      |
| D03-8501-0005AV05 | CONTAINMENT SAMPLING/ Drywell<br>Oxy. Sampling Line Valve | Nitrogen Inerting System | Reactor  | 545.5     | L/46         |
| D03-8501-0005AV27 | CONTAINMENT SAMPLING/ Drywell<br>Oxy. Sampl. Solen. Valve | Nitrogen Inerting System | Reactor  | 545.5     | L/46         |
| D03-8501-0005BV05 | CONTAINMENT SAMPLING/ Drywell<br>Oxy. Sampling Line Valve | Nitrogen Inerting System | Reactor  | 545.5     | L/46         |
| D03-8501-0005BV27 | CONTAINMENT SAMPLING/ Drywell<br>Oxy. Sampl. Solen. Valve | Nitrogen Inerting System | Reactor  | 545.5     | L/46         |
| D03-8599-0617-V15 | CONTAINMENT SAMPLING/ Drywell<br>Oxy. Sampling Vent Valve | Nitrogen Inerting System | Reactor  | 517.5     | J/45-46      |
| D03-9205-AV05     | CONTAINMENT SAMPLING/ Drywell<br>Oxy. Sampling Line Valve | Drywell Air Sampling     | Reactor  | 545.5     | L/46         |
| D03-9205-AV27     | CONTAINMENT SAMPLING/ Drywell<br>Oxy. Sampl. Solen. Valve | Drywell Air Sampling     | Reactor  | 545.5     | L/46         |
| D03-9205-BV05     | CONTAINMENT SAMPLING/ Drywell<br>Oxy. Sampling Line Valve | Drywell Air Sampling     | Reactor  | 545.5     | L/46         |
| D03-9205-BV27     | CONTAINMENT SAMPLING/ Drywell<br>Oxy. Sampl. Solen. Valve | Drywell Air Sampling     | Reactor  | 545.5     | L/46         |

Table B-1a Page 37 of 39

| ĪD                | DESCRIPTION                                               | SYSTEM                         | BUILDING | ELEVATION | LOCATION      |
|-------------------|-----------------------------------------------------------|--------------------------------|----------|-----------|---------------|
| D03-9206-AV05     | CONTAINMENT SAMPLING/ Drywell<br>Oxy. Sampling Line Valve | Drywell Air Sampling           | Reactor  | 545.5     | L/46          |
| D03-9206-AV27     | CONTAINMENT SAMPLING/ Drywell<br>Oxy. Sampl. Solen. Valve | Drywell Air Sampling           | Reactor  | 545.5     | L/46          |
| D03-9206-BV05     | CONTAINMENT SAMPLING/ Drywell<br>Oxy. Sampling Line Valve | Drywell Air Sampling           | Reactor  | 545.5     | L/46          |
| D03-9206-BV27     | CONTAINMENT SAMPLING/ Drywell<br>Oxy. Sampl. Solen. Valve | Drywell Air Sampling           | Reactor  | 545.5     | L/46          |
| D03-9207-AV05     | CONTAINMENT SAMPLING/ Drywell<br>Sampling Line Valve      | Drywell Air Sampling           | Reactor  | 517.5     | DRY LOCK L/48 |
| D03-9207-AV27     | CONTAINMENT SAMPLING/ Drywell<br>Sampling Solenoid Valve  | Drywell Air Sampling           | Reactor  | 517.5     | DRY LOCK L/48 |
| D03-9207-BV05     | CONTAINMENT SAMPLING/ Drywell<br>Sampling Line Valve      | Drywell Air Sampling           | Reactor  | 517.5     | DRY LOCK L/48 |
| D03-9207-BV27     | CONTAINMENT SAMPLING/ Drywell<br>Sampling Solenoid Valve  | Drywell Air Sampling           | Reactor  | 517.5     | DRY LOCK L/48 |
| D03-9208-AV05     | CONTAINMENT SAMPLING/ Drywell<br>Sampling Line Valve      | Drywell Air Sampling           | Reactor  | 517.5     | DRY LOCK L/48 |
| D03-9208-AV27     | CONTAINMENT SAMPLING/ Drywell<br>Sampling Solenoid Valve  | Drywell Air Sampling           | Reactor  | 517.5     | DRY LOCK L/48 |
| D03-9208-BV05     | CONTAINMENT SAMPLING/ Drywell<br>Sampling Line Valve      | Drywell Air Sampling           | Reactor  | 517.5     | DRY LOCK L/48 |
| D03-9208-BV27     | CONTAINMENT SAMPLING/ Drywell<br>Sampling Solenoid Valve  | Drywell Air Sampling           | Reactor  | 517.5     | DRY LOCK L/48 |
| D03-9802-3AB05    | 24/48V DC/ Battery Charger #3A                            | 345 kV Switchyard DC<br>System | Turbine  | 551       | G/56          |
| D03-9802-3ANEGB05 | 24/48V DC/ Battery Charger #3A (-)                        | 345 kV Switchyard DC<br>System | Turbine  | 538       | BC RM3 G-H/55 |
| D03-9802-3APOSB05 | 24/48V DC/ Battery Charger #3A (+)                        | 345 kV Switchyard DC<br>System | Turbine  | 538       | BC RM3 G-H/55 |
| D03-9802-3BB05    | 24/48V DC/ Battery Charger #3B                            | 345 kV Switchyard DC<br>System | Turbine  | 551       | G-H/55        |
| D03-9802-3BNEGB05 | 24/48V DC/ Battery Charger #3B (-)                        | 345 kV Switchyard DC<br>System | Turbine  | 538       | BC RM3 G-H/55 |

| ID                | DESCRIPTION                                             | SYSTEM                         | BUILDING | ELEVATION | LOCATION       |
|-------------------|---------------------------------------------------------|--------------------------------|----------|-----------|----------------|
| D03-9802-3BPOSB05 | 24/48V DC/ Battery Charger #3B (+)                      | 345 kV Switchyard DC<br>System | Turbine  | 538       | BC RM3 G-H/55  |
| D03-9802A-A21-B11 | 24/48V DC/ Breaker to Battery<br>Charger #3A (+)        | 345 kV Switchyard DC<br>System | Turbine  | 551       | G/56           |
| D03-9802A-A22-B11 | 24/48V DC/ Breaker to Battery<br>Charger #3A (-)        | 345 kV Switchyard DC<br>System | Turbine  | 551       | G/56           |
| D03-9802-AB04     | 24/48V DC/ Battery #3A                                  | 345 kV Switchyard DC<br>System | Turbine  | 551       | B RM3 G-H/55   |
| D03-9802-AP06     | 24/48V DC/ Distribution Panel #3A                       | 345 kV Switchyard DC<br>System | Turbine  | 538       | BC RM3 G-H/55  |
| D03-9802B-A21-B11 | 24/48V DC/ Breaker to Battery<br>Charger #3B (+)        | 345 kV Switchyard DC<br>System | Turbine  | 551       | G-H/55         |
| D03-9802B-A22-B11 | 24/48V DC/ Breaker to Battery<br>Charger #3B (-)        | 345 kV Switchyard DC<br>System | Turbine  | 551       | G-H/55         |
| D03-9802-BB04     | 24/48V DC/ Battery #3B                                  | 345 kV Switchyard DC<br>System | Turbine  | 551       | B RM3 G-H/55   |
| D03-9802-BP06     | 24/48V DC/ Distribution Panel #3B                       |                                | Turbine  | 538       | BC RM3 G-H/55  |
| D03-DGCP          | CONTROL PANEL/ Unit 3 Diesel<br>Generator Control Panel |                                | Turbine  | 517.5     | DG RM3 G-H/55  |
| D03-LCS1LS        | HPCI/ Gland Seal Condenser Drain<br>Pump Level Switch   |                                | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-LCS2LS        | HPCI/ Gland Seal Condenser Drain<br>Pump Level Switch   |                                | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-LOC           | HPCI/ Lube Oil Cooler                                   |                                | Reactor  | 476.5     | HP RM3 N/46-47 |
| D03-NGC           | CONTROL PANEL/ Unit 3 Neutral<br>Grounding Cabinet      |                                | Turbine  | 517.5     | DG RM3 G-H/55  |

.

j

| Table B-1b. I | Base List | 1b - Items | Common to | Units 2 and 3 |
|---------------|-----------|------------|-----------|---------------|
|---------------|-----------|------------|-----------|---------------|

| ID                | DESCRIPTION                                              | SYSTEM                             | BUILDING | ELEVATION | LOCATION      |
|-------------------|----------------------------------------------------------|------------------------------------|----------|-----------|---------------|
| D00-2223-0033     | CONTROL PANEL/ DG Relaying and<br>Metering Cabinet       | Local Panels & Racks<br>(Radwaste) | Reactor  | 504.5     | DG RM2/3 N/46 |
| D00-2223-0041     | CONTROL PANEL/ DG Excitation Cabinet                     | Local Panels & Racks (Radwaste)    | Reactor  | 504.5     | DG RM2/3 N/46 |
| D00-2223-0053     | CONTROL PANEL/ Diesel Generator Fire<br>Protection Panel | Local Panels & Racks (Radwaste)    | Turbine  | 517.5     | G/45          |
| D00-2223-0058     | CONTROL PANEL/ Diesel Generator Fire<br>Protection Panel | Local Panels & Racks (Radwaste)    | Turbine  | 517.5     | G/45          |
| D00-2223-0109     | CONTROL PANEL/ DG Cooling Pump<br>Transfer Switch Status | Local Panels & Racks<br>(Radwaste) | Reactor  | 504.5     | DG RM2/3 N/46 |
| D00-2350-ALS      | HPCI/ Storage Tank Level Switch                          | HPCI                               | Turbine  | 517.5     | RFP RM G/35   |
| D00-2350-BLS      | HPCI/ Storage Tank Level Switch                          | HPCI                               | Turbine  | 517.5     | RFP RM G/35   |
| D00-2350-CLS      | HPCI/ Storage Tank Level Switch                          | HPCI                               | Turbine  | 517.5     | RFP RM G/35   |
| D00-2350-DLS      | HPCI/ Storage Tank Level Switch                          | HPCI                               | Turbine  | 517.5     | RFP RM G/35   |
| D00-3303-AT05     | CONDENSATE/ Contaminated<br>Condensate Storage Tank      | Condenser System                   | N/A      | 517.5     | N/A           |
| D00-3303-BТ05     | CONDENSTAE/ Contaminated<br>Condensate Storage Tank B    | Condenser System                   | N/A      | 517.5     | N/A           |
| D00-3340-0003LI   | CONDENSATE/ Storage Tank Level<br>Indicator              | Condenser System                   | N/A      | 517.5     | K/35          |
| D00-3341-0071ALSH | CONDENSATE/ Storage Tank Level<br>Switch High            | Condenser System                   | N/A      | 517.5     | к/35          |
| D00-3341-0072ALSL | CONDENSATE/ Storage Tank Level<br>Switch Low             | Condenser System                   | N/A      | 517.5     | к/35          |
| D00-3341-0076A-LT | CONDENSATE/ Storage Tank Level<br>Transmitter            | Condenser System                   | N/A      | 517.5     | К/35          |
| D00-3341-0077A-LI | CONDENSATE/ Storage Tank Local Level<br>Indicator        | Condenser System                   | N/A      | 517.5     | к/35          |
| D00-3701P30       | RBCCW/ Cooling Water Pump                                | Rx Bldg Closed<br>Cooling Water    | Reactor  | 545.5     | M/39-40       |
| D00-3702H15       | RBCCW/ Cooling Water Heat Exchanger                      | Rx Bldg Closed<br>Cooling Water    | Reactor  | 545.5     | M-N/38-39     |

