Rejected:

Other:

Underground Corrosion

Stricken:

Melvin Romanoff

Originally Issued April 1, 1957 by the National Bureau of Standards (now the National Institute of Standards and Technology)

National Bureau of Standards Circular 579 (Supersedes Circular 450)

Published by NACE 1440 South Creek Drive, Houston, Texas 77084

	Identi	fication	Number		Nominal				c								
Material	Symbol	Year buried	speci- mens buried	Form	width or dia- meter	Length	Thick- ness	Free	Com- bined	Total	Si	Mn	s	£.	ΰ	z	Cu
deLavaud cast iron. Sand mold cast iron (northern ore) Sand mold cast iron (southern ore) Southern cast iron. Monocast iron.	ראמרט	1922-24 1922 1922 1928 1928	639 370 140 160	Pipe do do do	Inches 6.0 6.0 6.0 6.0 6.0 6.0	Inches 6.0 6.0 6.0 6.0	Inches 0.++ ++ ++ 25	Percent 2 90 2 65	Percent 0.70	Percent 3.56 3.56 3.45 3.40 3.40 3.40	Percent 2.34 1.55 1.61 1.70 1.50	Percent 0.73 0.73 140	Percent 0.083 075 .083	Percent 0.77 .55 84 80 .70	Percent	Percent	Percent
Charcoal cast iron ^a deLavaud cast iron ^a b deLavaud cast iron ^a b Rathed cast iron ^c . Plain cast iron.	acoca⊀	1939 1939 1932 1932 1941	150 150 150 150	Plate		2122222 2122222 0.0.0.0	375 50 250 250	2.94 2.94	3.70 0.64 64	2.40 3.58 3.22 3.22	0.95 1.51 1.64 2.19 2.19	91 91 91 92 92 93 93 93 93 93 93 93 93 94 94 94 94 94 94 94 94 94 94 94 94 94	.065 .071 .074 .074	17 78 79 70	L J L J J 2 4 1 J J J 4 1 1 J J J 6 1 1 J J J 6 1 7 I J J 6 1 7 I J J 6 1 7 I J J 1 1 1 1 I J 1 1 1 1 I J 1 1 1 1 I J 1 1 1 1 I J 1 1 1 1 1 J 1 1 1 1 1 J 1 1 1 1 1 J		1.00
High-silicon rast iron. Low-alloy cast iron. Do. Do.	00#	1922 1932 1932 1932 1941	568 150 150 150	opoop	3 1155 1155 1155 1155 1155 1155 1155 11	13200 13200 13200	350 250 250	3 00	50	0.72 3.250 3.250 3.280 3.290 3.280 3.290 3.290 3.290 3.290 3.290 3.290 3.290 3.290 3.290 3.290 3.290 3.290 3.290 3.290 3.290 3.290 3.290 3.290 3.290 3.200 3.290 3.2000 3.20000 3.20000 3.20000000000	13.44 1.43 2.04 2.09	8303388 8308388 8308388	123 077 050 12	11 128 128 400	0.30	0 15 1 27	
Do Do Do High-alloy cast iron	UNZCH	1941 1941 1941 1941 1941	150 150 150	Plate Plate do Pipe	- ເງ ເງ ທີ່ຫວ່າວ ເວ ເວ	13.0 14.0 13.0 10.0	250 250 250		I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	2 24 2 24 2 25 2 24 2 24 2 24 2 24 2 24	1100388 11100388 1110038	.80 72 1 00	12		2.61	1.71 2.08 3.10 15.00	1.10 6.58
 The deLavaud and charcoal cast-ir Curved plate eut from 12-in. class Ordinary iron horizontally cast in g 	on plates 150 super reen-sand	were conne deLavaud trolds and	ected toge pipe. d rattled t	ther by mea. to remove sa	ns of a ch. nd.	arcoal cas	t-iron bol	lt and a ste	el bolt.	-		-	-	-		-	

Composition of cast ferrous materials

TABLE 11.

b. Cast Materials

The original field tests included sand cast-iron pipe, (materials L and Z, 1922, table 11) de Lavaud centrifugal cast pipe, (material C, 1922) and high-silicon cast-iron pipe (material D, 1922). Subsequent exposures included some alloy cast irons, which had become available. Improvement in the structure of cast iron brought about by alloy additions or by modifications in the manufacturing process apparently has the effect of reducing graphitic corrosion, which results from electrolytic action between ferrite and graphite, the former constituting the anode and the latter the cathode of galvanic cells within the corroding iron. Graphitization may decrease or accelerate the normal rate of corrosion depending upon the tendency of corrosion products to deposit within the pores of the castings as determined by the nature of the environment [145].

Although a large variety of special cast irons are now available, relatively few were available for inclusion in the field tests. Cast irons of compositions other than those given in table 11 are now in use for types of service that suggest that these irons might be successfully employed for underground service. For example, Dieffenbach [146] reported that a copper-molybdenum cast iron showed no noticeable corrosion in more than 2 years of service as lock gate valves under conditions where protective coatings could not be used. Cast irons containing small percentages of nickel, chromium, and molybdenum also are understood to be used for similar purposes.

c. Miscellaneous Ferrous Materials

Miscellaneous ferrous materials buried at the test sites include nuts, bolts, elbows, nipples, and similar fittings listed in table 12.

