AUG 2 7 2010

LES-10-00192-NRC

Document Control Desk Director Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

> Louisiana Energy Services, LLC NRC Docket No. 70-3103

Subject: URENCO USA Semiannual Radiological Effluent Release Report (SRERR)

Pursuant to 10 CFR 70.59 Effluent monitoring reporting requirements, URENCO USA respectfully submits the Semiannual Effluent Release Report for the monitoring period of January 1, 2010 to June 30, 2010. This report specifically addresses release of licensed, principal radionuclide's in liquid or gaseous form to uncontrolled areas.

If there are any questions with regard to this submission, please contact URENCO USA Vice President of Compliance Perry Robinson at (575)-394-6598.

Sincerely

Stephen R. Cowne for David E. Sexton Chief Nuclear Officer and Vice President of Operations

Enclosure: Report (SRERR) January 1, 2010 through June 30, 2010 CC:

Tyrone D. Naquin, Program Manager Two White Flint North Mail Stop EBB2-C40M 11545 Rockville Pike Rockville, MD 20852-2738

Jay L. Henson Chief, Fuel Facility Branch 2 US NRC, Region II 245 Peachtree Center Ave, NE Suite 1200 Atlanta, GA 30303-125

Enclosure

Semiannual Radiological Effluent Release Report

Facility Operating License SNM-2010

Semi-Annual Radioactive Effluent Release Report

January 1, 2010 through June 30, 2010

August 25, 2010

Contents

Introduction	4
Release Point Information	4
Gaseous Release Locations	4
Centrifuge Test and Post Mortem Facilities (CTPMF) Exhaust Filtration System	4
Table 1: Gaseous Effluent, Gross Alpha	5
Table 2: Gaseous Effluent, Gross Beta	6
Table 3: Gaseous Effluent, Radionuclides (Quarterly Filter Composite Results)	7
Separations Building Module (SBM-1001)	7
Table 4: Gaseous Effluent, Gross Alpha	8
Table 5: Gaseous Effluent, Gross Beta	9
Table 6: Gaseous Effluent, Radionuclides (Quarterly Filter Composite Results)	10
Sampling Data Gaps	
Sampling program deviations and program adjustments	11
Significant Trends	11
Liquid Release Locations	
Liquid Release Data	12
Table 7: Domestic Wastewater Effluent, Radionuclides	13
Sampling program deviations and program adjustments	13
Significant Trends	13
Dose to Members of the Public	13
Supplemental Information	14
Description of Sampling Equipment	14
Description of sampling procedure	14
Analytical procedure	14

•

٠

URENCO USA	Semi-Annual Radioactive Effluent Release Report
Calculation methods	
Error estimates	
Minimum Detectable Activity (MDA) Calculation.	
Quality of Results	
Calibration Procedures	
Unusual Releases	
APPENDIX A - Plot Plan	
APPENDIX B - Lab Data Sheets	
APPENDIX C - Sampling Procedures	
APPENDIX D - Calibration Procedures	

•••

۰.

.

•

Introduction

A Semi-Annual Report is required under 10 CFR 70.59 and 10 CFR 40.65 to report the quantity of principal radionuclides released to unrestricted areas from licensed nuclear facilities. In February 2009, URENCO USA began testing centrifuges using small quantities of Uranium Hexafluoride at the URENCO USA site, located approximately four miles east of Eunice, NM. In June 2010, URENCO USA received feed material onsite for uranium enrichment activity, officially initiating the first cascade online.

During the period that began on January 1, 2010 and ended June 30, 2010, Uranium Hexafluoride was located within the Centrifuge Assembly Building (CAB) and the Separations Building Module (SMB-1001). Potential releases of radioactive effluents would have originated from gaseous (exhaust system) or liquid (domestic wastewater / sewage) effluents from the CAB and SBM-1001. A review of the data for gaseous and liquid effluents shows that there were no releases to the public that would have exceeded the requirements set forth in 10 CFR 20.1301.

Release Point Information

Gaseous Release Locations

Centrifuge Test and Post Mortem Facilities (CTPMF) Exhaust Filtration System

Potentially hazardous contaminants from the CTPMF are release through the Exhaust Filtration System (EFS). The system also ensures the CTPMF is maintained at a negative pressure with respect to adjacent areas. The EFS is located in the Centrifuge Assembly Building (CAB) and monitored from the Control Room (Appendix A, Plot Plan).

The total airflow to be handled by the EFS is adequate to maintain negative pressure in the CTPMF. The EFS consists of a duct network that serves the CTMPF and operates at negative pressure. The ductwork is connected to a filter station that can handle 100% of the effluent. Work applications that require the EFS to be operational can be manually shut down if the system shuts down.

For the EFS, the minimum required filter configuration is one pre-filter, one potassium carbonate impregnated activated carbon filter, and one High-Efficiency Particulate Air (HEPA) filter. Additional filters may be used to provide adequate airflow. The pre-filter removes dust and debris, the potassium carbonate impregnated activated carbon filter removes Hydrogen Fluoride (HF), and the HEPA filter removes remaining uranic particles from the air stream. After filtration, the clean gases pass through a fan which maintains the negative pressure upstream of the filter station. The clean gases are then discharged through the monitored (alpha and HF) stack on the CAB.

The ABPM201S (alpha particulate monitor) is located adjacent to the filter train in the CTPMF EFS exhaust stack and receives a stream of air from the downstream side of the filters. The filter assembly is equipped with an isokinetic nozzle and properly located within the exhaust stack to ensure laminar flow. This ensures that particulate matter being collected on the filter is representative of particulate matter being released to the environment. The sample volume is pulled through a 47mm Millipore fiberglass filter to collect particulate matter. The filters are changed out on a weekly basis and sent to an off-site analytical laboratory for alpha, beta, and isotopic uranium analysis.

Reporting period: January 1, 2010 - June 30, 2010

Stack Location: Centrifuge Assembly Building, Centrifuge Test and Post Mortem Facilities Exhaust Filtration System

Table 2 of Appendix B to 10 CFR Part 20, Effluent Concentrations, Air, Class D, 234 U, 235 U, 238 U, (μ Ci/ml):

 234 U = 3E-12, 235 U = 3E-12, 238 U = 3E-12

Table 1: CTPMF EFS Gaseous Effluent, Gross Alpha

		· · · ·				Total	
				Gross		СТРМ	
	•		Gross	Alpha	Gross	Exhaust	
		Total	Alpha	Error	Alpha	Filtration	
		Time	Results	Estimate	MDA	System	Quantity Released
Lab Sample ID	Sample Period	(min)	(uCi/ml)	(uCi/ml)	(uCi/ml)	Flow (m ³)	(Ci)
1300-562-1MA1 100106	12/30/09-1/6/10	10356	< 8.83E-16	2.86E-16	8.83E-16	* 1.17E+06	Result below LLD
1300-562-1MA1 100113	1/6/10-1/13/10	10220	< 7.62E-16	3.41E-16	7.62E-16	3.16E+06	Result below LLD
1300-562-1MA1 100120	1/13/10-1/20/10	9692	< 7.11E-16	2.74E-16	7.11E-16	2.62E+06	Result below LLD
1300-562-1MA1 100127	1/20/10-1/27/10	10153	< 6.71E-16	2.04E-16	6.71E-16	3.14E+06	Result below LLD
1300-562-1MA1 100203	1/27/10-2/3/10	10059	< 8.22E-16	3.56E-16	8.22E-16	3.08E+06	Result below LLD
1300-562-1MA1 100210	2/3/10-2/10/10	10096	< 8.18E-16	3.14E-16	8.18E-16	2.86E+06	Result below LLD
1300-562-1MA1 100217	2/10/10-2/17/10	10115	< 8.27E-16	2.70E-16	8.27E-16	3.11E+06	Result below LLD
1300-562-1MA1 100224	2/17/10-2/24/10	9995	< 1.06E-15	3.67E-16	1.06E-15	3.11E+06	Result below LLD
1300-562-1MA1 100303	2/24/10-3/3/10	10150	< 6.74E-16	2.05E-16	6.74E-16	3.14E+06	Result below LLD
1300-562-1MA1 100311	3/3/10-3/11/10	11443	< 9.95E-16	3.25E-16	9.95E-16	2.42E+06	Result below LLD
1300-562-1MA1 100318	3/11/10-3/18/10	10172	< 8.42E-16	2.92E-16	8.42E-16	3.14E+06	Result below LLD
1300-562-1MA1 100325	3/18/10-3/25/10	10020	< 8.81E-16	2.88E-16	8.81E-16	3.11E+06	Result below LLD
1300-562-1MA1 100331	3/25/10-3/31/10	8702	< 8.67E-16	3.12E-16	8.67E-16	2.69E+06	Result below LLD
1300-562-1MA1 100408	3/31/10-4/8/10	11440	< 5.34E-16	2.84E-16	5.34E-16	3.02E+06	Result below LLD
1300-562-1MA1 100414	4/8/10-4/14/10	8683	< 1.13E-15	3.67E-16	1.13E-15	2.69E+06	Result below LLD
1300-562-1MA1 100421	4/14/10-4/21/10	10063	< 9.52E-16	3.24E-16	9.52E-16	3.11E+06	Result below LLD
1300-562-1MA1 100428	4/21/2010-4/28/10	10062	< 5.30E-16	2.82E-16	5.30E-16	3.08E+06	Result below LLD
1300-562-1MA1 100505	4/28/10-5/5/10	10161	< 1.11E-15	4.26E-16	1.11E-15	3.11E+06	Result below LLD
1300-562-1MA1 100512	5/5/10-5/12/10	10010	< 1.00E-15	3.50E-16	1.00E-15	3.08E+06	Result below LLD
1300-562-1MA1 100519	5/12/10-5/19/10	10066	< 1.38E-15	5.21E-16	1.38E-15	3.00E+06	Result below LLD
1300-562-1MA1 100526	5/19/10-5/26/10	10035	< 1.52E-16	0.00E+00	1.52E-16	3.08E+06	Result below LLD
1300-562-1MA1 100602	5/26/10-6/2/10	10080	< 1.21E-15	4.12E-16	1.21E-15	3.08E+06	Result below LLD
1300-562-1MA1 100609	6/2/10-6/9/10	10068	< 6.67E-16	2.57E-16	6.67E-16	2.58E+06	Result below LLD
1300-562-1MA1 100616	6/9/10-6/16/10	10116	< 6.78E-16	2.44E-16	6.78E-16	3.08E+06	Result below LLD
1300-562-1MA1 100623	6/16/10-6/23/10	10128	< 1.35E-15	4.78E-16	1.35E-15	2.86E+06	Result below LLD
1300-562-1MA1 100630	6/23/10-6/30/10	10050	< 8.43E-16	3.08E-16	8.43E-16	3.05E+06	Result below LLD

*Total System Flow determined using maximum flow rate volume of 1.89 scfm See Appendix B for Laboratory Data Sheets

Table 2:	CTPMF	EFS	Gaseous	Effluent,	Gross	Beta

						Total	
				с в.		CTPM Exhaust	
		T - 4 - 1	~ ~ ~	Gross Beta	C D (Filtration	
		Total Time	Gross Beta	Error Estimate	Gross Beta MDA	System	Quantity Balassad
Lab Sample ID	Sample Period	(min)	Results (uCi/ml)	(uCi/ml)	(uCi/ml)	Flow (m ³)	Quantity Released (Ci)
1300-562-1MA1 100106	12/30/09-1/6/10	10356	< 1.92E-15	9.03E-16	1.92E-15	* 1.17E+06	Result below LLD
1300-562-1MA1 100113	1/6/10-1/13/10	10220	< 1.56E-15	8.01E-16	1.56E-15	3.16E+06	Result below LLD
1300-562-1MA1 100120	1/13/10-1/20/10	9692	< 1.77E-15	8.39E-16	1.77E-15	2.62E+06	Result below LLD
1300-562-1MA1 100127	1/20/10-1/27/10	10153	< 1.85E-15	8.67E-16	1.85E-15	3.14E+06	Result below LLD
1300-562-1MA1 100203	1/27/10-2/3/10	10059	< 2.06E-15	9.13E-16	2.06E-15	3.08E+06	Result below LLD
1300-562-1MA1 100210	2/3/10-2/10/10	10096	< 1.92E-15	8.68E-16	1.92E-15	2.86E+06	Result below LLD
1300-562-1MA1 100217	2/10/10-2/17/10	10115	< 2.11E-15	9.70E-16	2.11E-15	3.11E+06	Result below LLD
1300-562-1MA1 100224	2/17/10-2/24/10	9995	< 1.98E-15	9.19E-16	1.98E-15	3.11E+06	Result below LLD
1300-562-1MA1 100303	2/24/10-3/3/10	10150	< 1.69E-15	8.02E-16	1.69E-15	3.14E+06	Result below LLD
1300-562-1MA1 100311	3/3/10-3/11/10	11443	< 2.35E-15	1.15E-15	2.35E-15	2.42E+06	Result below LLD
1300-562-1MA1 100318	3/11/10-3/18/10	10172	< 2.54E-15	1.19E-15	2.54E-15	3.14E+06	Result below LLD
1300-562-1MA1 100325	3/18/10-3/25/10	10020	< 1.95E-15	9.98E-16	1.95E-15	3.11E+06	Result below LLD
1300-562-1MA1 100331	3/25/10-3/31/10	8702	< 2.45E-15	1.17E-15	2.45E-15	2.69E+06	Result below LLD
1300-562-1MA1 100408	3/31/10-4/8/10	11440	< 2.16E-15	9.30E-16	2.16E-15	3.02E+06	Result below LLD
1300-562-1MA1 100414	4/8/10-4/14/10	8683	< 2.47E-15	1.17E-15	2.47E-15	2.69E+06	Result below LLD
1300-562-1MA1 100421	4/14/10-4/21/10	10063	< 2.28E-15	1.02E-15	2.28E-15	3.11E+06	Result below LLD
1300-562-1MA1 100428	4/21/10-4/28/10	10062	< 2.14E-15	9.25E-16	2.14E-15	3.08E+06	Result below LLD
1300-562-1MA1 100505	4/28/10-5/5/10	10161	< 2.24E-15	1.04E-15	2.24E-15	3.11E+06	Result below LLD
1300-562-1MA1 100512	5/5/10-5/12/10	10010	< 2.11E-15	9.45E-16	2.11E-15	3.08E+06	Result below LLD
1300-562-1MA1 100519	5/12/10-5/19/10	10066	1.90E-14	2.00E-15	2.69E-15	3.00E+06	5.70E-08
1300-562-1MA1 100526	5/19/10-5/26/10	10035	< 2.30E-15	1.05E-15	2.30E-15	3.08E+06	Result below LLD
1300-562-1MA1 100602	5/26/10-6/2/10	10080	< 2.23E-15	9.97E-16	2.23E-15	3.08E+06	Result below LLD
1300-562-1MA1 100609	6/2/10-6/9/10	10068	< 1.90E-15	8.52E-16	1.90E-15	2.58E+06	Result below LLD
1300-562-1MA1 100616	6/9/10-6/16/10	10116	< 1.95E-15	9.14E-16	1.95E-15	3.08E+06	Result below LLD
1300-562-1MA1 100623	6/16/10-6/23/10	10128	< 2.37E-15	1.09E-15	2.37E-15	2.86E+06	Result below LLD
1300-562-1MA1 100630	6/23/10-6/30/10	10050	< 2.03E-15	9.33E-16	2.03E-15	3.05E+06	Result below LLD

*Total System Flow determined using maximum flow rate volume of 1.89 scfm See Appendix B for Laboratory Data Sheets

.

•

<u>Table 3: CTPMF EFS Gaseous Effluent, Radionuclides (Quarterly Filter Composite</u> Results)

Radionuclide / Sample ID	Sample Period	Total Time (min)	Results (uCi/ml)	Error Estimate (uCi/ml)	MDA (uCi/ml)	Total CTPM Exhaust Filtration System Flow (m ³)	Quanity Released (Ci)	% of Table 2 of Appx B to 10 CFR Part 20 Values
U-234 / 1300-562- 1MA1 COMP 1 st QTR	12/30/2009- 3/31/2010	1.312E+05	* 5.18E-14	4.32E-14	4.77E-14	36739970	1.90E-06	1.73%
U-234 / 1300-562- 1MA1 COMP 2 nd QTR	3/31/2010- 6/30/2010	1.310E+05	* 1.62E-16	1.22E-16	1.13E-16	38813600	6.28E-09	0.01%
U-235 / 1300-562- 1MA1 COMP 1 st QTR	12/30/2009- 3/31/2010	1.312E+05	< 2.66E-14	2.85E-14	2.66E-14	36739970	Result below LLD	Result below LLD
U-235 / 1300-562- 1MA1 COMP 2 nd QTR	3/31/2010- 6/30/2010	1.310E+05	< 6.90E-17	7.41E-17	6.90E-17	38813600	Result below LLD	Result below LLD
U-238 / 1300-562- 1MA1 COMP 1 st QTR	12/30/2009- 3/31/2010	1.312E+05	* 5.95E-14	4.60E-14	4.75E-14	36739970	2.19E-06	1.98%
U-238 / 1300-562- 1MA1 COMP 2 nd QTR	3/31/2010- 6/30/2010		* 4.34E-17		3.83E-17	38813600	1.68E-09	0.001%

Isotopic uranium results for U-235 and U-236 were combined and designated U-235 in Table 3.

*Results below License Basis Environmental Report LLD value of 1.0E-14 µCi/mL.

See Appendix B for Laboratory Data Sheets

Separations Building Module (SBM-1001) Pumped Extract GEVS (Gaseous Effluent Vent System)

The Pumped Extract GEVS is designed to route contaminated gaseous streams from the SBM-1001 through filters for treatment before discharge to the atmosphere. Prefilters and high efficiency particulate air (HEPA) filters remove particulates and impregnated activated carbon filters are used for the removal of HF.

The GEVS stacks are continuously monitored from the Control Room to indicate radioactivity levels. The Pumped Extract GEVS is a Safe-By-Design system located in the UF_6 Handling Area of SBM-1001 that provides exhaust of potentially hazardous contaminants for the SBMs from all permanently connected vacuum pump and trap sets as well as temporary connections used by maintenance and sampling rigs.

There are two redundant continuous air monitoring devices in the GEVS (1MA1 and 1MA2). Similar to the CTPMF vent system, the alpha particulate monitors are located adjacent to the filter train in the Pump Extract GEVS exhaust stack and receive a stream of air from the downstream side of the filters. The filter assemblies are equipped with iso-kinetic nozzles and properly located within the exhaust stack to ensure laminar flow. This ensures that particulate matter being collected on the filter is representative of

particulate matter being released to the environment. The sample volume is pulled through a 47mm Millipore fiberglass filter to collect particulate matter. The filters are changed out on a weekly basis and sent to an off-site analytical laboratory for alpha, beta, and isotopic uranium analysis.

Table 4: SBM-1001 GEVS Gaseous Effluent, Gross Alpha

<u>1MA1:</u>

Field Sample ID	Sample Period	Total Time (min)	Gross Alpha Results (uCi/ml)	Gross Alpha Error Estimate (uCi/ml)	Gross Alpha MDA (uCi/ml)	Total Vent System Flow (m3)	Quantity Released (Ci)
1001-562-1MA1 100505	4/28/10-5/5/10	10156	< 5.27E-16	2.09E-16	5.27E-16	1.03E+05	Result below LLD
1001-562-1MA1 100512	5/5/10-5/12/10	9994	<1.10E-15	3.67E-16	1.10E-15	1.01E+05	Result below LLD
1001-562-1MA1 100519	5/12/10-5/19/10	10115	< 8.98E-16	3.44E-16	8.98E-16	1.04E+05	Result below LLD
1001-562-1MA1 100526	5/19/10-5/26/10	10038	< 7.96E-16	2.43E-16	7.96E-16	9.77E+04	Result below LLD
1001-562-1MA1 100602	5/26/10-6/2/10	10185	< 7.82E-16	2.71E-16	7.82E-16	1.06E+05	Result below LLD
1001-562-1MA1 100609	6/2/10-6/9/10	10008	<1.33E-15	4.38E-16	1.33E-15	1.04E+05	Result below LLD
1001-562-1MA1 100616	6/9/10-6/16/10	10088	< 8.78E-16	3.12E-16	8.78E-16	1.03E+05	Result below LLD
1001-562-1MA1 100623	6/16/10-6/23/10	10420	<1.20E-15	4.35E-16	1.20E-15	1.09E+05	Result below LLD
1001-562-1MA1 100630	6/23/10-6/30/10	9896	<1.11E-15	3.83E-16	1.11E-15	1.04E+05	Result below LLD

<u>1MA2:</u>

Field Sample ID	Sample Period	Total Time (min)	Gross Alpha Results (uCi/ml)	Gross Alpha Error Estimate (uCi/ml)	Gross Alpha MDA (uCi/ml)	Total Vent System Flow (m3)	Quantity Released (Ci)
1001-562-1MA2 100505	4/28/10-5/5/10	10157	<1.05E-15	3.52E-16	1.05E-15	1.03E+05	Result below LLD
1001-562-1MA2 100512	5/5/10-5/12/10	9985	<9.30E-16	3.16E-16	9.30E-16	1.01E+05	Result below LLD
1001-562-1MA2 100519	5/12/10-5/19/10	10125	<9.76E-16	3.36E-16	9.76E-16	1.04E+05	Result below LLD
1001-562-1MA2 100526	5/19/10-5/26/10	10029	<8.59E-16	3.20E-16	8.59E-16	9.77E+04	Result below LLD
1001-562-1MA2 100602	5/26/10-6/2/10	10195	<9.40E-16	3.30E-16	9.40E-16	1.06E+05	Result below LLD
1001-562-1MA2 100609	6/2/10-6/9/10	9999	<4.01E-16	2.13E-16	4.01E-16	1.04E+05	Result below LLD
1001-562-1MA2 100616	6/9/10-6/16/10	10097	<1.09E-15	3.78E-16	1.09E-15	1.03E+05	Result below LLD
1001-562-1MA2 100623	6/16/10-6/23/10	10407	<1.67E-15	5.87E-16	1.67E-15	1.09E+05	Result below LLD
1001-562-1MA2 100630	6/23/10-6/30/10	9904	<1.17E-15	3.88E-16	1.17E-15	1.04E+05	Result below LLD

See Appendix B for Laboratory Data Sheets

•

Table 5: SBM-1001 GEVS Gaseous Effluent, Gross Beta1MA1:

Field Sample ID	Sample Period	Total Time (min)	Gross Beta Results (uCi/ml)	Gross Beta Error Estimate (uCi/ml)	Gross Beta MDA (uCi/ml)	Total Vent System Flow (m3)	Quantity Released (Ci)
1001-562-1MA1 100505	4/28/10-5/5/10	10156	< 2.08E-15	9.56E-16	2.08E-15	1.03E+05	Result below LLD
1001-562-1MA1 100512	5/5/10-5/12/10	9994	< 2.22E-15	1.09E-15	2.22E-15	1.01E+05	Result below LLD
1001-562-1MA1 100519	5/12/10-5/19/10	10115	< 2.32E-15	1.04E-15	2.32E-15	1.04E+05	Result below LLD
1001-562-1MA1 100526	5/19/10-5/26/10	10038	< 2.14E-15	9.81E-16	2.14E-15	9.77E+04	Result below LLD
1001-562-1MA1 100602	5/26/10-6/2/10	10185	< 2.13E-15	1.07E-15	2.13E-15	1.06E+05	Result below LLD
1001-562-1MA1 100609	6/2/10-6/9/10	10008	< 2.07E-15	9.67E-16	2.07E-15	1.04E+05	Result below LLD
1001-562-1MA1 100616	6/9/10-6/16/10	10088	< 1.94E-15	8.62E-16	1.94E-15	1.03E+05	Result below LLD
1001-562-1MA1 100623	6/16/10-6/23/10	10420	* 2.60E-15	9.75E-16	1.80E-15	1.09E+05	2.83E-10
1001-562-1MA1 100630	6/23/10-6/30/10	9896	< 2.22E-15	1.01E-15	2.22E-15	1.04E+05	Result below LLD

<u>1MA2:</u>

Field Sample ID	Sample Period	Total Time (min)	Gross Beta Results (uCi/ml)	Gross Beta Error Estimate (uCi/ml)	Gross Beta MDA (uCi/ml)	Total Vent System Flow (m3)	Quantity Released (Ci)
1001-562-1MA2 100505	4/28/10-5/5/10	10157	< 2.43E-15	1.09E-15	2.43E-15	1.03E+05	Result below LLD
1001-562-1MA2 100512	5/5/10-5/12/10	9985	< 2.11E-15	1.01E-15	2.11E-15	1.01E+05	Result below LLD
1001-562-1MA2 100519	5/12/10-5/19/10	10125	< 1.88E-15	8.91E-16	1.88E-15	1.04E+05	Result below LLD
1001-562-1MA2 100526	5/19/10-5/26/10	10029	< 1.80E-15	8.10E-16	1.80E-15	9.77E+04	Result below LLD
1001-562-1MA2 100602	5/26/10-6/2/10	10195	* 4.44E-14	2.15E-15	1.84E-15	1.06E+05	4.70E-09
1001-562-1MA2 100609	6/2/10-6/9/10	9999	< 1.90E-15	9.23E-16	1.90E-15	1.04E+05	Result below LLD
1001-562-1MA2 100616	6/9/10-6/16/10	10097	< 1.81E-15	8.24E-16	1.81E-15	1.03E+05	Result below LLD
1001-562-1MA2 100623	6/16/10-6/23/10	10407	< 2.29E-15	1.00E-15	2.29E-15	1.09E+05	Result below LLD
1001-562-1MA2 100630	6/23/10-6/30/10	9904	< 1.67E-15	7.82E-16	1.67E-15	1.04E+05	Result below LLD

*Results below License Basis Environmental Report LLD value of 1.0E-14 μCi/mL. See Appendix B for Laboratory Data Sheets

•

<u>Table 6: SBM-1001 GEVS Gaseous Effluent, Radionuclides (Quarterly Filter Composite</u> <u>Results)</u>

<u>1MA1:</u>

Radionuclide / Sample ID	Sample Period	Total Time (min)	Results	Error Estimate	MDA	Total Flow	Quanity Released	% of Table 2 of Appx B to 10 CFR Part 20
			(uCi/ml)	(uCi/ml)	(uCi/ml)	(m ³)	(Ci)	Values
U-234 / 1001-562- 1MA1 COMP 2 nd QTR	3/31/2010- 6/30/2010	1.310E+05	< 2.30E-16	1.44E-16	2.30E-16	930720	Result below LLD	Result below LLD
U-235 / 1001-562- 1MA1 COMP 2 nd QTR	3/31/2010- 6/30/2010	1.310E+05	< 1.65E-16	1.28E-17	1.65E-16	930720	Result below LLD	Result below LLD
U-238 / 1001-562- 1MA1 COMP 2 nd QTR	3/31/2010- 6/30/2010	1.310E+05	< 1.33E-16	1.28E-17	1.33E-16	930720	Result below LLD	Result below LLD

<u>1MA2:</u>

Radionuclide / Sample ID	Sample Period	Total Time (min)	Results	Error Estimate	MDA	Total Flow	Quanity Released	% of Table 2 of Appx B to 10 CFR Part 20
			(uCi/ml)	(uCi/ml)	(uCi/ml)	(m ³)	(Ci)	Values
U-234 / 1001-562- 1MA2 COMP 2 nd QTR	3/31/2010- 6/30/2010	1.310E+05	< 2.77E-16	2.07E-17	2.77E-16	930720	Result below LLD	Result below LLD
U-235 / 1001-562- 1MA2 COMP 2 nd QTR	3/31/2010- 6/30/2010	1.310E+05	< 1.98E-16	1.55E-17	1.98E-16	930720	Result below LLD	Result below LLD
U-238 / 1001-562- 1MA2 COMP 2 nd QTR	3/31/2010- 6/30/2010	1.310E+05	* 1.81E-16	2.12E-16	1.60E-16	930720	1.68E-10	0.006%

Isotopic uranium results for U-235 and U-236 were combined and designated U-235 in Table 6.

*Results below License Basis Environmental Report LLD value of 1.0E-14 µCi/mL.

See Appendix B for Laboratory Data Sheets

Sampling Data Gaps

There were no sampling data gaps for the reporting period beginning on January 1, 2010 and ending on June 30, 2010 for either the pumped extract GEVS in the SBM-1001 or the EFS in the CTPMF. The vent systems were not active during power outages and down times, therefore no effluent was released during those instances. For a list of down times and power outages, see Sampling program deviations and program adjustments.

Sampling program deviations and program adjustments

CTPMF EFS Deviations:

Date Range:	Reason for 7 day deviation:
3/6/10 to 3/8/10	Monitor was secured from 0850 on 3/6/10 until 1100 on 3/8/10 due to building outage. Filter was changed out
	one day over due, due to insufficient volume on Particulate and Iodine Sampler (PIS) filter.
3/31/2010	PIS changed out one day early to return sampling time to Wednesdays. Minimum volume on PIS filter was
	reached.
3/31/10 to 4/8/10	PIS changed out one day late due to insufficient volume on PIS filter. Monitor had flow alarm from 1305 on
	3/31/10 until 1104 on 4/1/10 when it was cleared.
4/14/2010	PIS filter pulled a day early to return sampling day to Wednesdays, minimum volume on PIS filter was reached.
6/20/10 to 6/21/10	Power outage for the entire CAB due to bad weather. EFS power was also off. No release during this outage.

SBM-1001 Pumped Extract GEVS 1MA1 System Deviations:

Date Range:	Reason for 7 day deviation:
6/20/2010	Site had momentary loss of power, monitor restored. Filter was on for seven days.

SBM-1001 Pumped Extract GEVS 1MA2 System Deviations:

Date Range:	Reason for 7 day deviation:
6/20/2010	Site had momentary loss of power, monitor restored. Filter was on for seven days.
6/24/2010	Planned power outage took the B transformer off-line at 1030. The redundant alpha monitor was in service.

Significant Trends

CTPMF EFS Significant Trends:

This *Semiannual Radioactive Effluent Release Report* is the third submitted by URENCO USA. This report and the previous report display alpha, beta, and isotopic uranium concentrations in CTPMF effluent exhaust. Whenever duplicate data was available, the greatest value was used for the result or LLD.

Results for the sample collected on 5/19/10 from the CTPMF showed a value of 1.90E-14 μ Ci/mL for gross beta activity. Gross alpha activity for this same filter was below analytical LLD value of 1.38E-15 μ Ci/mL.

Isotopic uranium results for the first quarter of 2010 were between 1.73-1.98% of the Table 2 to Appendix B to 10 CFR 20. These data report several detections, as compared to previous results that were below minimum detectable activity.

All other gaseous effluent from the CTPMF EFS indicate gross alpha and gross beta radioactivity results and LLDs to be less than license basis LLD of 1.0E-14 μ Ci/mL. Future *Semiannual Radioactive Effluent Release Reports* will include a detailed analysis of any observed trends in radioactive uranic effluent activity if monitoring results exceed As Low As Reasonably Achievable (ALARA) standards.

SBM-1001 Pumped Extract GEVS Significant Trends:

This Semiannual Radioactive Effluent Release Report is the third submitted by URENCO USA, and the first to include alpha, beta, and isotopic uranium concentration results from the SBM-1001 Pumped Extract GEVS effluent exhaust. Whenever duplicate data was available, the greatest value was used for the result or LLD.

Sample collected on 6/23/10 from 1MA1 in the SBM-100 showed a gross beta result of 2.60E-15 μ Ci/mL. This result was the only filter taken from 1MA1 in the SBM-1001 that exceeded its LLD. The second redundant continuous air sampler on the Pump Extract GEVS system reported a value below its LLD of 2.29E-15 μ Ci/mL for the same sample period. Device 1MA2 in the SBM-1001 collected a sample from 5/26/10 through 6/2/10 that yielded a gross beta result of 4.44E-14 μ Ci/mL. This result was also in excess of the analytical LLD of 1.84E-15 μ Ci/mL. When analyzed, the redundant filter on device 1MA1 during the same monitoring period reported a value below the LLD of 2.13E-15 μ Ci/mL.

All other gaseous effluent results from the Pumped Extract GEVS demonstrate isotopic uranium, gross alpha, and gross beta radioactivity to be less than the license basis LLD of 1.0E-14 μ Ci/mL. Future *Semiannual Radioactive Effluent Release Reports* will include a detailed analysis of any observed trends in radioactive uranic effluent activity if monitoring results exceed ALARA standards.

Liquid Release Locations

Domestic waste (sewage) generated at the CAB and SBM-1001 is discharged off site, along with other domestic waste generated at the URENCO USA site, to the Eunice Waste Water Treatment Plant. Domestic waste is not expected to contain process water, as facility design does not discharge process liquid effluent to the domestic wastewater system. Domestic waste water is sampled quarterly at lift station 1, which is a central collection area for all domestic waste generated at the URENCO USA facility prior to off-site discharge (Appendix A, Plot Plan).

Liquid Release Data

Reporting period: January 1, 2010 - June 30, 2010 **Release Location:** Lift Station 1 **Total Flow:** 13,000 gpd

Table 3 of Appendix B to 10 CFR Part 20, Releases to Sewers, Monthly Average Concentration (µCi/ml):

$$^{234}U = 3E-6$$

 $^{235}U = 3E-6$
 $^{238}U = 3E-6$

•

Radionuclide	Sample Quarter 2009 ¹	Total Time (days)	Result (uCi/ml)	Error Estimate (uCi/ml)	MDA (uCi/ml)	Lift Station 1 Total Flow (gal/day)	Quantity Released (Ci)	% of Table 3 of Appx B to 10 CFR Part 20 Values		
U ²³⁴	1 st	90	2.08E-09	8.17E-10	3.42E-10	13,000	9.22E-06	0.069%		
U ²³⁴	2^{nd}	91	1.75E-09	5.01E-10	6.94E-11	13,000	7.85E-06	0.058%		
U ²³⁵	1 st	90	< 3.59E-10	1.60E-10	3.59E-10	13,000	Below LLD	Below LLD		
U ²³⁵	2^{nd}	91	< 8.56E-11	6.47E-11	8.56E-11	13,000	Below LLD	Below LLD		
U ²³⁸	1 st	90	* 9.51E-10	5.19E-10	1.68E-10	13,000	4.21E-06	0.032%		
U ²³⁸	2 nd	91	* 8.08E-10	3.14E-10	6.91E-11	13,000	3.62E-06	0.027%		

Table 7: Domestic Wastewater Effluent, Radionuclides

¹ Sample period for 1st Quarter 2010 was 1/01/2010 - 3/31/2010 and for 2nd Quarter 2010 was 4/01/2010 - 6/30/2010

*Results below License Basis Environmental Report LLD value of 3.0E-09 µCi/mL.

See Appendix B for Laboratory Data Sheets

Sampling program deviations and program adjustments

Sample collection and analysis was performed on a quarterly basis for the first half of 2010, in compliance with the URENCO USA Environmental Report. Domestic wastewater samples were collected in compliance with GL Environmental, Inc. SOP F007: <u>Domestic Wastewater Sampling</u>

Significant Trends

This *Semiannual Radioactive Effluent Release Report* is the third submitted by URENCO USA. Domestic wastewater effluent analytical results and the quantity of activity released are consistent with previous reports. Whenever duplicate data was available, the greatest value was used for the result or LLD.

Dose to Members of the Public

Isotopic uranium activity in gaseous effluent was less than 10% of values listed in Table 2 of Appendix B to 10 CFR Part 20, Effluent Concentrations, Liquid, Class D, for ²³⁴U, ²³⁵U, ²³⁸U. This demonstrates compliance with 10 CFR 20.1301 dose limits to individual members of the public from gaseous effluents.

Domestic waste effluent activity ranged from 0.027% to 0.069% of the value listed in Table 3 of Appendix B to 10 CFR Part 20, Releases to Sewers, Monthly Average Concentration. This demonstrates compliance with 10 CFR 20.1301 dose limits to individual members of the public from releases to sewers.

Supplemental Information

Description of Sampling Equipment

Stack particulate sampling is achieved via a standard holder with 47mm Millipore (FSLW) fiberglass filters (part # 52123 or equivalent). The particulate sampling systems are fed with air from within the CTPMF and SBM-1001 by an isokinetic vent system and volumetrically measured using an air volume totalizer. Samples are taken using gloves and tweezers and kept in sterile 50mm Pall Petri Dishes.

Wastewater samples are collected from the main sewer line at an access location where the effluent has sufficient velocity to keep effluent solids in suspension. Grab samples of domestic wastewater were collected by submerging a clean container in the wastewater stream until full, and transferring contents into clean laboratory sample containers.

Description of sampling procedure

See Appendix C

Analytical procedure

Gross alpha and Gross Beta - LANL MLR-100 Modified

Isotopic Uranium - EML U-02 Modified

٠

Calculation methods

A. Activity

Activity Calculation

Activity (pCi/unit) =
$$\frac{C_{s} - C_{b}}{Eff * Y * V * D * A * T_{s} * 2.22}$$

Where:

Cs	=	total counts in peak region
$C_{\mathfrak{b}}$	=	total background in peak region
Eff	#	counting Efficiency
Y	#	yield
v	=	sample volume/weight
D	=	radioactive ingrowth or decay factors, as necessary
Α	=	abundance
Ts	=	sample count time (in minutes)
2.22	=	dpm to picoCurie conversion factor

B. Effluent Released

٠

Effluent Released = Total Volume Effluent * Analyte activity

C. % of Table 2 or 3 of Appendix B to 10 CFR Part 20 Values

% MPC = (Analyte activity / MPC) x 100

Semi-Annual Radioactive Effluent Release Report

Error estimates

$$CU = \frac{1.96\sqrt{\frac{cpm_s}{T_s} + \frac{cpm_b}{T_b}}}{Eff * V * D * A * 2.22}$$

Where:

•

CU	=	Counting uncertainty (sometimes referred to as "error")
1.96	=	Conversion to two-sigma (95.5%) uncertainty
cpm _s	=	counts per minute sample
cpm_b	=	counts per minute background
T _s	=	count time, minutes, sample
Т _ь	=	count time, minutes, background
Eff	=	Counting Efficiency
v	=	sample volume/weight
D	=	radioactive ingrowth or decay factors, as necessary
А	=	abundance
2.22	= .	dpm to picoCurie conversion factor

Minimum Detectable Activity (MDA) Calculation

$$MDA = \frac{3 + 3.29}{KT_s} \sqrt{\frac{R_b T_s (1 + \frac{T_s}{T_b})}{KT_s}}$$

Where:

3.29	=	statistical factor for Type I and Type II error
		probabilities selected to be 0.05 each
3	=	a constant applied when the blank count

- approaches zero
- $R_b = background count rate in cpm$
- K = Efficiency, in-growth/decay, aliquot, abundance, dpm to pCi conversion factor
- $T_s = sample count time$
- $T_b = background count time$

Quality of Results

Probe sampling conditions are maintained so as to simulate conditions within the duct. The air volume totalizer is calibrated yearly per specification. The axis of the sampling probe head is parallel to the air flow lines in the ductwork, to ensure laminar flow.

The air sample filters consist of 47mm Millipore paper, rated for high recoverability. Pall 50mm Petri Dishes used for filter sample storage and shipment are sterile and free of trace particulates or other potential sources of contamination. Sample collection utilizes gloves and tweezers to avoid radiological contamination of sampling media during the sampling event. Additionally, media storage records are compiled for collected samples including sample location, total flow, date, time, sampler, and any irregularities associated with the sampling event. Collected samples are shipped under standard chain of custody procedures.

The analytical laboratory (Eberline Services) holds NELAP, DOECAP, USACE, and DOD certifications. URENCO USA holds a quality purchase agreement with the lab, and has audited Eberline Services per the URENCO USA Quality Assurance Program Description (QAPD). GL Environmental is currently an approved supplier for LES, and the GL Environmental Quality Assurance Program has been determined satisfactory per URENCO USA QAPD.

Calibration Procedures

See Appendix D

Unusual Releases

No unusual releases are reported from the National Enrichment Facility for the period beginning January 1, 2010 through June 30, 2010.

٠

٠

•

Semi-Annual Radioactive Effluent Release Report

.

APPENDIX A - Plot Plan

٠

Security-Related Information Figure Withtheld Under 10 CFR 2.390

> FACILITY LAYOUT (SITE PLAN) WITH SITE BOURDARY AND CONTROLLED ACCESS AREA BOURDARY

Figure 1.1-4 Facility Layout (Site Plan) with Site Boundary and Controlled Access Area Boundary

APPENDIX B - Lab Data Sheets

.

•

٠

.

				Ŕ	Report To:	,			1	Vork Order Deta	ails:		· · · · ·
Ebei	rline	e Analytical	Debra E	dwards				SDG:	10-0	1106			
		-	LES					Purchase Order:	LES-G	SA-3080			
Fina	l Rep	ort of Analysis	275 Hwy	176				Analysis Category:	ENVIR	ONMENT	AL		
		-	Eunice,	NM 8823	1	A		Sample Matrix:	AF				
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	cu	CSU	MDA	Report Units
10-01106-01	LCS	KNOWN	01/22/10 00:00	1/22/2010	2/12/2010	10-01106	Gross Alpha	LANL MLR-100 Modified	3.13E-04	1.35E-05			uCi/ml
10-01106-01	LCS	SPIKE	01/22/10 00:00	1/22/2010	2/12/2010	10-01106	Gross Alpha	LANL MLR-100 Modified	3.42E-04	8.33E-06	8.48E-06	3.09E-07	uCi/ml
10-01106-02	MBL	BLANK	01/22/10 00:00	1/22/2010	2/12/2010	10-01106	Gross Alpha	LANL MLR-100 Modified	-5.10E-17	3.31E-16	3.31E-16	8.65E-16	uCi/ml
10-01106-03	DUP	1300-562-1MA1 091209	12/09/09 14:13	1/22/2010	2/12/2010	10-01106	Gross Alpha	LANL MLR-100 Modified	-4.71E-17	1.60E-16	1.60E-16	5.21E-16	uCi/ml
10-01106-04	DO	1300-562-1MA1 091209	12/09/09 14:13	1/22/2010	2/12/2010	10-01106	Gross Alpha	LANL MLR-100 Modified	-4.59E-17	3.48E-16	3.48E-16	8.77E-16	uCi/ml
10-01106-05	TRG	1300-562-1MA1 091216	12/16/09 10:22	1/22/2010	2/12/2010	10-01106	Gross Alpha	LANL MLR-100 Modified	-4.46E-16	3.09E-16	3.09E-16	1.07E-15	uCi/ml
10-01106-06	TRG	1300-562-1MA1 091223	12/23/09 08:40	1/22/2010	2/12/2010	10-01106	Gross Alpha	LANL MLR-100 Modified	5.41E-17	3.82E-16	3.82E-16	9.18E-16	uCi/ml
10-01106-07	TRG	1300-562-1MA1 091230	12/30/09 08:46	1/22/2010	2/12/2010	10-01106	Gross Alpha	LANL MLR-100 Modified	-1.95E-16	3.30E-16	3.30E-16	9.30E-16	uCi/ml
10-01106-08	TRG	1300-562-1MA1 100106	01/06/10 13:27	1/22/2010	2/12/2010	10-01106	Gross Alpha	LANL MLR-100 Modified	-2.77E-16	2.86E-16	2.86E-16	8.83E-16	uCi/ml
10-01106-01	LCS	KNOWN	01/22/10 00:00	1/22/2010	2/12/2010	10-01106	Gross Beta	LANL MLR-100 Modified	2.38E-04	7.13E-06			uCi/ml
10-01106-01	LCS	SPIKE	01/22/10 00:00	1/22/2010	2/12/2010	10-01106	Gross Beta	LANL MLR-100 Modified	2.73E-04	6.28E-06	6.31E-06	8.86E-07	uCi/ml
10-01106-02	MBL	BLANK	01/22/10 00:00	1/22/2010	2/12/2010	10-01106	Gross Beta	LANL MLR-100 Modified	-1.55E-15	1.09E-15	1.09E-15	2.50E-15	uCi/ml
10-01106-03	DUP	1300-562-1MA1 091209	12/09/09 14:13	1/22/2010	2/12/2010	10-01106	Gross Beta	LANL MLR-100 Modified	-8.17E-16	8.90E-16	8.90E-16	2.01E-15	uCi/ml
10-01106-04	DO	1300-562-1MA1 091209	12/09/09 14:13	1/22/2010	2/12/2010	10-01106	Gross Beta	LANL MLR-100 Modified	2.15E-16	9.35E-16	9.35E-16	1.98E-15	uCi/ml
10-01106-05	TRG	1300-562-1MA1 091216	12/16/09 10:22	1/22/2010	2/12/2010	10-01106	Gross Beta	LANL MLR-100 Modified	-3.33E-17	1.15E-15	1.15E-15	2.47E-15	uCi/ml
10-01106-06	TRG	1300-562-1MA1 091223	12/23/09 08:40	1/22/2010	2/12/2010	10-01106	Gross Beta	LANL MLR-100 Modified	-3.18E-17	1.07E-15	1.07E-15	2.30E-15	uCi/ml
10-01106-07	TRG	1300-562-1MA1 091230	12/30/09 08:46	1/22/2010	2/12/2010	10-01106	Gross Beta	LANL MLR-100 Modified	0.00E+00	9.79E-16	9.79E-16	2.10E-15	uCi/ml
10-01106-08	TRG	1300-562-1MA1 100106	01/06/10 13:27	1/22/2010	2/12/2010	10-01106	Gross Beta	LANL MLR-100 Modified	1.67E-16	9.03E-16	9.03E-16	1.92E-15	uCi/ml

				R	eport To:					Vork Order Deta	ails:			
Eha	Lina	Analytical	Debra E	dwards				SDG:	10-04	4125				
		e Analytical	LES					Purchase Order:	LES-GSA-3080					
Fina	l Rep	ort of Analysis	275 Hwy	176				Analysis Category:	ENVIRONMENTAL					
	-	,		NM 8823	1			Sample Matrix:						
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	cu	csu	MDA	Report Units	
10-04125-01	LCS	KNOWN	04/26/10 00:00	4/22/2010	5/3/2010	10-04125	Gross Alpha	LANL MLR-100 Modified	3.14E-04	1.35E-05			uCi/ml	
10-04125-01	LCS	SPIKE	04/26/10 00:00	4/22/2010	5/3/2010	10-04125	Gross Alpha	LANL MLR-100 Modified	2.81E-04	7.42E-06	7.54E-06	4.44E-07	uCi/ml	
10-04125-02	MBL	BLANK	04/26/10 00:00	4/22/2010	5/3/2010	10-04125	Gross Alpha	LANL MLR-100 Modified	-4.41E-16	4.61E-16	4.61E-16	1.27E-15	uCi/mi	
10-04125-03	DUP	1300-562-1MA1 100113	01/13/10 15:55	3/18/2010	5/3/2010	10-04125	Gross Alpha	LANL MLR-100 Modified	-8.97E-17	2.15E-16	2.15E-16	6.46E-16	uCi/ml	
10-04125-04	DO	1300-562-1MA1 100113	01/13/10 15:55	3/18/2010	5/4/2010	10-04125	Gross Alpha	LANL MLR-100 Modified	1.35E-16	3.41E-16	3.41E-16	7.62E-16	uCi/ml	
10-04125-05	TRG	1300-562-1MA1 100120	01/20/10 09:27	3/18/2010	5/3/2010	10-04125	Gross Alpha	LANL MLR-100 Modified	0.00E+00	2.74E-16	2.74E-16	7.11E-16	uCi/ml	
10-04125-06	TRG	1300-562-1MA1 100127	01/27/10 10:40	3/18/2010	5/3/2010	10-04125	Gross Alpha	LANL MLR-100 Modified	-1.40E-16	2.04E-16	2.04E-16	6.71E-16	uCi/ml	
10-04125-07	TRG	1300-562-1MA1 100203	02/03/10 10:19	3/18/2010	5/3/2010	10-04125	Gross Alpha	LANL MLR-100 Modified	9.70E-17	3.56E-16	3.56E-16	8.22E-16	uCi/ml	
10-04125-08	TRG	1300-562-1MA1 100210	02/10/10 10:35	3/18/2010	5/3/2010	10-04125	Gross Alpha	LANL MLR-100 Modified	-4.82E-17	3.14E-16	3.14E-16	8.18E-16	uCi/ml	
10-04125-09	TRG	1300-562-1MA1 100217	02/17/10 11:10	3/18/2010	5/3/2010	10-04125	Gross Alpha	LANL MLR-100 Modified	-1.95E-16	2.70E-16	2.70E-16	8.27E-16	uCi/ml	
10-04125-10	TRG	1300-562-1MA1 100224	02/24/10 09:45	3/18/2010	5/3/2010	10-04125	Gross Alpha	LANL MLR-100 Modified	-3.74E-16	3.67E-16	3.67E-16	1.06E-15	uCi/ml	
10-04125-11	TRG	1300-562-1MA1 100303	03/03/10 10:55	4/22/2010	5/3/2010	10-04125	Gross Alpha	LANL MLR-100 Modified	-1.40E-16	2.05E-16	2.05E-16	6.74E-16	uCi/ml	
10-04125-12	TRG	1300-562-1MA1 100311	03/11/10 09:38	4/22/2010	5/3/2010	10-04125	Gross Alpha	LANL MLR-100 Modified	-2.35E-16	3.25E-16	3.25E-16	9.95E-16	uCi/ml	
10-04125-13	TRG	1300-562-1MA1 100318	03/18/10 11:10	4/22/2010	5/3/2010	10-04125	Gross Alpha	LANL MLR-100 Modified	-1.49E-16	2.92E-16	2.92E-16	8.42E-16	uCi/ml	
10-04125-14	TRG	1300-562-1MA1 100325	03/25/10 10:10	4/22/2010	5/3/2010	10-04125	Gross Alpha	LANL MLR-100 Modified	-2.08E-16	2.88E-16	2.88E-16	8.81E-16	uCi/ml	
10-04125-15	TRG	1300-562-1MA1 100331	03/31/10 11:12	4/22/2010	5/3/2010	10-04125	Gross Alpha	LANL MLR-100 Modified	-6.02E-17	3.12E-16	3.12E-16	8.67E-16	uCi/ml	
10-04125-01	LCS	KNOWN	04/26/10 00:00	4/22/2010	5/3/2010	10-04125	Gross Beta	LANL MLR-100 Modified	2.37E-04	7.12E-06			uCi/ml	
10-04125-01	LCS	SPIKE	04/26/10 00:00	4/22/2010	5/3/2010	10-04125	Gross Beta	LANL MLR-100 Modified	2.56E-04	5.96E-06	5.99E-06	8.94E-07	uCi/ml	
10-04125-02	MBL	BLANK	04/26/10 00:00	4/22/2010	5/3/2010	10-04125	Gross Beta	LANL MLR-100 Modified	-4.84E-16	8.84E-16	8.84E-16	1.96E-15	uCi/ml	
10-04125-03	DUP	1300-562-1MA1 100113	01/13/10 15:55	3/18/2010	5/3/2010	10-04125	Gross Beta	LANL MLR-100 Modified	-8.27E-16	9.43E-16	9.43E-16	2.11E-15	uCi/ml	
10-04125-04	DO	1300-562-1MA1 100113	01/13/10 15:55	3/18/2010	5/4/2010	10-04125	Gross Beta	LANL MLR-100 Modified	1.21E-15	8.01E-16	8.01E-16	1.56E-15	uCi/ml	
10-04125-05	TRG	1300-562-1MA1 100120	01/20/10 09:27	3/18/2010	5/3/2010	10-04125	Gross Beta	LANL MLR-100 Modified	3.01E-16	8.39E-16	8.39E-16	1.77E-15	uCi/ml	
10-04125-06	TRG	1300-562-1MA1 100127	01/27/10 10:40	3/18/2010	5/3/2010	10-04125	Gross Beta	LANL MLR-100 Modified	1.40E-16	8.67E-16	8.67E-16	1.85E-15	uCi/ml	
10-04125-07	TRG	1300-562-1MA1 100203	02/03/10 10:19	3/18/2010	5/3/2010	10-04125	Gross Beta	LANL MLR-100 Modified	-7.73E-16	9.13E-16	9.13E-16	2.06E-15	uCi/ml	
10-04125-08	TRG	1300-562-1MA1 100210	02/10/10 10:35	3/18/2010	5/3/2010	10-04125	Gross Beta	LANL MLR-100 Modified	-4.18E-16	8.68E-16	8.68E-16	1.92E-15	uCi/ml	
10-04125-09	TRG	1300-562-1MA1 100217	02/17/10 11:10	3/18/2010	5/3/2010	10-04125	Gross Beta	LANL MLR-100 Modified	-2.51E-16	9.70E-16	9.70E-16	2.11E-15	uCi/ml	
10-04125-10	TRG	1300-562-1MA1 100224	02/24/10 09:45	3/18/2010	5/3/2010	10-04125	Gross Beta	LANL MLR-100 Modified	-2.75E-17	9.19E-16	9.19E-16	1.98E-15	uCi/ml	
10-04125-11	TRG	1300-562-1MA1 100303	03/03/10 10:55	4/22/2010	5/3/2010	10-04125	Gross Beta	LANL MLR-100 Modified	3.07E-16	8.02E-16	8.02E-16	1.69E-15	uCi/ml	
10-04125-12	TRG	1300-562-1MA1 100311	03/11/10 09:38	4/22/2010	5/3/2010	10-04125	Gross Beta	LANL MLR-100 Modified	9.61E-16	1.15E-15	1.15E-15	2.35E-15	uCi/ml	
10-04125-13	TRG	1300-562-1MA1 100318	03/18/10 11:10	4/22/2010	5/3/2010	10-04125	Gross Beta	LANL MLR-100 Modified	-3.01E-17	1.19E-15	1.19E-15	2.54E-15	uCi/ml	
10-04125-14	TRG	1300-562-1MA1 100325	03/25/10 10:10	4/22/2010	5/3/2010	10-04125	Gross Beta	LANL MLR-100 Modified	1.57E-15	9.98E-16	9.98E-16	1.95E-15	uCi/ml	
10-04125-15	TRG	1300-562-1MA1 100331	03/31/10 11:12	4/22/2010	5/3/2010	10-04125	Gross Beta	LANL MLR-100 Modified	5.49E-16	1.17E-15	1.17E-15	2.45E-15	uCi/ml	

•

•

		· · · · · · · · · · · · · · · · · · ·	·	F	Report To:					Work Order Det	ails:	. N	8 8 8 9 9 9
Ebe	rline	e Analytical	Debra E	dwards				SDG:	10-0	6084			
			LES					Purchase Order:	LES-G	SA-3080			
Fina	Final Report of Analysis			/ 176				Analysis Category:	ENVIF	RONMENT	AL		
	-	-	Eunice,	NM 8823	1			Sample Matrix:	AF			···· , ,	
Lab ID	Sample Type	Client ID	Sample Receipt Analysis Batch Analyte Date Date ID Analyte		Method	Result	cu	csu	MDA	Report Units			
10-06084-01	LCS	KNOWN	06/18/10 00:00	6/18/2010	6/24/2010	10-06084	Uranium-234	EML U-02 Modified	8.28E-06	2.98E-07			uCi/ml
10-06084-01	LCS	SPIKE	06/18/10 00:00	6/18/2010	6/24/2010	10-06084	Uranium-234	EML U-02 Modified	7.87E-06	1.36E-06	1.36E-06	1.09E-07	uCi/ml
10-06084-02	MBL	BLANK	06/18/10 00:00	6/18/2010	6/24/2010	10-06084	Uranium-234	EML U-02 Modified	2.13E-14	4.07E-14	4.07E-14	8.78E-14	uCi/ml
10-06084-03	DUP	1300-562-1MA1 COMP	03/31/10 00:00	6/18/2010	6/24/2010	10-06084	Uranium-234	EML U-02 Modified	5.18E-14	4.32E-14	4.32E-14	4.77E-14	uCi/ml
10-06084-04	DO	1300-562-1MA1 COMP	03/31/10 00:00	6/18/2010	6/24/2010	10-06084	Uranium-234	EML U-02 Modified	2.16E-14	2.86E-14	2.86E-14	4.35E-14	uCi/ml
10-06084-01	LCS	SPIKE	06/18/10 00:00	6/18/2010	6/24/2010	10-06084	Uranium-235	EML U-02 Modified	4.16E-07	1.87E-07	1.87E-07	9.85E-08	uCi/ml
10-06084-02	MBL	BLANK	06/18/10 00:00	6/18/2010	6/24/2010	10-06084	Uranium-235	EML U-02 Modified	2.49E-14	3.81E-14	3.81E-14	6.97E-14	uCi/ml
10-06084-03	DUP	1300-562-1MA1 COMP	03/31/10 00:00	6/18/2010	6/24/2010	10-06084	Uranium-235	EML U-02 Modified	-1.68E-15	3.36E-15	3.36E-15	4.50E-14	uCi/ml
10-06084-04	DO	1300-562-1MA1 COMP	03/31/10 00:00	6/18/2010	6/24/2010	10-06084	Uranium-235	EML U-02 Modified	2.00E-14	2.85E-14	2.85E-14	2.66E-14	uCi/ml
10-06084-01	LCS	KNOWN	06/18/10 00:00	6/18/2010	6/24/2010	10-06084	Uranium-238	EML U-02 Modified	8.07E-06	2.91E-07			uCi/ml
10-06084-01	LCS	SPIKE	06/18/10 00:00	6/18/2010	6/24/2010	10-06084	Uranium-238	EML U-02 Modified	8.25E-06	1.42E-06	1.42E-06	9.61E-08	uCi/ml
10-06084-02	MBL	BLANK	06/18/10 00:00	6/18/2010	6/24/2010	10-06084	Uranium-238	EML U-02 Modified	1.15E-14	2.53E-14	2.53E-14	5.63E-14	uCi/ml
10-06084-03	DUP	1300-562-1MA1 COMP	03/31/10 00:00	6/18/2010	6/24/2010	10-06084	Uranium-238	EML U-02 Modified	5.95E-14	4.60E-14	4.60E-14	4.75E-14	uCi/ml
10-06084-04	DO	1300-562-1MA1 COMP	03/31/10 00:00	6/18/2010	6/24/2010	10-06084	Uranium-238	EML U-02 Modified	8.09E-15	1.62E-14	1.62E-14	2.14E-14	uCi/ml

.