.

| ID                | DESCRIPTION                                               | SYSTEM                                  | BUILDING | ELEVATION | LOCATION        |
|-------------------|-----------------------------------------------------------|-----------------------------------------|----------|-----------|-----------------|
| D00-3901P30       | SERVICE WATER/ Service Water Cooling<br>Pump              | Service Water System                    | C. House | 490.67    | B-C/3-4         |
| D00-3903P30       | SERVICE WATER/ Diesel Generator<br>Cooling Water Pump     | Service Water System                    | C. House | 490.67    | A-B/4           |
| D00-3941-0898FE   | SERVICE WATER/ DG Cooling Pump<br>Discharge Flow Element  | Service Water System                    | Reactor  | 504.5     | N/44-46         |
| D00-4600-BT05     | DIESEL GENERATOR/ Primary Gas Air<br>Receiver Unit "A1"   | Service Air System                      | Reactor  | 504.5     | DG RM2/3 N/46   |
| D00-4600-CT05     | DIESEL GENERATOR/ Primary Gas Air<br>Receiver Unit "A2"   | Service Air System                      | Reactor  | 504.5     | DG RM2/3 N/46   |
| D00-4600-GT05     | DIESEL GENERATOR/ Primary Gas Air<br>Receiver Unit "B1"   | Service Air System                      | Reactor  | 504.5     | DG RM2/3 N/46   |
| D00-4600-HT05     | DIESEL GENERATOR/ Primary Gas Air<br>Receiver Unit "B2"   | Service Air System                      | Reactor  | 504.5     | DG RM2/3 N/46   |
| D00-5201T05       | DIESEL GENERATOR/ Diesel Fuel Oil<br>Storage Tank         | Diesel Oil System                       | N/A      | 517.5     | N/A             |
| D00-5202T05       | DIESEL GENERATOR/ Diesel Fuel Oil<br>Storage Day Tank     | Diesel Oil System                       | Turbine  | 517.5     | DG RM2/3 N/46   |
| D00-5203P30       | DIESEL GENERATOR/ Fuel Oil Transfer<br>Pump               | Diesel Oil System                       | Reactor  | 504.5     | DG RM2/3 N/46   |
| D00-5741-0048AV72 | CONTROL ROOM VENTILATION/ CCSW<br>Cooling Supply Valve    | Heating Boilers & Ventilation System    | Turbine  | 534       | VENT RM2/3 G/32 |
| D00-5741-0048BV72 | CONTROL ROOM VENTILATION/ Service<br>Water Supply Valve   | Heating Boilers &<br>Ventilation System | Turbine  | 534       | VENT RM2/3 G/32 |
| D00-5741-0054AD05 | CONTROL ROOM VENTILATION/ Train<br>"A" Isolation Damper   | Heating Boilers &<br>Ventilation System | Turbine  | 549       | H/32            |
| D00-5741-0054BD05 | CONTROL ROOM VENTILATION/ Train<br>"A" Isolation Damper   | Heating Boilers &<br>Ventilation System | Turbine  | 549       | H/32            |
| D00-5741-0054CD05 | CONTROL ROOM VENTILATION/ Train<br>"A" Isolation Damper   | Heating Boilers &<br>Ventilation System | Turbine  | 549       | H/32            |
| D00-5741-0054DD05 | CONTROL ROOM VENTILATION/ Train<br>"A" Isolation Damper   | Heating Boilers &<br>Ventilation System | Turbine  | 549       | H/32            |
| D00-5741-0054-V27 | CONTROL ROOM VENTILATION/ Train<br>"A" Iso. Damper Solen. | Heating Boilers &<br>Ventilation System | Turbine  | 549       | H/32            |

| ID                | DESCRIPTION                                                | SYSTEM                                  | BUILDING      | ELEVATION       | LOCATION        |
|-------------------|------------------------------------------------------------|-----------------------------------------|---------------|-----------------|-----------------|
| D00-5741-0055-D05 | CONTROL ROOM VENTILATION/ AFU<br>Booster Fan Outlet Damper | Heating Boilers &<br>Ventilation System | Turbine       | 534             | VENT RM2/3 G/32 |
| D00-5741-0056-D05 | CONTROL ROOM VENTILATION/ AFU<br>Booster Fan Outlet Damper | Heating Boilers &<br>Ventilation System | Turbine       | 534             | VENT RM2/3 G/32 |
| D00-5741-0057-D05 | CONTROL ROOM VENTILATION/ AFU<br>Recirculation Damper      | Heating Boilers &<br>Ventilation System | Turbine       | VENT RM2/3 G/32 |                 |
| D00-5741-0058-D05 | CONTROL ROOM VENTILATION/ AFU                              | Heating Boilers &<br>Ventilation System | Turbine       | 534             | VENT RM2/3 G/32 |
| D00-5741-0059AD05 | CONTROL ROOM VENTILATION/ AHU<br>Outlet Damper             | Heating Boilers &<br>Ventilation System | Turbine 534 V |                 | VENT RM2/3 G/32 |
| D00-5741-0059BD05 | CONTROL ROOM VENTILATION/ AHU<br>Inlet Damper              | Heating Boilers &<br>Ventilation System | Turbine       | 534             | VENT RM2/3 G/32 |
| D00-5772-0100-D05 | DIESEL GENERATOR/ Ventiliation Fan<br>Inlet Damper         | Heating Boilers &<br>Ventilation System | Reactor       | 504.5           | DG RM2/3 N/46   |
| D00-5772-0101-D05 | DIESEL GENERATOR/ Ventiliation Fan<br>Outlet Damper        | Heating Boilers &<br>Ventilation System | Reactor 504.5 |                 | DG RM2/3 N/46   |
| D00-5790-0003AV10 | DIESEL GENERATOR/ Vent. Fan Inlet<br>Damper Solen. Oper.   | Heating Boilers &<br>Ventilation System | Reactor       | 504.5           | DG RM2/3 N/46   |
| D00-5790-0003AV27 | DIESEL GENERATOR/ Vent. Fan Inlet<br>Damper Solenoid Valve | Heating Boilers &<br>Ventilation System | Reactor       | 504.5           | N/46            |
| D00-5790-0003BV10 | DIESEL GENERATOR/ Vent. Fan Outlet<br>Damper Solen. Oper.  | Heating Boilers &<br>Ventilation System | Reactor       | 504.5           | DG RM2/3 N/46   |
| D00-5790-0003BV27 | DIESEL GENERATOR/ Vent: Fan Outlet<br>Damper Solen. Valve  | Heating Boilers &<br>Ventilation System | Reactor       | 504.5           | N/46            |
| D00-5790EP2-V27   | DIESEL GENERATOR/ Vent. Fan<br>Dampers Solenoid Valve      | Heating Boilers &<br>Ventilation System | Reactor       | 504.5           | DG PNL 2223-56  |
| D00-5790F10       | DIESEL GENERATOR/ Room Ventiliation<br>Fan                 | Heating Boilers &<br>Ventilation System | Reactor       | 504.5           | DG RM2/3 N/46   |
| D00-6601G05       | DIESEL GENERATOR/ Diesel Engine<br>Driven Generator        | Diesel Generator                        | Reactor       | 504.5           | DG RM2/3 N/46   |
| D00-6665P30       | DIESEL GENERATOR/ Fuel Oil Priming<br>Pump                 | Diesel Generator                        | Reactor 504.5 |                 | N/46            |
| D00-6740S35       | 4160V AC/ Switchgear 40                                    | 4160 Volt Switchgear                    | Reactor       | 504.5           | DG RM2/3 N/46   |
| D00-83250-0B05    | 250V DC/ Battery Charger #2/3                              | 125 VDC / 250 VDC                       | Turbine       | 549             | B RM2 E/31      |

Table B-1b Page 3 of 4

| ID                | DESCRIPTION                                                | SYSTEM                      | BUILDING | ELEVATION | LOCATION        |
|-------------------|------------------------------------------------------------|-----------------------------|----------|-----------|-----------------|
| D00-9400-0100-F05 | CONTROL ROOM VENTILATION/ Air<br>Handling Unit             | Chemical Cleaning<br>System | Turbine  | 534       | VENT RM2/3 G/32 |
| D00-9400-0101-F10 | CONTROL ROOM VENTILATION/ Air<br>Filtration Unit Heater    | Chemical Cleaning<br>System | Turbine  | 534       | VENT RM2/3 G/32 |
| D00-9400-0102     | CONTROL PANEL/ RCU Control Panel                           | Chemical Cleaning<br>System | Turbine  | 534       | VENT RM2/3 G/32 |
| D00-9400-0102-R15 | CONTROL ROOM VENTILATION/<br>Refrigeration Condensing Unit | Chemical Cleaning<br>System | Turbine  | 534       | VENT RM2/3 G/32 |
| D00-9400-0103     | CONTROL PANEL/ Control Cabinet 9400-<br>103                | Chemical Cleaning<br>System | Turbine  | 534       | VENT RM2/3 G/32 |
| D00-9400-0104AF05 | CONTROL ROOM VENTILATION/ AFU<br>Booster Fan               | Chemical Cleaning<br>System | Turbine  | 534       | VENT RM2/3 G/32 |
| D00-9400-0104BF05 | CONTROL ROOM VENTILATION/ AFU<br>Booster Fan               | Chemical Cleaning<br>System | Turbine  | 534       | VENT RM2/3 G/32 |
| D00-9400-0105     | CONTROL PANEL/ Control Cabinet 9400-<br>105                | Chemical Cleaning<br>System | Turbine  | 534       | VENT RM2/3 G/32 |
| D00-ACP           | CONTROL PANEL/ Unit 2/3 Auxiliary<br>Control Panel         |                             | Reactor  | 504.5     | DG RM2/3 N/46   |
| D00-DGCP          | CONTROL PANEL/ Unit 2/3 Diesel<br>Generator Control Panel  |                             | Reactor  | 504.5     | DG RM2/3 N/46   |
| D00-NGC           | CONTROL PANEL/ Unit 2/3 Neutral<br>Grounding Cabinet       |                             | Reactor  | 504.5     | DG RM2/3 N/46   |

.