TABLE	12.	Miscellaneous	ferrous	specimens	included	in	the
		Λ	RS test	s			

Symbol	Material	Year buried	Number of specimens buried
A	Malleable-iron nuts and bolts, decarburized.	1932	48
	burized	1932	48
С	Malleable-iron nuts and bolts, high strength	1932	48
Ď	Steel nuts and bolts.	1932	48
CD	Charcoal cast-iron nuts and bolts	1939	150
CE	Steel nuts and bolts.	1939	150
E	Sheradized nuts and bolts	1924	100
	Lead-coated nuts and bolts	1924	96
	Black wrought iron nuts and bolts	1924	100
E	2-in. cast steel elbows	1924	56
1	4-in, machined cast iron nipple	1924	24
V	2-in, semisteel nipples	1924	48
S	2-in. malleable-iron bends	1924	48
	11/2-in. coupling attached to threaded pipe	1922	192

8.2. Results on Wrought Materials a. Plain Irons and Steels

The loss in weight and the maximum penetration of the $1\frac{1}{2}$ -in. and 3-in. wrought black pipe for all removals of the specimens buried in 1922 in the original 47 NBS test sites are given in table 13. In some of the soils it was necessary to discontinue the tests in less than 12 years because the sites were no longer available. However, approximately half of the exposures were continued for 12 years and in 19 of the less corrosive soils, exposure was continued for approximately 17 years. In 1928, samples of some of the 3-in. pipes were exposed to 28 additional soils, and in later years (1932 and 1937) samples of $1\frac{1}{2}$ -in. pipes and a plate were exposed to 15 soils. These results are given in tables 14 and 15.

For similar periods of exposure the relative corrosion rate of a material in two soils may not be the same, as the initial rate of loss in weight or pitting may be maintained in one soil, whereas in another the rates may decrease because of the effect of the corrosion products and properties of the soil. Differences of this nature are illustrated in figure 11, which shows the relation of maximum pit depth of wrought iron and steel to the length of exposure in five different soils. Because of these changes in the rates of corrosion with time, the data for all periods of exposure should be taken into account before attempting to estimate the behavior of a material in a soil or the corrosiveness of that soil.

The depth of the deepest pit is a function of the area from which it is chosen. For a given material, the maximum pit depth resulting from a particular exposure has been found to vary with the exposed area, i.e., the greater the exposed area the greater the chance of finding one or more unusually deep pits [110]. Table 16 presents the maximum and weighted maximum pit depths of the wrought pipe specimens during the maximum exposure period. The weighted values have been adjusted to give comparable data based on their area for the specimens of different sizes, that is, the single deepest pit on each $1\frac{1}{2}$ -in. pipe and the two deepest pits on each of the two 3-in. pipes. Therefore, the data in the last 4 columns for the 3-in, pipe may be compared with data for similar materials of the $1\frac{1}{2}$ -in. pipe in columns 3 to 6. As a check on this procedure, the pit depths of the corresponding 1¹/₂-in. and 3-in. wrought iron and Bessemer steel specimens (table 16) may be compared. In each case the same manufacturer furnished both sizes of the same materials. There are 19 soils in which the weighted pit depths are of the same magnitude and 16 soils in which the weighted pit depths are greater for the larger specimens compared with 12 soils in which the pit depths are less.

Effect of Composition. Although the principal purpose of the original soil-corrosion investigation was to determine the effect of soils, a comparison of the different materials could not be avoided because of their varying compositions.

A comparison of the behavior of the more commonly used irons and steels was made in Research Paper 883 [113], which reported the average depths of the deepest pits, over an interval of 12 years, of all the ferrous specimens buried in 1922. The difference in the soils was so great that average rates for all soils had little value, except that they permitted a comparison of different materials exposed to the same conditions. The pit depths were adjusted to take into account the areas of the specimens.

Although table 16 indicates that there may be a small difference between open-hearth iron specimens and the other $1\frac{1}{2}$ -in. wrought specimens, this difference is not considered to be significant. Similarly, the 3-in. open-hearth steel, containing 0.2 percent of copper, may corrode at a greater rate than copper-free steel. In both cases the reason for the differences may be due to the character of the surfaces or the different surface finishes of the specimens employed. In the case of the openhearth iron, the surfaces of the specimens may have been covered by an almost continuous thin oxide film that broke down in a relatively few places, thus concentrating the galvanic action. A basis for this suggestion is the low loss in weight of the specimens of this material (table 13).

The copper-bearing steel specimens, on the other hand, carried heavy local patches of mill scale that had not been removed after fabrication. It is possible that galvanic action between this mill scale and the remainder of the surface of the pipe accelerated the corrosion, or that after a period of exposure the mill scale became loosened and galvanic action between the unprotected spots and the oxidized areas caused additional corrosion.

The loss in weight is smallest for the wroughtiron specimens, but the difference between the average maximum rates of penetration for wroughtiron and Bessemer steel is not sufficient to show positively a difference in the rates of corrosion of these materials for either the $1\frac{1}{2}$ -in. or the 3-in. specimens.

The averages of the data for all soils for any material in table 16 indicate that the maximum pit depth is generally greater on the 3-in. than on the $1\frac{1}{2}$ -in. specimens. However, the data for individual soils show that this is not always the case. This is the "area effect" previously mentioned in the description of the weighting procedure.