				R	eport To:			Work Order Details:							
Fbe	rline	e Analytical	Debra E	dwards				SDG:							
		•	LES					Purchase Order: LES-GSA-3080							
Fina	Final Report of Analysis		275 Hwy	/ 176				Analysis Category:	ENVIR		· · ·				
				NM 8823	1			Sample Matrix:	AF						
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	cu	CSU	MDA	Report Units		
10-05078-01	LCS	KNOWN	05/18/10 00:00	5/17/2010	5/24/2010	10-05078	Gross Alpha	LANL MLR-100 Modified	3.15E-04	1.35E-05			uCi/ml		
10-05078-01	LCS	SPIKE	05/18/10 00:00	5/17/2010	5/24/2010	10-05078	Gross Alpha	LANL MLR-100 Modified	2.98E-04	7.69E-06	7.81E-06	3.02E-07	uCi/ml		
10-05078-02	MBL	BLANK	05/18/10 00:00	5/17/2010	5/24/2010	10-05078	Gross Alpha	LANL MLR-100 Modified	1.02E-16	1.42E-16	1.42E-16	1.53E-16	uCi/ml		
10-05078-03	DUP	1300-562-1MA1 100408	04/08/10 09:52	5/17/2010	5/24/2010	10-05078	Gross Alpha	LANL MLR-100 Modified	-4.85E-17	3.15E-16	3.15E-16	8.23E-16	uCi/ml		
10-05078-04	DO	1300-562-1MA1 100408	04/08/10 09:52	5/17/2010	5/24/2010	10-05078	Gross Alpha	LANL MLR-100 Modified	2.42E-16	2.84E-16	2.84E-16	5.34E-16	uCi/ml		
10-05078-05	TRG	1300-562-1MA1 100414	04/14/10 10:35	5/17/2010	5/24/2010	10-05078	Gross Alpha	LANL MLR-100 Modified	-3.55E-16	3.67E-16	3.67E-16	1.13E-15	uCi/ml		
10-05078-06	TRG	1300-562-1MA1 100421	04/21/10 10:18	5/17/2010	5/24/2010	10-05078	Gross Alpha	LANL MLR-100 Modified	-2.49E-16	3.24E-16	3.24E-16	9.52E-16	uCi/ml		
10-05078-07	TRG	1300-562-1MA1 100428	04/28/10 10:00	5/17/2010	5/24/2010	10-05078	Gross Alpha	LANL MLR-100 Modified	2.40E-16	2.82E-16	2.82E-16	5.30E-16	uCi/ml		
10-05078-01	LCS	KNOWN	05/18/10 00:00	5/17/2010	5/24/2010	10-05078	Gross Beta	LANL MLR-100 Modified	2.37E-04	7.12E-06			uCi/ml		
10-05078-01	LCS	SPIKE	05/18/10 00:00	5/17/2010	5/24/2010	10-05078	Gross Beta	LANL MLR-100 Modified	2.61E-04	5.96E-06	5.98E-06	8.20E-07	uÇi/ml		
10-05078-02	MBL	BLANK	05/18/10 00:00	5/17/2010	5/24/2010	10-05078	Gross Beta	LANL MLR-100 Modified	5.68E-16	9.92E-16	9.92E-16	2.06E-15	uCi/ml		
10-05078-03	DUP	1300-562-1MA1 100408	04/08/10 09:52	5/17/2010	5/24/2010	10-05078	Gross Beta	LANL MLR-100 Modified	-9.13E-16	1.18E-15	1.18E-15	2.60E-15	uÇi/ml		
10-05078-04	DO	1300-562-1MA1 100408	04/08/10 09:52	5/17/2010	5/24/2010	10-05078	Gross Beta	LANL MLR-100 Modified	-1.40E-15	9.30E-16	9.30E-16	2.16E-15	uCi/ml		
10-05078-05	TRG	1300-562-1MA1 100414	04/14/10 10:35	5/17/2010	5/24/2010	10-05078	Gross Beta	LANL MLR-100 Modified	2.75E-16	1.17E-15	1.17E-15	2.47E-15	uCi/ml		
10-05078-06	TRG	1300-562-1MA1 100421	04/21/10 10:18	5/17/2010	5/24/2010	10-05078	Gross Beta	LANL MLR-100 Modified	-7.94E-16	1.02E-15	1.02E-15	2.28E-15	uCi/ml		
10-05078-07	TRG	1300-562-1MA1 100428	04/28/10 10:00	5/17/2010	5/24/2010	10-05078	Gross Beta	LANL MLR-100 Modified	-1.36E-15	9.25E-16	9.25E-16	2.14E-15	uCi/ml		

•

.

				F	leport To:			Work Order Details:							
Ebe	rline	e Analytical	Debra E	dwards				SDG:	sDG: 10-07040						
		—	LES					Purchase Order: LES-GSA-3080							
Fina	I Rep	ort of Analysis	275 Hwy	/ 176				Analysis Category:	ENVI	RONMEN	TAL				
	-	-	Eunice,	NM 8823	1			Sample Matrix:	AF						
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	cu	csu	MDA	Report Units		
10-07040-01	LCS	KNOWN	07/08/10 00:00	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	3.15E-04	1.35E-05			uCi/ml		
10-07040-01	LCS	SPIKE	07/08/10 00:00	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	2.97E-04	7.68E-06	7.80E-06	4.49E-07	uCi/ml		
10-07040-02	MBL	BLANK	07/08/10 00:00	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	-4.00E-16	3.37E-16	3.37E-16	1.01E-15	uCi/ml		
10-07040-03	DUP	1300-562-1MA1 100505	05/05/10 11:26	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	-3.89E-16	3.81E-16	3.81E-16	1.11E-15	uCi/ml		
10-07040-04	DO	1300-562-1MA1 100505	05/05/10 11:26	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	-1.94E-16	4.26E-16	4.26E-16	1.11E-15	uCi/ml		
10-07040-05	TRG	1300-562-1MA1 100512	05/12/10 10:21	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	-2.86E-16	3.50E-16	3.50E-16	1.00E-15	uCi/ml		
10-07040-06	TRG	1300-562-1MA1 100519	05/19/10 10:14	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	-3.40E-16	5.21E-16	5.21E-16	1.38E-15	uCi/ml		
10-07040-07	TRG	1300-562-1MA1 100526	05/26/10 09:40	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	0.00E+00	0.00E+00	0.00E+00	1.52E-16	uCi/ml		
10-07040-08	TRG	1300-562-1MA1 100602	06/02/10 09:48	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	-4.96E-16	4.12E-16	4.12E-16	1.21E-15	uCi/ml		
10-07040-09	TRG	1001-562-1MA1 100505	05/05/10 09:43	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	4.76E-17	2.09E-16	2.09E-16	5.27E-16	uCi/ml		
10-07040-10	TRG	1001-562-1MA1 100512	05/12/10 08:19	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	-4.35E-16	3.67E-16	3.67E-16	1.10E-15	uCi/mi		
10-07040-11	TRG	1001-562-1MA1 100519	05/19/10 08:57	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	-9.39E-17	3.44E-16	3.44E-16	8.98E-16	uCi/ml		
10-07040-12	TRG	1001-562-1MA1 100526	05/26/10 08:18	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	-2.35E-16	2.43E-16	2.43E-16	7.96E-16	uCi/ml		
10-07040-13	TRG	1001-562-1MA1 100602	06/02/10 10:05	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	-1.38E-16	2.71E-16	2.71E-16	7.82E-16	uCi/ml		
10-07040-14	TRG	1001-562-1MA2 100505	05/05/10 09:47	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	-3.48E-16	3.52E-16	3.52E-16	1.05E-15	uCi/ml		
10-07040-15	TRG	1001-562-1MA2 100512	05/12/10 08:14	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	-2.43E-16	3.16E-16	3.16E-16	9.30E-16	uCi/ml		
10-07040-16	TRG	1001-562-1MA2 100519	05/19/10 09:02	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	-3.43E-16	3.36E-16	3.36E-16	9.76E-16	uCi/ml		
10-07040-17	TRG	1001-562-1MA2 100526	05/26/10 08:14	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	-1.63E-16	3.20E-16	3.20E-16	8.59E-16	uCi/ml		
10-07040-18	TRG	1001-562-1MA2 100602	06/02/10 10:11	6/4/2010	7/8/2010	10-07040	Gross Alpha	LANL MLR-100 Modified	-3.48E-16	3.30E-16	3.30E-16	9.40E-16	uCi/ml		

•

Report To:					Work Order Details:								
Fhe	rline	e Analytical	Debra Edwards LES 275 Hwy 176				SDG:	10-0	7040				
		-					Purchase Order:	Purchase Order: LES-GSA-3080					
Fina	I Rep	ort of Analysis					Analysis Category: ENVIRONMENTAL						
	-	•	Eunice,	NM 8823	1			Sample Matrix:	AF				
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	cu	csu	MDA	Report Units
10-07040-01	LCS	KNOWN	07/08/10 00:00	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	2.37E-04	7.10E-06			uCi/ml
10-07040-01	· LCS	SPIKE	07/08/10 00:00	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	2.37E-04	5.72E-06	5.74E-06	8.49E-07	uCi/ml
10-07040-02	MBL	BLANK	07/08/10 00:00	6/4/2010	7/8/2010	10-07040	Gross Beta	. LANL MLR-100 Modified	6.58E-16	9.42E-16	9.42E-16	1.94E-15	uCi/ml
10-07040-03	DUP	1300-562-1MA1 100505	05/05/10 11:26	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	2.33E-16	1.06E-15	1.06E-15	2.24E-15	uCi/ml
10-07040-04	DO	1300-562-1MA1 100505	05/05/10 11:26	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	-1.75E-16	1.04E-15	1.04E-15	2.24E-15	uCi/ml
10-07040-05	TRG	1300-562-1MA1 100512	05/12/10 10:21	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	-6.61E-16	9.45E-16	9.45E-16	2.11E-15	uCi/mi
10-07040-06	TRG	1300-562-1MA1 100519	05/19/10 10:14	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	1.90E-14	2.00E-15	2.00E-15	2.69E-15	uCi/ml
10-07040-07	TRG	1300-562-1MA1 100526	05/26/10 09:40	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	-4.76E-16	1.05E-15	1.05E-15	2.30E-15	uCi/ml
10-07040-08	TRG	1300-562-1MA1 100602	06/02/10 09:48	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	-8.32E-16	9.97E-16	9.97E-16	2.23E-15	uCi/ml
10-07040-09	TRG	1001-562-1MA1 100505	05/05/10 09:43	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	-2.56E-16	9.56E-16	9.56E-16	2.08E-15	uCi/ml
10-07040-10	TRG	1001-562-1MA1 100512	05/12/10 08:19	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	9.09E-16	1.09E-15	1.09E-15	2.22E-15	uCi/ml
10-07040-11	TRG	1001-562-1MA1 100519	05/19/10 08:57	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	-8.67E-16	1.04E-15	1.04E-15	2.32E-15	uCi/ml
10-07040-12	TRG	1001-562-1MA1 100526	05/26/10 08:18	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	-3.24E-16	9.81E-16	9.81E-16	2.14E-15	uCi/ml
10-07040-13	TRG	1001-562-1MA1 100602	06/02/10 10:05	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	1.43E-15	1.07E-15	1.07E-15	2.13E-15	uCi/ml
10-07040-14	TRG	1001-562-1MA2 100505	05/05/10 09:47	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	-1.12E-15	1.09E-15	1.09E-15	2.43E-15	uCi/ml
10-07040-15	TRG	1001-562-1MA2 100512	05/12/10 08:14	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	5.12E-16	1.01E-15	1.01E-15	2.11E-15	uCi/mi
10-07040-16	TRG	1001-562-1MA2 100519	05/19/10 09:02	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	2.80E-16	8.91E-16	8.91E-16	1.88E-15	uCi/ml
10-07040-17	TRG	1001-562-1MA2 100526	05/26/10 08:14	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	-5.42E-16	8.10E-16	8.10E-16	1.80E-15	uCi/ml
10-07040-18	TRG	1001-562-1MA2 100602	06/02/10 10:11	6/4/2010	7/8/2010	10-07040	Gross Beta	LANL MLR-100 Modified	4.44E-14	2.14E-15	2.15E-15	1.84E-15	uCi/ml

.

•

				F	Report To:			· · ·	W	ork Order Detai	ls:		· · · · · · · · ·
Eberline Analytical		Debra Edwards					SDG:	10-07	7039				
	— — — — — — — — — — — — — — — — — — — —		LES				Purchase Order:	order: LES-GSA-3080			- · · ·		
Fina	I Rep	ort of Analysis	275 Hwy 176 Eunice, NM 88231				Analysis Category:	ENVIR	ONMENT	AL			
	•	5					Sample Matrix:						
Lab ID	Sample Type	Client	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	си	csu	MDA	Report Units
10-07039-01	LCS	KNOWN	07/08/10 00:00	7/7/2010	7/8/2010	10-07039	Gross Alpha	LANL MLR-100 Modified	3.17E-04	1.36E-05		<u> </u>	uCi/ml
10-07039-01	LCS	SPIKE	07/08/10 00:00	7/7/2010	7/8/2010	10-07039	Gross Alpha	LANL MLR-100 Modified	2.86E-04	7.55E-06	7.67E-06	5.16E-07	uCi/ml
10-07039-02	MBL	BLANK	07/08/10 00:00	7/7/2010	7/8/2010	10-07039	Gross Alpha	LANL MLR-100 Modified	3.40E-16	3.69E-16	3.69E-16	6.99E-16	uCi/ml
10-07039-03	DUP	1300-562-1MA1 100609	06/09/10 09:36	7/7/2010	7/8/2010	10-07039	Gross Alpha	LANL MLR-100 Modified	-4.63E-17	2.40E-16	2.40E-16	6.67E-16	uCi/ml
10-07039-04	DO	1300-562-1MA1 100609	06/09/10 09:36	7/7/2010	7/8/2010	10-07039	Gross Alpha	LANL MLR-100 Modified	0.00E+00	2.40E-10 2.57E-16	2.40E-16 2.57E-16	6.67E-16	uCi/ml
10-07039-05	TRG	1300-562-1MA1 100616	06/16/10 10:12	7/7/2010	7/8/2010	10-07039	Gross Alpha	LANL MLR-100 Modified	-4.71E-17	2.37E-16	2.44E-16	6.78E-16	uCi/ml
10-07039-06	TRG	1300-562-1MA1 100623	06/23/10 11:12	7/7/2010	7/8/2010	10-07039	Gross Alpha	LANL MLR-100 Modified	-5.97E-16	4.78E-16	4.78E-16	1.35E-15	uCi/ml
10-07039-07	TRG	1300-562-1MA1 100630	06/30/10 10:54	7/7/2010	7/8/2010	10-07039	Gross Alpha	LANL MLR-100 Modified	-9.94E-17	3.08E-16	3.08E-16	8.43E-16	uCi/ml
10-07039-08	TRG	1001-562-1MA1 100609	06/09/10 08:57	7/7/2010	7/8/2010	10-07039	Gross Alpha	LANL MLR-100 Modified	-7.32E-16	4.38E-16	4.38E-16	1.33E-15	uCi/ml
10-07039-09	TRG	1001-562-1MA1 100616	06/16/10 09:07	7/7/2010	7/8/2010	10-07039	Gross Alpha	LANL MLR-100 Modified	-1.84E-16	4.38E-10 3.12E-16	4.30E-10 3.12E-16	8.78E-16	uCi/ml
10-07039-10	TRG	1001-562-1MA1 100623	06/23/10 14:48	7/7/2010	7/8/2010	10-07039	Gross Alpha	LANL MLR-100 Modified	-5.04E-16	4.35E-16	4.35E-16	1.20E-15	uCi/ml
10-07039-11	TRG	1001-562-1MA1 100630	06/30/10 11:47	7/7/2010	7/8/2010	10-07039	Gross Alpha	LANL MLR-100 Modified	-3.91E-16	3.83E-16	3.83E-16	1.11E-15	uCi/ml
10-07039-12	TRG	1001-562-1MA2 100609	06/09/10 08:53	7/7/2010	7/8/2010	10-07039	Gross Alpha	LANL MLR-100 Modified	1.81E-16	2.13E-16	2.13E-16	4.01E-16	uCi/ml
10-07039-13	TRG	1001-562-1MA2 100616	06/16/10 09:12	7/7/2010	7/8/2010	10-07039	Gross Alpha	LANL MLR-100 Modified	-5.23E-16	3.78E-16	3.78E-16	1.09E-15	uCi/ml
10-07039-14	TRG	1001-562-1MA2 100623	06/23/10 14:42	7/7/2010	7/8/2010	10-07039	Gross Alpha	LANL MLR-100 Modified	-1.14E-15	5.87E-16	5.87E-16	1.67E-15	uCi/ml
10-07039-15	TRG	1001-562-1MA2 100630	06/30/10 11:49	7/7/2010	7/8/2010	10-07039	Gross Alpha	LANL MLR-100 Modified	-5.91E-16	3.88E-16	3.88E-16	1.17E-15	uCi/ml
					110/2010	10-07000			-0.012-10	0.000-10	0.00E-10	1.172-13	
10-07039-01	LCS	KNOWN	07/08/10 00:00	7/7/2010	7/8/2010	10-07039	Gross Beta	LANL MLR-100 Modified	2.38E-04	7.15E-06			uCi/ml
10-07039-01	LCS	SPIKE	07/08/10 00:00	7/7/2010	7/8/2010	10-07039	Gross Beta	LANL MLR-100 Modified	2.59E-04	6.02E-06	6.05E-06	9.04E-07	uCi/ml
10-07039-02	MBL	BLANK	07/08/10 00:00	7/7/2010	7/8/2010	10-07039	Gross Beta	LANL MLR-100 Modified	6.16E-16	1.11E-15	1.11E-15	2.30E-15	uCi/ml
10-07039-03	DUP	1300-562-1MA1 100609	06/09/10 09:36	7/7/2010	7/8/2010	10-07039	Gross Beta	LANL MLR-100 Modified	-1.13E-16	8.78E-16	8.78E-16	1.90E-15	uCi/ml
10-07039-04	DO	1300-562-1MA1 100609	06/09/10 09:36	7/7/2010	7/8/2010	10-07039	Gross Beta	LANL MLR-100 Modified	-5.36E-16	8.52E-16	8.52E-16	1.90E-15	uCi/mi
10-07039-05	TRG	1300-562-1MA1 100616	06/16/10 10:12	7/7/2010	7/8/2010	10-07039	Gross Beta	LANL MLR-100 Modified	8.50E-17	9.14E-16	9.14E-16	1.95E-15	uCi/ml
10-07039-06	TRG	1300-562-1MA1 100623	06/23/10 11:12	7/7/2010	7/8/2010	10-07039	Gross Beta	LANL MLR-100 Modified	-4.70E-16	1.09E-15	1.09E-15	2.37E-15	uCi/ml
10-07039-07	TRG	1300-562-1MA1 100630	06/30/10 10:54	7/7/2010	7/8/2010	10-07039	Gross Beta	LANL MLR-100 Modified	-2.29E-16	9.33E-16	9.33E-16	2.03E-15	uCi/ml
10-07039-08	TRG	1001-562-1MA1 100609	06/09/10 08:57	7/7/2010	7/8/2010	10-07039	Gross Beta	LANL MLR-100 Modified	2.79E-17	9.67E-16	9.67E-16	2.07E-15	uCi/ml
10-07039-09	TRG	1001-562-1MA1 100616	06/16/10 09:07	7/7/2010	7/8/2010	10-07039	Gross Beta	LANL MLR-100 Modified	-7.29E-16	8.62E-16	8.62E-16	1.94E-15	uCi/ml
10-07039-10	TRG	1001-562-1MA1 100623	06/23/10 14:48	7/7/2010	7/8/2010	10-07039	Gross Beta	LANL MLR-100 Modified	2.60E-15	9.75E-16	9.75E-16	1.80E-15	uCi/ml
10-07039-11	TRG	1001-562-1MA1 100630	06/30/10 11:47	7/7/2010	7/8/2010	10-07039	Gross Beta	LANL MLR-100 Modified	-5.71E-16	1.01E-15	1.01E-15	2.22E-15	uCi/ml
10-07039-12	TRG	1001-562-1MA2 100609	06/09/10 08:53	7/7/2010	7/8/2010	10-07039	Gross Beta	LANL MLR-100 Modified	6.81E-16	9.23E-16	9.23E-16	1.90E-15	uCi/ml
10-07039-13	TRG	1001-562-1MA2 100616	06/16/10 09:12	7/7/2010	7/8/2010	10-07039	Gross Beta	LANL MLR-100 Modified	-3.98E-16	8.24E-16	8.24E-16	1.81E-15	uCi/ml
10-07039-14	TRG	1001-562-1MA2 100623	06/23/10 14:42	7/7/2010	7/8/2010	10-07039	Gross Beta	LANL MLR-100 Modified	-1.38E-15	1.00E-15	1.00E-15	2.29E-15	uCi/ml
10-07039-15	TRG	1001-562-1MA2 100630	06/30/10 11:49	7/7/2010	7/8/2010	10-07039	Gross Beta	LANL MLR-100 Modified	1.32E-16	7.82E-16	7.82E-16	1.67E-15	uCi/ml

CU=Counting Uncertainty;CSU=Combined Standard Uncertainty (2-sigma);MDA=Minimal Detected Activity;LCS=Laboratory Control Sample; MBL=Blank; DUP=Duplicate; TRG=Normal Sample; DO=Duplicate Original

Report To:					Work Order Details:								
Eberline Analytical			Debra Edwards				sDG: 10-07063		7063				
			LES				Purchase Order:	LES-G	SA-3080				
Fina	I Rep	ort of Analysis	275 Hwy	176				Analysis Category:	ENVIR	ONMENT	AL		
	•	•	Eunice, NM 88231				Sample Matrix:	AF					
Lab ID	Sample Type	Client ID	Sample Date	Receipt Date	Analysis Date	Batch ID	Analyte	Method	Result	cu	csu	MDA	Report Units
10-07063-01	LCS	KNOWN	07/14/10 00:00	7/13/2010	7/19/2010	10-07063	Uranium-234	EML U-02 Modified	8.24E-06	2.97E-07			uCi/ml
10-07063-01	LCS	SPIKE	07/14/10 00:00	7/13/2010	7/19/2010	10-07063	Uranium-234	EML U-02 Modified	8.38E-06	1.41E-06	1.41E-06	6.21E-08	uCi/ml
10-07063-02	MBL	BLANK	07/14/10 00:00	7/13/2010	7/19/2010	10-07063	Uranium-234	EML U-02 Modified	5.31E-17	6.58E-17	6.58E-17	8.58E-17	uCi/ml
10-07063-03	DUP	1300-562-1MA1 COMP	06/30/10 10:54	7/13/2010	7/19/2010	10-07063	Uranium-234	EML U-02 Modified	1.62E-16	1.22E-16	1.22E-16	1.13E-16	uCi/ml
10-07063-04	DO	1300-562-1MA1 COMP	06/30/10 10:54	7/13/2010	7/19/2010	10-07063	Uranium-234	EML U-02 Modified	2.66E-17	4.15E-17	4.15E-17	6.63E-17	uCi/ml
10-07063-05	TRG	1001-562-1MA1 COMP	06/30/10 11:47	7/13/2010	7/19/2010	10-07063	Uranium-234	EML U-02 Modified	9.21E-17	1.44E-16	1.44E-16	2.30E-16	uCi/ml
10-07063-06	TRG	1001-562-1MA2 COMP	06/30/10 11:49	7/13/2010	7/19/2010	10-07063	Uranium-234	EML U-02 Modified	-1.03E-17	2.07E-17	2.07E-17	2.77E-16	uCi/ml
10-07063-01	LCS	SPIKE	07/14/10 00:00	7/13/2010	7/19/2010	10-07063	Uranium-235	EML U-02 Modified	5.20E-07	2.02E-07	2.02E-07	4.44E-08	uCi/ml
10-07063-02	MBL	BLANK	07/14/10 00:00	7/13/2010	7/19/2010	10-07063	Uranium-235	EML U-02 Modified	4.63E-17	6.59E-17	6.59E-17	6.14E-17	uCi/ml
10-07063-03	DUP	1300-562-1MA1 COMP	06/30/10 10:54	7/13/2010	7/19/2010	10-07063	Uranium-235	EML U-02 Modified	5.21E-17	7.41E-17	7.41E-17	6.90E-17	uCi/ml
10-07063-04	DO	1300-562-1MA1 COMP	06/30/10 10:54	7/13/2010	7/19/2010	10-07063	Uranium-235	EML U-02 Modified	3.28E-17	5.12E-17	5.12E-17	8.18E-17	uCi/ml
10-07063-05	TRG	1001-562-1MA1 COMP	06/30/10 11:47	7/13/2010	7/19/2010	10-07063	Uranium-235	EML U-02 Modified	0.00E+00	1.28E-17	1.28E-17	1.65E-16	uCi/ml
10-07063-06	TRG	1001-562-1MA2 COMP	06/30/10 11:49	7/13/2010	7/19/2010	10-07063	Uranium-235	EML U-02 Modified	0.00E+00	1.55E-17	1.55E-17	1.98E-16	uCi/ml
10-07063-01	LCS	KNOWN	07/14/10 00:00	7/13/2010	7/19/2010	10-07063	Uranium-238	EML U-02 Modified	8.04E-06	2.89E-07			uCi/ml
10-07063-01	LCS	SPIKE	07/14/10 00:00	7/13/2010	7/19/2010	10-07063	Uranium-238	EML U-02 Modified	7.81E-06	1.32E-06	1.32E-06	6.18E-08	uCi/ml
10-07063-02	MBL	BLANK	07/14/10 00:00	7/13/2010	7/19/2010	10-07063	Uranium-238	EML U-02 Modified	3.42E-17	5.35E-17	5.35E-17	8.54E-17	uCi/ml
10-07063-03	DUP	1300-562-1MA1 COMP	06/30/10 10:54	7/13/2010	7/19/2010	10-07063	Uranium-238	EML U-02 Modified	3.85E-17	6.02E-17	6.02E-17	9.60E-17	uCi/ml
10-07063-04	DO	1300-562-1MA1 COMP	06/30/10 10:54	7/13/2010	7/19/2010	10-07063	Uranium-238	EML U-02 Modified	4.34E-17	5.04E-17	5.04E-17	3.83E-17	uCi/ml
10-07063-05	TRG	1001-562-1MA1 COMP	06/30/10 11:47	7/13/2010	7/19/2010	10-07063	Uranium-238	EML U-02 Modified	0.00E+00	1.28E-17	1.28E-17	1.33E-16	uCi/ml
10-07063-06	TRG	1001-562-1MA2 COMP	06/30/10 11:49	7/13/2010	7/19/2010	10-07063	Uranium-238	EML U-02 Modified	1.81E-16	2.12E-16	2.12E-16	1.60E-16	uCi/ml

CU=Counting Uncertainty;CSU=Combined Standard Uncertainty (2-sigma);MDA=Minimal Detected Activity;LCS=Laboratory Control Sample; MBL=Blank; DUP=Duplicate; TRG=Normal Sample; DO=Duplicate Original

APPENDIX C - Sampling Procedures

•

•

Alpha Monitor (ABPM 201 S) Operation

CH-3-4000-01

Revision 5

Level 2 - Reference Use

Chemistry Services Manager

Effective Date	3/17/2010

Revision Summary

Change	Reason for Change
Changed Radiation Protection and Chemistry Manager to Chemistry Services Manager	Corrected positions titles to match License Basis Documents– Editorial correction
Deleted reference to Operation Center through out procedure.	No longer in use. Editorial correction
Setpoints for 1001 alpha monitors units were changed from μ Ci/cc to Bq/m ³ . Reference to setpoints in procedure in Attachment 9, 10 and F-3 were edited to include both units.	Compliance with Urenco commonality for effluents. Editorial correction.

TABLE OF CONTENTS

 SCOPE	4
 RESPONSIBILITIES	4
 PRECAUTIONS AND LIMITATIONS. EQUIPMENT, MATERIAL AND PARTS	4
 EQUIPMENT, MATERIAL AND PARTS	6
 PREREQUISITES MAIN BODY 8.1 Routine Adjustments/Calibration and Operations: 8.2 Alarm Response 8.3 Filter Analysis and Review 9. DOCUMENTATION AND RECORDS 10. LICENSE COMMITMENTS AND REQUIREMENTS 	7
 MAIN BODY. 8.1 Routine Adjustments/Calibration and Operations: 8.2 Alarm Response 8.3 Filter Analysis and Review. 9. DOCUMENTATION AND RECORDS. 10. LICENSE COMMITMENTS AND REQUIREMENTS . 	8
 8.1 Routine Adjustments/Calibration and Operations:	9
 8.2 Alarm Response 8.3 Filter Analysis and Review 9. DOCUMENTATION AND RECORDS 10. LICENSE COMMITMENTS AND REQUIREMENTS 	9
 8.3 Filter Analysis and Review 9. DOCUMENTATION AND RECORDS	9
9. DOCUMENTATION AND RECORDS 10. LICENSE COMMITMENTS AND REQUIREMENTS	10
10. LICENSE COMMITMENTS AND REQUIREMENTS	10
	10
11 REFERENCES	10
	11

ATTACHMENTS

Attachment 1, System Components and Information	12
Attachment 2, PIS Change-Out	
Attachment 3, Replace PIS Filter-Paper	
Attachment 4, Filter Cassette Change-Out	
Attachment 5, Replacing Filter Cassette Filter-Paper	
Attachment 6, Energy Calibration	25
Attachment 7, Source Calibration	
Attachment 8, Power Up and Quick Start-Up	
Attachment 9, Shutdown	40
Attachment 10, Alarm Setpoints	41
Attachment 11, Filter Analysis and Review	43
Attachment 12, Alpha Setpoint Information and Background	46

FORMS

CH-3-4000-01-F-1, Source Calibration Data Sheet	.49
CH-3-4000-01-F-2, PIS Change-Out	
CH-3-4000-01-F-3, Energy Calibration Data Sheet	
CH-3-4000-01-F-4, Quarterly Filter Data	.53
CH-3-4000-01-F-5, Normal Valve Line-Up for 1300-562-1MA1	
CH-3-4000-01-F-6, Normal Valve Line-Up for 1001-562-1MA1/1MA2	.55

1. PURPOSE

- 1.1 This procedure provides instruction for operation, change-out of filters and filter cassette, and operational adjustments/calibration, and alarm response actions associated with the Alpha Beta Particulate Monitor, Model 201, Seismic (ABPM 201 S). Monitors at URENCO USA are configured for alpha detection only and used in-line with Gaseous Effluent Ventilation Systems (GEVS) and Special Filtration Unit.
- 1.2 This procedure provides instruction for collecting, analyzing, and providing results for the continuous on-line particulate filter. This filter is required to provide a monitored release and the data is used in reporting to the NRC for the gaseous portion of the Semiannual Effluent Radiological Release Rate Report. Release via any release point requires continuous sample collection.

2. <u>SCOPE</u>

- 2.1 This procedure applies to alpha monitors located in the Centrifuge Assembly Building, Technical Services Building, and Separations Building Modules and includes specific information for:
 - 1300-562-1MA1
 - 1001-562-1MA1
 - 1001-562-1MA2

3. TERMS, DEFINITIONS, ABBREVIATIONS, AND ACRONYMS

NOTE:

In addition to those herein, other chemistry terms and definitions are defined in CH-4-1000-01, Chemistry Terms, Definitions, and Acronyms.

3.1 Acronyms

- 3.1.1 <u>ABPM 201S</u>: Alpha Beta Particulate Monitor, Model 201, Seismic
- 3.1.2 <u>EEPROM</u>: Electrically Erasable Programmable Memory:
- 3.1.3 LDU: Local Display Unit:
- 3.1.4 <u>LPDU</u>: Local Processing and Display Unit
- 3.1.5 MASS2: Maintenance and Setup Software
- 3.1.6 <u>PDCU</u>: Power Distribution and Control Unit
- 3.1.7 <u>PFCV</u>: Proportional Flow Control Valve
- 3.1.8 <u>PIS</u>: Particulate and lodine Sampler

3.2 Definitions

- 3.2.1 <u>Electrically Erasable Programmable Memory (EEPROM)</u>: Type of memory used on the measurement boards to store board parameters.
- 3.2.2 <u>Flowmeter Box</u>: Provides measured flow-rate independent of temperature and pressure variations.
- 3.2.3 <u>FSLW Filter-Paper</u>: Hydrophobic PTFE (fluorocarbon) membrane used to collect air samples in the Alpha monitors from the effluent stream.
- 3.2.4 <u>Junction Box</u>: Serves to operate the inputs/outputs from the Local Processing and Display Unit. It is comprised of two alarm relays, two isolated serial links, one analog input, one analog output, and one connector.
- 3.2.5 <u>Local Display Unit (LDU)</u>: Receives analog signal from the stack flow element and relays signal information to the LPDU for control of the proportional flow control valve and calculations for release. The LDU also displays readings and alarms associated with ABPM 201S.
- 3.2.6 <u>Local Processing and Display Unit (LPDU)</u>: Monitor interface unit that provides the following basic functions:
 - a. Detector coupling
 - b. Processing
 - c. Filter advance management
 - d. Alphanumeric screen display
 - e. Audible and light signals
 - f. Keypad
 - g. Testing
 - h. Interface management
- 3.2.7 <u>Maintenance and Setup Software (MASS2)</u>: Software designed to configure and maintain the various radiation monitoring system units.
- 3.2.8 <u>Particulate Detection Subassembly</u>: Ensures trapping and measurement of sample stream particulate utilizing a detector head and filter-paper cassette.
- 3.2.9 <u>Particulate and Iodine Sampler (PIS)</u>: Sampling unit used for collection of particulate for laboratory analysis comprised of a standard holder (three piece housing) and a fiberglass filter (to trap particulate). Charcoal for lodine collection is not required for URENCO USA application.
- 3.2.10 <u>Power Distribution and Control Unit (PDCU)</u>: Unit that provides power to the pump and LPDU, and also houses the pump switch.
- 3.2.11 <u>Proportional Flow Control Valve (PFCV)</u>: Valve that regulates sample flow rate passing through the monitor to maintain proportionality with the stack flow rate.

- 3.2.12 <u>Pump</u>: An oil free dual head metal bellows pump sized to draw the air sample from a remote location, overcome pressure drop throughout the sampling lines, and discharge the sample from the skid.
- 3.2.13 <u>Secondary Calibration Source</u>: An Americium 241 (²⁴¹Am) alpha source used for initial and periodic source calibration of the ABPM 201S.
- 3.2.14 <u>Spectrum Acquisition and Maintenance Software (SAMS)</u>: Software for analysis, trending, and storage of alpha spectra data from the detector.

4. **RESPONSIBILITIES**

- 4.1 Chemistry Supervisor
 - 4.1.1 Review and approve data and filter results.
 - 4.1.2 Provide Safeguards, Environmental Compliance Officer and Radiation Protection Manager with data access to facilitate review, assessment, trending, and reporting.

4.2 <u>Chemistry Technicians</u>

- 4.2.1 Perform periodic source calibration.
- 4.2.2 Perform periodic energy calibration.
- 4.2.3 Replace PIS fiberglass filter-paper.
- 4.2.4 Perform PIS filter cassette change-out.
- 4.2.5 Replace filter-paper in filter cassette.
- 4.2.6 Maintain accountability of PIS filter-paper samples.
- 4.2.7 Packaging and shipment of PIS filter-paper for analysis.
- 4.2.8 Generate Systems Acceptance Plan (SAP) work order for repairs, as required
- 4.2.9 Generate Condition Reports (CR) to document "out-of-service" condition for repairs.
- 4.2.10 Input setpoints, as required.
- 4.2.11 Update configuration based on calibration data from skid-flow transmitters and stack-flow transmitter.

4.3 Environmental Compliance Officer

4.3.1 Coordinate facility activities required to ensure local, state and federal environmental regulations, including submission of periodic effluent reports to appropriate regulating organizations are met.

4.4 <u>Operator</u>

- 4.4.1 Perform routine surveillance of Alpha Monitor using eSoms.
- 4.4.2 Alarm response actions
- 4.4.3 Power Up/Quick Start-up and Shutdown
- 4.4.4 PIS change-out

4.5 <u>Chemistry Services Manager</u>

- 4.5.1 Implement chemistry services programs and procedures, including effluent sample collection, chemical analysis of effluents, comparison of effluent analysis results to limits, and reporting, in conjunction with the Environmental Compliance Officer, of chemical analysis of effluents to appropriate regulatory agencies.
- 4.5.2 Ensure Safeguards, Environmental Compliance Officer and Radiation Protection Manager have access to data for review, assessment, trending and reporting.

4.6 Radiation Protection Manager

- 4.6.1 Ensure adequate Radiation Work Permits (RWPs) and controls are established for monitor operation, adjustments/calibrations and filter/cassette change-out, as required.
- 4.6.2 Calibration and quality assurance of all radiological instrumentation, including verification of required Lower Limits of Detection (LLD) or alarm levels.
- 4.6.3 Establish and approve all monitor setpoints.

5. PRECAUTIONS AND LIMITATIONS

- 5.1 Use and navigation of Local Processing and Display Unit (LPDU) and Local Display Unit (LDU) screens are per 15-00068 APBM 201 S Alpha Beta Particulate Monitor User's Manual, and the 110164EN-D Local Display Unit and RD Users Manual.
- 5.2 Internal surfaces of ABM 201S monitoring systems should be free of radioactive contamination. Utilize good nuclear safety worker practices when removing, replacing, and handling Particulate and Iodine Sampler (PIS) filter housing and filter cassette housing.
- 5.3 <u>IF</u> contamination is detected, <u>THEN</u> place work in a safe condition <u>AND</u> notify Radiation Protection Manager.
- 5.4 Perform filter/cassette change-out and adjustments/calibration per applicable Work Package, Procedure(s) and RWP(s).

6. EQUIPMENT, MATERIAL AND PARTS

- 6.1 For Particulate and Iodine Sampler (PIS) change-out:
 - Standard PIS holder with filter-paper installed (The pre-staged PIS)
 - PIS will normally be stored in the designated area
 - Gloves, smears, and appropriate plastic sheets/bags as needed
- 6.2 For PIS FSLW filter-paper replacement:
 - (1) 47mm, 3.0 micron (μm) PIS FSLW filter-paper (Millipore #: FSLW 04700, Mirion #: 52123, <u>OR</u> equivalent)
 - Petri dish <u>OR</u> storage envelope for FSLW filter-paper storage
 - Label
 - Vacuum grease (as needed)
 - Tweezers
 - Gloves, smears, and appropriate plastic sheets/bags as needed
- 6.3 For filter cassette change-out:
 - Filter cassette with new filter-paper installed (The pre-staged filter cassette)
 - Filter cassette will normally be stored in the designated area.
 - Gloves, smears, and appropriate plastic sheets/bags as needed.
- 6.4 For replacing filter cassette filter-paper:
 - (1) roll of ABPM cassette (FSLW) filter-paper (Millipore part # AAA-8015 or equal)
 - Gloves, smears, and appropriate plastic sheets/bags as needed
- 6.5 For energy calibration:
 - Laptop computer with MASS2 and SAMS installed
 - USB to RS 232 cable
- 6.6 For source calibration:
 - Laptop computer with MASS2 and SAMS installed
 - USB to RS 232 cable
 - Calculator
 - ²⁴¹Am (or other source(s), as required)
 - Calibration source fixture
 - Gloves, smears, and appropriate plastic sheets/bags

7. PREREQUISITES

- 7.1 Prior to removing an alpha monitor from service for routine maintenance and/or calibration, ensure the redundant alpha monitor <u>OR</u> an inline HF monitor from the same release point is in operation.
- 7.2 Out of service alpha monitor with no redundant alpha monitor during times of release via the stack requires compensatory actions to ensure continuous filter collection of the gaseous effluent to prevent unmonitored release.
- 7.3 A pre-job discussion/brief has been conducted prior to performing sections of this procedure as needed.
- 7.4 Control Room has been notified and any trips associated with alarms are disabled.
- 7.5 <u>IF</u> Chemistry Supervisor determines a valve lineup is required, <u>THEN</u> perform lineup per CH-3-4000-01-F-5, Normal Valve Line-Up for 1300-562-1MA1, for 1300-562-1MA1 for CAB, <u>OR</u> perform lineup per CH-3-4000-01-F-6, Normal Valve Line-Up for 1001-562-1MA1/1MA2, for 1001-562-1MA1/1MA2 for SBM.

NOTE:

In most cases throughout this procedure "alpha/beta" nomenclature has been changed to "alpha". However, some equipment labels have not been changed and procedure nomenclature is written to reflect field/equipment conditions.

Attachment 1, System Components and Information may be referenced as needed throughout this procedure.

8. MAIN BODY

- 8.1 Routine Adjustments/Calibration and Operations:
 - 8.1.1 Perform PIS Change-Out per Attachment 2.
 - 8.1.2 Replace PIS Filter-Paper per Attachment 3.
 - 8.1.3 Perform Filter Cassette Change-Out per Attachment 4.
 - 8.1.4 Replace Filter Cassette Filter-Paper per Attachment 5.
 - 8.1.5 Perform an Energy Calibration per Attachment 6.
 - 8.1.6 Perform Source Calibration per Attachment 7.
 - 8.1.7 Perform Power-Up and Quick Start-Up per Attachment 8.
 - 8.1.8 Perform Shutdown per Attachment 9.

8.2 Alarm Response

- 8.2.1 Alarm responses are performed per:
 - a. OP-3-2000-01, Hazardous Release Response
 - b. OP-3-0590-01, Centrifuge Test Facility Alarm Response
 - c. OP-3-0660-01, Gaseous Effluent Ventilation System
- 8.2.2 Additional Alarm Setpoint information is provided in Attachment 10.

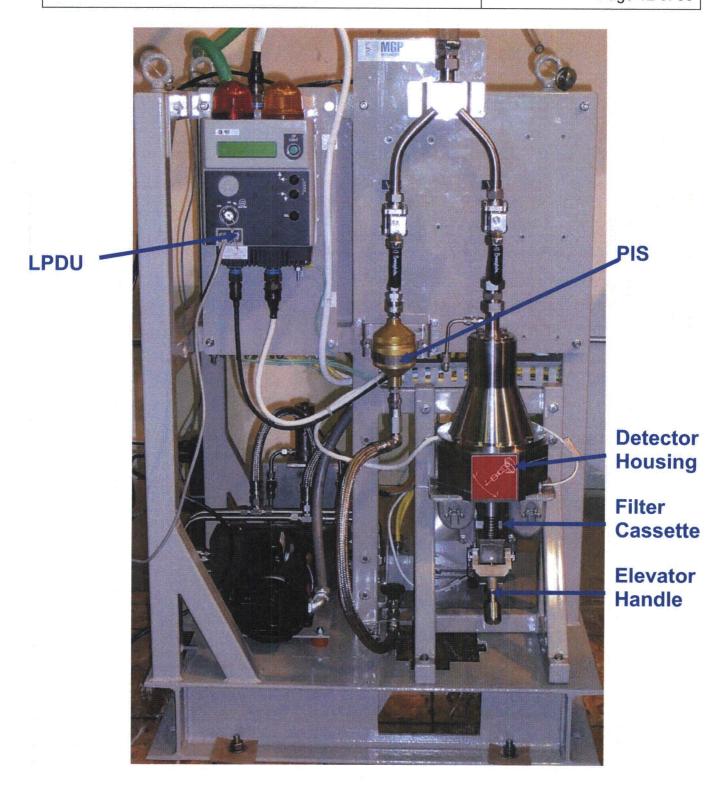
8.3 Filter Analysis and Review

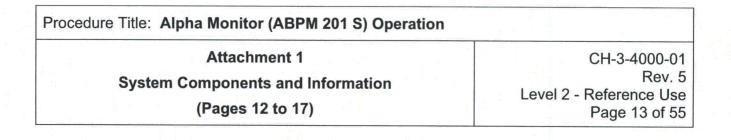
8.3.1 Filter Analysis and Review process instructions are provided in Attachment 11.

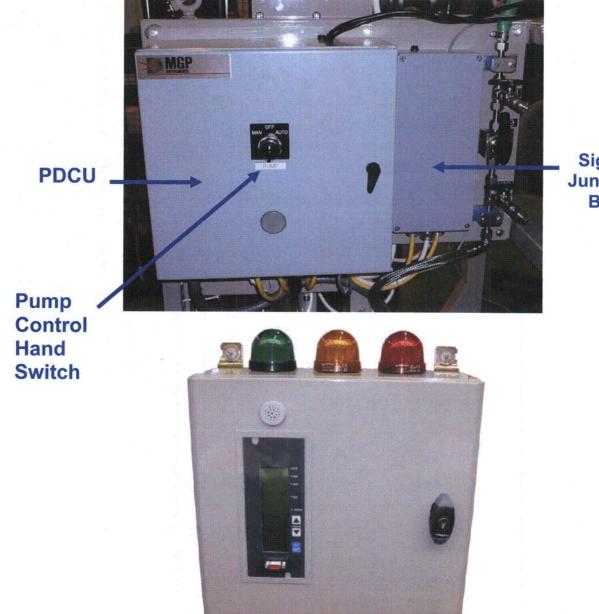
9. DOCUMENTATION AND RECORDS

- 9.1 Documentation and effluent monitoring records shall be established and maintained per RM-3-2000-01, Records Management Program.
- 9.2 Effluent monitoring documents shall be considered valid records only if authenticated (i.e., stamped, initialed or signed and dated as complete by authorized personnel).
 - 9.2.1 <u>IF</u> record nature precludes stamping or signing, <u>THEN</u> other means of authentication by authorized personnel is permitted (e.g., a stamped and signed statement by the responsible individual or organization).
 - 9.2.2 <u>IF</u> clearly identified as a statement by the reporting individual or organization, <u>THEN</u> handwritten signatures are not required.

10. LICENSE COMMITMENTS AND REQUIREMENTS

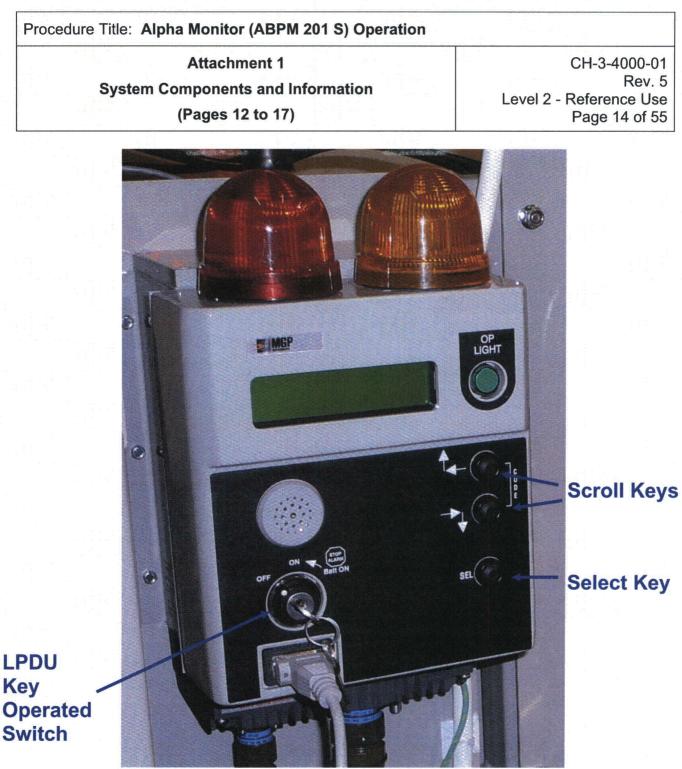

- 10.1 SAR 2.2.1
- 10.2 SAR 4.1
- 10.3 SAR 4.7
- 10.4 SAR, Section 9.2.2.1
- 10.5 ER, Section 6.1.1.1
- 10.6 ER, Section 6.2.8

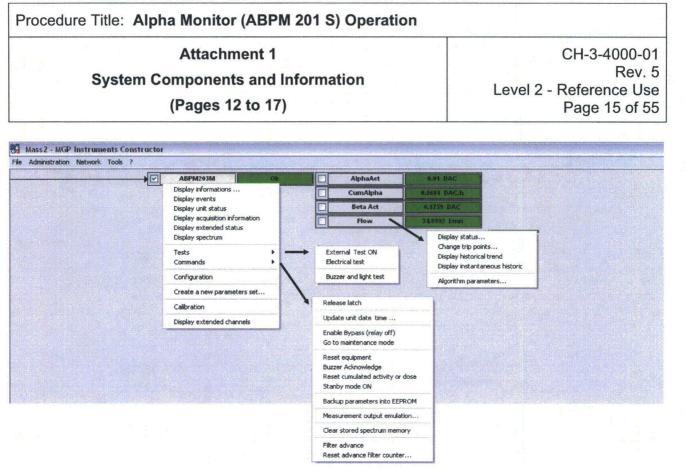

11. <u>REFERENCES</u>


11.1 Use References

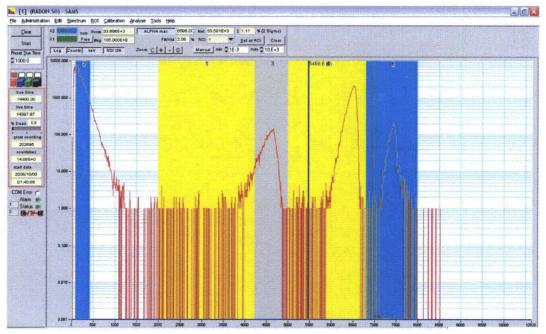
- 11.1.1 CA-3-1000-01, Performance Improvement Program
- 11.1.2 CH-4-1000-01, Chemistry Terms, Definitions, and Acronyms
- 11.1.3 EN-3-1000-02, Radiological Effluent and Environmental Monitoring
- 11.1.4 OP-3-0590-01, Centrifuge Test Facility Alarm Response
- 11.1.5 OP-3-0660-01, Gaseous Effluent Ventilation System
- 11.1.6 OP-3-2000-01, Hazardous Release Response
- 11.1.7 RM-3-2000-01, Records Management Program
- 11.1.8 15-00068 APBM 201 S Alpha Beta Particulate Monitor User's Manual
- 11.1.9 110164EN-D Local Display Unit and RD Users Manual
- 11.2 Source References
 - 11.2.1 12-00124 Factory Acceptance Test Procedure
 - 11.2.2 12-00136 Factory Acceptance Test Report for LES ABPM201S Alpha Monitor
 - 11.2.3 14-00098 Post Production Test Data Sheet: APBM201S Alpha Beta Particulate Monitor
 - 11.2.4 114868EN-E User's Manual for SAMS Software
 - 11.2.5 133506EN-D MASS2 Maintenance and Setup Software User's Manual

Attachment 1 System Components and Information (Pages 12 to 17) CH-3-4000-01 Rev. 5 Level 2 - Reference Use Page 12 of 55



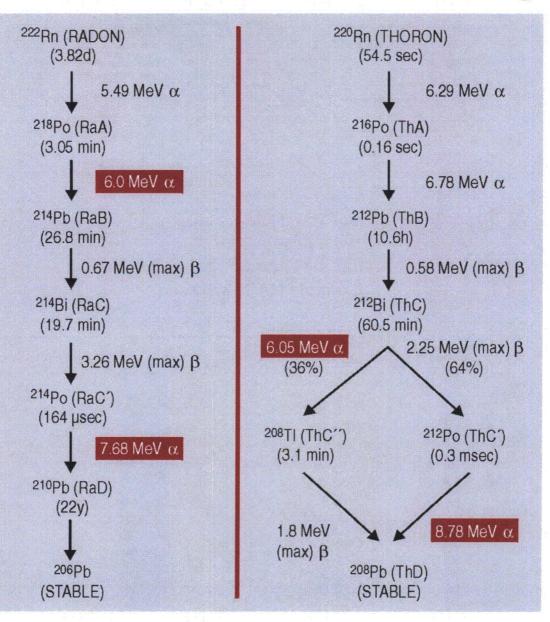

Signal Junction Box

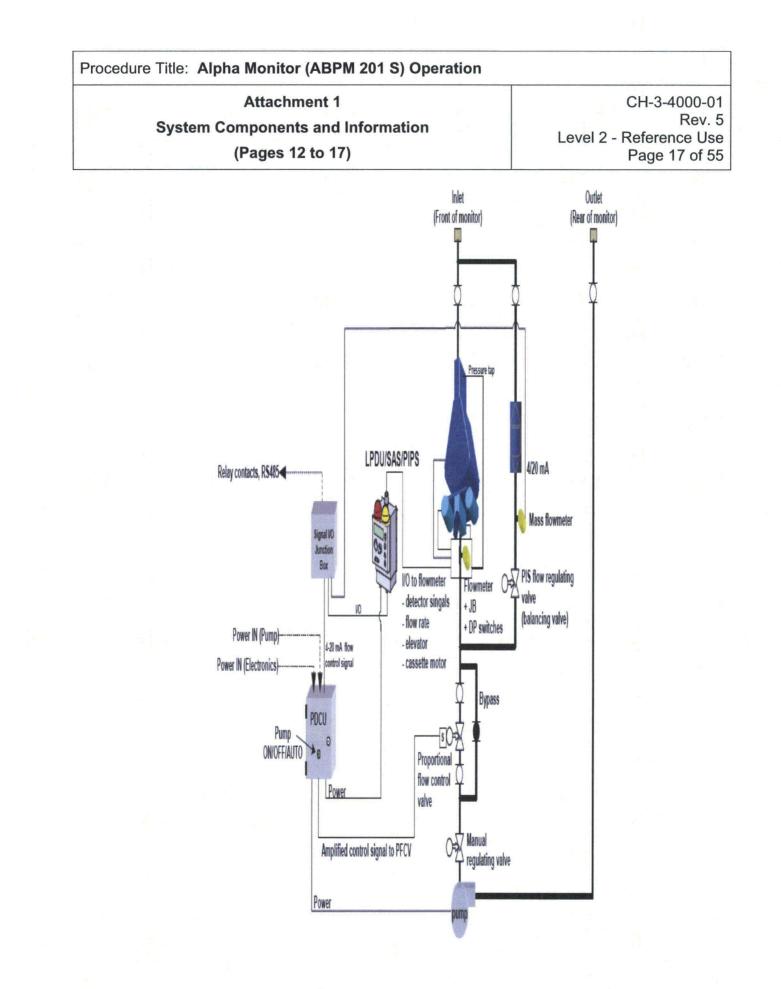
LDU



LPDU

Key Operated Switch


Example MASS2 Screen

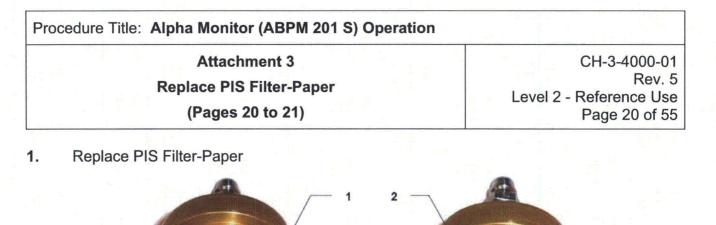


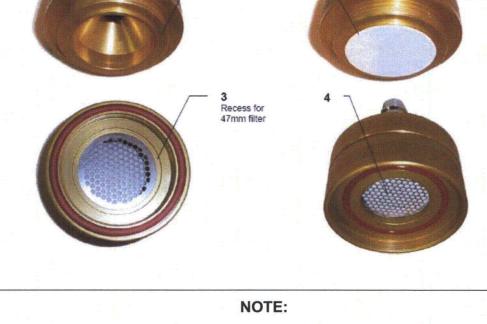
Example SAMS Screen

Procedure Title: Alpha Monitor (ABPM 201 S) Operation	
Attachment 1	CH-3-4000-01
System Components and Information	Rev. 5 Level 2 - Reference Use
(Pages 12 to 17)	Page 16 of 55

Radon & Thoron Decay

Attachment 2 PIS Change-Out (Pages 18 to 19)


NOTE:


All PIS Change-out data will be recorded on CH-3-4000-01-F-2, PIS Change-Out.