#### Table B-2. SWEL 1

| ID                    | DESCRIPTION                                                | CLASS                                                      | BUILDING | ELEVATION | LOCATION        | SYSTEM                                     | Seismic<br>Cat 1? | Safety Function(s)  | New or<br>Replace<br>? | IPEEE<br>Enhance-<br>ment? | Comments          |
|-----------------------|------------------------------------------------------------|------------------------------------------------------------|----------|-----------|-----------------|--------------------------------------------|-------------------|---------------------|------------------------|----------------------------|-------------------|
| D00-2223-<br>0109     | CONTROL PANEL/ DG Cooling<br>Pump Transfer Switch Status   | (20) Instrumentation and<br>Control Panels and<br>Cabinets | Reactor  | 504.5     | DG RM2/3 N/46   | Local Panels &<br>Racks<br>(Radwaste)      | Y                 | Racks & Panels      |                        |                            |                   |
| D00-2350-C<br>LS      | HPCI/ Storage Tank Level Switch                            | (18) Instruments on Racks                                  | Turbine  | 517.5     | RFP RM G/35     | HPCI                                       | . Y               | RCIC                |                        |                            |                   |
| D00-5741-<br>0048BV72 | CONTROL ROOM VENTILATION/<br>Service Water Supply Valve    | (07) Fluid-Operated Valves                                 | Turbine  | 534       | VENT RM2/3 G/32 | Heating Boilers &<br>Ventilation<br>System | Y                 | Auxiliary & Support |                        |                            |                   |
| D00-9400-<br>0102-R15 | CONTROL ROOM VENTILATION/<br>Refrigeration Condensing Unit | (11) Chillers                                              | Turbine  | 534       | VENT RM2/3 G/32 | Chemical<br>Cleaning System                | Y                 | Auxiliary & Support |                        |                            |                   |
| D00-9400-<br>0104BF05 | CONTROL ROOM VENTILATION/<br>AFU Booster Fan               | (09) Fans                                                  | Turbine  | 534       | VENT RM2/3 G/32 | Chemical<br>Cleaning System                | Y                 | Auxiliary & Support |                        |                            |                   |
| D00-ACP               | CONTROL PANEL/ Unit 2/3<br>Auxiliary Control Panel         | (20) Instrumentation and<br>Control Panels and<br>Cabinets | Reactor  | 504.5     | DG RM2/3 N/46   |                                            | Y                 | Racks & Panels      |                        |                            |                   |
| D00-DGCP              | CONTROL PANEL/ Unit 2/3 Diesel<br>Generator Control Panel  | (20) Instrumentation and<br>Control Panels and<br>Cabinets | Reactor  | 504.5     | DG RM2/3 N/46   |                                            | Y                 | Racks & Panels      |                        |                            |                   |
| D00-NGC               | CONTROL PANEL/ Unit 2/3 Neutral<br>Grounding Cabinet       | (20) Instrumentation and<br>Control Panels and<br>Cabinets | Reactor  | 504.5     | DG RM2/3 N/46   |                                            | Y                 | Racks & Panels      |                        |                            |                   |
| D03-0202-<br>0005AV20 | REACTOR RECIRCULATION/<br>Recirc Pump A Discharge Valve    | (08) Motor-Operated and<br>Solenoid-Operated Valves        | Reactor  | 515.5     | DRYWELL         | Nuclear Boiler<br>System                   | Y                 | RCIC                |                        |                            |                   |
| D03-0203-<br>0001AV05 | MAIN STEAM/ Isolation Valve                                | (07) Fluid-Operated Valves                                 | Reactor  | 515.42    | DRYWELL         | Nuclear Boiler<br>System                   | Y                 | RCIC                |                        |                            |                   |
| D03-0203-<br>0003AV26 | ADS/ Target Rock Valve                                     | (07) Fluid-Operated Valves                                 | Reactor  | 537       | DRYWELL         | Nuclear Boiler<br>System                   | Y                 | RCIC                |                        |                            | PRA: F-V=1.84E-02 |
| D03-0203-<br>0003BV26 | ADS/ Electromatic Relief Valve                             | (08) Motor-Operated and<br>Solenoid-Operated Valves        | Reactor  | 537       | DRYWELL         | Nuclear Boiler<br>System                   | Y                 | RCPC                |                        |                            | PRA: F-V=2.23E-02 |
| D03-0203-<br>0004AV26 | ADS/ Reactor Overpressure Relief<br>Valve                  | (07) Fluid-Operated Valves                                 | Reactor  | 537       | DRYWELL         | Nuclear Boiler<br>System                   | Y                 | RCPC                |                        |                            |                   |
| D03-0302-<br>0019AV27 | CRD/ Backup Scram Solenoid Valve                           | (08) Motor-Operated and<br>Solenoid-Operated Valves        | Reactor  | 517.5     | L/48            | Control Rod Drive<br>System                | Y                 | RRC                 |                        |                            | -                 |
| D03-0302-<br>0082B-LS | CRD/ East Bank SDV Tank Level<br>Switch                    | (18) Instruments on Racks                                  | Reactor  | 517.5     | J-L/44-45,49-50 | Control Rod Drive<br>System                | Y                 | RRC                 |                        |                            |                   |
| D03-0302-<br>0082B-LT | CRD/ East Bank SDV Tank Level<br>Transmitter               | (18) Instruments on Racks                                  | Reactor  | 517.5     | J-L/44-45,49-50 | Control Rod Drive<br>System                | Y                 | RRC                 |                        |                            |                   |
| D03-0302-<br>0082E-LT | CRD/ East Bank SDV Tank Level<br>Transmitter               | (18) Instruments on Racks                                  | Reactor  | 517.5     | J-L/44-45,49-50 | Control Rod Drive<br>System                | Υ.                | RRC                 |                        |                            |                   |
| D03-0302-<br>0156AV05 | CRD/ East Bank Scram Discharge<br>Volume Drain Valve       | (07) Fluid-Operated Valves                                 | Reactor  | 476.5     | TORUS BAY 4     | Control Rod Drive<br>System                | Y                 | RRC                 |                        |                            |                   |
| D03-0302-<br>0157AV05 | CRD/ East Bank Scram Discharge<br>Volume Drain Valve       | (07) Fluid-Operated Valves                                 | Reactor  | 476.5     | TORUS BAY 4     | Control Rod Drive<br>System                | Y                 | RRC                 |                        | У                          |                   |

Table B-2 Page 1 of 6

#### Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167

| ID                                  | DESCRIPTION                                                                                    | CLASS                             | BUILDING | ELEVATION  | LOCATION        | SYSTEM                        | Seismic<br>Cat 1? | Safety Function(s) | New or<br>Replace<br>? | IPEEE<br>Enhance-<br>ment? | Comments |
|-------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------|----------|------------|-----------------|-------------------------------|-------------------|--------------------|------------------------|----------------------------|----------|
| D03-0305-<br>0010-0031-<br>0125-A10 | CRD/ Insertion Accumulator, West<br>Bank, Row 8, Position 15 (C-8)                             | (21) Tanks and Heat<br>Exchangers | Reactor  | 517.5      | In Hydraulic CU | Control Rod Drive<br>System   | Y                 | RRC                |                        |                            |          |
| D03-0305-<br>0010-0031-<br>0126-V05 | CRD/ Accumulator Insertion Scram<br>Valve, West Bank, Row 8, Position<br>15 (C-8)              | (07) Fluid-Operated Valves        | Reactor  | 517.5      | In Hydraulic CU | Control Rod Drive<br>System   | Y.                | RRC                |                        |                            |          |
| D03-0305-<br>0010-0031-<br>0127-V05 | CRD/ Withdraw to Scram Discharge<br>Volume Scram Valve, West Bank,<br>Row 8, Position 15 (C-8) | (07) Fluid-Operated Valves        | Reactor  | 517.5      | In Hydraulic CU | Control Rod Drive<br>System   | Y                 | RRC                |                        |                            |          |
| D03-0305-<br>0010-0031-<br>H20      | CRD/ Hydraulic Control Unit, West<br>Bank, Row 8, Position 15 (C-8)                            | (00) <sup>·</sup> Other           | Reactor  | 517.5      | J-K/44-45,49-50 | Control Rod Drive<br>System   | Y                 | RRĆ                |                        | У                          |          |
| D03-0305-<br>0030-0043-<br>0125-A10 | CRD/ Insertion Accumulator, West<br>Bank, Row 8, Position 4 (H-11)                             | (21) Tanks and Heat<br>Exchangers | Reactor  | ,<br>517.5 | In Hydraulic CU | Control Rod Drive<br>System   | Y                 | RRC                |                        |                            |          |
| D03-0305-<br>0030-0043-<br>0126-V05 | CRD/ Accumulator Insertion Scram<br>Valve, West Bank, Row 8, Position<br>4 (H-11)              | (07) Fluid-Operated Valves        | Reactor  | 517.5      | In Hydraulic CU | Control Rod Drive<br>· System | Y                 | RRC                |                        |                            |          |
| D03-0305-<br>0030-0043-<br>0127-V05 | CRD/ Withdraw to Scram Discharge<br>Volume Scram Valve, West Bank,<br>Row 8, Position 4 (H-11) | (07) Fluid-Operated Valves        | Reactor  | . 517.5    | In Hydraulic CU | Control Rod Drive<br>System   | . Y               | RRC                |                        |                            |          |
| D03-0305-<br>0030-0043-<br>H20      | CRD/ Hydraulic Control Unit, West<br>Bank, Row 8, Position 4 (H-11)                            | (00) Other                        | Reactor  | 517.5      | J-K/44-45,49-50 | Control Rod Drive<br>System   | Y                 | RRC                |                        | . у                        |          |
| D03-0305-<br>0046-0031-<br>0125-A10 | CRD/ Insertion Accumulator, East<br>Bank, Row 1, Position 16 (M-8)                             | (21) Tanks and Heat<br>Exchangers | Reactor  | 517.5      | In Hydraulic CU | Control Rod Drive<br>System   | Y                 | RRC                |                        |                            |          |
| D03-0305-<br>0046-0031-<br>0126-V05 | CRD/ Accumulator Insertion Scram<br>Valve, East Bank, Row 1, Position<br>16 (M-8)              | (07) Fluid-Operated Valves        | Reactor  | 517.5      | In Hydraulic CU | Control Rod Drive<br>System   | Y                 | RRC                | •                      |                            |          |
| D03-0305-<br>0046-0031-<br>0127-V05 | CRD/ Withdraw to Scram Discharge<br>Volume Scram Valve, East Bank,<br>Row 1, Position 16 (M-8) | (07) Fluid-Operated Valves        | Reactor  | 517.5      | In Hydraulic CU | Control Rod Drive<br>System   | Y                 | RRC                |                        |                            |          |
| D03-0305-<br>0046-0031-<br>H20      | CRD/ Hydraulic Control Unit, East<br>Bank, Row 1, Position 16 (M-8)                            | (00) Other                        | Reactor  | 517.5      | J-K/44-45,49-50 | Control Rod Drive<br>System   | Y                 | RRC                |                        | <b>y</b> .                 |          |
| D03-0305-<br>0058-0023-<br>0125-A10 | CRD/ Insertion Accumulator, East<br>Bank, Row 1, Position 12 (R-6)                             | (21) Tanks and Heat<br>Exchangers | Reactor  | 517.5      | In Hydraulic CU | Control Rod Drive<br>System   | Y                 | RRC                |                        |                            |          |
| D03-0305-<br>0058-0023-<br>0126-V05 | CRD/ Accumulator Insertion Scram<br>Valve, East Bank, Row 1, Position<br>12 (R-6)              | (07) Fluid-Operated Valves        | Reactor  | 517.5      | In Hydraulic CU | Control Rod Drive<br>System   | Y                 | RRC                |                        |                            |          |