Because each of these test sites was examined carefully and no location accepted where there was a possibility of stray currents in the earth, the corrosion observed in the specimens could not have been caused by stray currents. Moreover, an examination of the distribution of the corrosion with respect to the position of the specimens in the trench confirmed this statement. It is evident in tables 13 through 15 for the wrought ferrous materials, that as a rule all the specimens in the same trench corroded similarly with respect to losses in weight and depths of deepest pits. Further examination of the specimens showed that the distribution of the corroded areas of individual specimens in the same trench was also similar. From this it follows that the cause of corrosion did not lie within the specimens because they differed in composition and were furnished by several independent pipe mills. Differences in composition of the plain irons and steels were thus eliminated as primary causes of underground

<u>ante destruistes</u>	Soil		Lo	oss in weight	;	Me	ximum pene	etration
No.	Туре	Duration of exposure	Open- hearth iron	Wrought iron	Bessemer steel	Open- hearth iron	Wrought iron	Bessemer steel
	Material		A	В	М	A	В	М
52	Lake Charles clay loam	Years { 2.0 { 5.4 7.5	oz/ft ² 3.1 14.7 19.0	oz/ft ² 3.4 14.6 19.0	<i>oz/ft</i> ² 2.7 13.5 16.9	Mils 66 116 116	Mils 62 123 176	Mils 40 118 163
54	Fairmount silt loam	{ 1.9 { 5.2 7.3	1.0 1.5 3.4	$1.0 \\ 1.3 \\ 2.5$	0.7 1.2 3.5	14 14 54	16 21 36	6 11 40
68	Gila clay	$\left\{\begin{array}{c} 1.7\\ 5.1\\ 7.2\end{array}\right.$	3.2 3.7 4.8	3.6 4.3 4.9	2.9 3.7 4.4	42 43 48	50 43 48	37 38 45
101	Billings silt loam (low alkali)	$\left\{\begin{array}{c} 1.9\\ 4.1\\ 9.3\end{array}\right.$	3.9 7.5 10.5	5.2 8.8 9.4	3.9 7.2 9.1	70 116 131	66 94 95	60 94 86
102	Billings silt loam (moderate alkali)	$\left\{\begin{array}{c} 1.9\\ 4.1\\ 9.3\end{array}\right.$	3.9 9.4 18.3	$\begin{array}{r} 5.1\\10.2\\16.1\end{array}$	4.3 9.3 17.6	42 102 124	37 80 93	26 72 95
103	Billings silt loam (high alkali)	$\left\{\begin{array}{c} 1.9\\ 4.1\\ 9.3\end{array}\right.$	3.7 11.2 18.8	$5.0 \\ 10.4 \\ 21.3$	3.6 10.1 17.8	63 88 190	48 86 136	37 66 192
104	Cecil clay	$\left\{\begin{array}{c} 1.9\\ 4.1\\ 11.7\end{array}\right.$	2.9 4.8 7.1	3.0 4.3 7.2	2.5 3.7 7.6	71 84 88	70 86 94	88 93 114
105	Cecil clay loam	$\left\{\begin{array}{c} 2.0 \\ 4.0 \\ 11.7 \end{array}\right.$	3.2 3.6 4.8	3.6 3.8 3.7	3.4 4.2 4.9	50 48 58	45 48 51	58 46 54
106	do	$\left\{\begin{array}{c} 1.9\\ 4.1\\ 11.7\end{array}\right.$	2.6 3.4 7.3	$2.5 \\ 4.0 \\ 8.6$	2.0 3.6 9.0	62 64 93	46 64 70	48 56 75
107	Cecil fine sandy loam	$\left\{\begin{array}{c} 1.9\\ 4.1\\ 11.7\end{array}\right.$	2.0 2.9 5.4	2.3 3.2 5.5	$\begin{array}{c} 2.4\\ 3.1\\ 5.6\end{array}$	57 73 97	66 72 90	64 66 129
108	Cecil gravelly loam	$\left\{\begin{array}{c} 1.9\\ 4.0\\ 11.7\end{array}\right.$	2.8 3.1 4.7	3.3 3.6 4.5	3.4 3.4 5.9	67 86 85	38 50 70	53 62 95
109	Fresno fine sandy loam (low alkali)	$\left\{\begin{array}{c} 1.9\\ 4.0\\ 9.2\end{array}\right.$	4.7 7.9 11.6	5.9 7.6 11.8	$\begin{array}{c} 5.2\\ 6.3\\ 11.3\end{array}$	70 74 121	70 82 100	74 63 108
110	Freeno fine sandy loarn (moderate alkali)	{ 1.9 4.0 9.2	3.9 7.6 18.6	4.5 7.1 15.8	$4.1 \\ 7.4 \\ 20.2$	74 84 155	60 85 126	42 73 155
111	Fresno fine sandy loam (high alkali)	{ 1.6 3.7 8.9	4.4 8.7 17.6	4.5 7.8 18.8	5.2 8.7 19.4	$54 \\ 104 \\ 162 +$	48 78 165	38 80 119
112	Imperial clay (moderate alkali)	$\left\{\begin{array}{c} 1.9\\ 4.0\\ 5.9\end{array}\right.$	7.1 14.5 19.8	7.3 13.6 16.9	7.3 14.0 18.8	$76 \\ 188 + \\ 250 + $	58 128 177 +	$68 \\ 132 \\ 232 +$
113	Imperial clay (high alkali)	{ 1.9 4.0 5.9	8.2 19.0 25.8	8.1 16.0 21.8	8.2 18.5 23.6	92 216 + 224 +	54 157 + 178 +	$54 \\ 216 + \\ 231 +$
114	Lake Charles clay	$\left\{\begin{array}{c} 0.9\\ 3.0\\ 10.5 \end{array}\right.$	1.5 4.8 14.3	$ \begin{array}{r} 1.3 \\ 6.0 \\ 14.6 \end{array} $	$1.3 \\ 5.0 \\ 14.1$	32 99 159	15 72 90	14 67 106
115	Memphis silt loam	$\left\{\begin{array}{c} 2.0 \\ 4.1 \\ 11.7 \end{array}\right.$	1.8 2.4 3.3	1.9 2.8 3.5	1.7 2.7 3.9	32 75 89	34 64 48	32 64 64
116	Merced clay	$\left\{\begin{array}{c} 1.9\\ 4.0\\ 9.3\end{array}\right.$	$\begin{array}{r} 6.1 \\ 13.0 \\ 21.6 \end{array}$	6.6 11.8 19.1	5.8 11.5 19.4	46 96 121	51 97 173	36 90 88
117	Merced clay loam adobe	{ 1.9 4.0 9.3	7.6 9.6 21.0	7.9 9.9 19.8	8.0 9.4 20.5	118 135 185	92 112 127	86 101 141
118	Niland gravelly sand (low alkali)	{ 1.9 4.0 5.9	$5.4 \\ 12.2 \\ 16.0$	$5.0 \\ 10.9 \\ 15 4$	5.5 13.1 14.9	108 151 + 240 +	72 124 153	$ \begin{array}{r} 60 \\ 122 + \\ 158 \end{array} $
119	Norfolk sandy loam	$\left\{\begin{array}{c} 2.0 \\ 4.0 \\ 11.7 \end{array}\right.$	0.7 3.9 8.2	0.6 4.3 8.7	0.5 4.6 8.9	<10 86 98	<10 52 67	<10 68 77