- 1. Notify Shift Manager prior to starting PIS change-out.
- 1.1 Notify Control Room of potential for a flow fault alarm due to PIS Change-out <u>AND</u> to disable trips associated with alarms.
- 1.2 Record "Functional Location of Monitor" <u>AND</u> "Date of PIS change-out".
- 1.3 Close V2 (PIS Isolation) AND record "Time/Date V2 Closed".
- 1.4 Acknowledge alarms as needed.
- 1.5 Scroll to LPDU "PIS VOL" screen <u>AND</u> record as "PIS Volume (L)".
- 1.6 IF volume is \leq 2.25 E+5 L, <u>THEN</u> notify Chemistry Supervisor <u>AND</u> proceed as directed.
- 1.7 Scroll to "Stk Vol" <u>AND</u> record as "Stack Volume (scf).
- 1.8 Reset PIS totalizer from LPDU as follows:
 - 1.8.1 Press both Scroll keys simultaneously.
 - 1.8.2 Enter pass code (e.g., 0000).
 - 1.8.3 Press Scroll key to "OK".
 - 1.8.4 Press Select key until "COMMAND" screen is displayed.
 - 1.8.5 Press Scroll key to "CD".
 - 1.8.6 Press Select key until "RESET DOSE" is displayed.
 - 1.8.7 Press Scroll key to "EXE".
 - 1.8.8 Press "SELECT" key.
- 1.9 Loosen two line bracket screws holding PIS <u>AND</u> disconnect from sample line as follows:
 - 1.9.1 Disconnect PIS outlet (bottom) quick disconnect.
 - 1.9.2 Disconnect PIS inlet (top) quick disconnect.
- 1.10 Place PIS in a container (e.g., bag) for transport.
- 1.11 Connect pre-staged replacement PIS to sample line, as follows:
 - 1.11.1 Connect PIS inlet (top) quick disconnect.
 - 1.11.2 Connect PIS outlet (bottom) quick disconnect.
- 1.12 Put PIS in position <u>AND</u> tighten sample line bracket screws as required.
- 1.13 Open V2 (PIS Isolation) <u>AND</u> record Time/Date V2 Open.

Procedure Title: Alpha Monitor (ABPM 201 S) Operation		
Attachment 2	CH-3-4000-01	
PIS Change-Out	Rev. 5 Level 2 - Reference Use	
(Pages 18 to 19)	Page 19 of 55	

- 1.14 Verify LPDU fault clears.
- 1.15 Notify Control Room that PIS change-out is complete <u>AND</u> to enable trips associated with alarms from applicable monitor.
- 1.16 <u>IF</u> PIS change-out was not performed on 7th day since most recent previous PIS filter replacement was performed, <u>THEN</u> record reason for deviation in "Remarks" section (e.g., Insufficient PIS volume due to [hrs/min] system outage on [mm/dd/yyyy]).
- 1.17 Turnover removed PIS to Chemistry Technician.
- 1.18 Ensure custody of the removed PIS and the completed form is turned over to a qualified Chemistry Technician.

Reference above photograph as required for completion of Attachment 3, Replace PIS Filter-Paper.

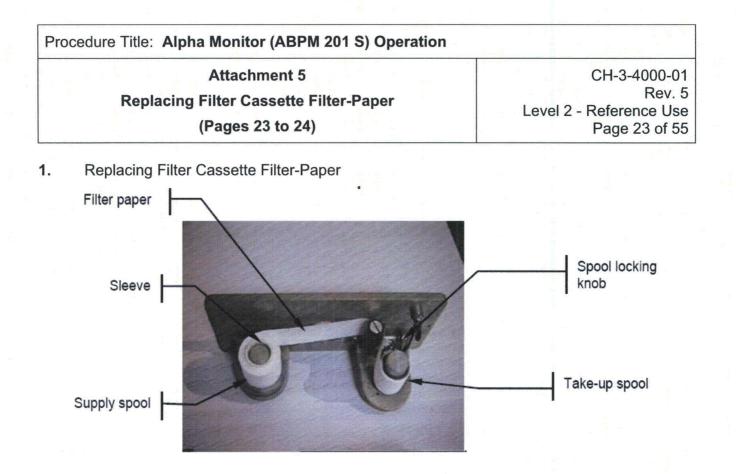
- 1.1 Unscrew top housing (1) of standard holder containing filter-paper.
- 1.2 Visually inspect o-rings for cracks, wear, proper seating <u>AND</u> replace as required.
- 1.3 IF placing filter paper in empty PIS, THEN go to step 1.4, otherwise proceed as follows:
 - 1.3.1 With tweezers, gently remove filter-paper from holder and place into Petri dish or envelope, pre-labeled as follows:
 - a. Alpha monitor functional location
 - b. Date/Time ON
 - c. Date/Time OFF
 - d. PIS Volume (L)
 - e. Stack Volume (scf)
 - f. Initials of individual replacing filter-paper
- 1.4 Place a small amount of vacuum grease to inner lip of top housing (1), as required.

Procedure Title: Alpha Monitor (ABPM 201 S) Operatio	n
Attachment 3	CH-3-4000-01 Rev. 5
Replace PIS Filter-Paper	Level 2 - Reference Use
(Pages 20 to 21)	Page 21 of 55

1.5 Using tweezers, place new filter-paper onto lip of top housing (2) ensuring Teflon side (smooth side) is facing the PIS inlet.

1.6 Screw middle housing onto top housing so that filter-paper seats in the recessed area (3).

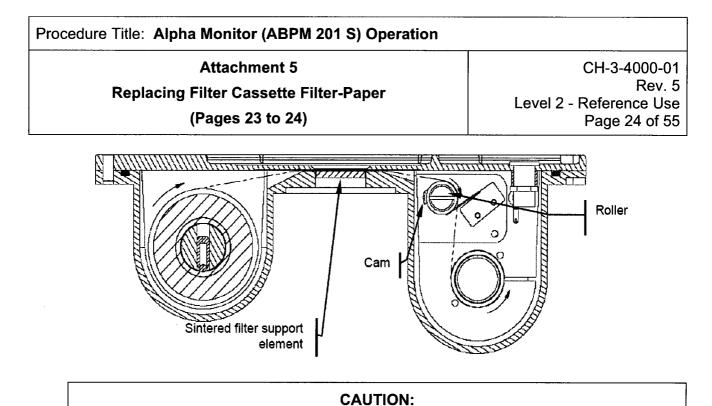
1.7 Look up through the bottom of middle housing (4) to verify filter-paper is properly seated.


1.8 Perform survey to verify PIS is free of contamination; decontaminate as required.

1.9 Place PIS in approved storage location for subsequent change-outs.

Attachment 4 Filter Cassette Change-Out (Pages 22 to 22)

CH-3-4000-01 Rev. 5 Level 2 - Reference Use Page 22 of 55


- 1. Notify Shift Manager prior to performing filter change-out
- 1.1 Notify Control Room of potential for a fault due to filter cassette change-out <u>AND</u> to disable any trips associated with alarms.
- 1.2 Connect laptop to LPDU <u>AND</u> open MASS2.
- 1.3 Log-in to MASS2 at "Maintenance" level.
- 1.4 From MASS2 advance filter paper as follows:
 - 1.4.1 Right click LPDU box AND select "COMMANDS" THEN "Filter advance".
 - 1.4.2 Right click LPDU box <u>AND</u> select "COMMANDS" <u>THEN</u> "Go to Maintenance Mode".
- 1.5 Verify sample pump stops.
- 1.6 Close V1 (Detector subassembly Isolation).
- 1.7 Pull elevator handle to disengage, <u>THEN</u> lift gently to open (lower) elevator.
- 1.8 Remove filter cassette <u>AND</u> disconnect filter cassette power cable.
- 1.9 Place removed filter cassette in container (e.g., bag) for transport.
- 1.10 Connect pre-staged filter cassette to power cable <u>AND</u> place filter cassette in elevator.
- 1.11 Pull elevator handle to disengage, <u>THEN</u> push down gently to close (raise) elevator.
- 1.12 Open V1 (Detector Subassembly Isolation).
- 1.13 From MASS2, reset LPDU as follows:
 - 1.13.1 Right click on LPDU box AND select "Configuration" THEN "Commands".
 - 1.13.2 Select "Reset advance filter counter".
 - 1.13.3 Right click on LPDU box and select "Commands".
 - 1.13.4 Select "Reset equipment".
- 1.14 Verify sample pump starts.
- 1.15 Close MASS2 AND disconnect laptop.
- 1.16 Notify Control Room that filter cassette change-out is complete <u>AND</u> to enable any trips associated with applicable monitor.
- 1.17 Ensure custody of removed filter cassette is turned over to a qualified Chemistry Technician.

NOTE:

Reference filter cassette picture (above) and the drawing on the following page as needed.

- 1.1 Release four clasps <u>AND</u> remove filter transport mechanism from metal housing.
- 1.2 Loosen knurled spool locking knob to release take-up spool.
- 1.3 Rotate take-up spool counter clockwise until all old filter-paper is on take-up spool.
- 1.4 Remove used filter roll <u>AND</u> dispose of as contaminated trash.
- 1.5 Ensure internal housing is free of radioactive contamination (Decontaminate as required).
- 1.6 Remove empty supply roll <u>AND</u> place on take-up spool.
- 1.7 Place new filter-paper roll on supply spool with Teflon (smooth side) facing upward.
- 1.8 Pull filter-paper under filter opening <u>AND</u> secure leading edge to take-up spool using attached self-adhesive paper.
- 1.9 Tighten knurled spool locking knob while holding take-up spool <u>AND</u> check that spool does not slip around pin.

Turning the roller counter-clockwise may damage the cam mechanism. The roller is <u>turned clockwise</u> (take-up spool <u>turned counter-clockwise</u>) to ensure paper is taut and the micro-switch engaged.

- 1.10 Ensure cam lobe on roller (see picture above) engages micro-switch.
- 1.11 Place filter transport mechanism into lower metal housing <u>AND</u> close four clasps.
- 1.12 Store filter cassette in an approved storage location for subsequent filter cassette change-outs.

Attachment 6 Energy Calibration

(Pages 25 to 29)

CH-3-4000-01 Rev. 5 Level 2 - Reference Use Page 25 of 55

NOTE:

All Energy Calibration data will be recorded on CH-3-4000-01-F-3, Energy Calibration Data Sheet.

- 1. Notify Shift Manager prior to performing Energy Calibration.
- 1.1 Record last approved "offset", "slope", and "quadratic" values in "Last Approved" column.
- 1.2 Notify Control Room that energy calibration is about to be performed on alpha monitor <u>AND</u> to disable any trips associated with alarms.
- 1.3 Verify that monitor has been running for \geq 3 hours.
- 1.4 Connect laptop to LPDU or LDU.
- 1.5 Open SAMS <u>AND</u> verify communication is established as follows:
 - 1.5.1 Ensure "Network address" is correct for LPDU being tested.
 - 1.5.2 Click "Start Scanning" to find LPDU address.
 - 1.5.3 Verify connector indicator shows communication established (green).
 - 1.5.4 IF connector indicator shows error (red X) THEN repeat from Step 1.5.2.
 - 1.5.5 Click "Ok".
- 1.6 Log into SAMS at Supervisor level or higher.
- 1.7 Ensure SAMS Spectrum window selections are set as follows:
 - 1.7.1 "Alpha Max" (not "Gamma Centroid")
 - 1.7.2 "Log" (not "Lin")
 - 1.7.3 "Counts" (not "cps")
 - 1.7.4 "keV" (not "Channels")
- 1.8 From SAMS "Spectrum" menu select "From Database".
- 1.9 In text box below "Start", enter "0" (or number of other desired spectrum) to review a radon daughter-spectrum AND press "Start".
- 1.10 IF radon daughter-peaks are insufficient, <u>THEN</u> try one of the alternate methods:

1.10.1 From SAMS "Spectrum" menu, select "Cumulated".

1.10.2 Let monitor run for 30 additional minutes AND re-check spectrum.

Attachment 6	CH-3-4000-01
Energy Calibration	Rev. 5 Level 2 - Reference Use
(Pages 25 to 29)	Page 26 of 55

- 1.10.3 To sample room air, let monitor run for approximately 2 hours or for as long as needed to obtain radon daughter-peaks as follows:
 - a. For monitor 1300-562-1MA1:
 - 1. Remove end cap from piping adjacent to valve 1300-562-1A3.
 - 2. Open valve 1300-562-1A3.
 - 3. Close valve 1300-562-1A2.
 - b. For monitor 1001-562-1MA1:
 - 1. Remove end cap from piping adjacent to valve 1001-562-1A46.
 - 2. Open valve 1001-562-1A46.
 - 3. Close valve 1001-562-1A43.
 - c. For monitor 1001-562-1MA2:
 - 1. Remove end cap from piping adjacent to valve 1001-562-1A49.
 - 2. Open valve 1001-562-1A49
 - 3. Close valve 1001-562-1A47.
- 1.10.4 Obtain spectrum from alternate sources (such as Am-241, Th-230, or U-238).
- 1.11 IF radon daughter-peaks have sufficient activity, <u>THEN</u> perform the following:
- 1.11.1 Place markers around radon daughter-peaks and verify "Alpha Max" values are within expected energy ranges (ROI may be used if desired):
 - ²¹⁸Po: 4743 keV±40keV [4703 to 4783]
 - ²¹⁴Po: 6595 kev±50keV [6545 to 6645]
- 1.11.2 Record Alpha Max for each radon daughter-peak.
- 1.11.3 IF peaks are within tolerance, THEN perform the following:
 - a. From SAMS "Calibration" menu select "Full Energy Calibration".
 - b. Record current LPDU offset, slope and quadratic in "As Found" and "As Left" column.
 - c. Go to step 1.13.

Procedure Title: Alpha Monitor (ABPM 201 S) Operation	n
Attachment 6	CH-3-4000-01
Energy Calibration	Rev. 5 Level 2 - Reference Use
(Pages 25 to 29)	Page 27 of 55

- 1.11.4 IF peaks are out of tolerance, <u>THEN</u> perform an energy calibration from SAMS using ²¹⁸Po and ²¹⁴Po as follows (ROI may be used if desired):
 - a. From the SAMS "Calibration" menu select "Full Energy Calibration".

Offset Slope Quadratic Reference peak loc Calibrati tempera	ation 0		LPU 0.9586 10.5000 0.00149 < 0 < 0.0 te to LPU	- 992 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 00 - 100 - 10 - 1	200	edos sobo sobo selv
and a local de la seconda d	Ene	ergy ca	libration poi	nts		Last calibration date
The second second	nnel Energy (A	ale procession	Channel	Energy (ke)	BAZ	1969/12/31 19:00 Next calibration date
1 1	4743.00	and states	3 683 4 0	0.00	Calculate	OK Cancel

- Record current offset, slope and quadratic from LPDU under "As Found" column.
- c. Press "Ok" to close calibration window.
- d. Place markers around ²¹⁸Po peak so that SAMS can calculate alpha maximum energy.
- e. From SAMS "Calibration" menu select "Set as energy cal point".
- f. Enter expected energy (4743 keV) of ²¹⁸Po in corresponding energy box.
- g. Press "Calculate".
- h. Close window.
- i. Place markers around ²¹⁴Po peak.
- j. From SAMS calibration menu SAMS select "Set as energy cal point".
- k. Enter expected energy (6595 keV) of ²¹⁴Po in corresponding energy box.
- I. Press "Calculate".
- m. Enter '10' for energy and '1' for channel number in one of the available sets of text boxes for energy and channel (for example, 3).
- n. Press "Calculate".
- o. Press >> (Transfer button) to transfer updated coefficients.

Attachment 6 Energy Calibration (Pages 25 to 29)

CH-3-4000-01 Rev. 5 Level 2 - Reference Use Page 28 of 55

- p. Press "Write to LPU".
- q. Press "Backup to EEPROM".
- r. Save adjustments/calibration by creating a backup of the parameter file on the laptop. (example: 2008 energy calibrations).
- s. Record offset, slope, and quadratic from LPDU under "As Left" column.
- 1.12 <u>IF</u> sufficient radon daughter-peaks have not been obtained, <u>THEN</u> repeat from step 1.11 to perform an energy calibration from SAMS using alternate sources as required.
- 1.13 IF valves were opened in order to get a spectrum, THEN restore as follows:

1.13.1 For monitor 1300-562-1MA1, perform the following:

- a. Open valve 1300-562-1A2.
- b. Close valve 1300-562-1A3.
- c. Replace end cap on piping adjacent to valve 1300-562-1A3.
- 1.13.2 For monitor 1001-562-1MA1, perform the following:
 - a. Open valve 1001-562-1A43.
 - b. Close valve 1001-562-1A46.
 - c. Replace end cap on piping adjacent to valve 1001-562-1A46.
- 1.13.3 <u>For monitor 1001-562-1MA2</u>, perform the following:
 - a. Open valve 1001-562-1A47.
 - b. Close valve 1001-562-1A49
 - c. Replace end cap on piping adjacent to valve 1001-562-1A49.
- 1.14 Set Points and Alarm Verification:
 - 1.14.1 Open MASS2 software <u>AND</u> verify unit being calibrated is found.
 - 1.14.2 Close SAMS software if required to improve response.
 - 1.14.3 Right click on "AlphaAct" channel.
 - 1.14.4 Select "Change trip points".
 - 1.14.5 Verify/record setpoints for alpha activity in "As Found":
 - a. High: 3.7E-12 µCi/cc OR 0.14 Bq/m³
 - b. High High: $7.3E-12 \ \mu \text{Ci/cc} \ OR \ 0.27 \ \text{Bq/m}^3$
 - 1.14.6 <u>IF</u> setpoints are correct, <u>THEN</u> record "As Left" and proceed to Step 1.15.

Attachment 6	CH-3-4000-01
Energy Calibration	Rev. 5
(Pages 25 to 29)	Level 2 - Reference Use Page 29 of 55

- 1.14.7 <u>IF</u> setpoints are incorrect, <u>THEN</u> proceed as follows:
 - a. Change setpoints to approved values above.
 - b. Click "Save", "Write", and "OK".
 - c. Ensure corrected setpoint(s) are independently verified.
 - d. Notify Control Room.
 - e. Notify Radiation Protection Manager, Chemistry Services Manager, Chemistry Supervisor, and Environmental Compliance Officer immediately, <u>AND</u> Proceed as directed.
 - f. Initiate a condition report (CR) per CA-3-1000-01, Performance Improvement Program to document situation and subsequent investigation as required.
 - g. Record CR number under "Remarks" section of data sheet.
- 1.15 Perform a RamSys backup as required.
- 1.16 Close SAMS and MASS2 <u>AND</u> disconnect laptop.
- 1.17 Notify Control Room that Energy Calibration is complete satisfactorily <u>AND</u> to enable any trips associated with applicable monitor.

Attachment 7 Source Calibration

(Pages 30 to 38)

CH-3-4000-01 Rev. 5 Level 2 - Reference Use Page 30 of 55

NOTE:

All Source Calibration data will be recorded on CH-3-4000-01-F-1, Source Calibration Data Sheet.

- 1. Test Conditions
- 1.1 Record ambient temperature of displayed channel (limits: 15 to 35 °C).
- 1.2 Record relative humidity of displayed channel (limits: <90% with no visible condensation).
- 1.3 <u>IF</u> test conditions are within limits, <u>THEN</u> proceed with source calibration. <u>IF</u> NOT, <u>THEN</u> coordinate with Operations to establish conditions within limits.
- 2. Preliminary Steps
- 2.1 Notify Shift Manager prior to performing this section (2).
- 2.2 Notify Control Room that alpha monitor source calibration (on functional Location XX) is ready to start <u>AND</u> to disable associated alarms/trips.
- 2.3 DO NOT proceed until notification by Operations that alarms are disabled.
- 2.4 Perform Energy Calibration.
- 2.5 Verify monitor is operational with NO alarming condition.
- 2.6 Connect laptop to LDU.
- 2.7 Open MASS2 <u>AND</u> verify LPDU is found.
- 2.8 Log into MASS2 at Supervisor level or higher.
- 2.9 Place LDU into bypass mode from MASS2 as follows:
 - 2.9.1 Right click on LDU box AND select "Commands".
 - 2.9.2 Select "Enable Bypass (relay off)".
- 2.10 Close MASS2 as required to improve computer performance.
- 2.11 Open SAMS <u>AND</u> verify communication as follows:
 - 2.11.1 Ensure "Network address" is correct for LPDU being tested.
 - 2.11.2 Click "Start Scanning" to find LPDU address.
 - 2.11.3 Verify connector indicator shows communication established (green).
 - 2.11.4 <u>IF</u> connector indicator shows error (red X), <u>THEN</u> check connections <u>AND</u> repeat from Step 2.11.1.
 - 2.11.5 Click "Ok".
- 2.12 Log into SAMS at Supervisor level or higher.
- 2.13 From PDCU place pump control switch to OFF.

Attachment 7	CH-3-4000-01
Source Calibration	Rev. 5
(Pages 30 to 38)	Level 2 - Reference Use Page 31 of 55

- **3.** Gain Verification
- 3.1 Pull elevator handle to disengage, <u>THEN</u> lift to lower elevator.
- 3.2 Remove filter cassette.
- 3.3 Disconnect filter cassette power cable.
- 3.4 Circle source being used on the datasheet.

NOTE:

The ²⁴¹Am source is fragile and must be handled with care. Care must be taken to avoid touching <u>OR</u> striking the active side of the source against objects that may damage it.

- 3.5 Place ²⁴¹Am source in calibration source fixture such that source seats in the small recess and active area faces up out of the fixture.
- 3.6 Place calibration source fixture with source on elevator, ensuring proper seating.
- 3.7 Pull elevator handle out to disengage, <u>THEN</u> push down gently to close (raise) elevator.
- 3.8 Set up SAMS Spectrum window ensuring the following selections:
 - 3.8.1 "Alpha Max" (not "Gamma Centroid")
 - 3.8.2 "Log" (not "LIN")
 - 3.8.3 "Counts" (not "cps")
 - 3.8.4 "Channels" (not "keV")
- 3.9 From SAMS "Spectrum" menu select "Real time".
- 3.10 Enter "300" in "True Time" box.
- 3.11 Click "Start" to perform spectrum acquisition.

D----**0**

- 3.12 <u>IF</u> (after a short delay) spectrum does not start acquiring ("true time" not changing), <u>THEN</u> close SAMS software <u>AND</u> restart if needed, as follows:
 - 3.12.1 Open SAMS AND verify communications as follows:
 - a. Ensure "Network address" is correct for LPDU being tested.
 - b. Click "Start Scanning" to find LPDU address.
 - c. Verify connector indicator shows communication established (green).

Attachment 7	CH-3-4000-01
Source Calibration	Rev. 5 Level 2 - Reference Use
(Pages 30 to 38)	Page 32 of 55

- d. <u>IF</u> connector indicator shows error (red X) <u>THEN</u> check connections <u>AND</u> repeat from step 3.12, as required.
- e. Click "Ok".

3.12.2 Log into SAMS at Supervisor level or higher.

- 3.13 Check that a clear alpha peak is visible.
- 3.14 Place markers around peak and record Alpha Max value in "Peak Channel" As Found box (ROI may be used if desired).
- 3.15 IF peak is 419 ± 20 (399 to 439) channels it is acceptable, THEN proceed as follows:

3.15.1 From "Calibration" menu, select "Electronic Calibration" submenu.

PIPS Electronic Calibration			
Acquisition Threshold (channels)			
S S	Spectro output :		
Alpha Bêta	êta Г		100
Gamma	₽ \$0.8900		
<u>₩</u> rite to LPU	<u>B</u> ackup to	EEPROM	Done

3.15.2 Record displayed alpha-beta gain in "Alpha-Beta Gain" As Found box.

- 3.15.3 Record displayed gamma gain in "Gamma Gain" As Found box.
- 3.15.4 Record "N/A" in the following boxes:
 - "Peak Channel" As Left.
 - "Alpha-Beta Gain" As Left.
 - "Gamma Gain" As Left.

3.15.5 Go to step 3.17.

Procedure Title: Alpha Monitor (ABPM 201 S) Operat	tion
Attachment 7	CH-3-4000-01
Source Calibration	Rev. 5 Level 2 - Reference Use
(Pages 30 to 38)	Page 33 of 55

- 3.16 IF peak is NOT within limits, THEN adjust alpha-beta gain as follows:
 - 3.16.1 From "Calibration" menu, select "Electronic Calibration" submenu.

PIPS Electronic Calibration				
Acquisition Threshold (channels) 🜲 🛓				
Spectro output : Gain :				
Alpha Bêta	Г	€0.8600		
Gamma	F	€0.8900		
<u>W</u> rite to LPU	Backup	to EEPROM <u>D</u> one		

- 3.16.2 Record displayed alpha-beta gain in "Alpha-Beta Gain" As Found box.
- 3.16.3 Record displayed gamma gain in "Gamma Gain" As Found box.
- 3.16.4 Adjust the "Alpha Beta" gain (increase gain to shift to a higher channel).
- 3.16.5 From SAMS "Spectrum" menu select "Real time".
- 3.16.6 Enter "300" in "True Time" box.
- 3.16.7 Click "Start" to perform spectrum acquisition.
- 3.16.8 Repeat from steps 3.16 until alpha peak location is correct.
- 3.16.9 Record Alpha Max value in "Peak Channel" As Left box.
- 3.16.10 Record alpha-beta gain in "Alpha-Beta Gain" As Left box.
- 3.16.11 Calculate as follows and record in "Gamma Gain" As Left box.

 $\label{eq:Gamma Gain As Left} \begin{aligned} \text{Gamma Gain As Left} &= \frac{\left(\text{Alpha}-\text{Beta Gain As Left}\right)\left(\text{Gamma Gain As Found}\right)}{\left(\text{Alpha}-\text{Beta Gain As Found}\right)} \end{aligned}$

- 3.16.12 Update gamma gain in Electronics Calibration window.
- 3.16.13 Press "Write to LPU".
- 3.17 Close SAMS software as needed to improve computer performance.
- 3.18 Pull elevator handle to disengage, <u>THEN</u> lift to lower elevator.
- 3.19 Remove calibration source from calibration source fixture.
- 3.20 Place empty fixture on elevator <u>AND</u> push handle down to gently raise elevator.

Attachment 7			
Source Calibration			
(Pages 30 to 38)			

CH-3-4000-01 Rev. 5 Level 2 - Reference Use Page 34 of 55

- 4. Detection Efficiency Check
- 4.1 Open MASS2.
- 4.2 Log into MASS2 at Supervisor level or higher.
- 4.3 From MASS2, display historical trend for "Alpha_cps" <u>AND</u> "Po21x_cps" gross counting rate channels as follows:
 - 4.3.1 Right click on "Alpha_cps" channel <u>AND</u> select "Display historical trend".
 - 4.3.2 Right click on "Po21x_cps" channel <u>AND</u> select "Display historical trend".
 - 4.3.3 Ensure "Automatic Refresh" is selected for "historic" menu window.

NOTE:

A minimum of five data points (discard first point) are used in the historical trend for each channel to determine average.

- 4.4 Wait until measurement is stable.
- 4.5 From "Alpha_cps" <u>AND</u> "Po21x_cps" historic menu in each window select "10 minute average" <u>AND</u> analyze historical trend for each channel.
- 4.6 Record average background count rate for "Alpha_cps" <u>AND</u> "Po21x_cps".
- 4.7 <u>IF</u> background count rate is ≥0.005 cps, <u>THEN</u> decontaminate housing and repeat section 4, "Detection Efficiency Check" until correct readings are obtained.
- 5. Measurement with ²⁴¹Am Alpha Source
- 5.1 Pull elevator handle to disengage, <u>THEN</u> lift to lower elevator.
- 5.2 Remove empty calibration source fixture from elevator.

NOTE:

The ²⁴¹Am source is fragile and must be handled with care. Care must be taken to avoid touching <u>OR</u> striking the active side of the source against objects that may damage it.

- 5.3 Place ²⁴¹Am source in the calibration source fixture such that source seats in the small recess and the active area faces up out of the fixture.
- 5.4 Place calibration source fixture with source on elevator ensuring proper seating.
- 5.5 Pull elevator handle to disengage, <u>THEN</u> push down to gently close (raise) elevator.
- 5.6 Open SAMS.<u>AND</u> Login at Supervisor level or higher.

Attachment 7	CH-3-4000-01
Source Calibration	Rev. 5
(Derroe 20 to 28)	Level 2 - Reference Use
(Pages 30 to 38)	Page 35 of 55

- 5.7 From SAMS "Spectrum" menu, select "Real Time" and start acquisition.
- 5.8 Verify alpha peak is visible.

NOTE:

A minimum of five data points (discard first point) are used in the historical trend for each channel to determine the average.

- 5.9 From MASS2 perform the following:
 - 5.9.1 Right click on "Alpha_cps" channel <u>AND</u> select "display historical trend".
 - 5.9.2 From "historic" menu, select "10 minute average".
 - 5.9.3 Right click on "Po21x_cps" channel <u>AND</u> select "display historical trend".
 - 5.9.4 From historic menu, select "10 minute average".
 - 5.9.5 Record Alpha_cps channel average count rate (use as "S" in Step 6.1).
 - 5.9.6 Record average count rate for Po21x_cps channel.
- 6. Detection Efficiency Calculation for Source

NOTE:

Because ²⁴¹Am half-life is ~432 years, source decay correction is not required.

6.1 Calculate <u>AND</u> record detector efficiency (Eff) in cps/Bq as follows:

Eff = S/A

Where "S" = Alpha_cps source value determined in Step 5.9.5 Where "A" = 241 Am source activity, (e.g., 2980 Bq for Serial number F5-247 or 3295 Bq for Serial number F8-940)

- 6.2 <u>IF</u> efficiency is between ±10% of 0.037 (0.0333 to 0.0407) cps/Bq (factory Pu-238 solid source determined rate), <u>THEN</u> detector is satisfactory; proceed to step 7.
- 6.3 <u>IF</u> efficiency is outside limits <u>THEN</u> detector must be replaced. Perform the following:
 - 6.3.1 Notify Control Room that detector is out of service.
 - 6.3.2 Notify Radiation Protection Manger, Chemistry Services Manager, Chemistry Supervisor and Environmental Compliance Officer.
 - 6.3.3 Initiate a condition report (CR) per CA-3-1000-01, Performance Improvement Program to document status.

Attachment 7	CH-3-4000-01		
Source Calibration	Rev. 5 Level 2 - Reference Use		
(Pages 30 to 38)	Page 36 of 55		

- 6.3.4 Record CR number in "Remarks" section of data sheet.
- 6.3.5 Initiate a Maintenance work request (or equivalent) to replace detector, including, "source calibration shall be performed prior to return to service".
- 6.3.6 Ensure compensatory actions for out-of-service monitor are in place.
- 6.4 <u>IF</u> detector is replaced, <u>THEN</u> repeat entire Source Calibration.
- 7. Alarms Verification
- 7.1 Pull elevator handle to disengage, <u>THEN</u> lift to lower elevator.
- 7.2 Remove source and source fixture.
- 7.3 Replace filter cassette <u>AND</u> reconnect power cable.
- 7.4 Pull elevator handle to disengage, <u>THEN</u> push down to gently close (raise) elevator.
- 7.5 From PDCU place pump control switch to AUTO.
- 7.6 Ensure system is operating properly with no faults.
- 7.7 Right click appropriate LPDU box, select "Commands", <u>THEN</u> select "Go to Maintenance Mode".
- 7.8 Right click appropriate LDU box select "Configuration", <u>THEN</u> select "LEDS and Relays".
- 7.9 Uncheck "Invert Relay Logic" as required <u>THEN</u> "Save".
- 7.10 Right click appropriate LDU box, select "Commands", <u>THEN</u> select "Go to Normal Mode"
- 7.11 Right click LDU THEN click "Display Relay Status".
- 7.12 Verify relays status as follows:

Relay	Status
Operate	ON
Test	OFF
Alert	OFF
High	OFF
High/High	OFF

Procedure Title: Alpha Monitor (ABPM 201 S) Operation	n
Attachment 7	CH-3-4000-01
Source Calibration	Rev. 5 Level 2 - Reference Use
(Pages 30 to 38)	Page 37 of 55

- 7.13 Right click appropriate LDU box, select "Commands" <u>THEN</u> select "Measurement Output Emulation" to open output emulation window.
- 7.14 Ensure "Output Emulation" is similar to example below:

Output Emulation					
]	Step	Command	Channel	Parameter	
	1	Set LPU in hardware fault	indie auf de mei beneur interneur 21) ad bie er bei er bedele miel en er bien auf en auf en ar in an er en er	and and the second s	•
	2	Set LPU in hardware fault		0	
	. 3	Set LPU in hardware fault		0	
	4	Set channel High alarm DN (Use High threshold)	AlphaAct	0	
	5	Set channel High alarm ON (Use High threshold)	AlphaAct	0	
	.6	Set channel High alarm ON (Use High threshold)	AlphaAct	0	
	.7	Set channel Hig/High alarm ON (Use Hig/High threshold)	AlphaAct	0	
	. 8	Set channel Hig/High alarm ON (Use Hig/High threshold)	AlphaAct	0	
	. 9	Set channel Hig/High alarm ON (Use Hig/High threshold)	AlphaAct	0	=
	t10	End output emulation			
	.11				
	12				
	13				
	. 14				
	.15				
	. 16				
	17				
	18				
	. 19				
		START OUTPUT EMUL	ATION		
	Help	Save Load	Compare	Write	

7.15 Click on "Start Output Emulation" <u>AND</u> verify the response is as follows:

Scenario	Monitor Status	Relay Status (read from MASS2)			Buzzer		
	Status	OP	TST	Н	H/H		
High alarm (modify LPDU threshold)	H alarm	ON	ON	ON	OFF	Medium	
H/H alarm (modify LPDU threshold)	H/H alarm	ON	ON	ON	ON	Fast	
Fault (shut down sample pump)	Slave fault	OFF	ON	OFF	OFF	Continuous	

7.16 Ensure system is returned to normal (verify setpoints and not in bypass).

7.17 <u>IF</u> system provides expected responses, <u>THEN</u> proceed to Step 8.

Attachment 7	CH-3-4000-01		
Source Calibration	Rev. 5 Level 2 - Reference Use		
(Pages 30 to 38)	Page 38 of 55		

- 7.18 IF system failed to provide expected response, <u>THEN</u> monitor is out of service.
 - 7.18.1 Notify Control Room.
 - 7.18.2 Notify Radiation Protection Manager, Chemistry Services Manager, Chemistry Supervisor and Environmental Compliance Officer immediately.
 - 7.18.3 Initiate a condition report (CR) using CA-3-1000-01, Performance Improvement Program to document the situation.
 - 7.18.4 Record CR number under "Remarks" section of data sheet.
 - 7.18.5 Initiate a Maintenance work request (or equivalent) for repairs.
 - 7.18.6 Ensure compensatory actions for out of service monitor are in place.
- 8. Final Steps
- 8.1 <u>IF gain adjustment was performed, THEN, after valid radon daughter-spectrum has been acquired, perform energy calibration per Attachment 6, Energy Calibration.</u>
- 8.2 Close MASS2 and SAMS software as required.
- 8.3 Shut down computer <u>AND</u> remove cables.
- 8.4 <u>IF</u> all tasks are complete, <u>THEN</u> notify Control Room that source calibration is completed satisfactorily <u>AND</u> to enable any trips associated with applicable monitor.

Attachment 8 Power Up and Quick Start-Up (Pages 39 to 39)

CH-3-4000-01 Rev. 5 Level 2 - Reference Use Page 39 of 55

- 1. Power Up and Quick Start-Up
- 1.1 Notify Shift Manager prior to performing this section.
- 1.2 Notify Control Room that power up is about to be performed on alpha monitor <u>AND</u> to disable any trips associated with alarms.
- 1.3 Ensure there is flow through system being monitored.
- 1.4 Ensure elevator is closed (up).
- 1.5 Position LPDU key operated switch to ON.
- 1.6 Verify startup tests of LPDU as follows:
 - 1.6.1 Buzzer sounds for approximately one second.
 - 1.6.2 Orange light illuminates for approximately one second.
 - 1.6.3 Red light illuminates for approximately one second.
- 1.7 <u>IF startup tests fail, THEN turn LPDU key operated switch to OFF AND</u> repeat from Step 1.5.
- 1.8 IF startup test fails a second time, <u>THEN</u> proceed as follows:
 - 1.8.1 Initiate a Condition Report to document out of service status.
 - 1.8.2 Initiate a Maintenance work request (or equivalent) for repairs.
 - 1.8.3 Notify Control Room that monitor is out of service and that compensatory measures may be required.
 - 1.8.4 Notify Chemistry Supervision that monitor is out of service and compensatory measures may be required.
- 1.9 Open V6 (PFCV Bypass).
- 1.10 Position pump control hand switch on PDCU to AUTO.
- 1.11 Verify the sample pump starts.
- 1.12 Close V6 (PFCV Bypass).
- 1.13 Verify LPDU comes up to normal operating status.
- 1.14 Turn power switch inside LDU cabinet to ON.
- 1.15 Verify LDU comes up to normal operating status (green light is on).
- 1.16 <u>IF</u> LDU fault light is on, <u>THEN</u> re-cycle power switch inside LDU cabinet OFF, <u>THEN</u> ON, <u>AND</u> verify LDU comes to normal operating status.
- 1.17 Notify Control Room that startup is complete and satisfactory on alpha monitor <u>AND</u> to enable any trips associated with applicable monitor
- .1.18 Ensure Chemistry is notified of monitor start-up date and time.

Attachment 9 Shutdown (Pages 40 to 40) CH-3-4000-01 Rev. 5 Level 2 - Reference Use Page 40 of 55

1. Shutdown

CAUTION:

Monitor should not be turned OFF without compensatory actions in place when there is discharge from this release point (flow out the stack).

- 1.1 Notify Shift Manager prior to performing this section.
- 1.2 Notify Control Room that shutdown is about to be performed on the alpha monitor <u>AND</u> to disable any trips associated with alarms.
- 1.3 Verify plant conditions support shutdown of monitor.
- 1.4 Position power switch inside LDU cabinet to OFF.
- 1.5 Position pump control hand switch on PDCU to OFF.
- 1.6 Position LPDU key operated switch to OFF.
- 1.7 Notify Control Room that shutdown is complete and satisfactory on the alpha monitor <u>AND</u> to enable any trips associated with this monitor.
- 1.8 Ensure Chemistry is notified of date and time monitor is shutdown.

Attachment 10 Alarm Setpoints (Pages 41 to 42)

NOTE:

- Alarm setpoints are established to prevent exceeding any regulatory limits.
- Alarm Setpoint changes must be evaluated and approved by the Radiation Protection Manager.
- Information for determining α setpoints is found in Attachment 12, Alpha Setpoint Information and Background.
- Daily readings and alarm setpoints are recorded by the Operator using eSoms or an equivalent system.
- 1. Alarm Response
- 1.1 Alpha Activity
 - 1.1.1 Setpoint for 1300-562-1MA1 (in μCi/cc), 1001-562-1MA1 (in Bq/m³), and 1001-562-1MA2 (in Bq/m³):
 - a. High: 3.7E-12 µCi/cc <u>OR</u> 0.14 Bq/m³
 - b. High High: 7.3E-12 μ Ci/cc OR 0.27 Bq/m³
 - 1.1.2 Actions for a valid alarm response are contained in the following procedures:
 - •
 - OP-3-2000-01, Hazardous Release Response
 - OP-3-0590-01, Centrifuge Test Facility Alarm Response
 - OP-3-0660-01, Gaseous Effluent Ventilation System

1.2 Inoperable Monitor

- 1.2.1 Perform compensatory actions to ensure continuous collection of particulate sample during times of effluent release from the stack.
- 1.2.2 HF monitor may be used for trending activity release from the stack but an air filter must be collected as well.
- 1.2.3 Examples of compensatory actions include:
 - Alternate alpha monitor is in service.
 - Collection of particulate sample using a CAM.
 - Collection of particulate sample using portable air sampler.

Attachment 10	CH-3-4000-01
Alarm Setpoints	Rev. 5 Level 2 - Reference Use
(Pages 41 to 42)	Page 42 of 55

1.3 Latch Release

- 1.3.1 After performing alarm response actions, it may be necessary to release the LPDU latch, as follows:
 - a. Simultaneously press both "Scroll" keys.
 - b. Enter the pass code (for example, 0000).
 - c. Press "Scroll" key to "OK" <u>AND</u> press "Select" key until the command screen is displayed.
 - d. Press "Scroll" key to "CD" <u>THEN</u> press "Select" key until "RELEASE LATCH" is displayed.
 - e. Press "Scroll" key to "EXE" <u>AND</u> press "Select" key.

NOTE:

Changing setpoints requires notification and approval by the Radiation Protection Manager <u>AND</u> revision of this procedure.

1.4 Changing Setpoints

- 1.4.1 Notify Control Room that setpoints are about to be changed on the alpha monitor <u>AND</u> to disable any trips associated with alarms.
- 1.4.2 Change setpoints as follows:
 - a. Connect a laptop to LPDU and log into MASS2 as Supervisor or higher.
 - b. Right click on LPDU channel to be changed.
 - c. Select "Change trip points".
 - d. Change incorrect setpoint.
 - e. Click "Save", "Write", and "OK".
 - f. Ensure a independent verification of corrected setpoint(s) is performed.
- 1.4.3 Log off and disconnect laptop.
- 1.4.4 Notify Control Room that alpha monitor setpoints have been changed and verified <u>AND</u> to enable trips associated with alarms, as applicable.

Attachment 11 Filter Analysis and Review

(Pages 43 to 45)

CH-3-4000-01 Rev. 5 Level 2 - Reference Use Page 43 of 55

1. Filter Analysis and Review

NOTE:

Effluent samples may be analyzed onsite or shipped to an independent laboratory approved for analysis URENCO USA Quality Assurance. Samples may be shipped to offsite vendor on monthly <u>OR</u> quarterly basis.

1.1 Weekly Filter Analysis

- 1.1.1 Gaseous samples collected from the same sample point may be combined for analysis if they represent a sampling period of one week or less.
- 1.1.2 Complete and retain a copy of a Chain of Custody Form for shipment of sample (Chain of Custody form is supplied by the vendor).
 - a. Ensure the form is marked to notify the vendor to retain samples for quarterly composite analysis.
- 1.1.3 Sample is to be analyzed for gross alpha and gross beta.
- 1.1.4 Package the filter for shipment.
- 1.1.5 WHEN results are returned, <u>THEN</u> fill in appropriate fields on CH-3-4000-01-F-4, Quarterly Filter Data.
- 1.2 Quarterly Filter Analysis
 - 1.2.1 Complete a Chain of Custody Form for shipment of composite sample (Chain of Custody form is supplied by the vendor).
 - 1.2.2 Composite is to be analyzed for isotopic content of Uranium.
 - 1.2.3 <u>WHEN</u> analysis is complete, <u>THEN</u> fill in appropriate fields on CH-3-4000-01-F-4.
- 1.3 Review of Filter Results
 - 1.3.1 Verify that Minimum Detectable Concentration/Lower Limits of Detection (MDC/LLD) have been met for the analysis performed.
 - 1.3.2 As prescribed by 10 CFR 20.2101, radioactivity shall be reported in the Curie unit, including multiples and subdivisions, and the units of all quantities clearly indicated.
 - a. Radionuclide concentrations shall be reported in microcuries per milliliter.
 - b. Quantities may be recorded in SI units in parentheses following the units specified above.

Procedure Title: Alpha Monitor (ABPM 201 S) Operation	
Attachment 11	CH-3-4000-01
Filter Analysis and Review	Rev. 5 Level 2 - Reference Use
(Pages 43 to 45)	Page 44 of 55

1.3.3 The verified results of effluent sample analyses shall be compared against the action level values listed in the table below:

Analysis Frequency	Analysis Type	MDC / LLD (µCi/ml)	Action Level 1 (µCi/ml)	Action Level 2 (µCi/ml)	Action Level 3 (µCi/ml)
Weekly	Gross alpha	1.0E-14	2.5E-14	1.0E-13	N/A
VVEEKIY	Gross beta	1.0E-14	2.5E-14	1.0E-13	N/A
Quarterly (composite by sample point)		1.0E-14	2.5E-14	1.0E-13	1.0E-12

- 1.3.4 Effluent related corrective actions shall be instituted when an action level value for any measured parameter is exceeded.
- 1.3.5 <u>IF</u> the verified result of any analysis exceeds an action item value, <u>THEN</u> a Condition Report shall be initiated.
- 1.3.6 Additional actions to be taken are dependent on the action level exceeded, and are as follows:
 - a. Action Level 1: Consideration given to increasing the frequency of sampling and analysis, reviewing plant operations for the possible source(s) of the increase, obtaining and analyzing a replicate sample, and /or restricting personnel access to affected areas.
 - b. Action Level 2: Frequency of sampling and analysis increased; plant operations reviewed for the possible source(s) of the increase; a replicate sample obtained and analyzed and personnel access to affected areas restricted, as appropriate; and corrective measures implemented to reduce future results to below any action level.
 - c. Action Level 3: Actions listed for action Level 2 performed. Additionally, corrective actions shall be implemented to ensure root cause(s) are immediately identified and corrected; appropriate regulatory agencies notified, as required; communications to address lessons learned are made to appropriate personnel; and applicable procedures as needed.
- 1.3.7 <u>IF</u> any dose limit of 10 CFR 20, 40 CFR 190, or 10 CFR 70 is exceeded, <u>OR</u> any sample analysis action level described herein is exceeded, <u>THEN</u> a condition report (CR) shall be generated.

Procedure Title: Alpha Monitor (ABPM 201 S) Operat	ion
--	-----

Attachment 11	CH-3-4000-01
Filter Analysis and Review	Rev. 5 Level 2 - Reference Use
(Pages 43 to 45)	Page 45 of 55

- 1.3.8 <u>IF</u> an incident results in a dose limit or constraint in 10 CFR 20, 40 CFR 190, or 10 CFR 70 being exceeded, <u>THEN:</u>
 - 1) The URENCO USA Compliance Officer and staff shall immediately determine reportability as per 10 CFR 20.2202, 10 CFR 20.2203 and/or 10 CFR 70.50, and 10 CFR 70.74 <u>AND</u> take appropriate action.
 - 2) The NRC shall be informed of corrective action(s) taken <u>OR</u> planned to prevent recurrence and the schedule established to achieve full compliance.
- 1.3.9 Filter analysis results, copies of the analysis report and the chain of custody paperwork will be forwarded to Environmental Compliance Officer to be used in the Semi-Annual Radiological Effluent Release Rate Report for the NRC.
- 1.3.10 Daily reading and/or historical trends will be correlated against the gross αβ reading and the isotopic analysis results by the Radiation Protection Manager. Results shall be made available to the Environmental Compliance Officer and Safeguards.

Procedure Title: Alpha Monitor (ABPM 201 S) Operation	
Attachment 12 Alpha Setpoint Information and Background (Pages 46 to 48)	CH-3-4000-01 Rev. 5 Level 2 - Reference Use Page 46 of 55

Alpha Monitor Setpoints

Regulatory requirements that deal with dose limits and compliance with dose limits for individual members of the public are found in 10 CFR 20.

With respect to using § 20.1302(b)(2)(i) for demonstrating compliance with the annual dose limit, the URENCO USA Environmental Report (ER) states that ²³⁴U, ²³⁵U, ²³⁶U, and ²³⁸U are expected to be the primary isotopes of concern in gaseous effluent, with ²³⁴U and ²³⁸U being the principal isotopes with respect to the dose equivalent contribution to individuals. The ER also states that the most significant UF₆ reaction products will be hydrogen fluoride (HF), uranyl fluoride (UO₂F₂), and small amounts of uranium tetrafluoride (UF₄).

Based on the above, the annual average effluent concentration selected from table 2 of appendix b to part 20 for demonstrating compliance should be based on the most restrictive concentration listed for any of the four uranium isotopes, ²³⁴U, ²³⁵U, ²³⁶U, and ²³⁸U, based on their retention time in the pulmonary region of the lung. With respect to selecting an annual average effluent concentration to be used as a limit, two of the three ER described chemical forms, HF and UO_2F_2 , are listed in part 20 as Class D compounds, but UF₄ is listed as a Class W compound. However, the average effluent concentration for Class W compounds is the same for all four isotopes and is listed as 1.0E-12 µCi/ml. This means that breathing contaminated air at this concentration would result in 50 mrem TEDE, if inhaled continuously for a year.

Based on the above, the effluent concentration specified in table 2 of appendix B to part 20 must be reduced by a factor of 5 (50 mrem / 10 mrem = 5) in order to ensure compliance with § 20.1101 (d). Therefore, the annual average effluent concentration to be used would be:

1.0E-12
$$\mu$$
Ci/ml / 5 = 2.0E-13 μ Ci/ml (7.4x10⁻⁹ Bq/m³) [1]

The specified effluent concentrations in Table 2 are partially based on the occupational stochastic inhalation ALI (2 μ Ci for all four uranium isotopes) which includes an exposure time assumption of 2000 hours per year for an occupational worker multiplied by an additional factor to adjust for the differences in exposure time and inhalation rate between a worker and members of the public. As exposure time for members of the public is assumed to be 8760 hrs per year, a ratio determined by dividing 8760 by a shorter or longer exposure time-period can be multiplied by the annual average effluent concentration and the result would be a new effluent concentration that, if inhaled continuously for the selected time-period, would yield the same dose. Therefore, to establish an effluent concentration in air that would result in 10 mrem TEDE, if inhaled continuously over 24 hours, determine the ratio between 8760 and 24 and multiply the result by the effluent concentration determined in [1] above:

$$(8760 \text{ hrs} / 24 \text{ hrs}) \times 2.0\text{E}-13 \ \mu\text{Ci/ml} = 7.3\text{E}-11 \ \mu\text{Ci/ml} \ (2.7 \times 10^{-6} \text{ Bq/m}^3)$$
 [2]

Procedure Title: Alpha Monitor (ABPM 201 S) Operation	
Attachment 12 Alpha Setpoint Information and Background (Pages 46 to 48)	CH-3-4000-01 Rev. 5 Level 2 - Reference Use Page 47 of 55

It is also advisable to base effluent alarm setpoints on a small fraction of the limiting concentration to ensure doses to members of the public are ALARA. Herein the fraction used is 10%. Using the value determined in [2], the average effluent concentration that, if inhaled continuously over 24 hours, would result in a dose of 1 mrem TEDE (10 mrem x 0.1) would be:

7.3E-11 μ Ci/ml x 0.1 = 7.3E-12 μ Ci/ml (2.7x10⁻⁷ Bq/m³) [3]

It should be noted that the requirement in § 20.1302(b)(2)(i) applies "at the boundary of the unrestricted area" and as the NEF release points are some distance from this boundary (approximately 1,400 ft) and at ground level, the effluent concentration measured at the release point would be reduced to a very small fraction (0.002% - 0.005% from dispersion) by the time it reaches the unrestricted area boundary. This would introduce an additional and very large level of conservatism in the estimated TEDE to members of the public because of atmospheric dispersion (χ/Q) and plume depletion.

To determine whether the effluent monitor to be used at the NEF has the required sensitivity to meet the concentration in [3] without applying factors to account for dispersion and depletion, the user manual for the ABPM 201-S Alpha Beta Particulate Monitor¹ was reviewed and was found to list the measurement range for alpha volumetric activity as 10^{-2} Bq/m³ to 10^{4} Bq/m³ which results in a range of 2.7E-13 µCi/ml to 2.7E-7 µCi/ml. The manual also states that the monitor provides dynamic compensation for the progeny of ²²⁰Rn (Radon) and ²²²Rn (Thoron), thus eliminating potential confounders to a reasonably accurate determination of volumetric activity.

¹ ABPM 201-S Alpha Beta Particulate Monitor User's Manual, 15-00068, Measurement Channels

Based on the cited monitor measurement range, a monitor alarm setpoint at the value in [3] above (in μ Ci/ml), would be more than a decade above the minimum sensitivity of the monitor and would not require any correction for the presence of naturally occurring radioisotopes on the filter. Therefore, the concentration determined in [3] will be established as the "HH" (Hi-Hi) alarm setpoint.

For Hot Acceptance Testing (HAT) there will be only one effluent release point, while during full operation there may be as many as four. Therefore, concentration used for the "HH" alarm setpoint could be reduced by another factor to account for the potential of multiple releases at the same time during facility operation. While the factor could be as low as 25%, it is thought highly unlikely that releases would occur simultaneously from multiple release points. Based on this, an additional reduction factor to be used herein to account for the potential for simultaneous releases is 50%. As a result, the monitor alarm setpoint concentration determined in [3] would be reduced to a level that, if inhaled continuously over 24 hours at the unrestricted area boundary, would result in a dose of 0.5 mrem TEDE (1 mrem x 0.50):

7.3E-12 μ Ci/ml x 0.50 = 3.7E-12 μ Ci/ml (1.4x10⁻⁷ Bq/m³) [4]

Procedure Title: Alpha Monitor (ABPM 201 S) Operation	
Attachment 12 Alpha Setpoint Information and Background (Pages 46 to 48)	CH-3-4000-01 Rev. 5 Level 2 - Reference Use Page 48 of 55

Based on the cited monitor measurement range, a monitor alarm setpoint at the value in [4] above (in μ Ci/ml), would be still be more than a decade above the minimum sensitivity of the monitor and should not result in a large number of spurious false alarms caused by establishing a setpoint close to the monitor lower detection limit. Therefore, the concentration determined in [4] will be established as the "H" (Hi) alarm setpoint.