Table B-2 Page 2 of 6

#### Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167

| ID                                  | DESCRIPTION                                                                                    | CLASS                                                      | BUILDING | ELEVATION | LOCATION        | SYSTEM                           | Seismic<br>Cat 1? | Safety Function(s) | New or<br>Replace<br>? | IPEEE<br>Enhance-<br>ment? | Comments |
|-------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------|-----------|-----------------|----------------------------------|-------------------|--------------------|------------------------|----------------------------|----------|
| D03-0305-<br>0058-0023-<br>0127-V05 | CRD/ Withdraw to Scram Discharge<br>Volume Scram Valve, East Bank,<br>Row 1, Position 12 (R-6) | (07) Fluid-Operated Valves                                 | Reactor  | 517.5     | In Hydraulic CU | Control Rod Drive<br>System      | Y                 | RRC                |                        |                            |          |
| D03-0305-<br>0058-0023-<br>H20      | CRD/ Hydraulic Control Unit, East<br>Bank, Row 1, Position 12 (R-6)                            | (00) Other                                                 | Reactor  | 517.5     | J-K/44-45,49-50 | Control Rod Drive<br>System      | Y                 | RRC                |                        | у                          |          |
| D03-0409-A<br>T05                   | CRD/ East Bank Scram Discharge<br>Volume Tank                                                  | (21) Tanks and Heat<br>Exchangers                          | Reactor  | 517.5     | J-L/44-45,49-50 | Startup<br>Equipment             | Y                 | RRC                |                        |                            |          |
| D03-0903-<br>0003                   | CONTROL PANELS/ Control Panel<br>903-3                                                         | (20) Instrumentation and<br>Control Panels and<br>Cabinets | N/A      | 534       | C. RM PNL 903-3 | Control Room<br>Panels           | Y                 | Racks & Panels     |                        |                            |          |
| D03-0903-<br>0015                   | CONTROL PANELS/ Control Panel<br>903-15                                                        | (20) Instrumentation and<br>Control Panels and<br>Cabinets | N/A      | 534       | C. RM PL 903-15 | Control Room<br>Panels           | Y                 | Racks & Panels     |                        | У                          |          |
| D03-0903-<br>0028                   | CONTROL PANELS/ Control Panel<br>903-28                                                        | (20) Instrumentation and<br>Control Panels and<br>Cabinets | Turbine  | 517.5     | AEER PNL 903-28 | Control Room<br>Panels           | Y                 | Racks & Panels     |                        |                            |          |
| D03-0903-<br>0039                   | CONTROL PANELS/ Control Panel<br>903-39                                                        | (20) Instrumentation and<br>Control Panels and<br>Cabinets | Turbine  | 517.5     | AEER PNL 903-39 | Control Room<br>Panels           | Y                 | Racks & Panels     |                        |                            |          |
| D03-0923-<br>0005                   | CONTROL PANELS/ Control Panel<br>923-5                                                         | (20) Instrumentation and<br>Control Panels and<br>Cabinets | N/A      | 534       | C. RM PNL 923-5 | Control Room<br>Panels           | Y                 | Racks & Panels     |                        |                            |          |
| D03-1001-<br>0002AV20               | SHUTDOWN COOLING/ Shut<br>Down Pumps Suction Line Valve                                        | (08) Motor-Operated and<br>Solenoid-Operated Valves        | Reactor  | 517.5     | H-J/48-49       | Shutdown Cooling                 | Y                 | CF                 |                        |                            |          |
| D03-1001-<br>0005AV20               | SHUTDOWN COOLING/ Injection<br>Line Valve                                                      | (08) Motor-Operated and<br>Solenoid-Operated Valves        | Reactor  | 476.5     | TORUS BAY K/45  | Shutdown Cooling                 | Y                 | RCIC/CF            |                        |                            |          |
| D03-1301-<br>0004-V20               | ISOLATION CONDENSER/ Steam<br>Return Line Isolation Valve                                      | (08) Motor-Operated and<br>Solenoid-Operated Valves        | Reactor  | 537       | DRYWELL         | Isolation<br>Condenser<br>System | Y                 | CF                 |                        |                            |          |
| D03-1501-<br>0003AV20               | CCSW/ Heat Exchanger Outlet<br>Service Water Line Valve                                        | (08) Motor-Operated and<br>Solenoid-Operated Valves        | Reactor  | 476.5     | SE C.RM M/44    | LPCI                             | <b>Y</b> .        | DHR                |                        |                            |          |
| D03-1501-<br>0021AV20               | LPCI/ LPCI Injection Line Valve                                                                | (08) Motor-Operated and<br>Solenoid-Operated Valves        | Reactor  | 517.5     | K/44-45         | LPCI                             | Y                 | RCIC/DHR           |                        |                            |          |
| D03-1501-<br>0032AV20               | LPCI/ LPCI Header Crosstie Line<br>Valve                                                       | (08) Motor-Operated and<br>Solenoid-Operated Valves        | Reactor  | 476.5     | SE C.RM N/45    | LPCI                             | Y                 | RCIC               |                        |                            |          |
| D03-1501-<br>0044AP30               | CCSW/ CCSW Pump "A"                                                                            | (05) Horizontal Pumps                                      | Turbine  | 495       | D/49            | LPCI                             | Y                 | DHR                |                        |                            |          |
| D03-1502-A<br>P30                   | LPCI/ LPCI Injection Pump "A"                                                                  | (06) Vertical Pumps                                        | Reactor  | 476.5     | SE C.RM N/45    | LPCI                             | Y                 | RÇIC/DHR           |                        |                            |          |
| D03-1503-A<br>H15                   | LPCI/ LPCI Heat Exchanger                                                                      | (21) Tanks and Heat<br>Exchangers                          | Reactor  | 476.5     | SE C.RM M-N/44  | LPCI                             | Y                 | DHR                |                        | У                          |          |
| D03-1541<br>A-FE                    | CCSW/ CCSW Pump "A" and "B"<br>Discharge Flow Element                                          | (18) Instruments on Racks                                  | Reactor  | 476.5     | M-N/44-45       | LPCI                             | Y                 | DHR                |                        |                            |          |
|                                     |                                                                                                |                                                            |          |           |                 |                                  |                   |                    |                        |                            |          |

Table B-2 Page 3 of 6

|                       |                                                           |                                                            |          |           | · · ·              |                                       |                   |                    |                        |                            |                            |
|-----------------------|-----------------------------------------------------------|------------------------------------------------------------|----------|-----------|--------------------|---------------------------------------|-------------------|--------------------|------------------------|----------------------------|----------------------------|
| ۱D                    | DESCRIPTION                                               | CLASS                                                      | BUILDING | ELEVATION | LOCATION           | SYSTEM                                | Seismic<br>Cat 1? | Safety Function(s) | New or<br>Replace<br>? | IPEEE<br>Enhance-<br>ment? | Comments                   |
| D03-1599-<br>0013AV26 | LPCI/ Suppression Pool Suction<br>Line "A" Relief Valve   | (07) Fluid-Operated Valves                                 | Reactor  | 476.5     | SE C.RM N/45       | LPCI                                  | Y                 | RCIC/DHR           |                        |                            |                            |
| D03-1601-<br>0021-V05 | PRESSURE SUPPRESSION/<br>Drywell Purge Line Valve         | (07) Fluid-Operated Valves                                 | Reactor  | 476.5     | TORUS BAY 4        | Drywell<br>Containment                | Y                 | CF                 |                        |                            |                            |
| D03-1601-<br>0022-V05 | PRESSURE SUPPRESSION/<br>Drywell/Torus Purge Line Valve   | (07) Fluid-Operated Valves                                 | Reactor  | 476.5     | TORUS BAY 4        | Drywell<br>Containment                | Y                 | CF                 |                        |                            |                            |
| D03-1601-<br>0023-V05 | PRESSURE SUPPRESSION/<br>Drywell Ventiliation Line Valve  | (07) Fluid-Operated Valves                                 | Reactor  | 570       | FPC RM L/47-48     | Drywell<br>Containment                | Y                 | CF                 |                        |                            |                            |
| D03-1601-<br>0024-V05 | PRESSURE SUPPRESSION/<br>Drywell and Torus Vent Valve     | (07) Fluid-Operated Valves                                 | Reactor  | 570       | J-K/46             | Drywell<br>Containment                | Y                 | CF                 |                        |                            |                            |
| D03-1601-<br>0057-V20 | PRESSURE SUPPRESSION/<br>Drywell/Torus Nitr. Makeup Valve | (08) Motor-Operated and<br>Solenoid-Operated Valves        | Reactor  | 476.5     | TORUS BAY 3        | Drywell<br>Containment                | Y                 | CF                 |                        |                            |                            |
| D03-1601-<br>0062-V05 | PRESSURE SUPPRESSION/<br>Drywell Ventilation Line Valve   | (07) Fluid-Operated Valves                                 | Reactor  | 570       | FPC RM L/47-48     | Drywell<br>Containment                | Y                 | CF                 |                        |                            | х.                         |
| D03-1601-<br>0063-V05 | PRESSURE SUPPRESSION/<br>Containment to SBGT Line Valve   | (07) Fluid-Operated Valves                                 | Reactor  | 570       | RWCU DEMIN<br>J/45 | Drywell<br>Containment                | Y                 | CF                 |                        |                            |                            |
| D03-2001-<br>0005-V05 | RB EQUIPMENT DRAIN/ Drywell<br>Equipment Drain Line Valve | (07) Fluid-Operated Valves                                 | Reactor  | 476.5     | TORUS BAY 4        | Radwaste / Spent<br>Fuel Pool         | Y                 | CF                 |                        |                            |                            |
| D03-2001-<br>0105-V05 | RB EQUIPMENT DRAIN/ Drywell<br>Floor Drain Line Valve     | (07) Fluid-Operated Valves                                 | Reactor  | 476.5     | TORUS BAY 14       | Radwaste / Spent<br>Fuel Pool         | Y                 | CF                 |                        |                            |                            |
| D03-2203-<br>0006     | INSTRUMENT RACKS/ Instrument<br>Rack 2203-6               | (18) Instruments on Racks                                  | Reactor  | 545.5     | K/49               | Local Panels &<br>Racks<br>(Radwaste) | Y                 | Racks & Panels     |                        | У                          |                            |
| D03-2203-<br>0008     | INSTRUMENT RACKS/ Instrument<br>Rack 2203-8               | (18) Instruments on Racks                                  | Reactor  | 517.5     | K/49               | Local Panels &<br>Racks<br>(Radwaste) | Y,                | Racks & Panels     |                        |                            |                            |
| D03-2203-<br>0070A    | INSTRUMENT RACKS/ Instrument<br>Rack 2203-70A             | (18) Instruments on Racks                                  | Turbine  | 517.5     | AEER 2203-70A      | Local Panels &<br>Racks<br>(Radwaste) | Y                 | Racks & Panels     |                        | У                          |                            |
| D03-2203-<br>0073A    | INSTRUMENT RACKS/ Instrument<br>Rack 2203-73A             | (18) Instruments on Racks                                  | Turbine  | 538       | H/35               | Local Panels &<br>Racks<br>(Radwaste) | Y                 | Racks & Panels     |                        | У                          |                            |
| D03-2253-<br>0010     | CONTROL PANEL/ DG Metering<br>and Relay Cabinet           | (20) Instrumentation and<br>Control Panels and<br>Cabinets | Turbine  | 517.5     | DG RM3 G-H/55      | Local Panels &<br>Racks<br>(Radwaste) | Y                 | Racks & Panels     |                        |                            |                            |
| D03-2253-<br>0021     | CONTROL PANEL/ DG Excitation<br>Cabinet                   | (20) Instrumentation and<br>Control Panels and<br>Cabinets | Turbine  | 517.5     | DG RM3 G-H/55      | Local Panels &<br>Racks<br>(Radwaste) | Y                 | Racks & Panels     |                        |                            |                            |
| D03-2253-<br>0084     | INSTRUMENT RACKS/ Instrument<br>Rack 2253-84              | (18) Instruments on Racks                                  | Reactor  | 545.5     | N/48               | Local Panels &<br>Racks<br>(Radwaste) | Y                 | Racks & Panels     |                        |                            |                            |
| D03-2301-<br>0003-V20 | HPCI/ Turbine Steam Line Valve                            | (08) Motor-Operated and<br>Solenoid-Operated Valves        | Reactor  | 476.5     | HP RM3 N/46        | HPCI                                  | Y                 | RCIC               |                        |                            | PRA: F-V=4.83E-03, RAW=2.6 |
| D03-2301-<br>0006-V20 | HPCI/ Condensate Tank Supply to<br>HPCI Pump Valve        | (08) Motor-Operated and<br>Solenoid-Operated Valves        | Reactor  | 476.5     | HP RM3 N/46        | HPCI                                  | Y                 | RCIC               |                        |                            | PRA: RAW=2.6               |