TABLE 14. Loss in weight and maximum penetration of 3-inch wrought black ferrous pipe buried in 1928 (Average of two specimens)

32

	Soil		I	loss in weigh	it	Махі	mum peneti	ation
No.	Type Material	Duration of exposure	Open- hearth iron A	Wrought iron B	Bessemer steel M	Open- hearth iron A	Wrought iron B	Bessemer steel M
120	Norfolk sand	$ \begin{array}{c} Years \\ (2.0 \\ 4.0 \\ (11.6 \\ \end{array} $	oz/ft ² 2.4 0.9 1.8	oz/ft ² 2.6 0.9 1.8	oz/ft ² 2.6 0.8 2.1	Mils 72 22 36	Mils 46 20 28	Mils 49 20 26
121	do	$\begin{cases} 2.0 \\ 4.0 \\ 11.7 \end{cases}$	1.1 1.0 1.4	0.9 .9 1.4	0.8 .7 1.5	22 26 28	19 20 25	20 20 21
122	Panoche clây loam	{ 1.9 4.0 9.3	1.9 2.8 5.0	2.2 3.2 4.5	1.9 3.6 7.1	46 48 58	32 60 49	25 38 48
123	Susquehanna clay	$\left\{\begin{array}{cc} 2.0 \\ 4.1 \\ 11.7 \end{array}\right.$	3.0 5.5 10.4	3.2 6.4 10.9	3.2 5.4 10.9	32 46 44	30 38 60	32 44 62
124	Susquehanna silt loam.	$\left\{\begin{array}{c} 0.9 \\ 2.7 \\ 10.5 \end{array}\right.$	2.4 4.5 8.1	2.6 5.0 8.5	2.7 5.2 8.5	47 54 84	48 54 80	47 55 80
125	Susquehanna fine sandy loam	$\left\{\begin{array}{c} 2.0 \\ 4.1 \\ 11.8 \end{array}\right.$	3.4 4.9 7.0	3.9 4.5 7.9	$3.6 \\ 4.6 \\ 8.5$	42 56 68	46 44 74	40 47 78

 TABLE 14.
 Loss in weight and maximum penetration of 3-inch wrought black ferrous pipe buried in 1928—Continued (Average of two specimens)

 TABLE 15. Loss in weight and maximum penetration of wrought black ferrous pipe (1½ inch) and plate buried in 1932 and 1937 (Average of two specimens)