Calculations:

- 1: Flow rate from CT&PM Facilities Exhaust Filtration System to be 4000 scf.
 - 4E+3 ft³/min x 1 min/60s x 28,317 ml/ft³ = 1.89E+6 ml/s
 - 1.89E+6 ml/s x 7.3E-12 μCi/ml (HH setpoint) = 1.38E-5 μCi/s
 - 1.38E-5 μCi/s x 1E-5 s/m³ (χ/Q) x 1 m3/1E+6 ml = 1.38E-16 μCi/ml (concentration at unrestricted boundary)
 - (1.38E-16 μCi/ml / 7.3E-12 μCi/ml) x 100 = 0.0019%
- **2:** ER 3.12.1.1.1: Flow rate from GEVS are: Separations Building = 6,474 scf and TSB = 11,000 scf.
 - Concentrations at the unrestricted area boundary would be: 2.23E-16 μCi/ml and 3.79E-16 μCi/ml, respectively.
 - (2.23E-16 μCi/ml / 7.3E-12 μCi/ml) x 100 = 0.0031%
 - (3.79E-16 μCi/ml / 7.3E-12 μCi/ml) x 100 = 0.0052%

Procedure Title: Alpha Monitor (ABPM 201 S) Operation	I
CH-3-4000-01-F-1	CH-3-4000-01
Source Calibration Data Sheet	Rev.5 Level 2 - Reference Use
(Pages 49 to 50)	Page 49 of 55

Test (Conditions	 	
Date/Time		 	
Monitor Functional Location		 	

	Test conditions	
	Required Value	Measured Value
Temperature	15 - 35°C	
Relative Humidity	90%	
Energy Calibration Comple	te? (Circle one)	Yes / No

Gain Verification					
Description	Acceptance Criteria	As Found	As Left		
Peak Channel	399 - 439 channel				
Alpha-Beta gain	0.7 - 1.3 cps				
Gamma gain	0.7 - 1.3 cps		0		

 $① Gamma Gain As Left = \frac{(Alpha - Beta Gain As Left)(Gamma Gain As Found)}{(Alpha - Beta Gain As Found)}$

Detection Efficiency Check				
Background	Acceptance Criteria	Measured Values	Average	Comments
Alpha_cps	< 0.005 cps			
Po21x_cps	< 0.005 cps			

Procedure Title: Alpha Monitor (ABPM 201 S) Operation	
CH-3-4000-01-F-1 Source Calibration Data Sheet (Pages 49 to 50)	CH-3-4000-01 Rev.5 Level 2 - Reference Use Page 50 of 55

	Measurement wit	th Alpha Source	
	Measured Values (cps)	Average	Comments
		2	
Alpha_cps			

	Measurement wit	h Alpha Source	
· · · · · · · · · · · · · · · · · · ·	Measured Values (cps)	Average	Comments
Po21x_cps			

Source Activity (circle source used)				
Source Material	Source Type	M&TE/Serial Number	3A (Bq)	
²⁴¹ Am	Alpha	F5-247	2980 (A)	
²⁴¹ Am	Alpha	F8-940	3295 (A)	

Source Detection Efficiency Calculation				
Alpha Efficiency	Acceptance Criteria	Measured Value	Comments	
(Eff)	0.0333 to 0.0407 cps/Bq	4		
④ Alpha Efficiency (cps/Bq) = S/A = ②/③ = Average Alpha_cps/Source Activity in Bq				

		Alarm V	erification)			
Relay StatusScenarioMonitor Status(read from MASS2))	Acceptable?
		OP	TST	H	H/H	(Yes / No)	
High alarm	H alarm	On	On	On	Off		
H/H alarm	H/H alarm	- On	. On	On	On		
Fault	Slave fault) Off	On	Off	Off		

Remarks:					
Performed By:		1		1	
	Print	Sig	gnature		Date
Reviewed By:		<u>/</u>		/	
	Print	Sig	jnature		Date

Procedure Title: Alpha Monitor (ABPM 201 S) Operation	n
CH-3-4000-01-F-2	CH-3-4000-01
PIS Change-Out	Rev.5 Level 2 - Reference Use
(Pages 51 to 51)	Page 51 of 55

Performer Badge Number/Initials:	/
Functional Location of Monitor:	
① Date of PIS change-out:	
Time V2 Closed:	
② PIS Volume (L):	
Acceptance Criteria (L):	> 2.25 E+5
Stack Volume (scf):	
Time V2 Open:	
Chain-of-Custody; PIS turned over to Chemistry Technician (Badge Number/Initials):	
If date of change-out is anything other than performed, provide a reason (and CR num)	7 days since the last PIS filter replacement was ber if generated).
② If volume is \leq 2.25E+5, Contact Chemistry	Supervision prior to removing PIS.
Remarks:	
Performed By: Print	/ / Signature Date
Reviewed By:/	/ Signature Date

•

Procedure Title: Alpha Monitor (ABPM 201 S) Operation		
CH-3-4000-01 Rev.5 Level 2 - Reference Use Page 52 of 55		

Name of Person Performing Calibration	
Monitor Functional Location	
Date/Time	

	Calibrat	ion Values:	
	Last Approved	As Found	As Left
Alpha Max ²¹⁸ Po①			
Alpha Max ²¹⁴ Po①		· · · · · · · · · · · · · · · · · · ·	
Offset			•
Slope			Pro Stational Con
Quadratic			
	①Acceptable Range	for Alpha Max Values	
²¹⁸ Po: 4743 keV±40ke\	/ [4703 to 4783]	²¹⁴ Po: 6595 kev±50keV	[6545 to 6645]

	Setpoints for Alph	a Activity:	
	Last Approved	As Found	As Left
Hi Setpoint	3.7E-12 μCi/ml <u>OR</u> 0.14 Bq/m ³		····
Hi Hi Setpoint	7.3 E-12 μCi/ml <u>OR</u> 0.27 Bq/m ³		

RamSys backup performed? (Check one):	Yes 🗌	No 🗌	
Comments:			
Performed by:			
Printed Name		Signature	Date
Verified by:			
Printed Name		Signature	Date
Reviewed by:			
Printed Name		Signature	Date

CH-3-4000-01-F-4 Quarterly Filter Data (Pages 53 to 53)

CH-3-4000-01 Rev.5 Level 2 - Reference Use Page 53 of 55

Monitor Funct	ional Location	:			Qu	arter/Year:	/
			FIRST	MONTH			
Date/Time	Filter Total	Stack	Volume	Gross Alp	oha	Gross Beta	Performed By
On and Off	Volume (L)	(9	scf)	(µCi/ml)	(µCi/ml)	Initials
Sum							
	· · · · · · · · · · · · · · · · · · ·		SECON	D MONTH			L
Date/Time	Filter Total	Stack	Volume		oha	Gross Beta	Performed By
On and Off	Volume (L)	(9	scf)	(µCi/ml		(µCi/ml)	Initials
		b			4		· · · · · · · · · · · · · · · · · · ·
		1	- a				
		1					
		1					
Sum		1					
		J	THIRD	MONTH			I
Date/Time	Filter Total	Stack	Volume	Gross Alp	oha	Gross Beta	Performed By
On and Off	Volume (L)	1	scf)	(µCi/ml		(µCi/ml)	Initials
		C			/		
		<u> </u>					
		<u> </u>					
						<u></u>	
	·····						
Sum							,
Juni				OMPOSITE		ТЛ	L
							Performed By
²³⁴ U (µCi/ml)	²³⁵ U (µCi	/ml) 🛛	²³⁶ U (µCi/ml)	23	ⁱ⁸ U (µCi/ml)	Initials
							·
Comments:							
Performed by:							
	Prin	ted Name			Si	ignature	Date
Reviewed by:							
	Prin	ted Name			Si	gnature	Date

CH-3-4000-01-F-5 Normal Valve Line-Up for 1300-562-1MA1

(Pages 54 to 54)

CH-3-4000-01 Rev.5 Level 2 - Reference Use Page 54 of 55

Valve Number	Imber Nomenclature		Initial	
V1	Detector Subassembly Isolation	OPEN		
V2	PIS Isolation	OPEN		
V3	Main Flow Rate Adjustment	THROTTLE		
V4	PFCV Inlet	OPEN		
V5	PFCV Outlet	OPEN		
V6	PFCV Bypass	CLOSED		
V7	Sample Pump Isolation	OPEN		
V8	Sample Pump Vacuum Break			
V9	Grab Sample Bypass	OPEN		
V10	Grab Sample Inlet	CLOSED		
V11	Grab Sample Outlet	CLOSED		
1300-562-1A1	Test Valve	CLOSED		
1300-562-1A2	Alpha/Beta Monitor Isolation	OPEN		
1300-562-1A3	Test Valve	CLOSED		

Performed by:			
	Printed Name	Signature	Date
Reviewed by:			
	Printed Name	Signature	Date

•

*Position varies as needed to balance flow between sampler and the monitor legs of the monitor

CH-3-4000-01-F-6 Normal Valve Line-Up for 1001-562-1MA1/1MA2

(Pages 55 to 55)

CH-3-4000-01 Rev.5 Level 2 - Reference Use Page 55 of 55

Valve Number	Nomenclature	Valve Position	Performed By Initials	
V1	Detector Subassembly Isolation	OPEN		
V2	PIS Isolation	OPEN		
V3	Main Flow Rate Adjustment	THROTTLED*		
V4	PFCV Inlet	OPEN		
V5	PFCV Outlet	OPEN		
V6	PFCV Bypass	CLOSED		
V7	Sample Pump Isolation	OPEN		
V8	Sample Pump Vacuum Break			
V9	Grab Sample Bypass	OPEN		
V10	Grab Sample Inlet	CLOSED		
V11	Grab Sample Outlet	CLOSED		
1001-562-1MA1 <u>OR</u> 1001-562-1MA2	Monitor Functional Location (Circle Location)	OPEN		
1001-562-1A1 <u>OR</u> 1001-562-1A2	Nozzle Isolation Valves (Circle Valve Number)	OPEN		
1001-562-1A43 <u>OR</u> 1001-562-1A47	Test Valve (Circle Valve)	CLOSED		
1001-562-1A44 <u>OR</u> 1001-562-1A48	Alpha/Beta Monitor Isolation (<i>Circle Valve</i>)	OPEN		
1001-562-1A46 <u>OR</u> 1001-562-1A49	Test Valve (Circle Valve)	CLOSED		
Comments:		-	.	
Performed by:	Printed Name	Signature	Date	
Reviewed by:	Printed Name	Signature	Date	

*Position varies as needed to balance flow between sampler and the monitor legs of the monitor.

.

F007 Date: December 9, 2008

Standard Operating Procedure

Subject: De	omestic wastewater sampling	
Author:	Name Car	
	Vance Oas, Environmental Scientist	
Approved	by morano	
	Jerusha Rawlings, QA Manager	
Approved	by: Matthe	
	Matthew Lane, Project Manager	

Date: ____

Date: 9 Dec 2008 Date: 12 9 08

1.0 Purpose

This procedure establishes a method to collect a sample of domestic wastewater.

2.0 Scope

This procedure is applicable to domestic waste stream generated by the NEF.

3.0 References

American Public Health Association. 2005. Standard Methods for the Examination of Water and Wastewater, 22nd edition. Baltimore, Maryland.

Definitions 4.0

Grab sample - a sample collected at a particular time and place. This sample is representative of a longer time or larger volume if the source is relatively constant over an extended time or over substantial distances in all directions.

Procedure 5.0

- 5.1 Equipment
 - Analytical lab-provided container, properly labeled, attached to a rope, chain or pole
 - Cooler with ice
 - Personal protective equipment i.e. nitrile gloves, protective eyewear, and tyvek suit
 - If sampling is conducted in an enclosed space a half mask cartridge respirator must be used

GL Environmental, Inc.

F007

Handheld multi-parameter instrument

5.2 Sample collection

- The sample will be collected from the main sewer line at an access location where the effluent has sufficient velocity to keep effluent solids in suspension.
- Sampler will don personal protective equipment.
- Grab samples will be collected by submerging the lab sample container in the wastewater stream until full. Retrieve the container, cap, and store on ice in cooler.
 - Lab Analysis Samples sample containers intended for shipment to an off-site analytical laboratory will be sealed, labeled, and logged according to appropriate chain-of-custody procedures.
 - Field Samples sample containers intended for field measurements will be taken from the last volume removed from the sewer line.
- Measure field samples with the handheld multi-parameter instrument (temperature, pH, and conductance) according to operating instructions and record results.
- Refer to NEF Standard Operating Procedures for Decontamination of Sampling Equipment

6.0 Personal Protective Equipment

Refer to SOP F001, Section 5.4 for use of Personal Protective Equipment.

2

URENCO USA

Semi-Annual Radioactive Effluent Release Report

APPENDIX D - Calibration Procedures

•

URENCO USA

Semi-Annual Radioactive Effluent Release Report

Calibration Procedures for CTPMF System:

.

•

,

Procedure Title: Alpha/Beta Monitor (ABPM 201 S) O	peration
CH-3-4000-01-F-2	CH-3-4000-01
PIS Change Out	Rev.2 Level 2 - Reference Use
(Pages 56 to 56)	Page 56 of 56

Name of Person Performing Change Out	Michael Bolling
Badge Number	1550
Functional Location of Monitor	1300-5707-IMAL
Date	9-9-9
Time after V2 Closed	9:19
Volume since last PIS Change Out	2.6125
Time after V2 Open	9:22
Custody of PIS turned over to Chem. Tech	Signature: Jula Edwards

* Monitor was secured 9-3-09 1100-1515 for GEVS filter instillation/ maintenance. a Flow verification was performed on 9-8-09 with the following

results.	flowmetter (L/min)	Skid (L/min)	with	the	aid	of maintenance:
	63 51 35	60 45 33.2				

COPY

Information Only - ISSUED

Site Acceptance Testing was performed on the 1300-S62-1MA1 Alpha Monitor in for the Centrifuge Assembly Building with final signatures being on 2/6/2009. During the testing, Section 9.3.5, Flow Rate Verification for Monitor, could not be performed for the full operating range of the vacuum pump for the skid. The following data was obtained on 2/2/2009 using a calibrated flow meter with limited range.

Calibrated Flowmeter I/min	Monitor Reading I/min	Readings within +/- 10 % Are
36.6	40.1	Yes
39.7	42.3	Yes
43.5	47.7	Yes

The flow rate recorded is for the total skid flow which is a combination of the Particulate/lodine Sampler and the Continuous Alpha Monitor.

The calibrated flow meter that maintenance will be using to perform this surveillance in the future was not available at the time. Condition Report 2009-427 was generated to ensure the flow verification was performed when we had the calibrated equipment and hook ups available.

On 6/15/2009 we performed the verification of the flow meter using:

Omega Mass flow meter, Model #FMA1843, Serial # 230235-3, Cal Due 4/1/2010

We got the following data:

Calibrated Flow meter (lpm)	Monitor Reading (Ipm)	Reading within +/- 10%	
64	58.6	Yes	
59	55	Yes	
55	50.6	Yes	
47	35	No	

We test each leg of the skid and found that the Particulate/Iodine Sampler read:

Calibrated Flow meter (lpm)	Monitor Reading (lpm)	Reading within +/- 10%	
40	44.2 (PIS)	Yes	
40	53.1 (Monitor)	No	

This indicates the total volume we have been using for our effluent filters were acceptable because it is calculated from the Particulate/Iodine flow transmitter. Based on these results, we calibrated the monitor using the manual and the vendor recommendations. The attached document contains the results from the calibration.

The flow rate test was performed again following the calibration with the following results:

Calibrated Flow meter (lpm)	Monitor Reading (Ipm)	Reading within +/- 10%
63	58.7	Yes
58	55.2	Yes
54	50	Yes
49	45.1	Yes
43	40.1	Yes
36	35	Yes
30	30.1	Yes
23	25	Yes
18	20.2	Yes
14	15.4	Yes

•

Flow verification/calibration process:

Refer to post production test procedure for MGP instruction on flow verification.

NOTE: In channel parameter of InputAdj % (the last channel) switch between "LPU A/D converter" for the PIS leg and "Internal flowmeter" for the detector leg. Also, "Source [LPU analog input]"

Obtain 2-7 points of flow for each leg. Use V7 to create different flow rates, valve out the leg not being tested. Extrapolate for last point of 100%; don't actually measure to 100% analog input.

- Isolate PIS to test detector leg
- Isolate solenoid valve (close V4, V5, open V6)
- Change InputAdj channel to "Internal flowmeter"
- Place tubes/flowmeter to inlet (0-100 L/min range is preferable for our uses)
- Turn pump switch to manual mode
- Ensure V7 is fully open
- Read InputAdj on LPDU (let it stabilize)
- Crank down V7 to get another point, continue
- Use excel to extrapolate last point of 100% (guess), refer associated excel sheet for more info

Detector Leg		
%AI	Flow (L/min)	
20	0	
56	15	
63	20	
69	25	
74	30	
78	35	
82	40	
85	45	
89	51	
100 (estimated)	71	

NOTE: round to whole numbers on the % analog input Points in **bold red** used for calculating coefficients.

- Isolate detector to test PIS leg
- Change InputAdj channel to "LPU A/D converter"
- Open V7 fully, adjust and collect points
- Adjust V3 to get higher flow ~95% InputAdj, don't want 100%
- Stop pump

- Use excel to extrapolate last point of 100% (guess), refer associated excel sheet for more info
- Don't use excess points in graph that are already in a straight line (only need 7 points) for inputting data on parameter channels
- Go to MASS2, input data into PartFlow channel and SpIrFlow channel

PIS Leg		
%AI	Flow (L/min)	
0	0	
43	15	
53	20	
61	25	
67	30	
73	35	
79	40	
83	45	
87	50	
95	56	
100 (estimated)	60	

NOTE: round to whole numbers on the % analog input Points in **bold red** used for calculating coefficients.

Now that data is put into channel parameters, check flow tolerances on each leg with V3 fully open

- +/- 3 L/min tolerance check on each leg, before combined flow check
- Start pump (in manual mode)
- Ensure that SpIrFlow reads within +/- 3 L/min of flowmeter, ensure that PartFlow also reads within +/- 3 L/min of flowmeter (the numbers checked aren't necessarily the same numbers put into the parameter tables)
- Before tolerance check on skidflow, Open V1 and V2 and balance the legs of flow with V3, it is best to balance the legs at the highest flow rate, within 6L/min of each other (ensure V7 is fully open)
- Measured flow (L/min)
 LPDU indicated flow (L/min)

 25
 25.9

 35
 31.3

 45
 37
- Compare flow rates of LPDU and external flowmeter

NOTE: indicated flow should typically be lower than measured flow, if not, check that the legs are balanced

Ratio of measured to indicated

Measured flow	Indicated Flow	Ratio
43	33.8	1.27
56	44.9	1.25
65	50.3	1.29

• Take average of flow ratios (1.27) and apply to points

Once this is done, update these data points in the channel parameters.
 Flow calibration and verification is now complete.

Detector Leg			
%AI	Flow (L/min)	Adjusted flow rate (L/min)	
20	0	0	
56	15	19	
63	20	25	
69	25	32	
60	30		
78	35	44	
69	40		
85	45	57	
74	54		
100 (estimated)	71	90	

PIS Leg			
%AI	Flow (L/min)	Adjusted flow rate (L/min)	
0	0	0	
43	15	19	
53	20	25	
61	25		
67	30	38	
73	35		
79	40	51	
83	45		
87	50	64	
95	65		
100 (estimated)	60	76	

URENCO USA

Semi-Annual Radioactive Effluent Release Report

Calibration Procedures for SBM-1001 GEVS Systems:

•

CH-3-4000-01-F-1			CH-3-4000-01
Source Calibration Data Sheet		Level 2	Rev.5 Reference Use Page 1 of 2
Monitor Functional Location	1001-562	-1MA)	

	Test Conditions	
	Required Value	Measured Value
Temperature	15 - 35°C	
Relative Humidity	90%	/
Energy Calibration Comple	ete? (Circle one)	Yes / No

Gain Verification			
Description	Acceptance Criteria	As Found	As Left
Peak Channel	399 - 439 channel		
Alpha-Beta gain	0.7 - 1.3 cps		
Gamma gain	0.7 - 1.3 cps	/	0

 $① Gamma Gain As Left = \frac{(Alpha - Beta Gain As Left) (Gamma Gain As Found)}{(Alpha - Beta Gain As Found)}$

•

t j

	Detection	Efficiency Check		
Background	Acceptance Criteria	Measured Values	Average	Comments
Alpha_cps	< 0.005 cps			
Po21x_cps	< 0.005 cps			

page lof 5

CH-3-4000-01-F-1

Source Calibration Data Sheet

CH-3-4000-01 Rev.5 Level 2 Reference Use Page 2 of 2

Measurement with Alpha Source					
	Measured Values (cps)	Average	Comments		
		0			
Alpha_cps		-			
		-			

Measured Values (cps) Average Comments		Measurement wit	h Alpha Source	
24×		Measured Values (cps)	Average	Comments
	24			

Source Material	Source Type	M&TE/Serial Number	3A (Bq)
²⁴¹ Am	Alpha /	F5-247	2980 (A)
²⁴¹ Am	Alpha	F8-940	3295 (A)

	Source Detection E	Efficiency Calculation		
Alpha Efficiency (Eff)	Acceptance Criteria	Measured Value	Comments	
	0.0333 to 0.0407 cps/Bq	4		
④ Alpha Effi	ciency (cps/Bq) = S/A = ②/③	= Average Alpha_cps/Sc	ource Activity in Bq	

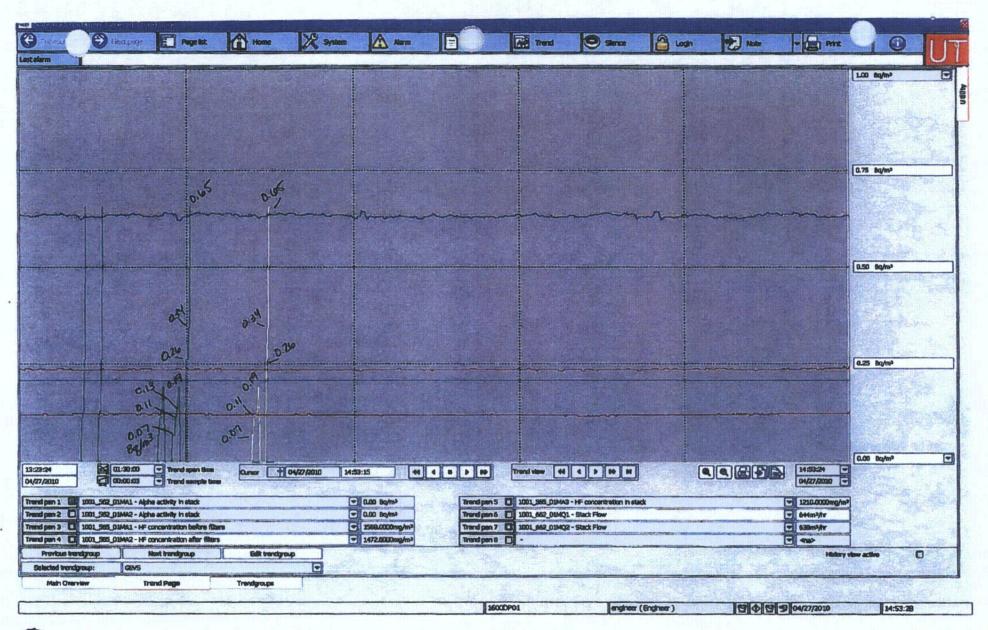
		Alarm Vo	erification			
Scenario	Monitor Status	Relay Status (read from MASS2)				Acceptable?
		OP	TST	H	H/H	(Yes / No)
/ High alarm	H alarm	On	On	On	Off	
H/H alarm	H/H alarm	On	On	On	On	
Fault	Slave fault	Off	On	Off	Off	
Remarks: <u>See</u> Performed By: <u>Ho</u>	1. 1	/	tops	: th	L	14-27-10
	Print Delle ca Falurar O Print	<u>lg 1</u>	DEL	Signature Luncu Signature	V	Date 14-27-10 Date
						page 2 of

This package is to provide a means of documenting a more detailed post CAT-CH-ABPM-201S test for the SBM effluent alpha monitors. The alarm test was conducted to compare monitor values with values read from the Plant Control System (PCS) in further detail from the test that was performed during the CAT. The following pages include data from this test. In the next procedure revision of CH-3-4000-01 it is planned to include this test with the annual source calibration.

page 3 of 5

1001-562-1MA1				
Read out at monitor (Bq/m3)	Output at monitor (mA)	Readout on PCS (Bq/m3)		
0.08	5.122	0.07		
0.12	5.787	0.11		
0.14	6.100	0.13		
0.20	7.077	0.19		
0.27	8.211	0.26		
0.35	9.501	0.34		
0.65	14.350	0.65		
1.00	20.000	offscale		

.


 $(\$

 \bigcirc

}

page Hof 5

•

au the readings were Bg/m³ if you need anything of urther, lemme know "

page Sof S

Alpha Monitor Site Acceptance Test Plan

CAT-CH-ABPM-201S

Revision 0

ABPM Monitor System Number: ________

Ę

(

10/14/09 Approved:

Signature/Date

Page ____ of <u>35</u> (Total)

Alpha Monitor Site Acceptance Test Plan

,

.

Revision Summary

Change	Reason for Change		
New test plan.			
·			

Page 2_ of 85 (Total)

.

TABLE OF CONTENTS

	1.	PURPOSE	
	2.	SCOPE	4
	3.	TERMS, DEFINITIONS, ABBREVIATIONS, AND ACRONYMS	
	4.	PRECAUTIONS AND LIMITATIONS	
	5.	EQUIPMENT, MATERIAL AND PARTS	4
	6.	ACCEPTANCE CRITERIA	5
	7.	PREREQUISITES	5
	8.	DATA REQUIRED	5
	9.	MAIN BODY	6
		9.1 Physical Inspection	6
		9.2 Verify Electrical Connections	
		9.3 Start-up	7
	10.	DOCUMENTATION AND RECORDS	11
\cap	11.	LICENSE COMMITMENTS AND REQUIREMENTS	11
K.J	12.	REFERENCES	11

ATTACHMENTS

1

Attachment 1, ABPM 201S Datasheet & Log	1	2
---	---	---

1. <u>PURPOSE</u>

()

- 1.1 The purpose of this procedure is to confirm functionality for the start-up and acceptance of the ABPM 201-S Alpha Particulate Monitor. It will include verification of the following aspects of operation:
 - 1.1.1 The proper startup and operation of the Alpha Particulate Monitor.
 - 1.1.2 Verification of correct measurement of activity levels and functioning of instrument fault conditions and alarms.

2. <u>SCOPE</u>

2.1 This procedure governs the start-up and testing of the ABPM 201-S Alpha Particulate Monitor and its supporting components.

3. TERMS, DEFINITIONS, ABBREVIATIONS, AND ACRONYMS

- 3.1 CAT Commissioning and Acceptance Test
- 3.2 FAT Factory Acceptance Test
- 3.3 LDU Local Display Unit
- 3.4 LPDU Local Processing and Display Unit
- 3.5 MASS Maintenance and Setup Software
- ^{</} 3.6 PDCU Power Distribution and Control Unit (provides power to the pump and LPDU)
 - 3.7 PFCV Proportional Flow Control Valve (regulates flow through PIS proportionally to the stack flow
 - 3.8 PIS Particulate Iodine Sampler (for collecting particulate samples)
 - 3.9 SAM Spectrum Acquisition and Manipulation Software.
 - 3.10 SAT Site Acceptance Test

4. PRECAUTIONS AND LIMITATIONS

4.1 Ensure that appropriate electrical safety practices are utilized during this test in accordance with MA-3-1000-06, Electrical Safety.

5. EQUIPMENT, MATERIAL AND PARTS

- 5.1 Basic Tools and Software:
 - 5.1.1 Laptop or workstation PC
 - 5.1.2 Mass2 software
 - 5.1.3 SAS/PIPS Application Software
 - 5.1.4 RS232 serial link cable with DB9 connectors or equivalent

Alpha Monitor Site Acceptance Test Plan

- 5.1.5 Vacuum/pressure pump
- 5.1.6 Level
- 5.1.7 Tape Measure
- 5.2 Calibrated Instruments
 - 5.2.1 Digital multi-meter
 - 5.2.2 Thermometer or temperature sensor for the DMM (0.1°C resolution)
 - 5.2.3 Pressure/vacuum gauge (0.2 psig resolution, 20 psig max full scale)
 - 5.2.4 Mass flow meter or equivalent
 - 5.2.5 Dose rate meter (0.1 mR/hr resolution)
 - 5.2.6 Loop calibrator, as required (input the 4 to 20 mA signal for isokinetic test)
- 5.3 Radioactive Sources
 - 5.3.1 ²⁴¹Am, ~1500 alpha/s nominal activity
 - 5.3.2 Source holder, MGP reference number 69553

6. ACCEPTANCE CRITERIA

- 6.1 Proper operation and calibration of the ABPM 201S monitor as verified by positive checks using the Checklist provided in Attachment 1.
- 6.2 Proper operation of the alarms and faults.
- 6.3 Proper operation of the monitor.

7. PREREQUISITES

7.1 Power available for the monitor.

8. DATA REQUIRED

- 8.1 Other than the information recorded on the checklist and the data sheets from CH-3-4000-01, Alpha/Beta Monitor (ABPM201S) Operation, there is no additional data required for this test.
- 8.2 Calibration Data

Page 5 of 85 (Total)

NOTE:

- 1. Record all observations and data on the ABPM 201S Datasheet & Log unless otherwise directed.
- 2. Steps may be performed in a sequence other than specified in the test plan if approved by the person leading the testing.
- 3. If any parameter cannot be achieved, document the actual results and list the exceptions in the log.
- 4. Make any necessary corrections and repeat as necessary for out of specification parameters.
- 5. Use 12-00098, Post Production Test Procedure for ABPM201S Alpha Beta Particulate Monitor and 12-00124, Factory Acceptance Test Procedure for LES ABPM201S as needed for reference in performing this test.

9. MAIN BODY

į,

- 9.1 Physical Inspection
 - 9.1.1 Verify Alpha Monitor Identification and Condition:
 - a. Serial numbers of components match serial numbers on FAT data sheet.
 - b. No visible damage.
 - c. Adequate clearances have been provided for servicing.
 - d. Name plate affixed to Instrument showing model number, contract number, date of manufacture, UL listing.
 - e. Calibration data sheet available for flow meter.
 - f. Monitor skid is level and properly bolted to the building.
 - g. All packing material and debris have been removed from the equipment, inside and exterior of all components are clean and dust-free.
 - 9.1.2 Check that pipe connections from the sampling nozzle in the stack are compliant with the following:
 - a. Sample inlet line 1 inch OD seamless stainless steel.
 - b. Sample outlet line ½ inch OD seamless stainless steel.
 - c. No internal diameter change along line after union to nozzle.
 - d. Minimal horizontal runs, no upward flowing sections between sampling nozzle and instrument inlet.
 - e. Horizontal distance between nozzle and instrument \leq 15 feet.
 - f. Radius of bends at least 3 times pipe outside diameter.

Page 6 of 85 (Total)

- g. Pipe connections made with Swagelok fittings.
- h. Verify sample inlet/sample return manual isolation valves are operable.
- i. Ensure components of system (line between nozzle and monitor, and monitor) have been leak checked. To leak check the monitor, open all internal valves, close inlet and exit valves, and connect a pressure gauge and manual hand pump to the inlet manifold. Draw a vacuum of approximately 6 inches mercury in the system and hold for 10 minutes. The vacuum shall not decrease by more than 10%.

NOTE:

UPS is not tested as part of this test plan.

- 9.2 <u>Electrical Inspection</u>
 - 9.2.1 Power supply and instrument voltages are compatible.
 - 9.2.2 LDU is connected to LPDU (RS485 link between the LDU and the LPDU).
 - 9.2.3 The LDU used for isokinetic flow has the following connections:
 - a. 120 V AC 60 Hz instrument quality power line
 - b. Analog input from the stack flow transmitter
 - 9.2.4 Using a DMM or milli-ohmmeter, check the resistance between the building ground and the skid ground bus (welded threaded stud at lower left side of the skid). Resistance shall be less than 0.1 ohm.

9.3 <u>Start-up</u>

()

- 9.3.1 Filter paper and cartridge
 - a. Check that a filter paper roll has been placed in the filter cassette.
 - b. Check that a filter paper is installed in the PIS.
- 9.3.2 Monitor Power On
 - a. In the Power Distribution and Control Unit (PDCU), check that fuses are installed in the fuse holders, and close the fuse holders.
 - b. Check that the filter cassette elevator is closed (up).
 - c. Verify the LPDU power supply circuit breaker on the distribution unit is "ON".
 - d. Power on the LPDU by turning the front panel key switch to "ON". The buzzer should sound for approximately one second, the orange light illuminate for one second, and the red light briefly flash.

Page 7 of \$5 (Total)

9.4 LPDU Software Check

- 9.4.1 Connect a PC to the LPDU (RS232 port on front of unit) and perform network setup as required.
- 9.4.2 Scan with MASS2 and verify that the LPDU is found.
- 9.4.3 Verify that the LPDU base software (Ref.735 index 1) is revision E or later,
- 9.4.4 Verify that the LPDU/SAS/PIPS application (Ref.774 index 2) is revision P or later.
- 9.4.5 Record the index and revision levels of the base and application software, and the parameter set.
- 9.4.6 Update LPDU time and date, if necessary.
- 9.4.7 Verify the LPDU serial number.
- 9.4.8 Backup any changes required, clear histories and events, and reset the unit.
- 9.4.9 Test the communication by reading the event summary of the unit using MASS2.
- 9.4.10 Perform a configuration verification and document.

9.5 LDU Software Check

- 9.5.1 Connect a PC to the LDU (RS232 port on front of unit) and perform network setup as required.
- 9.5.2 Scan with MASS2, and verify that the LDU is found.
- 9.5.3 Perform a configuration verification and document.

9.6 Flow Rate Verification

- 9.6.1 Place a calibrated flowmeter on the inlet or outlet manifold.
- 9.6.2 Bypass the isokinetic PFCV (Proportional Flow Control Valve).
- 9.6.3 Place the pump manual switch to "MAN" (operates the pump in manual mode).
- 9.6.4 Provide sample flow to the monitor and adjust the flow regulating valve to obtain the approximate flow rates listed below and verify the value indicated for the flow channel against the reading from the calibrated flowmeter. Record the actual flow rate achieved.

Measurement Test #	Reference flow rate in L/min (CFM)					
1	30 (1.1)					
2	45 (1.6)					
3	60 (2.1)					

9.6.5 The measurements shall match the gauge reading within \pm 10%.

Page 8 of 85 (Total)

Alpha Monitor Site Acceptance Test Plan

NOTE:

A 4-20 mA signal may be used to test the proportional valve response in place of changing the stack flow rate.

9.7 Isokinetic Flow Control Test

The purpose of this test is to verify that the sample flow rate is maintained at a value which is proportional to the process flow rate, above a certain sample flow threshold. The stack flow scaling and the target sample flow rate may be modified and calibrated during this test.

- 9.7.1 With the PC connected to the LPDU and/or LDU, scan with MASS 2.
- 9.7.2 Ensure the monitor components (LPDU and LDU) are configured to accept stack flow data.
- 9.7.3 Record the stack flow as indicated on the Remote Electronic Enclosure for the flow element used by the LDU which is located in the Local Control panel.
- 9.7.4 Record the stack flow rate indicated on the LPDU display or by MASS2.
- 9.7.5 Record the sample flow rate to the Alpha monitor, as indicated by the total flow rate channel (SkidFlow).
- 9.7.6 Verify sample flow rate is within acceptable tolerance for the stack flow rate $(\pm 25\%)$ of the expected value).
- 9.7.7 Adjust the Fan Speed on the Ventilation System to achieve the Target Stack Flow Values for this test.
- 9.7.8 If the scaling data must be updated, only the stack flow rate (StkFlow) and target sample flow rate (Target) channels need to be modified. See Section 10 in the User's Manual for ABPM 201-S, Appendix 2: Isokinetic Flow Control. Update information in the StkFlow and Target sample flow rate channels, If required.
- 9.7.9 If changes to the calibration are required, repeat steps until acceptable sample flow rates are obtained.
- 9.7.10 Record final results.

Page 9 of \$5_(Total)

9.8 Detector Fault Test

- 9.8.1 With the monitor in normal operating condition, turn off power to the LPDU and the sampling pump and disconnect the detector cable at the LPDU side.
- 9.8.2 Restore power to the LPDU and check that the events list is similar to the following list:

Date	Time	Event
06/07/00	15:05:21	Stop unit
06/07/00	15:05:37	Start unit
06/07/00	15:05:44	Unit in normal operation mode ON
06/07/00	15:05:48	Detector probe not present ON
06/07/00	15:05:54	Electrical test counting : : 0
06/07/00	15:05:54	Electrical test fault ON
06/07/00	15:05:57	Internal fault ON
06/07/00	15:05:57	Temperature fault ON

- 9.8.3 Turn off power to the LPDU and reconnect the detector cable.
- 9.8.4 Restore power to the pump and the LPDU and check that the events list is similar to the following list:

Date	Time	Event
06/07/00	15:05:21	Stop unit
06/07/ 00	15:05:37	Start unit
06/07/00	15:05:44	Unit in normal operation mode ON
06/07/00	15:05:44	Filter advance ON
06/07/00	15:05:54	Filter advance OFF

9.9 Energy Calibration, Source Calibration, Relay Test, Alarm Test and Setpoint Verification,

Perform this section IAW CH-3-4000-01 and the source comparison data from the Factory Acceptance Test. Record the data on CH-3-4000-01-F-1, Source Calibration Data Sheet and CH-3-4000-01F-3, Energy Calibration Data Sheet and attach to the test plan.

9.10 Temperature calibration verification

- 9.10.1 Using the MASS software, and a calibrated temperature sensor, measure the temperature near the PIPS detector, and record the measured value as T_{Measured} in °C.
- 9.10.2 Read the "Temp" channel in °C on the MASS main screen, and record as TLPDU
- 9.10.3 Calculate the offset (difference) between measured and read, TLPDU TMeasured.
- 9.10.4 If the offset is within ± 2 °C , the temperature measurement calibration is acceptable.

9.11 Restoration and final check

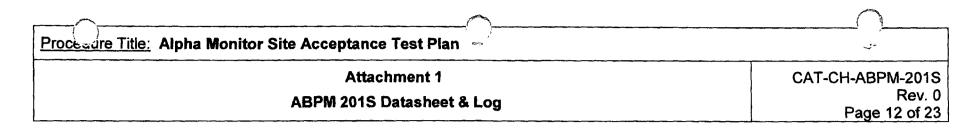
- 9.11.1 If applicable, restore any parameters modified for the test to the normal operating values.
- 9.11.2 Put the LPDU into maintenance mode.
- 9.11.3 Back up parameters into flash memory, and onto a diskette or CD, if required.

Page 10 of 85 (Total)

- 9.11.4 Reset the LPDU and run the pump for 24 hours.
- 9.11.5 Check that there are no unusual events in the event summaries and that there is no activity in the historical trends which cannot be accounted for.
- 9.11.6 Review the test procedure and verify that all tests have been completed.
- 9.11.7 Review the test log and verify that all required entries are complete.
- 9.11.8 Repeat any steps if required.
- 9.11.9 Sign the test log .

10. DOCUMENTATION AND RECORDS

10.1 Retain this procedure, the Installer's Checklist, and a record of any calibration performed, with required initials, in accordance with RM-3-2000-01, Records Management program.


11. LICENSE COMMITMENTS AND REQUIREMENTS

- 11.1 SAR 4.1
- 11.2 SAR 4.7
- 11.3 SAR, Section 9.2.21

12. <u>REFERENCES</u>

- (12.1 CH-3-4000-01, Alpha/Beta Monitor (ABPM 201S) Operation
 - 12.2 MA-3-1000-06, Electrical Safety
 - 12.3 RM-3-2000-01, Records Management Program
 - 12.4 SU-3-1000-01, Release for Operation
 - 12.5 User's Manual, ABPM 201-S Alpha Beta Particulate Monitor, 15-00068 Rev. 0, dated 10-10-2008, MGP Instruments
 - 12.6 Post Production Test Procedure for ABPM201S Alpha Beta Particulate Monitor, Document 12-00098, MGP Instruments
 - 12.7 Factory Acceptance Test Procedure for LES ABPM201S, Document 12-00124, MGP Instruments
 - 12.8 Post Production Test Data Sheet, ABPM201S Alpha Beta Particulate Monitor, Document 14-00098, MGP Instruments
 - 12.9 LES ABPM201S Factory Acceptance Test Log, MGP Instruments
 - 12.10 MASS Software User's Manual
 - 12.11 LPDU User's Manual
 - 12.12 ANSI/HPS N13.1-1999 Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities

Page // of 85 (Total)

ABPM 201S Monitor System Number:

Part Number:

Serial Number:

Test Date(s)

1001-562-1MA1
ABPM 2015
090501-04
11/10/09 to 3/15/18 3/26/10

Page 12 of 85 (Total)

Calibrated Instruments and Standards

ltem	Model Number	Serial Number	Calibration Due	Comments
Digital Multimeter	FINKE 87 V	94910331	22 JUI 2010	Certificate attacked Page 31-330
Temperature Sensor	Fluke 87 V	94910331	27-7-12010	
Pressure/Vacuum Gauge and hand vacuum pump	Mity ac XNXT ALADAZ 3/10/10	81161094	NIA	Atandpump purchased from Cole Palmer to perform test. Vendor recommends differentsetup.
Mass Flow Meter	FMA 1843	230235-3	01 Apr 2010	Certification attacked Pg. 31 to 33
2 Scaler/ratemeter 2 Doco Rate Meter	2224	247506	08 Sept-2010	Certification attached by 41-542

	(
Procedure Title: Alpha Monitor Site Acceptance Test Plan								
Attachment 1	CAT-CH-ABPM-201S							
ABPM 201S Datasheet & Log	Rev. 0 Page 13 of 23							

ABPM201S System and Component Numbers

ltem	FAT Log Part	FAT Log Serial. Number	Installed Part	Installed Serial Number	Comments
Skid	02-00384	090501-04	୦ 2- ୦ଟି୫୍ୟ	090501-04	0115483 UL CEAH 06 HE 10/109
LPDU/PIPS	131839	090503	131839	090503	
Particulate Flow Meter	120114 HMH -07.	091774	120114	091774	verified in FAT log
PIS flow Meter	120112	080693	120112	080693	
Filter Cassette	43775	081190	43775	081190	
Flow Control Valve	700055	29225	700055	29225	
LDU	N/A	NIA	134475	098631	UL cut # 0115487

			Veri	ified By	Ver	ified By	
Physical Inspection	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
Serial Numbers match FAT Data Sheet	\bigvee		HMH	11-10-09 0838	JRAB	11 10 109 0838	FAT pagework attached
No visible damage	\checkmark		HMH	11-10-09	JRAS	11/10/09/8/91	0
Adequate clearance	/		SLB	11/12/09	HMH	11-12-09 1000	
Label affixed	V		HMH	11-10-09	JUB	11/10/09/839	
Calibration data sheet for flow meter	\bigvee		HMH	11-8-09'	ALS .	1319104	DSummerton Page 21
Monitor skid level	V.		HMH	0831	STEIB	4/10/09/0838	0.4850
Monitor is bolted down	$ $ \checkmark		HMH	11-10-04	JPB	11/10/09/0839	

Page 13 of 85 (Total)

Procedure Title: Alpha Monitor Site Acceptance Test Plan	
Attachment 1	CAT-CH-ABPM-201S
ABPM 201S Datasheet & Log	Rev. 0 Page 14 of 23

			Verified By		Verified By		
Physical Inspection	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
Packing material removed and interior/exterior clean	/		HMH	3-16-10 U820	DAZ	3/16/10 0820	
Inlet pipe 1 inch OD seamless stainless steel	V		JUS	12118/091	NR	NR	
Return pipe diameter ½ inch OD seamless stainless steel	V		JAB	12/18/091			
No diameter change along inlet line after union with nozzle	V		JRUS	12/18/09			
Minimal horizontal runs, no upward flowing sections between sampling nozzle and instrument inlet	V		JUB	(2(18/09) 1430			
Horizontal distance between nozzle and monitor is <15'	1		JRB	12/18/09			
Radius of bends at least 3X OD	V		Jeg	12/18/09/430			
Pipe connections made with Swagelok fittings	V		JAB	12/18/09			
Manual isolation valves operable	V		STOPS	12/18/09 1430			
Initial vacuum:6			NR	NR			
Decrease in vacuum after 10 minutes: 6 (no change)							
Decrease in vacuum < 10%			HMH	11-16-09 1120			

•

Page 14 of <u>85</u> (Total)

	<u></u>
Procedure Title: Alpha Monitor Site Acceptance Test Plan	
Attachment 1	CAT-CH-ABPM-201S
ABPM 201S Datasheet & Log	Rev. 0 Page 15 of 23

		-	Verified By		Verified By		
Electrical Inspection	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
Correct Voltage	\checkmark		HMH	11-12-09	RSB	1042	118.6 volts @ Son page 210+85
LDU in communication with LPDU	\checkmark		HMH	11-18-09	505	11-18-05	
LDU has input from flow element	\checkmark		HMH	3-16-10	At2	3/16/10	
Skid grounded – Resistance < 0.1 ohms	$\overline{\langle}$		HMH	11-12-04 1036	RSB	11-12-2009 1092	
UL equivalency Report	V		DIE	12-15-09	NR	NR	attached Report Page 69 to 84

		1	Ver	Verified By Verified B		ified By	
Start up	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
Filter paper roll in cassette			HMH	11-10-09 0840	JEB	11-10-09	
Filter paper in PIS	\checkmark		HMH	11-10-09 0841	JUB	11-10-09	
Fuses checked	V		HMH	0842	JEB	11-10-07	
Elevator up	~		HMH	0841	JEB	11-10-09	
LPDU powered up	\checkmark		HMH	1+10-09 0843	JEB	11/10/09	
LPDU display on	\checkmark		HMH	0843	JEB	11-10-09	
LPDU found by MASS2	\checkmark		HMH	11-10-09	JPB	11-10-09	

	\bigcirc
Procedure Title: Alpha Monitor Site Acceptance Test Plan	\v_c∕~
Attachment 1	CAT-CH-ABPM-201S
ABPM 201S Datasheet & Log	Rev. 0 Page 16 of 23

			Ver	fied By	Ver	ified By	
LPDU Software Check	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
LPDU:							
Base Software number: 735							
Base Software revision: <u>E</u>	ļ			11-10-09		116009	
Application Software number: <u>774</u>	$\mathbf{\nabla}$		HMH	0857	JAB	0703	
Application Software revision: <u>2 R</u>							
Parameter Set number: <u>827</u>							
Parameter Set revision: <u>104 A</u>				,			
Acquisition board number: <u>60875</u>							
Acquisition board revision: 178 25561							
Time and date set	<u> </u>		HMH	11-10-09	JEB	4/10/07	
LPDU serial number: 090503	\checkmark		HMH	11-18-09	NR	NR	· · · · · · · · · · · · · · · · · · ·
Any changes backed up , unit reset?	\bigvee		HMH	3-10-10			
Event summary correct?	\bigvee		HMH	3-16-10 0820			
Configuration verified and documented			HMH	1410-09	THB	11-10-09 0948	

.

Procedure Title: Alpha Monitor Site Acceptance Test Plan	
Attachment 1	CAT-CH-ABPM-201S
ABPM 201S Datasheet & Log	Rev. 0 Page 17 of 23

			Ver	ified By	Ver	ified By		
LDU Software Check	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments	
LDU is receiving information?			HMH	1242	SDS	1-15-01		
Configuration verified and documented	\checkmark		HMH	1-18-04	کلاک	11-18-05 1242	·····	

			Ver	ified By	Ver	ified By	
Flow Rate Verification	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
Monitor Flow Rate (Skidflow) acceptable?	\checkmark		HMH	11-10-09 1345		14/10/09 1347	5.6 Lpm was the maximum flow achieved

Calibrated Flowmeter (Lpm)	Monitor Reading (Lpm)	Reading within <u>+</u> 10%
30	33.0	yes
45	47.3	URS
56	53.3	405

Page 11 of <u>85</u> (Total)

Procedure Title: Alpha Monitor Site Acceptance Test Plan	
Attachment 1	CAT-CH-ABPM-201S
ABPM 201S Datasheet & Log	Rev. 0 Page 18 of 23

Isokinetic Flow Control Test	Yes	No		fied By Date/Time	14 MOTORNY & AND	fied By Date/Time	Comments
Test complete and satisfactory?	\checkmark		Alez	3/26/100/1640	NR	NR	Testresults on Paye 85

Target Stack Flow (or mA)	Measured Stack Flow from Process Flow Meter (iPNLI)	Measured Alpha Monitor Process Flow Rate	Portable Flow Meter Stack Measurement	Target Alpha Monitor Sample Flow Rate	Actual Alpha Monitor Sample Flow Rate	Within Tolerance?
4.066 mA	2 5 cim (1.9)	3.4 scfm	0.5scfm	40Lpm	40.1 Lpm	
5,435mt	525cfm	52.7 scfm 219 scfm Allia	2195cfm	HOLPM	40.0 Lpm	

(3) See comment

Ľ	_0			
	Ω.	-	21	

			5744 - 14 A.	fied By	1995 (m. 1996) - 1996 (m. 1996)	fied By	
Detector Fault Test	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
Event log for detector unplugged and pump off correct?	./		HMH	11-18-09	505	11- 15-09 1410	
Event log for detector plugged in and pump on correct?	\checkmark		HMH	11-18-09	SOS	11-18-D9 1410	

•

Procedure Title: Alpha Monitor Site Acceptance Test Plan	
Attachment 1	CAT-CH-ABPM-201S
ABPM 201S Datasheet & Log	Rev. 0 Page 19 of 23

			Ver	ified By	Ver	ified By	
CH-3-4000-01	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
Energy Calibration complete and passed?	\checkmark		HMH	11-11-09 1520	NR	NR	Page 24 to 25 of 85.
Setpoint Verification complete and passed?	\checkmark		HMH	1-8-10° 1000			Page 29 of 85.
Source Calibration complete and passed?	\checkmark		HMH	11-17-09 1420			Page 26 to 28 of 85.
Relay Test complete and passed?			HMH	11-18-09	SOS	11-15-09 1410	Page 27 of 85
Alarm Test complete and passed?			HMH	11-18-04 1410	SOS	11-18-09 1410	Page 27 of 85 Page 27 of 85

			Ver	ified By	Ver	ified By	
Temperature Calibration	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
Reference Temperature: 22.2			HMH	1418-09	NR	NR	
Monitor Temperature: 21.4		· · · ·	HMH	11-18-09 1410		¥.	
Reading within ± 2°C?	\square		HMIL	11-18-09 1410	Sps	1410	

	\sim
Procedure Title: Alpha Monitor Site Acceptance Test Plan	
Attachment 1	CAT-CH-ABPM-201S
ABPM 201S Datasheet & Log	Rev. 0 Page 20 of 23

			Ver	ified By	Ver	ified By	
Restoration and Final Check	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
Parameters restored			HMH	3-16-10	NR	N.K	
LPDU in maintenance mode			HMH	1 11 1			
Reset LPDU			HMH	3-16-10			
Pump run for 24 hours	\checkmark		HAH				
All tests complete			DEZ	3-22-10			
Entries complete	~		ste	3-26-10			
Test log signed	~		212	3-20-10			

Attachment 1	CAT-CH-ABPM-201
	Rev.
ABPM 201S Datasheet & Log	Page 21 of 2

Page 21 of 85 (Total)

	\frown
Procedure Title: Alpha Monitor Site Acceptance Test Plan	······································
Attachment 1	CAT-CH-ABPM-201S Rev. 0
ABPM 201S Datasheet & Log	Page 22 of 23

.

.

Observation/Comments:

•

•

$\sim 1 \times$
Page $\frac{23}{5}$ of $\frac{85}{5}$ (Total)

		\bigcirc
Procedure Title: Alp	ha Monitor Site Acceptance Test Plan	
	Attachment 1 ABPM 201S Datasheet & Log	CAT-CH-ABPM-201S Rev. 0 Page 23 of 23

Initials/Name (Print/Signature HMH / Holly Huber	- buy do
Initials/Name (Print/Signature SOS / Srlas Stark	1 Sugelt for Silas Stark
Initials/Name (Print/Signature <u>RSB/Ross Bender</u>	1 DEdwards Ar Ross Bunder
Initials/Name (Print/Signature Alz / Debra Edwards	1 DEtwards
Initials/Name (Print/Signature JRB/John Berstur	1 DA Edon John Berstor
Initials/Name (Print/Signature/	, (

.

.

The ABPM 201S Alpha monitor is acceptable for use:	3/15/2010
eighaidhe	Date
The ABPM 201S Alpha monitor is acceptable for use: Dela Elwrids	3/15/2010
Signature	Date
The ABPM 201S Alpha monitor is acceptable for use:	
Signature	Date

Procedure Title: Alpha/Beta Monitor (ABPM 201 S) Operation	ation
CH-3-4000-01-F-3 Energy Calibration Data Sheet	CH-3-4000-01 Rev.3 Level 2 - Reference Use Page 1 of 1

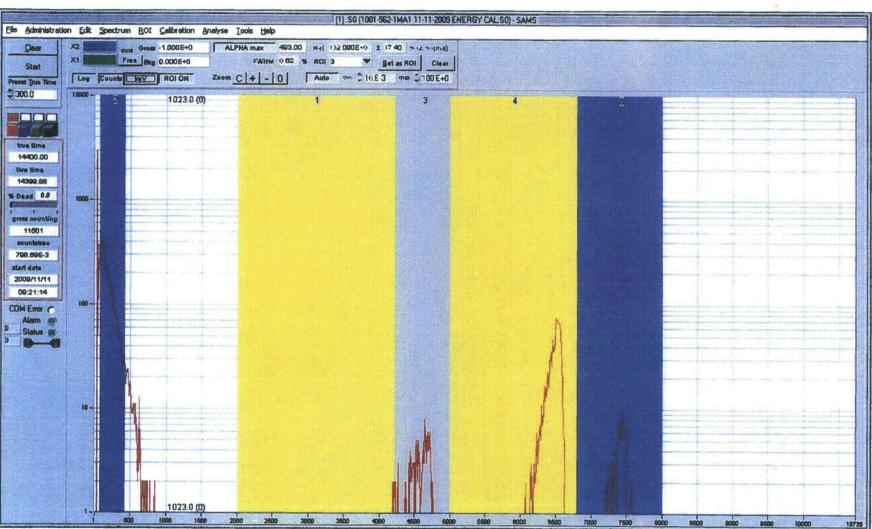
Name of Person Performing Calibration	Holly Huber
Monitor Functional Location	1001-862-1MA1
Date/Time	1-11-09 / 1520

Calibration Values:				
	Last Approved	As Found	As Left ③	
Alpha Max ²¹⁸ Po①	æ	4897.27	4743	
Alpha Max ²¹⁴ Po①		6700.43	6595	
Offset		0.4294	1.1847	
Slope		9.5699	8.8137 11-11-69	
Quadratic		0.00074	0 00163 HH 0.00163	

①Acceptable Range for Alpha Max values:

• ²¹⁸Po: 4743 keV±40keV [4703 to 4783]

²¹⁴Po: 6595 kev±50keV [6545 to 6645]


ł

	Setpoints for A	Ipha Activity:	Æ
	Last Approved	As Found	As Left
Hi Setpoint	3.7E-12 μ Ci/ml	AIA	
Hi Hi Setpoint	7.3 E-12 μ Ci/ml		
			· · · ·

Remarks: Set points NA because of CAT. Final verification on Page 29 (2) Initial site test. No last approved of 2 (3) Spectrum attached on Page 25 of 85.

Delion 1 11/1/09 Reviewed By: Debra Edwards Print

CAT-CH-ABPM-201S Pame 25 of 85

Procedure Title: Alpha/Beta Monitor (ABPM 201 S) Operation

CH-3-4000-01-F-1

Source Calibration Data Sheet

CH-3-4000-01 Rev.3 Level 2 - Reference Use Page 1 of 2

Technician Performing Calibration	Holly Hoper
Monitor Functional Location	1001-562-1MAI
Date/Time	1+1709/1315

	Test Conditions	
	Required Value	Measured Value
Temperature	15 - 35°C	22
Relative Humidity	25 - 75%	26
General Area Radiation	< 0.1 mR/hr (<100µR/hr)	34 cpm (px, xl
Energy Calibration complete? (Circle)		(Yes) No

	Source Activity				
Source Type Serial No. A (Bq)					
241 Am	Alpha	F5-247	-2980 (A) 01 Z		
Am-241	alpha	F8-940	3295		

Gain Verification				
Description	Acceptance Criteria	As Found	As Left	
Peak Channel	399 - 439 channel	434 ##	NA ##	
Alpha-Beta gain	0.7 - 1.3 cps	096	Λ/A	
Gamma gain	0.7 - 1.3 cps	0.79	O MA	

 $① Gamma Gain As Left = \frac{(Alpha - Beta Gain As Left) (Gamma Gain As Found)}{(Alpha - Beta Gain As Found)}$

Detection Efficiency Check				
Background	Acceptance Criteria	Measured Values	Average	Comments
Alpha_cps	< 0.005 cps		0	None
Po21x_cps	< 0.005 cps		0	None-

Procedure Title: Alpha/Beta Monitor (ABPM 201 S) Operation

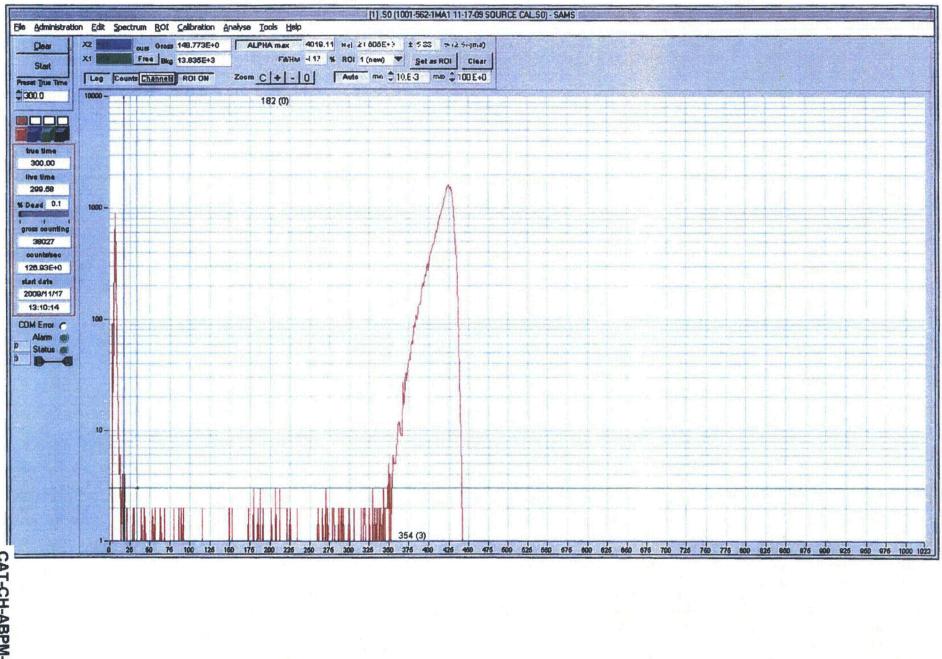
CH-3-4000-01-F-1

Source Calibration Data Sheet

CH-3-4000-01 Rev.3 Level 2 - Reference Use Page 2 of 2

Measurement with the Alpha Source				
	Measured Values (cps)	Average	Comments	
Alpha_cps	121.48 120.40 120.57 120.12 120.12	120.462	Nore	
Po21x_cps	0,0539 0,0465 0.0556 0.0524 0.0492	0.05152	None	

Detection Efficiency Calculation for Source			
Acceptance Criteria	Measured Value	Comments	
0.0326 to 0.0398 cps/Bq	0 0.03656	None	
1206.2 to 1472.6 cps/µCi	3 352.68	L I	
	Acceptance Criteria 0.0326 to 0.0398 cps/Bq	Acceptance CriteriaMeasured Value0.0326 to 0.0398 cps/BqImage: Original Content of Content	


② Alpha Efficiency (cps/Bq) = S/A = Alpha_cps/2980 Bq

3 Alpha Efficiency (cps/ μ Ci) = 2 x 37000

Alarm Verification						
Scenario			Relay Status read from MASS2)			Acceptable?
	Status	OP	TST	Н	H/H	(Yes/No)
High alarm (modify LPDU threshold)	H alarm	On	Off	On	Off	Les
H/H alarm (modify LPDU threshold)	H/H alarm	On	Off	Offor	* On	VES
Fault (turn off the sample pump)	Slave fault	Off	Off	Off	Off	Wes
Test (place LPDU in Bypass mode)	Bypass	On	On	Off	Off	YES

Remarks: post production lost value fer alpha efficiency. 00362 cps/Bq * high alarm is on during H/H alarm. ** Spectrum attached. No change required. "As found is the same as As left.