Table B-2 Page 4 of 6

## Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167

|                       |                                                         |                                                            |           | -                  |                      |                                       |                   |                     |                        |                            |                                              |
|-----------------------|---------------------------------------------------------|------------------------------------------------------------|-----------|--------------------|----------------------|---------------------------------------|-------------------|---------------------|------------------------|----------------------------|----------------------------------------------|
| ID -                  | DESCRIPTION                                             | CLASS                                                      | BUILDING  | ELEVATION          | LOCATION             | SYSTEM                                | Seismic<br>Cat 1? | Safety Function(s)  | New or<br>Replace<br>? | IPEEE<br>Enhance-<br>ment? | Comments                                     |
| D03-2301-<br>0008-V20 | HPCI/ HPCI Pump Injection Line<br>Valve                 | (08) Motor-Operated and Solenoid-Operated Valves.          | Turbine   | 517.5              | X AREA G/46          | HPCI                                  | Y                 | RCIC                |                        |                            | PRA: F-V=4.83E-03, RAW=2.6                   |
| D03-2301-<br>0035-V20 | HPCI/ Suppression Pool Suction<br>Line Valve            | (08) Motor-Operated and<br>Solenoid-Operated Valves        | Reactor   | 476.5              | HP RM3 N/46          | HPCI                                  | Y                 | RCIC .              |                        |                            | PRA: RAW=2.6                                 |
| D03-2301-<br>0057-P30 | HPCI/ HPCI Turbine Cooling Water<br>Pump                | (05) Horizontal Pumps                                      | Reactor   | 476.5              | HP RM3 N/46          | HPCI                                  | . Y               | RCIC                |                        |                            |                                              |
| D03-2302<br>-P30      | HPCI/ HPCI Pump                                         | (05) Horizontal Pumps                                      | Reactor   | 476.5              | HP RM3 N/46-47       | HPCI                                  | Y                 | RCIC                |                        |                            | PRA: F-V=3.77E-02, RAW=2.9                   |
| D03-2320-<br>GSCE-F05 | HPCI/ Gland Seal Condenser<br>Exhaust Fan               | (09) Fans                                                  | Reactor   | 476.5              | HP RM3 N/46          | HPCI                                  | Y                 | RCIC                |                        |                            |                                              |
| D03-2380<br>-PSH      | HPCI/ HPCI Turbine Pressure<br>Switch High              | (20) Instrumentation and<br>Control Panels and<br>Cabinets | Reactor   | 476.5              | HP RM3 N/46-47       | HPCI                                  | Y                 | RCIC                |                        |                            |                                              |
| D03-3903<br>-P30      | SERVICE WATER/ Diesel<br>Generator Cooling Water Pump   | (05) Horizontal Pumps                                      | C. House  | 490.67             | A/5                  | Service Water<br>System               | Y                 | Auxiliary & Support |                        |                            |                                              |
| D03-4600-B-<br>T05    | DIESEL GENERATOR/ Primary<br>Gas Air Receiver Unit "A1" | (12) Air Compressors                                       | Turbine   | 517.5              | DG RM3 G-H/55        | Service Air<br>System                 | Y                 | Auxiliary & Support |                        |                            |                                              |
| D03-5202<br>-T05      | DIESEL GENERATOR/ Diesel Fuel<br>Oil Storage Day Tank   | (21) Tanks and Heat<br>Exchangers                          | Turbine   | 528.2 <sup>5</sup> | DG RM3 G-H/55        | Diesel Oil System                     | Y                 | Auxiliary & Support |                        |                            |                                              |
| D03-5203<br>-P30      | DIESEL GENERATOR/ Fuel Oil<br>Transfer Pump             | (05) Horizontal Pumps                                      | Turbine   | 517.5              | DG RM3 G-H/55        | Diesel Oil System                     | Y                 | Auxiliary & Support |                        |                            |                                              |
| D03-5746-A<br>H15     | LPCI/ LPCI Emergency Room Air<br>Cooler                 | (10) Air Handlers                                          | Reactor   | 476.5              | SE C.RM M/44         | Condensate<br>Demineralizer<br>System | Y                 | RCIC                |                        | У                          |                                              |
| D03-5747<br>-H15      | HPCI/ HPCI Emergency Air Cooler                         | (10) Air Handlers                                          | Reactor   | 476.5              | HP RM3 N/46          | Condensate<br>Demineralizer<br>System | Y                 | RCIC                |                        |                            | PRA: F-V=4.86E-03, RAW=2.6                   |
| D03-6601<br>-G05      | DIESEL GENERATOR/ Diesel<br>Engine Driven Generator     | (17) Engine-Generators                                     | Turbine   | 517.5              | DG RM3 G-H/55        | Diesel Generator                      | Y                 | Auxiliary & Support |                        |                            | PRA: F-V=6.74E-02                            |
| D03-67341<br>-S35     | 4160V AC/ Switchgear 34-1                               | (03) Medium Voltage<br>Switchgear                          | Reactor   | 545.5              | M-N/48-49            | 4160 Volt<br>Switchgear               | Y                 | Electrical Systems  |                        | у                          | Scheduled to be de-energized<br>during D3R22 |
| D03-7338<br>-S35      | 480V AC/ Switchgear 38                                  | (02) Low Voltage<br>Switchgear                             | Reactor   | 570                | M-N/47-48            | 480 Volt<br>Switchgear                | Y                 | Electrical Systems  |                        | у                          |                                              |
| D03-7338<br>-T10      | 480V AC/ Transformer 38, Feed to<br>Switchgear 38       | (04) Transformers                                          | Reactor   | 570                | N/48                 | Transformer<br>28/38                  | Y                 | Electrical Systems  | У                      |                            | EC 330524; WO 400804;<br>03/05/2005          |
| D03-7339<br>-S35      | 480V AC/ 480V Switchgear 39                             | (02) Low Voltage<br>Switchgear                             | Reactor   | 570                | M-N/47-48            | 480 Volt<br>Switchgear                | Y                 | Electrical Systems  |                        | У                          |                                              |
| D03-7838-1-<br>1P06   | DISTRIBUTION PANELS/<br>Distribution Panel 38-1-1       | (20) Instrumentation and<br>Control Panels and<br>Cabinets | Reactor _ | 517.5              | L-M/44               | 480 Volt MCCS                         | Y                 | Racks & Panels      |                        | У                          |                                              |
| D03-7838-2<br>-M05    | 480V AC/ MCC 38-2                                       | (01) Motor Control Centers                                 | Turbine   | 538                | G/52                 | 480 Volt MCCS                         | . Y               | Electrical Systems  |                        | У                          | Scheduled to be de-energized<br>during D3R22 |
| D03-7839-2<br>-M05    | 480V AC/ MCC 39-2                                       | (01) Motor Control Centers                                 | Turbine   | 534                | G/44-45              | 480 Volt MCCS                         | Y                 | Electrical Systems  |                        | У                          |                                              |
| D03-8300<br>3AB05     | 125V DC/ Battery Charger #3A                            | (16) Battery Chargers and<br>Inverters                     | Turbine   | 538                | G-H/54-55            | 125 VDC /250<br>VDC                   | Y                 | Electrical Systems  | У                      | У                          | EC 333200; WO 365571;<br>06/19/2003          |
|                       |                                                         |                                                            |           | Τ.                 | able D O Dema E of C | ,                                     |                   |                     |                        |                            |                                              |

B-50

.

-2 Page I able B 5 01 6

#### Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167

|                       |                                                         |                                                            |          |           | · · · · · · · · · · · · · · · · · · · |                                   |                   |                    |                        |                            |                                      |
|-----------------------|---------------------------------------------------------|------------------------------------------------------------|----------|-----------|---------------------------------------|-----------------------------------|-------------------|--------------------|------------------------|----------------------------|--------------------------------------|
| ID                    | DESCRIPTION                                             | CLASS                                                      | BUILDING | ELEVATION | LOCATION                              | SYSTEM                            | Seismic<br>Cat 1? | Safety Function(s) | New or<br>Replace<br>? | IPEEE<br>Enhance-<br>ment? | Comments                             |
| D03-83003-<br>-B05    | 125V DC/ Battery Charger #3                             | (16) Battery Chargers and<br>Inverters                     | Turbine  | 538       | BC RM3 G-H/55                         | 125 VDC /250<br>VDC               | Y                 | Electrical Systems |                        | у                          |                                      |
| D03-8300<br>BCB04     | 125V DC/ Battery #3, Feed to TB<br>Battery Bus #3       | (15) Batteries on Racks                                    | Turbine  | - 551     | B RM3 G-H/55                          | 125 VDC /250<br>VDC               | Y                 | Electrical Systems |                        | У                          | PRA: F-V=2.25E-01, RAW=35.3          |
| D03-8303A<br>M05      | 250V DC/ MCC Bus #3A (ROB-RB<br>MCC #3)                 | (01) Motor Control Centers                                 | Reactor  | 570       | M-N/46-47                             | 125 VDC /250<br>VDC               | Y                 | Electrical Systems | у                      | у                          | EC 341875; WO 558649;<br>01/31/2004  |
| D03-8303B<br>M05      | 250V DC/ MCC Bus #3B (ROB-RB<br>MCC #3)                 | (01) Motor Control Centers                                 | Reactor  | 570 ·     | M-N/46-47                             | 125 VDC /250<br>VDC               | Y                 | Electrical Systems | у                      | ý                          | EC 341875; WO 558649;<br>01/31/2004  |
| D03-83125<br>-P06     | 125V DC/ RB 125V DC Distribution<br>Panel #3            | (01) Motor Control Centers                                 | Reactor  | 570       | N/46                                  | 125 VDC /250<br>VDC               | Y                 | Electrical Systems | у                      | У                          | EC 341875; WO 558649;<br>01/31/2004  |
| D03-83250-3-<br>B05   | 250V DC/ Battery Charger #3                             | (16) Battery Chargers and<br>Inverters                     | Turbine  | 538       | BC RM3 G-H/55                         | 125 VDC /250<br>VDC               | Y                 | Electrical Systems | · y                    |                            | EC 3332002; WO 365573;<br>10/27/2002 |
| D03-83250-<br>A01-M05 | 250V DC/ Breaker to TB MCC #3<br>(ROB-Battery #3)       | (14) Distribution Panels                                   | Turbine  | 549       | G/31-32 ·                             | 125 VDC /250<br>VDC               | Y                 | Electrical Systems |                        |                            |                                      |
| D03-83250<br>-B04     | 250V DC/ Battery #3, Feed to TB<br>MCC #3               | (15) Batteries on Racks                                    | Turbine  | 551       | B RM3 G-H/55                          | 125 VDC /250<br>VDC               | Y                 | Electrical Systems |                        | У                          |                                      |
| D03-9802A-<br>A21-B11 | 24/48V DC/ Breaker to Battery<br>Charger #3A (+)        | (14) Distribution Panels                                   | Turbine  | 551       | G/56                                  | 345 kV<br>Switchyard DC<br>System | Y                 | Electrical Systems |                        |                            |                                      |
| D03-9802-A<br>P06     | 24/48V DC/ Distribution Panel #3A                       | (01) Motor Control Centers                                 | Turbine  | 538       | BC RM3 G-H/55                         | 345 kV<br>Switchyard DC<br>System | Y                 | Electrical Systems |                        | У.                         |                                      |
| D03-DGCP              | CONTROL PANEL/ Unit 3 Diesel<br>Generator Control Panel | (20) Instrumentation and<br>Control Panels and<br>Cabinets | Turbine  | 517.5     | DG RM3 G-H/55                         |                                   | Y                 | Racks & Panels     |                        |                            |                                      |
| D03-NGC               | CONTROL PANEL/ Unit 3 Neutral<br>Grounding Cabinet      | (20) Instrumentation and<br>Control Panels and<br>Cabinets | Turbine  | 517.5     | DG RM3 G-H/55                         |                                   | Y                 | Racks & Panels     |                        |                            |                                      |