	Soil	Expo	sure		Loas	in weight				Maxim	um penetr	ation	
No.	Type Material	For pipe A, B, and N	For pipe S and plate A	Wrought iron pipe, hand puddled A	Wrought iron pipe, mechan- ically puddled B	Carbon steel pipe N	Carbon steel pipe S	Open- hearth steel plate A	Wrought iron pipe, hand puddled A	Wrought iron pipe, mechan- ically puddled B	Carbon steel pipe N	Carbon steel pipe S	Open- hearth steel plate A
51	Acadia clay.	Years 2.0 5.4 7.5 -14.3	Years 2.1 \$9.0	<i>oz/ft</i> ² 11.7 12.6 15.1 23.9	<i>oz/ft</i> ² 8.2 13.6 15.3 26.7	oz/fl ² 7.4 12.7 11.5 21.0	oz/ft ² 7.5 17.4	oz/ft ² 11.6 19.1	$\begin{array}{r} Mils \\ 50 \\ 144 \\ 122 + \\ 135 + \end{array}$	$Mils \\ 60 \\ a129 + \\ 145 + \\ 131 +$	$Mils \\ 82 \\ 154 + \\ 135 + \\ 146 + \\ $	Mils 52 128+	Mils 54 138+
53	Cecil clay loam	2.0 5.5 7.6 9.5 14.3	$2.1 \\ 4.0 \\ 8.9 \\ 11.2 \\ 12.7$	3.5 2.6 3.3 3.7 4.9	3.4 3.0 3.4 3.7 4.8	2.7 3.0 4.2 4.1 4.4	$ \begin{array}{r} 1.8 \\ 2.9 \\ 3.4 \\ 3.4 \\ 3.9 \\ 3.9 \\ \end{array} $	$ \begin{array}{r} 1.8 \\ 3.2 \\ 3.9 \\ 3.4 \\ 4.0 \\ \end{array} $	34 64 77 50 72	30 71 76 73 66	37 50 54 59 84	42 98 74 78 68	40 76 57 72 78
55	Hagerstown loam	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 1.9\\ 3.9\\ 9.0\\ 11.0\\ 12.6 \end{array} $	2.8 2.3 3.5 3.7 3.4	2.9 2.4 3.4 3.8 3.7	2.4 2.2 3.2 3.8 3.1	1.8 2.6 4.1 3.9 3.4	2.0 2.6 3.8 3.3 4.0	40 79 70 60 76	42 84 60 84 88	41 57 57 59 65	33 50 92 84 73	42 54 90 77 66
56	Lake Charles clay	2.0 5.4 7.5 9.4 14.4	$\begin{array}{c} 2.1 \\ 4.0 \\ 8.9 \\ 11.1 \\ 12.7 \end{array}$	3.5 10.8 17.2 ⁴ 22.8 26.6	$\begin{array}{r} 4.4 \\ 7.6 \\ 14.7 \\ 19.5 \\ 26.5 \end{array}$	4.0 13.9 21.0 28.8 35.2	13.8 16.0 27.8 •D D	14.4 18.3 28.0 48.1 D	$22 \\ 66 \\ 90 \\ 496 \\ 145 +$	$24 \\ 65 \\ 106 + \\ 106 \\ 145 +$	$20 \\ 71 \\ 125 + \\ 154 + \\ 135 + $	$77 \\ 104 \\ 145 + \\ 145 + \\ 145 + \\ 145 + $	80 100 126 + 188 + 188 +
58	Muck.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.1 4 0 8.9 11.2 12.7	$3.5 \\ 9.8 \\ 11.9 \\ 12.6 \\ 19.6$	$3.2 \\ 10.4 \\ 11.6 \\ 12.7 \\ 17.4$	$3.2 \\ 11.2 \\ 14.1 \\ 16.2 \\ 25.5$	5.1 8.8 17.3 16.3 17.6	5.7 9.9 16.9 17.2 18.1	20 68 84 118 96	18 64 110 116 78	18 103 110 110 154 +	29 46 98 110 124	$31 \\ 61 \\ 89 \\ 161 + \\ 188 +$
59	Carlisle muck.	5.1 7.2 9.1 ¢14.2	$\begin{array}{c} 2 & 1 \\ 4 & 0 \\ 9 & 1 \\ 11 & 1 \\ 12 & 7 \end{array}$	1.8 2.0 2.4 4.3	1.6 1.8 2.3 4.2	2.4 3.0 4.7 3.9	$ \begin{array}{c} 1.5 \\ 3.3 \\ 7.5 \\ 9.6 \\ 9.6 \\ \end{array} $	$ \begin{array}{r} 1.5 \\ 4.2 \\ 9.9 \\ 9.5 \\ 11.1 \\ \end{array} $	25 18 32 37	18 15 28 32	20 30 40 34	12 20 101 76 72	6 22 98 96 90
60	Rifle peat.	$\left\{\begin{array}{c} 1.9\\ 5.2\\ 7.3\\ 9.2\\ 14.3\end{array}\right.$	$2.1 \\ 4.0 \\ 9.1 \\ 11.1 \\ 12.7$	$5.7 \\ 6.3 \\ 5.1 \\ 14.3 \\ 25.1$	5.0 6.8 5.4 116.5 28.8	$\begin{array}{c} 6.2\\ 11.0\\ 7.6\\ 16.7\\ 28.8 \end{array}$	$\begin{array}{r} 4.0\\ 8.1\\ 17.6\\ 19.6\\ 21.0 \end{array}$	$6.3 \\ 9.5 \\ 22.0 \\ 15.8 \\ 21.7$	24 38 30 /55 78	24 37 34 /64 78	37 24 17 /27 82	15 38 58 89 118	30 40 56 63 60

See footnotes at end of table.

.....