CAT-CH-ABPM-201S Page 27 of 85

CAT-CH-ABPM-201S Page 28 of 85

Procedure Title: Alpha Monitor (ABPM 201 S) Operation

CH-3-4000-01-F-3

(

ŕ

Energy Calibration Data Sheet

CH-3-4000-01 Rev.4 Level 2 Reference Use Page 1 of 1

Name of Person Performing Calibration	Holly Hileer
Monitor Functional Location	1001-362-1MA1
Date/Time	1-27-10/1045
Date/Time	LF27-10/ 1045

Calibration Values:					
	Last Approved	As Found	As Left		
Alpha Max ²¹⁸ Po①					
Alpha Max ²¹⁴ Po①		. 14			
Offset		AA			
Slope					
Quadratic					
OAcceptable Range for Alpha Max Values					
²¹⁸ Po: 4743 keV±40keV [4703 to 4783] ²¹⁴ Po: 6595 kev±50keV [6545 to 6645]					

	Setpoints fo	r Alpha Activity:	
	Last Approved	As Found	As Left
Hi Setpoint	3.7E-12 μ Ci/ml	3.7e-12 n Ci/ml	0.14 Ba/m3
Hi Hi Setpoint	7.3 E-12 μ Ci/ml	7.30-12 INC:/ml	0.27 Ba/m3

RamSys backup p	erformed? (Check one):	Yes 🛛 No 🗌				
Comments: Datasheet used to document setting of final setpoints Setpoints units changed to agree with POD ptz 1/27/10 Editorial revision to procedure will be effective prior to next verification. (3.7E-12 uCi/ml = 0.14 Bg/m ³)						
Setpoints	Setpoints units changed to agree with PODptz 1/27/10					
Editorial	revision to procee	lure will be effective				
prior to	next verification.	(3.7E-12 u Ci/ml = 0.11	4 Bg/m32			
0	techve 3/17/10 with	$\int 3.7E - 12 \mu Gi/ml = 0.19$ $\int 7.3E - 12 \mu Gi/ml = 0.29$	1 Byl, 35			
Review Rotts	in both uliful + bg/m3.					
	il \/ 11 1	IA in the	1 7 - 1 2			
Performed by:	Hally Hiller	- wipel	1-27-10			
	Printed Name	Sighature	Date			
Verified by:	William Haven K	on M	1-27-10			
	Printed Name	Signature	Date			
Reviewed by:	DEdwards	Delwards	1-27-10			
	Printed Name	Signature	Date			

CERTIFICATE OF CALIBRATION

Process Management NOMENCLATURE F

()

ient	San Francisco-Los Angeles San Diego-Scattle-Denver-Pontand-Albuquerque-Kansas City-Les Vegas-Reno-Phoentx-Sait Lak	e City-El Paso
Fluke	7 V Digital Multimeter	

			True RMS	Multimeter_		;		
			INSTRUMEN					
		RYNUMBER	······			EDURE		
ļ	Ross Bender Div. 093 MANUFACTURER		DATE OF LAST CA		/Mfr			
		uke		DATE OF LAST OF	2/2008	1601		
		NUMBER				SSION DATE	1	
		7 V				/2010		
SERIAL NUMBER				WERE ADJUSTME	NTS OR PARTS	REQUIRED?		
ļ	9626	0273		4			YES	i
							NO	Х
			TEST	DATA				
TEST ENGINEEP		scobar		JOB NUMBER	200	4074		
TEST DATE	Juan c	scobar		PURCHASE ORDE		4874		
	02/	13/2009				NA		
AMBIENT TEMPE			······································	TEST LOCATION				
		0 oF				, New Mexico	2	
RELATIVE HUMI	DITY				1			
		50%		TEST				
		ASSET NO.	DUE DATE	ZOUIPMENT		ASSET NO.	គំរ	UÊ DATE
Fluke	5500A	20-01200	03/14/2009	A still on specific the second				
1 10/10	00004	20-01200	00/14/2003				+	
		1				: 	┼──	
	<u> </u>						<u> </u>	
			<u> </u>				<u> </u>	
DETAILS								
				19	an m	3.77		
				B	COP	Й		
				~~				
(
								(
L								

ETI certifies that this instrument was calibrated / tested in accordance with and traceable to the National Institute of Standards and Technology (N.I.S.T.) or acceptable natural physical standard as per MIL-STD-45662A.

.

2001 ETI

ŝ

Procedure Title: Receipt Inspection

QA-3-3000-18-F-1

QC Receipt Inspection Plan Report

QA-3-3000-18 Rev. 1 Level 3 - Information Use Page 1 of 3

PO No.	RIP No.	Date	Time	Quality Level
1853-10	2009-074	01-June-2009	11:50 am	Maintenance M&TE QL-1

N/A

Shipment General Description:

Ć

Calibration of Maintenance Instrument ID: FM-2; Model #:FMA1843; Serial #: 230235-3 Davis Certificate of Calibration #: 3232029

Davis Technician: Outside Vendor (Dick Munns Company)

Sampling Method (if applicable)

Shelf life expiration date (if applicable) 01-Apr-2010

en	Suspect/Counterfeit Chack	🖾 NA	SAT

Inspection Acceptable? Xes No

Inspector Comments:

M&TE Description	ID No.	Calibration Due Date
N/A	N/A	N/A
N/A	N/A	N/A

Performed By	Matthew Graves, Watthew Graves,	6/1/09	11:50 am
	Print/Sign	Date	Time
Reviewed By	RI Whittard	Cell/od	1235
	Print/Sign	Date	Time

CAT-CH-ABPM-201S Page 31 of 85

LES RIR. 2009-074

Certificate of Calibration

3232029 Certificate Page 1 of 1

Instrument Identification

PO Number: 1853-10

Company ID: 88636 LOUISIANA ENERGY SERVICES, L.P. QUALITY ASSURANCE LES 275 ANDREWS HWY 176 EUNICE, NM 88231

Davis

 (\cdot)

Instrument ID: FM-2 Manufacturer: OMEGA Description: MASS FLOW METER Model Number: FMA1843 Serial Number: 230235-3

Certificate Information

 Reason For Service:
 CALIBRATION

 Type of Cal:
 NORMAL

 As Found Condition:
 IN TOLERANCE

 As Left Condition:
 LEFT AS FOUND

 Procedure:
 VENDORS PROCEDURE REFER TO ATTACHED CERT.

Technician: OUTSIDE VENDOR Cal Date 01Apr2009 Cal Due Date: 01Apr2010 Interval: 12 MONTHS Temperature: 70.0 F Humidity: 50.0 %

Remarks: Unit calibrated by Dick Munns Co.

The instrument(s) listed on this certificate has been calibrated by a vendor evaluated and approved in accordance with the Davis Calibration quality system.

All calibrations are traceable to the National Institute of Standards and Technology (NIST). derived from ratio type measurements, or compared to nationally or internationally recognized consensus standards.

A calibration uncertainty ratio of 4:1 [K=2, 95% Confidence Level, calculated using the expanded measurement uncertainty] was maintained unless otherwise stated.

Davis Calibration Laboratory is certified to ISO 9001: 2000, and meets the requirements of ANSI/NCSL Z540-1-1994 and ISO 10012: 2003.

When noted in Type of Cal an ISO/IEC 17025-2005 accredited calibration has been accomplished.

All results contained within this certification relate only to item(s) calibrated. Any number of factors may cause the calibration item to drift out of calibration before the instrument's calibration interval has expired.

This certificate shall not be reproduced except in full, without written consent of Davis Calibration Laboratory.

Approved By: MARK GOODMAN Service Representative

Davis Calibration • 1421 Champion Drive, Suite 304 • Carrollton, TX 75006 • Phone: 800-698-2033 • Fax: 972-234-1079

. wyc 207 S LES RIR: 2009-074

DICK MUNNS COMPANY Liquid and Gas - Flowmeter Calibration Service 10572 Calle Lee - 138 • Los Alamitos, California 90720 Telephone (714) 827-1215 • Telefax (714) 827-0823

CERTIFICATE OF CALIBRATION

Client Name:	DAVIS CALIBRATION	Calibration Date:	04-01-2009
Reference Number:	PO# 4040680	Calibration Due:	04-01-2010
Instrument Manufacturer:	OMEGA	Calibration Fluid:	GN2 @ 70F
Instrument Description:	MASS FLOWMETER	Standard(s) Used:	A4,A312 DUE 01-2011
Model Number:	FMA1843	NIST Traceability Per:	MS131414,MS13431
Serial Number:	230235-3	Ambient Conditions:	759 mmHGA 50% RH 70F
Rated Uncertainty:	+/- 1.5% F.S.	Procedure Number:	NAVAIR-17-20MG-02
Uncertainty Given:	AS RECEIVED	Certificate/File Number:	433347
	WITHIN SPECS.		
	REFERENCE CONDITIONS	ARE: 760 mmHGA 70F.	(A/N: FM-2)

INDICATED UUT SLPM	ACTUAL DM.STD. SLPM
0	0.000
5	5.031
15	15.064
50	50.120
100	100.241
150	150.361
200	200.482

All instruments used in the performance of the above calibration have direct traceability to the National Institute of Standards and Technology (NIST). The accuracy ratio between the calibration standards used and the unit under test is a minimum of 4:1, unless otherwise noted. Calibration has been performed per the above listed procedure number, in accordance with ISO 10012-1,17025, ANSI/NCSL-Z-540-1, and/or MIL-STD-45662A.

Calibration Performed By:

pproved By: R.L.MUNNS

DICK MUNNS COMPANY

CAT-CH-ABPM-201S Page 33 of 85

www.dickmunns.com

Procedure Title: Receipt Inspection QA-3-3000-18-F-1 QA-3-3000-18 Rev. 2 **QC** Receipt Inspection Plan Report Level 3 Information Use Page 1 of 7 PO No. **RIPR** No. Date Time Quality Level Maintenance 1853-10 2009-229 20-Aug-2009 1:44 pm M&TE QL-1 **Shipment General Description:**

Calibration of Maintenance Instrument ID: M87-2; Model #: 87 V; Serial #: 94910331

Davis Certificate of Calibration #: 3380524

Davis Calibration Technician: Steve Galla

Inspection Acceptable?

(

Sampling Method (if applicable) N/A 22-Jul-2010 Shelf life expiration date (if applicable) Quality Records Validation Suspect/Counterfeit SAT] UNSAT Check Validated by: 2-----Printed Name: R. schrmacher Safe-By-Design SAT Verification] UNSAT

 $\Box UNSAT Date of Validation: <math>\mathcal{P}/2c/\mathcal{A}$

Inspector Comments: _____Fluke, True RMS Multimeter; Model No. 87 V; Serial No. 94910331

M&TE Description	ID No.	Calibration Due Date
N/A	N/A	N/A
N/A	N/A	N/A

Performed By	Matthew Graves, Country Matthew	8/20/09	1:46 pm
Fenomied by	Print/Sign	Date	Time
	\square		
Reviewed By	RLinhtford	2125/09	1202
	Print/Sigh	Date	Time

CAT-CH-ABPM-201S Page 34 of 85

Certificate of Calibration

3380524

Certificate Page 1 of 4

Instrument Identification PO Number:

PO Number: 1853

Company ID: 88636 LOUISIANA ENERGY SERVICES, L.P. QUALITY ASSURANCE LES 275 ANDREWS HWY 176 EUNICE, NM 88231

Instrument ID: M87-2 Manufacturer: FLUKE Description: TRUE RMS MULTIMETER

Accuracy: Mfr. Specifications

Model Number: 87 V Serial Number: 94910331

Certificate Information

Reason For Service: CALIBRATION Type of Cal: ACCREDITED 17025 WITH UNCERTAINTIES As Found Condition: IN TOLERANCE As Left Condition: LEFT AS FOUND Procedure: FLUKE , 80 SERIES V MANUFACTURERS MANUAL Technician: STEVE GALLA Cal Date 22Jul2009 Cal Due Date: 22Jul2010 Interval: 12 MONTHS Temperature: 21.0 C Humidity: 32.0 %

Remarks:

The instrument on this certification has been calibrated against standards traceable to the National Institute of Standards and Technology (NIST) or other recognized national metrology institutes, derived from ratio type measurements, or compared to nationally or internationally recognized consensus standards.

A test uncertainty ratio (T.U.R.) of 4:1 [K=2, approx. 95% Confidence Level] was maintained unless otherwise stated.

Davis Calibration Laboratory is certified to ISO 9001:2000 by Eagle Registrations (certificate # 3046). Lab Operations meet the requirements of ANSL/NCSL Z540-1-1994, ISO 10012:2003, 10CFR50 AppxB, and 10CFR21.

ISO/IEC 17025-2005 accredited calibrations are per ACLASS certificate # AC-1139 within the scope for which the lab is accredited. All results contained within this certification relate only to item(s) calibrated. Any number of factors may cause the calibration item to drift out of calibration before the instrument's calibration interval has expired.

This certificate shall not be reproduced except in full, without written consent of Davis Calibration Laboratory.

Approved By: STEVE GALLA Service Representative

Calibration Standards

NIST Traceable#	Inst. ID#	Description	Model	Cal Date	Date Due
2927994	04-0453	CALIBRATOR	5520A W/SC1100	14Jan2009	14Jan2010

C×.

CAT-CH-ABPM-201S Page 35 of 85

Davis Calibration • 1421 Champion Drive, Suite 304 • Carrollton, TX 75006 • Phone: 800-698-2033 • Fax: 972-234-1079

Davis Calibration

.

Certificate of Calibration

3380524

Certificate Page 2 of 4

Range	Nominal	As Found	1	As Left	ľ	Min	Max
			VOLTS		L		
mV / 60 Hz	330.0	329.6	र्ग जा	329.6		327.3	332.7
mV / 13 kHz	600.0	606.0		606.0	$\overline{\mathbf{v}}$	586.0	614.0
V / 60 Hz	3.300	3.297	$\overrightarrow{\mathbf{v}}$	3.297	171	3.275	3.325
V / 20 kHz	3.300	3.290	V	3.290		3.214	3.386
V / 60 Hz	33.00	32.97		32.97		32.75	33.25
V / 20 kHz	33.00	32.93	$\overrightarrow{\mathbf{v}}$	32.93	V	32.14	33.86
V / 60 Hz	330.0	329.8		329.8	1	327.5	332.5
V / 2.5 kHz	330.0	330.2	1×1	330.2	$\overline{\mathbf{v}}$	323.0	337.0
V / 60 Hz	500.0	499.8	TVT	499.8	1	494.0	506.0
V / 1 kHz	1000	1002	121	1002	1/	986	1014
······································		AC VOLTS	FREOIR	NCÝ			
		1				99,93	
150 mV @ 99.95 kHz	99.95	99.95	1	99.95			99.97
150 mV @ 199.50 kHz	199.50	199.50	IVI	199.50	V	199.48	199.52
		FREQUENCY	SENSIT	TIVITY			
V @ 99.95 kHz	99.95	99.96	V	99.96	V	99.93	99.97
	99.95	99.95	1	99.95	1	99.93	99.97
		DCV Hz TRI	GGER LI	EVEL			
3.4 V,1 kHz SQ Wave	1000.0	1000.0	$\overline{\mathbf{V}}$	1000.0	1	999.8	1000.2
		DCV Hz DI	UTY CY	CLE			
V,1 kHz DC offset 2.5V SQ.W	50.0	49.9		49.9	1	49.7	50.3
		DCN	OLTS				
;i	3.300	3.300	1	3.300	1/1	3.297	3.303
· · · · · · · · · · · · · · · · · · ·	33.00	33.00	17	33.00	1/1	32.97	33.03
/	330.0	330.0	1/	330.0	171	329.7	330.3
/	1000	1000	1/1	1000	121	998	1002
**************************************	· · · · · · · · · · · · · · · · · · ·		DC				
nV	33.0	33.0	171	33.0	1/1	32.9	33.1
٧	330.0	330.0	1/	330.0	1/	329.6	330.4
		RESISTA	NCE TES				
hms	330.0	330.1	121	330.1	1	329.1	330.9
Ohms	3.300	3.300	1/	3.300	1/	3.292	3.308
	33.00	33.00		33.00		32.92	33.08
							

CAT-CH-ABPM-201S

Davis Calibration • 1421 Champion Drive, Suite 304 • Carrollton, TX 75006 • Phone: 800-698-2033

Certificate of Calibration

3380524

Certificate Page 3 of 4

🖌 In Tolerance	Cout of Tolerance		bration				
Range	Nominal	As Found		As Left		Min	Max
ne se se		RESIST	ĂŅĊE TĻ	ist			
MOhms	3.300	3.301	\checkmark	3.301	1	3.279	3.321
MOhms	30.00	30.01	\checkmark	30.01	1	29.67	30.33
		nS CON	DUCȚAN	ICE			:
Open Input	0.00	0.01	\checkmark	0.01	1	-0.30	0.30
100 MOhms	10.00	10.01	1	10.01	\checkmark	9.60	10.40
		Ľ	DIODE				
3 V DC	3.000	3.000	1	3.000	1	2.939	3.061
		AC	C AMPS				
A / 60 Hz	3.000	3.000	1/1	3.000	1/1	2.968	3.032
		£	C AMPS		<u> </u>		
A	3.000	3.001		3.001	1	2.990	3.010
<u> </u>		<u></u>				2.550	3.010
		AC M	ILLIAMP	S			
/ 60 Hz	33.00	32.99	1	32.99	 ✓ 	32.65	33.35
mA / 60 Hz	330.0	330.0		330.0	_/∕	326.5	333.5
		DC M	ILLIAMP	S			
mA	33.00	33.00	1	33.00	1	32.89	33.11
mA	330.0	330.0		330.0	1	329.1	330.9
		AC MI	CROAMP	S			
µA / 60 Hz	330.0	329.9	1	329.9	~	326.5	333.5
µA / 60 Hz	3300	3300	1	3300	1	3265	3335
		DC MI	CROAMP	S		•	
AL	330.0	330.0	\checkmark	330.0	1	328.9	331.1
A	3300	3300		3300	1	3291	3309
		CAPA	CITANCI	3		-	, see 4
Open Input	0.26	0.26	\checkmark	0.26	1	0.21	0.31
ō nF	5.00	4.97	\checkmark	4.97	1	4.70	5.30
9.5 uF	9.50	9.52	\checkmark	9.52	1	9.20	9.80
	- -	ACV LOW	PASS FIL	TER	•		
pplied 400 V / 400 Hz	400.0	390.7	1	390:7	1	376.0	408.0
d 400 V / 800 Hz	283.0	282.1	\checkmark	282.1	~	226.0	340.0
		TEMPER				CAT-C	H-ABPM-201 je 37 of 85

Davis Calibration • 1421 Champion Drive, Suite 304 • Carrollton, TX 75006 • Phone: 800-698-2033 • Fax: 972-234-1079

Certificate of Calibration

3380524

Certificate Page 4 of 4

🖌 🧹 In Tolerance 🙀	Out of Tolerance		ration I	Jara		· · · · · · · · · · · · · · · · · · ·	
Range	Nominal	As Found		As Left		Min	Max
		TEMPER	ÁTURE ir	°C			
0°C	0.0	-0.7	1	-0.7	V	-1.0	1.0
100 ° C	100.0	98.8	V	98.8	\checkmark	98.0	102.0
		BACKLI	GHT TES	TS			
Backlight on	Check	Pass	1	Pass	V	Pass/Fail	Pass/Fail
Intensifies	Check	Pass	\checkmark	Pass	V	Pass/Fail	Pass/Fail
Backlight off	Check	Pass	11	Pass		Pass/Fail	Pass/Fail

End of Datasheet

C

•

67

Davis Calibration Laboratory

Measurement Unc	ertainty Report
Certificate #	3380524
Date	7/22/2009
Description	True RMS Multimeter
Mfr.	Fluke
Model	87V
Standards	04-0453

[k=2, approx. 95% Confidence Level]

Function	Range	Nominal	Uncertainty
AC Volts	mV / 60 Hz	330.00	5.77E-02
AC Volts	mV / 13kHz	600.00	5.77E-02
AC Volts	V / 60 Hz	3.300	7.51E-05
AC Volts	V / 20 kHz	3.300	5.92E-04
AC Volts	V / 60 Hz	33.00	8.78E-03
AC Volts	V / 20 kHz	33.00	5.93E-03
AC Volts	V / 60 Hz	330.0	5.91E-02
AC Volts	V / 2.5 kHz	330.0	5.89E-03
AC Volts	V / 60 Hz	500.0	5.91E-02
AC Volts	V / 1k Hz	1000	1.20E-02
AC Volts Frequency	150 mV @ 99.95 kHz	99.95	8.23E-03
AC Volts Frequency	150 mV @ 199.95 kHz	199.50	8.23E-03
cequency Sensitivity	0.7 v @ 99.95 kHz	99.95	8.23E-03
equency Sensitivity	7 v @ 99.95 kHz	99.95	8.23E-03
DCV Hz Trigger Leval	3.4V, 1kHz SQ Wave	1000.0	5.79E-02
DCV Hz Duty Cycle	5v, 1kHz DC Offset 2.5V SQ wave	50.0	5.79E-02
DC Volt	Volt	3.300	5.77E-04
DC Volt	Volt	33.00	1.20E-03
DC Volt	Volt	330.0	5.78E-02
DC Volt	Volt	1000	1.07E-03
mV Dc	mV	33.0	5.77E-02
mV Dc	mV	330.0	5.77E-02
Resistance	Ohms	330.0	5.78E-02
Resistance	kOhms	3.300	9.68E-02
Resistance	kOhms	33.00	2.30E-01
Resistance	kOhms	330.0	2.90E+00
Resistance	Mohms	3.300	8.88E-02
Resistance	Mohms	30.00	5.77E-02
nS Conductance	Open Input	0.00	N/A
nS Conductance	100 Mohms	10.00	5.82E-03
Diode	3VDc	3.000	5.77E-04
AC Amps	A / 60Hz	3.000	5.77E-02
DC Amps	A	3.000	5.77E-02
AC Milliamps	mA / 60Hz	33.00	5.77E-02
AC Milliamps	mA / 60Hz	330.0	5.77E-02
DC Milliamps	mA	33.00	5.77E-02
DC Milliamps	mA	330.0	5.77E-02
Microamps	µA / 60Hz	330.0	5.77E-02

.

AC Microamps	µA / 60Hz	3300	5.77E-02
DC Microamps	μΑ	330.0	5.77E-02
DC Microamps	Αμ	3300	5.77E-02
Capacitance	Open Input	0.00	N/A
Capacitance	5.00	5.00	2.70E-02
Capacitance	9.50	9.500	3.50E-01
ACV Low Pass Filter	Applied 400V / 400Hz	400	N/A
ACV Low Pass Filter	Applied 400V / 800Hz	283	N/A
Temperature in °C	0.0	0.0	2.99E-01
Temperature in °C	100.0	100.0	2.99E-01

Davis Calibration utilizes the Root Sum Squared method of estimating measurement uncertainty as described in Appendix A of NIST technical note 1297, 1994 edition, and ANSI/NCSL Z540-2-1997 "American National Standard for Expressing Uncertainty – U.S. Guide to the Expression of Uncertainty in Measurement".

A coverage factor (k) of 2 is applied to all calculations to insure a Confidence Level of approx. 95%.

Scientific and Industrial Instruments	CERTIFICATE OF	CALIBRATION	PC 50	DLUM MEAS ST OFFICE BOX 8 OAK STREET EETWATER, TEXA	310 PH. 325- FAX NO	235-5494 . 325-235-467
CUSTOMER LOUISIANA ENERGY SERVICES	LP			ORDER NO	20140	302/341995
Mfg. Ludium Measurements, Inc.	Model	2224	_	Serial No. 2	12506	
Ludium Measurements, Inc.	Model	43-93		Serial No. <u>PR</u>	268991	
al. Date 8-Sep-09 Co				al <u>I Year</u>	Meterface_	202-783
Check mark 🗹 applies to applicable instrant	d/or detector IAW mfg	. spec. T	<u>73</u> °F	RH <u>38_</u>	% Alt	<u>699.8_</u> mm Hç
C New Instrument Instrument Received	Within Toler +-109	5 🗍 10-20% 🗍 Oi	ut of Tol. 🛄 Re	quiring Repair	🗇 Other-See	comments
Mechanical ck. Meter 2 F/S Resp. ck Reset a Audio ck. Alarm 5 Calibrated in accordance with LMI SOP 14 Instrument Volt Set	.k. Jetting ck. 4.8 rev 12/05/89.	Background S Window Oper Batt. ck. (Min. Calibrated in a	ation Volt) <u>2.2</u> Iccordance w	Ge VDC th LMI SOP 14.9	add	
W HV Readout (2 points) Ref./Inst				1500	_150	
COMMENTS: Alpha threshold = 120mv Beta threshold = 3.5mv Beta window = 30mv Overload set to simulated light 1 High voltage set with detector no Firmware: 390063						
Gamma Calibration: GM detectors positioned perpendicular to source ex	cept for M 44-9 in which the front o	of probe faces source.				

		REFERENCE	INSTRUMENT REC'D	INSTRUMENT
1	RANGE/MULTIPLIER	CAL, POINT	"AS FOUND READING"	METER READING*
F.		400kcpm	400	<u> </u>
R.	X1000	100kcpm	100	
	<u>x100</u>	<u>40kcpm</u>	400	- <u>400</u> - 5 -
	<u>x100</u>	<u>10kcpm</u>		00
	X10	<u>4kcpm</u>	400	- 400
	<u>x10</u>	<u>lkcpm</u>	_ 100	_ 100
	X]	<u>400cpm</u>	40.0	400
	<u> </u>	100cpm	100	_ 20.0
		-	_ .	
				-

	*Uncertainty within ± 10%	C.F. within ± 20%				<u>ALL</u> Range(s) Callbr	ated Electronically
	REFERENCE CAL. POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*		REFERENCE CAL. POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*
Digital Readout	400kcpm 40kcpm	399613	<u>399613</u> <u>39958</u>	Log Scale	····		
	<u>4kcpm</u> 400cpm	<u>3996</u> <u>399</u>	<u> </u>		··· ·· ··· ·		_
	40cpm	40	40		***** ****	·····	

Luclum Measurements, Inc. certifies that the above instrument has been calibrated by standards traceable to other International Standards Organization members, or have been derived from accepted values of natural p The calibration system conforms to the requirements of ANSI/NCSL 2540-1-1994 and ANSI N323-1978	the National Institute of Standards and Technology, or to the cationation facilities of physical constants or have been derived by the ratio type of calibration techniques. State of Texas Calibration License No. LO-1963
	05928060646 551 7207341616Neutron Am-241 Be S/N T-304
Alpha S/N Pu239 SN:2928 25081dpm Beta S/N I_C99 SN:5280	9 <u>3200d</u> pm 7 Other <u>\$rY90 \$N:4016_55367dpm</u>
m 500 S/N <u>190566</u> Oscilloscope S/N	✓ Multimeter S/N 8 <u>6250390</u>
Currated By: A por Ala	Date 5-SePT-09
Reviewed By: Bhode Hama	Date 9 Jup 09 CAT-CH-ABPM-201S Page 41 of 85

This certificate shall not be reproduced except in full, without the written approval of Ludium Measurements, Inc. FORM C22A 10/15/2008

AC Inst. j. J. Possed Dielectric (Hi-Pot) and Continuity Test .

M

Ć

Bench Test Data For Detector

Detector43-93 Serial No Serial No Serial No No Serial No No Serial No No Serial No S	Order #20140302/341995
Customer LOUISIANA ENERGY SERVICES LP	Alpha Input Sensitivity <u>120</u> mV
Counter2224 Serial No247506	Beta Input Sensitivity <u>3.5</u> mV
Count Time 1Minute	Beta Window30 mV
Other	Distance Source to Detector

	High	Back	ground	lsotope Size	Pu 239 25081 dpm	lsotope Size	<u>IC 99</u> 932004pm	lsotope . Size	51×90_ 55367dpm
	Voltage	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta
-	700	0	97	4414	323	34	10/92	2	8476
-	725		132	4998	371	- 2 L	14513	2	11518
	750		230	5324	1 439	27	17823	4	13142
J.F.	800 775	0	282	5559	525	36	21192	2	14970
-				··			L +		
-						ten af farmen a annun taratta tar taratta			
								•	
-			,		+ + !				
-					+		i- 1		
-		1		r L	÷ _				
		1					·		
							, .		· · · · · · · · · · · · · · · · · · ·
_	ł				+ ~			۲.	
_								!	
					Ll		•	·	

Gas proportional detector count rate decreased \leq 10% after 5 hour static test using 39" cable and alpha/beta counter

(signature Javan Flor-

Date 8-Sept-09

CAT-CH-ABPM-201S Page 42 of 85

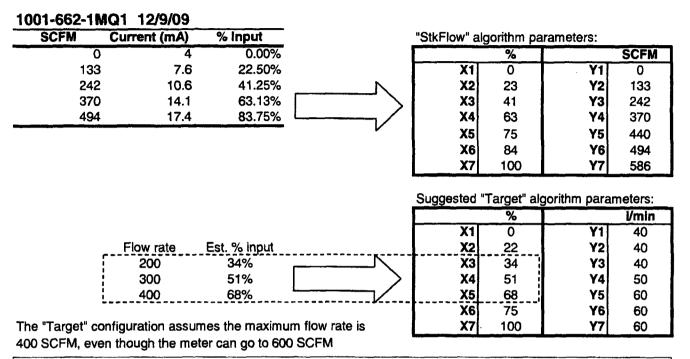
FORM C48 04/09/2003

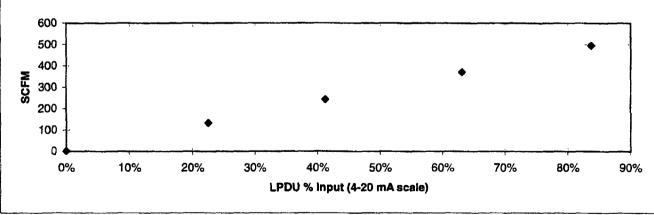
.

Serving The Nuclear Industry Since 1962

Calibration Accuracy Check List

Serial Number	N36U_2	
Model number	Dwyer 641-6	
Date	12/9/2009	


M&TE	Shortridge In	struments a	uirdata	
Model #	ADM-870C	Serial #	MO4395	
Cal Due Date	4/8/20	10		


M&TE	Flow		4-20mA	Acceptable Range (Flow)	Acceptable Result
0	0	cím	4	0	yes
135	133	cím	7.6	116 - 150	yes
237	242	cfm	10.6	225 - 259	yes
363	370	cfm	14.1	353 - 387	yes
491	494	cfm	17.4	477 - 511	yes

1001-662-1MQ1

Test Performed By: John Berstler LES Engineering and Rick Quinonez Kirk Air Co.

 \cap

Factory Acceptance Test Report for LES ABPM201S

Appendix D: Test Logs for ABPM201S S/N 090501-04

This appendix contains the completed test logs from the post production and factory acceptance tests. The following is included:

- 1. Completed FAT log, from test procedure 12-00124.
- 2. Completed post production test log, from procedure 12-00098.
- 3. Manufacturer data sheets for the electronics package and detector
- 4. Spectra collected during monitor testing

All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

LES ABPM201S Factory Acceptance Test Log

Test Procedure:	12-00124	Revision:		
Post-Production Test Procedure:	12-00098	Revision:	2	
Date Test Started:	5/27/2009	9:00		
Date Test Ended:	5/28/09 1200			
Performed By:	Silas Shark Print Name	Signature	5/28/09 Date	
Witnessed By:	Print Name	Huggnature	<u>S-28-09</u> Date	
Reviewed By:	David Jacow Print Name	- Contracture	5-29-69 Date	
Approved By:	Mike EDELMW Print Name	Dr. Tew Jehan Signature	<u>6-1-2009</u> Date	
SIN 0905	01-04			M.GAT.

C

All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

1. Introduction

Not applicable

2. Related Documentation

Not applicable

3. Glossary of terms

Not applicable

4. Notes

Not applicable

5. Devices to be Tested

Not applicable

6. Test Tools & Conditions

6.1 Prerequisites

Test Results: Satisfactory Unsatisfactory (describe)	
Performed by: S. Stark.	Date: 5/27/2009
Notes/Comments:	
	μημα - την αντική ματαλική της τους τους τους τους τους τους τους του

ABPM201S Test Data Sheet reference number: 14-00098 - 090501-04

All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

04

- Emme p		04
	LES ABPM201S Factory Acceptance Test Log	Page 3
6.2 Required To	ols	
Test Results:	isfactory 🔲 Unsatisfactory (describe) 🔲 Conditionally s	satisfactory (describe)
Performed by:	tark Date: 5/	27/09
Notes/Comments:		•

MASS Version:	1.7.0
SAMS Version:	<u>.t</u>

Tool	Model No.	Serial No.	Calibration Due Date
Digital thermometer (0.1 °C resolution)	Omega HH 314	070 800353	4/22/10
Hygrometer (1% RH resolution)	Omega ## 314	070800353	4/22/09
Digital multimeter (0.1 mA resolution)	Fluke 87	91580342	11/17/09
Dose rate meter (0.1mR/hr resolution)	Ram Ion	20292-10	11/24/10
Mass flow meter (0.5 l/min resolution)	Omegn FMA 1843	205587-2	5/12/10
Pressure gauge (0.2psi resolution)	NIA	014	N/A.

6.3 Test Conditions

Test Results: 🕢 Satisfactory 🗌	Unsatisfactory (describe)	Conditionally satisfactory (describe)
Performed by:	10	Date: 5/27/09 - 5/28/09
Notes/Comments:		

	5/27/09	5/28/04
Temperature	74.F	740F
Humidity	58%	55%
Gamma Background	20.1mRlhr	COIL MR/hr
Line voltage	118.3 V	118.71
Line Frequency	55,58 Hz	60.02 Hz

.

) 🖬

All information In this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

Page 4

7. Inspection & Test Setup

7.1 Visual Inspection

Test Results: Satisfactory Unsatisfactory (describe)	Conditionally satisfactory (describe)
Performed by: S. Stark	Date: $5 \int 27 / 09$
Notes/Comments:	

Serialized electronics:

Monitor	Device	Part Number	Serial Number
n a geographic and an	Assembly (skid)	02-00384	090501-04
	LPDU/PIPS	131839	090503
	PIPS Detector	45445	081997
ABPM201S	Particulate flow meter	12044	091774
	PIS flow meter	120112	080693
	Filter cassette	43775	081190
	Flow control valve	700055	29225
System	RDU	134142	080654

7.2 Test Setup

Test Results: Satisfactory Unsatisfactory (describe)	
Performed by: S. Stark	Date: 5 (27/09
Notes/Comments:	-
Step. 7.2.4; all switches down (type (ECN 651 opened)	in procedure)
(ECN GE) spened)	•

All information in this document is the exclusive property of MGP instruments, inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP instruments, inc.

H

8. Software Configuration

8.1 Objective

Not applicable

8.2 LPDU/SAS/PIPS (ABPM201S)

Test Results: 🗗 Satisfactory 🗌 Unsatisfactory (describe)	Conditionally satisfactory (describe)
Test Results: Usatisfactory Performed by: Stark	Date: 5 27 09
Notes/Comments:	

Configuration changes:

\bigcirc		Number	Ex	pected	As Found	
		Number	Index	Version	Index	Version
	Base software	735	E or later	1	E	
	Application software	774	R or later	2	R	2
	Parameters set	827			C.	103

8.3 RDU

ſ

Test Results: 🗗 Satisfactory 🗍 Unsatisfactory (describe) Performed by: <u>S. Stank</u>	Conditionally satisfactory (describe)
Performed by: S. Shark	Date: $5/27/09$
Notes/Comments:	

All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

CAT-CH-ABPM-201S Page 50 of 85

HH

Page 6

oy

Configuration changes:

	Number	Ex	pected	As	Found
		Index	Version	Index	Version
Base software	1030	B or later	1	ß	1
Application software	1079	A or later	1	A	1
Parameters set	603		· • · · · · · · · · · · · · · · · · · ·	Q	1

9. Isokinetic Flow Control Test

Test Results: Satisfactory Performed by: <u>S.S. Hark</u>	🗌 Un	satisfactor	y (describe) 🔲 (Conditional	ly satisfactory (describe)	
Performed by: S.Stark	k			Date:	5/27/09	
Notes/Comments:	/				· /	
		•		1		

C Change monomum and motoral correction to 25% Acceptance criteria is ± 25% of expected flow rate.

Test	Stack flow rate (m3/hr)	Expected sample flow rate (I/min)	Measured sample flow rate (Vmin)		
1	0 (current generator off)	40	40.9		
2	2500	40	41.2		
3	5000	40	41.2		
4	7500	50	48.9		
5	10000	60	58.1		

All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

	LES ABPM201S Factory Acceptance Test Log	Page 7
10. RDU Test		
10.1. Initial Conditio	ns	
Test Results: Satisfacto Performed by: <u>S. Stark</u> Notes/Comments:	ory 🗌 Unsatisfactory (describe) 🗌 Conditionally Date:	

10.2. Relay & Alarm Test

Test Results:	Satisfactory	Unsatisfactory	/ (desci	ribe) 🗌] Condi	tiona	lly satis	factory (des	cribe)
Test Results:	ll St Site	urk.			Da	te:	5/27	12009	
Notes/Comments								·	
*Enor m	procedure:	m Bypass,	H/H	dees	not	ren	ian	latched	(ECN ESI)

Status w/ no alarms:

 \bigcirc

Relay	Expected Status	Observed Status
Operate	On	=M
Test	Off	off
Alert	Off	084
High	Off	044
High/High	Off	off

Relay test results:

Scenario	Monitor Status (display or MASS2)			lay Sta from M			Buzzer Status
	(uisplay of MASS2)	OP	TST	AL	н	H/H	otatus
Alert alarm	Alert	on	off	on.	off	cff	Blow
High alarm	Hrzh	on	off	on	on	0.ff	medium
H/H alarm	H/H	on	off	on	on	on	fast
Fault	Fault (noternal)	off	944	off	off	on	contonnous
RDU in bypass	Bypacs	on	on	off	off	off	* NA

All information in this document is the exclusive property of MGP instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP instruments, Inc.

٠

HH

OY

04

11. Creation of Parameter Sets

Test Results: Satisfactory	Unsatisfactory (describe)	Conditionally satisfactory (describe)
Performed by: S. Stark		Date: 5/28/09
Notes/Comments:		

Parameter file information:

	I		P	arameter S	Set
Device	Name	Number	Index	Version	Filename
LPDU/SAS	ABPM201S	827	A	104	Rms. Sas Pips 1044
-LOU (RI-1)- ROU	-LOU-ROU	603	A	4	Rms Du _ 4A

12. Review and Restoration

Test Results: Satisfactory Unsatisfactory (describe)	
Performed by: S. Stark	Date: 5/28/03
Notes/Comments:	

HH

All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

 \bigcirc

04

Additional/supplemental test results

All information in this document is the exclusive property of MGP instruments, inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP instruments, inc.

14-00098-090501-04

Revision 1

Note: for electronic archival, save the completed datasheet with the filename "14-00098-######" where ###### is the serial number of the monitor

Post Production Test Data Sheet

System: ABPM201S Alpha Beta Partic	culate Monitor
Part Number including option codes:	02-00384
Serial Number: 090501-04	
(Note: append serial number to the document num	•
Test Date(s): 5/15/09, 5/18/09, 5/14	
Tested By: S. Stark & Yoward	an Tadeste efter today
Witnessed by:	
MGP References: <u>SO# \$4866</u>	
Client References: <u>Po# 30215</u>	

Sulte 150 5000 Highlands Parkway Smyrna, GA 30082

Rev.	Date	Prepared By	Reviewed By	Origin and Description of the Changes
0	02/21/2008	Silas Stark		Orlginal issue based on MGP SA document 123210
1	07/15/2008	Silas Stark		Refer to ECN 641
		++	9.99.1.99.1.99.1.99.1.99.1.99.1.99.1.9	
·				

All of the information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

CAT-CH-ABPM-201S Page 55 of 85

14-00030 Nev. 1		Fage 2 01 5
Tested by:	S. Stark / Y. Tadesse	Date: 5/15/2009
Notes/Comments:	S/N 090501-04	

§3.2 Calibrated Instruments

Item	Model No.	Serial No.	(Cal.	Due	Comments
Digital Multimeter	Flunce 87	91580342	u	117	2009	
Temperature Sensor	Omera HH 314	070 800 353	4/	22	/10	
Pressure/vacuum gauge	Ashcroft	Q-4832	4/1	201	10	
Mass flow meter	Omera FMA-1843	205587-2	51	12	10	
Hi-Pot tester	Biddle	18741	4/1	2/1	0	
Mega-ohmmeter	Messor 210 200	950400-1471-0195	4/1	17/	10	

§3.3. Radioactive Sources

Source	Serial No.	Activity (A ₀)	Date	Comments
Beta isotope: NA				
Alpha Isotope: 241	FS-246	2311 89	11/1/2008	MGP Source
Other: Am-241	F8-940	3295 Bg	4/1/2009	LES Source
Other: N/A	NIA	NIA	NIA	NA

§4 Test Conditions

Description	llmit	Pog Valua	Measure	d Value	Commonto
Description	Unit	it Req. Value MGP		Other	Comments
Temperature	°F	60 - 90	70°F		
Humidity	%	<99	56%		
Pressure		Ambient	Ambient		
Line power	VAC	108 - 132	1/SVAC		
Frequency	Hz	57 - 63	60,00		

§5 Visual Inspection

Description	Reg. Value	Measure	ed Value	Reference	
Description	Rey. Value	MGP	Other	(Document & Revision)	
Component layout, routing, overall condition	Correct	Cornet		10-0292 Ber. 0	
Frame mounting hole dimensions	Describe: F/B 19-74 Sides 18-75	F13. 19.71 Sides 18.75		10.0297 Rev 0.	
Other interface dimensions (describe):	Describe: Hight 51.7	251.6!		10-0197 Rou D	
Labels, nameplates, placards, etc.	Correct	Corre ct		6-00336 KOV 2	
Point-to-point wiring	Correct	Correct		6-00385 Rul 3	
Wire sizing, markers, fuses, etc.	Correct	Connect		6-00385 Rev 3	
Other (describe):	Describe:				

Serialized equipment

Description	Part No.	Serial No.	Condition	Comments
LP(D)U/SAS/PIPS	131839A	090503	∎ Sat. ⊡Unsat.	Kit SIN 090503
PIPS Detector	45446A	051997	∎ Sat. ⊡Unsat.	
Particulate flow meter	120114K	091774	⊠ Sat. ⊡Unsat,	
PIS flow meter	120112 F	080693	Sat. ⊡Unsat.	
Check source			□ Sat. □Unsat.	Ī

All of the information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP instruments, Inc.

HANGP	
14-00098 Rev.	1

C

Post Production Test Data Sheet: ABPM201S Alpha Beta Particulate Monitor

Page 3 of 5

Tested by: S. Stark Y. Takesse

Date: 5/15/2009

Notes/Comments:	S	N	OŚ	iosol	- 04	
					_	

	T		Measur	ed Value	
Description	Unit	Req. Value	MGP	Other	Comments
§6: Dielectric & Continuity	1				
6.1 Dielectric test	mA	<10	210		
6.2 Isolation test	MΩ	>100	>999		
6.3 Continuity test	Ω	<0.1	60.1		
§7: Relief valve test	"Hg_	20.5 - 24.5	21"Ha		
§8: Option verification					
8.1 Grab sampler	-	Correct / N/A	Correct		
8.2 PIS	-	Correct / N/A	Comt		
8.3 Check source	-	Correct / N/A	N/A		
8.4 Sample pump	-	Correct / N/A	Corvet		
Other	-		N/A		
§9: Leak Test	"Hg	<0.6	20.5		
§10: Test configuration	-	Correct	Correct		
Relay adjustment	· A	(from motor)	6.6A		
§11: Flow meter test*					
11.1 Particulate flow:					
Measure 1	l/min	0 to 2	0		
Measure 2	l/min	17 to 23	20.1		
Measure 3	l/min	27 to 33	25.8		
Measure 4	l/min	42 to 48	43		
11.2 PIS Flow:					
Measure 1	l/min	0 to 2	0		
Measure 2	l/min	17 to 23	20,5		
Measure 3	l/min	27 to 33	29.3		
Measure 4	l/min	42 to 48	44.9		
§12: Detector fault test		Correct	Correct		
§13: Monitor test		·	·		
13.1 Automation test	-				
13.1.1 Normal Operation	-	Correct	Correct		
13.1.2 Electrical Test	-	Correct	Correct		
13.1.3 ΔPmin Test	-	Correct	Connect		L = 2 3/16
13.1.4 ΔPmax Test	-	Correct	Correct		
13.1.5 Minimum flow test		Correct	Correct		
13.1.6 Flow fault test	-	Correct	Correct		
13.2 Analog output test	-	Correct	Correct		· · · · · · · · · · · · · · · · · · ·
13.3 Relay & light test	~	Correct	Correct		
13.4 Serial link test	-	Correct	Correct		

*Note: fill in this section after the flowmeter has been calibrated, if necessary

All of the information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

Post Production Test Data Sheet: ABPM201S Alpha Beta Particulate Monitor

	ed by:	או גר וא ב	rk		D	ate: 5/16/1	19 - 5/19/09
Notes/Comn	nents:	S/N 090	501-04;	* values in "	other" col	umn are	from LES Source
Des	criptio	n	Unit	Req. Value	Measu MGP	red Value Other*	Comments
§14: Calibrati	on						
14.1 Nuc	lear che	eck					
		perature	°C	-	21.1		
Indica	ted temp	perature	°C	T _{meas} ± 2	19.8		
Temp	erature o	offset	0°	-	NA		As found: 3.70C
Alpha	beta-ga	mma gain		0.7 - 1.3	0.96	1	Am. 241: ch. 421
	na gain	0		0.7 - 1.3	0.91		AN DI ONI IOI
	el/keV s			-	9,5699	+	
	el/keV c		<u> </u>		0.429363		
		uadratic	+		0.007359	+	
					10,00,037		
Backg							
Al	ohaCPS		cps	< 0.005	0.0003		
Pc	218CPS	3	cps	-	0.0004		
Po	214CPS	3	cps	-	0.0013		
Pa	212CPS	6	cps	-	6.0005		
D-				< 0.5			With check source
Be	taCPS		cps	<0.2	011490		Without check source
Ga	mmaCF	PS .	cps	<0.5 <0.2	0,1333		With check source Without check source
Alpha	source c	ounting	1	<u></u>	1		
	haCPS		cps	-	\$3.6	118,7	· · · · · · · · · · · · · · · · · · ·
	218CPS		cps	-	0.017	0.063	
	214CPS		cps	-	01010	0.017	
	212CPS		cps	-	0.007	0.017	
	taCPS		cps		0,460	0,548	<u> </u>
and the second	mmaCP	S	cps	~	0.1	0.1	
	ource co						
and the second	haCPS		cps	-			
	218CPS		cps		+	<u> </u>	
	214CPS		cps			<u> </u>	
	212CPS		cps		N/A	╊	<u> </u>
	aCPS		cps		 	<u> </u>	
	mmaCP	S	cps				
Alnha e	fficiency	/	cps / a/s	0.0333 - 0.0407	0.0362	0.0360	
Beta Ef			cps / β/s	0.05 - 0.08	010302		·
14.2 Chec		e test			Ā	<u> </u>	
	haCPS		cps		<u>├`</u> ┣	<u> </u>	
	218CPS		cps		┼┠	<u> </u>	
	214CPS		cps		NA	<u>├</u>	
	212CPS				<u> _/"/^</u>	<u>}</u>	
	aCPS		CDS	>3	<u>├──</u> <u>├</u> ───	┟─────┼	
	nmaCP	<u> </u>	cps	>0,5	<u>├</u>	<u> </u>	
		<u> </u>	cps	ومعادية فالتقاد المتكرية فالمتكر فالمترك المتروي والمتعاد المتكر	C Z	<u> </u>	
15: Final chec	ĸ		-	Correct	Correct	<u> </u>	

All of the information in this document is the exclusive property of MGP instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP instruments, Inc.

•

14-00098 Rev.	1

Post Production Test Data Sheet: ABPM201S Alpha Beta Particulate Monitor Page 5 of 5

Tested by: Stark

Date: 5/15/09

Notes/Comments: SIN 050501-04

ale: 5/15/07

Flow meter calibration data (if applicable)

Flow Meter	Measurement	Indicated Flow (before correction)	Measured Flow (calibrated meter)	Relative analog input (%)
	1		Y1=0	X1 = ZO
	2		Y2=15 (18.5)	X2 = 45
Particulate	3		Y3 = 20 (24.7)	X3 = 52
(Flowmeter +	4	NIA	Y4 = 30 (37)	X4 = 63
DP switches)	5	(Not previously	Y5=40 (49.4)	X5 = 71
	6	calibrated)	Y6 = 45 (54.3)	X6 = 74
	7		Y7* = 80 (100)	X7 = 100%
	1		Y1=0	X1=0
	2		$Y_2 = 15 (18,5)$	X2 = 41
PIS	3	NIA	Y3 = 25 (30.9)	X3 = 69
	4	(Not previously	Y4 = 30 (37)	X4 = 79
(if applicable)	5	culibrated)	Y5 = 35 (43,2)	X5 = 86
	6		Y6 = 40 (49.4)	X6 = 89
	7		Y7* = 50 (6015)	X7 = 100%

*Note: the final measurement is the extrapolated flow rate at 100% relative analog input

Correction Factor

\cap	Actual Flow	Indicuted Flow	Ratio	
Ċ	2.5 35 45	21.7 28.2 34.7	1.16 1.24 1.30	Aug. = 1.2.3

CAT-CH-ABPM-201S Page 59 of 85

FICHE DE MESURES / DATA SHEET

IGP

MATERIEL / Apparatus : ABPM 201 KIT

(1) Nº IDENTIFICATION

synOdys Group

Nomenciature REFERENCES CLIENT / Customer's reference : NOS REFERENCES / MGP Instruments Reference : OBSERVATIONS / Comments (1) è mentionner dans toute correspondance / Refer to in all corr MEBURES A EFFECTUER SUIVANT PROGRAMME N* : Measurement to be made according to procedure n* 137718 /	LINITES	Ordre	BTENIR	DES MESURES	A Date of rec RADON Ampon ESUREE	page: 1 xords: 20/03/09 MANI/HICHRI Perturner OBSERVATION Comments
NOS REFERENCES / MGP Instruments Reference : OBBERVATIONS / Comments : (1) è mentionner dans toute correspondence / Refer to In all corr MERURES & EFFECTUER SUIVANT PROGRAMME N* :	Tespondance UNITES Units	VALEUR A O	BTENIR	Visa et/ou tr Visa et/ou tr VALEUR M Recorded vi	A Date of rec RADON Ampon ESUREE	Dords: 20/03/09 MANI/HICHRI Perturner
OBSERVATIONS / Comments : (1) è mentionner dans toute correspondence / Refer to in all corr MERURES & EFFECTUER SUIVANT PROGRAMME N* ·	Tespondance UNITES Units	VALEUR A O	BTENIR	Visa et/ou tr Visa et/ou tr VALEUR M Recorded vi	RADON ampon V	Perturnent Deservation
(1) à mentionner dans toute correspondance / Refer to in all correspondance / Refer to in all correspondance / Refer to in all correspondence / Refer to in all corre	UNITES Units			Visa et/ou tr VALEUR M Recorded vi	Ampon ESUREE	Destavaue
MERURES & FEFECTI IER SUMANT PROGRAMME Nº	UNITES Units			VALEUR M Recorded v	ESUREE	
MEBURES A EFFECTUER SUIVANT PROGRAMME N* : Measurement to be made according to procedure n* 137718	(Units			Recorded vi		
	4078-2			MGP		Contraction of the second s
1	1078-2				RECETTE	
TEST EQUIPMENT IDENTIFICATION	4028 2					
- Reference mass flow meter (Ref and N*)	[1-10-J					
- Thermometer (Ref and N*)	1127-1					
- Beta source of TI-204 (N*)	10356-A					
- Alpha source of Pu-238 (N*)	50328					
MASS 2 software ref. 995 (version)	1.7.0					*
SAMS software ref. 709 (version)	H					
Application software LPDU/SAS/PIPS ref. 774V2 (Index)	R					
Set of parameters ref. 827 (N $^{\circ}$ and index)	102 - B					
4. TEST CONDITIONS	-	Corre	d	correct		
5. VISUAL CHECK	_	Corre	ot	correct		
LP(D)U (Ref and N*) .134839 /A	090503					
ABPM 201 detection sub-assembly (Ref and N*) A24	186 IE	080963				
Detector PIPS (Ref and N*) 45445 /D	08.4997					
Flow meter unit (Ref and N*) A20.444 / K	091774					
This document includes 4 pages.				Project nº 3018	941	
		·				
					15	P
B 02/2009 DEVN 16810					20	EDEDAN
A 09/2007 Originale edition Ind. DATE NOM - N° ET DESIGNATION DE LA MODIFIC				D. MARCI REDACT	<u>~</u>	ERIFIE ET APPROUVE
Rev. Data Name – N° and designation of modification			MF	Prepare		Checked and approved

Publication, traduction at reproduction totales ou partielles de ce document sont rigoureusement interdites, seuf autorisati on écrite de nos Services The publication, transision or reproduction of any part of this document is not allowed without our written approval N° 34292 L

 \bigcirc

137717EN - B

ļ

t

FICHE DE MESURES / DATA SHEET

MATERIEL / Apparatus :	ABPM 201 KIT					
 N° IDENTIFICATION Identification n° 	143867	Alc	90503]
	Nomenclature	indice	Ordre Invaria	ant C	Option	-
REFERENCES CLIENT / NOS REFERENCES / M		7136	DATE DI	ES MESURES / Da		ge:2 ds: 20/03/09
OBSERVATIONS / Commen	ts :	·····	111111 A. ANDULAR ALC.	NOM PA	Dovan	i / Hicttr
(1) à menlionner dans toute c	orrespondance / To indicate in an	y corresponda	nce	Visa et/ou tam	pon	Canal .
MESURES A EFFECTUER S Measurement to be made to p		UNITES Units	VALEUR A OBTENIR Value to be obtained	VALEUR MESI Recorded value		OBSERVATION Comments
				MGP	RECETTE	
6. SEQUENTIAL FILTER C	HECK	-	Correct	correct		
7. TIGHTNESS CHECK		mbar	< 20	11		Kit S
		%	< 5	N.A		Kit L / M
B. SETTING UP THE TEST	CONFIGURATION	-	Performed	Performed		
9. FLOW RATE CHECK						
Measure 1		Vmin	0 < < 2	0		
Measure 2		Vmin	27 < < 33	392		
Measure 3		Vmin	37 < < 43	39,9		
0. PUMP MANAGEMENT	CHECK	-	Correct	correct	1	,
1. DETECTOR FAULT MA	NAGEMENT CHECK	-	Correct	correct		
2. CHANNEL CHECK						
12.1. Automatisms test						
12.1.1. Normal open	ation test	-	Correct	Correct		
12.1.2. Electrical tes	t	-	Correct	correct		
12.1.3. AP min and A	VF mechanism lest					
AP min		-	Correct	correct		
AVF mechanism	e	mm	48 < < 56	53		
12.1.4. ∆P max test		-	Correct	Correct		
12.1.5. Minimum flow	rate test	-	Correct	Greet		
12.2. Test of analog outp	uts	-	Correct	correct		
12.3. Test of indicator lan	np and relay status	-	Correct	Correct		
12.4. Test of serial links		-	Correct	correct		

Publication, traduction et reproduction totales ou partialites de ce document sont rigoureusement interdites, sauf autorisation écrite de nos Services The publication, translation or reproduction of any part of this document is not allowed without our written approvel. N° 27965 H

137717EN - B

CAT-CH-ABPM-201S Page 61 of 85

MGP
EynOdys Group

 \bigcirc

FICHE DE MESURES / DATA SHEET

MATERIEL	I	Apparatus	:	ABPM	201	KI7
----------	---	-----------	---	------	-----	-----

(1) Nº IDENTIFICATION

(1) Identification n°

OBSERVATIONS / Comments

Nomenciature

143 876

indice

27136

:

;

Aldg

Ordre

05/03

Option

Visa et/ou tampon

REFERENCES CLIENT / Customer's reference : NOS REFERENCES / MG Reference

DATE	DES	MESURES	1	Date	of

Invariant

frecords: 20/03/04 NOM: PADOVANI / HICHRI

page : 3

latora

1

(1) à mentionner dans toute correspondance / To Indicate in any correspondance

MESURES A EFFECTUER SUIVANT PROGRAMME N*: Measurement to be madé to procedure n* 137716 $\int \hat{C}$	UNITES Units	VALEUR A OBTENIR Value to be obtained	VALEUR M Recorded v		OBSERVATION Comments
			MGP	RECETTE	
13. NUCLEAR CHECK					1
NUCLEAR CALIBRATION					
Alpha-beta Gain	-	0,7 < G1 < 1.3	0,96		
Calibration : Offset	-		0,42		
Siope	-		9,57		
Quadratic	-		0.7e-3		
Gamma Gain	-	0,7 < G1 < 1.3	0,96 0,42 9,57 0,7e ⁻³ 0,91 correct		
Electrical test		Correct	correct		
Temperature offset	°C		3,7		
Background AlphaCps	cps	< 0,005	0		
Background Po218Cps	cps		Ő		
Background Po214Cps	срз		0		
Background Po212Cps	cps		0		
Background Beta_Cps	cps	< 0,2	0,135		
Background GammaCps	cps	< 0,2	0,1		
Counting of the <u>Alpha</u> source AlphaCps	cps		100,1		
Counting of the <u>Alpha</u> source Po218Cps	cps		0		
Counting of the <u>Alpha</u> source Po214Cps	cps		0,016	ĺ	
Counting of the Aloha source Po212Cps	cps		0		
Counting of the Alpha source Beta_Cps	cps		0,202		
Counting of the <u>Alpha</u> source GammaCps	cps		0,106		

Publication, traduction et reproduction lotales ou partielles de ce document sont rigourausement interdites, sauf autorisation écrite de nos Services The publication, translation or reproduction of any part of this document is not allowed without our written approval. N° 27955 H

synOdyn Group

()

FICHE DE MESURES / DATA SHEET

MATERIEL / Apparatus : ABPM 201 KIT						
(1) N° IDENTIFICATION (1) Identification n° /113867 Nomenclature	A C Indice	90,50 3 Ordre Invariant		Oplion]	
REFERENCES CLIENT / Customer's reference : page : 4 NOS REFERENCES / MG Reference : 27/36 DATE DES MESURES / Date of records : 20/03/04						
OBSERVATIONS / Comments :			NOM :	ADOVA	ui I Hichri	
(1) à mantionner dans toute correspondance / To indicate in any	r corresponda	INCO	Visa et/ou ti	ampon 🔇	adamet	
MESURES A EFFECTUER SUIVANT PROGRAMME N° : Measurement to be made to procedure n° 137716	UNITES Units	VALEUR A OBTENIR Value to be obtained	VALEUR M Recorded v		OBSERVATION Comments	
			MGP	RECETTE		
Counting of the Beta source AlphaCps	cps	İ	0			
Counting of the Beta source Po218Cps	cps		0			
Counting of the Beta source Po214Cps	cps		0			
Counting of the <u>Beta</u> source Po212Cps	cps		0			
Counting of the <u>Beta</u> source Beta_Cps	cps		127,25			
Counting of the <u>Beta</u> source GammaCps	cps		0,116			
Current activity of the <u>Alpha</u> source on 4 π	α∕s		2795,2		Isotope Pu-238	
Current activity of the <u>Beta</u> source on 4π	β/s		1398,5		Isotope TI-204	
Detection efficiency for the <u>Alpha</u> source	cps per a/s	33,3 e ⁻³ < < 40,7 e ⁻³	35,82-3		Isotope Pu-238	
Detection efficiency for the <u>Beta</u> source	cps per β/s	50 e ⁻¹ < < 80 e ⁻³	55,Ae 3		Isotope TI-204	
14. FINAL CHECK	-	Performed	Performed			

Publication, traduction el reproduction totales ou partialles de ce document sont rigoureusement interclies, sauf autorisation écnie de nos Services The publication, translation or reproduction of any part of this document is not allowed without our written approval. N° 27985 H i

ł

1

.