# C Seismic Walkdown Checklists (SWCs)

Table C-1 provides a description of each item, anchorage verification confirmation, a list of Area Walk-By Checklists associated with each item, comments, and page numbers of each Seismic Walkdown Checklist.

| COMPONENT<br>ID                 | DESCRIPTION                                                                    | Anchorage<br>Configuration<br>Confirmed? | AWC-U3-<br>xx | PAGE |
|---------------------------------|--------------------------------------------------------------------------------|------------------------------------------|---------------|------|
| D00-2223-0109                   | CONTROL PANEL/ DG Cooling Pump Transfer<br>Switch Status                       | Y                                        | 25            | C-7  |
| D00-2350-C<br>LS                | HPCI/ Storage Tank Level Switch                                                | N                                        | 29            | C-12 |
| D00-5741-<br>0048BV72           | CONTROL ROOM VENTILATION/ Service Water<br>Supply Valve                        | N/A                                      | 31            | C-16 |
| D00-9400-0102-<br>R15           | CONTROL ROOM VENTILATION/ Refrigeration<br>Condensing Unit                     | Y                                        | 31            | C-23 |
| D00-9400-<br>0104BF05           | CONTROL ROOM VENTILATION/ AFU Booster<br>Fan                                   | Y                                        | 31            | C-34 |
| D00-ACP                         | CONTROL PANEL/ Unit 2/3 Auxiliary Control Panel                                | Y                                        | 25            | C-41 |
| D00-DGCP                        | CONTROL PANEL/ Unit 2/3 Diesel Generator<br>Control Panel                      | Y                                        | 13            | C-46 |
| D00-NGC                         | CONTROL PANEL/ Unit 2/3 Neutral Grounding<br>Cabinet                           | Y                                        | 25            | C-53 |
| D03-0202-<br>0005AV20           | REACTOR RECIRCULATION/ Recirc Pump A<br>Discharge Valve                        | N/A                                      | OUTAGE        |      |
| D03-0203-<br>0001AV05           | MAIN STEAM/ Isolation Valve                                                    | N/A                                      | OUTAGE        |      |
| D03-0203-<br>0003AV26           | ADS/ Target Rock Valve                                                         | N/A                                      | OUTAGE        |      |
| D03-0203-<br>0003BV26           | ADS/ Electromatic Relief Valve                                                 | N/A                                      | OUTAGE        |      |
| D03-0203-<br>0004AV26           | ADS/ Reactor Overpressure Relief Valve                                         | N/A                                      | OUTAGE        |      |
| D03-0302-<br>0019AV27           | CRD/ Backup Scram Solenoid Valve                                               | N/A                                      | 11            | C-59 |
| D03-0302-<br>0082B-LS           | CRD/ East Bank SDV Tank Level Switch                                           | N                                        | LATER         |      |
| D03-0302-<br>0082B-LT           | CRD/ East Bank SDV Tank Level Transmitter                                      | N                                        | 12            | C-70 |
| D03-0302-<br>0082E-LT           | CRD/ East Bank SDV Tank Level Transmitter                                      | N                                        | 12            | C-76 |
| D03-0302-<br>0156AV05           | CRD/ East Bank Scram Discharge Volume Drain<br>Valve                           | N/A                                      | OUTAGE        |      |
| D03-0302-<br>0157AV05           | CRD/ East Bank Scram Discharge Volume Drain<br>Valve                           | N/A                                      | OUTAGE        |      |
| D03-0305-0010-<br>0031-0125-A10 | CRD/ Insertion Accumulator, West Bank, Row 8,<br>Position 15 (C-8)             | N/A                                      | 11            | C-83 |
| D03-0305-0010-<br>0031-0126-V05 | CRD/ Accumulator Insertion Scram Valve, West<br>Bank, Row 8, Position 15 (C-8) | N/A                                      | 11            | C-85 |

## Table C-1. Summary of Seismic Walkdown Checklists

| COMPONENT<br>ID                 | DESCRIPTION                                                                                 | Anchorage<br>Configuration<br>Confirmed? | AWC-U3-<br>xx | PAGE   |
|---------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|---------------|--------|
| D03-0305-0010-<br>0031-0127-V05 | CRD/ Withdraw to Scram Discharge Volume Scram<br>Valve, West Bank, Row 8, Position 15 (C-8) | N/A                                      | 11            | C-87   |
| D03-0305-0010-<br>0031-H20      | CRD/ Hydraulic Control Unit, West Bank, Row 8, Position 15 (C-8)                            | Y                                        | 11            | C-89   |
| D03-0305-0030-<br>0043-0125-A10 | CRD/ Insertion Accumulator, West Bank, Row 8, Position 4 (H-11)                             | N/A                                      | 11            | C-96   |
| D03-0305-0030-<br>0043-0126-V05 | CRD/ Accumulator Insertion Scram Valve, West<br>Bank, Row 8, Position 4 (H-11)              | N/A                                      | 11            | C-98   |
| D03-0305-0030-<br>0043-0127-V05 | CRD/ Withdraw to Scram Discharge Volume Scram<br>Valve, West Bank, Row 8, Position 4 (H-11) | N/A                                      | 11            | C-100  |
| D03-0305-0030-<br>0043-H20      | CRD/ Hydraulic Control Unit, West Bank, Row 8, Position 4 (H-11)                            | Y                                        | 11            | C-102  |
| D03-0305-0046-<br>0031-0125-A10 | CRD/ Insertion Accumulator, East Bank, Row 1, Position 16 (M-8)                             | N/A                                      | 12            | C-108  |
| D03-0305-0046-<br>0031-0126-V05 | CRD/ Accumulator Insertion Scram Valve, East<br>Bank, Row 1, Position 16 (M-8)              | N/A                                      | 12            | C-110  |
| D03-0305-0046-<br>0031-0127-V05 | CRD/ Withdraw to Scram Discharge Volume Scram<br>Valve, East Bank, Row 1, Position 16 (M-8) | N/A                                      | 12            | C-112  |
| D03-0305-0046-<br>0031-H20      | CRD/ Hydraulic Control Unit, East Bank, Row 1,<br>Position 16 (M-8)                         | Y                                        | 12            | C-114  |
| D03-0305-0058-<br>0023-0125-A10 | CRD/ Insertion Accumulator, East Bank, Row 1,<br>Position 12 (R-6)                          | N/A <sup>`</sup>                         | 12            | .C-119 |
| D03-0305-0058-<br>0023-0126-V05 | CRD/ Accumulator Insertion Scram Valve, East<br>Bank, Row 1, Position 12 (R-6)              | N/A                                      | 12            | C-121  |
| D03-0305-0058-<br>0023-0127-V05 | CRD/ Withdraw to Scram Discharge Volume Scram<br>Valve, East Bank, Row 1, Position 12 (R-6) | N/A                                      | 12            | C-123  |
| D03-0305-0058-<br>0023-H20      | CRD/ Hydraulic Control Unit, East Bank, Row 1,<br>Position 12 (R-6)                         | Y                                        | 12            | C-125  |
| D03-0409-A<br>T05               | CRD/ East Bank Scram Discharge Volume Tank                                                  | N                                        | 27            | C-129  |
| D03-0903-0003                   | CONTROL PANELS/ Control Panel 903-3                                                         | Y                                        | 1             | C-141  |
| D03-0903-0015                   | CONTROL PANELS/ Control Panel 903-15                                                        | Y                                        | 1             | C-144  |
| D03-0903-0028                   | CONTROL PANELS/ Control Panel 903-28                                                        | Y                                        | 2             | C-147  |
| D03-0903-0039                   | CONTROL PANELS/ Control Panel 903-39                                                        | Y                                        | 2             | C-152  |
| D03-0923-0005<br>& -0005A       | CONTROL PANELS/ Control Panel 923-5 & 923-5A                                                | Y                                        | 1             | C-158  |
| D03-1001-<br>0002AV20           | SHUTDOWN COOLING/ Shut Down Pumps<br>Suction Line Valve                                     | N/A                                      | 26            | C-163  |
| D03-1001-<br>0005AV20           | SHUTDOWN COOLING/ Injection Line Valve                                                      | N/A                                      | 33            | C-173  |
| D03-1301-0004-<br>V20           | ISOLATION CONDENSER/ Steam Return Line Isolation Valve                                      | N/A                                      | OUTAGE        |        |

| COMPONENT<br>ID       | DESCRIPTION                                             | Anchorage<br>Configuration<br>Confirmed? | AWC-U3-<br>xx | PAGE  |
|-----------------------|---------------------------------------------------------|------------------------------------------|---------------|-------|
| D03-1501-<br>0003AV20 | CCSW/ Heat Exchanger Outlet Service Water Line<br>Valve | N/A                                      | 17            | C-183 |
| D03-1501-             | LPCI/ LPCI Injection Line Valve                         | N/A                                      | 12, 15        | C-190 |
| 0021AV20              |                                                         |                                          |               |       |
| D03-1501-             | LPCI/ LPCI Header Crosstie Line Valve                   | N/A                                      | 17            | C-201 |
| D03-1501-             | CCSW/ CCSW Pump "A"                                     | · · ·                                    |               |       |
| 0044AP30              |                                                         | Y                                        | 10            | C-208 |
| D03-1502-A            | LPCI/ LPCI Injection Pump "A"                           | X                                        | 40            | 0.017 |
| P30                   |                                                         | ř                                        | 10            | 0-217 |
| D03-1503-A<br>H15     | LPCI/ LPCI Heat Exchanger                               | Y                                        | 17            | C-227 |
| D03-1541A-            | CCSW/ CCSW Pump "A" and "B" Discharge Flow              |                                          |               |       |
| FE                    | Element                                                 | N/A                                      | 28            | C-234 |
| D03-1599-             | LPCI/ Suppression Pool Suction Line "A" Relief          | N/A                                      | 18            | C-239 |
| 0013AV26              | Valve                                                   |                                          | 10            | 0 200 |
| D03-1601-0021-<br>V05 | PRESSURE SUPPRESSION/ Drywell Purge Line Valve          | N/A                                      | OUTAGE        |       |
| D03-1601-0022-        | PRESSURE SUPPRESSION/ Drywell/Torus Purge               | N1/A                                     |               |       |
| V05                   | Line Valve                                              | N/A                                      | OUTAGE        |       |
| D03-1601-0023-        | PRESSURE SUPPRESSION/ Drywell Ventiliation              | N/A                                      | 24            | C-245 |
| V05                   | Line Valve                                              | N/A                                      | 24            | 0-245 |
| D03-1601-0024-        | PRESSURE SUPPRESSION/ Drywell and Torus                 | N/A                                      | 21            | C-257 |
| V05                   | Vent Valve                                              |                                          |               | 0 201 |
| D03-1601-0057-        | PRESSURE SUPPRESSION/ Drywell/Torus Nitr.               | N/A                                      | 28            | C-264 |
| V20                   | Makeup Valve                                            |                                          |               |       |
| D03-1601-0062-        | PRESSURE SUPPRESSION/ Drywell Ventilation               | N/A                                      | 24            | C-272 |
| V05                   |                                                         |                                          |               |       |
| D03-1601-0063-        |                                                         | N/A                                      | 30            | C-274 |
| V05                   | SBGT Line valve                                         |                                          |               |       |
| V05                   | RB EQUIPMENT DRAIN/ Dryweil Equipment Drain             | N/A                                      | OUTAGE        |       |
| V05                   |                                                         |                                          | · · · · ·     |       |
| V05                   | Valve                                                   | N/A                                      | OUTAGE        |       |
| D03-2203-0006         | INSTRUMENT RACKS/ Instrument Rack 2203-6                | Y                                        | 23            | C-282 |
| D03-2203-0008         | INSTRUMENT RACKS/ Instrument Rack 2203-8                | Y                                        | 11            | C-290 |
| D03-2203-             | INSTRUMENT RACKS/ Instrument Rack 2203-70A              | Ň                                        |               | 0.007 |
| 0070A                 |                                                         | l Y                                      | 2             | C-297 |
| D03-2203-             | INSTRUMENT RACKS/ Instrument Rack 2203-73A              | V                                        | 22            | 0 204 |
| 0073A                 |                                                         | Ť                                        | 32            | 0-304 |
| D03-2253-0010         | CONTROL PANEL/ DG Metering and Relay Cabinet            | Y .                                      | 8             | C-308 |
| D03-2253-0021         | CONTROL PANEL/ DG Excitation Cabinet                    | Y                                        | 8             | C-314 |
| D03-2253-0084         | INSTRUMENT RACKS/ Instrument Rack 2253-84               | Y                                        | 22            | C-319 |
| D03-2301-0003-        | HPCI/ Turbine Steam Line Valve                          | NI/A                                     | 10            | 0 226 |
| V20                   |                                                         |                                          | 19            | 0-326 |