-				(A)	erage of t	wo specin	iens)						
	Soil	Expo	osure		Los	s in weigh	t			Maxim	um penet	ration	
No.	Type Material	For pipe A, B, and N	For pipe S and plate A	Wrought iron pipe, hand puddled A	Wrought iron pipe, mechan- ically puddled B	Carbon steel pipe N	Carbon steel pipe S	Open- hearth steel plate A	Wrought iron pipe, hand puddled A	Wrought iron pipe, mechan- ically puddled B	Carbon steel pipe N	Carbon steel pipe S	Open- hearth steel plate A
61	Sharkey clay	$\begin{cases} Years \\ 1.0 \\ 5.5 \\ 7.6 \\ 9.5 \\ 14.4 \end{cases}$	Years 2.1 4.0 8.9 11.2 12.7	$ \begin{array}{c} oz/fl^2 \\ 1.3 \\ 5.6 \\ 6.3 \\ 6.4 \\ 10.2 \end{array} $	$\begin{array}{c} oz / ft^2 \\ 1 . 2 \\ 4 . 9 \\ 6 . 4 \\ 5 . 7 \\ 11 . 9 \end{array}$	$ \begin{array}{r} oz / ft^2 \\ 0.8 \\ 4.0 \\ 5.6 \\ 5.8 \\ 10.0 \\ \end{array} $	<i>oz / fl</i> ² 2.2 5.0 4.2 6.9 7.5	oz/fl ² 2.6 5.4 4.3 7.3 8.1	Mils 17 41 44 61 84	Mils 10 37 50 786 82	Mils 10 /54 63 /96 88	Mils 40 45 48 58 64	Mils 34 50 90 103 85
62	Susquehanna clay	$\left\{\begin{array}{c} 1.9\\ 5.5\\ 7.6\\ 9.5\\ 14.3\end{array}\right.$	$2.1 \\ 4.0 \\ 8.9 \\ 11.2 \\ 12.7$	3.0 4.0 6.0 7.8 8.3	4.0 4.0 6.0 9.4 7.1	$4.1 \\ 4.7 \\ 5.3 \\ 6.6 \\ 7.9$	3.2 4.3 5.3 6.0 6.8	2.83.74.25.05.9	49 54 69 72 74	70 56 78 /101 65	62 66 71 /87 101	40 56 68 72 79	34 47 59 77 84
63	Tidal marsh	$\left\{\begin{array}{c} 2.0 \\ 5.6 \\ 7.7 \\ 9.6 \\ 14.4 \end{array}\right.$	$2.1 \\ 4.0 \\ 8.9 \\ 11.2 \\ 12.6$	3.0 3.1 3.4 8.5 /10.1	2.6 2.4 3.5 4.2 76.8	3.8 4.5 7.1 /9.0 9.6	$2.7 \\ 9.2 \\ 10.7 \\ 12.2 \\ 18.5$	3.6 ${}^{d}6.2$ ${}^{d}8.9$ 16.9 16.5	$28 \\ 22 \\ 64 \\ 100 \\ 74$	16 37 39 755 80	$15 \\ 36 \\ 70 \\ 54 \\ 61$	$24 \\ 38 \\ 80 \\ 94 \\ 126$	18 ^d 26 d36 48 44
64	Docas clay	$\left\{\begin{array}{c} 1.9\\ 5.2\\ 7.3\\ 9.2\\ 14.2\end{array}\right.$	$2.1 \\ 4.0 \\ 9.0 \\ 11.2 \\ 12.8$	$\begin{vmatrix} 11.4\\ 22.1\\ 34.4\\ *16.0+\\ *38.3+ \end{vmatrix}$	$ \begin{array}{r} 13.3 \\ 23.1 \\ 35.4 \\ \circ 18.4 + \\ \circ 18.4 + \\ \end{array} $	12.6 25.3 35.6 D D	8.76.04.712.417.2	7.1 7.4 7.5 /19.0 18.6	$ \begin{array}{r} 102 \\ 129 \\ 144 + \\ 120 + \\ 145 + \end{array} $	$118 \\ 110 \\ 145 + \\ 145 + \\ 145 + \\ 145 + $	$130 \\ 154 + \\ 154 + \\ 154 + \\ 154 + \\ 154 + $	$80 \\ 67 \\ 80 \\ 118 \\ 122$	44 78 87 156 + 188 +
65	Chino silt loam	$ \left\{\begin{array}{c} 1.9\\ 5.3\\ 7.3\\ 9.2\\ 14.2 \end{array}\right. $	$2.1 \\ 4.0 \\ 9.0 \\ 11.2 \\ 12.7$	$8.0 \\ 7.4 \\ 9.0 \\ 13.6 \\ 10.4$	$\begin{array}{c} 6.2 \\ 7.2 \\ 8.8 \\ 11.4 \\ 9.2 \end{array}$	$7.4 \\ 10.3 \\ 13.7 \\ 12.9 \\ 13.0$	$\begin{array}{r} 4.3 \\ 4.6 \\ 7.0 \\ 6.2 \\ 7.2 \end{array}$	4.6 5.3 7.2 6.1 8.2	$54 \\ 91 \\ 110 + \\ 102 \\ 98$	66 87 106 110 98	40 74 83 112 86	50 59 65 84 98	47 51 75 79 91
66	Mohave fine gravelly loam	$ \left\{\begin{array}{c} 1.9\\ 5.3\\ 7.4\\ 9.2\\ 14.2 \end{array}\right. $	$2.1 \\ 4.0 \\ 9.0 \\ 11.2 \\ 12.7$	8.6 10.2 11.6 45.8 20.3	7.8 11.3 11.1 10.0 ¢17.2+	7.7 15.1 14.3 18.6 D	$9.2 \\ 12.3 \\ /8.1 \\ 16.3 \\ /20.3$	8.3 16.8 4.6 17.7 19.9	88 85 110 488 142 +	$ \begin{array}{r} 82\\ 106\\ 140+\\ 130+\\ 145+ \end{array} $	$\begin{array}{r} 66 \\ 154 + \\ 154 + \\ 154 + \\ 154 + \\ 154 + \end{array}$	145 + 145 + 78 + 145 +	$ \begin{array}{r} 86 \\ 188 + \\ 66 \\ 188 + \\ 188 + \\ \end{array} $
67	Cinders	$ \left\{\begin{array}{c} 2.0 \\ 5.3 \\ 7.3 \\ 9.2 \\ 14.3 \end{array}\right. $	$2.1 \\ 4.0 \\ 9.0 \\ 11.1 \\ 12.7$	8.6 31.8 29.7 •15.2+ D	11.4 24.9 27.0 D D	$\begin{array}{c} 21.5 \\ 34.6 \\ 23.5 \\ *58.4 \\ D \end{array}$	40.0 37.0 31.7 D D	12.0 34.3 D 37.8 D	$ \begin{array}{r} 100 \\ 145 + \\ 145 + \\ 145 + \\ 145 + \\ 145 + \\ \end{array} $	$98 \\ 145 + \\ 145 + \\ 145 + \\ 145 + \\ 145 + $	154 + 119 + 127 + 154	145 + 145	$46 \\ 132 + \\ 188 + \\ 188 + \\ 188 + \\ 188 + $
70	Merced silt loam		2.1 4.0 9.0 11.2 12.8				$\begin{array}{r} 4.9\\ 79.7\\ 13.4\\ 24.5\\ 21.3\end{array}$	5.0 10.6 17.9 24.0 25.7	•			$50 \\ 118 + \\ 122 \\ 145 + \\ 145 + \\ 145 + $	$ \begin{array}{r} 86 \\ 188 + \\ 66 \\ 188 + \\ 188 + \\ \end{array} $