6P

.

 \bigcirc

FICHE DE MESURES / DATA SHEET

MATERIEL / Apparatus : Détecteur PIPS

(1) N° IDENTIFICATION (1) Identification n°	45445					60000	6
L	enclature	indice	Ordre In	variant		Option	
REFERENCES CLIENT / Custom NOS REFERENCES / MG Refere		6104	DA	TE DES	MESURES	I / Date of re-	page:1 cords: 01/10/08
OBSERVATIONS / Comments	_		J" 0525		NOM :	SAS.ZV	<u>A</u>
(1) à mensionner dans toute correspond	lance / To indicate in any	correspondance			Visa el/ou	iampon D	
MESURES A EFFECTUER SUIVANT I Measurement to be made to procedure	PROGRAMME N": n" 48853/J	LINITES Units	VALEUR A OBTI Value to be obtain		VALEUR N Recorded		OBSERVATION Commants
					MGP	RECETTE	
IDENTIFICATION DES MOYENS	DE CONTROLE			ĺ		1	1
Multimètre Oscilloscope Thermamétre Source Pu 238 Source SC31 Source Ti204) pour délecteur 45 Source Co60 ; pour délecteur 454		77 20 5 50328 3581480 502 1980				-	pour matériel SR et pièces de rechange
7. CONSOMMATIONS +12 Volts -12 Volts		mA mA	20 < 1 <30 12 < 1 <22	2	24,6 17,4		
9. GAINS Délecteur "Alpha-béta" Tête « 7mm » : G1x1.12 Délecteur « gamma » Tête « 7mm » : G2x1.12 Rapport G2/G1			0,7 < G1 < 1 0,7 < G2 < 1	1.3	1.007 0,96 0,953		
10. Bruit de fond Délecteur « Alpha-béla » Délecteur « gamma »		mV mV	< 50 < 50 15				
12. Signal test électrique Gain test « Alpha-béta » Gain test « gamma »			0,5 < G < 1 0,5 < G < 1	.5 ,5	1 12 1 1		
Ce document comporte 2 folios						/ Commis	ssion n* 622809
G 04/03/05 REV N*6883					(III)		N ANA DE LE
F 10/10/03 REV n*8752					Fab. 8	rault	A. Pommier
E 10/10/03 DEVS nº 13514					N.Jeanj	toupag	Fab. Brault
D 21/5/96 DEVS n°8790				MF			A. Pommler
C 29/11/95 DEV nº4639				MF	L Graville B. Clav		B. Clavel
B 02/12/94 DEVS N'4435	·····		·····	MF	V. Fabre		B. Clavel
A 17/5/94 Edition originale				MF	V. Fa	bre	8. Clavel
nd. DATE NOM - N° ET DESIGI lev. Date Name - N° and design	NATION DE LA MODIFIC	ATION		MF	REDA		VERIFIE ET APPROLIVE Chanked and approved

Publication, induction of reproduction totales ou particlies de ce document sont rigoureusement interdites, sauf autorisation écrite de nos Services. The publication, inensistion or reproduction, sither partly or wholly, of this document are not adored without our written consent. N° 27985 F

٠

4 6 6 5 4

~

CAT-CH-ABPM-201S Page 64 of 85

N*

FICHE DE MESURES / DATA SHEET

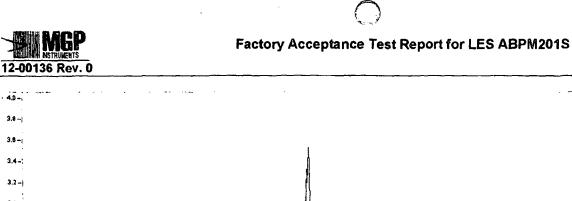
MATERIEL / Apparatus : Détecteur PIPS

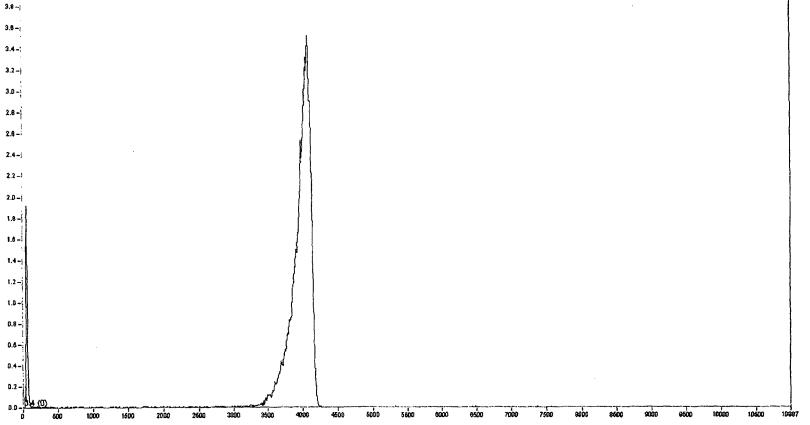
(1) N° IDENTIFICATION (1) Identification n°	45445		1/199	6000	00
	Nomenciature	Indice	Ordre Invariant	Option	
REFERENCES CLIENT / (NOS REFERENCES / MG	Reference : «	16704		S MESURES / Date of	раде:2 records:011/0108
OBSERVATIONS / Comments	Dia Dia	ded N der N	°0525B °0526B	NOM: DASLL	vA
(1) à mentionner dans toute cor	vespondance / To indicate in any	comespondance)	Visa et/ou tampon	8
MESURES A EFFECTUER SU Measurement to be made to pro	VANT PROGRAMME N*: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	UNITES Units	VALEUR A OBTENIR Value to be obtained	VALEUR MESUREE Recorded value	OBSÉRVATION Comments
13. Test nucléaire supplém <u>45445 Option GO0 000</u> : Bruit béta Bruit gamma Taux de comptage avec sou Rendement <u>45445 Option 800 000</u> : Bruit béta Bruit gamma Taux de comptage avec sou Rendement	urce	c/s c/s c/s 76 c/s c/s 76	< 0,4 < 0,4 5 < R < 8 < 0,4 < 0,4 0,9 < R < 1,1	MGP RECET	re pour materiel SR et pièces de rechange

•

Publication, traduction et reproduction tables ou partielles de ce document sont rigoureusement interdites, sast autorisation écrite de nos Services. The publication, translation or reproduction, either partly or wholly, of this document are not ellowed without our written consent.

4 6 6 5 4


•


CAT-CH-ABPM-201S Page 65 of 85

î, A

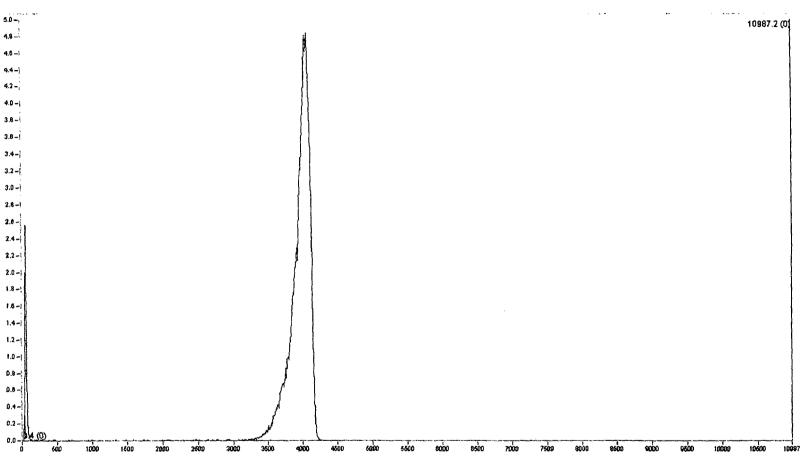
G

G

سبب وو رسود

10987.2 (0)

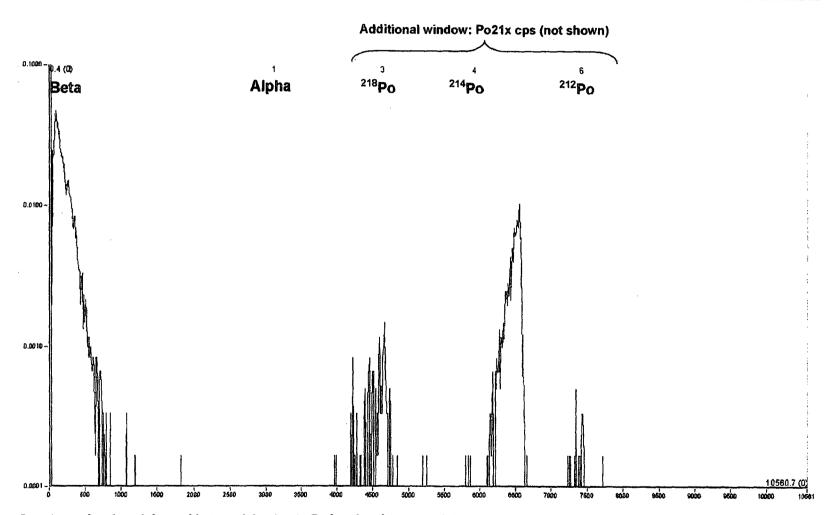
Spectrum from Am-241 source S/N F5-246; x-axis is energy in keV, y-axis is count rate in cps (linear scaling)


All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

CAT-CH-ABPM-201S Page 66 of 85

· 4.0 -.

Factory Acceptance Test Report for LES ABPM201S



Spectrum from Am-241 source S/N F8-940; x-axis is energy in keV, y-axis is count rate in cps (linear scaling)

All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

Factory Acceptance Test Report for LES ABPM201S

Spectrum showing alpha and beta activity due to Radon daughters; x-axis is energy in keV, y-axis is count rate in cps and is log-scaled. The spectrum was over approximately 2 hours during post-production testing of the monitor. The regions of interest (ROI) are labeled according to their use.

All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

Albuquerque Area Office 8336 Washington Place, N.E. Albuquerque NM 87113 (505) 822-0237 (505) 822-0217

December 15, 2009

Ć.

Louisiana Energy Services, Inc. PO Box 1789 Eunice, NM 88231-1789

Attention: Ms. Debra Edwards, Chemistry Supervisor

Subject: Equipment Labeling Evaluation, Final Report MGP Alpha Monitor Reference No.: 3103669F

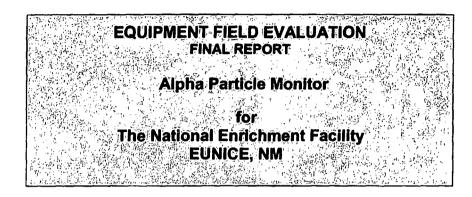
Dear Ms. Edwards:

Enclosed is the subject report, as prepared by eti Conformity Services Compliance Engineer, Ross Bender.

The equipment evaluated in this report has been inspected and tested for general compliance with applicable codes and standards and with regard to general electrical safety. Details of this evaluation are provided in this report.

All discrepancies noted on the units inspected have been verified as corrected. Please contact Ross Bender if you have any questions about the technical contents of this report.

Please contact us if you have any questions or if we can be of further service on this or other projects.


Sincerely, eti Conformity Services

Randy Allen Service Center Manager

cc: Ronnie Killgore, Electrical Inspector, NM Construction Industries Division Marty Hall, P.E., Bridgers & Paxton Consulting Engineers

Albuquerque Area Office 8336 Washington Place, N.E. Albuquerque NM 87113 (505) 822-0237 (505) 822-0217

CLIENT Ms. Debra Edwards, Chemistry Supervisor Louisiana Energy Services, Inc. Andrews Road Eunice, NM

INSPECTION AUTHORITY

NM Construction Industries Division Ronnie Killgore, Electrical Inspector 5200 Oakland Ave. NE Albuquerque, NM 87113

Reference No.: 3103669F

Submitted By: Ross Bender Sr. Compliance Engineer

(in **Reviewed By:**

Randy Allen Service Center Manager

Date: September 2, 2009

Table of Contents

 \bigcirc

 \bigcirc

٠

1.0 PURPOSE
2.0 SUMMARY 1
3.0 GENERAL CONDITIONS OF ACCEPTANCE 1
4.0 REFERENCED ELECTRICAL STANDARDS
5.0 EQUIPMENT INSPECTED
6.0 INSPECTION PROCEDURES
7.0 EQUIPMENT EVALUATION
8.0 TESTING RESULTS AND INSTRUMENTS
AppendicesA-1
Appendix AA-1
Summary of Project ContactsA-1
Appendix BB-1
Test Data SheetB-1
Appendix CB
PhotosB

1.0 PURPOSE

The purpose of these inspections and tests is to provide assurance that custom or non-certified equipment meets the requirements of the appropriate codes, safety orders and industry standards. These inspections and tests are normally required by the local building inspection authority having jurisdiction (AHJ) when equipment has not been certified by a Nationally Recognized Testing Laboratory (NRTL) or other recognized testing agency. These inspections address only the electrical systems on the equipment listed in Section 5.0 of this report.

2.0 SUMMARY

This project was initiated at the request of Ms. Debra Edwards, Chemistry Supervisor with Louisina Energy Services. Inspections and testing of the equipment referenced in Section 5.0 was performed at the National Enrichment Facility in Eunice, NM eti Conformity Services Compliance Engineer Ross Bender on August 21, 2009. The Equipment is installed at National Enrichment Facility in Eunice, NM where the final inspection and testing have been completed.

The electrical discrepancies observed during the inspection and testing of the equipment were as described in Section 7.0 and have been corrected. The electrical discrepancies have been verified as corrected and the ETI EVALUATED label has been affixed to the equipment. Note that final approval is under the jurisdiction of the New Mexico Construction Industries Division.

3.0 GENERAL CONDITIONS OF ACCEPTANCE

In the event of modifications resulting in a change in the materials, manufacturing methods, loading, or environment that would affect the use of the accepted equipment under the provisions of the noted electrical standards, this acceptance will be considered automatically cancelled. The applicant will be required to request re-examination of this equipment to determine acceptability of the modifications.

By acceptance of the equipment referenced in Section 5.0, eti Conformity Services does not assume or discharge the responsibility of the equipment manufacturer, installer, or other relevant parties. Equipment evaluation is based upon adherence to sound engineering practices, and upon compliance with the specific sections quoted from the electrical standards referenced in Section 4.0 of this report.

Assessment of required interrupting rating and arc-flash labeling of the equipment being evaluated is beyond the scope of this field evaluation. Determining the adequacy of interrupting rating and arc-flash labeling are the responsibility of the end-user as described in subsection 6.5 of this report.

This acceptance applies to the electrical circuits and components only, as referenced in this report. Unless noted otherwise, it specifically excludes examination for suitability of use for equipment involving toxic or corrosive gases, steam, and locations defined as hazardous by the National Electrical Code (NEC[®]).

4.0 REFERENCED ELECTRICAL STANDARDS

- 4.1 ANSI/NFPA 79, Electrical Standard for Industrial Machinery
- 4.2 ANSI/NFPA 70, National Electrical Code (NEC)
- 4.3 UL 61010-1, Electrical Equipment for Measurement, Control and Laboratory Use, Part 1: General Requirements

5.0 EQUIPMENT INSPECTED

5.1 Six (6) Alpha Monitors

Two (2) LDU (Local Display Units) final installation.

Manufacturer Name: MGP Instruments Model No.: ABPM201S Serial No.: 080925 Ratings: 120 Volts AC, 60 Hz, 8.6 Amps, 1-Phase Label Nos.: 0115480 through 0115485

6.0 INSPECTION PROCEDURES

6.1 Component Listing

The following major power components are inspected for listing marks by an independent testing laboratory acceptable to the authority having jurisdiction (AHJ), or are evaluated to the appropriate nationally recognized consensus standard. Any discrepancies observed during the evaluation process are noted in Section 7.0.

- Circuit breakers
- Fuses and fuseholders
- Disconnect switches
- Terminal blocks
- Pushbuttons and switches
- Relays and contactors

- Transformers
- Motors and drives
- Motor overload units
- Wire ducts
- Receptacles
- Cables and wiring

6.2 Visual Inspection

The equipment is visually inspected with particular attention to the following areas:

- Manufacturer nameplates
- Use of "approved" components
- Proper overcurrent protection
- Wiring ampacity
- Ground bonding

- Electrical ratings
- Wiring methods
- Guarding of live parts
- Damaged components
- General engineering practices

6.3 Ground Bonding

Exposed non-current carrying parts of the equipment are inspected for effective grounding in accordance with the applicable provisions of the standards referenced in Section 4.0 and the National Electrical Code (NEC[®]) Article 250. 6.4 Guarding of Live Parts All internal components are inspected for installation in a suitable enclosure and effective guarding in accordance with the standards referenced in Section 4.0 and the National Electrical Code (NEC[®]) Article 250. 6.4 Guarding of Live Parts All internal components are inspected for installation in a suitable enclosure and effective guarding in accordance with the standards referenced in Section 4.0 and the National Electrical Code (NEC[®]) Section 110.27.

6.5 Overcurrent Protection

Overcurrent protection installed in this equipment is evaluated for compliance with the applicable codes and standards referenced in Section 4.0. Protective devices are verified to be properly identified, and of a type suitable for the circuit applications as installed.

Please note: Determining the adequacy of interrupting rating and arcflash labeling are the responsibility of the end-user and are therefore outside the scope of this field evaluation project. The customer is hereby advised of NFPA 70-2005, Articles 110.9 & 110.16 which state:

110.9 Interrupting Rating.

Equipment intended to interrupt current at fault levels shall have an interrupting rating sufficient for the nominal circuit voltage and the current that is available at the line terminals to the equipment.

Equipment intended to interrupt current at other than fault levels shall have an interrupting rating at nominal circuit voltage sufficient for the current that must be interrupted.

110.16 Flash Protection.

Switchboards, panelboards, industrial control panels, meter socket enclosures, and motor control centers that are in other than dwelling occupancies and are likely to require examination, adjustment, servicing, or maintenance while energized shall be field marked to warn qualified persons of potential electric arc flash hazards. The marking shall be located so as to be clearly visible to qualified persons before examination, adjustment, servicing, or maintenance of the equipment.

6.6 Internal Wiring

Internal wiring and wiring methods are evaluated for compliance with the applicable codes and standards referenced in Section 4.0. Wiring is verified to be properly sized and rated, with a temperature rating suitable for the installed application.

6.7 Safety Interlocks and Operator Controls

The equipment safety interlocks, emergency stops, operator controls and human machine interfaces (HMI) are verified to be properly identified. The safety features and emergency machine off (EMO) switches are tested for proper operation.

6.8 Field Testing

Field testing is performed on the equipment, to meet the field testing requirements of the standards referenced in Section 4.0, unless production test results have been provided by the equipment manufacturer and accepted by eti Conformity Services. If no production tests are submitted, then testing is performed to verify the equipment to be operating within normally expected parameters as detailed in Section 8.0.

7.0 EQUIPMENT EVALUATION

- 7.1 Alpha Monitor
 - 7.1.1 System Description

The equipment inspected consists of Alpha Monitor manufactured by MGP Instruments. The equipment is rated at 120 Volts AC, 60 Hz, 8.6 Amps, 1-Phase. The alpha monitor draws air samples from various exhaust ducting, runs the air through a very sensitive particulate filtering device, thus detecting any alpha particles contained in the sampled air. The equipment is installed indoors in an ordinary (non-hazardous) location, and has been evaluated for use in this location only.

Page 4

7.1.2 Grounding

Exposed non-current carrying parts of the equipment were verified to be effectively grounded in accordance with the applicable provisions of NEC[®], Article 250. A discrepancy was noted and will require correction as detailed in item 7.1.6 below.

7.1.3 Guarding of Live Parts

All internal components are enclosed in a grounded, screw closed, metal enclosure, and are effectively guarded per NEC[®], Section 110.27. A discrepancy was noted and will require correction as detailed in item 7.1.6 below.

7.1.4 Overcurrent Protection

Overcurrent protection was provided by a 120 Volt AC, 20 Amp branch circuit.

7.1.5 Wiring

All wiring was found to be UL listed or recognized type MTW/THHN or equivalent.

7.1.6 Equipment Discrepancies

The discrepancies observed during the evaluation of the equipment listed in Section 5.0 were as described below. These items have been verified as corrected and the equipment is considered acceptable and suitable for continued service.

.01 Equipment Nameplate (NFPA 79)

This equipment was not provided with the required nameplate.

Action: A permanent nameplate shall be installed where plainly visible on this equipment. The nameplate shall contain the following information as a minimum:

- a) Manufacturer's name or trademark.
- b) Equipment catalog or serial number.
- c) Electrical diagram numbers.
- d) The following electrical ratings:
 - 1. Supply voltage.
 - 2. Number of phases.
 - 3. Rated frequency.
 - 4. Full load current.

Where more than one incoming supply circuit is provided, the nameplate shall state the above information for each supply circuit.

Reference: NFPA 79, Subclause 16.4

Verified as corrected on December 15, 2009

.02 Warning - Disconnect Power

This enclosure was not provided with a cautionary marking warning of the hazardous voltages contained within.

Action: A cautionary marking shall be installed in a plainly visible location on the outside of the enclosure stating the following or equivalent:

No. H6010/0011-B10HP, (Available Sizes: S,T,U)

Reference: NFPA 79, 16.2.1 NEC[®], Section 110.3(a)(8)

Verified as corrected on August 21, 2009

8.0 TESTING RESULTS AND INSTRUMENTS

8.1 Field Testing

The following field-testing was completed with the summary results as indicated. Please refer to the Product Evaluation Data Sheet in Appendix B in this report for complete details on the specific tests completed.

8.1.1 Current and Voltage Measurements

Current and voltage measurements were taken at the input to each piece of equipment listed in Section 5.0 under normal operating conditions. The measurements obtained were verified to be within the voltage and current ratings of the devices installed.

Reference No.: 3103669

ł

Page 6

8.1.2 Temperature Rise Test

A temperature rise test was performed on all components within each piece of equipment listed in Section 5.0 under normal operating conditions. The test was performed using an infrared (I.R.) thermometer to verify the temperature rise for each component did not exceed those specified in UL 508. Temperatures obtained were verified to be sufficiently low enough not to constitute risk of fire or to adversely affect any material employed in the equipment. The temperature rise obtained for each component is a result of test conditions only, and is not necessarily indicative of the possible temperatures generated in the operating environment.

8.1.3 Insulation Resistance Test

An insulation resistance test was performed on the equipment listed in Section 5.0 to verify the dielectric integrity of the insulating medium. Voltage was applied phase to ground at 1000 Volts DC for one minute on the incoming supply conductors of each piece of equipment tested. There were no indications of insulation breakdown as evidenced by arcing or sparks and therefore the test results indicate satisfactory results.

8.1.4 Bonding Test

The equipment bonding was verified as being properly installed. The resistance was measured from the main equipment grounding terminal to all applicable exposed metal structures or surfaces and installed equipment ground points. The maximum resistance permitted is 0.1 Ohm. The test results indicated satisfactory bonding with all resistance measures below 0.1 Ohm.

8.1.5 Leakage Current Test

With the equipment energized, the surface leakage current was tested by inserting an impedance network into the grounding path. The test points were the applicable exposed metal structures or surfaces that might be contacted by an operator. The maximum leakage current permitted is 3.5 mA. The test results found the maximum leakage current recorded to be less than the maximum allowed.

Reference No.: 3103669

Page 7

CAT-CH-ABPM-201S Page 78/of 85

8.2 Test Equipment

All equipment has been calibrated to NIST reference standards. Certificates of calibration are available upon request.

Test Equipment	Model	Post Carter as the destruction of the	Calibration Date
Fluke, True RMS Multimeter	87 IV	N/A	12//2008
Fluke AC Current Probe	80i-600A	N/A	Not Required
AVO Megger Digital Low Resistance Ohmmeter	DLRO 10	24-1113	03/2008
Micron Infrared Camera	7200B	24-01119	01/2008
Biddle Insulation Resistance Test Set	BM400/2	10-00786	03/2008
eti Conformity Services Leakage Current Tester	LCT-1	N/A	Not Required

٠

.

 \bigcirc

Appendices APPENDIX A Summary of Project Contacts

eti Conformity Services:

(

ŝ,

Reference No.	3103669F
Name:	Albuquerque Area Service Center
Address:	8336 Washington Place, N.E.
City, State, Zip:	Albuquerque NM 87113
Phone:	(505) 822-0237
Fax:	(505) 822-0217
Compliance Engineer:	Ross Bender

Client Information:

Company Name: Louisiana Energy Services, LLC

Street Address:	275 Andrews Highway		
City, State, Zip:	Eunice, New Mexico 88231		
Phone:	(575) 394-6532		
Contact:	Ms. Debra Edwards		
Purchase Order No:	LES-GSA-3069, REV 1		

Site Information / Intended Installation Location:

Site Name:	National Enrichment Facilit		
Street Address:	275 Andrews Highway		
City And State:	Eunice NM 88231		

Jurisdiction Information:

Inspector's Name:	Ronnie Killgore, Electrical Inspector
Jurisdiction:	NM Construction Industries Division

Manufacturer's Information:

Alpha Monitor

Manufacturer Name: MG P Instruments Model No.: ABPM201S Serial No.: 080925 eti Label No.: 0115770 Phone: 770-432-2744 Email: www.mirion-hp.com

•

A-9

APPENDIX B Test Data Sheet

()

 \Box

.

•

(

C

١

.

PRODUCT EVALUATION TEST DATA

CLIENT:		Louisia	na Energy	Services			etiCS JOB N etiCS LABEL		3103 115480 thr	
				ENGINEER: Ross Bender			DATE:	August 21, 200	_	
			MODEL: ABPM201S		SERIAL NO: 090501-01 through -06					
Manufactu	irer:	RATINGS:	+ (WU (2/ LL		L			E 2+ GND WI		11-00
<u>M</u>	GE	120 VOLTS		<u>15.0</u>		<u>60</u> HZ	Пз рная	SE 3+ GND WI	RE	
		1000	INSULATIO		ANCE TES					
DATE:			TEST VOLTA		TEST EQUIP	ASSET #:		CALIBRATIO		
} <i>*</i>	August 21, 20	09	500 VDC		PHA	10-00786 SE TO GRO		P	3-2009 HASE TO PHAS	SF.
	CIRCL	IT IDENTIF			A	В	C	A-B	B-C	C-A
		Mains (Al) 6)		>9999Meg		}			
			VOLT	AGE AND (URRENT	AEASURE	MENTS			
	V	OLTAGE ME	ASUREMEN					ENT MEASU	REMENTS	
PHASE A-G	PHASE B-G	PHASE C-G	PHASE A-B	PHASE B-C	PHASE C-A	PHASE	PHASE B	PHASE C	NEUTRAL	GROUND
121.5			<u> </u>			<u>A</u> 4.8	^D	<u>v</u>	4.8	GROUND
			L		L					
REMARKS:	All fed from	same source	and the second se	PONENT	C110					
DATE:			COM		EMPERATI		DATA	CALIBRATIO	NDATE	
A	ugust 21, 20		64	*F		24-01063		CALIDRATIO	3-2009	
	NT IDENTIFI				COMPONE	NT TEMP.	TEMPERA	TURE RISE	TEST ME	THOD
All compone	ents either Ul M	listed or UR ain pump mo			99	°F	35	i°F	Thermocouple	
	141	an punp inc	//01					· · ·	mennou	Jupie
					SISTANCE		ſA			
DATE: A	ugust 21, 20	09	AMBIENT TE	MP: *F	TEST EQUIP	ASSET #: 24-01113		CALIBRATIO	N DATE: 3-2009	
		Resistance		Result:	Resistance			Result:		
	er to skid	0.09 Ohm	A							
	anl to skid Inl to Pump	0.04 Ohm 0.05 Ohm	A							
00////0110		0.00 01	<u> </u>							
				EMO AND	INTERLO					
EMO DATE:	FUNCTION	ESTS	DATE:		INT	ERLOCK FU	NCTIONAL 1	TESTS		
LOCATION		RESULT	INTERLOCK	DESCRIPT	ION	RESULT	INTERLOCH	DESCRIPT	ION	RESULT
Mair	ı C.P	<u>A</u>		N/A						
					LEAKA	GE CURRE	NT AND RES	ISTANCE		
			Loca		Resistanc		Voltag		Leakage Cu	rrent (mA)
			Not	e 2						
			Main Power	Cord	0.0	n9		25	0.0002	mA
			MODI F VWGI		0.0	····	0.,	~~~~~	0.0002	
				GE	ENERAL NO	DIES				
								<u> </u>		
© eti 2008	AC/0001 n	ev. 4/00							Page	1 of 1

A = Acceptable, N/A = Not Applicable, C = Corrected, R = Needs Repair

•

APPENDIX C Photos

Figure 1 is the front view of the Alpha monitor. Main power control is on top left.

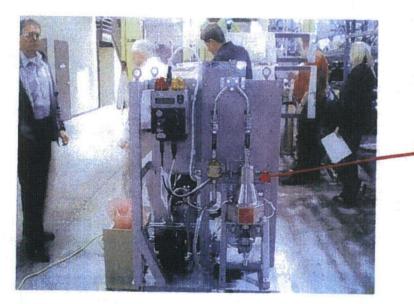
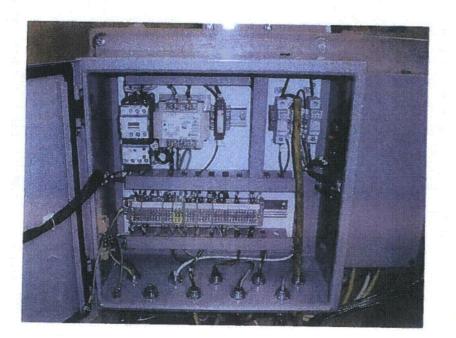



Figure 2 is rear view of machine showing air pump on left, filter and detector piping in foreground on chassis.

> CAT-CH-ABPM-201S Page 83 of 85

 \bigcirc

Figure 3 is a view of the interior of the power and control enclosure.

CAT-CH-ABPM-201S Page 84 of 85

Γ

\bigcirc

Functional Location 1001-562-1MAL

Fan Speed(2) (1001-662- 201)	Target Stack Flow (or (nA)> (LDU mA input)	Measured S Flow from I Flow Meter (Blackwatc Meter Read	Process h Panel	Measured Alpha Monitor Process Flow Rate (LPDU Stack Flow) (5 c-fm)	Target Alpha Monitor Sample Flow Rate (LPDU Target Flow Rate)	Actual Alpha Monitor Sample Flow Rate (LPDU Skid Flow Rate)	Within Tolerance?
0	4.)	(m3/mr) 5	2.945	3.7	40	45.8	Y. 5
25	8.27	268	158	154	40	46.1	Ves
50	10.77	432	254	250	49.6	57	Yes
75	13.06	580	342	334	59.1	57.7	Yes
99	14.838	689	405	400	60	58.2	Yes
			100				

Verified by Initials/Date/Time 242 13-26-10 1/6:40

Verified by Initials/Date/Time HMH 13-26-11640

CAT-CH-ABPM-201S Page 85 of 85

Procedure Title: Alpha Monitor (ABPM 201 S) Operation CH-3-4000-01-F-1 CH-3-4000-01 Rev.5 **Source Calibration Data Sheet** ()Level 2 Reference Use Page 1 of 2

Monitor Functional Location	1001-562-1MA2					
Date/Time	4-27-10/1500					
Test Conditions						

	Required Value	Measured Value	
Temperature	15 - 35°C		
Relative Humidity	Relative Humidity 90%		
Energy Calibration Complet	Energy Calibration Complete? (Circle one)		

	Gain Verification		
Description	Acceptance Criteria	As Found	As Left
Peak Channel	399 - 439 channel		
Alpha-Beta gain	0.7 - 1.3 cps		
Gamma gain	0.7 - 1.3 cps		0

^① Gamma Gain As Left = $\frac{(Alpha - Beta Gain As Left)(Gamma Gain As Found)}{(Alpha - Beta Gain As Found)}$

1

Detection Efficiency Check						
Background	Acceptance Criteria	'Measured Values	Average	Comments		
Alpha_cps	< 0.005 cps					
Po21x_cps	< 0.005 cps					

page lof 5

Procedure Title: Alpha Monitor (ABPM 201 S) Operation

CH-3-4000-01-F-1

Source Calibration Data Sheet

CH-3-4000-01 Rev.5 Level 2 Reference Use Page 2 of 2

	Measurement wit	h Alpha Source	
	Measured Values (cps)	Average	Comments
		2	
]	
Alpha_cps]	
]	

	Measurement wit	h Alpha Source	
	Measured Values (cps)	Average	Comments
Po21x_cps			

	Source A	ctiy	fy (circle source used)	
Source Material	Source Type	IN	M&TE/Serial Number	3A (Bq)
²⁴¹ Am	Alpha	1/	F5-247	2980 (A)
²⁴¹ Am	Alpha /	7	F8-940	3295 (A)

	Source Detection E	Efficiency Calculation	
Alpha Efficiency	Acceptance Criteria	Measured Value	Comments
(Eff)	0,0333 to 0.0407 cps/Bq	4	
④ Alpha Effic	cjency (cps/Bq) = S/A = @/3	= Average Alpha_cps/S	ource Activity in Bq

		Alarm Ve	erification			
Scenario	Monitor Status		Relay S read from)	Acceptable? (Yes / No)
		OP	TST	H	H/H	(Tes / NO)
High alarm	H alarm	On	On	On	Off	
/H/H alarm	H/H alarm	On	On	On	On	
Fault	Slave fault	Off	On	Off	Off	
Remarks: See o	Hacked					
Performed By:	tolly Huber	/	Ally	-14-		14-27-10
··~ .	J Print		0	Signature		Date
Reviewed By:	chra 2 lurarde	<u> </u>	NE	enter	do	1427-10
r	Print			Signature		Date
				~		page 2 of

This package is to provide a means of documenting a more detailed post CAT-CH-ABPM-201S test for the SBM effluent alpha monitors. The alarm test was conducted to compare monitor values with values read from the Plant Control System (PCS) in further detail from the test that was performed during the CAT. The following pages include data from this test. In the next procedure revision of CH-3-4000-01 it is planned to include this test with the annual source calibration.

 \bigcirc

()

page 3 of 5

1001-562-1MA2				
Read out at monitor (Bq/m3)	Output at monitor (mA)	Readout on PCS (Bq/m3)		
0.08	5.122	0.07		
0.12	5.787	0.11		
0.14	6.100	0.13		
0.20	7.077	0.19		
0.27	8.211	0.26		
0.35	9.501	0.34		
0.65	14.350	0.65		
1.00	20.000	offscale		

•

.

.

C

 \bigcirc

 \bigcirc

•

							100 Bq/m ³	
	0.105	2.5°					0.75 Baym>	
					whether a		0.50 Bg/m²	
	05t 05t						I was obliged	
	0.14 0.11 2.11 0.11	0.1%					0.23 Bg/m ³	
	0073 05-							
and the second second second	OL:30:00 Trand span time OL:00:03 Trand sample time OL:00:03 OL:00 OL:00:03 OL:00:03 OL:00 OL:00:03 O	4 04/27/2010 14:53:15					0.00 Bq/m ³	
pen 2 1001_50 pen 3 1001_30 pen 4 1001_30 pen 4 1001_30	82_01MA2 - Alpha activity in stack 85_01MA1 - HF concentration before fillers 85_01MA2 - HF concentration after fillers		Trand pan 6 [] 1001	565_01MA3 - HF concentration in star 662_01MQ1 - Stack Flow 662_01MQ2 - Stack Flow	*	 2210.0000 mg/r 644m³/r 638m³/r 4na> 		
ded trendgroup: Main Overview	GEVS Trend Page Trendgroup						y view active	0
			16000P01	enghær (i	Engineer)	Q 0 9 9 04/27/2010	M:53:28	

au the readings were Bg/m³. Jujou need anything further, lemme Know:

CAT-CH-ABPM-201S

Revision 0

 \bigcirc

Ċ

(

10/14/09 Approved: __

Signature/Date

Page i of <u>35</u> (Total)

ι,

C

- - A

Revision Summary

Change	Reason for Change		
New test plan.			

Page 2 of <u>\$5</u> (Total)

٠

.

TABLE OF CONTENTS

1.	PURPOSE	4
2.	SCOPE	4
3.	TERMS, DEFINITIONS, ABBREVIATIONS, AND ACRONYMS	4
4.	PRECAUTIONS AND LIMITATIONS	4
5.	EQUIPMENT, MATERIAL AND PARTS	4
6.	ACCEPTANCE CRITERIA	5
7.	PREREQUISITES	5
8.	DATA REQUIRED	5
9.	MAIN BODY	6
	9.1 Physical Inspection	6
	9.2 Verify Electrical Connections	7
	9.3 Start-up	
10.	DOCUMENTATION AND RECORDS	11
11.	LICENSE COMMITMENTS AND REQUIREMENTS	11
12.	REFERENCES	11

ATTACHMENTS

 \bigcirc

Attachment 1, ABPM 20	1S Datasheet & Log		2
-----------------------	--------------------	--	---

Page 3 of <u>s5</u> (Total)

1. <u>PURPOSE</u>

- 1.1 The purpose of this procedure is to confirm functionality for the start-up and acceptance of the ABPM 201-S Alpha Particulate Monitor. It will include verification of the following aspects of operation:
 - 1.1.1 The proper startup and operation of the Alpha Particulate Monitor.
 - 1.1.2 Verification of correct measurement of activity levels and functioning of instrument fault conditions and alarms.

2. <u>SCOPE</u>

2.1 This procedure governs the start-up and testing of the ABPM 201-S Alpha Particulate Monitor and its supporting components.

3. TERMS, DEFINITIONS, ABBREVIATIONS, AND ACRONYMS

- 3.1 CAT Commissioning and Acceptance Test
- 3.2 FAT Factory Acceptance Test
- 3.3 LDU Local Display Unit
- 3.4 LPDU Local Processing and Display Unit
- 3.5 MASS Maintenance and Setup Software
- 3.6 PDCU Power Distribution and Control Unit (provides power to the pump and LPDU)
- 3.7 PFCV Proportional Flow Control Valve (regulates flow through PIS proportionally to the stack flow
- 3.8 PIS Particulate Iodine Sampler (for collecting particulate samples)
- 3.9 SAM Spectrum Acquisition and Manipulation Software.
- 3.10 SAT Site Acceptance Test

4. PRECAUTIONS AND LIMITATIONS

4.1 Ensure that appropriate electrical safety practices are utilized during this test in accordance with MA-3-1000-06, Electrical Safety.

5. EQUIPMENT, MATERIAL AND PARTS

- 5.1 Basic Tools and Software:
 - 5.1.1 Laptop or workstation PC
 - 5.1.2 Mass2 software
 - 5.1.3 SAS/PIPS Application Software
 - 5.1.4 RS232 serial link cable with DB9 connectors or equivalent

Page 4 of 85 (Total)

- 5.1.5 Vacuum/pressure pump
- 5.1.6 Level
- 5.1.7 Tape Measure
- 5.2 Calibrated Instruments
 - 5.2.1 Digital multi-meter
 - 5.2.2 Thermometer or temperature sensor for the DMM (0.1°C resolution)
 - 5.2.3 Pressure/vacuum gauge (0.2 psig resolution, 20 psig max full scale)
 - 5.2.4 Mass flow meter or equivalent
 - 5.2.5 Dose rate meter (0.1 mR/hr resolution)
 - 5.2.6 Loop calibrator, as required (input the 4 to 20 mA signal for isokinetic test)
- 5.3 Radioactive Sources
 - 5.3.1 ²⁴¹Am, ~1500 alpha/s nominal activity
 - 5.3.2 Source holder, MGP reference number 69553

6. ACCEPTANCE CRITERIA

- 6.1 Proper operation and calibration of the ABPM 201S monitor as verified by positive checks using the Checklist provided in Attachment 1.
- 6.2 Proper operation of the alarms and faults.
- 6.3 Proper operation of the monitor.

7. PREREQUISITES

7.1 Power available for the monitor.

8. DATA REQUIRED

- 8.1 Other than the information recorded on the checklist and the data sheets from CH-3-4000-01, Alpha/Beta Monitor (ABPM201S) Operation, there is no additional data required for this test.
- 8.2 Calibration Data

Page 5 of 85 (Total)

NOTE:

- 1. Record all observations and data on the ABPM 201S Datasheet & Log unless otherwise directed.
- 2. Steps may be performed in a sequence other than specified in the test plan if approved by the person leading the testing.
- 3. If any parameter cannot be achieved, document the actual results and list the exceptions in the log.
- 4. Make any necessary corrections and repeat as necessary for out of specification parameters.
- 5. Use 12-00098, Post Production Test Procedure for ABPM201S Alpha Beta Particulate Monitor and 12-00124, Factory Acceptance Test Procedure for LES ABPM201S as needed for reference in performing this test.

9. MAIN BODY

- 9.1 Physical Inspection
 - 9.1.1 Verify Alpha Monitor Identification and Condition:
 - a. Serial numbers of components match serial numbers on FAT data sheet.
 - b. No visible damage.
 - c. Adequate clearances have been provided for servicing.
 - d. Name plate affixed to Instrument showing model number, contract number, date of manufacture, UL listing.
 - e. Calibration data sheet available for flow meter.
 - f. Monitor skid is level and properly bolted to the building.
 - g. All packing material and debris have been removed from the equipment, inside and exterior of all components are clean and dust-free.
 - 9.1.2 Check that pipe connections from the sampling nozzle in the stack are compliant with the following:
 - a. Sample inlet line 1 inch OD seamless stainless steel.
 - b. Sample outlet line 1/2 inch OD seamless stainless steel.
 - c. No internal diameter change along line after union to nozzle.
 - d. Minimal horizontal runs, no upward flowing sections between sampling nozzle and instrument inlet.
 - e. Horizontal distance between nozzle and instrument <15 feet.
 - f. Radius of bends at least 3 times pipe outside diameter.

Page $\underline{6}$ of $\underline{85}$ (Total)

- g. Pipe connections made with Swagelok fittings.
- h. Verify sample inlet/sample return manual isolation valves are operable.
- i. Ensure components of system (line between nozzle and monitor, and monitor) have been leak checked. To leak check the monitor, open all internal valves, close inlet and exit valves, and connect a pressure gauge and manual hand pump to the inlet manifold. Draw a vacuum of approximately 6 inches mercury in the system and hold for 10 minutes. The vacuum shall not decrease by more than 10%.

NOTE:

UPS is not tested as part of this test plan.

- 9.2 Electrical Inspection
 - 9.2.1 Power supply and instrument voltages are compatible.
 - 9.2.2 LDU is connected to LPDU (RS485 link between the LDU and the LPDU).
 - 9.2.3 The LDU used for isokinetic flow has the following connections:
 - a. 120 V AC 60 Hz instrument quality power line
 - b. Analog input from the stack flow transmitter
 - 9.2.4 Using a DMM or milli-ohmmeter, check the resistance between the building ground and the skid ground bus (welded threaded stud at lower left side of the skid). Resistance shall be less than 0.1 ohm.

9.3 <u>Start-up</u>

- 9.3.1 Filter paper and cartridge
 - a. Check that a filter paper roll has been placed in the filter cassette.
 - b. Check that a filter paper is installed in the PIS.
- 9.3.2 Monitor Power On
 - a. In the Power Distribution and Control Unit (PDCU), check that fuses are installed in the fuse holders, and close the fuse holders.
 - b. Check that the filter cassette elevator is closed (up).
 - c. Verify the LPDU power supply circuit breaker on the distribution unit is "ON".
 - d. Power on the LPDU by turning the front panel key switch to "ON". The buzzer should sound for approximately one second, the orange light illuminate for one second, and the red light briefly flash.

Page 7 of 85 (Total)

9.4 LPDU Software Check

- 9.4.1 Connect a PC to the LPDU (RS232 port on front of unit) and perform network setup as required.
- 9.4.2 Scan with MASS2 and verify that the LPDU is found.
- 9.4.3 Verify that the LPDU base software (Ref.735 index 1) is revision E or later,
- 9.4.4 Verify that the LPDU/SAS/PIPS application (Ref.774 index 2) is revision P or later.
- 9.4.5 Record the index and revision levels of the base and application software, and the parameter set.
- 9.4.6 Update LPDU time and date, if necessary.
- 9.4.7 Verify the LPDU serial number.
- 9.4.8 Backup any changes required, clear histories and events, and reset the unit.
- 9.4.9 Test the communication by reading the event summary of the unit using MASS2.
- 9.4.10 Perform a configuration verification and document.

9.5 LDU Software Check

- 9.5.1 Connect a PC to the LDU (RS232 port on front of unit) and perform network setup as required.
- 9.5.2 Scan with MASS2, and verify that the LDU is found.
- 9.5.3 Perform a configuration verification and document.

9.6 Flow Rate Verification

- 9.6.1 Place a calibrated flowmeter on the inlet or outlet manifold.
- 9.6.2 Bypass the isokinetic PFCV (Proportional Flow Control Valve).
- 9.6.3 Place the pump manual switch to "MAN" (operates the pump in manual mode).
- 9.6.4 Provide sample flow to the monitor and adjust the flow regulating valve to obtain the approximate flow rates listed below and verify the value indicated for the flow channel against the reading from the calibrated flowmeter. Record the actual flow rate achieved.

Measurement Test #	Reference flow rate in L/min (CFM)
1	30 (1.1)
2	45 (1.6)
3	60 (2.1)

9.6.5 The measurements shall match the gauge reading within \pm 10%.

Page 8 of 85 (Total)

NOTE:

A 4-20 mA signal may be used to test the proportional valve response in place of changing the stack flow rate.

9.7 Isokinetic Flow Control Test

The purpose of this test is to verify that the sample flow rate is maintained at a value which is proportional to the process flow rate, above a certain sample flow threshold. The stack flow scaling and the target sample flow rate may be modified and calibrated during this test.

- 9.7.1 With the PC connected to the LPDU and/or LDU, scan with MASS 2.
- 9.7.2 Ensure the monitor components (LPDU and LDU) are configured to accept stack flow data.
- 9.7.3 Record the stack flow as indicated on the Remote Electronic Enclosure for the flow element used by the LDU which is located in the Local Control panel.
- 9.7.4 Record the stack flow rate indicated on the LPDU display or by MASS2.
- 9.7.5 Record the sample flow rate to the Alpha monitor, as indicated by the total flow rate channel (SkidFlow).
- 9.7.6 Verify sample flow rate is within acceptable tolerance for the stack flow rate $(\pm 25\%)$ of the expected value).
- 9.7.7 Adjust the Fan Speed on the Ventilation System to achieve the Target Stack Flow Values for this test.
- 9.7.8 If the scaling data must be updated, only the stack flow rate (StkFlow) and target sample flow rate (Target) channels need to be modified. See Section 10 in the User's Manual for ABPM 201-S, Appendix 2: Isokinetic Flow Control. Update information in the StkFlow and Target sample flow rate channels, If required.
- 9.7.9 If changes to the calibration are required, repeat steps until acceptable sample flow rates are obtained.
- 9.7.10 Record final results.

Page 9 of 85 (Total)

9.8 Detector Fault Test

- 9.8.1 With the monitor in normal operating condition, turn off power to the LPDU and the sampling pump and disconnect the detector cable at the LPDU side.
- 9.8.2 Restore power to the LPDU and check that the events list is similar to the following list:

Date	Time	Event
06/07/00	15:05:21	Stop unit
06/07/00	15:05:37	Start unit
06/07/00	15:05:44	Unit in normal operation mode ON
06/07/00	15:05:48	Detector probe not present ON
06/07/00	15:05:54	Electrical test counting : : 0
06/07/00	15:05:54	Electrical test fault ON
06/07/00	15:05:57	Internal fault ON
06/07/00	15:05:57	Temperature fault ON
		· · · · · · · · · · · · · · · · · · ·

- 9.8.3 Turn off power to the LPDU and reconnect the detector cable.
- 9.8.4 Restore power to the pump and the LPDU and check that the events list is similar to the following list:

Date	Time	Event
06/07/00	15:05:21	Stop unit
06/07/00	15:05:37	Start unit
06/07/00	15:05:44	Unit in normal operation mode ON
06/07/00	15:05:44	Filter advance ON
06/07/00	15:05:54	Filter advance OFF

9.9 Energy Calibration, Source Calibration, Relay Test, Alarm Test and Setpoint Verification,

Perform this section IAW CH-3-4000-01 and the source comparison data from the Factory Acceptance Test. Record the data on CH-3-4000-01-F-1, Source Calibration Data Sheet and CH-3-4000-01F-3, Energy Calibration Data Sheet and attach to the test plan.

9.10 <u>Temperature calibration verification</u>

- 9.10.1 Using the MASS software, and a calibrated temperature sensor, measure the temperature near the PIPS detector, and record the measured value as $T_{Measured}$ in °C.
- 9.10.2 Read the "Temp" channel in °C on the MASS main screen, and record as TLPDU
- 9.10.3 Calculate the offset (difference) between measured and read, TLPDU TMeasured.
- 9.10.4 If the offset is within ± 2 °C , the temperature measurement calibration is acceptable.

9.11 Restoration and final check

- 9.11.1 If applicable, restore any parameters modified for the test to the normal operating values.
- 9.11.2 Put the LPDU into maintenance mode.
- 9.11.3 Back up parameters into flash memory, and onto a diskette or CD, if required.

Page 10 of 85 (Total)

- 9.11.4 Reset the LPDU and run the pump for 24 hours.
- 9.11.5 Check that there are no unusual events in the event summaries and that there is no activity in the historical trends which cannot be accounted for.
- 9.11.6 Review the test procedure and verify that all tests have been completed.
- 9.11.7 Review the test log and verify that all required entries are complete.
- 9.11.8 Repeat any steps if required.
- 9.11.9 Sign the test log.

10. DOCUMENTATION AND RECORDS

10.1 Retain this procedure, the Installer's Checklist, and a record of any calibration performed, with required initials, in accordance with RM-3-2000-01, Records Management program.

