Nonproprietary

Fuel Design Methodology

Larry Linik

December 6, 2012

Nonproprietary

Agenda

- Purpose of the meeting
- Background
- Plant overview
- Fuel design team
- Schedule implications

```
{{ }}}3(a)
```

- Design-Specific Review Standard for DCD Section 4.2
- Feedback and next steps

Purpose of the Meeting

- Describe fuel code methodology
 - Present {{ }}3(a) code to NRC
- Present design team to NRC
- Communicate status of fuel design activities
 - Current status
 - Upcoming activities
- Open the discussion for DSRS on DCD Section 4.2
- NRC feedback on the NuScale approach leading to agreement on path for Design Certification

Background

Review of Topics from the May Meeting

{{

Plant Overview

Reactor Building

Reactor building houses reactor modules, spent fuel pool, and reactor pool

Reactor Module Overview

Natural Convection for Cooling

- Passively safe, driven by gravity, natural circulation of water over the fuel
- No pumps, no need for emergency generators

· Seismically Robust

 System submerged in a below-ground pool of water in an earthquake resistant building

Simple and Small

- Reactor is 1/20th the size of large reactors
- Integrated reactor design, no large-break loss-of-coolant accidents

Defense-in-Depth

 Multiple additional barriers to protect against the release of radiation to the environment

45 MWe Reactor Module

Plant Overview - Natural Circulation

- Natural circulation in the reactor coolant system (RCS)
- Natural circulation in the decay heat removal system (DHRS)
- Natural circulation in the emergency core cooling system (ECCS)

8

Passive Decay Heat Removal System

- Main steam and main feedwater isolated
- Decay heat removal (DHR) isolation valves opened
- Decay heat passively removed via the steam generators and DHR heat exchangers to the reactor pool

ECCS/Containment Heat Removal

 Reactor vent valves opened on safety signal

 When containment liquid level is high enough, reactor recirculation valves open.

- Decay heat removed
 - condensing steam on inside surface of containment vessel
 - convection and conduction through liquid and both vessel walls

Stable Long-Term Cooling Under All Conditions

Reactor and nuclear fuel cooled indefinitely without pumps or power

^{*} Based on conservative calculations assuming all 12 modules in simultaneous upset conditions and reduced pool water inventory.

NuScale Core Design

- 17x17 lattice
- Approximately half-height
- 37 assemblies / 16 control rod clusters
- UO2 fuel pellets
- Clad material Zr-4 or advanced clad
- Negative reactivity coefficients
- 24 month cycle length at 95% capacity factor (695 effective full power day)

U-235 enrichment < 4.95 %

Fuel Design Team

Fuel Design Team

{{

}}^{3(a)}

Roles and Responsibilities

{{

}}^{3(a)}

Quality Assurance

NuScale has adopted ASME NQA-1 2008/2009 Addenda

- The audit identified four non-compliances
 - Design assumptions
 - Independently review and requirements traceability
 - Authentication of records
 - Definition of basic component not properly implemented
- {{
 - All four to be completed Dec 31, 2012
- {{ }}}3(a)

Software Quality Assurance

}}^{3(a)}

 All future development work will be performed in accordance with ASME NQA-1 2008/2009

Interactions

{{

Schedule Implications

Fuel Design Schedule

- Pre-submittal activities
 - Fuel mechanical design
 - Fuel mechanical testing
 - Fuel rod design
- Post-submittal activities
 - Confirmatory fuel mechanical testing
 - If required, fuel mechanical and rod design

Schedule Overview

{{

Schedule Overview

}}

Pre-Submittal Activities

{{

Post-Submittal Activities

{{

}}^{3(a)}

Key Milestones

{{

}}^{3(a)}

Opportunities for Testing Observations

{{

Summary

- Competent, experienced team functioning as planned
- Detailed schedule provides a path for success
- Making tangible progress

Questions?

Contents

{{

333(a

I. Introduction

{{

**

,3(a)

{{

}}3(a

II. Code Description

{{

}}^{3(a)}

{{

}}3(a)

}}^{3(a)}

II-3. Summary of development

4311

}}^{3(a}

}}^{3(a)}

{{

II-8. Coolant/Cladding temperature

{{

}}^{3(a)}

II-9. Pellet-clad gap conductance

{{

}}^{3(a)}

II-10. Pellet temperature

}}^{3(a)}

}}^{3(a)}

{{

II-11. Fission gas release (1)

}}^{3(a)}

}}^{3(a)}

{{

II-11. Fission gas release (2)

}}^{3(a)}

{{

II-12. Mechanical models

{{

}}^{3(a)}

{{

II-13. Clad creep

}}^{3(a)}

{{

II-14. Clad corrosion

}}^{3(a)}

{{

33(a)

III. Application Analyses to NuScale SMR

}}

}}3(a)

33(a)

IV. Assessment of Design Methodology

}

113(a)

}}^{3(a)}

- NUREG-0800, US NRC SRP 4.2, II. Acceptance Criteria (Mar. 2007, Rev. 03)
- Applicable Regulatory Guide

- > Fuel system damage criteria
 - I. Stress/Strain, or loading limits
 - II. Strain fatigue
 - III. Fretting wear
 - IV. Oxidation, hydriding, and crud
 - v. Dimensional change
 - VI. Internal pressure
 - VII. Hydraulic loads
 - VIII. Control rod reactivity and insertability

- > Fuel rod failure criteria
 - I. Hydriding
 - II. Cladding collapse
 - III. Overheating of cladding
 - IV. Overheating of fuel pellets
 - v. Excessive fuel enthalpy
 - VI. Pellet/cladding interaction
 - VII. Bursting
 - VIII. Mechanical fracturing

}}^{3(a)}

{{

IV-2. {{ | }}^{3(a)} fuel rod/system design criteria (2) {{

}}^{3(a)}

IV-2. $\{\{\}\}^{3(a)}$ fuel rod/system design criteria (3)

{{

}}^{3(a)}

{{

IV-3. Fuel rod design methodology

}}^{3(a)}

{{

113(a

V. Quality Assurance

{{

113(a

VI-1. Quality Assurance

{{

}}^{3(a)}

{{

Design-Specific Review Standard

Objective

Achieve agreement on the appropriate set of Specified Acceptable Fuel Design Limits (SAFDLs) for the NuScale fuel for the Design Control Document (DCD) Design-Specific Review Standard (DSRS)

Benefits

NuScale

- Design focused on issues directly related to plant safety
- Streamlined DCD development
- Reduced cost

NRC

- Review focused on issues directly related to plant safety
- Streamlined DCD review
- Focused combined operating license review
- More efficient use of staff resources

Customers

Plant operation focused on issues directly related to plant safety

NuScale SAFDL Approach

Recommended strategy for development of the NuScale DSRS:

- Group-1: Analyses to be performed in support of Design Certification and Operating License Application
 - Analyses directly related to demonstrating plant safety

Group-2: Analyses required by SRP not relevant

- Demonstrate conditions underpinning acceptance criteria are precluded by inherent design features, e.g., LBLOCA
- Operating regime limitations change acceptance criteria relevance to NuScale design

Group 1 Examples

{{

Group 2 Examples

{{

Group 2 Examples (continued)

{{

A. Fuel System Damage

{{

B. Fuel Rod Failure

{{

C. Fuel Coolability

{{

Feedback and Next Steps

- Staff feedback
- Design team

```
{{ }}3(a)
```

- Schedule
- Continue to develop detailed justification
 - E-room
- DSRS and plans for next interaction with the staff