TABLE 15. Loss in weight and maximum penetration of wrought black ferrous pipe (11/2 inch) and plate buried in 1932 and 1937 -Continued (Average of two specimens)

* +, one or more specimens contained holes because of corrosion.
* Data for 8 specimens.
* Data for 1 specimens.
* Data for 1 specimen. The other specimen was missing.

D, both specimens destroyed by corrosion.
/ Data for the individual specimens differed from the average by more than 50 percent.
ø Data for 1 specimen. The other specimen was destroyed by corrosion.

FIGURE 11. Pit-depth-time curves for wrought ferrous pipe.

34

					(Average	of two spe	cimens, in	mils)					
				1	Maximum	penetration	1			Weigh	ted maxim	um penetra	ation a
			1½-in	ch pipe			3-incl	n pipe			3-incl	n pipe	
Soil	Maximum exposure	Open- hearth iron	Wrought iron	Bessemer steel	Bessemer steel (scale free)	Wrought iron	Open- hearth steel	Bessemer steel	Open- hearth steel with Cu	Wrought iron	Open- hearth steel	Besseme r steel	Open- hearth steel with Cu
	Material	a	b	е	у	В	K	M	Y	В	ĸ	M	Y
1 2 3 4 5	Years 11.6 17.6 12.1 12.0 17.5	$92 \\ 71 \\ 118 + 145 + 76$	74 60 80 78 54	86 56 78 79 51	91 80 75 82 42	96 56 76 87 66	94 70 82 108 91	101 58 84 84 62	125 67 90 152 71	90 54 64 74. 62	91 62 74 103 82	95 56 79 71 58	120 64 77 146 68
6 7 8 9 10	17.5 16.9 11.8 16.9 12.0	27 52 100 69 50	30 40 76 51 52	26 50 74 64 40	21 61 67 65 42	32 74 83 68 48	30 67 93 58 56	23 48 110 68 54	32 56 127 109 66	30 57 80 58 45	27 55 86 52 47	20 47 68 66 48	29 51 109 95 53
11 12 13 14 15	11.9 17.5 5.9 11.8 17.6	99 70 49 120 78	75 60 97 109 66	76 72 67 130 62	70 64 85 131 58	90 76 59 127 65	70 56 67 97 82	92 86 75 135 72	88 85 71 161 62	84 70 56 117 60	66 54 70 90 69	80 83 70 129 66	74 81 64 154 60
16 17 18 19 20	12.0 17.0 11.7 11.6 11.6	92 42 71 62 67	84 38 72 71 52	94 42 71 71 72	120 39 67 66 64	84 43 64 66 45	86 50 70 85 80	96 48 62 65 56	90 57 80 68 65	80 41 60 62 44	76 46 61 78 72	94 44 60 64 55	88 51 76 68 57
21 22 23 24 25	6.0 11.6 12.1 17.2 17.0	$71 \\ 72 \\ 145 + \\ 28 \\ 75$	52 66 145 + 24 50	$60 \\ 66 \\ 145 + \\ 21 \\ 48$	$63 \\ 78 \\ 145 + \\ 26 \\ 42$	60 68 158 30 54	59 65 159 28 62	66 66 163 36 57	$ \begin{array}{r} 60 \\ 71 \\ 216 + \\ 28 \\ 57 \end{array} $	56 66 157 31 51	54 63 158 26 54	60 63 145 30 53	$55 \\ 65 \\ 216 \\ 30 \\ 54$
26 27 28 29 30	16.9 17.6 9.6 12.0 17.0	$70 \\ 42 \\ 145 + \\ 145 + \\ 54$	$66 \\ 58 \\ 132 + \\ 97 \\ 51$	$67\\69\\137+\\136+\\58$	$64\\60\\145+\\145+\\51$	$72 \\ 74 \\ 167 \\ 134 \\ 62$	$66 \\ 92 \\ 183 + \\ 216 + \\ 64$	78 84 152 128 76	$ \begin{array}{r} 80 \\ 78 \\ 216 + \\ 216 + \\ 66 \end{array} $	69 68 160 117 60	$64 \\ 84 \\ 180 \\ 194 + \\ 63$	77 78 142 101 72	$75 \\ 59 \\ 216 + \\ 171 + \\ 63$