11. LICENSE COMMITMENTS AND REQUIREMENTS

- 11.1 SAR 4.1
- 11.2 SAR 4.7
- 11.3 SAR, Section 9.2.21

12. <u>REFERENCES</u>

- 12.1 CH-3-4000-01, Alpha/Beta Monitor (ABPM 201S) Operation
 - 12.2 MA-3-1000-06, Electrical Safety
 - 12.3 RM-3-2000-01, Records Management Program
 - 12.4 SU-3-1000-01, Release for Operation
 - 12.5 User's Manual, ABPM 201-S Alpha Beta Particulate Monitor, 15-00068 Rev. 0, dated 10-10-2008, MGP Instruments
 - 12.6 Post Production Test Procedure for ABPM201S Alpha Beta Particulate Monitor, Document 12-00098, MGP Instruments
 - 12.7 Factory Acceptance Test Procedure for LES ABPM201S, Document 12-00124, MGP Instruments
 - 12.8 Post Production Test Data Sheet, ABPM201S Alpha Beta Particulate Monitor, Document 14-00098, MGP Instruments
 - 12.9 LES ABPM201S Factory Acceptance Test Log, MGP Instruments
 - 12.10 MASS Software User's Manual
 - 12.11 LPDU User's Manual
 - 12.12 ANSI/HPS N13.1-1999 Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities

Page 11 of 85 (Total)

	\frown
Procedure Title: Alpha Monitor Site Acceptance Test Plan	
Attachment 1	CAT-CH-ABPM-201S
ABPM 201S Datasheet & Log	Rev. 0 Page 12 of 23

ABPM 201S Monitor	System Number:
-------------------	----------------

Part Number:

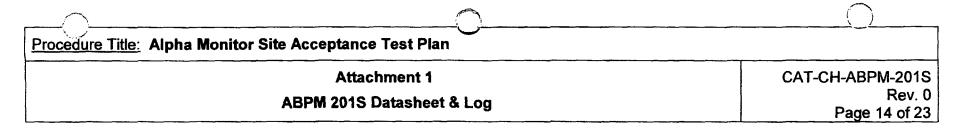
Serial Number:

Test Date(s)

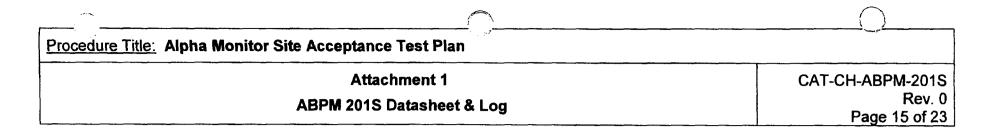
1001-562-1MA2	
ABPMZOIS	
090501-02	
11-5-09 to 3-26-10	

Calibrated Instruments and Standards

ltem	Model Number	Serial Number	Calibration Due	Comments
Digital Multimeter	Fluke 87 V	94910331	23J12010	Certificate attached (1934 1040)
Temperature Sensor	Fluke 87 V	94910331	27712010	
Pressure/Vacuum Gauge and hand vacuum pump	Mity VacXNXT	81161094	NA	D Handpump purchased from Cole Parmer to perform test, Vendor recommended different setup
Mass Flow Meter	FMA 1843	230235-3	01 Apr 2010	Cortification a Hacked (Pg31+c33)
Scaler/rate meter Dose Rate Meter ?	2224	247506	08 Sept 2010	Certification attached (Pa 41+042)


Procedure Title: Alpha Monitor Site Acceptance Test Plan	
Attachment 1	CAT-CH-ABPM-201S
ABPM 201S Datasheet & Log	Rev. 0 Page 13 of 23

ABPM201S System and Component Numbers


item	FAT Log Part Number	FAT Log Serial Number	Installed Part Number	Installed Serial Number	Comments
Skid	02-00384	090501-02	02-00384	090501-02	UL cut # 0115481
LPDU/PIPS	131839	090561	131839	0.90501	
Particulate Flow Meter	120114	091772	120114	091772	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
PIS flow Meter	120112	080691	120112	080691	
Filter Cassette	43775	081193	43775	081193	
Flow Control Valve	700055	29236	700055	29236	
LDU	NIA	NIA	134475	09 0630	UL cut # 0115486

			Veri	fied By	Ver	ified By	
Physical Inspection	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
Serial Numbers match FAT Data Sheet	\checkmark		SIC	11/5/09 08:50	HMH	11-5-09 0850	FAT faperwork a Hached (Pa 45+68)
No visible damage	\checkmark		OFE	11/5/01		H- 5-09 0850	· · · · · · · · · · · · · · · · · · ·
Adequate clearance	\checkmark		aty	11/5/09 @08:50	HMH	11-5-09	
Label affixed	1		etz.	11/5/09 208;50	HMH	11-5-09 0850	
Calibration data sheet for flow meter			I+MI+	1-8-1001130	Atz	1-8-10	2) See comments on Pg 21
Monitor skid level	~		HMH	0831	JEB	11-10-09	
Monitor is bolted down	~		Patz	11/5/00 @ 08:50	HMH	11-5-09 0850	

Page <u>/3</u> of <u>85</u> (Total)

			Ver	fied By	Ver	ified By	
Physical Inspection	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
Packing material removed and interior/exterior clean	~		Ats	3/10/10 0820	NR	NA	
Inlet pipe 1 inch OD seamless stainless steel	1		JRB	12/18/09 1430			
Return pipe diameter ½ inch OD seamless stainless steel	1		JEB	1418/09 1430			
No diameter change along inlet line after union with nozzle	~		JEB	12/18/09 1430			
Minimal horizontal runs, no upward flowing sections between sampling nozzle and instrument inlet	1		JRB	12/18/09			
Horizontal distance between nozzle and monitor is <15'	1		JEB	12/18/09			
Radius of bends at least 3X OD			MB	12/18/09/430			
Pipe connections made with Swagelok fittings	1		503	12/18/09			
Manual isolation valves operable			JEB	12/18/09,430			
Initial vacuum:3.5	A		NR	NR			
Decrease in vacuum after 10 minutes: 13.5 (no change)		2					
Decrease in vacuum < 10%			HMH	11-16-08		1	

			Ver	ified By	Ver	ified By	
Electrical Inspection	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
Correct Voltage	\mathcal{N}^{+}		HMH	1612-09 1036	RSB	11-12-2009	118.6 volts
LDU in communication with LPDU			HMH	11-18-04 1245	505	11-18-05	
LDU has input from flow element	\checkmark		HMH	3-16-10 0815	NR	INK	
Skid grounded – Resistance < 0.1 ohms			HMH	11-12-09	7SB	1040	
UL equivalency Report			Ote	12-15-04 1200	NR	NR	Attached Report (Py 69-ta 84)

			Verified By		Verified By		
Start up	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
Filter paper roll in cassette	\checkmark		NIR	NIR	НМН	0851	
Filter paper in PIS	\checkmark				HMH	0851	
Fuses checked					HMH	11-5-09	
Elevator up	\checkmark				HMH	11-5-09 0853	
LPDU powered up	\checkmark				HMH	11-5-09 0854	
LPDU display on	\checkmark				HMH	0854	
LPDU found by MASS2	\checkmark				HMH	11-5-09	

Procedure Title: Alpha Monitor Site Acceptance Test Plan	
Attachment 1	CAT-CH-ABPM-201S
ABPM 201S Datasheet & Log	Rev. 0 Page 16 of 23

			Veri	ified By	Ver	ified By	
LPDU Software Check	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
LPDU:							
Base Software number: <u>735</u>							
Base Software revision: <u> E</u>				1000			
Application Software number: 774			НМН	11-18-09 12.46			
Application Software revision: <u>2 R</u>					NR	NK	
Parameter Set number: <u>827</u>							
Parameter Set revision: <u>102 A</u>							
Acquisition board number: <u>57894</u>	ļ						
• Acquisition board revision: 253 184 15							
Time and date set	\checkmark		HMH	11-18-09 1246			
LPDU serial number: 090501			HMH	11-18-09			
Any changes backed up , unit reset?			HMH	3-16-10			
Event summary correct?			HMH	3-16-10			
Configuration verified and documented	~		HMH	11-18-09 1247			

Procedure Title: Alpha Monitor Site Acceptance Test Plan	
Attachment 1	CAT-CH-ABPM-201S
ABPM 201S Datasheet & Log	Rev. 0 Page 17 of 23

			Verified By		Verified By		
LDU Software Check	Yes	No.	Initials	Date/Time	Initials	Date/Time	Comments
LDU is receiving information?	\checkmark		HMH	11-18-09	SOS .	11/18/07	
Configuration verified and documented			HMH	1250	sos	11/18/05 1250	

	-		Ver	ified By	Ver	ified By	
Flow Rate Verification	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
Monitor Flow Rate (Skidflow) acceptable?			HMH	11-16-09 1100	NR	NR	

Calibrated Flowmeter (Lpm)	Monitor Reading (Lpm)	Reading within ±10%
61	55.3	ves
45	41	yes
30	27.4	yes
		8

	<u></u>
Procedure Title: Alpha Monitor Site Acceptance Test Plan	
Attachment 1	CAT-CH-ABPM-201S
ABPM 201S Datasheet & Log	Rev. 0 Page 18 of 23

ŝ,

			Ver	ified By	Ver	ified By	
Isokinetic Flow Control Test	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
Test complete and satisfactory?	\checkmark		242	3/20/100/620	NR	NR	Test results on Pags

Target Stack Flow (or mA) (LDU mA)	Measured Stack Flow from Process Flow Meter	Measured Alpha Monitor Process Flow Rate	Portable Flow Meter Stack Measurement	Target Alpha Monitor Sample Flow Rate	Actual Alpha Monitor Sample Flow Rate	Within Tolerance?
3,7 66 Have 4,047 mA	TOSEEM(!)	1107-39,9 3.5	0.5	39,9 40	39,9	
	114 scfm					
		<u> </u>				

3 Seccomments (Pg 21)

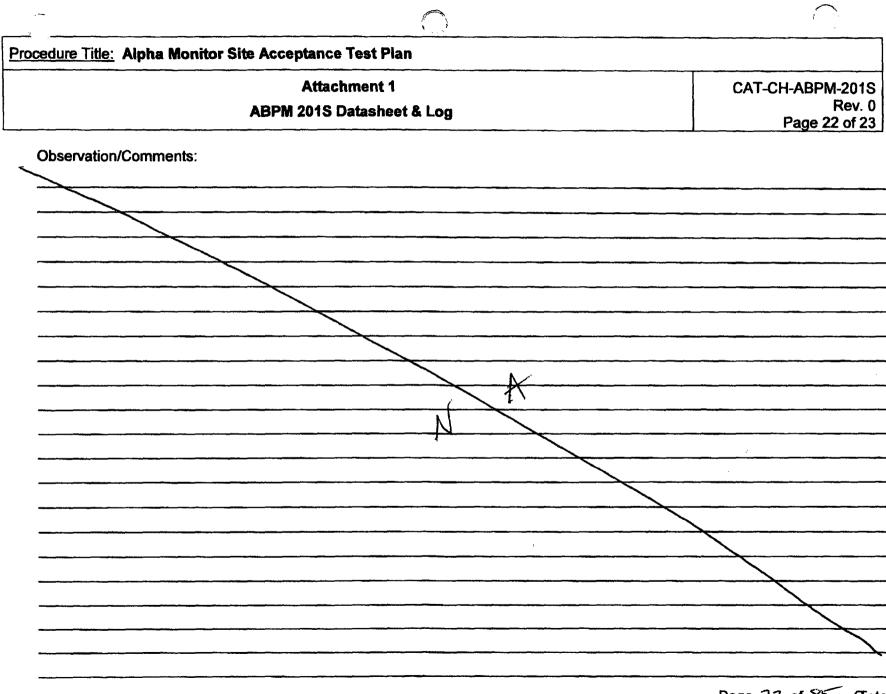
Detector Fault Test	Yes	No	END STREET	ified By Date/Time	್ಷ ನಿರ್ವಹಿಸಿದ್ದ ಎಂದು ಸಂಗ್ರೆಸ್ ಮಾಡಿದ್ದಾರೆ. ಇದು ಸಂಗ್ರೆಸ್ ಮಾಡಿದ್ದಾರೆ ಸಂಗ್ರೆಸ್ ಮಾಡಿದ್ದಾರೆ. ಇದು ಸಂಗ್ರೆಸ್ ಮಾಡಿದ್ದಾರೆ ಸಂಗ್ರೆಸ್ ಮಾಡಿದ್ದಾರೆ ಸಂಗ್ರೆಸ್ ಮಾಡಿದ್ದಾರೆ. ಇದು ಸಂಗ್ರೆಸ್ ಮಾಡಿದ್ದಾರೆ ಸಂಗ್ರೆಸ್ ಮಾಡಿದ್ದಾರೆ. ಇದು ಸಂಗ್ರೆಸ್ ಮಾಡಿದ್ದಾರೆ ಸಂ	fied By Date/Time	Comments
Event log for detector unplugged and pump off correct?	\checkmark		HMH	11-18-09 1330	SQS	11-18-09 1336	
Event log for detector plugged in and pump on correct?	\checkmark		HMH	11-18-09 1330	SDS	11-18-09 1330	

Page <u>/8</u> of <u>85</u> (Total)

/~~	<u></u>	<u>_</u>
Procedure Title: Alpha M	onitor Site Acceptance Test Plan	
	Attachment 1	CAT-CH-ABPM-201S
	ABPM 201S Datasheet & Log	Rev. 0 Page 19 of 23

CH-3-4000-01YesNoInitialsDate/TimeInitialsDate/TimeCommentsEnergy Calibration complete and passed? \checkmark HMH $11-17-09$ 1000 NR NR P_g 24 + 25Setpoint Verification complete and passed? \checkmark HMH 1000 NR P_g 29 + 29Source Calibration complete and passed? \checkmark HMH 1000 P_g 29 + 529Source Calibration complete and passed? \checkmark HMH 1200 \checkmark P_g 26 to 28Relay Test complete and passed? \checkmark HMH $11-19-09$ $HO0$ SDS $11-18-09$ 1400 P_g 21		-		Ver	ified By	Vei	ified By	
Energy Calibration complete and passed? \vee HMH $i000$ NR NR $P_{g} 24 + 625$ Setpoint Verification complete and passed? \vee HMH $i-8-10$ $P_{g} 29 + 629$ Source Calibration complete and passed? \vee HMH $i-17-09$ $P_{g} 26 + 628$ Selay Test complete and passed? \vee HMH $i-18-09$ V $P_{g} 26 + 628$	CH-3-4000-01	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
Setpoint vertication complete and passed? \vee $ H/h H$ $ 000$ $P_g 29 + o 29$ Source Calibration complete and passed? \vee $ H/h H$ $ 1-17-09$ $P_g 26 + o 28$ Relay Test complete and passed? \vee $H/h H$ $ 1-18-09$ SDS $ 1-18-09$ Relay Test complete and passed? \vee $H/h H$ $ 1-18-09$ SDS $ 1-18-09$		\checkmark	•	HMH	1	NR	NR	Pg 24 to 25
Source Calibration complete and passed? V HM H 1200 Pg 26 to 28 Relay Test complete and passed? V HM H 11-18-09 SDS 11-16-05 Pg 27	• •	\checkmark		HMH				Pg 29 to 29
Relay Test complete and passed? $+ + M + + + + + + + + + + + + + + + + $	•	V		HMH				Pg 26 to 28
11-18-09 0-0 11-18-09	Relay Test complete and passed?	\checkmark		HMH	11-18-09	SØS		Pa27
Alarm lest complete and passed? I V I IT/VITI 1400 305 1400 Pa 21	Alarm Test complete and passed?	\checkmark		I+MH	11-18-09	کمک	11-18-09 1400	Pa27

			Ver	ified By	Ver	ified By	
Temperature Calibration	Yes	No	Initials	Date/Time	Initials	Date/Time	Comments
Reference Temperature: 212			HWH	11-18-09	NR	NR	
Monitor Temperature: 20.3			HMH	1343		V	
Reading within ± 2°C?	\bigvee		HMH	11-18-04	505	1343	


<u> </u>		
Procedure Title: Alpha Monitor Site Acceptance Test Plan		
Attachment 1	CAT-CH-ABPM-201S	
ABPM 201S Datasheet & Log	Rev. 0 Page 20 of 23	

Restoration and Final Check	Yes	No	Verified By		Verified By		
			Initials	Date/Time	Initials	Date/Time	Comments
Parameters restored	V		HMH	3-16-10	NK	NR	
LPDU in maintenance mode			HMH	3-16-10			
Reset LPDU	V		HMH	3-10-10			
Pump run for 24 hours	V		HMH	3-14-10			
All tests complete	1		059	3-26-10 1700			
Entries complete	1		p4==	3-26-60 1100			
Test log signed			AZ	3-26-10			

Procedure Title: Alpha Monitor Site Acceptance Test Plan	
Attachment 1	CAT-CH-ABPM-201S
ABPM 201S Datasheet & Log	Rev. 0 Page 21 of 23

Observation/Comments: Turned pump on @09:00 Note: Vendor attended CAT and stated that use of dose rat unneces song for our application. Procedure revision to make corrections on Vendor commen D fressure/Vacuum gauge and hand purchased for test does not have using Swaylok quick connects an Te commend test will be performed RAGIN When Leak the testing interval. EPI State meter was no pring replaced 6. Dwner 641-6 Serial#N364_2 and calibrated on 2/3/10. Onl u final used in this package on Pay3to44. being performed flowmether referenced in comment @ resulted in 2) Problemat later time. Data to support Tsokinetic flow rate can be found on Pg85. D'Voltage reading performed by ETT during UL equivalences testing. Cal certificate . (Fluke 874, 5# 9622073 Calduedate 2/13/10) Pa 30, attached Paby to 84. IL equivalency documentation

Page 21 of 85 (Total)

.

•

Page 22 of 85 (Total)

		<u></u>	\square
Procedure Title: Alpha Mor	itor Site Acceptance Test Plan		
	Attachment 1 ABPM 201S Datasheet &	Log	CAT-CH-ABPM-201S Rev. 0 Page 23 of 23
Initials/Name (Print/Sign Initials/Name (Print/Sign Initials/Name (Print/Sign	ature <u>RSB/ Ross Bender</u> ature <u>JRB/ Inn Berstier</u>	Alle for Silas Stark 1 Blog for Ross Bender 1 Doz for Jonn Berster	
Initials/Name (Print/Sign	ature /	1 Deslovande	

The ABPM 201S Alpha monitor is acceptable for use: _	Chel Cato	3/15/2010
Signa	ture	Date
The ABPM 201S Alpha monitor is acceptable for use: _	DEdwards	3/15/10
Signa		Date
The ABPM 201S Alpha monitor is acceptable for use: _		
Signa	ture	Date

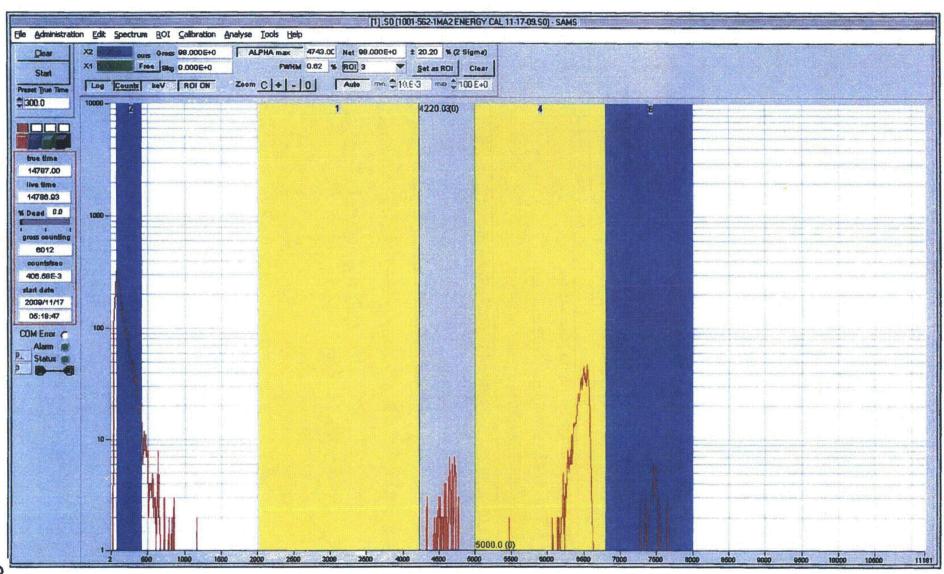
Page 22 of 85 (Total)

Proc	Procedure Title: Alpha/Beta Monitor (ABPM 201 S) Operation		
	CH-3-4000-01-F-3	CH-3-4000-01	
2	Energy Calibration Data Sheet	Rev.3 Level 2 - Reference Use	
,	(Pages 49 to 49)	Page 49 of 51	

Name of Person Performing Calibration	Holluffaber
Monitor Functional Location	10017562-1MA2
Date/Time	11-17-09 10921

Calibration Values:				
	Last Approved	As Found	As Left	
Alpha Max ²¹⁸ Po ^①	2	4869.5	4743	
Alpha Max ²¹⁴ Po ^①		6650.2	6595	
Offset		0,7363	1.5140	
Slope		9.2623	8,4836	
Quadratic	4	0.00 33	0.00239	

①Acceptable Range for Alpha Max values:


²¹⁸Po: 4743 keV±40keV [4703 to 4783]

²¹⁴Po: 6595 kev±50keV [6545 to 6645]

		Setpoints for A	Ipha Activity:		ך
1	· · · · · · · · · · · · · · · · · · ·	Last Approved	As Found	As Left	
	Hi Setpoint	3.7E-12 μCi/ml	N	N	70
	Hi Hi Setpoint	7.3 E-12 μCi/ml	A	A	

Remarks: @ Sutpoints N/A be cause of CAT, Final verification performed on Pg29 @ Initial site test, No last approved values, @ Spectrum attached on Pg25.

Reviewed By:	Debra Edwards	1 Delwonds	1 11-17-09
-	Print	Signature	Date

CAT-CH-ABPM-2015

Procedure Title: Alpha/Beta Monitor (ABPM 201 S) Operation

CH-3-4000-01-F-1

Source Calibration Data Sheet

CH-3-4000-01 Rev.3 Level 2 - Reference Use Page 1 of 2

Technician Performing Calibration	Holly Hover
Monitor Functional Location	1004 S62-1MAZ
Date/Time	1417-09/0948
	1417-09/09148

	Test Conditions	
	Required Value	Measured Value
Temperature	15 - 35°C	19.6
Relative Humidity	25 - 75%	26
General Area Radiation	< 0.1 mR/hr (<100µR/hr)	- 114 cpm (by, ox)
Energy Calibration complete? (Circle)	(Yes / No

	Sc	ource Activity	
	Source Type	Serial No.	A (Bq)
- ²⁴¹ Am	Alpha	F5-247	ی (A) ک
Am-241	alioha	F-8-940	329589
, IM ZIII	<u> </u>	1=0=110	1 02706

	Gain Verification					
\bigcirc	Description	Acceptance Criteria	As Found	As Left		
	Peak Channel	399 - 439 channel	432 **	NA **		
	Alpha-Beta gain	0.7 - 1.3 cps	0 9100	NA		
	Gamma gain	0.7 - 1.3 cps	0.9280	O NA		

(Alpha - Beta Gain As Found)

	Detection Efficiency Check				
Background	Acceptance Criteria	Measured Values	Average	Comments	
Alpha_cps	< 0.005 cps		Ò	None	
Po21x_cps	< 0.005 cps		0	None	

Procedure Title: Alpha/Beta Monitor (ABPM 201 S) Operation

CH-3-4000-01-F-1

Source Calibration Data Sheet

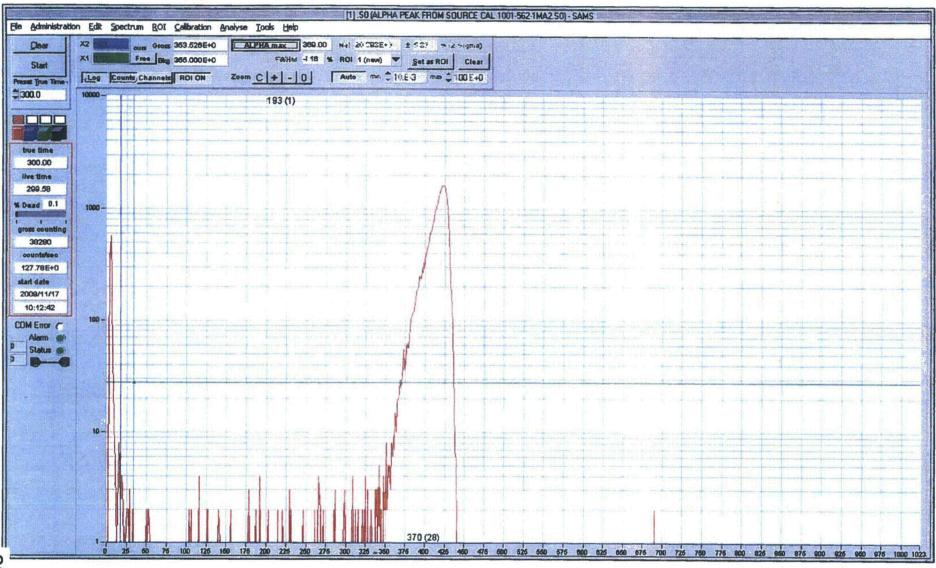
CH-3-4000-01 Rev.3 Level 2 - Reference Use Page 2 of 2

Measurement with the Alpha Source					
	Measured Values (cps)	Average	Comments		
Alpha_cps	122.46 122.06 121.79 121.85 122.62 uhrbg	122.156	None		
Po21x_cps	0.0431 0.0431 0.0352 0.0319 0.0373	0 0 3922	Nove		

	Detection Efficiency Calculat	tion for Source	
	Acceptance Criteria	Measured Value	Comments
Alpha Efficiency (Eff)	0.0326 to 0.0398 cps/Bq	00.03707	None
	1206.2 to 1472.6 cps/µCi	3 371.71	7

Alpha Efficiency (cps/Bq) = S/A = Alpha_cps/2980 Bq

(3) Alpha Efficiency (cps/ μ Ci) = (2 x 37000


1 :

Alarm Verification Scenario Monitor Status (read from MASS2)							
	Status	OP	TST	н	H/H	(Yes/No)	
High alarm (modify LPDU threshold)	H alarm	On	Off	On	Off	ves	
H/H alarm (modify LPDU threshold)	H/H alarm	On	Off	Off)*	On	yes	
Fault (turn off the sample pump)	Slave fault	Off	Off	Off	Off	ves	
Test (place LPDU in Bypass mode)	Bypass	On	On	Off	Off	res	

Remarks: post production test value for alpha efficiency. U.U.3.70 cps/Bq * high alarm is on during H/H alarm

** Spectrum a Hacked. No change required , "As found" is the same "As left".

Reviewed By: <u>Debra Edwards</u> Print Signature / 11/17/09

CAT-CH-ABPM-2015 Page 28 of 85

ж. #

CH-3-4000-01-F-3	CH-3-4000-01 Rev.4
Energy Calibration Data Sheet	Level 2 Reference Use Page 1 of 1

Name of Person Performing Calibration	Holly Huber
Monitor Functional Location	1001-562-1MA2
Date/Time	1-27-10 / 1048

	Calibr	ation Values:	
	Last Approved	As Found	As Left
Alpha Max ²¹⁸ Po①		***************************************	
Alpha Max ²¹⁴ Po①		NIA	
Offset		1011	
Slope			
Quadratic		······································	
	OAcceptable Ran	ge for Alpha Max Values	· · · · · · · · · · · · · · · · · · ·
²¹⁸ Po: 4743 keV±40ke	V [4703 to 4783]	²¹⁴ Po: 6595 kev±50ke\	/ [6545 to 6645]

Setpoints for Alpha Activity:					
*^	Last Approved	As Found	As Left		
Hi Setpoint	3.7E-12 μ Ci/ml	3-7e-12 nCi/ml	$0.14 \text{ Bg}/m^3$		
Hi Hi Setpoint	7.3 E-12 μ Ci/ml	7.30-12 MCi/ml	0.27 Ba/m3		

RamSys backup p	performed? (Check one):	Yes 🔀 No 🗌	
Comments: Date	ished used to docum	ent setting of final	setponts.
Setpoint un	its changed to agree	with PODere 1/27/12	,
SI de l'al AUN	rsion to sucedure	will be effective	Rola-3
orior to my	rsion to procedure at venfication	3.7 E-12 uG/ml = 0.14 7.3 E-12 uG/ml = 0.14	127/ Bg/M4 3
Revision 5 ef	fective 3/17/10 in both MG/ml+ Bg/13	7, 5 6 1 6 14 4 1 10 - 20005	
with staont	in both MG/ml+ 09/113	, 	
Performed by:	Holly Hyber	bur the	1-27-10
	Printed Name	Şignature	Date
Varified by:	William Maver	Kon al	1-27-10
Verified by:	• • • • •		
vernieu by.	Printed Name	Signature	Date
Reviewed by:	Printed Name Debra Edwards	Signature DEdwards	Date 1-27-10

.

•

EMERSON.

CERTIFICATE OF CALIBRATION

Process Management

ent	San Francisco-Los Angeles-San Diego-Seattle-Denver-Portland-Albuquergue-Kansas City-Las Vegas-Reno-Phoenty-Sait Lake City-El Paso
Flu	e 87 V Digital Multimeter

True RMS Multimeter

	INSTRUMENT					
INVENTORY NUMBER						
Ross Bender Div. 093						
MANUFACTURER				TEST		
						····
/ •					<u> </u>	
0072	i	1				
0275		4				v
					NO	Х
			·			
		JOB NUMBER		4074		
scobar				4874		
13/2009		PURCHASE ORDE		NA		
'0 ₀F			Ibuquerque	, New Mexico	C	
50%	DUE DATE				0	
20-01200	03/14/2009					
1			SOP'	Y	<u> </u>	
	der Div. 093 ACTURER Juke NUMBER 7 V 50273 Escobar 13/2009 20 oF 50%	RY NUMBER der Div. 093 ACTURER luke NUMBER 7 V 20273 TIEST Escobar 13/2009 70 oF 50%	RY NUMBER der Div. 093 ACTURER DATE OF LAST CA Uke NUMBER 7 V WERE ADJUSTME 0273 TESTDATA UOB NUMBER 13/2009 70 oF 50% ASSET NO. DUE DATE	RY NUMBER der Div. 093 ACTURER DATE OF LAST CALIBRATION OR PURCHASE ORDER 13/2009 Cost of the second of the	RY NUMBER PROCEDURE etl/Mfr der Div. 093 etl/Mfr ACTURER DATE OF LAST CALIBRATION OR TEST luke 2/2008 NUMBER RESUBMISSION DATE 7 V 2/13/2010 S0273 WERE ADJUSTMENTS OR PARTS REQUIRED? S0273 UOB NUMBER Scobar JOB NUMBER Scobar 3094874 13/2009 NA YO oF PURCHASE ORDER S0% ASSET NO. DUE DATE MEG MEG MODELINO: ASSET NO. DUE DATE	RY NUMBER PROCEDURE etl/Mfr der Div. 093 etl/Mfr ACTURER DATE OF LAST CALIBRATION OR TEST 2/2008 NUMBER RESUBMISSION DATE 2/13/2010 NUMBER RESUBMISSION DATE 2/13/2010 S0273 WERE ADJUSTMENTS OR PARTS REQUIRED? S0273 YES NO TESTDATA JOB NUMBER Escobar JOB NUMBER 13/2009 NA Yest LOCATION NA Yo oF DUE DATE MODEL NO: ASSET NO: DUE DATE MEG- MODEL NO: ASSET.NO:

ETI certifies that this instrument was calibrated / tested in accordance with and traceable to the National Institute of Standards and Technology (N.I.S.T.) or acceptable natural physical standard as per MIL-STD-45662A.

(

Procedure Title: Receipt Inspection

QA-3-3000-18-F-1

QC Receipt Inspection Plan Report

QA-3-3000-18 Rev. 1 Level 3 - Information Use Page 1 of 3

PO No.	RIP No.	Date	Time	Quality Level
1853-10	2009-074	01-June-2009	11:50 am	Maintenance M&TE QL-1

N/A

Shipment General Description:

Calibration of Maintenance Instrument ID: FM-2; Model #:FMA1843; Serial #: 230235-3

Davis Certificate of Calibration #: 3232029

Davis Technician: Outside Vendor (Dick Munns Company)

Sampling Method (if applicable)

Shelf life expiration date (if applicable) 01-Apr-2010

Suspect/Counterfeit Check	🖾 NA	SAT

Inspection Acceptable? Xes No

Inspector Comments:

C

M&TE Description	ID No.	Calibration Due Date
N/A	N/A	N/A
N/A	N/A	N/A

Performed By	Matthew Graves, Watthew Graves,	6/1/09	11:50 am
	Print/Sign	Date	Time
Reviewed By	RILLhittard	foll/09	1235
Neviewed by	Print/Sign	Date	Time

2 20: A. 74

Davis

3232029

Certificate Page 1 of 1

Instrument Identification

PO Number: 1853-10

Company ID: 88636 LOUISIANA ENERGY SERVICES, L.P. QUALITY ASSURANCE LES 275 ANDREWS HWY 176 EUNICE, NM 88231

Instrument ID: FM-2 Manufacturer: OMEGA Description: MASS FLOW METER Model Number: FMA1843 Serial Number: 230235-3

Certificule information

Reason For Service: CALIBRATION Type of Cal: NORMAL As Found Condition: IN TOLERANCE As Left Condition: LEFT AS FOUND Procedure: VENDORS PROCEDURE REFER TO ATTACHED CERT.

Remarks: Unit calibrated by Dick Munns Co.

Technician: OUTSIDE VENDOR Cai Date: 01Apr2009 Cai Due Date: 01Apr2010 Interval: 12 MONTHS Temperature: 70.0 F Humidity: 50.0 %

The instrument(s) listed on this certificate has been calibrated by a vendor evaluated and approved in accordance with the Davis Calibratian quality system.

All calibrations are traceable to the Notional Institute of Standards and Technology (NIST), derived from ratio type measurements, or compared to nationally or internationally recognized consensus standards.

A calibration uncertainty ratio of 4:1 [K=2, 95% Confidence Level, calculated using the expanded measurement uncertainty] was maintained unless otherwise stated.

Davis Calibration Laboratory is certified to ISO 9001:2000, and meets the requirements of ANSI/NCSL 2540-1-1994 and ISO 10012:2003.

When noted in Type of Cal an ISO/IEC 17025-2005 accredited calibration has been accomplished.

All results contained within this certification relate only to item(s) calibrated. Any number of factors may cause the calibration item to drift out of colibration before the instrument's calibration interval has expired.

This certificate shall not be reproduced except in full, without written consent of Davis Calibration Laboratory.

Approved By: MARK GOODMAN Service Representative

Davis Calibration • 1421 Champion Drive, Suite 304 • Carrollton, TX 75006 • Phone: 800-698-2033 • Fax: 972-234-1079

CAT-CH-ABPM-201S Page 32 of 85

LES RIR: 2009-07

DICK MUNNS COMPANY Liquid and Gas - Flowmeter Calibration Service 10572 Calle Lee - 138 • Los Alamitos, California 90720 Telephone (714) 827-1215 • Telefax (714) 827-0823

CERTIFICATE OF CALIBRATION

Client Name:	DAVIS CALIBRATION	Calibration Date:	04-01-2009
Reference Number:	PO# 4040680	Calibration Due:	04-01-2010
Instrument Manufacturer:	OMEGA	Calibration Fluid:	GN2 @ 70F
Instrument Description:	MASS FLOWMETER	Standard(s) Used:	A4,A312 DUE 01-2011
Model Number:	FMA1843	NIST Traceability Per:	MS131414,MS13431
Serial Number:	230235-3	Ambient Conditions:	759 mmHGA 50% RH 70F
Rated Uncertainty:	+/- 1.5% F.S.	Procedure Number:	NAVAIR-17-20MG-02
Uncertainty Given:	AS RECEIVED	Certificate/File Number:	433347
	WITHIN SPECS.		
	REFERENCE CONDITIONS	ARE: 760 mmHGA 70F.	(A/N: FM-2)

INDICATED UUT SLPM	ACTUAL DM.STD. SLPM
0	0.000
5	5.031 15.064
50	50.120
100	100.241
150	150.361
200	200.482

All instruments used in the performance of the above calibration have direct traceability to the National Institute of Standards and Technology (NIST). The accuracy ratio between the calibration standards used and the unit under test is a minimum of 4:1, unless otherwise noted. Calibration has been performed per the above listed procedure number, in accordance with ISO 10012-1,17025, ANSI/NCSL-Z-540-1, and/or MIL-STD-45662A.

Calibration Performed By:

pproved By: R.L.MUNNS

DICK MUNNS COMPANY

₹

QA-3-3000-18-F-1

QC Receipt Inspection Plan Report

PO No.	RIPR No.	Date	Time	Quality Level
1853-10	2009-229	20-Aug-2009	1:44 pm	Maintenance M&TE QL-1

N/A

Shipment General Description:

Calibration of Maintenance Instrument ID: M87-2; Model #: 87 V; Serial #: 94910331

Davis Certificate of Calibration #: 3380524

Davis Calibration Technician: Steve Galla

Sampling Method (if applicable)

Shelf life expiration date (if applicable) 22-Jul-2010

Suspect/Counterfeit Check	🖾 NA	SAT
Safe-By-Design Verification	🖾 NA	SAT

Inspection Acceptable?

M&TE Description	ID No.	Calibration Due Date
N/A	N/A	N/A
N/A	N/A	N/A

Defermed By	Matthew Graves, Contraction	8/20/09	1:46 pm
Performed By	Print/Sign	Date	Time
	\sim		
Reviewed By	RLinhtford	8/25/091	1202
Reviewed by	Print/Sigh	Date	Time

į

3380524 Certificate Page 1 of 4

Instrument Identification

PO Number: 1853

Company ID: 88636 LOUISIANA ENERGY SERVICES, L.P. QUALITY ASSURANCE LES 275 ANDREWS HWY 176 EUNICE, NM 88231

Instrument ID: M87-2 Manufacturer: FLUKE Description: TRUE RMS MULTIMETER

Accuracy: Mfr. Specifications

Model Number: 87 V Serial Number: 94910331

Certificate Information

Reason For Service: CALIBRATION Type of Cal: ACCREDITED 17025 WITH UNCERTAINTIES As Found Condition: IN TOLERANCE As Left Condition: LEFT AS FOUND Procedure: FLUKE, 80 SERIES V MANUFACTURERS MANUAL Technician: STEVE GALLA Cal Date 22Jul2009 Cal Due Date: 22Jul2010 Interval: 12 MONTHS Temperature: 21.0 C Humidity: 32.0 %

Remarks:

The instrument on this certification has been calibrated against standards traceable to the National Institute of Standards and Technology (NIST) or other recognized national metrology institutes, derived from ratio type measurements, or compared to nationally or internationally recognized consensus standards.

A test uncertainty ratio (T.U.R.) of 4:1 [K=2, approx. 95% Confidence Level] was maintained unless otherwise stated.

Davis Calibration Laboratory is certified to ISO 9001:2000 by Eagle Registrations (certificate # 3046). Lab Operations meet the requirements of ANSI/NCSL ZS40-1-1994, ISO 10012:2003, 10CFR50 AppxB, and 10CFR21.

ISO/IEC 17025-2005 accredited calibrations are per ACLASS certificate # AC-1139 within the scope for which the lab is accredited. All results contained within this certification relate only to item(s) calibrated. Any number of factors may cause the calibration item to drift out of calibration before the instrument's calibration interval has expired.

This certificate shall not be reproduced except in full, without written consent of Davis Calibration Laboratory.

Approved By: STEVE GALLA Service Representative

Calibration Standards

 NIST Traceable#
 Inst. ID#
 Description
 Model
 Cal Date
 Date Due

 2927994
 04-0453
 CALIBRATOR
 5520A W/SC1100
 14Jan2009
 14Jan2010

CAT-CH-ABPM-201S Page 35 of 85

Davis Calibration • 1421 Champion Drive, Suite 304 • Carrollton, TX 75006 • Phone: 800-698-2033 • Fax: 972-234-1079

3380524

Certificate Page 2 of 4

Range	Nominal	As Found	ł	As Left		Min	Max
		ACI	/OLTS	<u></u>			
mV / 60 Hz	330.0	329.6	1/1	329.6	VI	327.3	332.7
mV / 13 kHz	600.0	606.0	1	606.0	1	586.0	614.0
V / 60 Hz	3.300	3.297	1	3.297	1	3.275	3.325
V / 20 kHz	3.300	3.290	11	3,290	V	3.214	3.386
V / 60 Hz	33.00	32.97	1	32.97	1	32.75	33.25
V / 20 kHz	33.00	32.93	1/1	32.93	1	32.14	33.86
V / 60 Hz	330.0	329.8	$\overline{\mathbf{V}}$	329.8	1	327.5	332.5
V / 2.5 kHz	330.0	330.2	$\overline{\mathbf{V}}$	330.2	1	323.0	337.0
V / 60 Hz	500.0	499.8	\checkmark	499.8	1	494.0	506.0
V / 1 kHz	1000	1002	\checkmark	1002	\checkmark	986	1014
·		AC VOLTS	FREQUE	ENCY			
150 mV @ 99.95 kHz	99.95	99.95	1	99.95	1	99.93	99.97
150 mV @ 199.50 kHz	199.50	199.50	17	199.50	1	199.48	199.52
		FREQUENCY	SENSIT	IVITY			
™ V @ 99.95 kHz	99.95	99.96	1/1	99.96	1/1	99.93	99.97
@ 99.95 kHz	99.95	99.95	1	99.95	1	99.93	99.97
		DCV Hz TRIC	GGER L	EVEL			
3.4 V,1 kHz SQ Wave	1000.0	1000.0	$\overline{\mathbf{V}}$	1000.0	1	999.8	1000.2
		DCV Hz DL	JTY CY	CLE			
V,1 kHz DC offset 2.5V SQ.W	50.0	49.9	1	49.9	1	49.7	50.3
•••		DC V	OLTS		·		_
/	3.300	3.300	11	3.300	1/1	3.297	3.303
1	33.00	33.00	1	33.00	1/1	32.97	33.03
1	330.0	330.0	V	330.0	1	329.7	330.3
/	1000	1000	V	1000	1	998	1002
	• •	mV					
٩V	33.0	33.0	1	33.0	1	32.9	33.1
۱V	330.0	330.0	$\overline{\mathbf{v}}$	330.0	1	329.6	330.4
		RESISTAN	ICE TES	•			
hms	330.0	330.1	$\overline{\mathbf{V}}$	330.1		329.1	330.9
Ohms	3.300	3.300	1	3.300	V	3.292	3.308
(5	33.00	33.00	$\overline{\mathbf{V}}$	33.00	V	32.92	33.08
Orims	330.0	330.1	17	330.1	1/1	327.9	332.1

CAT-CH-ABPM-201S

Davis Calibration • 1421 Champion Drive, Suite 304 • Carrollton, TX 75006 • Phone: 800-698-203.

Page 36 of 85

. . .

3380524

Certificate Page 3 of 4

4 7

Range	Nominal	As Found		As Left		Min	Max
		RESISTA	NCE TE	ST			
MOhms	3.300	3.301	\checkmark	3.301	1	3.279	3.321
MOhms	30.00	30.01	$\overline{\mathbf{V}}$	30.01	\checkmark	29.67	30.33
	· · · · · ·	nS COND	UCTAN	ĊĖ	<i>,</i>		
Open Input	0.00	0.01	1	0.01	VI	-0.30	0.30
100 MOhms	10.00	10.01	1	10.01	\checkmark	9.60	10.40
• ·		ĎĮ	ODE				
3 V DC	3.000	3.000	1/1	3.000	TVT	2.939	3.061
		AC .	AMPS		•d	······································	
A / 60 Hz	3.000	3.000	\mathbf{V}	3.000	1	2.968	3.032
		DC /	AMPS			· · · · · · · · · · · · · · · · · · ·	
4	3.000	3.001	1/1	3.001		2.990	3.010
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		AC MIL	LIAMP	3			••••••••••••••••••••••••••••••••••••••
`} / 60 Hz	33.00	32.99	1/1	32.99	1/1	32.65	33.35
60 Hz	330.0	330.0	1/1	330.0	1	326.5	333.5
		DC MIL	LIAMPS	;			
nA	33.00	33.00	1/1	33.00	1	32.89	33.11
nA	330.0	330.0	1	330.0	1	329.1	330.9
		AC MIC	ROAMP	S			
A / 60 Hz	330.0	329.9	1/	329.9	1	326.5	333.5
A / 60 Hz	3300	3300	1	3300	1/1	3265	3335
na Pitan na Angelana (Pitan na Pitan na		DC MICI	ROAMP	5			
A	330.0	330.0	17	330.0	1	328.9	331.1
A	3300	3300	17	3300	1	3291	3309
		CAPAC	ITANCE			· · · · · · · · · · · · · · · · · · ·	
pen input	0.26	0.26	1/1	0.26	1/1	0.21	0.31
nF	5.00	4.97	171	4.97	1/	4.70	5.30
5 uF	9.50	9.52	1/1	9.52	1/1	9.20	9.80
		ACV LOW P	ASS FIL		5,		
oplied 400 V / 400 Hz	400.0	390.7	V	390.7	1/1	376.0	408.0
1 400 V / 800 Hz	283.0	282.1		282.1		226.0	340.0

Davis Calibration • 1421 Champion Drive, Suite 304 • Carrollton, TX 75006 • Phone: 800-698-2033 • Fax: 972-234-1079

.

3380524

Certificate Page 4 of 4

🔪 🖌 In Tolerance	Cut of Tolerance	Calit	oration I	Data			
Range	Nominal	As Found		As Left		Min	Max
		TEMPER	ÁTURE in	°C			
0°C	0.0	-0.7	1	-0.7	1	-1.0	1.0
100 ° C	100.0	98.8	~	98.8	~	98.0	102.0
•		BACKL	IGHT TES	rs .			
Backlight on	Check	Pass	1	Pass	1	Pass/Fall	Pass/Fail
Intensifies	Check	Pass	\checkmark	Pass	1	Pass/Fail	Pass/Fail
Backlight off	Check	Pass	\checkmark	Pass		Pass/Fail	Pass/Fail

End of Datasheet

 \bigcirc

۰°.

CAT-CH-ABPM-201S Page 38 of 85

Davis Calibration • 1421 Champion Drive, Suite 304 • Carrollton, TX 75006 • Phone: 800-698-2033 • Fax: 972-234-1079

Davis Calibration Laboratory

· ·

Measurement Unce	artainty Report
Certificate #	3380524
Date	7/22/2009
Description	True RMS Multimeter
Mfr.	Fluke
Model	87V
Standards	04-0453

[k=2, approx. 95% Confidence Level]

•

Function	Range	Nominal	Uncertainty
AC Volts	mV / 60 Hz	330.00	5.77E-02
AC Volts	mV / 13kHz	600.00	5.77E-02
AC Volts	V / 60 Hz	3.300	7.51E-05
AC Volts	V / 20 kHz	3.300	5.92E-04
AC Volts	V / 60 Hz	33.00	8.78E-03
AC Volts	V / 20 kHz	33.00	5.93E-03
AC Volts	V / 60 Hz	330.0	5.91E-02
AC Volts	V / 2.5 kHz	330.0	5.89E-03
AC Volts	V / 60 Hz	500.0	5.91E-02
AC Volts	V / 1k Hz	1000	1.20E-02
AC Volts Frequency	150 mV @ 99.95 kHz	99.95	8.23E-03
AC Volts Frequency	150 mV @ 199.95 kHz	199.50	8.23E-03
Sequency Sensitivity	0.7 v @ 99.95 kHz	99.95	8.23E-03
requency Sensitivity	7 v @ 99.95 kHz	99.95	8.23E-03
DCV Hz Trigger Leval	3.4V, 1kHz SQ Wave	1000.0	5.79E-02
DCV Hz Duty Cycle	5v, 1kHz DC Offset 2.5V SQ wave	50.0	5.79E-02
DC Volt	Volt	3.300	5.77E-04
DC Volt	Volt	33.00	1.20E-03
DC Voit	Volt	330.0	5.78E-02
DC Volt	Volt	1000	1.07E-03
mV Dc	mV	33.0	5.77E-02
mV Dc	mV	330.0	5.77E-02
Resistance	Ohms	330.0	5.78E-02
Resistance	kOhms	3.300	9.68E-02
Resistance	kOhms	33.00	2.30E-01
Resistance	kOhms	330.0	2.90E+00
Resistance	Mohms	3.300	8.88E-02
Resistance	Mohms	30.00	5.77E-02
nS Conductance	Open Input	0.00	N/A
nS Conductance	100 Mohms	10.00	5.82E-03
Diode	3VDc	3.000	5.77E-04
AC Amps	A / 60Hz	3.000	5.77E-02
DC Amps	A	3.000	5.77E-02
AC Milliamps	mA / 60Hz	33.00	5.77E-02
AC Milliamps	mA / 60Hz	330.0	5.77E-02
DC Milliamps	mA	33.00	5.77E-02
DC Milliamps	mA	330.0	5.77E-02
Microamps	µA / 60Hz	330.0	5.77E-02

AC Microamps	μΑ / 60Hz	3300	5.77E-02
DC Microamps	Αų	330.0	5.77E-02
DC Microamps	μΑ	3300	5.77E-02
Capacitance	Open Input	0.00	N/A
Capacitance	5.00	5.00	2.70E-02
Capacitance	9.50	9.500	3.50E-01
ACV Low Pass Filter	Applied 400V / 400Hz	400	N/A
ACV Low Pass Filter	Applied 400V / 800Hz	283	N/A
Temperature in °C	0.0	0.0	2.99E-01
Temperature in °C	100.0	100.0	2.99E-01

Davis Calibration utilizes the Root Sum Squared method of estimating measurement uncertainty as described in Appendix A of NIST technical note 1297, 1994 edition, and ANSI/NCSL Z540-2-1997

"American National Standard for Expressing Uncertainty – U.S. Guide to the Expression of Uncertainty in Measurement".

A coverage factor (k) of 2 is applied to all calculations to insure a Confidence Level of approx. 95%.

,

LES 1947:2009-229 7 7

٠

Designer and Mar of Scientific and In Instrument	dustrial	E OF CALIBRATION		
CUSTOMER LOUISIANA E	NERGY SERVICES LP	-	ORDER NO	D20140302/341995
	ements, inc Model			47506
	ements, Inc. Model	43-93	Serial No. PR	268991
	p-09 Cal Due Date			
	blicable instr. and/or detector IA			
	ment Received Within Toler			
Mechanical ck.		Background Subtra		put Sens. Linearity
Audio ck.	Reset ck.	₩indow Operation Batt. ck. (Min. Volt)		eotropism ·
	e with LMI SOP 14.8 rev 12/05/89.	_		rev 02/07/07
			Three	hold
	V Input Sens. <u>Comment</u> mV			
🗹 HV Readout (2 points)	Ref./Inst500	_//98 V Ref	./inst1500	_1_1501v
COMMENTS: Alpha threshold = 120r Beta threshold = 3.5mv Beta window = 30mv Overload set to simula High voltage set with Firmware: 390063	7			
Gamma Calibration: GM detectors positioned p RANGE/MULTIPL	arpendicular to source except for M 44-9 in which REFERENCE .IER CAL. POINT	the front of probe faces source. INSTRUMENT ''AS FOUND		RUMENT ER READING*

Digital		309612	399612	Log		
	REFERENCE CAL. POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*	REFERENCE CAL. POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*
	*Uncertainty within ± 10%	C.F. within ± 20%		· · ·	<u>ALL</u> Range(s) Cal	librated Electronically
	·····					-
					- .	
	<u></u>	<u>100c</u>	<u>m</u>	10Q		10
	<u></u>	<u>400c</u>		400	Ϋ́	-
	<u></u>		om_	100	- 10	
		4kc	om	400		20
	x100	10kc	om	100		
	x100	<u>40kc</u>	<u>pm</u>	400	<u> </u>	ee
the second	x1000	100kc	omm	100		10
C	x1000	400kc	pmm	400		$\omega = (G$
	RANGE/MULTIPLI	ier Ca	L. POINT	AS FOUND REAL	NNG" METER RE	zading*

Readout	400KCDM			Scale			
	40kcpm	39958	39958				
	4kcpm	3996	3996	_	-		
	400cpm		399	-	~		~
	40cpm		40			······································	
other Internati	ional Standards Orga	pnization members, or have		alues of natura		r have been derived by the	ogy, or to the calibration facilities of ratio type of calibration lechniques. Is Calibration License No. LO-1963
		and/or Sources: 2 G112 M565	□ S-394/1122 □ 113 □ 5105 □ 11008 □ 187	31 781 9 E552		- 60646 - 734 - 1616	Neutron Am-241 Be S/N T-304
Aipi	ha S/N <u>Pu239</u>	7 SN:2928 25081 dpm	Beta S/N Jo	<u>299. SN: 5280</u>	9 <u>3200</u> dpm	🗸 Other 🛛 Sr	Y90 \$N:4016_55367dpm
/ m 5	600 S/N	190566	Oscilloscope S/N	1		🗸 Multimeter S/N	86250390
(Culibrate	ed By:	Awar	Flor		Date	5-SePT-0	9

Culibrated By:

Aaron Flan Rhords Hains _ Reviewed By:

This certificate shall not be reproduced except in full, without the written approval of Lucium Measurements, Inc. FORM C22A 10/15/2008

Date 9 Jup 09. AC Inst. 1 Passed Dielectric (Hi-Pot) and Continuity Test Only Failed:

CAT-CH-ABPM-201S

Page 41 of 85

Bench Test Data For Detector

Detector 43-93 Serial No 265991	Order #	20140302/341995
Customer LOUISIANA ENERGY SERVICES LP	Alpha Input Sensitivity _	120 mv
Counter2224 Serial No. 247506	Beta Input Sensitivity	
Count Time 1Minute	Beta Window	<u>30</u> mv
Other	Distance Source to Detector	urface

	High	Back	ground	lsotope Size	Pu 23 9 25081dpm	lsotope Size	<u>IC 99</u> 932004pm	Size	SI / 90 55367dpm
	Voltage	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta
	700	0	97	4414	323	34	10192		8476
	725		132	4998	371	_ 2.L	14513	2 _	11518
-	750	<i>0</i>	230	5324	1 439	27	17823	Ч	13142
JiF.	50 0775	0	282	3559	525	36	21192	2	14970
					• • • +		L +		<u> </u>
(
×									-63
-		i			+				
-				<u> </u>	Ļ		E		- 50
		!	·	÷			: :		
-				<u>į </u>			J	-	····
-					4 -				↓ !
-				⊨ •. ↓	i			• • • • • • • • • • • • • • • • • • •	

 \Box Gas Proportional detector count rate decreased \leq 10% after 15 hour static test using 39" cable.

.

Gas proportional detector count rate decreased < 10% after 5 hour static test using 39" cable and alpha/beta counter

signature Jara Flor

Date 8-5ept-09

FORM C48 04/09/2003

.

Serving The Nuclear Industry Since 1962

CAT-CH-ABPM-201S Page 42 of 85

Calibration Accuracy Check List

Serial Number	N36U_2	_
Model number	Dwyer 641-6	
Date	2/3/2010	

1001-662-1MQ2

M&TE	Shortridge in	struments a	irdata
Model #	ADM-870C	Serial #	MO4395
Cal Due Date	4/8/20	10	

M&TE	Flow	Units **	4-20mA	Acceptable Range (Flow)	Acceptable Result
0	5	m3hr	4	0 - 30	yes
230	210	m3hr	7.6	200 - 260	yes
400	385	m3hr	10.6	370 - 430	yes
650	660	m3hr	14.1	620 - 680	yes
835	845	m3hr	17.4	805 - 865	yes

Test Performed By: John Berstler LES Engineering and Gene Franke Black Watch Systems

** GEVS Programming was changed to metric output for flow

 \bigcirc

	SCFM	Current (mA)	% Input		"StkFlow" a	lgorithm pa	arameters:	
5	2.945	4	0.00%			%		SCFM
210	123.69	7.6	22.50%		X1	0	Y1	3
385	226.765	10.6	41.25%	N	X2	23	Y2	124
660	388.74	14.1	63.13%	\square	X3	41	Y3	227
845	497.705	17.4	83.75%	L/	X4	63	Y4	389
				V	X5	75	Y5	446
					X6	84	Y6	498
					X7	100	¥7	594
					Suggested	"Target" al	gorithm para	meters:
						%		l/min
					X1	0	Y1	40
		Flow rate	Est. % input		X2	23	Y2	40
		200	34%	N	Х3	34	Y3	40
		300	51%		X4	51	Y4	50
								~ ~
		400	67%		X5	67	Y5	60
				·V	X6	75	Y6	60
	-	sumes the maximu	m flow rate is	. <u></u> V		~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	-		m flow rate is	V	X6	75	Y6	60
00 SCFM, eve	-	sumes the maximu	m flow rate is		X6	75	Y6	60
600 <u>600</u>	-	sumes the maximu	m flow rate is	V 	X6	75	Y6	60
600 500	-	sumes the maximu	m flow rate is		X6	75	Y6	60
600 500 -	-	sumes the maximu	m flow rate is		X6	75	Y6	60
600 500 -	-	sumes the maximu	m flow rate is	•	X6	75	Y6	60
600 500 500 500	-	sumes the maximu	m flow rate is	•	X6	75	Y6	60
600 500 - 400 - 200 -	-	sumes the maximu	m flow rate is) SCFM	•	X6	75	Y6	60
600 500 - 400 - 200 - 100 -	-	sumes the maximu	m flow rate is) SCFM	•	X6	75	Y6	60
600 500 - 400 - 200 -	-	sumes the maximu	m flow rate is) SCFM	50% 60%	X6	75	Y6	60

1001-662-1MQ2 tested on 2/3/10

.

.

 \bigcirc

Factory Acceptance Test Report for LES ABPM201S

Appendix B: Test Logs for ABPM201S S/N 090501-02

This appendix contains the completed test logs from the post production and factory acceptance tests. The following is included:

- 1. Completed FAT log, from test procedure 12-00124.
- 2. Completed post production test log, from procedure 12-00098.
- 3. Manufacturer data sheets for the electronics package and detector
- 4. Spectra collected during monitor testing

All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

(:

LES ABPM201S

Factory Acceptance Test Log

Test Procedure:	12-00124	Revision:	1
Post-Production Test Procedure:	12-00098	- Revision:	2
Date Test Started:	5+27/09 9:00		
Date Test Ended:	5/28/09 12:00		
Performed By:	S. Starte Print Name	Stighature	5/28/09 Date
Witnessed By:	Helly Huber	Signature	<u>S-28-09</u> Date
Reviewed By:	DAVID JACON Print Name	Signature	5-29-2009 Date
Approved By:	Mike EDELMAN Print Name	Dr. Lew alerna Signature	<u> </u>
S/N 090	501-07		

All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

CAT-CH-ABPM-201S Page 46 of 85

NGP OC

02

1. Introduction

Not applicable

2. Related Documentation

Not applicable

3. Glossary of terms

Not applicable

4. Notes

Not applicable

5. Devices to be Tested

Not applicable

6. Test Tools & Conditions

6.1 Prerequisites

Test Results: Satisfactory Unsatisfactory (de	
Performed by: S. Stark	Date: 5/27/04
Notes/Comments:	
ABPM201S Test Data Sheet reference number:	14-00095-090501-02

MGT

All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

INTELLIGIT	LES ABPM201S Factory Acceptance Test Log	Page 3
6.2 Required To	ools	
Tool Doguito	- tisfactory 🔲 Unsațisfactory (describe) 🔲 Conditionally s	satisfactory (describe)
Test Results. 10 Sal		•
Performed by:	<u>Starh</u> Date: <u>5</u>	•

MASS Version:	1.7.0
SAMS Version:	H

Tool	Model No.	Serial No.	Calibration Due Date
Digital thermometer (0.1 °C resolution)	Omega HH314	070 800353	4/22/10
Hygrometer (1% RH resolution)	Omega WH 314	070 800 353	4/22/10
Digital multimeter (0.1 mA resolution)	Fluke 87	91580342	11/17/09
Dose rate meter (0.1mR/hr resolution)	Ramton	20292-10	11/24/10
Mass flow meter (0.5 l/min resolution)	Omega FMA1843	205587-2	5/12/10
Pressure gauge (0.2psi resolution)	N/A	AJU	N/A.