| COMPONENT<br>ID       | DESCRIPTION                                             | Anchorage<br>Configuration<br>Confirmed? | AWC-U3-<br>xx | PAGE  |
|-----------------------|---------------------------------------------------------|------------------------------------------|---------------|-------|
| D03-2301-0006-<br>V20 | HPCI/ Condensate Tank Supply to HPCI Pump<br>Valve      | N/A                                      | 19            | C-333 |
| D03-2301-0008-<br>V20 | HPCI/ HPCI Pump Injection Line Valve                    | N/A                                      | OUTAGE        |       |
| D03-2301-0035-<br>V20 | HPCI/ Suppression Pool Suction Line Valve               | N/A                                      | 19            | C-339 |
| D03-2301-0057-<br>P30 | HPCI/ HPCI Turbine Cooling Water Pump                   | Y                                        | 19            | C-346 |
| D03-2302<br>P30       | HPCI/ HPCI Pump                                         | Y                                        | 19            | C-353 |
| D03-2320-<br>GSCE-F05 | HPCI/ Gland Seal Condenser Exhaust Fan                  | Y                                        | 19            | C-362 |
| D03-2380<br>PSH       | HPCI/ HPCI Turbine Pressure Switch High                 | N                                        | 19            | C-368 |
| D03-3903<br>P30       | SERVICE WATER/ Diesel Generator Cooling Water<br>Pump   | Y                                        | 14            | C-377 |
| D03-4600-B<br>T05     | DIESEL GENERATOR/ Primary Gas Air Receiver<br>Unit "A1" | Y                                        | 8             | C-384 |
| D03-5202<br>T05       | DIESEL GENERATOR/ Diesel Fuel Oil Storage Day<br>Tank   | Y                                        | 7             | C-390 |
| D03-5203<br>P30       | DIESEL GENERATOR/ Fuel Oil Transfer Pump                | Y                                        | 8             | C-396 |
| D03-5746-A<br>H15     | LPCI/ LPCI Emergency Room Air Cooler                    | Y                                        | 17            | C-403 |
| D03-5747<br>H15       | HPCI/ HPCI Emergency Air Cooler                         | Y                                        | 19            | C-410 |
| D03-6601<br>G05       | DIESEL GENERATOR/ Diesel Engine Driven<br>Generator     | Y                                        | 8             | C-424 |
| D03-67341<br>S35      | 4160V AC/ Switchgear 34-1                               | Y                                        | 22            | C-431 |
| D03-7338<br>S35       | 480V AC/ Switchgear 38                                  | N                                        | 20            | C-440 |
| D03-7338<br>T10       | 480V AC/ Transformer 38, Feed to Switchgear 38          | N                                        | 20            | C-448 |
| D03-7339<br>S35       | 480V AC/ 480V Switchgear 39                             | N                                        | 20            | C-453 |
| D03-7838-1-1<br>P06   | DISTRIBUTION PANELS/ Distribution Panel 38-1-1          | Y                                        | 16            | C-460 |
| D03-7838-2<br>M05     | 480V AC/ MCC 38-2                                       | Y                                        | 6             | C-468 |
| D03-7839-2<br>M05     | 480V AC/ MCC 39-2                                       | Y                                        | 9             | C-476 |
| D03-83003A<br>B05     | 125V DC/ Battery Charger #3A                            | N                                        | 4             | C-483 |
| D03-83003<br>B05      | 125V DC/ Battery Charger #3                             | N                                        | 3             | C-489 |

| COMPONENT<br>ID       | DESCRIPTION                                             | Anchorage<br>Configuration<br>Confirmed? | AWC-U3-<br>xx | PAGE  |
|-----------------------|---------------------------------------------------------|------------------------------------------|---------------|-------|
| D03-8300BC<br>B04     | 125V DC/ Battery #3, Feed to TB Battery Bus #3          | Y                                        | 5             | C-495 |
| D03-8303A<br>M05      | 250V DC/ MCC Bus #3A (ROB-RB MCC #3)                    | Y                                        | 20            | C-502 |
| D03-8303B<br>M05      | 250V DC/ MCC Bus #3B (ROB-RB MCC #3)                    | Y                                        | 20            | C-507 |
| D03-83125<br>P06      | 125V DC/ RB 125V DC Distribution Panel #3               | Y                                        | 20            | C-512 |
| D03-83250-3<br>B05    | 250V DC/ Battery Charger #3                             | N                                        | 3             | C-515 |
| D03-83250-A01-<br>M05 | 250V DC/ Breaker to TB MCC #3 (ROB-Battery #3)          | N                                        | LATER         |       |
| D03-83250<br>B04      | 250V DC/ Battery #3, Feed to TB MCC #3                  | Y .                                      | 5             | C-521 |
| D03-9802A-A21<br>B11  | 24/48V DC/ Breaker to Battery Charger #3A (+)           | N                                        | 3             | C-529 |
| D03-9802-A<br>P06     | 24/48V DC/ Distribution Panel #3A                       | Ν                                        | 3             | C-533 |
| D03-DGCP              | CONTROL PANEL/ Unit 3 Diesel Generator Control<br>Panel | Y                                        | 8             | C-542 |
| D03-NGC               | CONTROL PANEL/ Unit 3 Neutral Grounding<br>Cabinet      | N                                        | · 8           | C-547 |

Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167 Sheet 1 of 5

## Status: Y N U Seismic Walkdown Checklist (SWC) Equipment ID No.: D00-2223-0109 Equipment Class: (20) Instrumentation and Control Panels and Cabinets Equipment Description: CONTROL PANEL/ DG Cooling Pump Transfer Switch Status Project: Dresden 3 SWEL Location (Bldg, Elev, Room/Area): Reactor, 504.50 ft, ALL Manufacturer/Model: Instructions for Completing Checklist This checklist may be used to document the results of the Seismic Walkdown of an item of equipment on the SWEL. The space below each of the following questions may be used to record the results of judgments and findings. Additional space is provided at the end of this checklist for documenting other comments. Anchorage 1. Is anchorage configuration verification required (i.e., is the item one of the 50% Yes of SWEL items requiring such verification)? 2. Is the anchorage free of bent, broken, missing or loose hardware? Yes 3. Is the anchorage free of corrosion that is more than mild surface oxidation? Yes 4. Is the anchorage free of visible cracks in the concrete near the anchors? Yes 5. Is the anchorage configuration consistent with plant documentation? (Note: Yes This question only applies if the item is one of the 50% for which an anchorage configuration verification is required.) 6. Based on the above anchorage evaluations, is the anchorage free of Yes potentially adverse seismic conditions?

C-7

Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167 Sheet 2 of 5

| Seismic Walkdown Checklist (SWC)                                                                                                                   | Status: Y N U                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Equipment ID No.: D00-2223-0109                                                                                                                    |                                       |
| Equipment Class: (20) Instrumentation and Control Panels and Cabinets                                                                              | `                                     |
| Equipment Description: CONTROL PANEL/ DG Cooling Pump Transfer Switch Sta                                                                          | tus                                   |
| Interaction Effects                                                                                                                                |                                       |
| 7. Are soft targets free from impact by nearby equipment or structures?                                                                            | Yes                                   |
|                                                                                                                                                    |                                       |
| 8. Are overhead equipment, distribution systems, ceiling tiles and lighting, and<br>masonry block walls not likely to collapse onto the equipment? | Yes                                   |
| 9 Do ottochod lines have adequate flexibility to avoid demage?                                                                                     | Vos                                   |
| 5. Do attached lines have adequate liexibility to avoid damage?                                                                                    | i es                                  |
| 10. Based on the above seismic interaction evaluations, is equipment free of potentially adverse seismic interaction effects?                      | Yes                                   |
| Other Adverse Conditions                                                                                                                           |                                       |
| 11. Have you looked for and found no adverse seismic conditions that could adversely affect the safety functions of the equipment?                 | Yes                                   |
| Comments                                                                                                                                           | · · · · · · · · · · · · · · · · · · · |
| SEWS Anchorage Notes:                                                                                                                              |                                       |
| Column mounted panel. Bolted to column with four 3/8" non-shell expansion bolts (one in ea a 1/2" shim plate.                                      | ach corner) through                   |
| ****                                                                                                                                               |                                       |
| Seismic Walkdown Team: J. Griffith & M. Wodarcyk - 7/31/2012                                                                                       |                                       |
| See U2/3 Diesel Generator Room area walk-by notes completed during U2 walkdown for fu                                                              | rther information.                    |
|                                                                                                                                                    |                                       |
| Evaluated by: <u>5<sup>m</sup> <sup>a</sup> <sup>m</sup> <sup>a</sup> James Griffith</u> Date: <u>9/</u>                                           | 30/2012                               |
| Michael Windmagte                                                                                                                                  | 30/2012                               |
|                                                                                                                                                    | 30/2012                               |
|                                                                                                                                                    |                                       |

Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167 Sheet 3 of 5

Status: Y N U

#### Seismic Walkdown Checklist (SWC)

| Equipment ID No.:      | D00-2223-0109                                         |
|------------------------|-------------------------------------------------------|
| Equipment Class:       | (20) Instrumentation and Control Panels and Cabinets  |
| Equipment Description: | CONTROL PANEL/ DG Cooling Pump Transfer Switch Status |



Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167 Sheet 4 of 5

Status: Y N U

#### Seismic Walkdown Checklist (SWC)



Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167 Sheet 5 of 5

Status: Y N U

#### Seismic Walkdown Checklist (SWC)

| Equipment ID No.:      | D00-2223-0109                                         |
|------------------------|-------------------------------------------------------|
| Equipment Class:       | (20) Instrumentation and Control Panels and Cabinets  |
| Equipment Description: | CONTROL PANEL/ DG Cooling Pump Transfer Switch Status |