31 32 33 34 35	17.7 11.7 11.7 12.0 17.5	$50 \\ 58 \\ 130 \\ 82 \\ 32 \\ 32 \\ 32 \\ 31 \\ 32 \\ 32 \\ 31 \\ 32 \\ 31 \\ 32 \\ 32$	44 55 98 48 54	43 46 92 84 40	53 50 104 94 17	42 59 112 71 36	90 86 117 73 38	66 62 115 77 69	49 94 1 11 104 97	$40 \\ 58 \\ 103 \\ 66 \\ 31$	83 81 113 68 24	64 58 102 73 57	47 90 106 101 54
36 37 38 39 40	$17.7 \\ 12.0 \\ 17.2 \\ 12.0 \\ 12.0 \\ 12.0 \\ 12.0 \\ 12.0 \\ 12.0 \\ 12.0 \\ 12.0 \\ 12.0 \\ 12.0 \\ 12.0 \\ 10.0 \\ $	56 76 52 77 139	54 71 34 56 101	55 89 28 50 87	48 74 36 60 82	50 80 37 69 70	60 72 38 72 99	50 95 42 94 96	57 127 35 106 92	50 73 34 60 67	59 69 33 67 95	48 91 36 81 87	53 120 31 98 88
41 42 43 44 45	$17.4 \\ 12.0 \\ 12.0 \\ 11.6 \\ 11.7$	122 94 94 87 143	$94 \\ 92 \\ 102 + 56 \\ 114$	$ \begin{array}{r} 92 \\ 113 + \\ 100 \\ 63 \\ 138 \end{array} $	$101 \\ 111 + \\ 105 \\ 69 \\ 117$	$ \begin{array}{r} 86 \\ 96 \\ 138 \\ 65 \\ 118 \end{array} $	72 129 136 72 138	$101 \\ 103 \\ 119 \\ 82 \\ 128$	$80 \\ 116 \\ 155 + \\ 88 \\ 158$	$ \begin{array}{r} 81 \\ 94 \\ 131 \\ 62 \\ 111 \end{array} $	$71 \\ 122 \\ 126 \\ 54 \\ 135$	94 98 102 77 126	77 106 135 + 79 150
46 47	12.0 17.4	80 42	95 53	108 + 37	118+ 57	82 51	68 40	136 48	134 46	77 48	60 38	115 47	127 44
	Average	81	70	73	75	75	83	82	95	70	78	75	87

TABLE 16. Maximum pit depth and weighted maximum penetration of 1½-inch and 3-inch wrought black pipe specimens (buried in 1922) during the maximum exposure period

 \bullet The maximum penetration and the weighted maximum penetration for the $1\frac{1}{2}$ -inch pipe have the same value.

corrosion. Furthermore, it is observed (tables 13, 14, and 15) that in some soils all materials corroded much more seriously than in other soils. It is evident, therefore, that the chief causes of corrosion of the commonly used wrought materials are associated with soils or soil conditions. The similar corrosion of specimens of different wrought materials exposed to the same soil is shown in figure 12, and figure 13 illustrates the variation in the corrosiveness of different soils with respect to the same material.

Effect of Environment. It was observed in inspecting underground pipelines and specimens from the NBS tests, that corrosion may take widely $^{b}\,A$ plus (+) indicates that 1 or both specimens were punctured by corrosion.

different forms, from the production of sharp isolated pits to a uniform attack of the metal surface as illustrated in figure 13. It will be observed that in specimen 1 there is very little pitting, although practically the entire surface has been attacked, whereas in the specimens in the lower row, pitting is especially pronounced and the corroded areas are relatively small.

The variation in the type of corrosion on the same steel that may occur in soils is exhibited in figure 14, which illustrates corrosion patterns on Bessemer steel specimens, ranging from a uniform attack of the metal surface without pitting (14-1) to a highly localized attack in the form of deep,