6.3 Test Conditions

Test Results: Satisfactory	Unsatisfactory (describe)	Conditionally satisfactory (describe)
Performed by: S. Shark	<u> </u>	Date: 5/27/07 - 5/28/08
Notes/Comments:	<u> </u>	

	5/27/09	5/28/09
Temperature	740F	74°F
Humidity	58%	55%
Gamma Background	20.1 mR/hr	co.ImR/hr
Line voltage	11673V	118.7 V
Line Frequency	S9,98 Hz	59.98 Hz

 $\widehat{}$

All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

-

 $(\bigcap$

02

7. Inspection & Test Setup

7.1 Visual Inspection

Test Results: Satisfactory Unsatisfactory (describe) Performed by: <u>S. Stork</u>	Conditionally satisfactory (describe)
Performed by: S. Stork	Date: 5/27/09
Notes/Comments:	,

Serialized electronics:

Monitor	Device	Part Number	Serial Number	
	Assembly (skid)	02-00384	090501-02	
	LPDU/PIPS	131839	090501	
PIPS Detector 45445		45445	081998	
ABPM201S	Particulate flow meter	120114	091772	
	PIS flow meter	120112	08069)	
	Filter cassette	43775	081193	
	Flow control valve	700 055	29236	
System	RDU	134142	080642	

7.2 Test Setup

Test Results: Satisfactory Unsatisfa	ctory (describe) 🔲 Conditionally satisfactory (describe)
Performed by: S. Stark	Date: 5/27/09
Notes/Comments:	
Step. 7.2.4: all switches (ECNGSI opened)	shall be down (typo on proceduare)

All information in this document is the exclusive property of MGP Instruments, inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, inc.

8. Software Configuration

8.1 Objective

Not applicable

8.2 LPDU/SAS/PIPS (ABPM201S)

Test Results:	Satisfactory	Unsatisfactory (describe)	Conditionally satisfactory (describe) Date: $\frac{5/22}{09}$
Performed by:	S Stork	XI	Date: $5/27/09$
Notes/Comme			

Configuration changes:

	Number	Expected		As Found	
		Index	Version	Index	Version
Base software	735	E or later	1	E	
Application software	774	R or later	2	R	2
Parameters set	827			C	103

8.3 RDU

Test Results: D Satisfactory	Unsatisfactory (describe)	Conditionally satisfactory (describe)
Performed by: Stark		□ Conditionally satisfactory (describe) Date: <u></u>
Notes/Comments:		

ĤH

All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

Configuration changes:

	Number	Ex	pected	Asl	Found
	Number	Index	Version	Index	Version
Base software	1030	B or later	1	ß	1
Application software	1079	A or later	1	A	١
Parameters set	603		annann, 44 sannas ann ^{114 All} hAndrikka s ^a il — Se _{alta} — — -	Ø	1

9. Isokinetic Flow Control Test

 Test Results:
 Batisfactory
 Unsatisfactory (describe)
 Conditionally satisfactory (describe)

 Performed by:
 Stark
 Date:
 5/27/01

 Notes/Comments:
 Date:
 5/27/01

 \bigcirc

Values of "minimum correction" and " mitral correction reduced to 33% Acceptance conteria is \$ 25% of expected flow rate.

Test	Stack flow rate (m3/hr)	Expected sample flow rate (I/min)	Measured sample flow rate (I/min)
1	0 (current generator off)	40	40.3
2	2500	40	40,3
3	5000	40	40.5
4	7500	50	50.9
5	10000	60	61.6

All information in this document is the exclusive property of MGP Instruments, Inc. and Is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

INSTRUMENTS	LES ABPM201S Factory Acceptance Test Log	Page 7	Ð
10. RDU Test			
10.1. Initial Condition	าร		
Test Results: Satisfactor Performed by: <u>5, Strack</u>	ry 🗌 Unsatisfactory (describe) 🗌 Conditionally s Date: <u>5/2</u>		
Notes/Comments:	0		

10.2. Relay & Alarm Test

Test Results	E Satisfactory	🖌 🗔 Unsatisfact	ory (de	scribe)				
Performed by	y:				D	ate: <u> </u>	127/2009	
Notes/Comm	ients:					·		
#Error m	procedure:	m By gass,	14/64	relay	does	not	remain	latched
	- to :===						(See Eco 681

Relay	Expected Status	Observed Status
Operate	On	on
Test	Off	ost
Alert	Off	off
High	Off	off
ligh/High	Off	off

Relay test results:

Scenario	Monitor Status (display or MASS2)		Re (read	Buzzer Status			
	(display of WASS2)	OP	TST	AL	н	H/H	Status
Alert alarm	Alert	on	est	on	off	off	slow
High alarm	High	on	off-	on	on	off	medrum
H/H alarm	H/H	on	off	m	ün	on	Past
Fault	Fault (mend)	044-	off-	off.	off	on	continuous
RDU in bypass		off	off	-off-	aff	-ort	
		on	on	off	off	el?f	¥

1

;

All information in this document is the exclusive property of MGP Instruments. Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

.

11. Creatio	n of Parameter Sets		
Test Results: [] Sat	sfactory 🔲 Unsatisfactory (describe) 🔲 Conditionally s	satisfactory (descri	be)
Performed by: <u>\$</u> .			
Notes/Comments:			

Parameter file information:

		Parameter Set					
Device	Name	Number	Index	Version	Filename		
LPDU/SAS	ABPM201S	. 827	A	102	KMSSAS PTPS_102.A		
LDU (RI-1) ROU	LOU ROU	603	A	2	Rms DU- 2A		

12. Review and Restoration

Test Results: Satisfactory Unsatisfactory (describe)	
Performed by: S. Stark	Date: 5/28/09
Notes/Comments:	

HH

All information in this document is the exclusive property of MGP instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP instruments, Inc.

CAT-CH-ABPM-201S Page 53 of 85

OZ

Additional/supplemental test results

All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

14-00098-090501-02

14-00098 Rev1 Data Sheet.doc

Revision 1

Note: for electronic archival, save the completed datasheet with the filename "14-00098-######" where ###### is the serial number of the monitor

Post Production Test Data Sheet

System: ABPM201S Alpha Beta Particulate Monitor
Part Number Including option codes: 02.00384
Serial Number: 090501-02
(Note: append serial number to the document number of the data sheet)
Test Date(s): 5/15/09, 5/18/09, 5/14/09
Tested By: S. Stark ON YONATAN TADESSE MUSI Teacher
Witnessed by:
MGP References: <u>So # 89860</u>
Client References: Po # 302.151

Suite 150 5000 Highlands Parkway Smyrna, GA 30082

Rev.	Date	Prepared By	Reviewed By	Origin and Description of the Changes
0	02/21/2008	Silas Stark		Original issue based on MGP SA document 123210
1	07/15/2008	Silas Stark		Refer to ECN 641
	• ;			

All of the information in this document is the exclusive property of MGP instruments, inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP instruments, inc.

14-00098 Rev. 1

Post Production Test Data Sheet: ABPM201S Alpha Beta Particulate Monitor Page 2 of 5

Y. Tady sse Notes/Comments: N 190501-02 51

S. Starle

Date: 5/15/09

§3.2 Calibrated Instruments

Tested by:

Item	Model No.	Serial No.	Cal. I	Due	Comments
Digital Multimeter	Flume 87	91580342	4/17/	2009	
Temperature Sensor	OMAGE HU 314	070 800 253	4/22/	10	
Pressure/vacuum gauge	Ashcroft	Q-4832	4/20/1	0	
Mass flow meter	Omera FMA-1843	205587-2	5/12/1	Ø	
Hi-Pot tester	Biddie	18741	4/17/10		
Mega-ohmmeter	Messer 210200	950400-1471-0485	4/17/10	>	

§3.3. Radioactive Sources

Source	Serial No.	Activity (A ₀)	Date	Comments
Beta isotope:				
Alpha isotope: Am-241	FS-246	2311 89	11/1/2008	MGP Source
Other: Am-241	F8-940	3295 Bg	4/112009	LES Source
Other: N/A	NA	NIA	NA	NA

§4 Test Conditions

Description	Unit	Peg Value	Measure	d Value	Commonto	
Description	Om	Unit Req. Value MGP C		Other	Comments	
Temperature	°F	60 - 90	70°F			
Humidity	%	<99	56%			
Pressure	1	Ambient	Amstent			
Line power	VAC	108 - 132	1/8 VAC			
Frequency	Hz	57 - 63	60,00			

§5 Visual Inspection

Description	Reg. Value	Measure	d Value	Reference		
Description	Rey. value	MGP	Other	(Document & Revision)		
Component layout, routing, overall condition	Correct	Correct		10-0297 Rey. 0 .		
Frame mounting hole dimensions	Describe: F/B 19.71 Sides 18.71	F/B A:75 Sides 18:77-		10-0297 Rev 0 .		
Other Interface dimensions (describe):	Describe: Height ST.S"	~ 51.8		10-0292 Rev O		
Labels, nameplates, placards, etc.	Correct	Correct		6-00336 - Rey 2		
Point-to-point wiring	Correct	Cornect		6-00385- Rev 3		
Wire sizing, markers, fuses, etc.	Correct	Correct		6-00385 Ret 3		
Other (describe):	Describe:					

Serialized equipment

Description	Part No.	Serial No.	Condition	Comments
LP(D)U/SAS/PIPS	131839A	090501	a-Sat. ⊡Unsat.	Kit 5/2 090501
PIPS Detector	4544S A	081998	⊠-Sat. ⊡Unsat.	
Particulate flow meter	120114K	091772	∎-Sat. ⊡Unsat.	
PIS flow meter	120112F	080691	⊠ Sat. ⊡Unsat.	
Check source	N/A		□ Sat. □Unsat.	1. Second Second

All of the information In this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized In writing by MGP Instruments, Inc.

CAT-CH-ABPM-201S Page 56 of 85

HIMGP	
14-00098 Rev.	1

Post Production Test Data Sheet: ABPM201S Alpha Beta Particulate Monitor

Page 3 of 5

Tested by: S. Stark / Y. Tadesse

Date: 5/15/2009

Notes/Comments:	SIN	09050	1-02

) Description	Unit	Der Malue	Measur	ed Value	Composite	
Description	Unit	Req. Value	MGP	Other	Comments	
§6: Dielectric & Continuity						
6.1 Dielectric test	mA	<10	<10			
6.2 Isolation test	MΩ	>100	>999			
6.3 Continuity test	Ω	<0.1	2011			
§7: Relief valve test	"Hg	20.5 - 24.5	21"Ha			
§8: Option verification	T		<u> </u>			
8.1 Grab sampler	-	Correct / N/A	Correct			
8.2 PIS	-	Correct / N/A	Correct			
8.3 Check source	-	Correct / N/A	N/A			
8.4 Sample pump	-	Correct / N/A	Correct			
Other	-		N/A			
§9: Leak Test	"Hg	<0.6	20.25		·	
§10: Test configuration	- 1	Correct	Correct			
Relay adjustment	A	(from motor)	6.6			
§11: Flow meter test*						
11.1 Particulate flow:						
Measure 1	l/min	0 to 2	0			
Measure 2	l/min	17 to 23	19.9			
Measure 3	l/min	27 to 33	29.4			
Measure 4	l/min	42 to 48	45.			
11.2 PIS Flow:						
Measure 1	l/min	0 to 2	0			
Measure 2	l/min	· 17 to 23	20.3			
Measure 3	l/min	27 to 33	31.3			
Measure 4	I/min	42 to 48	46.3			
§12: Detector fault test	-	Correct	Correct			
§13: Monitor test						
13.1 Automation test	-					
13.1.1 Normal Operation	-	Correct	Correct			
13.1.2 Electrical Test	-	Correct	correct			
13.1.3 ΔPmin Test	~	Correct	Correct		d= Z3/16"	
13.1.4 ΔPmax Test	-	Correct	Correct			
13.1.5 Minimum flow test	-	Correct	Correct			
13.1.6 Flow fault test	-	Correct	Correct			
13.2 Analog output test		Correct	Correct			
13.3 Relay & light test	-	Correct	Correct			
13.4 Serial link test		Correct	Conect			

*Note: fill in this section after the flowmeter has been calibrated, if necessary

All of the information In this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

.

14-0009 Pov

Post Production Test Data Sheet: ABPM201S Alpha Beta Particulate Monitor

•		-					
	 	P	aç	je	4	0	F
						_	_

Tested by: S, S	ark		D	ate: <u>\$/18/</u> 0	09 -5/19/09
Notes/Comments: SIN 09	0501-0	2; & datar	n "other"	column	is for LES source
Description	Unit	Req. Value	Measu MGP	red Value Other神	Comments
§14: Calibration					
14.1 Nuclear check					
Measured temperature	°C	-	21.1		
Indicated temperature	°C	T _{meas} ± 2	2115		
Temperature offset	°C		NIA		As found: 4"C
Alpha-beta-gamma gain	-	0.7 - 1.3	0,91	Ţ	Am-241: ch,42
Gamma gain	- 1	0.7 - 1.3	0,928	1	
Channel/keV slope	-	-	9.26234	1	
Channel/keV offset	-		0.716331	1	
Channel/keV quadratic	-		0.0013319		
Background:	1	<u> </u>	T		
AlphaCPS	cps	< 0.005	0.0002		
Po218CPS	cps	-	0.0001	-	
Po214CPS	cps		2.0006	1	
Po212CPS	cps	-	0,0002	1	
BetaCPS	cps	<0.5 <0.2	0.123		With check source Without check source
GammaCPS	cps	<0.5 <0.2	0,133		With check source Without check source
Alpha source counting					
AlphaCPS	cps	-	85,6	121.2	
Po218CPS	cps	-	0.008	0.007	
Po214CPS	cps	-	0.017	0.030	
Po212CPS	cps	-	0.007	0,027	<u> </u>
BetaCPS	cps	-	0119	01242	
GammaCPS	cps	-	0.1	0133	
Beta source counting					
AlphaCPS	cps				
Po218CPS	cps				
Po214CPS	cps		NA		
Po212CPS	cps	~			
BetaCPS	cps				
GammaCPS	cps				
Alpha efficiency	cps/a/s	0.0333 - 0.0407	0.0370	0.0368	
Beta Efficiency	cps / β/s	0.05 - 0.08	NA		
14.2 Check source test			个		
AlphaCPS	cps				
Po218CPS	cps	(*			
Po214CPS	cps	-	NJA		
Po212CPS	cps				
BetaCPS	cps	>3			
GammaCPS	cps	>0.5	J.		· .
15: Final check	-	Correct	Correct		

All of the Information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

•

.

MGP	
14-00098 Rev.	1

Tested by: S. Stark N

Date: 5/15/09

Page 5 of 5

Notes/Comments:	S	N	04	1020	-	02	
للالا المستويد المتعاد المستاك والفاك والمتال	- Constant of the local division of the loca						-

Flow meter calibration data (if applicable)

Flow Meter	Measurement	Indicated Flow (before correction)	Measured Flow (calibrated meter)	Relative analog Input (%)
	1		Y1 = 0	X1 = 20
	2		$Y_2 = 15(18)$	X2 = 45
Particulate	3	NA	Y3 = 25 (31)	X3 = 56
(Flowmeter +	4	(meter not ,	Y4 = 26 (32.5)	X4 = 61
DP switches)	5	previously calibrated	Y5 = 35 (43.8)	X5 = 65
	6		Y6 = 42 (53)	X6 = 69
	7		Y7* = 95 (120)	X7 = 100%
	1		Y1 = 0	X1= 0
	2		$Y_2 = 15 (1b)$	X2 = 41
PIS	3	N/A	Y3 = 19(24)	X3 = \$7
(if applicable)	4	(Not previously	Y4 = 30 (37.5)	X4 = 74
(in applicable)	5	Calibrated)	Y5 = 35 (43.8)	X5 = 80
	6		Y6 = 45 (56.3)	X6 = 90
	7		Y7* = 60 (75)	X7 = 100%

*Note: the final measurement is the extrapolated flow rate at 100% relative analog input

Correction Factor:

	Actual Flow	Indicated Flow	Ratio
\bigcirc	ZS 35	21.4	•
	35	27.2	1.29 Aur. = 1.26
	75	34,3	1.17 1.29 1.31 Aug. = 1.26

Ail of the information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized In writing by MGP Instruments, Inc.

 \bigcirc

۰,

FICHE DE MESURES / DATA SHEET

(1) Nº IDENTIF						_		_
(1) Identification		143867	AØ	90501]
		Nomenclature	Indice	Ordre	Invarian	t	Option	
1		Customer's reference : P Instruments Reference :	27136	5	DATE D	ES MESURES		page:1 xords: <i>20</i> /03/
OBSERVATIONS	3 / Commenta	:				NOM :	PADO	JANI/Hich
(1) à mentionner d	iens loute cor	respondance / Refer to in all corre	espondance		· · · · · · · · · · · · · · · · · · ·		mpon	Auchi
MESURES A EFF Measurement to b	ECTUER SU e made accor	IVANT PROGRAMME N° : tling to procedure n° 137718 //	UNITES Units	VALEUR A OI Value to be of		VALEUR ME Recorded va		OBSERVATION Comments
			T	[MGP	RECETTE	
TEST EQUIPME	ENT IDENT	FICATION						
- Referen	ce mess flo	w meter (Ref and N*)	1078-3					
- Thermol	meter (Ref i	and N*)	1127-1					
- Beta sou	urce of TI-20)4 (N")	10356-A					
- Alpha so	ource of Pu-	238 (N*)	50328					
MASS 2 software	ref. 995 (ve	ersion)	1.7.0					
SAMS software re	af. 709 (vers	ilon)	H					
pplication softwa	re LPDU/S	AS/PIPS ref. 774V2 (index)	R				ļ	
Set of parameters	ref. 827 (N	" and index)	102-B					
. TEST CONDITI	ONS		.	Corre	ict	Correct	4	
VISUAL CHECH	< .			Corre	ict.	Correct		
LP(D)U (Ref a		131839/A	090501					
-		assembly (Ref and N')、杞		08035	5			
Detector PIPS		1.01.01.0	08/1998					
	•		094172					
his document inc	dudes 4 pag	jes,		<u> </u>	·····	Project n° 3018	41	
B 02/2009 D	EVN 1681	0				P.D.ROC	co	LE DEGANA
A 09/2007 O	riginale ec	lition				D. MARCH	IAL Ø	F. PERANI
		DESIGNATION DE LA MODIFICA designation of modification	TION		MF	REDACT Prepared		ERIFIE ET APPROUV

Publication, traduction et reproduction lotates ou partiellies de ce document sont rigoureusement interdites, sauf exfortsati on écrite de nor Services The publication, transistion or reproduction of any part of this document is not allowed without our written approval N° 34292 L

137717EN - B

FICHE DE MESURES / DATA SHEET

MATERIEL / Apparatus : A	BPM 201 KIT					
(1) N° IDENTIFICATION (1) Identification n°	143 867	AC	90501].
	Nomenclature	Indice	Ordre Invaria	int	Option	
REFERENCES CLIENT / (NOS REFERENCES / MG		7136	DATE DE	S MESURES /		age : 2 rds : <i>20/03</i> ,
OBSERVATIONS / Comments	· · ·			NOM : P	ADOVAN	ui / Híct
(1) à mentionner dans toute co	rrespondance / To indicate in any	corresponda	nca	Visa et/ou te	ampon	Auch
MESURES A EFFECTUER SU Measurement to be made to pro		UNITES Units	VALEUR A OBTENIR Value to be obtained	VALEUR MI Recorded ve		OBSERVATION Comments
				MGP	RECETTE	
6. SEQUENTIAL FILTER CH	ECK	-	Correct	Connect		1
7. TIGHTNESS CHECK		mbar %	< 20 < 5	12 N.A		Kit S Kit L / M
8. SETTING UP THE TEST (CONFIGURATION	-	Performed	Performation		
9. FLOW RATE CHECK						
Measure 1		l/min	0 < < 2	e		
Measure 2		l/min	27 < < 33	30,9		
Measure 3		1/min	37 < < 43	39,9		
10. PUMP MANAGEMENT C	HECK	-	Correct	Greed		
11. DETECTOR FAULT MAN	AGEMENT CHECK	-	Correct	Cornect		
12. CHANNEL CHECK						
12.1. Automatisms test						
12.1.1. Normal operation	on test	-	Correct	Gerrect		
12.1.2. Electrical test		-	Correct	CORRECT		
12,1.3. ΔP min and AV	/F mechanism test					
∆P min		-	Correct	Correct		
AVF mechanisme		നന	48 < < 56	54		
12.1.4. ΔP max test		-	Correct	Corner		

_

-

-

٠

Correct

Correct

Correct

Correct

12.2. Test of analog outputs

12.4. Test of serial links

12.1.5. Minimum flow rate test

12.3. Test of Indicator lamp and relay status

Publication, traduction at reproduction totales ou partielles de ce document sont ripoureusement interditas, sauf autorisation écrite de nos Services The publication, translation or reproduction of any part of this document is not allowed without our written approval. N° 27965 H

137717EN - B

20/03/09 HICHRI

KItS KitL/M

 \bigcirc

FICHE DE MESURES / DATA SHEET

(1) N° (DENTIFICATION (1) Identification n°	112020					7
	143 876	/#10				1
	Nomenciature	Indice	Ordre Invaria	nt	Option	
REFERENCES CLIENT /		A				age: 3 ds: 20/03/09
NOS REFERENCES / MG	Reference : 2	7136				•
OBSERVATIONS / Comments	• :			NOM : 26	HDOVAN	1 / Hichri
(1) à mentionner dans toute co	rrespondance / To Indicate in ar	iy corresponda	nce	Visa et/ou ta	ampon	Aller
MESURES A EFFECTUER SU Measurement to be made to pr		UNITES Units	VALEUR A OBTENIR Value to be obtained	VALEUR M Recorded v		OBSERVATION Comments
- <u>, , , , , , , , , , , , , , , , , , ,</u>				MGP	RECETTE	
3. NUCLEAR CHECK						1
NUCLEAR CALIBRATIC	DN					
Alpha-beta Gain		-	0,7 < G1 < 1.3	0,91		
Calibration : Offs	et	-		0,736 9,26	j	
Slope		-		3,26		
Quadratic		-		1,33e ⁻³		
Gamma Gain			0,7 < G1 < 1.3	0,928		•
Electrical test		-	Correct	General		
Temperature offs	et	•c		4		·
Background Alph	aCos	cps	< 0,005	Ö		
Background Po2	·	cps	,	0		
Background Po21	-	cps		0		
Background Po21	-	cps		0		•
Background Beta	_Cps	cps	< 0,2	0,09		
Background Gam	maCps	срз	< 0,2	0,101		
Counting of the A	l <u>pha</u> source AlphaCps	cps				
Counting of the A	pha source Po218Cps	cps		102,1		
Counting of the Al	pha source Po214Cps	cps		000		
Counting of the Al	<u>pha</u> source Po212Cps	cps		0		
Counting of the Al	<u>pha</u> source Beta_Cps	cps		0,117		
Counting of the Al	oha source GammaCps	cps		0,107		

•

.

CAT-CH-ABPM-201S Page 62 of 85 1

Į

MGP
synOdys Grnun

С

FICHE DE MESURES / DATA SHEET

MATERIEL / Apparatus : ABPM 201 KIT								
(1) N° IDENTIFICATION (1) Identification n° <u>143</u> 867	AC	19050U].			
Nomenclature	Indice	Ordre Invariant		Option				
REFERENCES CLIENT / Customer's reference :page : 4NOS REFERENCES / MG Reference : 27136 DATE DES MESURES / Date of records : $20003/09$.								
OBSERVATIONS / Comments :			NOM :	ADOVA	u' I Hichri			
(1) à mentionner dans toute correspondance / To indicale in an	y corresponda	nce	Visa et/ou t	ampon	Chiefmi			
MESURES A EFFECTUER SUIVANT PROGRAMME N° : Measurement to be made to procedure n° 137716	UNITES Units	VALEUR A OBTENIR Value to be obtained	VALEUR M Recorded v		OBSERVATION Comments			
	T		MGP	RECETTE				
Counting of the <u>Beta</u> source AlphaCps	cps		0					
Counting of the <u>Beta</u> source Po218Cps	cps		0					
Counting of the <u>Beta</u> source Po214Cps	cps		0					
Counting of the <u>Beta</u> source Po212Cps	cps		0					
Counting of the <u>Beta</u> source Beta_Cps	cps		77,73					
Counting of the <u>Beta</u> source GammaCps	cps		0,11					
Current activity of the <u>Alpha</u> source on 4 π	als		2795,2		Isotope Pu-238			
Current activity of the <u>Beta</u> source on 4π	β/s		1398,5		Isotope TI-204			
Detection efficiency for the Alpha source	cps per a/s	33,3 e ⁻³ < <40,7 e ⁻¹	36,50-		Isotope Ptr-238			
Detection efficiency for the <u>Bete</u> source	cps per β/s	50 e ⁻³ < < 80 e ⁻³	55,5eT		Isotope TI-204			
14. FINAL CHECK	-	Performed	Performed					

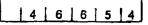
137717EN - B

1

1

i

.


.

FICHE DE MESURES / DATA SKEET

(1) N° IDENTIFICATION (1) Identification n°	45445	AD	MAPS (60000	d
	Nomenciature	indica	Ordre	Invariant		Option	
REFERENCES CLIENT / (NOS REFERENCES / MG		6704		DATE DES	MESURES	i / Date of rec	page:1 ords:08/10/08
OBSERVATIONS / Comments			J° 05.		NOM: D	ASILVA	
(1) à mentionner dans toulo con	respondance / To indicate in any			200	- Visa el/ou t	ampon 8	
MESURES A EFFECTUER SU Measurement to be made to pro	VANY PROGRAMME N": codure n° 48853/J	UNITES Unite	VALEUR A O Value to ba d		VALEUR N Recorded	ESUREE	OBSERVATION Comments
		1			MGP	RECETTE	
IDENTIFICATION DES MO - Multimètre - Oscilioscope - Thermomètre - Source Pu 238 - Source SC31 - Source T204 pour détect - Source Co80 pour détect - CONSOMMATIONS + 12 Voits - 12 Voits	eur 45445 option G00 000	HT & CO SIO 168 TO 32R TO 32R	20 < 1 12 < 1 0,7 < G1 0,7 < G2 < 50 < 50 0,5 < G 0,5 < G	<22 < 1,3 < 1,3)) < 1,5	24,8 1,4 0,378 1,02 20 1,18 1,18 1,18 1,18 1,18		pour matérial SR e pièces de rechang
e document comporte 2 foi							skon n° 622809
G 04/03/05 REV N*6883 F 10/10/03 REV n*6752		<u></u>	<u></u>		Fab. B		A. Pommlar
	·····				N.Jean		Fab, Brault
21/5/98 DEVS n°8790			MF	B. Cla		A. Pommler	
C 29/11/95 DEV n*4639				MF	L. Gra		B. Clavel
B 02/12/94 DEVS N*4435					V. Fa	bre	B. Clavel
A 17/5/94 Edition origin				MF MF	V. Fa	tore .	B. Clavel

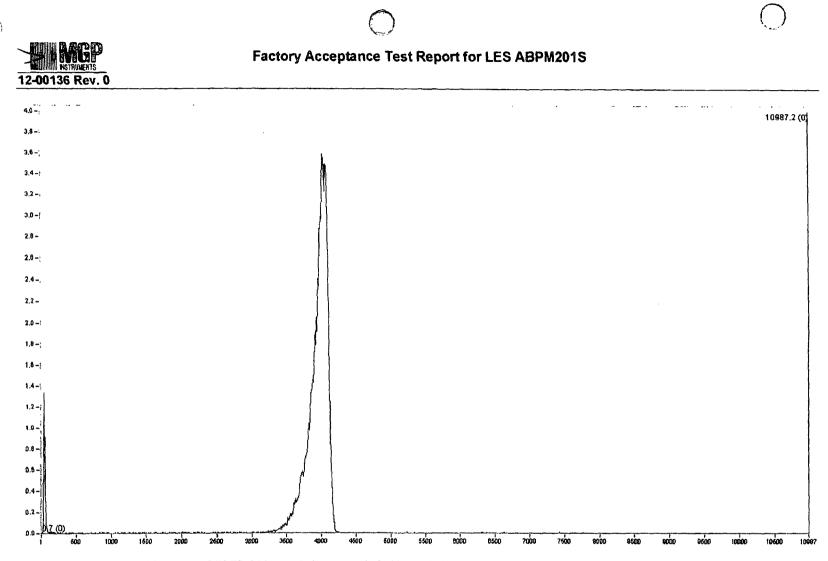
Publication, traduction at reproduction totales ou particles de ce document sont régoursusement interdites, sauf autorisation écrite de nos Services. The publication, translation or reproduction, either parity or wholly, of this document are not allowed without our written consent. N° 27965 F

•

CAT-CH-ABPM-201S Page 64 of 85

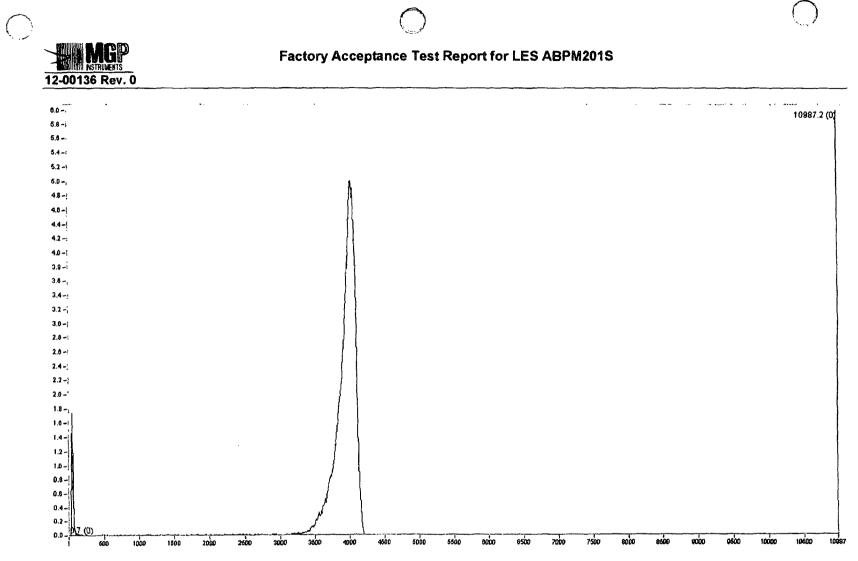
FICHE DE MESURES / D	ata sheet						
MATERIEL / Apparatus :	Détecteur PIPS						
(1) N° IDENTIFICATION (1) Identification n°	45445	AO	81998	<u> </u>	kh]
	Nomenciature	Indice	Ordre	Invariant	Opt	ion	ן
REFERENCES CLIENT / NOS REFERENCES / M		86704		DATE DE	s megures / Dai		nds:08/1/0/0
OBSERVATIONS / Comment	····		······		NOM: DAS	SilvA	
(1) à mentionner dans toule or	prespondance / To Indicate in any	/ correspondance)			B	
MESURES A EFFECTUER SI Measurement to be made to p	UIVANT PROGRAMME Nº : roomdure nº 46863 / J	UNITES Units	VALEURA C Value to be o		VALEUR MESUR Recorded value	EE	OBSERVATION Comments
13. Test nucléaire supplémentaire <u>45445 Option G00 000</u> : Bruit béta Bruit gamma Teux de comptage avec source Rendement <u>45445 Option 800 000</u> : Bruit béta Bruit gamma Taux de comptage avec source Rendement		යත යත රෑම දාම දාම දාම දාම දාම දාම දාම දාම දාම දා	< 0 < 0 5 < R < 0, < 0, 0,9 < R	,4 < 8 ,4 ,4	Sans chiel		pour matériel SR e plèces de rechange

.


,

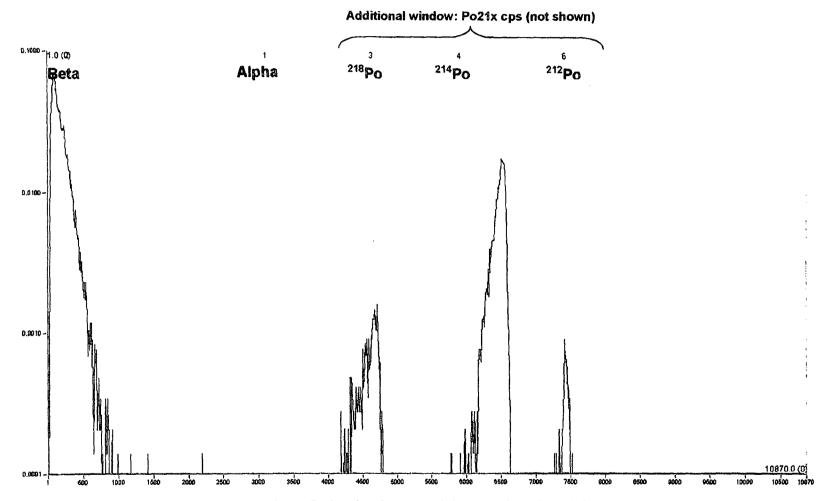
Publication, traduction el reproduction totales ou partielles de ca document sont rigoureusement interdites, seuf autorisation éorile de nos Services. The publication, translation or reproduction, either partiy or wholly, of this document are not allowed without our written consent. N° 27985 F

•


4 6 6 5 4

CAT-CH-ABPM-201S Page 65 of 85

Spectrum from Am-241 source S/N F5-246; x-axis is energy in keV, y-axis is count rate in cps (linear scaling)


All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

Spectrum from Am-241 source S/N F8-940; x-axis is energy in keV, y-axis is count rate in cps (linear scaling)

All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

Spectrum showing alpha and beta activity due to Radon daughters; x-axis is energy in keV, y-axis is count rate in cps and is log-scaled. The spectrum was over approximately 2 hours during post-production testing of the monitor. The regions of interest (ROI) are labeled according to their use.

All information in this document is the exclusive property of MGP Instruments, Inc. and is not to be disclosed, reproduced, or used except as authorized in writing by MGP Instruments, Inc.

Albuquerque Area Office 8336 Washington Place, N.E. Albuquerque NM 87113 (505) 822-0237 (505) 822-0217

December 15, 2009

(

(

Louisiana Energy Services, Inc. PO Box 1789 Eunice, NM 88231-1789

Attention: Ms. Debra Edwards, Chemistry Supervisor

Subject: Equipment LabelIng Evaluation, Final Report MGP Alpha Monitor Reference No.: 3103669F

Dear Ms. Edwards:

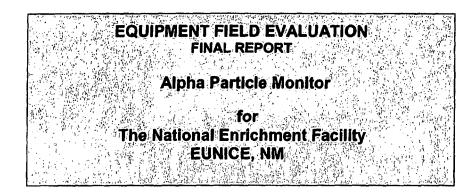
Enclosed is the subject report, as prepared by eti Conformity Services Compliance Engineer, Ross Bender.

The equipment evaluated in this report has been inspected and tested for general compliance with applicable codes and standards and with regard to general electrical safety. Details of this evaluation are provided in this report.

All discrepancies noted on the units inspected have been verified as corrected. Please contact Ross Bender if you have any questions about the technical contents of this report.

Please contact us if you have any questions or if we can be of further service on this or other projects.

Sincerely, eti Conformity Services


au

Randy Allen Service Center Manager

cc: Ronnie Killgore, Electrical Inspector, NM Construction Industries Division Marty Hall, P.E., Bridgers & Paxton Consulting Engineers

Albuquerque Area Office 8336 Washington Place, N.E. Albuquerque NM 87113 (505) 822-0237 (505) 822-0217

CLIENT Ms. Debra Edwards, Chemistry Supervisor Louisiana Energy Services, Inc. Andrews Road Eunice, NM

INSPECTION AUTHORITY

NM Construction Industries Division Ronnie Killgore, Electrical Inspector 5200 Oakland Ave. NE Albuquerque, NM 87113

Reviewed By:

Reference No.: 3103669F

Submitted By: Ross Bender Sr. Compliance Engineer

(u

Randy Allen Service Center Manager

Date: September 2, 2009

{

Table of Contents

 \bigcirc

 \bigcirc

 \bigcirc

.

Page	No.
------	-----

1.0 PURPOSE
2.0 SUMMARY 1
3.0 GENERAL CONDITIONS OF ACCEPTANCE1
4.0 REFERENCED ELECTRICAL STANDARDS
5.0 EQUIPMENT INSPECTED
6.0 INSPECTION PROCEDURES
7.0 EQUIPMENT EVALUATION
8.0 TESTING RESULTS AND INSTRUMENTS
AppendicesA-1
Appendix AA-1
Summary of Project ContactsA-1
Appendix BB-1
Test Data SheetB-1
Appendix CB
PhotosB

•

1.0 PURPOSE

The purpose of these inspections and tests is to provide assurance that custom or non-certified equipment meets the requirements of the appropriate codes, safety orders and industry standards. These inspections and tests are normally required by the local building inspection authority having jurisdiction (AHJ) when equipment has not been certified by a Nationally Recognized Testing Laboratory (NRTL) or other recognized testing agency. These inspections address only the electrical systems on the equipment listed in Section 5.0 of this report.

2.0 SUMMARY

This project was initiated at the request of Ms. Debra Edwards, Chemistry Supervisor with Louisina Energy Services. Inspections and testing of the equipment referenced in Section 5.0 was performed at the National Enrichment Facility in Eunice, NM eti Conformity Services Compliance Engineer Ross Bender on August 21, 2009. The Equipment is installed at National Enrichment Facility in Eunice, NM where the final inspection and testing have been completed.

The electrical discrepancies observed during the inspection and testing of the equipment were as described in Section 7.0 and have been corrected. The electrical discrepancies have been verified as corrected and the ETI *EVALUATED* label has been affixed to the equipment. Note that final approval is under the jurisdiction of the New Mexico Construction Industries Division.

3.0 GENERAL CONDITIONS OF ACCEPTANCE

In the event of modifications resulting in a change in the materials, manufacturing methods, loading, or environment that would affect the use of the accepted equipment under the provisions of the noted electrical standards, this acceptance will be considered automatically cancelled. The applicant will be required to request re-examination of this equipment to determine acceptability of the modifications.

By acceptance of the equipment referenced in Section 5.0, eti Conformity Services does not assume or discharge the responsibility of the equipment manufacturer, installer, or other relevant parties. Equipment evaluation is based upon adherence to sound engineering practices, and upon compliance with the specific sections quoted from the electrical standards referenced in Section 4.0 of this report.

Assessment of required interrupting rating and arc-flash labeling of the equipment being evaluated is beyond the scope of this field evaluation. Determining the adequacy of interrupting rating and arc-flash labeling are the responsibility of the end-user as described in subsection 6.5 of this report.

This acceptance applies to the electrical circuits and components only, as referenced in this report. Unless noted otherwise, it specifically excludes examination for suitability of use for equipment involving toxic or corrosive gases, steam, and locations defined as hazardous by the National Electrical Code (NEC[®]).

4.0 REFERENCED ELECTRICAL STANDARDS

- 4.1 ANSI/NFPA 79, Electrical Standard for Industrial Machinery
- 4.2 ANSI/NFPA 70, National Electrical Code (NEC)
- 4.3 UL 61010-1, Electrical Equipment for Measurement, Control and Laboratory Use, Part 1: General Requirements

5.0 EQUIPMENT INSPECTED

5.1 Six (6) Alpha Monitors

Two (2) LDU (Local Display Units) final installation.

Manufacturer Name: MGP Instruments Model No.: ABPM201S Serial No.: 080925 Ratings: 120 Volts AC, 60 Hz, 8.6 Amps, 1-Phase Label Nos.: 0115480 through 0115485

6.0 INSPECTION PROCEDURES

6.1 Component Listing

The following major power components are inspected for listing marks by an independent testing laboratory acceptable to the authority having jurisdiction (AHJ), or are evaluated to the appropriate nationally recognized consensus standard. Any discrepancies observed during the evaluation process are noted in Section 7.0.

- Circuit breakers
- Fuses and fuseholders
- Disconnect switches
- Terminal blocks
- Pushbuttons and switches
- Relays and contactors

- Transformers
- Motors and drives
- Motor overload units
- Wire ducts
- Receptacles
- Cables and wiring

6.2 Visual Inspection

The equipment is visually inspected with particular attention to the following areas:

- Manufacturer nameplates
- Electrical ratings
- Use of "approved" components
- Proper overcurrent protection
- Wiring ampacity
- Ground bonding

- Wiring methodsGuarding of live parts
- Damaged components
- General engineering practices

6.3 Ground Bonding

Exposed non-current carrying parts of the equipment are inspected for effective grounding in accordance with the applicable provisions of the standards referenced in Section 4.0 and the National Electrical Code (NEC[®]) Article 250. 6.4 Guarding of Live Parts All internal components are inspected for installation in a suitable enclosure and effective guarding in accordance with the standards referenced in Section 4.0 and the National Electrical Code (NEC[®]) Article 250. 6.4 Guarding of Live Parts All internal components are inspected for installation in a suitable enclosure and effective guarding in accordance with the standards referenced in Section 4.0 and the National Electrical Code (NEC[®]) Section 110.27.

6.5 Overcurrent Protection

Overcurrent protection installed in this equipment is evaluated for compliance with the applicable codes and standards referenced in Section 4.0. Protective devices are verified to be properly identified, and of a type suitable for the circuit applications as installed.

Please note: Determining the adequacy of interrupting rating and arcflash labeling are the responsibility of the end-user and are therefore outside the scope of this field evaluation project. The customer is hereby advised of NFPA 70-2005, Articles 110.9 & 110.16 which state:

110.9 Interrupting Rating.

Equipment intended to interrupt current at fault levels shall have an interrupting rating sufficient for the nominal circuit voltage and the current that is available at the line terminals to the equipment.

Equipment intended to interrupt current at other than fault levels shall have an interrupting rating at nominal circuit voltage sufficient for the current that must be interrupted.

110.16 Flash Protection.

[°]Switchboards, panelboards, industrial control panels, meter socket enclosures, and motor control centers that are in other than dwelling occupancies and are likely to require examination, adjustment, servicing, or maintenance while energized shall be field marked to warn qualified persons of potential electric arc flash hazards. The marking shall be located so as to be clearly visible to qualified persons before examination, adjustment, servicing, or maintenance of the equipment.[°]

6.6 Internal Wiring

Internal wiring and wiring methods are evaluated for compliance with the applicable codes and standards referenced in Section 4.0. Wiring is verified to be properly sized and rated, with a temperature rating suitable for the installed application.

6.7 Safety Interlocks and Operator Controls

The equipment safety interlocks, emergency stops, operator controls and human machine interfaces (HMI) are verified to be properly identified. The safety features and emergency machine off (EMO) switches are tested for proper operation.

6.8 Field Testing

Field testing is performed on the equipment, to meet the field testing requirements of the standards referenced in Section 4.0, unless production test results have been provided by the equipment manufacturer and accepted by eti Conformity Services. If no production tests are submitted, then testing is performed to verify the equipment to be operating within normally expected parameters as detailed in Section 8.0.

7.0 EQUIPMENT EVALUATION

- 7.1 Alpha Monitor
 - 7.1.1 System Description

The equipment inspected consists of Alpha Monitor manufactured by MGP Instruments. The equipment is rated at 120 Volts AC, 60 Hz, 8.6 Amps, 1-Phase. The alpha monitor draws air samples from various exhaust ducting, runs the air through a very sensitive particulate filtering device, thus detecting any alpha particles contained in the sampled air. The equipment is installed indoors in an ordinary (non-hazardous) location, and has been evaluated for use in this location only.

Reference No.: 3103669

7.1.2 Grounding

Exposed non-current carrying parts of the equipment were verified to be effectively grounded in accordance with the applicable provisions of NEC[®], Article 250. A discrepancy was noted and will require correction as detailed in item 7.1.6 below.

7.1.3 Guarding of Live Parts

All internal components are enclosed in a grounded, screw closed, metal enclosure, and are effectively guarded per NEC[®], Section 110.27. A discrepancy was noted and will require correction as detailed in item 7.1.6 below.

7.1.4 Overcurrent Protection

Overcurrent protection was provided by a 120 Volt AC, 20 Amp branch circuit.

7.1.5 Wiring

All wiring was found to be UL listed or recognized type MTW/THHN or equivalent.

7.1.6 Equipment Discrepancies

The discrepancies observed during the evaluation of the equipment listed in Section 5.0 were as described below. These items have been verified as corrected and the equipment is considered acceptable and suitable for continued service.

.01 Equipment Nameplate (NFPA 79)

This equipment was not provided with the required nameplate.

Action: A permanent nameplate shall be installed where plainly visible on this equipment. The nameplate shall contain the following information as a minimum:

- a) Manufacturer's name or trademark.
- b) Equipment catalog or serial number.
- c) Electrical diagram numbers.
- d) The following electrical ratings:
 - 1. Supply voltage.
 - 2. Number of phases.
 - 3. Rated frequency.
 - 4. Full load current.

Where more than one incoming supply circuit is provided, the nameplate shall state the above information for each supply circuit.


Reference: NFPA 79, Subclause 16.4

Verified as corrected on December 15, 2009

.02 Warning - Disconnect Power

This enclosure was not provided with a cautionary marking warning of the hazardous voltages contained within.

Action: A cautionary marking shall be installed in a plainly visible location on the outside of the enclosure stating the following or equivalent:

No. HEDIO/BOIT-BIDHP, (Available Sizos: S.T.U)

Reference: NFPA 79, 16.2.1 NEC[®], Section 110.3(a)(8)

Verified as corrected on August 21, 2009

8.0 TESTING RESULTS AND INSTRUMENTS

8.1 Field Testing

The following field-testing was completed with the summary results as indicated. Please refer to the Product Evaluation Data Sheet in Appendix B in this report for complete details on the specific tests completed.

8.1.1 Current and Voltage Measurements

Current and voltage measurements were taken at the input to each piece of equipment listed in Section 5.0 under normal operating conditions. The measurements obtained were verified to be within the voltage and current ratings of the devices installed.

Reference No.: 3103669

(

Page 6

8.1.2 Temperature Rise Test

A temperature rise test was performed on all components within each piece of equipment listed in Section 5.0 under normal operating conditions. The test was performed using an infrared (I.R.) thermometer to verify the temperature rise for each component did not exceed those specified in UL 508. Temperatures obtained were verified to be sufficiently low enough not to constitute risk of fire or to adversely affect any material employed in the equipment. The temperature rise obtained for each component is a result of test conditions only, and is not necessarily indicative of the possible temperatures generated in the operating environment.

8.1.3 Insulation Resistance Test

An insulation resistance test was performed on the equipment listed in Section 5.0 to verify the dielectric integrity of the insulating medium. Voltage was applied phase to ground at 1000 Volts DC for one minute on the incoming supply conductors of each piece of equipment tested. There were no indications of insulation breakdown as evidenced by arcing or sparks and therefore the test results indicate satisfactory results.

8.1.4 Bonding Test

The equipment bonding was verified as being properly installed. The resistance was measured from the main equipment grounding terminal to all applicable exposed metal structures or surfaces and installed equipment ground points. The maximum resistance permitted is 0.1 Ohm. The test results indicated satisfactory bonding with all resistance measures below 0.1 Ohm.

8.1.5 Leakage Current Test

With the equipment energized, the surface leakage current was tested by inserting an impedance network into the grounding path. The test points were the applicable exposed metal structures or surfaces that might be contacted by an operator. The maximum leakage current permitted is 3.5 mA. The test results found the maximum leakage current recorded to be less than the maximum allowed.

Reference No.: 3103669

Page 7

8.2 Test Equipment

All equipment has been calibrated to NIST reference standards. Certificates of calibration are available upon request.

Test Equipment	Model	et i Asset No.	Calibration Date	
Fluke, True RMS Multimeter	87 IV	N/A	12//2008	
Fluke AC Current Probe	80i-600A	N/A	Not Required	
AVO Megger Digital Low Resistance Ohmmeter	DLRO 10 24-1113		03/2008	
Micron Infrared Camera	7200B	24-01119	01/2008	
Biddle Insulation Resistance Test Set	BM400/2	10-00786	03/2008	
eti Conformity Services Leakage Current Tester	LCT-1	N/A	Not Required	

Reference No.: 3103669

CAT-CH-ABPM-201S Page 79 of 85

.

Appendices APPENDIX A Summary of Project Contacts

eti Conformity Services:

(

C

(

Reference No.	3103669F
Name:	Albuquerque Area Service Center
Address:	8336 Washington Place, N.E.
City, State, Zip:	Albuquerque NM 87113
Phone:	(505) 822-0237
Fax:	(505) 822-0217
Compliance Engineer:	Ross Bender

Client Information:

Company Name:

Louisiana Energy Services, LLC

Street Address:	275 Andrews Highway			
City, State, Zip:	Eunice, New Mexico 88231			
Phone:	(575) 394-6532			
Contact:	Ms. Debra Edwards			
Purchase Order No:	LES-GSA-3069, REV 1			

Site Information / Intended Installation Location:

Site Name:	National Enrichment Facility			
Street Address:	275 Andrews Highway			
City And State:	Eunice NM 88231			

Jurisdiction Information:

Inspector's Name:	Ronnie Killgore, Electrical Inspector
Jurisdiction:	NM Construction Industries Division

Manufacturer's Information:

Alpha Monitor

Manufacturer Name: MG P Instruments Model No.: ABPM201S Serial No.: 080925 eti Label No.: 0115770 Phone: 770-432-2744 Email: www.mirion-hp.com

A-9

.

APPENDIX B Test Data Sheet

 \bigcirc

CAT-CH-ABPM-201S Page 81 of 85

B-10

•

•

 \bigcirc

(

PRODUCT EVALUATION TEST DATA

CLIENT:							etiCS JOB N	UMBER:	3103	669
Louisiana Energy Services					etiCS LABE		L NUMBER: 115480 through 485			
NEF (Eunice, NM)				ENGINEER: Ross Bender		ər	DATE: August 21, 2009			
EQUIPMENT: Six (6) Alpha Monitors + two (2) LDU				MODEL: ABPM201S		3	SERIAL NO: 090501-01 through -06			
Manufacturer: RATINGS:			(110 [2) 200		L	HOT MEDIC		SE 2+ GND WI	RE	1-00
M	GE	120		15.0 AMPS		60		SE 3+ GND WI	DE	
VOLTS AMPS INSULATION RESIST.			ANCETES	HZ T DATA (M				1 A		
DATE:			TEST VOLTA		TEST EQUIP			CALIBRATIO	N DATE:	*
	ugust 21, 20	09	500 VDC	,		10-00786	3-2009			
CIRCUIT IDENTIFICATION					PHA A	SE TO GRO		A-B B-C C-A		
	UIRCU	Mains (All 6			>999Meg	<u> </u>	<u> </u>	A-D	D+C	
			VOLT	AGE AND C	URRENT N	MEASURE	MENTS			<u></u>
			ASUREMEN		0.4.05	-		ENT MEASU	REMENTS	
PHASE A-G	PHASE B-G	PHASE C-G	PHASE A-B	PHASE B-C	PHASE C-A	PHASE A	PHASE	PHASE C	NEUTRAL	GROUND
121.5						4.8			4.8	0
		<u> </u>		I						
REMARKS:	All fed from	same source			* * * A * * * * *					
DATE:			COM		EMPERATI		DATA	CALINDATIO	DATE	<u> </u>
	ugust 21, 20	09	64	°F	ICOL EQUIP	24-01063		CALIBRATIO	3-2009	
COMPONEN	IT IDENTIFI	CATION			COMPONE	INT TEMP.	TEMPERA	TURE RISE	TEST ME	THOD
All compone	the second s	listed or UR								
	M	ain pump mo	tor		99	"F	35	5°F	Thermocouple	
3			G	ROUND RE	SISTANCE	TEST DAT	A		1 - 19 ⁸ 1 - 19	a ta na ta na na Ja
DATE:			AMBIENT TEMP:		TEST EQUIP ASSET #:		CALIBRATIO			
A	igust 21, 20	09 Resistance	64 °F Result:		24-01113		Result:		3-2009	
AC Powe	r to skid	0.09 Ohm	A Result.		Resistance		Kesuit.			
Control Pa	the second s	0.04 Ohm	A							
Control Pa	nl to Pump	0.05 Ohm	A							
		L								
				EMO AND	INTERLOO	V TECTO				asila an basi
ENO E	UNCTION 1	FOTO		ENO AND	·	1997 - C	NCTIONAL	TESTS	Case of the second	
DATE:	DISCHOL		DATE:		INTERLOCK FUNCTIONAL TESTS					
LOCATION		RESULT	INTERLOCK DESCRIPTI		TION RESULT		INTERLOCK DESCRIPT		ION	RESULT
Main	С.Р	<u> </u>	ļ	N/A						
					LEAKA	GE CURRE	NT AND RES	SISTANCE		
			Loca	ation		e (Ohms)	Voltage (mV)		Leakage Current (mA)	
			Not							
		Main Power Cord		0.09		0.25		0.0002 mA		
			+		<u> </u>					
GENERAL NOTES										
						<u></u>	<u> </u>		·	
						·····		<u></u>		
© eti 2008	AC/0001 n	ev. 4/00							Page	1 of 1

A = Acceptable, N/A = Not Applicable, C = Corrected, R = Needs Repair

•

APPENDIX C Photos

Figure 1 is the front view of the Alpha monitor. Main power control is on top left.

 \bigcirc

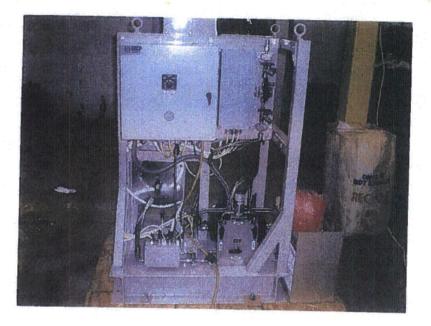


Figure 2 is rear view of machine showing air pump on left, filter and detector piping in foreground on chassis.

> CAT-CH-ABPM-201S Page 83 of 85

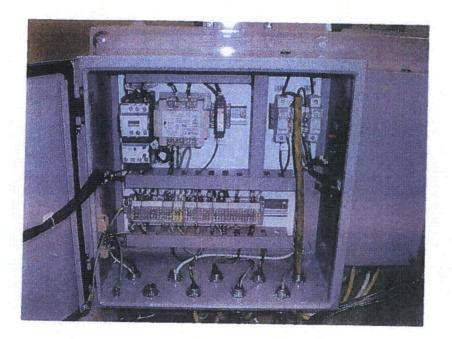


Figure 3 is a view of the interior of the power and control enclosure.

> CAT-CH-ABPM-201S Page 84 of 85

\bigcirc

 \bigcirc

Functional Location 1001-562-IMA2

Fan Speed(2) (1001-662- 241)	Target Stack Flow (or mA) (LDU(mA)input)	Measured Stack Flow from Process Flow Meter (Blackwatch Panel Meter Reading)		From ProcessMonitor Process FlowMonitor SampleMeterRate (LPDU StackFlow Rate(watch PanelFlow)(LPDU TargetReading)Flow Rate)Flow Rate		Actual Alpha Monitor Sample Flow Rate (LPDU Skid Flow Rate)	Within Tolerance?
0	4.086	(m3/hr) 5	(scfm) 2.945	5.819	40	40.5	No ¥
25	7.937	250	147	132.5	40	40.5	Yes
50	10.440	410	24/	223	43.7	41.9	Yes
15	12.786	559	329	328,5	52.5	50.5	Yes
99	14.917	695	409	413.8	60	57.5	Yes
				· · · · · · · · · · · · · · · · · · ·			

* Test considered acceptable fan speed of 225% is not by de sign. Apoints are as acceptable. System is acceptable in the area of normal operation

Verified by Initials/Date/Time 245_13/26/101_16:20

Verified by Initials/Date/Time HMH / 3-260/ 1640

CAT-CH-ABPM-201S Page 85 of 85