20120731-Dresden-3 444

Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167 Sheet 1 of 4

| Seismic Walkdown Checklist (SWC)                                                                                                                                                                                                                                             | Status: Y N U                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Equipment ID No.: D00-2350-CLS                                                                                                                                                                                                                                               |                                             |
| Equipment Class: (18) Instruments on Racks                                                                                                                                                                                                                                   |                                             |
| Equipment Description: HPCI/ Storage Tank Level Switch                                                                                                                                                                                                                       | ,                                           |
| Project: Dresden 3 SWEL                                                                                                                                                                                                                                                      |                                             |
| _ocation (Bldg, Elev, Room/Area); Turbine, 517.50 ft, ALL                                                                                                                                                                                                                    |                                             |
| Manufacturer/Model:                                                                                                                                                                                                                                                          |                                             |
| Instructions for Completing Checklist                                                                                                                                                                                                                                        |                                             |
| This checklist may be used to document the results of the Seismic Walkdown of an item of SWEL. The space below each of the following questions may be used to record the result findings. Additional space is provided at the end of this checklist for documenting other co | equipment on the s of judgments and mments. |
| Anchorage                                                                                                                                                                                                                                                                    |                                             |
| <ol> <li>Is anchorage configuration verification required (i.e., is the item one of the 50%<br/>of SWEL items requiring such verification)?</li> </ol>                                                                                                                       | No                                          |
| Tube steel cantilever floor support with anchors.                                                                                                                                                                                                                            | · .                                         |
| 2. Is the anchorage free of bent, broken, missing or loose hardware?                                                                                                                                                                                                         | Yes                                         |
|                                                                                                                                                                                                                                                                              |                                             |
| 3. Is the anchorage free of corrosion that is more than mild surface oxidation?                                                                                                                                                                                              | Yes                                         |
| 4. Is the anchorage free of visible cracks in the concrete near the anchors?                                                                                                                                                                                                 | Yes                                         |
| <ol> <li>Is the anchorage configuration consistent with plant documentation? (Note:<br/>This question only applies if the item is one of the 50% for which an anchorage<br/>configuration verification is required.)</li> </ol>                                              | Not Applicable                              |
| 6. Based on the above anchorage evaluations, is the anchorage free of potentially adverse seismic conditions? <i>Switch is labeled as 3-2350C-LS in plant.</i>                                                                                                               | Yes                                         |
|                                                                                                                                                                                                                                                                              |                                             |

C-12

Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167 Sheet 2 of 4

| Seismic Walkdown Checklist (SWC)                                                                                                                   | Status: Y N U                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Equipment ID No.: D00-2350-CLS                                                                                                                     |                                        |
| Equipment Class: (18) Instruments on Racks                                                                                                         |                                        |
| Equipment Description: HPCI/ Storage Tank Level Switch                                                                                             | <u> </u>                               |
| Interaction Effects                                                                                                                                | <u> </u>                               |
| 7. Are soft targets free from impact by nearby equipment or structures?                                                                            | Yes                                    |
|                                                                                                                                                    |                                        |
| 8. Are overhead equipment, distribution systems, ceiling tiles and lighting, and<br>masonry block walls not likely to collapse onto the equipment? | Yes                                    |
| 9. Do attached lines have adequate flexibility to avoid damage?                                                                                    | Yes                                    |
| 10. Based on the above seismic interaction evaluations, is equipment free of<br>potentially adverse seismic interaction effects?                   | Yes                                    |
| Other Adverse Conditions                                                                                                                           |                                        |
| 11. Have you looked for and found no adverse seismic conditions that could<br>adversely affect the safety functions of the equipment?              | Yes                                    |
|                                                                                                                                                    |                                        |
|                                                                                                                                                    | <u> </u>                               |
| Comments                                                                                                                                           |                                        |
| Seismic Walkdown Team: J. Griffith & M. Wodarcyk - 7/31/2012                                                                                       |                                        |
| Equipment tag says 3-2350-C. Operations confirmed that this is the correct item.                                                                   | ······································ |
| Evaluated by: James Griffith Date: 1                                                                                                               | 0/24/2012                              |
| Michael Wodarcyk 1                                                                                                                                 | 0/24/2012                              |
|                                                                                                                                                    |                                        |
|                                                                                                                                                    |                                        |

2

•

Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167 Sheet 3 of 4

Status: Y N U

#### Seismic Walkdown Checklist (SWC)

| Equipment ID No .:     | D00-2350-CLS                    |
|------------------------|---------------------------------|
| Equipment Class:       | (18) Instruments on Racks       |
| Equipment Description: | HPCI/ Storage Tank Level Switch |

#### **Photos**



Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167 Sheet 4 of 4

Status: Y N U

## Seismic Walkdown Checklist (SWC)

| Equipment ID No.:      | D00-2350-CLS                    |  |
|------------------------|---------------------------------|--|
| Equipment Class:       | (18) Instruments on Racks       |  |
| Equipment Description: | HPCI/ Storage Tank Level Switch |  |



20120731-Dresden-3 336

Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167 Sheet 1 of 7

|                              | · · · ·                                                                                                                                                                                                                                                                    |                                                 |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Seismi                       | c Walkdown Checklist (SWC)                                                                                                                                                                                                                                                 | Status: Y N U                                   |
|                              |                                                                                                                                                                                                                                                                            |                                                 |
|                              | Equipment ID No.:                                                                                                                                                                                                                                                          | ··                                              |
|                              |                                                                                                                                                                                                                                                                            | ······                                          |
|                              | Equipment Description: CONTROL ROOM VENTILATION/ Service Water Supply V                                                                                                                                                                                                    | alve                                            |
|                              | Project: Dresden 3 SWEL                                                                                                                                                                                                                                                    |                                                 |
| Locatio                      | n (Bldg, Elev, Room/Area):Turbine, 534.00 ft, ALL                                                                                                                                                                                                                          |                                                 |
|                              | Manufacturer/Model:                                                                                                                                                                                                                                                        |                                                 |
| This ch<br>SWEL.<br>finding: | ecklist may be used to document the results of the Seismic Walkdown of an item of e<br>The space below each of the following questions may be used to record the results<br>s. Additional space is provided at the end of this checklist for documenting other com         | equipment on the<br>of judgments and<br>iments. |
| <u>Ancho</u>                 | rage                                                                                                                                                                                                                                                                       |                                                 |
| 1.                           | Is anchorage configuration verification required (i.e., is the item one of the 50% of SWEL items requiring such verification)?                                                                                                                                             | No                                              |
| 2.                           | Is the anchorage free of bent, broken, missing or loose hardware?                                                                                                                                                                                                          | Not Applicable                                  |
| 3.                           | Is the anchorage free of corrosion that is more than mild surface oxidation?                                                                                                                                                                                               | Not Applicable                                  |
| 4.                           | Is the anchorage free of visible cracks in the concrete near the anchors?                                                                                                                                                                                                  | Not Applicable                                  |
| 5.                           | Is the anchorage configuration consistent with plant documentation? (Note:<br>This question only applies if the item is one of the 50% for which an anchorage<br>configuration verification is required.)                                                                  | Not Applicable                                  |
| 6.                           | Based on the above anchorage evaluations, is the anchorage free of potentially adverse seismic conditions?<br>Valve actuator is well-supported from floor. Valve actuator support has an anchor with projection that is flush with top-of-nut and judged to be acceptable. | Yes                                             |

Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167 Sheet 2 of 7

| Seismic Walkdown Checklist (SWC)                                                                                                                                                                  | Status: Y N U |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Equipment ID No.: _D00-5741-0048BV72                                                                                                                                                              |               |
| Equipment Class: _(7) Fluid-Operated Valves                                                                                                                                                       | •             |
| Equipment Description: CONTROL ROOM VENTILATION/ Service Water Supply V                                                                                                                           | /alve         |
| Interaction Effects                                                                                                                                                                               |               |
| 7. Are soft targets free from impact by nearby equipment or structures?                                                                                                                           | Yes           |
| 8 Are overhead equipment, distribution systems, cailing tiles and lighting, and                                                                                                                   | Vas           |
| masonry block walls not likely to collapse onto the equipment?<br>Overhead light fixtures judged to be acceptable. Adjacent masonry wall is<br>adequately restrained and judged to be acceptable. |               |
| 9. Do attached lines have adequate flexibility to avoid damage?                                                                                                                                   | Yes           |
| 10. Based on the above seismic interaction evaluations, is equipment free of<br>potentially adverse seismic interaction effects?                                                                  | Yes           |
| Other Adverse Conditions                                                                                                                                                                          |               |
| 11. Have you looked for and found no adverse seismic conditions that could<br>adversely affect the safety functions of the equipment?                                                             | Yes           |
|                                                                                                                                                                                                   |               |
| <u>Comments</u><br>Seismic Walkdown Team: J. Griffith & M. Wodarcyk - 7/30/2012                                                                                                                   |               |
| See area walk-by for D00-5741-0048A72 for further information.                                                                                                                                    |               |
| Evaluated by: Jms D Appth James Griffith Date: 9/                                                                                                                                                 | 30/2012       |
| Michael Wodarcyk 9/                                                                                                                                                                               | 30/2012       |
|                                                                                                                                                                                                   | •             |

.

C-17

Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167 Sheet 3 of 7

Status: Y N U

#### Seismic Walkdown Checklist (SWC)

 Equipment ID No.:
 D00-5741-0048BV72

 Equipment Class:
 (7) Fluid-Operated Valves

 Equipment Description:
 CONTROL ROOM VENTILATION/ Service Water Supply Valve

#### **Photos**



Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167 Sheet 4 of 7

Status: Y N U

#### Seismic Walkdown Checklist (SWC)

Equipment ID No.: D00-5741-0048BV72

Equipment Class: (7) Fluid-Operated Valves

Equipment Description: CONTROL ROOM VENTILATION/ Service Water Supply Valve



20120730-Dresden-3 036





20120730-Dresden-3 037



Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167 Sheet 5 of 7

Status: Y N U

### Seismic Walkdown Checklist (SWC)

| Equipment ID No.:      | D00-5741-0048BV72                                    |
|------------------------|------------------------------------------------------|
| Equipment Class:       | (7) Fluid-Operated Valves                            |
| Equipment Description: | CONTROL ROOM VENTILATION/ Service Water Supply Valve |

SPIR/BIT/20 10-20

20120730-Dresden-3 040



20120730-Dresden-3 041





20120730-Dresden-3 043

Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167 Sheet 6 of 7

Status: Y N · U

#### Seismic Walkdown Checklist (SWC)

| Equipment ID No.:      | D00-5741-0048BV72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equipment Class:       | (7) Fluid-Operated Valves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Equipment Description: | CONTROL ROOM VENTILATION/ Service Water Supply Valve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Contraction of the     | 17 Barris Barris Contraction and the second s |



20120730-Dresden-3 044





20120730-Dresden-3 047

Dresden Generating Station Unit 3 12Q0108.30-R-002, Rev. 2 Correspondence No.: RS-12-167 Sheet 7 of 7

Status: Y N U

### Seismic Walkdown Checklist (SWC)

| Equipment ID No.:      | D00-5741-0048BV72                                    |
|------------------------|------------------------------------------------------|
| Equipment Class:       | (7) Fluid-Operated Valves                            |
| Equipment Description: | CONTROL ROOM VENTILATION/ Service Water Supply Valve |



20120730-Dresden-3 048



20120730-Dresden-3 050



20120730-Dresden-3 049

